
,

CIVIL ENGINEER AND ARCHITECT'S

J O U R NAL,

SCIENTIFIC AND RAILWAY GAZETTE.

VOLUME IX.

LONDON:

R. GROOMbRIDGE \& SONS, 5, PATERNOSTER ROW; J. WEALE, 69, HIGH HOLBORN; WLLEY \& PUTNAM, NEW YORX; GALIGNANI, AND MATHIAS, PARIS.

> THE NEW YORK FUBLIC LIBRARY
> MATOR, LEHEX AME TILOEN FOUNOATIONA

```
\because:O:
    \bullet.: ! \:0: :%:!
    \because: \therefore :O:\because: 
    \because\because\therefore\therefore:O:O
```


INDEX TO VOL. IX.

Acadexy, Royal, exbibitions at, 169, 195
Accidents on the Norfolk railway, 51, 53
Address of the President of the British Alsociation, 313
Adie on the eorrotion of metals, 371
Air engine, Parsey's, 107
Allegheny, auspension aqueduct over, 47
Almanac, companion to (review), 11
14 Hare's illustrated (review), 14

Alam and alaminous compounds, Cliff's patent, 92
Amalgamation and leasing of railWasa, 69
Amateur engineering, 365
America, steam-factory in, 208
Anatomy, firat steps to, by Drummond (review), 14
Andernon, on the rail ways of Belgium, 17
Answers to questions respecting the houres of parliament, 244
Anthracite coal, smelting with, 216
Ancient domestic arcbitecture, Lamb on the stndies of (reviaw), 199

- and modern architecture, by Gailhaband (review), 13, 155
Aqueduct, suspension, over the Allegheny, 47
Arago on limes, mortars and cements, 33
Arch, oblique, treatise on, by Nicholson (review), 73
——kew, an old invention, 118
_ theory of, by Blair and Phillips, 151
Archasological congress, French, 218 - institute, 55

Archisectural competition, by Viator, 151

deceptions, 2, 66
imitations, 265

- recollection of Italy, by F. Lush, 168, 229, 263, 296 Edinburgh, 8
Arehitects, British, Royal Institnte of, 27, 58, 84, 123, 158, 188, 217 387
Architecture, arcuate and trabeate, 325, 361
106 , church, Candidus on, 106
Poy exhibition of, at the Royal Academy, 169, 195 - in Manchester, Liver. pool, and Birkenbead, 3 \longrightarrow mediseval, future development of, 225
, unfaitbfulness in, 105
Arcuate and trabeate architecture, 325, 361
Arreating railway carriagea, Crawford's patent, 186
Arrogant and Dauntless frigaten, the, 96
Arrownmytb and Batire's map of Eogland and Wales (review), 176
Art, Decorative, Society of, 56, 159
Artesian wells in China, 159
Artificial ultramarine, 55
Artizan Clab, steam engine by (re view), 38, 203

Arts, Fine, institute of, reporta, 42

- induatrial, exposition of, 30
——, Royal Scottiah Society of, 29, 55, 89, 123, 156, 256
——, Society for the Encouragament of, 28, 89, 124, 157, 189
Assiatant engineer' railway guide, Haskoll's (reviem), 374
Atha's patent atmoapheric engines, 185
Atlantic seas, icebergs in, 19
Atmospheric engines, Atha's patent, 18

218	propulaion, Hill's patent,
104, 188	railwaya, Bathforth on,
tent, 247	
tent, 92	
91	
tent, 252	
37	tractioa, Bathforth on,

Angura, Palmer's patent for making; 16
Anriferons and of the Rhine, 159
Aust pasaage-bridge, Banhforth's reply to Fulljames, 199
\longrightarrow Pulljames's remarke on, 190
of, 122
Auxiliary steam engine for supplying steam boilers with water, Cochrane's patent, 246
Ditto, Coffin's patent, 246

B.

Bagg's patent hot air engine, 92
Bankart's patent for refining copper ores, 120
Banker's notes, printing and preparing of, Moss's patent, 16
Berentin, cause of catestrophe at, 71
Barker's mill, letter on, with the editor's reply, 319
Barry's evidence on the houtes of parliament, 244
Bahforth on atmospheric traction, 37 on atmospheric railways, 104, 188
on change of motion, 10
reply to Pulljames, on the Aust pasage bridge, 199
Basilice at Rome, 259
Bateman's letter on embankments, 224
Bedford's patent for staining and etching glase, 384
Belfry turrets, 21
Belginm, railwaya of, Anderton on, 17
Benson's patent tile-making machine, 356
Bex's patent for decorating houses, 252
Bidder's evidence on the gange question, 309
Birch's paper on fictile manufactures, 178
Birkenhead, architecture in, 5

Blair and Phillips on the construction of viaducts, bridges, \&c. (review), 72
on the theory of the arch, 151
Blasco Garry, steam ship, tbe, 192
Blast furnace, Smith on the operation of, 144
Blanting under water, 369
Blinds, wire, fabrics for, Hill's patent, 16
Board of Trade, decision of, on the gauge question, 210 and Home Office, White-
hall, 261, 293
Boodroom marbles, 119
Books, reviews of, $11,38,72,154$, 174, 199, 286, 317, 356
Bovill's patent for the manufacture of iron, 382
Boydell's patent improvements in ship-building, 185
Botolph's, St., church, Boston, Liacolashire, restoration of, 235
Bozek's patent railway carriagewheela, 246
Brandling's patent railway carriaget, 186
Brandon, Messra., on pariah churches (review), 154
Brick and tile machine, Hall's patent, 355
making press, Waite's patent, 183
Bricks, retarn of duties on, 160
Bridge across the Aust passege, remarks on, by F. Giles, 122
Bridge, Hungerford, stability and strength of, 363

Weatminter, demolition of, 387
Bridgen, rilway, fall of, 353
Bridge, suapension, at the Falls of Niagara, 73
at Runcorn, 7
tubular, over the Menai Strait, 83, 100, 172, 298
Bristol, partial destruction of locks at, 282
British Architects, Royal Inatitnte of, 27, 58, 84, 123, 168, 188, 217, 387
British and American steam vessels, table of, 268
British Association, proceedings of, 301, 313, 341

Maseum, facade of, 65, 123 models of Parthe-

non in, 14, 44

Broad and narrow gauge, experimente 0n, 49
ganges, junc-
tion of, 187
gange, report
of royal commiasionert on, 74
S. T.'s letter on, 136

Brooke on self-registering instru-
Bruyere's evidence on the gange question, 213
ments, 341
Budd's patent for the manufacture of iron, 356
Buffert for railway carriages, Mill's
B patent, 61
Buffern, safety, Cheathire's patent, 285
Buildings, dampnoes in, 187, 216

Bansen's place of Egypt in the history of the world (review), 174
Bury's evidence on the gauge question, 254
Byrne's description and nses of the Byrnegraph (review), 288
new theory of the strength and atreas of materials, 163,231 , 257
Byrne on trigonometrical surveying, 272

C
Cambridge Fitzorilliam musenm, 31, 103, 129, 167
Cenal across the Isthmus of Panama, 339
Canals, warping haniage on, 368
Candidus on church architecture, 106 on rustication, 269
Candidus's Note-Book. Fasciculus LXVIII, LXIX, LXX, and LXXI, 134, 233, 262, 327
Cauvan, tenned, Millett od, 340
Capullarity, Prof. Henry's observations on, 176
Carriage propalaion, Galloway's pateat, 61
wheels, Scripture's patent 245
Cantie's Elementary Text Book (review), 356
Catastrophe at Barentid, cause of, 71
Cathedral of Cologne, 48, 290
Cathedral of St. Denis, 9
Cement, Keating's patent improve. ments in, 285
Change of motion, F. Barhforth on, 10
Channel squadron, trial of steamers, 259
Chantrill's letter on Rise and Leven churcb, Holderneat, Yorkhire, 100
Cbemical Society, 189
Chesohire's patent safety buffer, 285
Chimney draught, Wation's patent 251
poth, Brwart's patent, 185
China, artesian wells in, 159
Christ's church, Plymouth, 9, 60,68 106, 149
Church at Sacrow, near Potadam, 161
Churches, modern, clerestorien in, Wigbtwick on, 149
Churches, new, local, 81, 391
metropaliten, 171, 194, 266
Charch restoration, 81, 209
principles of, 143
spire, raising of, 41
Church's patent coke oven, 284
Circlet, Prosser's method of projecting them isometrically, 41
Civil Engineers, college for, 256 Institution of, 57
Clark and Piraie's patent steering apparatus, 185
Clerentories in modern cburches, Wightwick on, 149
Cliff's patent for the rannfacture of alum, 92
Ciyde river weirt, report on, 84
Coals, Ransome's patent, 16
Cochrane's patent auxiliary steam engine, 246
Coffin's patent anxiliary steam engine 246

Coke oven, Church's patent, 284
Cokiog artilicial fael, Warlich's petent, 384
Colchester, Roman remaina at, 199
Collection of newage manure, 82,362
College for Civil Engineers, 236
Collieries, gaves and explosions in, report on, 241
Colling's gothic ornaments (review), 286
Cologne cathedral, 48, 290
Coloseam, Regent's-park, 6
Coloured decorations, 20
Columne and pediments employed for mindow mouldlage, 162
Combining ateel and iron, Sandercon's patent, 186
Companion to the Almanac (review), 17
Comparison of scrēt propellers and paddle-wheek, 349
Competition, architectural, Viator on, 151

> designs, letter on, by

Vindex, 290
public, reports of, 42
Complete treatise on the obliqua arch, by P. Nicholion (review). 73
Compound motion, new law of, 156
Connecting boilers, Garforth's patent, 251
rods for cranke, Hinckley's patent, 246
Converazioné, Sir John Rennie's, 218
Copper ores, Bankart's patent for rofining, 120
extracted from lis ores by electricity, 208
Correupondence, 32, 64, 96, 128, 192, 224, 260, 292, 324. 392
Corrosion of metala, Adie's paper on, 371
Coupling and atuffing-bor for thafte, Loper's patent, 90
Crampton's patent engine, 220
Cranes, moreable jib, 367
Crawford's patent for atopping railway carriagen, 186
Critical dissertation on Prof. Willia's arehitectaral history of Canterbury cathedral (review), 287
Cubitt's, B., evidence on the gaoge question, 254
W., ditto, 239, 255

Capola, improved, for melting iron, 121
Current water-wheel, Robinson's patent, 90
Curves, railway, 368
Cuttinga and embankmenta, retting out of, by Hakkina, 136

D
Dampness in buildings, 187, 216
Darbyshire's tables for setting out rail may curves (review), 289
Dauntlesa frigate, 96
Deceptiona, architectaral, 2, 06
Decision of the Board' of Trade on the gauge question, 210
Decorations, coloured, 20 of the Opers Hease, 99 of houses, Bex's patent,
of the Town Hall, Liver. pool, 245
Decorative Art Society, 56, 159
Demolition of Weatminater Bridge, 387
Denis, St., cethedral of, 9
Dennet's patent horizontal windmills, 901
Description of the Byrnegraph, by 0. Byrne (review), 288

Deilderatis for the stody of medieval architecture, by Nonnallan, 309
Dibbligg apparatus, Puller's patent, 355
Dickson, on the caltivation and menagement of flax (review), 289
Differential hydraulic press, 319
Douglas, Sir Howard, on metropolitan bridges, tec. (review), 286 reply to observe. tions on the metropolitan bridges, ec., 358
Downhill tuenela, grand blant at, 253
Dredging machinery for Egypt, 108
Drummond's first steps to anatomy (review), 14
Dublin, port of, improvementa, 353
E
Earl's goniometricon, 369
Earth and sea, temperature of, by Taylur, 110
Earthwork, Hughen's tables for calcalating (review), 73
on sidelong grouads, by J.
Haghes. 333
Enst India Company's navy, 19
Eastlake, on styles and methods of painting, 112
Eccentrici, remarks on, Ickworth, 60
Edinburgh, synopuis of buildings in, 8
Edacation, profemional, of the engineer, architect, builder, and machinist, 283
Egypt, dredging machinery for, $108^{\text {g }}$ place of, in the bistory of the world, Bunsen (review), 174
Electric conductors, Youug's patent, 247
hamp, Greener's patent, 285
light, King's patent, 220
telegraph, Heighton's petent. 321
Elements of physics, by C. P. Peschel (reviem), 358
Elementary rext book for surveyori and levellers, by Castle (revier), 356
Bmbankments, Bateman's letter on, 224
Bmployment of columas and pedimenta an window mouldings, 162
Encaustic painting, 337
Encouragement of Arts, Society for, 28, 89, 124, 157, 189
Engineer, architect, builder and machiniat, on the education of, 283
Bngineering, Weale's Quarterly Papers on, 39
notes on, Nos. 4, 5, \& 6
on the atrength and form
of the Menai tubular bridge,
100,172, 298
Engineering, amatear, 365
Engineer's illustrated almanac, Hare's (review), 14
Engineer's manual of mineralogy and geology, Mrs. Varle- (review), 367
Engines of the steam frigate Gladiator, 193
England and France, telegraphic communication between, 160
England and Wales, railway map of, Arrowsonyth and Batire's (review), 176
Entasis and other curved lines of the Parthenon, hy F. Penrose, 97
Erratte, 64, 128, 192, 260, 324
Erricuson's patent propeller, 386
Esay on an improved metbod of constructing viaducts, bridges, tannels, ac. (review), 72
Evaporative power of turf, 20
Ewart's patent chimney pots, 185
Excarating machine, Poole's patent,

Bxchange, Royal, paper on theorigiand foundation of, by W. Tite, 28
Exbihition at the Royal Acendems, 169
Existing rallway, working stock of, 245
Expansion of steam, Hazard's papar on, 381
Experimental researchen on the atrength of cast-iron, by E. Hodgkinson (review), 317
Experiments on the broad and narrow gauge, 49
on steam, 9
Bxplosion in a sewer at Ixellea, 111
Exposition of manufactures and industrial art, 30
Bxtraction of copper from its ores hy electricity, 208

F

Fagade of the British Museam, 65, 123
Fairbairn's report of the Menal tabalar bridge, 145
Fall of riilway bridges, 353
Falle of Niagara, suspension bridge at, 73
Paraday, Prof., on lime preserved for fresco painting, 117
Fenestration and windows, 270, 293, 329
Fibrous materials, preparing of, Newton's patent, 385
Fictile manufactures, pottery and porcelain, 178
Pilterer, Wilkinson's patent, 222
Fine Arts, Institute of, reporta, 42
Fine Art architecture, Kerr's Newleafe discourses on (review), 377
Pire alarum, Taylor's patent, 120
Fire-engines, White's patent, 221
Fitzwilliam museum, Cambridge, 31,
103, 129, 167, 361
Fitzwilliam museum, interior of, 361
Ploora, ormamental, 216
Poreign public morks, 100
notes, 223, 323, 359, 390
Portifications, old, Sheerness, guns for, 80
Prance and England, telegraphic communication between, 160
Prancio's, Henry, patent gas apparatus, 185

Joreph, patent Iron boats, 184
Prench archeological congreas, 218 railways, 43
Presco printing, on the lime preserved for, by Prof. Paraday, 117
Frigates, Dauniles and Arrogant, 80
Puller's patent dibbling apparatus, 355
Fulljames's letter on the Aust sun. pension bridge, 190
Fulton on the noodification and adaptation of the Greek orders, 137
Future development of medieval architecture, 225

G

Gas apparatus, Prancis's patent, 185 buraers, Leslie's patent, 221 manoficture of, Murdoch's patent, 62
purifying of, Phillip's patent, 61
Gailhabaud on ancient and modern architecture (review), 13, 155
Galloway's patent for propelling carriages, 61
Garfortb's patent for connecting boilers, 251
Gate tower, St. Rdmund's Bary, 238
Gauget, decision of the Boird of Trade on, 210

Gaggen, broad and narrow, experimenta on, 49
junction of, 187
S. T.'s letter on, 136

Gauge commisuioners, report of, 74 commisaion, analysis of evideace, 179, 211, 254, 309
Geology, railway, 218
Giles'a, P., proposal for a suspenaion
bridge at the Aurt passage, 122
Gillard's patent for the production of heat, 320
Gladiator steam frigate, engines of, 193
Glast, Mr. Pellatt on the manufacture of, 124
painting on, 149
tiles, Russell's patent, 247
windows, stained, 254
Glans trining and etching, Bedford's patent, 384
Goethe's house, 205
Goniometer and crgutallonome, paper on, by Dr. Leeson (review), 153
Goniowetricon, Earl's, 369
Gotbic architecture, manual of, Paley (review), 377
Gothic ornamenta, by Colling (reriew), 289
Governors of ateam engines, Siemen's patent, 247
Grand blat at the Downhill tannels, 253
Gravel, white, 153
Great Britain steam ship, 0
Great Western, new locomotive en. gine, 198
Greener's patent electric lamp, 285
Greenhow's patent railways and carriages, 285
Gregg's patent hydroatatic power machine, 246
Guess's patent for removing acds from clotn, 386
Gun cotton, 386
Gunpowder, report of experiments on, at Washington, 119
Guns for old fortifications at Sheernest, 80
Gun steamers, 379
H
Hall's pateat brick and tije machine, 835
Hand-book of mapping, \&cc. Wilme (review), 204
Hare's illustrated almanac (review), 14
Huskoll's assistant engineer's railway guide (review), 374
Hawkins on setting out cuttings and earbankments, 136
Haworth's patent steam engine, 62
Huzard's paper on the expansion of steam, 381
Heald on staking out railway curves (review), 203
Heath's patent hydraulic gate, 91
Heating by hydrogen, Gullard's patent, 320
Height of Vesuvias, 111
Heighton's patent electric telegraph 321
Henry's, Professor, observations on capillarity, 176
Highton's patent railway chairs, 92
Hill and Dixon's patent for labricating macbiners, 91
Hill's, Joseph, putent wire gavee for blinds, 16

- John K., patent for atmos. pheric propulsion, $y 18$
press, 219 patent printing
press, 219
Hiackley's connecting rods, 216
Hind on the vibration of trains in

Hodgkinson's experimente on the strength of cast iron (review). 817 report on the Menai tubular bridge, 146
Holtzapffel on turning and manipulation (review), 372
Home Ofice, Whitehall, 261
Hopkins's patent rails and trams, 92 Horizontal water wheels, turbines, \&c., by Rühlman (review), 200

patent, 90

Hot-air engine, Bagg's patent, 02
House of Comnons, standing orders and reports, 93
Houses of Parliament, Mr. Barry's evidence on, 244
\longrightarrow, remarks on, 258 the ventilation of, 214
Howard, Henry, on plate glase making in England, 197
Howard'x patent steam engine condensers, 383
Howard's, Thomas, patent for rolling iron bars, 184
Hoghes, John, on earthwork on sidelong ground, 333
Hughes's, John, tables for the cri. culation of earth wrork (review), 73
Hangerfurd bridge, stability and etrength of, 363
Huntingtons's tables for the calculation of earthwork, \&c. (review) 165
Hydraulic gate, Heath's patent, 01 \longrightarrow paint, Warren's ditto, 184
Hydraulic rem, notes on, 362
Hydravlics, researches in, 128
Hy drostatic power machine, Gregg's patent, 246

I

Icebergs of the Atlantic seas, 19
1ckworth on eccentrics 60
Idea for the façude of the British Museum, 65
Imitutions, architectural, 205
Improvement of the river Severn, 80
Incorporated railwaya, sj dopsis of, 21

Iudustrial art and manufactures, exposition of, 30
Inertim of railway trains, power to overcome it, 256
Institule, Archseological, 55
——— of Fine A ris, reports of, 42
——, Royal, of British Architects. $27,58,84,123,158,188$, 217, 387
Institntion of Civil Engineers, 57
Iustrument for tracing railway curves, by W. Tait, 839
1 aterior of the Fitzwilliam Mnsenm 361
Iotroductory Note, 1
Iron boats, Francis's patens los. provements in, 184
$\xrightarrow{\text { provements in, } 184}$ improved cupola for melting, 121
B, improved manufacture of, Bóvill's patent, 882
——ditto, Budd's patent, 356
Isoard and Mercier's stean engino, 68
Isoard's patent for obtaining motive powor, 121
Isthmas of Panama, canal acrosa, 839
Itily, Lush's Arcbitectural Recol-
lections of, 168, 220, 263, 206
Ixelles, explosiun in a sewer at, 111

Jib, moveable, crapes, $\mathbf{5 6 7}$
Johnson's, Robert, pateat for atmospherio railways, 247
Johnson's, R., patent for parifying Ras, 288
Junction of the broad and narrow gauges, 187

K

Keating's patent cement, 285
Kentish ragstone, 177
Kerr's Newleafe discourses on the
fine art architecture (review), 377
King's patent electric light, 220

L

Lake's patent propelling power, 152
Lamb on the studies of ancient do-
Diestic architecture (review), 199
Landmann's, Col., evidence on the gauge question, 213
Launch of two steam ships at Liverpool, 160
Law, new, of compound motion, 156 Leaning tower mt Pisa, 208
Leesun's, Dr., paper od a dew godiometer and crystallonome, 153
Leslie's patent gas burners, 221
Lessening friction in clocks, Terry's pateat, $\mathbf{3 8 6}$
Letter od Barker's mill, with the editor's reply, 819
on the W yatt Wellington, 354
Letters on the cultivation and management of tlax, Dickson's (review), 289
Leven and Rise Church, Holderneas, by Cbantrill, 100
Lightning rods, 21
Lime preserved for fresco painting, Prof. Faraday on, 117
Limes, mortars, and cements, A rago on, 88
Linton's paper on edcaustic palnt. ing, 837
Liverpool, architectore in, 5
, launch of two steam ships at, 160

Town-ball decorations, 245
Local churchen, new, 81
Locke's evidence on tbe gange question, 182
Locomotive engines, Crampton'a patent, 229
, Nisbet's patent, 321
, Rayner's patent, 152
Howe and Slephenson's patent, 285
London, Society of Arts of, 28, 89, 124, 157,169
Londonderry and Coleraine railway, grand blast on, 253
Longridge's patent slide valves, 152
Lowber's patent for tinning pipes, 183
Lubricating machinery, Hill and Dixon's patent, 9 t
Luar corrector, Capt. Thompson's 160
Lash's A rchitectural Recollections of Italy, 168, 229, 263, 206

M

Machine for printing 12,000 sbeets per bour, 387
Machinery, lubricating, Hill and Dizon's pateat, 91
Machinery for making 2agurs, Palmer's patent, 16
McConnell's evidence on the gauge question, 211
Mucintosh's remarks on St. Michael Heavitree, 819
Macnanghl's patent improvements in iteam eagines, $\mathbf{2 4 6}$

Magnetic experiments on metale,
\&c., Sturgeon's paper on, 206
Mail steamers, trial of, 198
Madchester, architecture in, 8
Manual of Gotbic architecture. Pales (review), 377
Manufacture of Glasm, Pellatt's paper on, 124
Manufactures, fictile, pottery and porcelain, 178
and industrial art, ex position of, $\mathbf{s o}$
Manure, Muspratt's patent, 61

$$
\text { sewage, collection of, } 82
$$

859

Marble-polishing machine, Ziegler's patent, 183
Marbles, Boodroom, 118
Marine eleciric telegraph, Percevals's patent, 980
Masonry, from the Eccleciologist, 312 , rustic, 234, 330
Materials, Byrne's new theory of, 163, 281, 257
Mather's patent metallic pistons, 385
Matrices for casting printing type, Starr's patent, 380
Maudslay's patent propelling machinery, 262
May's putent machine for punching and shearing metal plates, 884
Mediseval architecture, desiderata for the study of, by Nondullus, 309
, future develop.
ment of, 225
Menai tubular bridge, strength and form of, 100, 172, 298
strait, tubular bridge over, 85
Metallic pistons, Mather's patent, 335
Metals, Adie's paper on the corrosion of, 871
Metropolitan bridges and Westminster improvements. Douglas, Sir Howard (review), 286
Metropolitan chorches, new, 171, 194, 266,
Michael Angelo, discovery of his works, 308
Millett on tanned canvas, 840
Mill's patent buffers, 61
Mining surveying instroment, new, by W. Peace, 386
Miacellanea, 31, 68, 259, 292
Models of the Partheoon, 14, 44, 85
Modern chnrches, clerestories in, Wightwick, 147
Modificution and adaptation of the Greek orders. H. Fultun, 187
Monumeut, Nelson's, 55, 187
Mordecai's ex periments on gunpowder, 119
Morrison's patent ventilating stoves, 184
Moss's patent for printing banker's notes, 16
Motion, Bashforth on the change of, 10
compound, new law of, 156
Motive power, Isoard's patent, 121
Nasmythe's putent, 320
Wilkinson's patent, 159
Moulding of iron, Muabet's pateat, 246
Moveable jib cranes, 367
Mud, sand-bars, \&x., Vermilion's patent for removing, 90
Mulley and Mason's patent for raising substances from under water, ing
16
ullin
Mullins on peat bog (review), 857
Murchison's, Sir R., address to the
British Association, 318
Murdoch's patent for the manufaoture of gas, 62
Murdock's patent for the prepara. tion of paint, $\mathbf{8 9 0}$

Musenm, British, Facade of, iden for, $9,65,128$
British Musenm, models of Parthenon in, 14, 44
Moseum, Fitzwilliam, at Cambridge, 81, 108, 120, 167
inlerior of, 361
Mushet's patent for moulding iron, 246
Musprati's patent manure, 61

N

Nasmyth's patent for obtaining motive power, 320
Navy of the East India Company, 19
Nelson's Monument, 55, 187
Neville on the pressure of retaining walld, 135
Newcastle Pbilosophical Society 31
New churches, local, 81, 100. 391
New goniometer and crystallonome, 153
New law of compound motion, 156
Newleafe discourses on the fine art architecture. Kerr (review), 377
New locks at Bristol, partial destruction of, 282
New locomolive engine, the Great Western, 108
New metropolitan churches, 171, 194, 266
New mining surveying instrument, W. Peace, 336

New planet, 331,366
New theory of the strength of nateriuls. O. Byrne, 163, 231, 267
Newton's patent apparatus for preparing fibrous materials, 385
Niagara, falls of, suspension bridge at the, 73
Nicholson, Peter, on the oblique arch (review), 73
Nisbel's patent locomotive engine, 321
Nonnullus on medieval architecture, 809
Norfolk railway, accidents on, 81, 53
Note book, Candidus's. Fasciculus LXVIII, LXIX, LXX, LXXI, 134, 23s, 262, 347
Note, introductory, 1
Notes, bankers', Moss's patent for printing, 16
Notes on engineering. Nos. IV and V, on the strength and form of the Menai tobolar bridge, 100 , 172
Notes, foreign, 223, 323, 359, 390
Notes of the mooth, $127,159,101$, 222, 258, 291, 321, 860, 389
Notes on the bydraulic ram, 309

Oblique arch, treatise ow, by Peter Nicholson (review), 78
Observations on capillarity, 176
Ocean waves, Walker on, 109
Ogier's proposal for a gederal metropolitan ruilpay (review), 289
Opera House, decorstions of, 99
Orders of the Greeks, Fulton on
the modification and adaptation of, 137
Ores, copper, Baokart's patent for refining, 120
Ores, reduction of, Towor's patent, 91
Origin and reclamation of peat bag, Mullias on (review), 875
Oruamental floors, 216
\mathbf{P}
Paddle-box boats abandoned, 72

Painting on glass, 147
Paley's manual of Gothic architec. ture (reviem), 377
Palmers, W., atwospheric railway, 92

J., patent angur machine-

 ry, 16Paper staining, Potter's patent, 356
Paris, Royal Observatory of, 96
Parish churches, \&c., hy Messrs.
Brandon (review), 154
Parkhurst's patent for propelling vessels, 180
Parlour's patent ship propellers, 821
Parsey's air engine, 107
Parthenon, models of, 14, 44, 85
entasis and other curved lines of, by F. P. Penrose, 97
Patents, American, specifications of 90, 183, 215, 386

Auxiliary steam engines, Cochrane, 246
ditto, Cofin, 240
Brick-makjog press, Waite, 183

Carriage-wheels, Soripture, 245

Connecting-rods for cranks, Hinckley, 246

Coopling and stuffing-box, Loper, 90

Current water-wheel, Robinson, 90

Folding sheet metal, Roo, 386
Horizontal wind-mills, Dennet, 90

Hydraulic gate, Heath, 91 paint, Warren, 184
Hydrostatic power machine, Gregg, 2.46

Iron boats, Francis, 184
Lessening friction in clocka, Terry, 380

Labricating machinery, Hill and Dixon, 91

Marble polishing machine, Ziegler, 183

Matrices for casting printiog type, Start, 386

Printing presses, Saxton, 184
Propellers, Ericsson, 386
Propellera, Phleger, 386
Railroad trucks, Ray, 184
Redaction of ores, Towers, 01

Remoring acids from cloth, Gress, 386

Remoring mud, sand, \&c., Vermilion, 90

Safety valven, Rush, 184
Steam engine, Pomeroy, 246
Tide-mills, Ross, 90
Tinning pipes, Lowber, 184
Ventilating pipes, Morrison, 184

Water gates, Robinson, 91
Water wheels, smith, 90
Patents, English, lists of, 32, 64, 96 128, 160, 191, 224, 260, 292, 324, 360, 392
Patents, register of specifications of new, 16, 61, 91, 120, 154, 184, 218, 246, 283, 390, 355, 382

Alum and aluminous compounds, Cliff, 92

Arresting railway carriages, Crawford, 186

Atmospheric engine, Atha, 185

Atmospheric propulaion,'Hill 218

Atmospheric railway, John. son, 247

Wheeler, 252
Ward, 91
Palmer, 82
Augur-making machine, Palmer, 16

Patents-(continued.)
Brick and tile machine, Hall 355

Buffers, safety, Chessbire, 285 Buffers for railway carriages Mills, 61

Cement, Keatiog, 985
Chimney draught, Watson,
251
Chimney pots, Ewart, 185
Coke oven, Church, 284
Coking artificial fuel, War-
lich, 382
Combining coal and preserv-
ing wood, Rancome, 16
Combining ateel and iron,
Sanderson, 186
Connecting boilers, Garforth
251
Copper ores, Bankart, 120
Decoration of houses, Bex,
259
Dibbling apparalus, Fuller,
855 Electric conductors, Young,
2.58

> lamp, Greener, 285
> light, King, 220
> telegraph, Heighton,

321
Excavating machine, Poole,
219
Filterer, Wilkinson, 222
Fire alarum, Taylor, 120
engines, White, 221
Gas apparatus, Erancis, 185 burners, Leslie, 221 manufacture, Murdoch,
62
parifying, Phillips, 61 Johbson, 283
Glass tiles, Ruseel, $\mathbf{9 1 7}$
Governors of steam engines,
Heating by hydrogen, Gil-
lard, 320
Hot air engines, Baggs, 92
Iron mannfactnre, Bovill, 889
Iron manufactnre, Budd, 350
Locomotive engines, Crampton, 220

Nisbet, 321
Ragner, 152
Stephenson and
Howe, 285
Manure, Muspratt, 61
Marine electric telegraph,

Perceval, 386

Metallic pistons, Mather, 385
Motive power, Isoand, 121
Nasmyth, 320
Wilkineon, 159
Moulding of iron, Mushet 246
Paper staining, Potter, 850
Plate and sheet iron cutter,
Wenalngton, 284
Preparing fibrous materials, Newton, 385

Printing press, Hill, 919
banker's nutes, Moss, 16
Propelling on railways and
eanals, Taylor and Condor, 251
Propelling machinery,
Maudslay, 252
Propelling power, Lake, 158
Propelling vessels, Park-
hurat, 186
Punchingand shearing metal plates, May, 384

Rails and trams, Hopkins, 92
Railway carriages, Braodling
186
carriage wheele, Bo-
zek, 248
chairs, Hightoo, 98 lifting apperatas,
Pope, 88
rails, Poole, 185

Patents-(contisued.)

Railways and carriages, Greenhow, 285

Raising subatances from nader water, Mulley and Mason, 16

Rolliag iron bars, Howard, 184

Ship building, Boydell, 185
propellers, Parlour, 291
Slide valves, Longridge, 152 Sluice cocks, Waller, 219
Staining and etching glase, Bedford, 384

Steam engine condensers, Howard, 383

Steam engine improvementa,
McNaught, 246
Steam engines, Haworth, 69
Steam engines, Rollinson, 384
and propellera,
Penn and Co., 247
Steam engines and propellers Seaward, 284

Steering apparatas, Clark
and Piraie, 185
Stoves, Searle, 120
Tanning, Warrington, 285
Tiles, Weller, 63
Ventilation of mines, Struve,
321
Wire fabrics for blinds, Hill,
16
Zinc paint, Murdock, 320
Peace's new mining surveying inatrument, 386
Pellatt on the manufacture of glass, 124
Penn, Hartree, and Matthews's improvements in steam engines and propeilers, 247
Penrose, on the entasis, Acc. of the Parthenon, 97
Perceval's patent marine electrle telegraph, 386
Peschel's olements of physics, Part II. (review), 358
Pimlico, St. Michael's church at, 67
Phillips's patent for purifying gas, 61
Philosophical Society, Newcastle, 8
Phleger's patent propeller, 388
Pisa, leaning tower at, 208
Piace of Ekypt in the history of the world. Bunsen (review), 174
Planet, new, 331, 366
Plate glass making in England, 197
Plate-iron cutter, Wennington's patent, 284
Playfair and De La Beche on explosions iu collieries, 241
ditto on the suppression of smoke, 196
Plymouth, Christ's charch at, $\mathbf{9 , ~ 6 0 , ~}$ 68, 106, 149
Plymouth, royal naval steam yard st, 317
Pomeroy's patent improvements in the steam engine, 246
Poole's patent excavating machine, 219
patent railway rails, 185
Pope'a patent railway lifting apparatus, 383
Port of Dublin, improvements of, 853
Potter's patent for paper staining, 356
Power to overcome the inertin of trains on railways, 156
Poynter on stained glass windows in Sainte Chapelle, Paris, 131
Practice of setting out railways, 275
Pressure on retaining walls, 109, 135
Preswn, subsidence of viaduct at, 135
Principles of charch restoration, 148
Priating preas, Hill's patent, 919
8axton's patent, 184

Problems in plane surveyidg, Viadex's letter, 300
Proceedings of scientific societies, 27, 55, 84, 123, 156, 188, 256, 387 Academy, Royal, 169, 195 Archæological congress, French 218
Archmological Institnte, 85 Architects, British, Royal Institute of, 27, 58, 84, 123, 158, 188, 917, 387
Art, Decorative, Society of, 50, 159
Arte, Fine, Institute of, 49
Arts, Royal Scottish Society of,
$29,55,89,123,156,256$
Arts, Society for the Encou-
ragement of, 28, $57,89,124,157$, 189

British Association, 301, 313, 841
Cbemlcal Society, 189
College for Civil Eagineers, 256 Institution of ditto, 57
Proceedings of railway committees, 93, 126
Professional education of the engineer, \&c., 263
Propellers, Ericsson's patent, 380
Phleger's patent, 386
Propelling on canals and railways,
Taylor and Condor's patent, 251
Propelling power, Lake's patent, 152
vessels, Parkhursi's patent, 186
Proposal for a general metropolitan railway. Ogier (review), 289
Prosser's method of projecting circles, 41
Pablic buildings, Eastlake on the paintiog of, 112
Public works, foreign, 190
Punching and shearing metal plates May's patent, 386
Parifying gas, Johnsoa's patent, 283
Putney, college for civil engineers at, 256

Q

Quality of the lime preserved for fresco painting, Prof. Faraday on, 117
Quarterly papors on engineering, Weale's (review), 39, 302

\boldsymbol{R}

Ragslone, Kentish, 177
Ruils and tramb, Hopkin's patent, 82
Railway bridges, fall of, 353
boffers, aafety, Chesshire's
patent, 285
carriages, Brandling's patent
186
carriage wheels, Bozek's patent, 246
chairs, Highlon's patent, 92
curres, instroment for tracing
curves, setting ont of, 800
staking out of. Heald
(review), 203
curres, Tait 0n, 886
geology, 918
lifting apparatas, Popo's pa-
tent, 388
map of England and Wales
(review), 176
Norfoit, accidents on, 51
proceedings, 93, 126
rails, Poole's patent, 185
Rouen and Havre, fall of a
viaduct on, 54
sleepers, sobatitute for, 915
atatistics, 206
suspension bridge, Ruseal's
pateat, 10

Railway trains, idertis of, 150
trucks, Ray's patent, 184
Railpays, amalgamation and leasing of, 69

Belgian, 17
carriages, \&xc., Greenhow's patent, 285

French, 48
incorporated, synopsis of, 21 practice of selting out, 257
United States, at work, 31 use, progress, and construction of. Ritchie (review), 175
Raising the spire of a chareb, 41
Ransome's patent for coals and wood 16
Pastrick: evidence on the gange question, 213
Ratiler steam ship, 19
Rayner's patent locomotive engine, 162
Ray's patent railway trucks, 184
Regent's Park, Coloseum in, 6
Register of new patents, 10, 61, 91
$120,152,184,218,246,283,320$, 355, 882
Removing acids from cloth, Guess's patent, 386
Rennie's, Sir J., conversazione, 218
Researches in hydraulics, 123
Restoration of churches, 81, 143
Retaining walls, pressure on, 109, 185
Retorm of duties on brickg, 160
Review of a reviewer, 58
Reviews of bookg-
Arrowsmith and Basire's
railway map, 170
Artizan Club steam engine, 38, 203

Blair and Phillips, on the
construction of viaducts, \&ec., 72
Brandon, Mesars., on parish churches, 16 :

Bunsen's place of Egypt in
the history of the world, 174
Byrne's byrnegraph, 288
Castle's elcmentary text book
356
Colling's gothic ornaments,
289
Companion to the almanac,
11
Creedy's excavation table,
289
Darbyshire's table for rail.
way curves, 289
Dickson's coltivation and
management of fay, 289
Donglas, Sir H., on metro-
politan bridges, \&ec. 286
Drammond's first steps to anatomy, 14

Gailhabaud's ancient and
modern architectore, 13, 155
Hare's illustrated almanac, 14

Haskoll'sassistantengineer's
railway guide, 374
Heald's railway curves, 203
Hodgikinson's researches on
cast iron, 817
Holtzapfiel's turning and manipulation, 372

Haghes's tables for the cal.
calations of eartbwork, 73
Hontington's ditto, 155
Kerr's Newleafe discoursee
on architecture, 377
Lamb's stadies of ancient domestic architecture, 199

Mullins on peat bog, 857
Nicholson's treatise on the oblique arch, 78

Ogier's proposal for a general metropolitan railway, 289

Paley's manual of Gothle architecture, 377

Reviews-(continued.)
Peschel's clements of physics, Part II., 858

Railway almadac; 14
Reply to observations on the report of the gauge conmisaioners, 15

Reply to observations on me-
tropolitan bridges, 358
Ritchie's railways, 175
Rühlman on horizontal water wheels, 202

Varley's, Mrs., engineer's manual, 378

Weale's quarterly papers, 89, 208

Willis's, Prof., architectural
history of Canterbury ca thedral, 287

Wilme's hand-book of mapping, 204
Rivers-
Alleghany, suspension aque-
duct over, 47
Clyde, trustees' report on the weir question, 84

Rhine, avriterous sand of, 159
Severn improvements, 80
Robinson's patent current waterwheel, 90
Robinson's patent for opening and closing water gates, 91
Rods, lightning. 21
Roe's patent machive for folding sheet metal, 386
Rolling iron bars, Howard's patent, 184
Rollinson's patent steam engine. 884
Roman remains at Colchester, 189
Rome, the Basilica at, 269
Ross's patent tide mills, 90
Rouen and Havre Hailway, fall of a viaduct on, 54
Royal Academy, exhibitions at, 169 195
Royal commissioners' report on the gauges, 74
Royal Exchange, 28
Reyal Institute of British Architects, 27, 58, 84, 128, 158, 188, 217, 387
Royal naval steam yard, Plymouth, 317
Royal Observatory of Paris, 96
Royal Scottish Society of Arts, 29, 55, 89, 193, 156, 250
Rühlman on borizontal water-wheels (review), 200
Rancorn suspension bridge, 7
Rush's patent safety valves, 184
Rusmell's, J., patent glass tiles, 247 H., reilway suspension
bridge, 10
Ruatic Masonry, 294, 330
Rustication, Candidus on, 269
s
Sacristies, 46
Sacrow near Potsdam, chorch at, 161
Safoty valves, Rush's patent, 184
Saint Botolph's, church, Boston, Lincolnshire, restoration of, 235
St. Cbapelle, atained glase windows in, 131

Denis, cathedral of, 9
Edmunds-Bury gate tower, 238 James's,264
Michael Heavitree, 319
Michael's, Pimlico, 67
Saviour's, York, restoration of, 209
Sanderson's patent for combining ateel and iron, 186
Bandys's dissertation on Prof. Willis's history of Canterbary cathedral (review), 287

Saxton's palent printing prers, 184
Scientific societies, proceedings of, 27, 35, 84, 123, $156.168,256$
Berew propeller (patedt law case), Woodcroft o Smith, 117
Screw propellers and paddle wheels, comparison of, 849
Bcripture's patent carriage wheels, 345
Searle's patent stove, 120
Seaward's patent steam engines and propellers, 284
Self-registering instrument, 341
Semper, architect of Dresden Gallery, 188
Setting out cuttings and embankments, 186
Setting out railway curves, $\mathbf{3 0 0}$
Sewage manure, collection of, 82, 852
Sewer at Ixelles, explosion in, 111
Sharp on the restoration of St Savionr's church, York, 209
Sbeerness, gons for the old tortifica. tions at, 80
Sheet metal, machine for folding, Roe's patent, 886
Ship building, Boydell's patent improvements in, 185
Ship propellers, Parlon's patent, 221
Siemen's patent governor, 247
Skew arch an old invention, 118
Skew arch, Nicholson's treatise on (review), 78
Slide valves, Longridge's patent, 152
Sluice cocks, Waller's patent, 219
Smelting with anthracite coll, 216
Smith on the blast furnace, 144
Smith's patent water wheels, 90
Smoke, suppresaion of, 196
value of, 148
Society of Arta, London, 28, 67, 89, 124, 167, 189

Royal Scottish, 29,
$66,89,183,186,256$
Bociety, Chemical, 189
of Decorative Art, 56, 159
of Fine Arts, 42
, Philosophical, of Newcas-
tle, 31
Stability and strength of Hungerford
bridge, 363
Stained glass windows, in Sainto
Chapelle, Paris, 131
St. Jamer's, 264
at Woolwich, 264
Staining and etching glass, Bedford's patent 384
Staking out railway curven, Heald on, (review), 203
Standing Orders of the Honce of Commons, 93, 94, 352
Starr's patent matrices for casting printer's types, 386
Steering apparatus, Clink and Pirnie's patent, 185
Steam, experiments on, 9
ongine, Artizan Club (review), 38, 203

Haworth's patent, 62
lsoard and Mercier's
patent, 58
Pomeroy's patent, 246
M'Naght's patent im.
provementr, 246
condemers, Howard's
patent, 383
Rollinson's patent, 384
Steam engines and propellers, Peun
and Co.'s pitent, 247
Seaward's

patent, 284

factory in America, 208
navigation, 160, 267
vesels, Britiah and American,

Steam veasels-
Blasco Garry, 192
Dauntless, 96
Gladistor, 193
Great Britain, 9
Janus, 51
Rattler, 19
Terrible, 127
Steam expansion, Hazard's paper on, 381
navigation, 379, 391
Steam-yard at Plymouth, 317
Stephenion's, Robert, report on the accident on the Norfolli railway, 33 evidence on the gauge
queation, 179
tubalar bridge, Fail. bairn's report on, 145

Hodgkia.
son's report on, 146
son's report on, 146
Stephenson, George, and Howe's
patent locomotive engine, 285
Stoves, Searle's patent, 120
Strength and form of the Menai tubular bridge, 100, 172
Strength of materials, theory of, 204
Strength and streas of materials, new theory of, by Oliver Byrne, 163, 231, 257
Struve's patent for ventilatiog mines, 321
Studies of ancient domestic architecture (review), 199
Sturgeon's magneticex perimenta, 206
Styles and methods of painting, 112
Subsidence of the Preston viaduct, 135
Substitute for railway sleepers, 215
Surveying, trigonometrical, problems in, 272
Suspension equeduct over the Alleg. beny, 47
Suspension bridge across the Aust passige, Fulljmen's remarks on, 190

Gile: on, 122
at the Aust pasage,
at the falls of Nin-
gara, 73
at Runcom, 7
Russell's pateat, 10
Synopaia of buildings in Edinburgh, 8

T

Table of British and American steam vesself, 268
Table of the railways at work in the United States, 31
Table showing the contents of excavations, derived from Mr. Bidder's
formala, by Creedy (review), 289
Tables for setting ont curves on rail. waya, by Darbyshire (review), 289
Tables to facilitate the calculationa of earthwork, by J. Hughes (review), 73
Tables and rules for facilitating the calculations of earthwork, \&ec., by Hantington (review), 155
Tait on railway curves, 361
Tait's instrament for tracing railway curves, 332
Tanned canvas, Millett's communications on, 340
Tanning, Warrington'a patent for, 285
Taylor and Conder's patent for propelling, 251
Taylor's patent fire alsurm, 120
Taylor ou the temperatuse of the earth and sea, 110
Telegraphic communication between
France and England, 160
Temperature of the earth and ses, 110

Steam ve
> -

 .

[^0]\qquad

\qquad

[^1]

[^2]Terrible, Frar steamer, 127
Terry's patent for lesening frietion in clocks, 386
Theory of the arch, Blair and Phil. lips, 151
Theory of the strength of materials, 204
Theory (new), of the strength and strese of materials, O. Byrne, 163, 231, 257
Thompson's lunar corrector, 160
Tidal harbours, commisbioners' second report, 148
Tide mills, Ross's patent, 90
Tile-making, Benson's patent, 356
Tile machine, Weiler's patent, 63
Tinning pipes, Lowber's jpatent, 184
Tower's pesent for the reduction of ores, 91
Trabeate and arcuate architecture, 361
Traction, atmospheric, 29
Tracts on volcanoes, 71
Trial of the channel steamers, 259
mail steamert, 198
Trigonometrical surveying, problems in, 272
Tubnlar bridge over the Menai atrait, 83, 100, 172, 298

Fairbairn's report on, 145

Hodgkinson's report
on, 146
Turf, evaporative power of, 20
Turning and manipulation, Holt-
zapfitel on (review), 372
Turrets, belfry, 21

U

Ultramarive, artificial, 55
Unfaithfulneas io architecture, 105
United States, table of the railwaya at work in, 31

V
Value of smoke, 148
Varley's, Mrs., enginear's manual, 376
Ventilation of the Houces of Parlisment, second report on, 214
Ventilating mines, Strave's petont for, 321
stoves, Morrimon's petent, 184
Vormilion's patent for removing mud, sand, bart, \&c., 90
Vesavius, height of, 111
Viaduct, fall of, on the Romen and Havro railway, 54
Viaduct at Preston, subaidence of, 135
Viator on architectural competition, 151
Vibration of traing in tunnela, Hind's report on, 207
View of a reviewer, 68
Vignollas's evidence on the gauge question, 214
Vinder's letter on composition dosigns, 290
aurveying, 300
problems in plane
Volcanoes, \&e., tracts on, 71.

W

Waito's patent brick-making preas, 183
Walker on ocean waves, 109
Waller's patent aluice cocks, 219
Ward's patent atmospheric railway, 91
Warlich's patent fuel, 384
Warping haulage on canall, 368
Warren's patent hydraulic paint, 184
Warrington'e patent for tanning, 285
Water-gates, Robinson's patent, 91
Water-wheels (current), Robinson's patent, 90

Smith'a patent, 90
Watson's patent chimney draught, 251
Wave of the ocean, Walker on, 109
Weale's Quarterly Papers on engineering, 39, 202
Weirs across rivers, reports on, 84
Weller's patent tiles, 63
Wenaington's patent plate and aheet iron cutter, 284
Weatminster bridge, report on the present state of, 278
Weatminater bridge, 387
White on volcanoes, \&ec., 71
White's, John, patent fire engine, 221
White gravel, 152
Wheeler's patent atmospheric railway, 252
Wightwick on the clerestoriss in modern churches, 149
Wilkinson'a, David, patent motive power, 152

IIST OF ILLUSTRATIONS.

Air-pump, 104
All Saints church, Yorksbire, 100
Aqueduct over the Allegheny, 48
Architectural recollections of Italy,
6 cuts, 168, 230, 297
Aust passage bridge, 122
Beams, sections of, 5,318
Blasting under water, 2 cuts, 370
Byrnograph, 4 cnta, 288
Change of motion, 4 cats, 10
Chimney draught, 251
Christ's chnrch, Plymouth, 68
Combining iron and ateel, 3 cuts, 186
Cuttings and embankments, \& cuts, 136, 275
Dampuese in buildings, 217
Dibbling apparatus, 2 cuts, 355
Differential bydraulic prese, 319
Earl't Goniometricon, 2 ents, 369
Electric light, 2 cuta, 220
Engines of the Gladiator, 2 cuts, 193
Entasia of the Parthenon, 2 cutt, 98

Exhanstion of air from tubea, 01
Pilterer, 3 cuts, 222
Fire alarum, 3 cuts, 120
Fire ongines, 2 cuts, 221
Gas burners, 2 cuta, 221
Horizontal water-wheels, 2 cuts, 201
Hot-air engine, 92
Hangerford bridge, 358, 364
Instrument for tracing railway curves, 332
Junction of the brosd and narrow gages, 3 cuts, 187
Leven church, 2 cuts, 100
Locomotive engine, 152
Locomotive engines, 2 cuts, 220
Machine for circular motion, 31
Maudslay's propelling machinery, 2 cuta, 252
Menai and Conway tabular bridges, 3 cuts, 307
Metallic pistons, 385
Model of the Parthenon, 7 cuts, 45,

Motive power, 2 cuts, 121
Moveable jib cranew, 367
New mining surveying instroments, 2 cuts, 336
Yaper staining, 3 cnts, 356
Plan of windows at the Home Office, 3 cuts, 262
Preparing fibrous materials, 2 cuts, 335
Problems in surveying, 6 cuts, 273
Projection of circles, isometrically, 41
Propelling power, 2 cuts, 153
veasels, 2 cuts, 186
Punching and obeering metal platen, 2 cuts, 384
Purifying ges, 283
Railway break, 186
carriages, 186
chairs, 93
rails, 185
Raising the spire of a chureb, 41
Rocks at the Downhill tuanel, 4 cuta,

Wilkinoon's, Joaiah, patent ilterer, 222
William of Wykeham, architeetural notice of, 318
Willisms on the evaporative power of tarf, 20
Wilme's hand-book of mapping, se. (review), 204
Windraille, horizontal, Dennet's patent, 90
Windown and feneatration, 270, 293, 329
Window-mouldings, colamns and pediments employed for, 162
Wire fabrics for blinds, Hill's patent, 16
Wood, proserving of, Rassome's pa. tent, 16
Wooderoft 0 . Smith, patent lav ense, 117
Working atock of exiating railway, 245
Works by Michsel Angelo, discovery of, 308
Wyatt's Wellington, remerk on, 354
I
York, reatoration of Saint Saviours ohurch at, 209
Young'a patent electric couductors, 247

2

Zieglor' patent marblo polishing machine, 183
Zinc paint, Mardock's patent, 320

Rolling iron bart, 3 cute, 184
Saint Edmunds Bary gate tower, 238
Saint Saviour's church, 209
Ship-bnilding, 8 cuts, 185
Ship-propelling, 2 cuts, 221
Slide valves, 2 cuts, 152
Sluice-cockn, 2 cuts, 220
South Hackney charch, 195
Stained glans windows at Sainte Chapelle, Paris, 14 cnts, 131
Steering apparatua, 2 cuts, 185
Strength and streas of materiale, 13 cats, 163, 205, 232
Theory of the arch, 151
Tabular bridge, 15 cuta, 101, 146, 172, 298
Tarning and manipulation, 373
Warping haulage, 2 cuts, 368
Wheelera atmospheric railway, 8 cutn, 252

Plate 1.-Great Britain steam ship opposite page o
.. 2.-Railway suspension bridge worth's steam engine,-Murdock's gae apparatus, - Walker and Mills's railway buffer,-Weller's brict machine
$\begin{array}{lr} & \\ \text {.. } & 61 \\ \text {.. } & 65 \\ & 97 \\ \text {.. } & 129 \\ \text {.. } & 161 \\ \text {.. } & 193\end{array}$

THE

CIVIL ENGINEER AND ARCHITECTS

J 0 UR N AL,

INTRODUCTORY NOTE.

In commencing the 100th Part, and a new volume of this work, the condoctors of it venture upon a few introductory remarks; the object proposed is not, bowever, merely to offer the courtesies of salutation, though, were it no more, we might well be excused-at a season of universal greeting and goodwill-for expressing to those who have accompanied us, and those who have assisted us in the prosecution of our task, with how much gratification we arrive at this epoch of it, and commence a new portion of our labours.

In a periodical devoted, not to the general purposes of literature, but to the publication of information on specific subjects, and these of a very extended and frequently complicated nature, the reader has a right to expect that the mode of selecting and communicating information should be guided by certain fixed principles; for it is certain that, were no other roles adopted in conducting such a work as this, than that of setting down whatever appears to possess a passing interest, and that of recording the information just as it is supplied to us, the reader would no longer find what he would mont anxiously seek for in these pages, professional information selected for its intrinsic importance, and referred to certain faxed principles as tests of its value and accuracy.

In Engineering, the first branch of our labors, it is by no means difficult to explain the rules here adopted. The theory of the operations of the engineer belongs, fortunately, to a philosophy the most accurate aud complete, of all which the range of human thought encompasses-the philosophy of motion and equilibrium; and the application of this philosophy to practical mechanics is founded on a system of experimental knowledge, far exceeding in extent and the uniformity of its results all that has been obtained in other practical arts. For while, on the one hand, none of the operations of nature have been so succesefolly therised as the mechanical, and on the other, none have been made so generally the subjects of practical industry.

In examinining, then, the labours of the engineer and mechanist, we have first to see how far their notions accord with the pure theory; secondly, how far the details of their works stand the test of experience. There once prevailed, unfortunately, an idea that the theory and practice of mechanics were inconsistent with each other ; but the new and constantly increasing requirements of modern engineering are now fast dissipating the error; for, while the theoretical student finds it impossible to render his knowledge available without actual experience, the practical ope.

No. 100.-YoL IX——ANDART, 1846.
rato frequently finds, from the rapid advances of modern engineering, that be is placed in circumstances altogether new to him-discovers that his notions of the laws of mechenics picked up here and there, without any system, and generally mixed up with a vast amount of extraneous matter will not always suffice, and that he must frequently submit his judgment, in a measure at least, to that af the theorist.

It is quite true that the actual operations of engineering generally depend on natural laws so complicated as to render direct mathematical investigations, either impossible, or rendered possible only by hypothetical simplifications of the cases examined. It is not, therefore, to the immediate results of mathematics, that we are to look for the most general benefit derivable from pure theory, though even here how much has been done for the assistance of the engineer, labours such as those of Coulonib, Poncelte, De Pambour, Hodgkinson, Moseley, and Professor Willis amply testify. But there is another far more common benefit which the engineer will derive from mathematical knowledge, which, if duly considered, ought to remove from the mind of the practical student gl coldness and suspicion respecting the results of theoretical mechanics.

It is not to be expected that an engineer, however high his mathematical attainments, could determine, numerically, the velocity of every engine be constructs, the pressure on every tunnel, or revetensent wall which he builds; but this is certain, that his mathematical education will have so systematised and simplified his mechanical conceptions, that he will examine his works far more critically than be possibly would, were his physical notions derived merely from his own experience or popular treatises. It may be unhesitatingly affirmed that the perspicuous general insight into the laws of mechanics, afforded by the studs of mathematics, is not to be obtained by discursive reading and casual experience however extensive or varied in its nature. It were easy enough to give in. stances of men eminent for their practical labours, who, from lack of systmatic knowledge, frequently utter notions the most confused on mechanical subjects ; or-to refer to more immediate instancen-we might, from our own pages, point out repeated cases of inventors obtaining patents for the supposed attainment of physical impossibilities.
That chief value of the mathematical theory of mechanics to the proctical engineer would seem then to be, not so much the prediction of the exact result of his labours, as the general guidance afforded to him in conducting them -the knowledge by which, without the toil of experiment, he distinguishes between what is physically possible and what jimpossible, and is directed in choosing the mechanical appliances bent suitable to effect bis objects. Who can estimate how vast an amount of intellectual and experimental labour might have been salved, had those who

30 long long strove to discover "perpetal motion," and the means of making water raise itself, known that they were, in fact, atriving to give to matter laws altogether diverse from those assigned to it in the economy of natare 1 And yet the mame efforts (applied to diferent objects) are made in our own day. It may, therofore, be safely assumed that we carnot greatly err in recording the progress of engineering, if we constantly refer to pore theory as a test of the accuracy of our judgment-if we apply constantly the principles of mathematical philosophy divested of its langage.-The language of symbols is requisite only in determining exact statistical results, but the general principles of pure mechanics are of eniversal application, and are capable of being expressed in ordinary langange with a facility and accuracy far beyond what might be naturally anticipated, had wo not eminent proofs that the attempt may be made with succens.*

In Aachitzctore the determination of fixed rules of criticism is not so easy a natter. Tasto refuses to be fettered by the strict laws of aatural philosophy, and the canons of the fine arts are seldom demonstrable. Etill we have even bere some fixed principles which rest on the safe fonndation of universal consent, and are susceptible of very extended application. The general law that architectural beauty is dependent on utility was quiversally recognised by those from whom wo borrow the only kinds of architecture adopted by us-the Classic and the Christianand it is a law which at a time like the present, diatinguished by a grovping interest in the philosophy of the arts, few will be bold enough to con-trovert-the simple and iadispotable rale that architectural members applied without use, or to wrong ase, are deformities per se, will of itself frequently be sufficient in determining our judgment.

It is not however to be concluded that this principle is the only one which the Classic and Mediseal architects held in common; and it may here be remarked how little progress has been made in discovering the abatract principles by which these masters were guided. Of the actual forms adopted by them there has been no lack of atudy. The lines and dimensions exhibited hy slandard specimens of architecture have been noted down and catalogued with wonderful and praiseworthy minuteness. But may it not be doubted whether the neglect of principles for the sake of forms, savour not somewhat too strongly of servile coyping! An intelligent atudent-artist will, it may be fairly supposed, endeavour rather to become imbued with the spirit and genius of his master, than to reproduce overy minute mark and characteristic of his works.
Here seams to be the real canse why some who in our own time have laboured zealously to restore one kind of architecture to its original purity, have failed of the full recompense of their talents, industry, and zeal. An indiscriminato adherence'to precedent hasiproducedjits never failing fruitsbigotry and intolerance. Had the mame labour which has been spent in recording proportions and copying outlines, been devoted to the examination of the beantifal philosophy of which those dimensions and proportions were the results, we should hear of few efforts lo exalt one system of pure architeoture at the expense of another, and we should probably have far advanced in reducing our knowledge of ancient architecture to a system by which alone we can hope to riral the manterpieces of that art of which wo profess to be disciples.

But there may be some who would say further that we ought, not ouly to avoid servile adherence to precedent respecting architectural forms, but oven to dieown all obligation to be bound by the abatract principles of the old architects. To this it seems sufficient anower that in that cese we must no longer profess to adopt the old modes of architectare; we must discover for ourselves some altogether new system. And thongh we have no warrant for denying a priori, the possibility of anch a discovery, still nutil it be made-mintil we disown all similarity of our works to those of the clamio and medimenal architects, wo aro cloarly mere mimics, when wo borrow from them some of the forma which they adopted, and apply them withoot any regard for their original parposes. This at loast is oertain that if wo endeavour to confonnd together principlea, which are not merely different, hot directly antagonistic, the ranult mast be discordiant and inharmonions.

It surely were no dificult task to show that the genius of Greek and Gothic architecture are diametrically opponed to each other. Where wo see the two brought into direct contrast (as for instance in the interior of a
-We may refer, to proof, to Alry's Theory of Grartation, a work which oxhibita in a moet extraordinary mapner the practicability of explainlag, in ordigury laygurge, the mavits of alabornte matheretical remparcheb.
cathedral which the admirable taste of the last age has decorated with Corinthian columns,) the discordance is so offensive to the oye at to he immediately condemned. But why should we not carry the principles of the condemation a litue further, and condemn buildinge when the details belong to the one aystem, and the oulline to another system of architecture -buildings, for instance, in which it is enduavoured to give a lofty vertical effect by architectural members, which were originally proposed to produce a horizontal effect ?

It is oot to be denied that even where these considerations (jndisputable as they seem,) have been neglected, thera have been produced buildings, which, by the richnens of their decorations, fail not of a certain claim on our admiration. But this is certain, that though the effect in such casea be gorgeous, it cannot, in the very nature of things, be pure. To copy such work is, at least, but to copy second-hand; and surely, if we be not going altogether wrong in our endeavours to purify our taste for Cbriatian architecture, it is but a legitimate extension of our efforts to free classie architecture of the foreign ideas which have been imported into it. It may be, indeed, require a certain amount of adaptation, in the application to modern parposes; bat the requirements of those who invented, and first used classic architecture, too nearly resembled our own to permit the sapposition that the adaptation would involve a total aubversion of their original principlos.

These considerations will explain, with sufficient accursey, the course we would endeavour to adopt with respect to the two leading divisions of our task. We make no profession, bowever, of being always able to attain the true philosopby of architecture and engideering. It is safe, semetimes, to simply record facts, and to wait until direct experienoe shews the value of them. In such cases, our labour is little more than that of compilation; and even where we uadertake the more bavardons labours of direct criticism, we have frequently to confde in the consideraliun that our readers are, for the most part, those who are practically aware of the diversity and complexity of our task, and will make fall allowance for the difficulties of it. At the same time, we are well persuaded of the importance of rendering all knowledge systematic; and we have this trast in the principles here set forth, that if they do not always lead to rapid discoveries of great truths, they will at least prevent the admission of great errors-that even if we sometimes loiter on our road, they will keep us from wandering altogether out of $i t$.

ARCHITECTURAL DECEPTIONS.

To restore to architecture the excellence which it attained in the periods of its greatest purity among the Greeks and Medisval Christians, it seems absolutely necessary that it should regain that hold on the popular mind which it possessed during those epochs. With tbe Athenians the erection of a temple, with our Christian forefathers, the building of a Cathedral was a work of no isolated or merely local import, but one which engaged the interests and tasked the enorgies of a whole nation. Whiel prinling was not yet discovered, architecture, according to the beautiful theory of a great writer of our times, was the only method by which the mind of a peoplo could express itself-and this at least is certain, and independent of all theory, that public architecture engaged far more of public attention heretofore than now. The slighest reflection will show that the national importance thus given to the constructive arts must have contributed much to their perfection and purity, and also, that on the other hand the very excellence of those arta, by reaction, greatly advanced the public estimation of them.

Nothing seems more fatal to the progress of architecture in modern time, nothing a greater obstacle to the resumption of its former rank than the custom which has unhappily crept into modern practice of using imitative and therefore deceptive materials. The feeling of honesty and candous which characterised the olden architects seems fairly out of date : and in its place we have almost nniversally a spirit of ostentation, an affectation of show, the dishonesty of pretension, the vulgarity of making things appear something different from, something better then, what they really are.

Where wo cannot afford to build expensively, it would seem the beet taste to use what humbler materials are at command honestly, and withont any attompt at diaguice; and to compensate as far as may be, for the want
of more contly applinnces, by simplicity and correctness of design. This vale ought atleast to be obsorved in public boildings. For domestic architeeture, the showy ayotem of building is so nearly univeral that it seems hopeless and uselese to atter oue word of protent against it at present. In this latter chse thero soems no better course than to wait patiently till another race of builders may arise too free from vulgarity to emulate the Jeckdan in his asanmption of the finery of the peacock. But with respect to pablic edifices the case is different, and againat the building them of deoqptive (and for the most part perishable) materials, a public protest ought to bo decisively prouonaced.

If it be desired to delermine on what principles good taste universally docides against architectural imitations, the answer appears to be two.fold. In the first place deceptive materials are almost always less durable tban thone aubstances which they imitate ; whereas one of the chief rources of the plensure of viewing beautiful arcbitecture is the consideration of its permanence. In admiring an ancient edifce, we shall find on analysing our own minds, that a great part of our gratification arises from the refection that this very building, the objeot of oar admiration, has been the wooder of many by-goue generations ; and if, again, we are delighted by a noble work of modern architecture, our delight is in a great part made up from the consideration that wo have bequeathed to posterity a worthy monument of the akill and intelligence of nar own times.
Bat a second argument against architectural deceptions may be alleged which cannot be like the preceding one answered by the allogation that the deception may be made as endurable as the reality. An important moarce of the pleasure afforded by pure architecture is the recognition of the skill and energy of the architect. The curionsly fretted roof and the claborate wiodow tracery delight, not only because of their intrinsic beanty, bot because of the labour and patience exhibited on the part of the workman. If it were possible to conceive that these beautiful forms were ready made to the builder's hands by some fortuitons process, the feeling of ad. miration would be greatly moderated. In all master-pieces of architecture (and not of architecture only, but of all other noble arts) a distinguishing characteristic is that their full beauties aro ascertained only by roiterated examinations. Every closer inspection serves only to reveal fresh instances of the skill and perseverance of the builder-but if these closer and more penetrating examinations shoald disclose traces of deception only, and want of candour, if we find that there has not been all that skill and pereeverance bestowed which were promised at first riew, the feeling of disappointment is proportionato to the former feeling of admiration, the mind retaliates by contempt of the juggle-retaliates in the same degree as it has been misled.

We have been led to make these observations by observing one of the mont dagrant instances of the valgarity of "make-believe" building which we remember to have ovor met with. The fault in aggravated by appearing in Church-architecture, where, if any where, everything should be real. "The chorch at Platt," say= the Builder, "is heing erected from the designs of Mr. Sbarp, who was the architect of a charch at Lever-bridge, near Bolton-le-Moora, previously noticed, also built of terra-cotta. The phan consiste of nave and aisles, chancol, a sacristy south of the chancel and a tower at the south-west of the nave. The atyle is decorated. The architect has probably had many restrictions to contend with, to which wo may attribute the slightness of the internal piers, and increase of distance between the buttresses. The tower is uaited to the aisle by a lofy arch, which is worthy of praise. The church has more than the usual amount of decoration, and ornameat is introdnced with good effect in capitals and bettresses. The windows have two iights with foliated heads, and are, in the aisles, of two varieties. The design is evidently the production of a clever man, but we are compelled to express an unfaronrable opinion of its execution-Each separate piece of the terra-cotta is cast to the required form, and is much about the same size as a corresponding block of stone. Every piece is hollow, being, as it appeared, afterwards flled or backed up with concrete. They are all nothing more than pots, and from the trial we made, neem to have less cohesive power than brick. Nevertheleas, they are made to support great weights. The piers of the church, which, at we have said, appear remarkably slender, are entirely composed of these pots. The plan is the clustre of four shafts. There are the usual defects incidental to the barning; parts of the mullions are out of the perpendicalar, and the lines of the wisdow-sill andulate in a very unsatiafuctory manner. Indeed, the whole huilding, though good in desiga, and not deficient in ornament, will not bear a near approach. The face of each piece is acored with lines to imitate the tooling ; and the mortar joints are large, and obtrudiag."

A charch "built of terra-cota"! Piers "composed of pots"! Lines scored "to imitate the tooling"! The failts of execution are not the only faults of such a building-are far outweighed the errors of principle whicb produced them. The notice which has jast been copiod is followed by some judicious general remarks-30 judicions that we cannot but regret their brevity. "Unlens the skilful hand" it is remarkod, " be apparent, the result is disappointment rather than delight, and regret that the mind of the artist should have conceived it vain." Here truly there was no appearance of the skilfiki hand. Let na rejoice that it was un-skilful-otherwise perchance anskilful observers might haveapplauded an essay which the judicious would censure in proportion to its succeasfulness.

ARCHITECTURE IN MANCHESTER, LIVERPOOL, AND BIRKENHEAD.

$S_{I R},-I$ resume my notlees of the Building Arts in Manchester, and, haviag lately had opportnnity of looking over some of the principal works going on in Liverpool and Birkenhend, propose adding a few remarks upon the progress there, which may be accoptable to your readera.

In my former letter I alladed to the proposed extencion of the present Manchester Exchanoe, as denignod to be carried into effect by Mr. A. W. Mills; since that time two great schemes have, with Mr. Mills's design, divided the attention of the public. The frat was for an erection in Market-street and High-stroet, and a denign of considerable merit wat prepared by Mr. Gregan. The second scheme wan to erect the Exchange on a site in Mosley-atreet, on part of which the Theatre Royal formerly stood. The latter seems now to have been decided upon, as on Thuraday, Nov. 13th, the proprietors of the present oxchange agreed to dispose of their buildings to the Mosley-street committee, on the condition that an Act of Parliament be obtained, in the next pession, for the erection of the Exchange and other public buildings on the site in Mosley-street.
It is to be hoped that on this occasion an opportunity for public competition wili be afforded to Architects, and doubtless the committee will have many firstorate designs seat in, from which they may select one which shall be an ornament to the town.
The bead offices for the Manchester and Leeds Railway, at Hontabank are advancing rapidly to completion, being raised to the level of the second floor. Much delay was experienced at Arat, owiag to the uantable character of the ground on which the building is placed, and the architects, Messrs. Holden, have taken all proper precantion to have the foundations firm and secure, going down in some parts to a depth of 43 feet below the groond levei. It is pleasing to notice instances of care and attention in foundations, as so many fise buildings ara sadly deficient in this respect; as for example the Town Hall and the Athenmam in Man. chester, both of which show cracks in atonework, ariaing from a sinking in the foundations. The erection for the head offices is built of Yorkuhire stone, and the design is in the Italina Palatial style of architecture uanal in the 16th century. The site is an irregular piece of ground, the principal front being 70 feet long, from which the building extends back about 96 feet. The height from groand line to cornice is about 42 feet, divided into two lofty storeys. The whole of the rooms in the basement is firoproof, and of very atrong conatruction. Below the level of the ground foor windows is a broad tooled atring course, undor which in ruatic worked masonry. In the centre of the principal front is a handsome Italinn doorway, with the customary monided jambe, dentelled cornice, trasees, \&c. The ground floor windows, two on each slde of doorway, have unusually bold broed moulded architraves; and the opper storey has Italian corviced windows; level with the boltom of the latter ruas a moulded string course. A bold dentelled cornice will sarmount the whole. The back parts of the erection are in rockfaced Yorkshire stone. These offices, with the arching over of the River Irk, will when completed materially improve the approach to one of the handsomest railway stations in th - kingdom. The station for the Manchester and Leeds, and Manchester and Liverpool railways, which I allude to, ranks high as an enginering work, having two iron bridges of great span, and embankments of considerable height. The erection for refreshment and waiting rooms, offices, \&c., are denigned with a snbatantial simplicity and fitnese, which we look for in rain in atructares of greater pretension.

Warchowses.

A warehouse of novel character is near complotion in Fualkner-atreet, for Mr. Dentith the dryalter. It has an elaborately worked atome froat in
the Grecian Doric style, and is the design of Mr. Thomas Fibh Taylor, A rchitect. The width of frontage to the atreet is about 40 feet, and below the level of footpath are two cellar storeys, and above it four storeys.

The basement, up to the ground floor window sills, is of large blocks of Aberdeen granite, which from its hardness will resist any of those casualties which so frequently disfigure basements of our usual off stone. The remaining height of the ground floor is built of faced Halifax stone, baving segment headed windows and doorways. Above this floor are two pilasters and four three-quarter columns, fluted two-thirds down, and two stories in height, with suitable capitals. The windows are in the recesses formed by the columns and pilasters. The architrave, frieze, and cornice break round with the colnmos, and the frieze is enriched with a Grecian fret, deeply cut, and presenting a varied play of light and shade. Upon this corniceand over each column stand bold double pilasters of natural faced wallstone, witb tooled bases and caps; on these, and on cantilivers between them, is the horizontal part of the pediment. The pediment spans the eatire width, and would have had a much better effect, if more boldness of projection could bave been obtained laterally: this, I suppose, is prevented from a fear of encroaching on a neighbour's territory. It is said that the original designs were for a fire-proof building, and it seems a pity that a building inteaded for the stowage of such combustible materials, and in the design and erection of which such pains and expense have been gone to (though I understand the whole will not exceed $2,400 l$.) should not have been built on the fire-proof principle. It seems doubtful policy to ran the rink of total destruction, if a fire should occur, for the sake of saving 200l. or so, in originul outlay ;-as the warehouse is nuw built (with wooden trussed beams, joists and boards), if a fire took place the whole would, ten chances to one, be deatroyed; if built fire-proof, the chances are that one storey only would be burnt.
A large warehouse, of foor storeys besides the cellar, has been built for Mr. Carver, in Portland-street, from designs by Mr. Donnison. It is of brick, with stone basement, doorways, window sills, and cornice, and is of plain and sobstantial construction. The sanve Architect bas another large warehouse in progress for Mr. Behreos, of five storeys and cellar. The first storey is externally of tooled stonework, and has coupled pilasters between the windows, and a dentelled cornice runs below the second floor windows. A stone coroice resting on corbels surmounts the whole.

Messrs. R. H. Greg and Co. are having a warchouse built in Tib-street, fron designs by Mr. Whittaker, and Messrs. Tuylor and Williams are the builders. The basement is externally of vermicalated stonework. The first storey is of good tooled ashlar, with a dentelled cornice. The upper part of the warehouse will be of best brick with bandsome stone quoins, aud all the windows will bave moulded stone architraves. It is intended to place ad elaborate stode cornice at the top. The whole is fireproof and of good strength, and I understand that the cost cannot be less than 8,0006 .
Mr. Lane, the Architect, is ut the present tine employed in entirely remodelling the old "Queen's Theatre," in Spring Gardens, and from what I can learn of the alterations it seems likely that a most convenient and beautiful interior will be the result. The walls of the building have been underset, the stage aud pit lowered five or six feet below the original level, the pit extended under the boxes, and the stage enlarged. It is intended to erect a new proscenium, and to alter the whole decorative character of the house. Mr. Bellhouse's workmeu are now basily proceeding with the alterations, and it is intended that all shall be ready for an opening in March next.

Schools.

The Manchester Commercial Schools are now nearly finished, and are to be opened in January next. They bave been built under the auspices of the Church Education Society, from the designs of Messrs, Holden, Architects, on a plot of ground in the Stretford New Road. The building is three storeys high, and in the Tudor style of architecture. The front is of stone, and the first stury has two entrance doorways, with three windows between them, the centre one a triplet, and the others double windows, with lat or four-centred arches; the second story has an oriel winduw with eariched panneling above and below, and two smaller windows with hood mouldings on each side of it; the upper storey has a large window in the centre, with a depressed four-centred arch, and rich tracery is the head, and two smaller windows with hood mouldings on each side, The groand floor contains the assistant-master's offices, porter's residence, \&c., andi also a covered play-ground, about 42 feet by 30 feet, communicating. with a spacious play-yard. The second floor is eet apart as four
class-rooms, a large hall, and a book and model room. The whole of the upper floor will be occupied as the general school room, 55 feet by 42 feet, and as the roof is open to the rafters the room is an airy one. In these schools a good church and commercial education will be afforded to the youth of the middle classes upon reasonable terms.

The Roby Day and Sunday Schools, for children of the independent denomination, situate in Agtoun-street, were built a short time ago from designs by Mr. A. W. Mills, Architect. The building is in the Elizabethan style, and of best brick and stone. Considerable skill is displayed in the arrangement for supporting the building so as not to interfere with tbe burial ground over which it is erected; the front wall goes down to good brick foundationg, but the back part is carried on iron pillars and beams. There are three gates into the gard through the lower part of the front wall, and also other smaller arches which are filled in with ornamental ironwork. Above are three projectiug oriel windows of two storeys; the front is surmounted by ornamental gables. The iuteral arrangements are spacious and well ventilated.

Roman Catholic Chwreh, Salford.

The largest ecclesiastical building in the neighbourbood of Manchester at this time in progress, is the edifice being built by the Romanista in Chapel-street, Salford, from desigas by Messrs. Hadfield and Weightman, of Sheffield. The general plan is craciform, with a central tower and lofty spire. The cardinal points have not beed regarded in the placing of the building, as the chancel is towards the north. On the south side of the tower projects the nave, which is divided into four bays, aud has a lofty clerestory. The principal entrance doorway is at the end of the nave. On the north side are the choir and chancel, which are now intended to be carried out about the same length as the nave. The original design showed it projecting only one bay beyond the tower, but a school-house has been taken down to allow of the exteusion. The transeptal chapel is on the western side of the tower, and will be lighted by a large wheel wiadow; there will be an entrance to the chapel from the outside, and the veatry adjoins it. The transept on the east of the tower has a central entronce doorway. The roof of the choir will be groined iu wood, and that of the nave framed in square panels, and painted in light colours by Bulmer. Sticklers for orthodoxy and correct imitation will discover little to cavil at in the details of the work, such as tracery of windows, arch mouldings, Sec.; they are generally copied from Howden church, Yotkshire, or from contemporaneous structures; indeed the principle of imitation seems to have been carried too exactly throughout, for the inost flaborate mouldings of that exquisitely delicate period of architecture the early decorated, are given in places where a simplification of them would have produced an adequate effect; if this be an error, however, it is on the right side. Newark furoishes a model for the apire, Howden for the nave, and Selby for the chancel; indeed the last will be a counterpart of its prototype, even to the canopied niches over the columns.

The Irish Presbyterians are now erecting a place of worship, sessionhouse, echools, \&c., in New Bridge-street, Strangeways, from designs which are highly creditable toithe architects, Messrs. Travis aud Mangnall. The style selected is the Gothic, which prevailed in England during the reign of Heory VI. There will be a tower 80 feet in beight, next to the street, which will be Ianked by bold diagonal battresses; these will diminish in size towards the top, and will finish at the batllements with crocketted pinnacles above. The central entrance doorway will have bold moulded jambs, and a label floishing opoo carved heads; above this doorway will be a large window with perpendicular tracery and moulded jambs and labels; similar windows will be situated at each side of the tower on the front face of the building, andin the back will be a four-light perpendicular window. There will be two side eutrances near the tower end, laving square-headed doorways with labels, \&c. The sides of the building will be divided by massive battresses into five bajs each, and the windows between them will be enriched with tracery and labels terminating on grotesque heads and shieids, and will have a transom in the middle on account of their height. The roof will be open-timbered, and in one span of 47 feet. At the back of the chapel are buildings to be used as session-house, schools, and residence for the minister, the whole of which are built in the atyle of the domestic buildings of the period.

Mansions.

A mansion in the Italian style for Mr. Percival, situated near Kersal Moor, from designs by Messrs. Dickson and Brakespeare, is in a forward state. There are two good specimeus of gentlemen's residences neurly ready for occupation in Victoria Park; one for Mr. Critchley, designed by

Mr. Waltera, in the Italian style, the walling being of rough pierrepoints with tooled stone dressings : and the other for Mr. James Bellhonse, in the Tudor style, having the fronts of tooled stone, and the back of rough pierrepoints.

Mr. Bowman is the architect for a house lately commenced in the same park for Mr. Langworthy.

A residence is also in course of erection for Mr. Wilson Crewdson, at Moss-side; it is being built from designs by Messrs. Holden, and is extermally constracted of atone; the styie of architecture is the Domestic Tudor.

The residences we have mentioned are in good laste, bot there are many houses in the suburbs which are in the stgle which will be known by the title of "Gingerbread Gothic," which style appears to have professors in every locality. I am glad to observe, that in and about Manchester, the use of stone is becoming more general ; the "Yorkshire pierrepoint" rough dressed on the face, and in coorses of five or six inches, is the kind most in demand at this tiune, which, although more expensive than brickwork, is not so much so, but that the effect obtained fully compensates for additional outiay. The yellow firebrick is occasionally used for dwelling bouses, and the effect is very good.

LIVERPOOL.

St. George's Hall.

In Liverpool, that magnificent pile of buildings, St. George's Hall, is assoming an imposing appearance, and already justifies the high expectations which have been entertajned with respect to it, and all who view the structure must agree that the Architect, Mr. H. Lonsdale Elmes, has prodaced a noble design, and that the superiority of the workmanship in each department proves that he has been ably seconded by the contractors, Mr. Tomkinson and Mesars. S. and J. Holmes.
1 had prepared a description of the plan and different elevations of the bailding, but on referring to vol. vi. p. 329 of your joarnal, I fad excellent dramings and a well written account of the whole; 1 therefore proceed to potice only the present state of the work.

The exterior of the building is now in a very forward state, the parts most behind being the row of columas on the east front, and the covering is of the large hall.

The north eod of the building (that having a semicircular projection) is completed; and when I visited the place the worknen were engaged in laying the top stones of the suuth portico. The great hall is 169 feet long, and 75 feet wide, and is intended to be covered by a semicircular arch, springing from the side walls. The beight from the floor to the top of the arch will be 87 feet. Around the large hall in the interior will ron an ornamental moulded plinth, with 24 projecting pedestals, similar in character, and 24 columns apon them: the plinth, pedestals, and columns are of highly polished Scotch granite. Some of the columos are in their places, and are as beautiful specimens of workmanship and materials as it has ever been my lot to examine; they are each 31 feet long, and average 3 feet in diameter.

The columns and the die of the pedestals are of red granite, from Peterhead near Aberdeen, and the plinth and impost of the pedestals of grey granite, from the same neighbonrhood. The whole of the parts have been worked and polished at Aberdeen, and when put together in their places, the joints are perfectly true and good. The nechanical arranrements for the removal and working of the large blocks of stone required in this building are admirable, especially the powerfal and lofty derricks with stean engine and boiler coinplete, working along the lines of railway laid parallel to the main walls of building; and also the various railways with travelling cranes over the stone yards.

Docks.

The Albert Dock and warehouses now being built by the Liverpool Corporation, ander the able superintendance of Mr. Jesse Hartley, the Dock engineer, are nearly finished; the dock, with all the entrance gates, \&c., is complete, and several of the immense piles of warehouses are in a condition to receive goods. These erections are exceedingly strong, and built throughout on the fireproof principle. The iron beams are sonsewhat different in form of section to those generally used, iuasmuch as they have inverted V grooves running along the nnderside of the beam, so as to divide the web near the bottom into two parts, and forming a good abutment for the brick arches to be bailt against thus :-
The beams are also slightly curved longitudinally. The columns and
beams are of massive proportions; indeed the whole of the work is strong and of good design.

The well-holes for the purpose of hoisting the goods ap are large, and surrounded with strong iron curhs, and enclosed by wrought iron doort. All the window frames are of cast iron, and the entrance doors of wrought iron plates strongly pot together. The roofs are framed in iron, with a covering in some cases of sheet iron, and in others of zinc. Some of the floors are covered with tiles, others with planed flage, others with asphalte, \&c.; indeed there seems to have been a disposition to give each kind of roofing and flooring a fair and impartial trial. This is as it should be, as these experiments can best be made by a public body; it is to be hoped that the results of a due trial of the different kinds of material, as regards cost and duration, may be published for the benefit of those engaged in huilding similar works, in the Journal.

The approaches from the town to St. George's Hall, and the railway station, have recently been considerahly improved by the widening of Limestreet, Charlotte-street, and Ravelagh street Rows of shops are being built; and a Register Office is nearly completed in Lime-street, from desigas by Mr. Clayton, Architect. The building is fronted with tooled stonework, and consists of three lofty storeys. The first foor has circularheaded windows, splayed from the outside, with plain moulds round them. The upper windows are square beaded with moulded jambs and caps. A plain cornice runs alone above the first floor windows, and at the top of the front elevation is a stone cornice with scroll corbels. The safe is spacions and of good construction; the floor, side walls, and arched top, are of frebrick, and the arches are built upon strong iron beams, and skewhacks connected by tie rods. A set of double iron doors, with Chubb's locks, are strongly fixed in the safe doorway.

BIRKENHEAD.

At Birkenhead, on the opposite side of the Mersey to Liverpool, we have the strange spectacle of a noble city springing, as if by magic, into existence; nomerous spacious streets and squares have been layed out, sewered, paved, and lighted with gas, and rows of splendid shops and comfortable habitations are being erected with unexampled rapidity; whilst thesurrouuding neighbourbood is becoming diversified by picturesque mansions and villas, which are intended for the residence of the wealthy.
The new Docks at Birkenhead are speedily progressing, and a visitor cannot bat admire the maoner in which the natural advantages of the locality have been made available. The site of the docks was formerly Wallasey Pool, a large area which was entirely aand bank at low water, but covered by the tide at high water. The Woodside Pier has been considerably widened and improved, and will form one side of a tiJal basin of 10 ucres in area. Between this basin and Seacombe will be two spaces of quay 60 acres each, between which will be a large low water basin of 37 acres, forming the main entrance to the Great Floating Dock, which when complete will bave an area of 160 acres, and be 19 feet in depth. There will also be a small dock near the entrance. The land adjoining the basing and docks, aud the reclaimed land, will be used for quays, yards, \&c., and will be built upon with warehouses, depots, ofices, and other necessary erections. Mr. Tomkinson has undertaken the contract for the whole of the dockwalls, \&xc.; and the evergy with which the work is being execnted is highly creditable. Several steam engines have been put down which are working mortar mills, and hoisting the materials from the bottom of ercavations to the top of the quays; two limekilns are in full operation; and a range of workshops and smithies are occupied by artizans busy preparing the ironwork requisite fur the railways, cranes, \&c, about the works. The cost of the dock walls and gates is expected to be about 400,0001 .

Birkenhead Park.
The Commissioners of Birkenhend have set apart a space of 190 acres us a park; 60 acres to be appropriated to detached villas and grounds, and 130 acres devoted for the nse of the public for ever. AIr. Yarton has made the most of a very flat and unlikely piece of ground, and laid ont the whole in an admirable manaer, and the trees and shrubs appear in a healthy con. dition. Two lakes with rustic bridge and boat house are well situated, and add to the interest of the scene. There will be siz fine lodges or gatehouses, three of which are now completed; Messrs. Walkers, builders, have contracted to complete two grand entrance lodges of stone, for the sum of $\mathbf{3 , 6 4 2 l}$. It is said that the total cost of the enclosures, lodges, and laying out of the park, will umount to $\mathbf{2 0 , 0 0 0 1}$.

New Murket.
The New Market is now open for the nse of the public, and is a great attraction, as it combines every modera improvement. The boildigg is 430
sat long, and. 181 foet broad, and is divided into three avenees by two rows af iron columns, whicb sapport a light iron roof in three spans. A handcone fountain is situated in the centre of the building, and a row of elegant fas pillars ran along each of the three avenues.

Light is admitted from two rows of semicircular windows at the sides, at well as from skylights in the roof. The whole is cellared below, and the floor in arched on iron beams supported by colamne. Menars. Fox, Eenderson and Co., of Birmiagham, were the contractors.

Foar new charehes are being provided by the manificonce of private individuals. I had not opportunity of learnuig partienlars abort them, bat from what I sav they appear to promise well.

In concluding this nketch of what is doing in architecture and boilding in the localities I have had opportanities of visiting, it may be well to etate that, generally speaking, the vrorks in progress are decided improremonte, as regards taste in architectare, skill in construction, aod quality of materials used, opon provions works of a similar character in those localities.
There appears less disposition to sabatitute the sham for the real, and It seems as though people were at leugth becoming more generally scquainted with the fact, that it in in reality little more expensive to erect brildings which shall be ornamanted and not offend good taste, than it is to provide those which have no pretension to design.

$$
\text { December 12th, } 1845 .
$$

A. B.

THE COLOSSEUM IN THE REGENT'S PARK.

There is a Colossenm at Rome, and another at London, but their likeness extends no further than their names, for hardly can any two things similarly denominated less resemble each other; the first being one of the most stupendous monuments of antiquity,-a truly colossal fabric, which, though deeply scarred by time, or rather by the hand of man, still bears the look of being eternal ; while the other is merely a thing to day-a toy in comparison with the latter-an architectural butterfy as contrasted with an architectural megatherimm. The Flavian Amphitheatre or Roman Colieeo-for suoh is the Italian orthography of the name-is a work to be classed only with the pyramida and some of the gigantic temples of Egypt; such an enormous mass, that it would seem to have required not merely a few years but a century to quarry the stone and put the materials together. It is to ancient Rome what Si. Peter's is to the modern city, the "gorran" pile amoug conntless others, the leviathan structure that engages attention, whatever else be passed unheeded; the object of universal admiration, be the admiration genuine, or, as no doubt it frequently is, merely affected and acted for fashion's sake. The Roman Colosseum has been a theme for poetry, both in verse and prose : sublime in itself, it is also arrayed in the halo of antiquity, and an imposing one it is, for it is apt to play tricks with and delude the imagination. Whereas our modern Colossenm is the very antithesis to all this: to the antiquarian it is a mere nullity: if he looks at it, it is onIy to turn up bis nose at it with a contemptuous sneer; with bim its very name crushes it Into insignificance, by calling up more forcibly the image of the other to bis mind. Still, there is something-may, very much-to reconcile is to the disparity between the two buildings-to the disparity of their purposes, if nothing eise. The arena of the ancient one was drenched with human gore. "There man was slaughtered by lis fel-low-man," to gratify the passion of a brutalized population, for spectacles of carange and boodshed. Humanity will rather exult than sigh over the proud ruins of the Colosseum, thongh it must at the same time blush with indignation for the race who could coolly look upon the cold-blooded and wholesale murder of wretches, " butchered to make a Roman holiday," and call it amusement!

Most happy is it for us that the exhibitions at our modern Colosseum are of a far diferent character from the savage pomps and proudly atrocious spectacles of the ancient and right imperial one. This consideration may more than console us for the inferiority of our own edifice in comparison with the one after which it is named or rather misnamed, because, leaving the vast difference as to size, between the two, out of the question, they bear as little of architectural resemblance and analogy to each other as they do of similarity of purpose; wheress the modern structure does really bear a strong likeness to another ancient Roman edifice that is of no leas celebrity than the Colosseum itself. But the title of "Pantheon" had been preoccupied by the building in Oxford-street, which, even now that it is completely altered from its original shape, still retaine a name that
though in some points applicuble when fact betowed, has naw beeome a complete minomer. Therefore, as apcient Rome possessed no more, one Pantheon was considered quite enough for modern London, vast as it is; accordingly the building in the Regent's Park was dubbed the Colosseam, for oven the veriest Cockneys mould have been scandalized at the absurdity, had it been mamed after the great pyramid. Of the exterior of the main building we may be allowed to say a word, because it is of considerable merit as a piece of archi-tecture,-better worth than many that have obtained an infinitely greater share of potice from crities, and which, notwithstanding that they are now quite eclipsed by later productions of the art, still retain the rank first assigned them, owing to the character given of them being scrupulongly tranmitted from one book to another. The portico of the Colomeum is by very far the noblest specimen of one in the Greaian Doric style that we possess in London, one upon a nobler scale than any other, before the magnificent portlco of the new Royal Exchange was erected, the columas full as lofty, (40 feet,) and of course of much greater diameter, those of the Exchange being Corinthian, consequently of slenderer proportions. The situation, indeed, takes off somewhat from the effect of size, for did the building stand in a street or other confined space, we should be more impressed by its magnitude of. It poseesses, however, one very decided advantage over almost every other of our attempts at pure clasuicality of style, Inasmuch as pothing is mized up with the portico itself to disturb the antique physiognomy aimed at by that feature; there are no modern windows peeping ont between the columas, or sbowing themselven elsewhere;-none of that intermixture of columniation and fenestration which is so contrary to correct Grecian architectural idiom.

Except that it has been renovated, the exterior of the bailding remains in statu quo, but the interior has been, if not absolutely re. modelled in plan, metamorphosed into something altogether different in character,-transformed into one of the most captivating and fascinating piece of internal architectural scepery that can well be imagined. The exquiaitely tasteful rotunda or circular colonneded saloon, into which it is now converted, stands almost unparalleled for both beauty of design, and felicitous originality of idea. If there be any where anght comparable to or resembling it, our acquaintance with matters of the kind does not extend to it. Although rooms far more sumptuons may be found, enriched with treasures of art, and set off to all possible advantage by the costliest furniture, we know not of one that is so charming for intrinsic beauty of design. Neither any of our royal palaces, nor of our most palatial clubrooms, the Reform and Conservative not excepted, can show an apartment that is at once 80 novel and so impressive, so fraught with loveliness and witchery, as in this saloon or gallery of the Colossenm. Loveliness is the epithet that best describes it, since striking as the coup d'osil on first entering it may be, whether in the day time, or when lit up of an evening, the effect is not so much that of shomy splendour, and dazaling brilliancy, as of mild and serene elegance, and of that tasteful simplicity which satisfies the eye, every part being complete and in perfect keeping, nothing superfluons and nothing deficieot. In order to convey to our readers something like a positive idea of this truly charming interior, we may begin by describing it as a circular hall, completely surrounded by a peristyle of twenty Grecian Ionic columns, which divide the entire circumference into the same number of inter-columns or compartments; within, and corresponding with which, are as many recesses, the two compartments excepted, one on the west and the other on the eant side, which serve as entrances. The columps are of scagliola, or to be more exact, of Keene's cement, in imitation of polished white marble; and the mouldings of their basps and capitals being gilt, produces a peculiar delicacy of enrichment, in which the monotony of uniform white, and the spotiness occasioned by scattered masses of gilding, are equally avoided. The entablature corresponds with the columos, with this difference, however, that the frieze being enriched with basrelief, (copiad from the Elgin marbles, the figures are raised upon a ground of a blue grey tint. The attic over the entabulature is ormamented with twenty oblong panels, containing allegorical subjects painted in fresco; and the ceiling or roof is divided into the same number of compartments by as many ribs, between which the light is admitted, she compartments being entirely glazed, yet not after the manner of a skylight, but so as to produce the appearance of a transparent roof, since it consists of tesserce of cut-glass set in reticulated framing; consequently the light is somewhat refracted, and the raw look of a room almost uncovered and open to the sky, is avoided.

Thus far, description bas been easy to ourcelves, aud, we truat, sufficiently intelligible to our readers, but without some drawing of it it becomes difficult to explain that pecaliarity which renders this rotunda so unique in plan, and so widely different in character from
every other interior of the aume clasa. Inatead of the whole space that is surrounded by the colongade being entirely open, so as to be fally exposed to view from every part, and be completely covered by a dome, the centre of the rotunda I_{s} occupied by a mass of cylindrical form, whose diameter may be about a third of that of the larger circle. Thus the rotunda assumes quite a different character from what is usually understood by that term, it being converted into a spacions 'ring gallerg' enclosing and running round another portion of the structure. Now; there is such a general prejudice in favour of baving as much open and uniuterrupted space as possible, that most pernons may be apt to conaider it a pity that the structure was not planmed as a simple rotunde or single circular ball. Those who affeot connofsocurship may even go farther and say that we have here coly the noblo idea of the Pantheon spolled hy the excreacence in the middle of $i t$, obelructing a perfect view of the colonnade in its entire expanse and circumference. Happily, however, or elae unhappily for ourselves, we do not bold with such narrow and onesided criticism whlch, instead of estimating things aecording to what they are, depreciato them very summarily for not being what they are not designed to be. The same flower cannot be both a lily and a roce, nor can the same fruit give us the flavour of both the peach and the pino-apple. Bat for a circumstance which we shall presently explain, we might have had a copy of the interior of the Pantheon nay, one that might in some respects have been renderad an improvement upon the original; yet, though that would have been ponitively and ezceedingly good in itself, we shoold not thereby have acquired comething altogether new in character, and which, if they are able or care to profit by it, opens quite a fresh train of ideas to architects for bitberto untried and unadopted combinations of plan. Had the striking peculiarity of plan in this structure been chosen solely for its own sake and that of the effect attending it, we should even then have been disposed to welcome no graceful a caprice; instead of which, it was a matter, not of choice, bat actual neceasity -a most fortunate necesaity-compeling the architect to deviate from all precedente, whether be would or no, it being indispensable to obtain a staircase in the centre of the building, leading up to the platform gallery, from which the panorama is viewed. That staircase is aecordingly concealed within the upright oylindrical mass, or towerlike shali, that forms what may be called the core of the entire structure ; and this staircase encloses within itself. and winds round another shaft, which is also hollow, and which is turned most admirably to account. Within it ia a small octagon room, or cabinet, capable of containing seven or eight persons, and fitted up in a fanciful yet tasteful manner, baving, among other decorations, a transparent ceiling of coloured glase, through which it is lit up by means of a gasbormer fized over it. You onter this very fairy-looking closet, seat yourself on one of the velvet-cushioned benches, and befure you have fimised examining its embellinhments, the door opens, and yon find yourself at the top of the building-that is, on the platform of the panorame-without having been senaible of any motion during your aceent. Here then, we bave not only a quite novel idea and most ingenious contrivance, but one that may occasionally prove essentially serviceable. Most assuredly Catherine 11, would bave liberally rewarded the inventor of such an enchanted figing cabinet; for when ahe began to grow infirm, and found it too fatiguing to go up and down a stairease, ber architect was ordered to construct one that should be less toilsome of ascent, but he could hit upon no better expedient than that of subatituting a series of inclined planes, or slopes, for stepa, which, besides being not very satisfactory iu itself, was atterded with the inconvenience of readering the distance to be walked over very much greater; whereas an ascending clamber, like the one at the Colosseum, would have spared Her Imperial Majesty the trouble of walking, or even standing. There are also others besides empresees who would be glad to be spared the trouble of going op a great number of stairs. To ascend, for intance, to the top of the Monument, toiling up a frightfolly narrow, dark, and winding stircase, is not only a laborious task, but a somewhat formidable exploit 1 an apeending closet, or even mere platiorm, within the shaft of the column, instead of stairs, would have obviated all difficulty and danger-though, we ought to observe, it would bave required a different mode of construction for the shaft itself, as there would have been neither newel nor steps within it, which now serve to hold it together. But there are far more probeble and frequant occasions -bere the same mechanism might be employed: a single visit to the top of the Monument, or other structure of that kind, is sufficient for the curiosity of mont persons; but, if it is to answer its purpose, a loify prospect tower, or belvedere, whether in the grounds of a mansion or atlached to the massion itself, ought to be as easy of access as possible, or it will very rarely be made use of; whereas it would be most pleasant and convenient to be able to step at apy time into a
handnome little closet adjoining your nitting-room, and a minute or two afterwards step out again into another room in the upper story of a lofty belvedere tower, where, secure from intrusion, you might, like the tower-loving Bcekford, enjoy both the wide expanse of surrounding landscape and literary study, merely glancing your eye from the book in your band, or the well-stored portfolio on the table befors yon, to the prospect stretched out below and around. But balt! or our readers will fancy that we ourselves have ascended into an altltude, and taken a flight very far away from our proper subject ; wo wo will descend as expeditiously as we can, without so much as stopping to speak of the "Panorama of London," which part of the Colosseum remains in statu quo-that is, in the day-time, for in the eveding it produces quite a different effect, it being then transformed into a veritable bright moonlight night. However it be managed-and of course there must be a good deal of artifice besidea the painting Itself-this view is the triumph and perfection of scenic skill, for the full moon actually shines out from the picture, shedding its radiant light upon the platform and the spectators themselves; its beams ficker apon the surface of the Thames, while the mighty labyrinth of streets presents a flaming network of gas-lights gradually dying away into the far distant horizon. Happy magic! that can create for us brilliant moonlight on any or every night in the year, in the despite of the almanac. Bidding adieu to the upper region of the Colosseum and its moonsbine, we again enter the Rotunda, and find it quite as charming as at first ; nor must we hurry tbrough it, for though we have already reconnoitered it, there is more to be maid concerning it,-very much more, in fact, than can even be toucbed upon in an article like the preyent. One thing which we have not yet told our readers is, that which is now denominated the Glyptotheca (or Repository of Sculpture), in consequence of its being made to serve as an exhibition room, for casts of statues and groups by many of our principal modern English sculptors, including one or two by Thorwaldsen, and otber foreign artists; all of them disposed in the most tasteful manner betwe en the columns and within the recess, so that the mere arrangement of them becomes in itself a picture; the architecture and scalpture matually set off each other to advantage, and both together, thus harmoniously combined, render this Glyptotheca the most admirable sculpture gallery in the world. It would be abeolute folly to pretend to compare it with many others either for its magnitude, or for the value and excellence of the works of art which it contains; what we mean is, that taken in its ensemble and as an architectaral picture, it bas no rival, if only becanse there is notbing at all similar to it. The sculpture galleries at the British Musenm are very little more than very large yet blank-looking rooms, that would be quite empty were it not for the seulpture itself; and many uther places of the kind also, look very little better than so many statuaries' warehouses, or show-rooms, when their works are exbibited for sale. As to the sculpture room at the Royal Aeademy, that is so utterly unfit for its parpose, so wretciedly confined, and contemptibly mean, as to be little if at all better than a mere lumber-room, into which thinge sent to be exhibited, are stowed away during the extibition. Yet that dismal "black hole," as it bas been called, belongs to an academical body rejoicing in the ear-tickling epitbet "Royal," where the delicions Glyptothecm, and "delicious" is the epithet it truly deserveo-to" gether with all the rest of the Colosseum, is merely a private speculation, of course with a view to ultimate profit, which it ríchly deserves, but entered upon in a most liberal apirit, and carried through with admiruble ability. It is moreover no less striking an instance of sound economy than of liberality, the best of all econumy being to do well what is worth doing at all ; although it is a species of it, which very few seem to understand; for how frequently do we observe some little paltriness suffered to peep out amidst splendour, some mark of penny-saviag niggardliness to betray itself amidat extravagavee, some jarring deformity to obtrude itself amidst beunty.

Roncong.-Stupsnnous Beinar.-We have been favoured with a view of the plans of the Graod Junction Extenalon Rallway from Astoo-griange to Buytoa, and aleo with thone for the bridge do connesion thertwith, to crota the river Merrey at Runeorn. Our readers may form iden of lis magtitude when we state that there are to be 4 wo wei arches of 2×0 feet apan, 100 feet above hagh water wark at apring tides, and 168 dry archee of so feet apan, and 51 feet high, maidng a total of $2,480 \mathrm{y}$ ardes of arching, when will be, when completed, the greatesi work of che kind in Europe. Thia greal architeo tural destgn will be aboon to the counties of Cheater, Laneaster, and 8tafiord, giving the required facility to the Potteries and to the frotile mines of Chesbire. We predict that the riniog port of Ruacorn in deatined to become a great emporium of commerce; and Lord Fradets Egerion, with a deslice to meet the coming exigency, is about to eroct doeka of great extent on the ehore of the Mersey; and will aleo apply, at the next cesdon of Parliament, for a truok ialimat; thus afforditg the port a ready tranatitor goode, in ad. dition to the two canala in his lordship's posseasion. We are credtoly informed that it in the intention of Lord Prancie Ygertion to erect a new Castom. boase, the preseot edifioe, now in ase for the Cuatomi, belog tound most inconvenleat for the growng trade of thit thiring port. We congratulate the officerit who are immediately concerned, and the
 his Lordigip tetends to act whth so much Uberallis.

ARCHITBCTURAL SYNOPSIS OP SOME OF THE PRNNCIPAL BUILDINGS IN RDINBURGH.

GREAT BRITAIN STEAM SHIP.

(With an Engraving Plate I.)

It is with great satisfaction that we commence the series of piates iHustrating thia volume with a subject of so general and valuable interest to engineers, as the engines of the "Great Britain." Plate I. is a copper. plate engraving representing the position and general arrangements of the engines. The vessel is supposed to be cut a-midships; so that one half the machinery ia shown; two of the four cylinders, half the drum whicy drives the endless cogged chain, \&cc. A full description of the Great Britain was given in the last October and November numbers of this Journal, which it is not necessary here to report, as the engraving is not sufficiently explanatory of itself. It has been carefolly rednced from the origioal drawings of the Great Britain, which were coorteously placed at oor disposal of the parpose : the ecale of the plate is a quartor of an inch to the foot.

EXPERIMENTS ON STEAM.

A paper by M. Regnault was read at the Paris Academy of Sciences, on Dec. 15, relative to his experiments on steam. The Minister of Pablic Works assisted M. Regnault with the means of making these experiments on an extensive and practical scale. The questions to be determined by M. Regnanalt were-1. The law which unites the temperatures aod elastic powers of aqueous vapour at baturation. 2. The quantity of heat absorbed by a kilogramme of water at 0 degree, to be converted into steam for saturation at different degrees of pressure. 8 . The quantity of heat absorbed by the same quantity of water, in order to raise the temperatare to the point in which it assumes the state of vapour ander different pressores. 4. The specific heat of aqueous vapour at different atages of density, and at different degrees of temperatare. 5. The co-efficients of dilatation of aqueous vapour in different stages of density. In his present paper M. Regnault gives the law of the elastic powers of ateam up to 23 degrees centigrade, which temperature corresponds to 28 atmospheres and a half. He next fixes tbe total heat of steam taken at different pressures, from $1-5$ th to 15 atmospheres; and finally, he treats of the calorific capacity of water from 0 to 190 degreen. Many distinguished men have devoted their attention to the elastic powers of ateam. We may mention Achard, Gren, Dailon, Chribtian, Arzberger, Watt, Robinson, Betancourt, Schmidt, Southern, Ure, Gay-Lussac, August, Kaemiz, Dulong, and Arago, the two latter of whom commenced their experiments in 1823, at the request of the Minister of the Interior, and published an account of them in 1829. They carried their operations up to 25 atmospheres. About the same period a comimission of scientific Americans performed a series of experiments on this sobject, but went up to only 10 atmospheres. The results, however, of these different experiments were not alike, consequently M . Regnault had to take entirely new ground, greatly aided, however, by the progress which science has made since the period alladed to. In his resulta he agrees most with MM. Dalong and Arago, particularly as regards high rates of pressare. Watt had supposed that the total quantity of heat necessary for the transformation of a kilogramme of water into the state of steam was certain under a constant pressure. The number admitted was 650. This law, although not exemplifed by any precise experiment, had been, ontil very lately, regarded as positive, and so adoptod in theory and practice. M. Regnault, however, has ascertained that this number increases constantly from 62y under the pressure of onefinh of an atmosphere up to 670 under 15 atmospheres. At the ordjnary pressore the average of 88 experiments gives 836.87 . As to the calorific capacity of water, it is 1,000 between 0 and $\mathbf{0 0}$ degreen, 1,005 between 30 and 120, 1,013 between 120 and 100.

The Cathedral of St. Demia.-The monument erected to the memory
 mod, when Annthed, that of Charles $X_{\text {. }}$, hife succeeceor, will be proceded with. Whee
 by a combl, a mooument, or n भtulue.

CHRIST CHURCH, PLYMOUTH.

We have received some information respecting the architecture of this church, which has recently been conipleted, from the designs of Mr. Wightwick. The dinensions are about 70 feet by 00 feet. The style, Perpendicular. The western front presents three entrances and three gahle roofs, of which the central or highest gable reaches the height of 50 feet. Between it and each of the wing gables rises an octagonal turret, and at the outer sides of the wing gables are pinnacles.
It will be concluded from this description of the western front, that the interior of the church is divided into three compartmento-of these the central one, or nave, is divided from the lateral aisle by piers. There are five arches on either side of the nave, and over them clerestory windows, which give the priacipal light; for owing to the contignity of neighbouring buildinga, there are no windows whatever in the side aisles, and consequently there is no means of lighting the church except by theso clerestories and the windows at the east and west ends.
Our iuformant says it was absolutely necessary to introduce galleries. However, it appears that the galleries are set so far back, as not to abot on the piers, and as they do not cross the aisle windows (there being none to be crossed,) this "absolute necessity" is not so much to be regretted as it otherwise would have been.
The architect has showa great judgonent in the selection of some of his details, from ancient examples. The western entrances are copied from those of Tattersall Church, the crockets and finials of the octagonal turrets from those which many of our readers may remember at Magdalene College, Oxford.
The nature of our information does not warrant a very decided criticism on the merits of the new church-the general character of the architectural details is probably unexceptionable. Unless, however, we be greatly mistaken, the building has one great fault-a show frunt ; the elevation towards the street exbibiting considerable protensions, while the other sides of the church are merely plain masonry. If misinformed on this point, we shall be glad to be set right. If, however, the fact be as here assumed, it certainly will materially diminish the architectural value of the buildingOne of the most admirable characteristics of the old Christian architects was their total freedom from pretence. They never adorned one side of a charch and left the other three sides plain-taking care to turn the dressy side where it would be most seen. There is no ancient cathedral, minster, abbey, church, or chapel in Christendom with a show side. The old architects never attempted to cheat beholders into a belief that their works were elaborate, when in troth they did not deserve the character. Of course these remarks must not be considered to imply a censure on the architecture of the Plymouth Church. The architect cannot of course be blamed for the defect alluded to, if he had no power of remedying it. Still it is greatly to be regretted that he should have had to exert his talents nnder circumstances which would of necessity produce an unsatisfactory result. At the east end of the Church, in the place where the chancel is usually built, is a "commanion recess," ten feet deep.
Since the above was in type, we have received a description of the church, taken from the Plymouth Journal. As however this description is very similar to that given above, we avail ourselves of the following part only of the extract sent to us. "The interior presents an effect of lightness and elegance which is admitted by all who have seen it, and fully justifes the architect in his idea, that the details of Gothic architecture may be employed in the fullest consistency with that expression of opexness which should characterize a Protestant church. In fact the public of these towns have now an opportunity of making a fair comparison between the peculiar characteristic of the Camdenite structure, and those of the Reformed Chorch. St. Micbael's, at Stoke, and Christ Church, at Plymonth, are now before them. In the former, we have the picturesqne-in the latter, the elegant. The first shows a handsome, though unfiniahed exterior ; the latter its single front of far more ornate character, the means of the architect being concentrated on oue point, and that being brought to perfect completion. St. Michael's is of the most simple plainness within, and affocts no more than a general exprescion of shadower gloom. Christ Charch exhibits, within, the decorative amount promised withoat, and tuifes solemnity with grace. Though 'cheorful as the day;' it is not less, as Cowper Foald tay, the house of 'true plety.' What the cost of St. Michael's may be, we have yot to loard ; but we know, that Christ Chorch has bean comploted, inoluding 85l. Sor extrac, for oaly 61 . Be. $6 d$. above the architect's estimato-ithe total cont of the building boing 8,4781 . The ac-
commodation is for 1120 sitters, of whom 35 may, hereafter, have to make way for an organ. The clear toternal dimencions of the church are, from east to west, 87 feet, and from north to south 68 feet."

ON THE CHANGE OF OSCILLATORY INTO ROTATORY MOTION.

By F. Bashforth, B.A., Fellow of St. Joha's College, Cambridge.
Notwithstanding all the dispotes respecting the crank, it appears that no better substitute has been or prebably can be found. In fact, the beantiful adaptation of the velocity of the end of the connecting rod to the requirements of the piston is such as cannot be surpassed. Still there appears to be a great ohjection to the present method of employing it in locomotives and some of the steamers, as the Great Britain. The piston rod and the connecting rod are inclined at a considerable angle during the most important part of the stroke, and this gives rise to very considerable friction.
In the beam engine, and where there is room for its application, the ptrallel motion of Watt has been found to answer completely overy purpose, but in locomotives, \&c. there is not the necessary space. For this purpose it is proposed to make use of the well-know property, that if a circle of radius r rofl in the interior of a circle $2 r$, any point in the circumference of the former will constantly describe the same diameter of the latter. This geometrical principle has been already applied in mechanics, but never, it is believed, in the manner about to be explained.

In fige. 1 and 2, $\mathbf{H K}$ represents an arc of a circle, having equal cylip-
Fs. 1.

Ne. 2.

 promated by the doted lino, in enpable of moving aboot ito fored comber,

ion on a plane perpendicular to the axis, which is turned by the crank: The diameter of $\mathbf{K} \mathbf{H}$ most not be less than the length of the stroke of the piston. The figures represent the necessary sines of the several parts to ensure a stroke C B, the whole of the guarding machinery being on one side of the piston rod.

Figs. 3 and 4 represent two differnet atates of the same contrivance for

Fig. 3.

Fig. 4.
communicating motion directly to the crank, without the employment of any connecting rod, and so that the axis to be turned may be plaoed at little more than half the leagth of the atroke from the ond of the pinton. The lettern refor to the same parts as before, the pitch circles alono baing represented.

In this arrangement the cranks must be at the end of the axis to be turned. This, however, would not be of great importance in its application to the scrow propelier, or to locomotives, where the connecting rod acts outside the wheels. It is evident, from an inspection of the figure, that the velocity of C is greatest when paseing c, and that it is gradually brought to rest at each and of the stroke, although $c \mathrm{E}$ may be revolving. all the time.

In order, however, to reader these saggestions of any practical ntillty, it will be necessary to point out the method of readering the motion extremely ieasy and darable. The studs ahonld be mado enfficiently strong to withstand the forces to bo applied, and covered by short triblet-drewn braes tubes, and left at liberty to revolve. These conld easily be changed in a short time, if they should become bruised or worn, and would ave from injury the constant parts of the machinery.

It is well known, that by the geometric chuck almost perfect epicy cloids and hypocycloide can be traced with ease and rapidity. Now, hese are the curves required wherever pin wheels are nsed. Suppose that we have a large chack, and that we replace the tracing point by a circular drill or cutter kept constantly revoling with its centre in the place of the point, as the chuck, on which the wheel to be cut is monnted, is caused to move slowly, the exact form of the teeth will be given. The teeth ought to be cast sufficiently large to bear shaping by the revolving tool. On account of the certainty with which almost perfect forms can be given to the teath of such wheels by ordinary workmen, it appears that this method of changing angular velocity would be useful where atrength and freedom of motion are required, whether for turret clockn, or for increasing the angular velocity of the screw propeller.

The methods of forming the teeth of spur wheels in common use appea to be very defective. There are so many chances of orror in the setting out and catting of patterns, and afterwards in the alteration cansed by unequal construction of metals, that it appears desirable that ams im rovement should be made; and I am in hopes of being able to point out a method by which teeth of any pitch may be formed without any change of cutter, and approximating very nearly to the forms recommended by Professor Willis.

TYEE RAILTAY BUBPENBFON BRLDGE.
Patented by Me. F. H. Ruseell.
(With an Engraving, Plate II.)
The accompanying illustrations (Plate II.) exhibit the construction of a recently patented suspension bridge, which the inventors propose to apply
 Lepidac, the conety surreyor For Burrey, it whowe expense the peteat was secused, with dopeription ot the ivvention, writion whe a te-

[^3]

Bridge applicable wa site where a Line of continuous Arches to any extent are required

PATENT RAILWAY SUSPENSION BRIDGES.
derction an the more praieeworthy hecarse fit forms a neariy unique contrat to the extravagant encomiums which inventor asually bestow on thair ows productions As, however, on consideration, we think we can diacera advantages in the present invention which are not quite apparent at first sight, fand which are, not commented on in the description which we hare recoived, we have ventured to give our nwn xersion. The inventor will heve no cause to complain of the determination.

It is not, however, to be understood that on af subject so complicated as the theary of suspension bridges, any judgment, however carefully coucidered, can havalthe same value as one pronounced; in simpler cases. The general problem of the equilibriom of suspended chains is so difficult when applied to practice, that it is impossible to predict with certainty the exact practical effect of any untried arrangement. However, as in the presant instance, the inventors do not apply themselves to the complicated questions respecting the relation of the various tensions to the atrength ofjmaterial, but confine their attention to the means of preventing omillations and nadulations of the platform, the subject can be satisfactorily examined without the use of mathematics.

The leading iden of the invention is so simple, that a very few words will affice to explain it. Each chaio of the ordinary suspension bridge is replaced by two lighter chains eroasing each other. Each of theno crossing chains is suspended by its highest and lowest points, and the two may also be fastened at their points of intersection. The suspending rods are freteaed to each chain alternately, iand the edge of the platform will be therviore supported, throughout its length by series of allerately long and thort rods.
Every practical engineer jknows "the importance of atrengtheaing a structure by supports or ties arranged cross-wise. The roofs of railway etations may be referred to as [familiarjinstances of the value of crose ties. Wooden bridges, in which 'the bems aro arranged diagonally, and cast ina giviles, withl oroes ribs, are axamples of the same principle. In fact
 peiats of arpport are at considernble diatances from eaoh other, derive atabininy and rigidity from a system of oblique rods or beams.

Iet us now see how this prineiple applies to the case before us. The diaterbances to which a saspenaion bridge is linble, from orternal forces, we of two kinde-first, osoillation, or awingivg of the chain froge side to elde-secendly, undulation, or the vertical riving end falling of the soveral perts of the plaform. Now, withirespect to this frot kind of disterbences it is obvious that a chain' suspended from the tops of two piers must be more peadulous than one fastened by its highent and loweat point. That a catesary sospesced by its two highest points is readily set in mootion, asd ons be maintained, in motion by a slight foree, may be readily soen from the famithar instanee of a cbild's ewing. But it may alvo be seen from the same instance, that if the loweat point of the curve be fastened, the linhillty to oscillation is almost entirely removed. In the invention before me, this method of prevesting occillation is adopted, and the advanlage is farther increased by the uniogiof the two crose chains at their pointe of feternection.

The second kindof disturbances of suspension bridges-the undulatory is by fer the mast important. The height of the undulstions of the Menai bridge in a storm has been known to be some 8 or 10 fret, while the trage. verse oesilhations were scarcely observable. Dy far the most important part, therefore, of the invention of intersectigg eospengion chaing is the means they afford of preventing the rising and falling of the phatiorm. This effect is, however, not immediately obvious, and we shall perhaps thare some little difficulty in rendering the explanation of it intelligible.

What we wich to show is this-that the offeot of two chains, both usited to the platfors, is such that, theve the defaction of the one chain manid tend to raise the platform, the other chain world tend to depress it-so that the two chains would, during the passing of a load, counteract the tendency of ench to elevate or depress the several parts of the roadway.

To make the point clear we will refer to the figure of the single-spen bridge in the accompanying piate. We will suppose that a hoany carriage has got some distance across the bridge, but has not yet reached the centre of it. Now let us see what is the effect of thls load on each ohain sepe-rately-first, for instance, on the cbain which at this place is the highest. The load reats on the platform, and tends to sink it, and this tendenoy is commenicaled by one of the Jong rods to the upper chain. If, howevar, the ection of the rod pull diown the chain at this point, we know by the mature of suspended chaias, that the whole of the ourve will be acted npon, rising at somepoints and sioking at others. Now let us see what the effect of the passing load is on that chain which at the place in question is
loweat. Fiere the efieot of the load is trasmitted by cae of the chort rodes which tonds to depresa thta chain also; and here agadosil the chata bo actaally deprensed, the whole curvo will be acted upon, fising at mom points and sinking at"others. But if the matter be attontively considereds it will be found that the parts of the ome chain which tend to rise arg directly aboos those ports of the other;othin minifl wend to sink, no that theop tendeaciow are opposito to each other, and avo coomborreted by tho attachment of both chains to the phatform.

Or, to express the samo thing another way, a passing load teads to ather the whole curvature of both chaingmto draw the two chains, in some places, whoer together, and, in others, widor apart, than they are in their positions of equilibrinu. In the erdinery siage-obain suspeasion bridgw there is nothing bat the weight of the chail asd piatform to reeist thin tendency to alter the forms of the curves; bnt in this double-chadn bridge the alteration is rasisted by the temsions or thruats of the connecting rods,

If we have succeededtin making thin point olear, the regderiwill sep that these connteractions occur, not at one or two points of the bridge, but at every point of it. Everywhere therefore there will be a tendency; bring the two chains closer together, or, move them wider apart, and these offects are every where prevented by the convexion of the vertical rods, each of the rods exerting either a tenajon ar thrust to resist the effect of the pasiag load. The two curves oannot either recede from or approeck each other oa aocoznt of tho rods, wo that the case in altogether differemt from that; of ;the ordinary saopeasion bridge; for there a passing load acts only on the aruspending rods immertiately adjacent to it-bot here every vertical rod of the whole bridge is acted upon by the load, and resists its tendency to depreas the platiform.

The effect therefore seems to be to comvert the whole atracture into bytem alanowt perfectly rigid, to give it, without aby additional woight of iron, nemply the stifress and stability of a girder. This is by far the mont important part of the invention, and deservas the careful consideration of the engineer.

It is a point warth noting, that the wertion rods waid not always be in e staie of teusion as in otber sumpeasion tridsea, bat ocoasionally would haw to resiat compresuion eleo, (whese the load teaded to bring parts of the thie curves closer together), and therofore thene rods would have to be made with more than the usual rigidity.

Of course on so complicated a subject as that of saspension bridges, no opinion on pradical pqints is perfectly truatworthy till verified by experienop. We ennot determise exselly to what exteat rigidity might be attained in a ouspemaies bridge on this pow prisciple, wid wo think onough has bean said to show that the stadity wonld certaing be far grealar than what can be obtained in the commap anapension bridges, withopt additional atifeaing by strong diagoeal tivi. Theae grantly inorease the weight of the structurs,
 for attaching then.

Wivisivor

Compremion to the Almasac, of Yen Bools of Information for the year of our Lord 1846. London: Charles Knieht, 14me.: pp. 260.
This is the ninetrenth if a serien of ennand volumes published nodor the superintemiones of the Gecinty far the Difraige of Uneful Knowledge.
 maties, natural history and philosephy, broeciogy, geogruphy, miativtics," \&c.--secondly, "the legislation, tiatiatics, publle improvements, and chrogicle of 1845** The first chapter is on the "earlieat printed almanacks," apd treats very fully of the histury and successive improvements of the calendar. This paper is writtep by Praf. De Morgan; it containg, bo mever, too dsplay of hir mathemationl genias, but exhibits a vast amennt of antiquarian oredition. We heve oboeen one or two short oxtracts, as well for the eurious mature of the information they afford, as to give a general idein of the atyle of the paper. Speaking of the difficulties which the Church oxperianced in determining the time of Easter, and reviowing the varions manodion proposed for these difficultias, it is ob-eerved-
"Regiomontanus is the next after Bucon who declared that the usus eccleste wa not in accordance with the decrota patrum; he doe not attempt the usual historical falsehood of fixing the existing method upon Eusebius and the other Nicene bishops, but refer it (and truly, as we showed in our last
mumber) to the Abbot Dionysing, "whose pascal calender," says he, "we are using to this day." He mentions the diffision of the Scriptures among the people in their native tongues as giving rise to many doubts and guestions upou the avhject; and allades to this diffusion as having taken place in Italy, and specifically as having cansed a reference to Cardinal Boastrion when he was legate at Venice. He further says that the Jewa very frequently raised objection to the existing Cbriatian mode of determining a feast which was asserted to be conuected with the Passover; and so far had the disastisfaction gone, that some priests of Bremen* (sacerdotes premenses) had nndertaken to correct the error themselves, and had kept Easter a month before all the rest of the Church-for doing which the adjective premenses had become a standing joke against them with a double meaning.

Between clocks and watches, lighted roads, and public announcements, wo are now so well provided with information, that an almanac is not a matter of the first necessity to most persons. It was otherwise in the fifteenth century ; and if we conaider how much comfort must have depended upon being ablo to arrange bnsiness with reference to the numerous holidays and the moonlight, we shall see that the mere list of saints' days and moons must have been a matter of consequence."

The topic of astrology is naturally tonched upon as pertinent to the subject in hand.
"There are many manuacript almanacs of the fifteenth century yet remaining. They may be divided into what we now call astrological (a word which was then frequently used in its original sense), and those which were simply atronomical. The majority of the astronomere in the middle ages believed In the prognosticating power of the stars : even Roger Bacon inclines to the auppoaition that they have a phyaieal infuence on the body, and through it on the acta of the mind. The Church of Rome always, collectively, set itelf againat this absardity. Not that its popes and cardinals were by any means univeraslly free from belicf in it ; but those who believed considered it as magic, while those who disbelieved thought it of course an organized fraud. So that, upon the whole, divination by the stars met with little pablic enconragement, and its professors were obliged to write about it ander modifed phrases. We have never found, in ancient astrologers, anch impudent pretenaions as those which have been published in London in our own day. If the members of the Stationers' Company, who atill continue to publish an astrological almanac, could see this trash, and conld know that there are ahops in London which sell nothing' else, and that there are permons who make a trade of imposing on the ignorant, and who doubtlest quote their authority, we suppose they would not allow any consideration of profit to induce them to lead their names to the continnance of so vile an imposition. We should recommend them never again to do what they heve done in Moore's Almaxac for the present year, namely, insinuate that unbelief in astrology is infidelity, and denial of the providence of God. This is an oversight, arising from an naskilful attempt at imitation of the old almanacs; it must show the Stationers' Company that if they will play with edge tools, andicall it sport, they ought tope very careful how they use them."

The note referred to in the above extract is as follows :-
"We quote our gronnd for this charge from Moore's, Almanack for 1845. The italics, when mixed with Roman, are our own."
' Astrological Predictions. Judicium Astrologicum, pro anno 1845. Pos Calorum, Vox Dei: The Voice of the Heavens is the Voice of God. He speaketh in all the Changes of the Seasons and of the Times.-Courteous Reader,-In this my annual production, I have a long time sounded the above imporiant truth in your ears, and I trust not in tain. It is, however, to be lamented that there is a great deal of infidelity upon the face of the earth, and even no small portion thereof cleaves to the akirts of Britannia. That wonder-working Hand, which placed each mighty orb.... is clearly manifest in onr earth by the changes of seasons... . . Let those who are dis. posed to deny the existence of Divine Providence reflect on these words af holy writ, Not a sparrow falleth. ©-Such an innnendo would have been too bad for the sirteenth century."

The following extract is taken from a foot note, p. 17.

"Those who observe that Boyle has let Melancthon off for his astrology with two worda and a reference, would hardly imagine the lamentable extent to which this weakneas was his master. On his death-bed, he half predicted that he should die on the day on which a conjunction of Mars and Saturn would take place: and on one occasion, being seen bathed in tears, and ahowing every sign of the greatest grief, it was found on inquiry that on looking at the stars in his evening's walk, he saw that a dreadfol war was going to burst upon Germang. The firat atory is from his most accredited biographer, Melch. Adam; the second from a less respectable source, the "Jocorum atque Seriorum Centarix" of Otho Melander, whose grandfather, Dion. Melander, was the person who asked Melancthon what was the matter with him. This same Otho relates a severe rebuke which Melancthon received from Lather, for saying that persons born when Libra was in the ascendant must be miserable through life: and a ridiculous attempt to cant the nativity of an infant child of his (Otho'a) grandfatber, whom he apposed to be of the male sex, and to whom he promised learning, honours, and religions contests. Being told that the child was a girl, he was out of

[^4]conntenance for atime, and at last said-then she will rale her husband. But on second thoughts he cast a new scheme, in which he condemned her to death at seven years old, and staked the validity of his art upon the prediction. The girl lived, however, till the age of fourteen. Otbo was of the reformed church, and was therefore free from one bias against Melancthon, at least."

The paper of Prof. de Morgan is fullowed by a very usefal articie on foreign exchanges, and some elaborate tables of the fluctuations of the funds. We should have liked to have made some extracts from the tables of the "statistics of crime," as the subject is intimately counected with one for which we have frequently endeavoured to enlist the attention of our readers-the sanatory conditions of large towns. We must, however, for lack of iapace, pass on to a subject more immediately connected with the objects of this work, "the railwaya of Great Britain." Under this head there is a brief abstract of all the railway acts passed during lart session-forming a synopsis somewhat similar to that which appears in our present number, excepting that no notice is taken of the amalgamations and other private arrangements of companies. The following extract is likely to be read with interest, as giving a good compendium of parliamentary proceedings reapecting railways during the past year.
"On the 31st of December the Railway Department of the Board of Trade issued the first of a series of reports upon the schemes tbus examined by them, in which reports, after ennmerating all the projected lines in a certain district, they expressed their intention to report to parliament in favour of certain schemes and against some others, while they recommended tha poatponement to a future period of anch as they considered might be modified to advantage, or might be rendered unnecessary by the introduction of better or more comprehensive schemes. The more detailed reports in which they explained the reasons which had infuenced their selection, were not, in mont cases, published until some weeks after the announcement of their decision. In selecting from mass of rival, or partially rival, projects, the Board usually gave their recommendation in favour of the new lines projected in friendly connection with, rather than those in opposition to or compatition Fith, already existing lines; and in cases where the engineering features of two or more rival schemes were essentialiy different, they entered, in their detailed reports, at considerable length into such questions as the comparstive merits of the locomotive and atmospheric systems of propalsion, of different systems of gradienta, of width of gange, and other peculiaritien of construction. In consequence of an idea that auch reports would decide the fate of railway bills, some projects which had heen propared for parliament were withdrawn in deference to the recommendations of the Board of Trade; bat in many instances the promoters determined to proceed with their bills in the face of adverse reporta, a course which appeara to have been by no means disapproved by parliament, since many such schemes were successful in obtaining their acts, while some of those most warmly supported by the Board of Trade were defeated in Committee upon their merits, and othert, in consequence of informalities (resulting, in some cases, from the imposiibility of preparing the requiaite parliamentary plans and sections by the appointed day, or of submitting them to the searching examination neceasary for the detection and correction of clerical errorn, when the demand for sarveyors, levellers, draftsmen, and engravers was so urgent as in the antamn of 1844), were thrown out for non-compliance with Standing Orders. It being very evident that, whether the Railway Officers of the Board of Trade had or had not exceeded the powers committed to them, their recommendetions were distasteful to the Select Committee of the House of Commons, upon whose right of decision they appeared to trench, the Railway Department has been completely remodelled by a minute of the Lords of the Committee of l'rivy Conncil for Trade, dated the 10 th of July, 1845, by which the distinct Board constituted by the minute of the 6th of August, 1844, was discontinued, and it was determined that in future all railroad buainess should be trausacted by the Lords of the Committeo of Privy Council for Trade in the same manner as the ordinary business of that Committee.

In the House of Commons, the enormous amount of railway business formed the most remarkable feature of the session, and such of the Standing Orders as relate to the composition of the Committees on private bills were suspended, so far as railway bills were concerned, it being impossible, under such extraordinary circumstances, to adhere strictly to the usual practices of the House. Railway bills were, at the commencement of the session, divided by a "Classification Committee" into groups, each of which was referred to one Select Committee, who were allowed to sit during any adjournment of the House, in order to get through the immense mass of business before them. Notwithstanding every exertion, many competing achemes failed, from want of time, to obtain a hearing; and some bills which were virtually passed, were necessarily left over to next session, a special arrangement having been made to aliow the privilege of re-introducing in 1846, and carrying on from the point where the proceedings left off in 1845, such bills as had been ordered by the House of Commons to be ingrossed. Before the close of the session some alterations were made in the Standing Orders, by which the additional maps and atatements required by the minute of the Board of Trade above quoted, are required to be deposited, and the amount of deposit required before presenting a petition for a railway bill is again increased to ten, instead of, as in the last seasion, five
per cant. of the amount subscribed. This increased deposit, however, is not required in the case of bills which have been before parliament in 1845, and may be re-introduced in 1846, or of undertakings provisionally registered before it was issued, or such as had their subscription contract executed, or pertly executed, on the 29th of Joly, 1845. Among the important parlimmentary proceedings of the seasion we may refer to the passing of the Railway Clansen' Consolidation Act, by which all future railway acts will be mach simplified; and the appointraent, in consequence of a motion in the House of Commons by Mr. Cobden, of a Royal Commission "for inquiring Whether, in fatare Private Acts of Parliament for the construction of rail. whys, provition ought to be made for securing aniform gauge, and whether it would be expedient and practicable to take measures to bring the railways already constructed, or in progress of construction, in Great Britain, into nniformity of gauge: and to inquire whether any other mode of ohviating or mitigating the serious impediments to the internal traffic of the country, which are represented as likely to arise from the want of a oniform gauge, conld not be adopted."
We regrat we cannot find apace for more than a brief ennmeration of the greater part of the remaining subjects of information. There are some very valaable tables comparing rates of life insurance in different companies, abstracts of public acts of parliament, and parliamentary documents, a chronicle of the sessions, and a numerical account of petitions and privato bills. The information throughout these chapters is arranged in a very careful and satisfactory manner.
The thirteenth chapter treats of "Pablic Improvements," and is divided into three sections headed respectively, "General Improvements," "Charches," and "Miscellaneous Buildings." Of this part of the work we regret to asy that we cannot speak in the same terms of commendation as of the rest. Whether it be that the conductors have here towards the end of the volame been compelled to put their remarks together in a more hasty manner than in the preceding parts, we cannot tell ; but the diction is careleas and very frequently angrammatical, and many eentences re. quire to be read eeveral times before the meaning of them can be ascortained. Of these faults however we should not complain, (as wo do not here profess to write a literary criticism) were the langange sufficiently perspicuons to explain the views of the aathors. This bowever is by no means invariably the case, and even when we succed in finding out what Ideas on architectaral subjects are intended, we are seldom recompeased for the labour of discorery.
The first piece of criticism is on the architectare of the new buildings behind the Royal Exchange. Unfortunately enongh these baildings are praised for the qualification which they least of all possess. Speaking of the arrangement of the Findows, it is observed that it "is such as not to crt op the mass itself into littleness, as is too generally the case owing to the windows being put too closely logether, which inevitably occasions an ordinary dwelling-honse look to prevail." Now without offering any opinion of our own on the merits of the building in question wo mar state, as a simple fact, that the ground floor of the building exbibits one continal series of arched window-openings, separated only by piers. In many of the conserratories which are altached to large conniry aeats, and are built to assimilate in architecture to the contiguous boildings, the aggregate surface of the windows is not so great compared with that of the masoary, an it in the ground foor of the buildiags bebind the Royal Exchange. The observation that "this arcade is exceedingly well proportioned as to the quantity of window opening as compared with the entire surface," was written, it may be suspected, before the writer saw the building.*
The next subject of commentary is Trafalgar Square. Of this it is said, "The two fountains seen to bave altogether disappointed the poblic; for not only bave they been ridiculed by those who make mere ridicule pass for criticism, but have been spoken of seriously by those who profess to deal in sober criticism as things of 'intense ugliness,' which is ruther too serere, since the insignificance of their appearance is at least an equal defect." This passage, of course, contains a reference to the criticism of the Trafalgar-Square fountains, which appeared some time since in the Civil Engineer and Archilects' Journal : the objection now raised to that criticism is odd enough. First, insignificance of appearance is spoken of as something distinct and separable from ugliness; mecondly, the former of these qualities, though it is suid to be an "equal defect" with the latter, is assigned-not as an additionad

[^5]reason for its condemation-but on an altogether new system of logic, 4s a proof that our oriticiam was "rather tuo nevere". —" which is rather too eevere, since the insignificancy of their appearance is at least an equal defect'!

Another "defect" ia discovered in the architecture of Trafalgar Square, which certainly never suggested itself to ourselves. The writer, whose knowledge of the English language is as profound as his knowledge of architectore, says that "a singularly disagreeable effect" is produced, because " the tops of the wall are not made to rise and fall like hedges." We confess that this plan of making Trafalgar-Square "agreeable" never occurred to us. An excuse for all the dofects noticed, 1s, however, found in the consideration that the site was a very bad one! " Barry certainly here undertook a very ungrateful task, it being hardly possible to make anything satisfactory out of such an ill-arranged spot." We always imugined that the principal canse of the pablic disappointment renpecting Trafalgar Square, was, that " one of the nobleat sites in Europe" was sacrificed in an abortive attempt at architectural diaplay.
In commending the new buildings in Lincoln's Inn, it is observed that the ceilings, "though only of deal unpainted, have the aypearance of being of a superior kind of wood, great depth of hue and lustre being imperted to it by some novel process or preparation." The word " unpainted" is marked in italics, to intimate, we presume, that the imitation is excused from censure, because it is not prodaced by paint-thet the weight of the censure depends not on the simple fact of deception, but the method of effecting it. This principle is that of the Spartans who used to puaish their children for larcenies - when they committed them clumsily.

Had the writers on "public improvements" been accustomed to be present at the hall-dinners at Lincoln's Inn, they might frequently have heard the merits of the ceilings in question dismissed somewhat uncerimonioasly by the appellation-" Brummagem." The criticism, to be sure, is not that of professed architects, but it is at least that of gentlemen and men of edacated taste.

In noticing buildinga deserving of admiration, there is a particularly unfortunate tendency to choose for commendation the very particulars which a judicious friend might have passed over in silence. The above is a striking instance, but there are many others. In the Colosseum, the first subject of commendation is the circomstance, "that the colamas, \&c., are of white marble-or, at least, have all the appearance of being su," being formed of a composition "that imitates that material most deceptively." The new chnrch at Leeds is said to exhibit a " most praiseworthy regard to permanent excellence," the last quality we should assign to a Gobic Church with plaister ceilings.
The fnal chapters of the work are a "Bankruptcy Analysis," and a "Necrological Table of Literary Men and Artists." The volume, though not absolately free from grave faulta, may, on the whole, be prononnced a valuable and certainly cheap repository of the information usually coniained in a " Year-book."

Ancient and Modern Architecture; consisting of Views, Plans, Eleontions, Sections, and Details of the most Remarkable Edifices in the World. Edited by M. Joles Gailhabaod. Series the second. Parts 35, 42. London: Firmin Didot, 1845, quarto.
We have already noticed some of the previous nombers of this series of engravings; those before us embrace almost every kind of architectore, as maty be seen from the following list of the principal snbjects: Charch of St. Zachary, at Venice; Theotocos Church, at Constantinople; St. Etienne du Mont, Paris; Flavian Amphithealre, Rome; the beautifal temples of Vesta at Tiroli; Celtic Monuments, \&c. The engraviags are execoted in a very satisfactory manner, a due regard to pictorial effect being observed, withoul a eacriflce of the accuracy of the architectural details. The letter-press, however, occnpies by far too small a portion of the work, which, owing to this defect, bas too mach the character of a picture-book for work on ancient and modern architecture. The archsological notices are, however, carefolly selected, and are verified, for the most part, by formidable arrays of authorities. We have selected the following extract, to give some idea of this part of the work. It is a description of the Church of the Theotocos (mother of God) at ConstantiDople, a very important apecimen of a style not very well known in this country-the Byzantine :-
"The plan lies east and weat, the surface of the soil sloping from the apais to the fagade, so an to require a double flight of steps to reach the pripcipal entrance; two porchea, with columns opening towards the west, admit the the light to a spacious veatibule, which is extended round the coiner, along
the lateral facet of the chureh-an errangement precisely similar to that adopted in the church of St^{2}. Mart at Veofice. In the iaterfor, thil veriabale,
 general form of their shafts, and the sculpture of their capitals, seen to have been ohtaized from eome ancient edifce... . . A second narther, or vestibule, sorrounded on three sides by the one we have jnat described, commonicates immediately with the aisles of the cherch, from which it is separated by a thick wall, with three large doorways in it. This second veatibale receives its light from the onter one by two arcades, and commonicaten with it by a large door on the arit of the edifice. According to the general mage amonts the Groak Chriatiant, the three ainkes of the chourch ave traced in a space eractly square, with four thick colomas arranged aymmetricelly in the centre, to support the roof and the priscipal dome-s disposition resembling the Corinthian afrium of the ancients. The agve, much wider than the side aisles, has two massive pillars at the end, which divide it from the enctuary, the firat part of which in equare, but it terminates towneds she east in a semicircalar aprin, with three windows eoparated by mall cobmona attached in piors. On anch side of the mapotnary in a door londing into the stacristien, which are at the and of the side ainlen..... The fagade of the Theotocos is very regalar; the floor of the narthex is raised to the level of the church by a basement. The principal entrance is approached by two fights of steps, zuder which there is a circular brick arch. The arched doorway projects a little, and above it there is another arch divided into two parts, and open, to give light to the veatibule. The sides of the fagale aro ewh divided into two seaes; the botton omen are cocupied by three areades, meparated by abort marbie colnman, whone oapitals and bases, of the mas material (see fig. 3, pl. 3), have all the peculiar characteriatice of the Byzantine style. The arches are turned with stone and hrickn alternately. Tableta of white marble, ornamented with crosses and crowns, are placed between the colomas, and aupport narrow jambs, that reech as high as the capitats, end appent to have supported lattice ancementa, or porhape glased windows, to protect the usirthez. Towarda the corners of the facade, boyond the open porcbes, there is, on esch side, a semicircular niche of very clongated proportions. The wall is composed of comres of stone and bricke of equal thickness. Between the arches over the columns, the builder has introduced lozenge-shaped bricks, separated by horizortal lines; near the two uichea which occupy the extremities of the facede, the bricks are turnod in urehen concentric with those of the nichen... . . Above the whote risen the central eapola of the church. This capela stands on a square basement, and condiste of twelve amall colomas, sapporting arches under which are the ame aumber of windows, to light the dome. The spherical portion of the cupola is covered with sheet lead, and in the centre there is a very gracefal little ornament. East and weat of the copole we see the roof of the church, of the interior narthex, and the sanctury. This last is Hghted frow above by a wisdow in the vaulud roof... .. The mpais stands on a polygonal atylobetc of five equal sidea. In the upper part there is the ame number of arcadea, two of which are closed, and three open ; these last, which give light to the sanctuary, and are probably intended, as in the church of St. Sophia, to be an emblem of the Trinity, are supported by columbs inserted in square piers, and ure repeated inside in exwetly the same form and ofze. Their bases, componed of a fillet and a toros, stand apon a atone that forms a common plinth, and is of a pramidal shapes. Their capitals have a kisd of ornmment composed of numerous berilled monldingh, in thei Byzantine style; a thin ledge, which projects considerably ontside, supports the ribe formed by the junction of the polygonal facea of the apais. In the uquare pillars against which the columns are backed, there are a number of holes, from which it is evident that thaee windowt have been elaced by iron frattego. Above thewe arcades there is a row of arched nichen, which havo been axectly copied in the cathedral of St. Mark, at Venice. The back of the vaulted part is ornamented with brick zigzags. The rpof of the apais is a demi-eupola, covered with lead, and hipped, to correspond with the five alden of the vertioel portion. On ench side of the appis are the constructions that form the casters end of the side aislan and ventries; in the centre of esch there to polygenal apais, not projocting, bat merely cut in the thickness of the walle"

It would have been better to have devoted a larger portion of the work to pares and less to batard, archilecture. What possible architectural value, for instasce, can there now be in the church of St Elienne, at Paris, a lementable inatapce of the sacrifice of a fine mediceval edifice to the psendo-classic mania? It were hard to find another Chriatian church in which the original featares bave been 80 completely effaced by hideons imitations of Roman details. The barberous matilations of the shurch of SL Etionne arceed even those of the west frodt of Westminster Abbey.

Ruilomy Almonec, Dinectory, Year-Boat of Shativaist and Direst of Railway Lnovfor 18e6. London: Groombridge, 8ve., Pp. 182.
We are somewhat late id our notioc of this work; atd, as almences ere seidom parchesed thll the begtrinisg of the your, our mecembieadation will appenr about the right time. In addition to the ordinary tnformation, the Calendar contaips the dates when the existing railways were opened, the periods when the dividends of each company are payable, \&c. The

Rationg Lato Digent (written by Mr. Ebaw, of Furnivalis Ina) is the nont pertipicuons explanation of a very dificalt sabject which we have met with. We bave read it through carefully, and can pronounce it well worthy of the labone of perncal. The Directory comtins the mamen of the directown and ofreers of all the completed and projected rafiways ; It cive also the lists of the members of the Stock-Exchnenge of London, and the chief commercial towns. The work is very well printed, and in the arrangement of it great care bas avidonlly been taken to secure facility of reforance.

Jabez Hare's Iunstrated Engineers' Almemac for 1846. Simpkia and Manhall.
This in a lerge sheot Almanac. In addition to the calemdar, it comenity wood engravings of several mechanical inventions, suoh es the railway encavator, the stean hammer, andincrew propellern, of which aboo brief letter-prest descriptions aro given. There axe aiso tables of aneat of ctreles, of specific cravities, and the pitch of soothed wheols, \&on. Mif. Haro erideuty far ezoeeds Lord Chesberfiald in his adminatlon of prop rerbs: the Almane is garnisted by a doeble belt of them.

First Steps to Anatomy. By J. L. Drammond, M.D., Professor of Anetomy and Physiology in the Royal Belfast Institution. London: Van Foorst, 1845. 18mo. pp. 210. 18 lithograph plates.
It would be somewhat travelling out of the record to give a critical notico of this book, even if we laid claim to the editorial omniscience which alone woold warrant us in uadertaking the task. The work is a digest of lecturen to the "first-year stadents" in the Royal Beifest Institution, and is written in a very pleasing and perspicnous style.

NEW MODELS OF THE PARTBENON

In the British Munome.

The truatees of the British Museum have recently mado a mont valuable addition to the collection of antiquities of two large models of the Parthe, non, made by Mr. Lacas, the sculptor. We are unavoidably compelled to pontpone till nert month a critical dencription of these edmimble works of ert; the following notice of them, however, which in extracted from the Athonseam, will be raad with intereat.

Mr. Locas, the sculptor-of whom we have herefofore had occasion to make honourable mention,-has been for some time engaged on a wort, Which, while it is at once very interestiug in itself and horourable to the artist who plansed and performed it, comes veefoily as a combintareatemon in this time of awakened attertion and improving prospects for the Art His object has been to achieve two models of that most perfect of templen the Parthenon-one of which shall represent it as it appeared in its dilapidated state in the serenteenth century, and its other being, in the senlppr's words, "an attempt to restore is to the fulneas of its original ben and aplendoar." The achemo is one, especielly in its latter portion, whid demanded for its suecesaful execution a rare combination of sobriety and enthusiasm. Any merely conjectural re-construction could have satisfed none of the serious demands of the subject; while it would have been an unpardonable assumption, that affected to clothe the faney of the artist with the sanotions of the highest authority known to art. Luckily, the material asd other documents yet exiat is sufficient distiactisess and abapdance to furnish certion evidemee, for the condcientions student, as to the general plan and many of the details of this great temple,-and, for the sound and accomplished artist, reasonable inferences as to the rest. Mr. Lacas has carefully consulted the authorities on the enbject-both thon of fact and apecolation-remains and dravings of remains, with the opiniose of soholars as to the interpretation of these where their language is obscure : and where, all these failing him, it has been neceasary to connect the known by the noknown, he has taken the principles upon whlch Phidias wrought for his guide, and sought only in what is expressed for what in meaut. In this species of questioniog he has nhowa great judg-mert-generally winning the assent of the critic to the testimony which he makes ths momument bear of itself. A passionate worshipper at that shrine of Art which he has chosen, he is, nevertheless, careful that his worhip shall approve itself as a reasonable service; his andisguised enthusiasm for his task is not imported into lt from without, -but borm legitimately of the embodied priaciples before him, and appeating to their qualities of fitness and beauty for its fustification. Better discipline, teaching more sure and aublime than this, the scalptor coald not propose to himself; and, amid that visible want of earnest thought-that geaeral defect of spirituality - which may have some excuse in the font tendenoies of poblic patronage amongst us, but by which the school is held back from the bigh destinies awaiting it, we see with more than ordinary pleasare this patient and zealous search into the fountains of the true in.

Art and the immortal in thonght. In the progress of his laboor, Mr. Lucas has mado sure acquaintance with principles which are likely to have an elevating effect on all his foture works ; and, better still, what he has found, he has commemorated-embodying, for the use of others, the imaruction which he sought for himgolf. We have here, by his menses, the tuxt of the Parthenon reatored, with fower conjectueal readings (and those, certainly, for the moot part, true in their character) than might have been hoped; end, in this view of the matter, we rejoice that the British Moseum has porchased the model of the completed building-to stand in the Elgin Gallery, as a key to the matchless remains which are so many of the original parts, and an important element of this restoration.

The faded and, to the uninstructed eye, somewhat enimatical character of these remains will be more fally understood by the pobic, and more readily by the artiat, in this easy reference to their contert; the meaning of the restored whole more readily suggests the meanings of the several parts. The amateur may here catch the foll expressions, and the artist the true canon, of Greek sculpture. In this point of view, the reading-mede-easy of the Parthenon, with its sculptures, is an invaluable lesson set up in our chhools of Arts. Whlle the mere sentiments of the Arts fods here its full satisfaction in perfect beauty of forms, the intelligent stident perceives bow litut the eoorset of that atiofnction is depondent upon the forms themselves. The prisciples of art are all samared up in tifis great and perfeet work; yet the work, whilo iavalving all the truths which fare necemary to perfection, is zot the truth itsolf, but only ane perfect and bernonions form of its expreasion. The carefal reader of this pageifcent poem, with the full epic before him-who sees bow its endless varieties of detail all tead to the prodaction of one great naity of thought, canot overiook the leading secret which lies at the bottom of all excel. lemee in Art, and so taken a leseon which has been greatly needed in the modern schoals. In every page of this matchless book is enforced the great and eternal principle of fituess. No single word has the chisel written on this immortal volume which has not meaning-and those meanings are one, and such as conld be directly anderstood and fully bated by the national heart to which they are addressed. He who takes these mere forms, and reconstructs them in the heart of London, is brit the asatomist of scolptare-and scarcely that; the resurrectionist who prodonces from its tomb the skeletol of $A r_{1} \rightarrow$ worthleas thing, mow the livhg and is gove out of it. The cecrat of their monaming in Greeos is that of their mo-pouniog hesp; and the senlpter lomose, from anch works thonsalven, that the ann, for the macet part, enty adopt the pritocipies of the Creok by refeotiog hie combinations. The language of Apt, whan righty lanm, will be forad to be moiversal-and, theroiore, Amermally intellifith; but be who bas wholly difierent things to axprete must seak wholly diferven expremions. The Gods of Greece, who were all at home upon the one Alherias hin, ere streagers, very one, in the stapets of Iondon ad Paris. The true tewohing of Greek eculptare borbids to copy it. The letter of Greek Art in a dead thing, amid the changes of the world; hat ins oplrit is insosortal anid the ruine-and apeaks and breathea from every motilated page of this great book.

The materials which Mr. Lucas has had to assist him in his work of retloration are the drawings made by Cerrey, in 1675, for the Marquis de Njoiatel, before the Parthemon soffered its last great dilapidations at the lands of the Venotians-the work of Stuart and Hevett on Athens, who Ew the ruin in 1751, when the Ilissus and the Torso of the groap of Cecrope and Agranaus maintained their place in the western pediment-the comparativels perfect condition of the eastern pediment itself, as drawn by all these artists; from which Mr. Lucas has deduced very tegeniona consequences of his owa for a reatoration of the eastern pedianent, in oppotitin to those of Quatremère de Quincy and Edomard Gerband, and difforing from those of Lasieri and Mr. Cockerell-the acanty bints of Pant. anias-tbe works of Spon and Wbeler, the Chevatier Brooteted and ProEaner Welcker-the advice and argaments of Colonel Leake, Profemor Cockerell, Mr. Hawkins, and Mr. Pittakis, the present curctor of the Farthenon-and the most invaluable docurseat of all, the ectual remaing in the Elgin Room of the British Museam. The priacipal question which presented itecff for solvtion was that of the easiern pediment-of which Pamanias merely saje that it related to the creation of Minerva; while the westers bad reference to the centeat of that goddens with Neptuse for the territory of Attica. Is the latter cass, however, the drawiags of Carny, made from the sculptures themselves when the pediment wan mearly Wriect, ere better evidionce of the intertions of Phidias than the casual mastit of Paugemiag-and dexsonstrato that his expreasion will not strictly cuecribe thetr anbjeot. It is evident that the viotery of Minerun in this
 Equectioa : and Mr. Lacas demanda merely a cimilar Iatimde in the cormetion of tho lowe langange of Pananina, as the batis of his restoration © the andern pediment a liberel oonstraction of the word gareoss, he
 exorice wras intanded to bo doscribed as the tubject, and will let in any Cf ite incilemts attendiant apen that ereat mythological ovent, the adveot - M Mancre. But it is to be observed, that it in not in the mere idie apirts - Epeoaknive amendmant thut this correction is proposed, but under the compalaias of the prisciples on whioh Phidias wronght, as writion in whery aher part of this great work. "Xeeping," says the ooulptor, in mome printed remarks on the Purthenan, wherein he has vory ably ataled his own view, "stedfasty in our minds the means by which Phidis has produced so anblime a resolt in the mentern pediment, we will ondeavoor
to approach the eastern one in the seme spirit. The masner and method in which the wyth was represented in the western pediment upen to us the understanding of the easter pedimental composition; and if we apply this mode of viewing the subject to this eastern pediment (of which we have noticed the entire destruction of the central portion in the early times), we may feel quite sure that the myth mast have been treated in a manaer equally satisfactory.

Hence we have littie doubt that the restoration of the eastern pediment, proposed by Brondsted and executed by Quatremère de Quincy, where Vulcan is represented as having cleft open the bead of Jupiter, and one of the two goddesses who preside over births is drawing out a litle figure of Minerva, while the other is sapporting Jupiter as though he were fainting under the agonies of child-birth, cate derer be an adequate expression of Phidlas's own design. It may be said that Homer's description is sufficient warrant for Q. de Qaine's restoration ; yet stifl we feel that the strict letter of the poet is inapplicable in pedimental composition. Homer describes the gforious form of Minerva as rising from the brain of Jupiter, and all Nature etrock with awe at tho splendour of her form and golden plomage; bot in libe adaptetion of that moment to sculpture, the glorions form of Wisdom siake lote an insigntIcaat poppet. And hence we have no reasea to suppone that the existence of such a subject on a patern (itseff taken from a pictere) was eary motive with Phidias for the selection of that whiel, at well frow ecmatiness of apace sa from umitnens of maborial, coald mot be treated with propriety. Nor did the incoograiny of the Froesh comerption of the mbjeot escape the eye of Flarman; who, io his lectures, obacrues, that the eder povition was no doabt 8lied, sot by a represerdstion of the actual birth of Minerva, but ruther, 0 would the far more Gutimg in a temple peculiarly dedicated to her homoen, by the tptroduction of the goddens to the angust asoenblage of the gods oo Olympog-a subject in the bighet degres im. Fovitg, and alvitiog of a culptaral treatmon of the greateat majenty. Aad thin view of the eabjeat is also taken by Mr. Cackernll ; who has do-
 of the ataten of Mioerse in the ceatera pedimeat -1 jadgwent in whioh M. Welckar entirely ceincides with him.'

Thie view of the matter Mr. Loeas has himeelf adopted; and out of such fagments ac renain, with what we kmow positively from Carrey of their place,-supplying the blanks from inferences and reaconinge whose artiatic memodnets are demerving of creat commendation-he bas reconstrocted the whele into a eplendid componition; which, ir mot the true one, is certainly in a Greak opirit, and where the parts filled op offer no discord with what remains of the ancient text.
One valuable lesson Mr. Lucas has drawn from the consideration of these pedimento-which we mase onit. The sculptures that adorn them-or rather of which they are compoedd- 20 far from being arbitrarily confined within the pedimestal lises, as barriors Hioh the genius of the sculptor must not ventare to infringe-a practice that gives to the figures on pediments in general the character of mere atter-tuoughts for the em. bellishment of the building, are here, by latitnde in the slae and projectiou of the figures, not only made to seeto an origiaed end exprosaire part of the great intention, but the effect of a bold and beautifal tariedy to the oye is thus obtained by the same simple act of mastery which gives this addition to the anity of the thought. "I have the highest anthority," says Mr. Leacas, "for stutiog that not ose moders pediment bas been coustructed in accordance with the rales which this pediment of Phidas prescribes to us; and as to the anferency of this example as a rule, we have the united testimony of all euthorities on the sabject, that this pedimental constraction contained the reanlt of seven hundred years' experience,-and that ased by the discretion of Pbidias."

We cannot follow Mr. Lucas at length, throngh an the parts of his restoration. The friese is recomposed is its entirety, on the outer wall of the collar-the existing parts being made to saggest the lost. The columns are reatored to the interior in a double row, Mr. Lncas baving farally decided, as a chaice amongst difficulties (for this is the point on which the evidence is most contradictory and the decision the least satiafactory), on Obrinthian placed above Ionic. The Goddens is replaced in the glorioes shrine which was built up for the sole purpose of containing her iden, in her garment of ivory and gold, and with her rich sculptural accessorien, as described by Pausanims and seen on ancient coins and gems. The missing metopes are restored, the subjects sapplied being in every cese sought from coins and vases, and for this purpose on a primeiple of connexion snggented by a jndicious consideration of thove which exiat, in faet or in drawing. Even the shields, of whoee former pretence on the exterior of the temple the traces remain, are here rephaced,-though moftimg ean be known of the devices which they contained-that no featore maybe wmontias to convey the general eliect of the whole. The adoption of tient dovicea in, therefore, confessedly, quite conjectural-but aot quite atbitrary, notwhir tanding. They have been celected from vast, cotns, and the wort Mommmaner lafiuts, pablished by the Inntitute of Rome, which comatme \& lerge mamber of the shields of Minerva. Nothing has been left out that could toe anthenticated, -or rettored upon prenemptive teatimony furniahed by the temple itaelf. Only in the case of the Polychromatic adjunctis, of which evicence is sopposed to exint, has Mr. Lucat (with that same cotriety of fudgment which bas raled his enthusiarm throughout this wori, -and which in but the deop pasion for hts theme, chastened by the revarence whth Which he approschen its) refrieed-beoamsa, as he siys, th cannet be demore-
 It appoired to me to impitr the chasteners of the temples. I men oot called on
to run any risk of making a gaud of this restoration of the Parthenon, or to depart from that severe simplicity which is the cbaracteristic of all the art of Phidias."

In one other point of view, we rejoice at the adoption of this model by the Museum ;-we think it calculated to help the sculptor to his place in England, and inspire him with the determination to take it. Nowhere does the genius of sculpture seem so great as in the Parthenon. There is no other work in which its marvels have been turned to such epic account; and though we hesitate to go all the way with Mr. Lucas, who supposes the temple itself to bave been designed as a mere pedestal for the foot of the Genius-a frame for the aculptor to work on-yet certain it is that if, in this unriralled union of the Arts, there be one spirit that presides over the others with authority, it is sculpture. But the true lesson taught by this temple is the oneness and entirety of Art-the joint and harmonious contribution of its several forms to the production of a great whole-the embodiment of a perfect thought-in proportions varying with the demands of the particular subject. Tbat splitting into separate members of the great family of Art, which has left something ungatisfactory in its best achievements in England, is authoritatively rehuked in preaence of this majeatic result produced by their combination. Most of all, in this presence, is that ignorant error detected which has assigaed to sculpture, amongst ourselves, a lower place than the highest in Art. By academicians who have given it the coalhole, It is well it should be seen here with the glory on its brow; and the sculptor who is content to work as the mere decorator to the architectcalled in to ornament, es with mere artistic surplusege, his flaished and celfreliant design-may learn how, as a master, sculpture wrought in Greece. The architect and the sculptor, where they are not one, must plan together. Sculpture must be a portion of the soul of great architectural works, not their garment, ere the one or the other can achieve, with us, the marvels Which have testified so long in vain of the old Greek spirituality. Till sculpture shall be architectoric, its great deatinies cannot be accomplished amongst us. The scalptor who comes fresh from the stady of the Parthenon will feel that he is minister in the very highest place of Art; and the public, instructed by the same great revelation, will, if the former be true to himself, help to get him his own again in the new era of Art which is dawning over England.

The other model is as yet unfinished-and unporchased. We truat the Museum will add it to the other; and ahall have some worda to say of it when complete. The models are, severally, twelve feet in length by nearly six in width.

REGISTER OF NEW PATENTS.

If additlonal Information be required reapecilog any patent, It may be obtalned at the office of this Jourak.
John Cleveland Palige, of East Haddam, for "Improvements in machinery for making augurs," \&c.-Granted March 17 ; Enrolled Septem. ber $17,1845$.

The object of the mechanism is for manufacturing the " single trist" aupur, usually made of a rod of metal, twiated round a cylinder into a belical curve. The augur which the inventor's machinery is intend d to manufacture is to be formed of a long rod of metal (either of a triangular or other proper sbape, in its cross section). The iron should be rolled in squere bars or rods, of the size required, and be cut into pieces of safficlent length, to make the tool or instrument intended. A small piece of ateel of proper size for the cutting lip, (and the conical screw, if it is to be added,) is next welded upon one end of each one of the said pieces, and the end is next turned or bent down, at right angles to the remsinder, upon an auvil, so as to fit into the carityof the lower section of the dies, for forming the lip, or the lip and screw cone. About threc-fourths of the length of the rod from the steel knob, is next heated to the necessary temperature, to be rolled down by the next portion of the machinery. The next portion of the proceas of manufacturing the augur consists in forming the cutting lip, or the catting lip and conical screw blauk upon its end. For this purpose, dies are employed to form the lip without the conic blank. The head of steel being heated, is placed between the dies, and the upper of them caused to descend, with the force necessary to swedge or compress the metal into the shape required. The knob thur formed, is next bent down to the angle required, to be applied to tne machine, by which the rod is twisted in the belical curve. The next operation is, to give the requisite degree of uniformity to the size and spread of the ftwist, which is accomplished by hammering in the machine, consisting of a trip hammer, arranged and operated over and mpon a die anvil or bed-piece, groored out, so as to receive the twisted helix when laid thereon. By turning the augar around, first in one direction and next in the opposite, successively, so as to cause it to pass back and forth between the hammer and bed-piece or anvil, the twist is spread out in a uniform manner. The lower part of the hammer should be curved to correspond with the circumference of tbe exterior of the twist of the angur. The twisted portion of the augur is again heated, and rolled between heary iron platen, for the purpose of straightening the twist, during which operstion, care should be taken that the cutting lip of the augur dues not come in contact with the plates. The augur is next to be finiahed by filing, and apon grinding and polishing wheels, or by other proper means, in auch manner as may be deairalile; and when a acrew is to be connected with the
catting lip, it may be cut upon the blank by any contrivance adapted to the purpose.

William Robingon Mcllet and Gberge Mason, jua., of Ipswich, contractors, for "Improvements in collecting and raising slone or substances from below water."-Granted April 2; Eurolled October 2, 1845.

This invention is chiefly intended for raising cement stone from below water off West Kock, near Harwich, or other places similarly circumstanced, which at present is performed by sailing ressels, the dredging bags being raised by manual labour. The object of this invention is to apply the power of steam in a suitable vessel to drag dredging bags, and to raise them and cement stone, or other matters collected thereby, into the ressel.

Thomas Moss, Esq., of Gainsford-street, Barnabury-road, for "Improvements in printing and preparing bankers' notes, cheques, and other papers, for the better prevention of fraud." Granted, April 22; enrolled October 22 1845.

This invention consiats in impressing patterns on the surface of paper ased as bankers' notes, and other documents, on which designs or letters have been or are intended to be printed, that the paper to treated will be smooth on one side, whilst the other side will have a pattern indented thereon, so as to produce the appearance of a reticulated aurface. The apparatus consiats of a pair of ateel rollers, one plain and the other engraved with the reverse of the pattern to be formed on the paper; and preseed heavily down opon the plain roller. The paper then becomes indented with the pattern or denign; and if the engraved roller be inked, as in surface printing, the indented pattern will at the same time be eoloored.

Josepf Hill, of Ipswich, Suffolk, wireworker, for "Improvements in manyfacturing wire fabrics for blinds and other uses." Granted May 6; enrolled November 6, 1815.

The first improvement conaists in giving a corragated form to woven wire fabrics, to obtain greater atiffocss, and render them more useful for making blinda, and other purposes. The corrugated form is given by passing the wire between two grooved iron rollers; the side of the corregation will generally rary from to to $\frac{1}{8}$ inch. The second improvement consists in submitting woven wire fabrics to a process of embosing, to at to prodace ornamental patterns thereon. A die is formed of brase or other metal, with the pattorn upon it in relief; over this is placed a theet of " valcanized India-rubber," $\frac{1}{\text { inch thick; and thea, by meana of a powerful }}$ screw-preas, the wire fabric is preaned down upon the die, and the required embosing is produced. The employment of the India-rubber renders a counter die or matrix unnecessary; and the same sheet of India-rubber may, as it is plain, be used with different diet.

Prederice Ransome, of Ipswich, engineer, for "Iwoprovementa in combining small coal and other matters, and in preserving wood." Granted May 10 ; enrolled November 10, 1845.

The invention consists in combining small coal with a solution of silica or siliceous cement, mads by dissolving 1001b. of crystallized carbonate of coda in as much water as will make a solution of $1,150 \mathrm{gp}$. gr. at a temperature of 60', and the soda is rendered caustic by the addition of lime; or, instead of carbonate of coda, 50 lh . of carbonate of potash are disaolved in the requisite quantity of water, and rendered caustic by meaus of lime. This caustic alkaline solution is introduced, along with about 100 lb . of finely-broken flints or other siliceous substances, into an iron boiler or digester, and the nixture is kept for ten or twelve bours at a temperatare of about 300° Fahr.. being at the same time frequently stirred. When aufficiently incorporated, the mixture is passed tbrough a sieve, to remove any undissolved stone therefrom, and it is then evaporated until its apecific gravity is increased to 1,500 , at a temperature of 60°. The cement or solution is now fit for use; or, if too thin, it may be brought to the required consistence by evaporation, or by the addition of sand, or of calcined flints in a finely-powdered atate; if too thick, it can be reduced with water. The mode of combining amall coal into blocks is, by raixing any suitable quantity of coal-dust or small coal with from $\frac{1}{80}$ th to toth of its weight of the siliceons cement, which is put into moulds, and subjected to pressure; after which it is allowed to dry in the air, and then placed in an oven or hot room. For pressing timber, the wood is eaturated or impregnated with a solution of silica, in such a manner as to cement the fibrous part of the nood with the silica, so as to form a colid and darable mass. The wood is placed in an air-tight vensel, from which as much air is abstracted as is practicable, by an air-pomp or other convenient meant ; a guficient quantity of siliceons cement to cover the wood is then admitted, and, in order to cause the cement to penetrate further into the pores of the wood than would be effected natarally, artificial pressure is applied, by means of a pump; when removed, the wood is immersed in some acidulated or alline solution, which will render the silica insoluhle.

RAILWAYS OF BELGIUM.

By Jorn Andeason, Eaq., F.R.S.S.A.
(Abrdged from a Paper read before the Royal Scotilish Hociety of Arta.)
The accumulated length of the Belgian railroads amounts to 348 miles.

They consist partly of a double and partly of a siagle way of 4 ft .8 in . betwixt the rails of the track, and a distance of $0 \mathrm{ft} .6 \frac{1}{2}$ in betwixt the railroads. -The fullowing table gives the length and cost of the different lipes, the stations thereon, and the totul cost uf the whole establishment:

Up to the end of $1842,271 \cdot 587$ miles had been constracted; and in the antomn of last year the tirst way, and probably more, of the remaining lines had been completed. On taking an average of the cost of the British railoays, it will be found that those in England cost fully double, and those of Scotland and lreland fully a third, more than those of Belginm. Eren the French railways, on the following average, are constructed at nearly double the expense of the Belgian liues:-

In the Belgian lines, hoth parallel and fish-bellied rails are used. There is nothing particular in their mode of laying them down. The ballasting consists of suod and gravel, and, from various circumstances, formed a considerable item in the expenditure:-

The rails were furnished in 1834-35-36-37, and at different times in the following years, in irnaths of 15 feet, 10.4 fret, and 14.8 feet. Those of 15 feet were furnished of different weights, weighing $40 \cdot 1 \mathrm{lb} ., 39.7 \mathrm{lb} ., 35 \cdot 3$ $\mathrm{lb} .43 .7 \mathrm{lb} ., 545 \mathrm{lb}$, to the lineal yard; those of 17.4 feet weighing 50.4 lb ., aod those of 14.8 feet weighing 50.4 and 48.8 lb . to the lineal yard. The whole rails are of the manufacture of the country, with the exception of aboot 200 tons, which were brought from Eugland in 1834, to serve as models. Their price during the first four or five years varied very much; no doubt from the compatition to which the extensive demand give rise. The ton of rails, which could be furvished at Malines, for instance, in 1834, for $14 l$. 12s. 6 d., rose to $15 l .4 \mathrm{~s}$. 6d, and 18t. 1s, $6 d$. , and descended again to 17l. 1s., 18l. 16s., and came even so low, in 1840, as 10l. 6d., but rose again the same yeur to 111. Ss. 6d. Those, however, produced in 1840 were much inferior to the rails first manufactured in the country, Uutil lass, chairs, keys, and spikes, were furnished with the rails; but since that time the contractors have bargained to supply them separately. The too of chairs, in 1834, was supplied at 10l. 7s., but rose the year following to $10 l$. $15 \mathrm{~s} .$, and, in 1836 , to $12 l$. $16 \mathrm{~s} ., 13 \mathrm{l}$. 4s., and 14 l . 48 .; and. in geberal, fuctuated with the price of rails. Keys and apikes, in 1834, cost $2 z l, 7 \mathrm{~s}$. per ton, and rose the following year to 24l. 3s. $\mathbf{6 d . ,} 21 \mathrm{l} .11 \mathrm{~s} .6 \mathrm{~d}$. In 1826.7, they varied from 25l. 9s. to 30l. 1s.; and, in 1838, came down,
after many fuctuations, to $211.78 .6 d .$, and 23l. 19. 7d. In short, the cost, in general, likewise varied in proportion with tbe rails and chairs.

Principal Works.

From inexperience or oversight, the section from Brassels to Malines was made npon so low a level that it was often overflown by the Seune, which greatly damaged, and sometimes even perfectly obstructed, the railway. The rails, noreover, were too weak, and the sleepers made frum white and pine wood. From these circumstances, it became necessary to raise the railway at least upwards of a foot and a half, and protect the banks, and form viaducts through which the waters could flow. The old rails were nearly all tbrown aside, and others of greater strength laid down, and the sleepers aubjected to M. Boucherie's process for the preservation of wood. Between Brassels and Quiévrain. the ground on several sections consists of peat, and bogs; on thia account it has been necessary to build a greater part of the bridges on piles. and raise the railway in some places 13 feet; the tunnel of Braine-le-Comte is 16.4 feet of span, and 25.7 chains in length.

From a short distance from Malines the railway begins to ascend to Ans. The works upon the line, though numerous, are light. The greatest undertaking is the tunnel of Cumptich, which has been lately constracted for the double way. It is entirely built of brick, and is $20^{\circ} 6$ feet in height, and 45.73 chains in length. The heavy works, however, of the Belgian railroads only begin at Ans, where the railway descends into the valley of the Meuse.

The Liege Incline.

Ans stands upon the west bank of the valley of the Meuse, about 581 feet ubove the level of the sea; and Liege is situared in the bottom of the valley, about 358 feet below Ans. The distance betwixt Ans and the Meuse at Liege is 4 miles 9 chains, thus making on the length of the line the general gradient about 1 in 60 . To descend this valley was a matter of no little difficulty, and it was only after many years' study, in which time numerous projects were esamined, that the administration saw the necessity of descending it by inclined planes. The plan adopted by them consists of two inclined planes of equal lengths, with a platform or level space of gruund, on which the engines are placed, situated at the bottom of the first and the summit of the second incline. The platform is about $16 \frac{1}{3}$ chains in extent, and the inclines 1 mile $1 t^{2}$ chains each of length, of a rise of 1 in 36 , both of which are constructed with a double way, the one being employed for ascending, and the otber for descending. Heferring to the section, the railway procetding from Ans describes a curve of 1 mile 37 chains of radius, and descends the first incline. Having crossed the platform, it descends the second incline, and arrives at the principal station of Liege. The trains descend the inclined planes by gravitation, their velocity being regulated by drags attached to the carriages and wagons. Two fixed engines, of 100 horse power each, are placed on the platform for raising the trains, which is accomplished by means of an endless rope. Both eugines being siluated cluse together, are supplied with stum from the same boilers. The system of signals, we are told, they employ, is somewhat novel :-A tube of fully one inch diameter is laid along the railway. Ench of its extremities communicates with the interior of a bell, the monti of which is immersed in water. Into the top of the bell a whistle is fixtd,
which, as in the case of the locomotive whistle, acts by the vibration of the metal. When it is required to commnnicate the time of departure of aoy of the trains from either station, the signal-man bas only to shut of commuoication with the whistle, and immerse the bell further amoogst the water. The air in the one bell will thus be forced, by pressure, through the tube into the other bell at the further end of the tube, and will eacape by passing through, and at the same time acting upon, the whistle.

Nothing strikes the traveller so much with astonishment, when he descends the valley of the Meuse, and enters that of Verviers, as the contrast the face of the couniry presents to that which he a few minutes ago left. The scenery, indeed, as soon as he leaves Ans, is entirely changed. Instead of the flat and monotonous country through which he bas just passed, he is ushered into a fiuely varied district of bills and valleys. The number and extent of the different works of art be observes, tell bim also of the nature of the country through which be is passing, and the difficalties which the engineer encountered in the execution of this part of the national agatem of railroads.

It may be renarked, that, in the execution of the different works of art throughout the different lines, the workinanship is inferior to that of similar undertakings in this country; and that also in their construction, due attention bas always been paid to the fortifications of the towns by which the railway passes.

Carves and Gradients.

The curves and gradients, as necessarily follows, from the extent of the different liaps, vary very much, and present many of the results which arise from their existence on railways in general. The radii of the principal curves are as follows : $-3 \cdot 73$ chains; 9.44 chains, (both on the branch of Lourain to the canal); 994 chains; 1243 chains; 17.4 chains; $18 \cdot 14$ chains; $19 \cdot 88$ chains; 24.25 chains; 29.83 chains; $\mathbf{3 4 . 8}$ chains; $\mathbf{3 7 . 2 8}$ chains; 39.77 chains; 43.74 chains; 44.74 chains; 49.71 chains; 54.68 chains ; 59.65 chains ; 62.14 chains ; $67 \cdot 1$ chains; 69.59 chains; 72.68 chains; $\mathbf{1 4} \cdot 56$ chains; 79.54 chains; and 1 mile 4.5 chains.
The most important gradients are :-
That towards Waremme, at the station of Landen, of 1 in 241, of 2 mile ${ }^{\mathbf{s}}$ 39 chains in length.-That towards Tirlemont, at the station of Louvain, of 1 in 250, of 3 miles 58 chains in length.-That between Tubise and Braine-le-Comte, of 1 in 200, of 5 miles 47 chains in leogth.-That on the branch from Loavain to the canal, of 1 in 71 , of 32 chains in length. That betwist Jurbise and Braine-le-Comte, of 1 in 250 , of 4 miles 3 chains in length.-That betwirt Mons and Jurbise, of 1 in 250, or 6 miles 42 chains in length.

Stations.

The stations throughoat the different lines are numerons, and, in general, neat and commodious buildings. Antwerp, Brussela, Malines, and Ghent, are reckoned of the first order, and contains the warehouses and arsenal for provision and material. Ample accommodation is set apart in them for passengers; one large room being always devoted to first and second, and another to third class, passengers. The next stations in importance to these are, Bragen, Termonde, Louvin, and Tirlemont; and then the minor stations upou the different subdivisions of the line. Mulines was, from the very first, chosen as the central station through which the greatest unmber of passengers wus expected to flow; and it was also fixed upon as the workshop for the repairs of the heavy machinery, and of the railways in general throughout the country, the workshops at any of the other stations being only of a secondary importance. But, notwithstanding its many advantages, Brussels has become the principlo station, and draws one-fourth of the receipts of the whole of the different lines, In consequence of this unexpected result it became necessary to huild a more extensive station at the north of Brussels. The stations, with the exception of Ostend, Bruges, and Ghent, are placed without the towns, for the purpose of evading the local taxes, which can only be accomplished by placing them beyond the boundarips of the excise. Tickets for the trains are issued from the windows of the different offices; and, to aroid confusion during a crowd, stalls are erected, through which the passengers pass one by one, receive their checks, and return by a passage parallel to the one by which they entered. If the traveller has luggage exceeding 44 lb . weight, he has to proceed to the luggage depot, where it is weighed, and he is charged a triting sum per lb. Upon paying this sum he receives a ticket with a number marked upon it, corresponding to one which is put upon his luggage. From this time be sees no wore of bis property until he arrives at his destination, where it is brought from the fuggage-wagon, and the uumber marked upon it called out by one of the officers in attendance, who returns it to its owner on presenting the ticket which he had received.

Locomotive Engines.

The locomotive engines, at the 1st of January 1843, were 129 in number, 42 of which were made in England, and the remander in Belgium. Of these, 95 are in good working order, and 34 undergoing ref airs. In addition to these, trowever, 10 were in course of being constructed, which will make, in all, 139. The following table gives the makers' names, und the number each has made, with the diameter of the cyliaders and driving wheels :-

Fuel.
The coke required for the consumption of the locomotives is manufactored at Monplaisir, Maliaes, Antwerp, Ghent, Ostend, Ans, and Hal: and costs at these places respectively, 1l. 4s. $2 \frac{1}{2} \mathrm{~d} ., 1 l$. $3 \mathrm{~s} .11 \frac{1}{\mathrm{~d}}$., $1 l .7 \mathrm{~s} .7 \frac{7}{4} \mathrm{~d} .$,
 consumed in 1811 , in running orer 927,080 miles, was 29.303 tons, or $\mathbf{7 0 . 8 0} \mathrm{lb}$. per mile. This is including, however, the quavtity required for the reserre and lighting, which amounted to 4390 ions, and which, if deducted, will make the consomption 60.17 Jb . per mile. In 1842 , the distance run over was 987,432 miles, and the total quantity of coke consumed was 28,317 tons, or $64 \cdot 24 \mathrm{lb}$. per mile. The quantity required for the reserre and lightinc was 6635 tons, and which, if deducted, will make the consumption $61 \cdot 46 \mathrm{lh}$. per mile.

Carriages.

The carriages consist of thres classes, as they do in this country, but are mucb more commodious, and, in some cases, vastly superior in comfort. For example, second class carriages possess not ooly wiudows, but the seats are cushioned, and almost as comfortable as those of the first class, though, perlaps, a little less elegant. Even third class carriages have covered seats, and very often roofs supported upou perpendicular iron rods fixed at the corners of the curriages. The seais are placed transversely, and without any proper node of eutrance, which is a great inconvenience to passengers; and the doors are, in every cast, unlocked, but are held close by a catch, which can be opened and shut from either side of the carriage.

The rate of travelling, generally, is about 20 miles per hour; but on some lines, on account of the gradients, it varies from 19 to 25 miles per hour.

Poxcer of the Engines on Inclines.

The greatest gradient, with the exception of tbat betwixt Ans and Liege, is 1 in 71 on the branch from Louvain to the canal. A locomotive, of a 12 年 inch cylinder, and driving wheels of $5 \frac{1}{2}$ feet diameter, can uscend this slope with a traio of tbree loaded and tbree empty wagons, of a total weight of about 444 tuns; but a locomotive of a 14 inch cyliuder, with coupled driving wheels of 4 feet, can ascend it with six loaded and three empty wagons, of a total weight of about 69 tons, the rate of travelling in both of these cases being three miles per hour. From a curve in several parts of this line, however, of $3 \mathbf{7 3}$ chains of radins, it is thought to be more convenient to work it orith horses. A strong horse upon this incline can draw a wagon of about six tons weight, at the rate of $2 \frac{1}{3}$ miles per hour.

On the inclination betwixt Tubise and Braiue-le-Comte of 1 in 200, two trains, of 16 and 17 carriages each, with a total weight of $88 \frac{1}{2}$ to $98 \frac{1}{2}$ tons, and a locomotive of a 12 f inch cylinder, and driving wheela of $5 \frac{1}{2}$ feet diameter, were unable to proceed in unfavocrable weainer. At another time, equally unfavourable, hn engine of the same size took up two trains of 18 aud 11 carriages ench, with a total weight of abont $88 \frac{1}{4}$ and 78 tons, with great difficulty. On the inclination betwixt Jurbise and Soignies of 1 in 250 , two trains, of 12 and 13 carriages eacb, with from 78 to $88 \frac{1}{4}$ tons, and an engine of the same dimeusions conld not ascend. A third, however, with 13 carriages of 88 tons, succeeded in mounting the siope.
From theae observations it was concluded, that the greatest weight with whicb an engine of a 12 d inch cylinder, and driving wheels of 5 f feet diameter, can ascend either of these inclinations, is from 881 to $90 \frac{1}{2}$ tons in ordinary weather, but otherwise with only from $73 \frac{8}{4}$ to $78 \frac{1}{4}$ tons. With the same of cylinder, however, either of these iurlines can be aecended with 69 tons, at a velocity from about $12 \frac{q}{3}$ to $15 \frac{1}{2}$ miles per hour; or, with mn eugine of a cylinder of 14 inches diameter, about 1081 tons can be takea $u p$, at the rate of about 1% miles per hour.

On the inclination betwixt Lonvain and Vertryck of 1 in 260，the follow ing trains ancended with difficulty in anfavourable weather ：－

From these experiments it was concloded，that a locomotive of a 14 inch cylinder，and coupled driving wheels of $4 \frac{1}{2}$ feet diameter，could ascend this incline with difficulty in ordinary weather，with from $137 \frac{1}{9}$ to $147 \frac{1}{2}$ tons， but during times of snow with only 69 tons；and a locomotive of a 12 inch cylinder，with driving－wheels of 5 feet diameter，not coupled，could ascend， in ordinary weather，with from $78 \frac{8}{4}$ to 94$\}$ tons，and in times of snow with from 444 to 49 tons．They ascend this slope regularly，however，with trains of $73 \frac{3}{4}$ and 1094 tons，includiug the weight of the locomotives of 12 and 14 inch cylinders，about the rate of $15 \frac{1}{2}$ ，and from $12 \frac{1}{3}$ to $15 \frac{1}{2}$ miles per hour．

The whole railway buisness is under the management of a director，who is under the control of the Minister of Public Works．It is divided into four branches－aamely，the general management of the whole system；the management of the lines；the locomotive department；the traffic of the railway；and the management of the stations．The first of these，generally spraking，includes the other three，one of which consists in the manage－ ment of the lines，and the finishing and constructing of new works of art another in the traction of the trains，the manufacture of coke，and the ma angement of the arsensal at Maliues，including tbe worksbops for repairing the locomotives and carriages；and the third，in the management of the stations and the passenger and merchandise traffic．Over each of these four departments a functionary，entilled Engineer－in－Chief，or Inspector of Administration，is placed，who furnisbes an account of the proceedings of his department to the Minister，and wakes such proposals to bim as he thinks vecessary or advautageous．The propositions he submits are sent for examiaution to the Council or permanent Commission of Ways and Bridges．Besides the surveillance exercised by the director，and the agents under his orders，the Minister causes all the works to examined by the luspector－Geueral，and by the Divisionary Inspector of Ways and Bridges； and with the documents received from the differeut departments，renders an elaborate report of the whole business anuually to the Chamber of De－ puties．

ICEBERGS OF THE ANTARCTIC SEAS

＂Icebergs were seen in all stages of formation，from five to two bundred feet above the surface，and each exposed its stratification in horizontal lavers，from six inches to four feet in thickness．When the icebergs are folly formed，they have a tahular and stratified appearance，and are perfectly wall－sided，varying from one hundred and eighty to two hondred and teu feet in beight．These were frequently found by us in tbeir original situation， attached to the land，and having the horizontal stratification diatinctly visible．
＂In some places we sailed for more than fifty miles togetber along a straight and perpendicular wal！，from one bundred and fifty to two bundred feet in lueight，with the land behind it．The icebergs found along the coast afloat were from a quarter of a mile to five miles in length；their separation from the land may be effected by severe frost rending them asounder，after which the violent and frequent storms may be considered a sufficient cause to overcome the attraction which holds them to the parent mass．In their next atage they exhibit the process of decay，being found fifty or sixty miles from the land．and for the most part with their surfaces inclined at a con－ siderable angle to the horizon．This is caused by a change in the position of the centre of gravity，arising from the abrading action of the waves．
＂By our ohservations on the temperature of the sea，it is evident that these ice islands can be little changed by the melting process before they reach the latitude of 60° ．The temperature of the sea（as observed by the veasels going to and returning from the south）showed but little change above this latitude，and no doubt it was at its maximum，as it was then the height of the summer season．During their drift to the nortbward，on seaching lower latitudes，and as their distance from the land increases，they are fond in all stages of decay，some forming obelisks，others towers and sothic arches，and all more or less perforated；some exhibit lufty columns with a atural bridge resting on them，of a lightnese and beauty inconceiv－ able is any other material．＂－Narrative of the United States Exp．oring Erpedition．

The Ratiler screw－propelled steam－sloop，Commander Smith，is having an diened acrew atted；the acrew baring proved a great dramback to her apeed when under sail，a hatchway is bejng cut from the apper deck down into the dead－woon，by whas means the screw may be lifted up 30 as not to impede her pro．reat when antor dock．An and may be altogether rumoved or repinced．If damaged，whet her out of hand at quickly extra number

BAST INDIA COMPANY＇S NAVY

The comparative atrength of the East India Company＇s Navy st sereral periods，from 1829 to the present day，will be seen from the Table here subjoined．

$1832 .$ Hastings， 30 guns，frigate．	Hastings，＊ $\begin{gathered}1839 . \\ \text { Receiving ship．}\end{gathered}$		
Elphinstone $\quad . .18 \mathrm{gaps}{ }^{\text {a }}$（	Coote＊$\quad .018$ guns		$\text { \} 兑 }$
Amberst $\quad . .18^{\circ} \mathrm{n}$ 知	Coote＊ Clive＊	18	
Clive ．．．． 18 ＂$\}$	Elphinstone＊	． 18 ＂	
$\begin{array}{llll}\text { Coote } & . . & . . \\ 18 & ,\end{array}$	Tigris＊	．． 10 ＂	8
Benares， 14 guvs，survesing ship．	Euphrates＊	－ 10 ＂	员
Ternate $\quad .12 \mathrm{guas}$ ？	Taptee＊	．． 6 ＂	e
	Constance＊	- 3 $\prime \prime$ 4	豆
$\begin{array}{llll}\text { Nautilus } & \text { a } \\ \text { Euphrstes } & \text { ．．} & 10 & " \\ & \text {＂}\end{array}$	Royal Tiger	．． 4 ＂，	$\stackrel{\square}{5}$
Tigris $\quad . .10$＂	Mahi ${ }^{\text {\％}}$	3	n
Palinurus $\quad . .80$	Nerbadda＊	2 ＂	
Shannon， 4 guns，schooner．	Margaret＊	2＂	Brig．
Royal Tiger， 4 guns，ditto． Steam Vebsel．	Palinurus＊	$\stackrel{8}{\text { Vessels. }}$	Brig．
Hugh Lindsay．	Atalanta．		
	Berenice． Zenohia．		
	Victoria．		
	Hugh Lindsay．		
	Semiramis．		
	Buphrates ．		
	Indus ．．．．	Iron	
	Comet	Vessels．	
	Meteor ．．．		

The Sailing Vesoels marked thus＊were attached to the Indian navy at the close of 1844.

List of Steam Vessels attached to the Indian Navy at the close of the Year 1844.

Name．			Tonnage．	Horme Power．	No．of Guns．
Acbar	．	\cdots	1143	350	6
Auckland	．	\cdots	946	220	4
Sesostris	．．	．．	876	220	4
Semiramia	．	．	960	300	4
Atalanta	．．	．．	617	210	3
Berenice \dagger	．	\cdots	664	230	3
Cleopatra	－	．	770	220	6
Hugh Lindaay	－	\cdots	411	160	2
Victoria	．	．	705	230	3
Zenobia	．	．	684	280	2
Jndus	\cdots	．	304	60	27
Medusa	－	．	438	70	3
Assyria	．	－	153	40	5
Comet	－	\cdots	204	40	2 ¢
Conqueror	．	．	－	－	－
Meteor	．	．	149	24	\}
Meance	．	．	153	40	5 5
Nimrod	－	．	153		－
Napier	－	．	335	60	2
Planet	＂	\cdots	335	60	2
Satellite	\cdots	\cdots	335 153	40	2.
Nitocris	．	．	153		

+ It is understood that thit vessel has been condemned，and the＇Queen，＇ from Bengal，pat on as a packet in her room．

EVAPORATIVE POWER OF TURF, COMPARED WITH THAT of COAL.*

The following results, as to the comparative offective power of turf and coal, are derived from the working of the Lansdowne, one of ths ateamers of the Inland Navigation Company which ply upon the Shannon with goods and passengers. They have heen kindly placed in my hands for my present object, by Mr. C. W. Williams. Before the use of turf was introduced there was burned in a week, which comprises forty-nine hours of work, twentyfour tons of coal, which, costing on an average at Killaloe 15s. per ton, amount to 183 ., or $7 \mathrm{f} .5 d$. per hour. To do the same work at present, burning nothing but turf, there are consumed per week 315 boxes of turf, which, at $7 d$. per box, costs 96.12 s . 7 d. ., or 3a. 11d. per hour of work-but a shade more than Lalf the cost with coal. The engines of the Lansdowne are condensing, of thirty-eight inches and a half diameter, and three feet and a half stroke. The usual velocity is twenty-five strokes per minute.
The box of turf contains twenty cubic feet ; not very closely packed. It weighs about 3 f cwt .; so that the ton weight of turf costs about 3 s . 6 d . The weight of 315 boxes is hence fifty-five toas and a quarter, and the practical value of the turf is to that of the coal as 24 to $55 t$, or as 43 to 100 . It is interesting to consider the influence which the substitution of turf for coal in the Shannon steamers has on the population residing near its banks. In the year 1839 there was no turf burned, and the coals consumed on board the company's hoats amounted to 3,108 tons. In 1843 there were burned but 724 tons of coal, although the amount of trade was much increased. The quantity of turf consumed was upwards of 7,000 tods, which, at $3 s, 6 d$. per tou, gives an expenditure of more than 1,2006 . distributed in wages of labour, by which almost the entire cost of the turf is made up. The equivaleut quantity of coals wonld bave cost above $1,800 \mathrm{~L}$, so that at the same time the Company saved 600l. a-year.

Those remarkable facts are well exhibited in a letter written hy Mr. Williams to the Board of Admiralty, which is subjoined, as it illustrates some additional circumstances. Mr. Williamg's estimate of the saving is greater than mine, for, in the preceding analysis of the results, I have taken coal at lower price than is assumed in his letter. The reason is, that it has fallen since those result, were obtained, and I have calculated from what the price is, whereas be calculated from what it was at the time quoted :-

$$
\text { " 6, Princes Street, Cavendish Square, July } 21 \text { st, } 1843 .
$$

"Sir,-1 have had the honour to receive your letter of the 12 th instant, addressed to the Secretary of the City of Dublin Stemm Packet Company, inquiring, for the information of the Lords Commissioners of the Admiralty, the proportionate duration of turf to coal in the Company's boats which ply up the Shannon frow Limerick, to which I beg to give the followlag reply, derived from experience of the boats on that river.
"The Lansdowne, a steamer with two engines $38 \frac{1}{2}$ inch cylinders, at 3 ft .6 in . stroke, consumed upon an average 120 tons of coal per month, running daily (except Sunday) a dis. tance of forty-six miles, at 18s. per ton, covering expenses
"The same duty is done with 1419 boxes of turf of twenty cubic feet, about 250 ton weight, at $7 \boldsymbol{7}$. per box
£108 0

Difference in the cost of the fuel per month $\begin{array}{lllllll} & 66 & 12\end{array}$
" 2. The difference in weight is, therefore, ss two of turf to one of coal, and on the Shannon the differerse in price is less than one-half that of coal.
"3. lts proportionate duration may be eatimated by the quantity required, sompared with coal to perform the same duty, that being double its weight; its duration in the furnace is half that of coal.
"4. From recent experiments with turf in the experimental boiler in the Company's yard at Liverpool, it is found that turf can only be profitably used when it is of the quality that is obtained in good seasons. If bad or damp, its evaporative power is reduced one-third and more. To improve the eraporative power of this fuel, however, results have shown that an addition of 40 per cent. of a preparation of turf by an improved method, which I bave been engaged upon for some years, will render it cheaper than coal used with bad tarf, or than coal burned alone; and that the same per contage of this prrmared fuel added to good turf, greatly increases its evaporative power, wion a very trifling addition to the cost.
"Prom these facts it is evident that turf may be used adrantageously in localities where it abounds, and where there is an absence of coal. Care, however, must be taken that the furnace bars are lowered, not only to admit a greater bulk of fuel, but also to prevent too great a volume of air passing in the asth-pit, and then through the bars. I may add also, that in burning turf it is highly essential that air be admitted in the air chamber behind the bridge, in consequence of the rapidity with which the gascs from this kind of fuel fly off. if it be excluded there upon the common furnace principle the weight and bulk of fuel will be increased, the evaporative power reduced, and the cost proportionably greater.
"It will give me much pleasure to furnish you with any further information in my power.
"I have the bonour to be, Sir, your obedient humble servant,
"To Sidney Herbert Eqq., Admiralty."
C. W. Williame.

I have already notice., that frow my own inquiries the best turf may be had in the turf districts for 3a. 6d. per ton, and as it is a fuel that will never be drawn far for any industrial use, we may take 4a. per ton as the practical
value of turf well dried within the range of the central counties. At the price, and allowing it 44 per cent. of the calorific effect of coal, the horse power should cost $6 d$. per day, that is, one-fourth cheaper than coal. Mr. Williams, using the same sort of fuel as is culpluyed at the corn mill. and paying $6 d$. per box, but drying it well, found that, witb large working wagon boiler there were 3.87 lb . of water evaporated per pound of turf, and that it cost 3s. 7d. to evaporate 100 cubic feet of water. Now this is at the rate of $5 \$ d$. per horse power per working day. When the turf was burned in the furnace without Mr. Williams's peculiar mode of effecting perfect combustion, the cost per horse was $6 t d^{2}$, coinciding with the result which I have derived from other sources.

Fron all these examples, it may be decisively concluded, that in Irelend the borse power of steam costs per day in fuel :-
Using coals, whether British or native . . $78 d$.
Using turf, properly dried $6 d$.
Using turf in Mr. Williams's mode . . . $54 d$.

COLOURED DECORATIONS.

At a meeting of the Decorative Art Society, on November 26th, a paper "On Chromatic Decoratious," was read by Mr. E. Cooper. He commenced with a chronological review of various modes of applying or using colour in Egypt, and on the comtinent of Europe, from remote times to the end of the 17 th century. In referring to the atupendous and richly-decorated remains of temples and porticoes in Egypt, he commented on the dull and opaque colours, contrasted with mat and burnished gold (laid on in leaves) which are found therein, and also upon mumny ceses; he described the coloured intaglios on the walls, and the painted ceilings of deep azure, studded with stars in the temple of Medeenet Haboo, at Thebes ; he exhibited drawinge of Egyptian ornament of excellent design, and remarked that no progressive improvement in decorative art is discernible in these works.

The temples of Greece were then noticed, where colour was applied to capitals, frieze, entablature, and the backgrounds of the tympanum; also on the ogee mouldings, where honeysuckle, egg, and other enrichments were painted or stencilled; and it was observed that, although no remains have been discovered, it was reasonable to infer, from the eminent atate of plastic art, that contemporary pictorial art had arrived at considerable perfection, and the names of some Greek artists were given, on the authority of Pling and Quintilian. After some remarks on the vases of Greece, and the mural decorations of the sepulchres of Etruria, be directed especial attention to the magnificent baths, or therma, of Titus, at Rome (erected A. D. 70), and (referring to the illustrations by M. Ponce), he observed that the fresco paintings found there display, in the grouping, drawing, and management of drapery, a refined feeling and knowledge of art; and in his remarks on the colour used, he observed that the decorations were executed, most probably, by Greek artists.

The decorations of Pompeii and lierculaneum, heing of the same period, werc then described; but, as might be supposed, from their being prorincisl towns, they would be found inferior in execution and splendour to those of the capital. The arrangement on the walls, of masses of black, red, and white, exhibited a principle which was commented on at sone length; and it was also remarked, that these examples do not afford an absolite criterion by which to estimate the perfection of the arts of that or the preceding age. Passing over several centuries, he next noticed the early efforts of Chiristian art, remaining to us in the mosaics of the churches and palaces of Italy; and after some remarks on the productions of Cimabue, Giutto, and Leounrdo da Vinci, he entered upon a consideration of the decorative works of Michael Angelo and Raphael.

In this period of Italian art, the anachronisms and disregard of relative proportion, in the parts composing arabesque or grotesque decorations, were especially noticed, as well as the enrichments, similarity in design yod colouring, existing between the works of Raphael and his school, and thdee in the baths of Titus, before alluded to, and which were discovered at this time: a striking instance was exhibited, in the decorations at Mantua, by Giulio Romano, and Andrea Montagna. (See Gruner, plate 24, and plate 5 of che Baths.)

The magnificent decorations by the Venetians were next described, in which massive mouldings richly carved and gilt, divided the surface of ceilings and walls ; the cuffers or panels heing filled with paintings hy Titian, Tintoretto, \&ce., produced a gorgenus effect. The decorations of the ceiling of the sacristy attached to the Duomo, or cathedral at Venice were said to be worthy of recommendation, on account of durability and splendonr, for open colonnades in this country (auch as at the Royal Exchange) ; the back grounds were of vitrified gold, and exhibit all the beauty of ancient mosiac, combined with the harmoninus colouring and beantiful ornament of the sixteenth century. This century witnessed the rise and docline of fine art in Italy, and in the following one, although we meet with some good artificers, they were mere copyista and mannerists, and not great artists.

In discussion, the terms arabesque, grotesque, moresque, \&c., were argued; the modes of lighting, and the principles of gravitation of coloura on walls of apartments were commented on, and a regret expressed tbat deco. rations in the bouses of nobility are not sufficiently known or accesuible it the inspection of decorators and artists.

BELFRY TURRETS.

No large tower can be considered complete without a staircase-tarret of stone, contajing an ascent by a newel stair to the bell-chamber.

This very important feature of a church tower has been singularly neglected in modern deaigas, in which the effect has been often much impaired, and an easential part of the construction omitted, under the idea that it is either ancleas appendage, or an awkward and unsightly excrescence. Both these notions are extremely erroneous, and in arging upon architects the more general adoption of belfry turrets, we will endeavour to show that both utility and the principles of effect suggested their use to the ancient builders.

Belfry turrets are usually placed in the south-west, more rarely in the norte-west, angle of towers ; they occur slso in the south-esst and northeast. They are polygonal, and project balf externally and half internally, and have a small doorway opening into the inside. They are carried up either to the beight of one or two stages, or to the belfry windows, and then weathered off with a bold and picturesque slope, or they rise ahove the parapet, and form a kind of castellated pinnacle turret, sometimes carrying a weathercock or other pointed termination. Very frequently they are lost in the buttresses, which are, as it were, thrust prominently outwards by a bulging swell of the masonry in one angle, readily distinguished from the reat by its visible protuberance, and by small slits to admit light and air air into the staircase within. Sometimes, as at All Saints, Paston, near Peterborough, the head of the turret merges into a broach of the spire, which gives an extremely bold and irregular effect.
There cau be no duabt that irregularity gives effect to a tower, or indeed to any Gothic building. Not irregularity for irregularity's sake-that becomes affectacion. But sach irregularity as arises from the absence of hypocrisy, or show, or making one side tbe same as tbe other, or the like. There is no need to fear a broken or abapeless mass as the result; nnifirmity is far less pleasing than variety; and the eye can never be offended in Gothic buildings by a door, a window, or a buttress, heing fairly pughed aside by the intervention of any necessary constructive feature.
Nothing wat more fully felt by the ancient architects than this; while nothing is more cautiously and timidly adopted by modern imitators. We have seen with much pleasure, in very elaborate and splendid towers, one belfry window placed quite on one side, instead of in the middle, even though the belfry staircase which cansed this remarkable irregularity was scarcely visible on the outside. Examples of this are St. John, Ryhall, and All Sxints, Oakham, in Rutland. Sometines, as at St. Wulfran, Granthan, the splendid decorated tower of which has scarcely a rival in the kingdom, one of four pinnacles is considerably larger and higher than the other three, because it forms a capping to a staircase turret. Yet who shall be bold to sar this is 2 fault? We would say, by all means break up monotony and semeness of sides by some such expedient; and a helfry turret seems mot admirably adapted to produce almost any kind of bold picturesque effect. From a distance, the lights and shadows, the peaks and the broken liues, are vastly imposing and arresting to the eve. On a near view, the bold abutmeat of an angle seernsat once to flank and to prop the stages of a lofty tower; and on every point whence the effect is visible, the mind is gratiiced by the idea of ingenuity or pleased by the suggestiou of necessity made subservient to decorative effect.
Sorne belfry turrets are corbelled off a little above the ground externally. This, though not a material difference of construction, is to be deprecated, hecause the tower is apt to appear overbalanced by an excrescence which ewerges from the wall itself, and does not rest upon its own hasis on the ground. We have seen (as in St. Peter, Barton, near Cambridge) the south weat angle singularly prolonged into a wedge-like form from the interal formation of a belfry tower; aud again, we have noticed the most beautiful lorms and enlargements of buttresses to give scope for the staircase.

It is true tbat many ancient towers were ascended by ladders, and in a few we have seen wooden stairs incloged in wattled or buarded currets constructed in the interior. The ascent to the floor on which the bell-ringers asseablie, if above the ground, should be the belfiry turret; though we may here repeat what we have often urged before, that the entrance to it should never be from without, independently of any other communication with the iaterior of the church.

Modern architects are generally compelled to construct a staircase in their towers; but then they strive to hide ratber than boldly to display it externally; and herein consists their error. We are inclined to prefer those belfry turrets of whicb tbree or four sides project externally, sometimes even in the middle of the north or sonth side, and are weathered off at the upper or belfry stage, to those which are only partially developed from the outside. Tbe attention, however, of architects needs only to be directed to the subject, and their observation will abundantly supply fit models and devices for witation.-Ecclesiologist.

Lagtaina Rods.-In a recent communication in the New llaven Couripr, rempecting some recent instaprest of houget betng struck by lightang, Profesant Silliman retuen that the lightutag rodu canoot be relied upon uniess they reach the earth, where it to percondeat'y wet, even in times of the aeverest druaght; and that the beat security is uflorded by carrylag the rod or some good metallic eonductor, duly connected with it, to the witer f_{n} the welt, or to some other water that never fuils. Protensor Siltionsn's hulise, is meesna, was atruck; but his lightaing rode were nat more than two or three tnctea in the groubd, and were therefore virtualiy of no avall in protecting the house. He shates that his conadence in the efficiency of rudin is in no degree dlmitumed. - New York Obo eerver:

SYNOPSIS OF RAILWAYS INCORPORATED IN 1845, WITH THEIR ALLIANCES.

[For the following important paper we are indebted to the indofatigable and well directed exertions of an old correspondent, who under the signetare O. T., has contributed eeveral invaluable papers to chis Journal.

In the formation of the tollowing aynopsin, the Happlement of the "TImes," Nor. 17, 1845, the Fatlway Aimanac and Directory for 1846, the Companion to the Brithin Almatanc for 1846, the Rallway Sharehoiders' Manual, by Heary Tuck, 6th edition, and two ParItamentary Returas, dated July 17 th and August 4th, have been consulted. None, however, of these authorities give the alliancet of the new Haes which are here added. The parliamentary return of Auguat 4th, 1845, which is important, as it gives the nazaber of thares anbscribed for, as well as the number of shares empowered to te created, which shows the statistice of each line in pubilic opinion, and the areans of the directors in controlling the market hy gradually selling sharea where the number anthorized exceed the number subscribed for.]

1. Irish Great Western.

20,000 shares of 501 . each ; capital $1,000,0001$.
From Dublin to Mullingar, connecting the Valley of the Shannon with the Irish capital. To commence in connection with the Dublin and Cashel line, dear Luccan, passing near the towns of Leixslip, Celbridge, Mayuooth, Kilcock, Clonard, Kinnegar, and Kiloear, to Mullingar, aud thence by Meale to Athloue.
Length of line 77 miles, 2 furlongs, 4 chains. Reported against by the Board of Trade. Capital subscribed, 903,0001 , and 18,060 shures. Estimated cost, $980,651 \mathrm{~L}$. Yower to burrow ou loan 333,000l. Embodied in groop Z, and recommended by the committee.
Workiug expenses estimated at 40 per cent. Royal Assent July 21. Sir John M'Neil enginver.

2. Londonderry and Coleraine.

10,000 shares, of 501 . each ; capital 500,0001 .
To commence at Londonderry, passing the border of Lough Foyle, and terminating at Coleraine. with a branch 10 Newtuwn. Length of main line and branch, 38 miles, 6 furlongs, 3 chains. A mount subscribed, $\mathbf{3 8 0 , 0 0 0 l}$. Power to borrow 106.6601. Reported against by the Board of Trasle. Considered by committee of grupp S, and recommended. Working expenses 14,000l. per annum. Royal Assent August 4. Charleu Lanyon, engineer.

3. Belfast and Ballymeyn.

7,700 shares of 501 . each ; capital 385,0001 .
From the former to the latter place, with a branch to Carrickfergus. Deposit 2l. 10s. per share. Amount of deposits 19,250l. Totul tength of the line 97 miles, 7 furlongs. Power to burrow 128,333l. Recommended by the Board of Trade, and recommended by the committee of gronp \mathbf{S}. Siugle line. Estimate of working expenses $\mathbf{1 1 , 0 0 0 1}$. Hogul Assent, June 21. Cbarles Lanyon, engineer.

4. Dublin and Belfast Junction (and Navan Branch).

19,000 shares of 501 . each ; cnpital $900,0001$.
Deposit 2l. 10s. per share. Amount of deposit 47,500. Total length of the line, from Drogheda to Portadown, 73 miles, 4 furiongs, 8 chaius. Estimate 950,7331 . Puwer to borrow 316,6661 . Recommended by Board of Trade ; also by committee of group R. Branch to Kelly. Working expenses 40 per cent. Royal Assent July 21. Engineer Sir John $\mathbf{M}^{‘}$ Neil. Meetiog August 20. Miles Reck, Secretary. Office, 2, Talbotstreet, Doblin. Call September 10, 2l. 10s. Proposed (ireat County Dowa compang are to inspect a trial section of the line to Hillsborough.

5. Dundalk and Enniskillen.

15,000 shares of 501 . each ; capital 750,0001 .
Deposit 22. 10s. Amount of deposit 37,500l. Total leneth of the lice, including branch to Moaaghan, 40 miles, 6 forlongs. Estimated expenses to 0,000l. Puwer to borrow 250,000l. Hecommend-d by the Board, also by cominittee of group R. Workiug expenses 30 per cent. Royal Assent July 21. Engineer Sir John M‘Neil. Register of scrip Oct. 18, 1545. Hatield Nicholsoo. secretary. Oftice 72, Talbot-ztreet, Dublin. Company operates and in conjunction with Dublin and Drogheda as Belfast Junction and Irish North Midland.

6. Cork and Bandon.

4,801) shares of 501. each; capital 240,0001 .
To connect the towns of Bantry, Bandon, Kinsale, Berehaven, and Castletown with a rich agricultural and mineral district and the city and harbour of Cork. Length of Line 20 miles. Power to borrow 80,000). Subscribed 200,0001 , in 4,000 shares. Recommended by the Board of Trade, aud by commiller of group XX. Working expenses 40 per cent. Hoyal Assent July 21. Engineers Messrs. Sealey. Secretary J. M'Donnell.

7. Great Soxthern and Western.

24. 00 shares of 501 . each; capitsl $1,200,000$.

Extension to Limerick and Cork. The extension to Cork will commence between Holycross and Cashel, in conjunction with the Great Southern and Western line, and pass near the towns of Tipperary, Kilmallock, Charlevilie, ad Mallow. The extension to Limerick leaves the main line near Tipperary, passing the towns of Pallas Green, and Cahirconlish. Length of line 98 miles. Subscribed 1,184,100l. Power to Jorrow 400,000l. Recommended by the Board of Trade, and committee
on group AA. Working expenses 40 per cent. Royal Assent July 11. Engineer Sir J. M•Neil. Subscribed to Irish Great Western (Dublin and Galway) 800,0001 . to Wexford, Carlow, and Dublin Junction 100,0001. to Killarney Junction 20,000l. Also new line propond, Clonmel, Cashel, Templemore, Nenagh, Borris in Ossary, to Roscrea, Parsonstown, Enais, Killaloe, and Waterford and Kilkenny, for which an Act is obtained. Mr. Taylor, secretary.

8. Waterford and Limerick.

15,000 shares of 50t. each, capital 750,0001.
To commence at the city of Waterford, proceeding through the town of Carrick-on-Suir, Clommel, Cabir, and Tipperary to Limerick, affording accommodation to a popnlation of more than a million, and giving to a rich agricultural district an excellent port for the shipment of produce to England. Length of line 77 miles, 7 feet. Subscribed 590,300H. in 116,068 shares. Power to borrow 250,000l. Recommended by the Board of Trade, and committee of group AA. Working expenses 40 per cent. Royal Assent July 21.

9. Newry and Emniskillen.

18,005 sharee of 501 . each ; capleal 800,0001 .
To commence, in junction with the Dublin and Belfast Junction, at Newry, passing through the towns of Monaghan, Clones, and Enniskillen, terminating, in junction with the Ulster railway, at Armagh. Length of line 75 miles, 5 furlongs. Capital subscribed 14,210l. in 284 shares. Estimate 833,8471 . Power to borrow 300,0001. Recommeaded by the Board of Trade, and by committee of gronp R. Working expenses 38 , per cent. Royal Assent July 21. Engineer Sir JobnRennie. Mr. Suunders secretary.

10. Waterford and Kilkenny.

12,500 shares of 201. each; capttal 250,0001 .
On this line the wroden rail is to be used as a substitute for iron. The wood is to be prepared by Payne's process, and the engines and carriages are to be fitted with Prosser's gaide wheels. Length of line 37 miles, 3 furlongs. Subscribed capital 2000001 . in 10,000 shares. Power to borrow 83,0001 . Recommended by the Board of Trade, also by the committee of group BB. Working exprases 40 per cent. Royal Assent July 21. J. Valentine, Engineer. Ofice, 34, Broad-street-buildings, London. Thos. Prosser, secretary.

11. Londonderry and Enniskillen.
 1",000 shares of 501 , each ; capteal 500,000 .

Commencing at Londonderry, and passing through Carrigans, 81. Johuston, Strabane, Clifford, Newtownstewart, Dromore, Trellick, to Enniskillen, in junction with the line to Dundalk, thus forming a direct commuaication between the north-west of Ireland and Dublin, and the east coast. Length of line 56 miles, 1 furlong, 4 chains. Estimate $462,123 l$. Subscribed $\mathbf{3 8 0 , 0 0 0 l}$. in 7,600 shares. Power to borrow 166,660l. Work ing expenses 40 per cent. Royal Assent July 21. Sir John M‘Neil. Engineer. Register of scrip 21 Oct. Fred. H. Hemming, secretary, Moorgate-street chambers, London.

12. Dublin and Drogheda.

CapItel 150,0001.
Howth extension. Length 3 miles, 5 furlongs, 41 chains. Estimated ex. Hense $40,000 \mathrm{l}$. Power to borrow $50,000 \mathrm{l}$. Working expense 30 per cent. Rense Absent July 21. Engineer Sir J. MiNoil.
13. Ulster Extension.

Estimate 133,0351 .
From Portadown to Armagh. It wes originally intended to run the Ulster line from Belfast to Armagh, and chpital was taken for that purpose, so that it will not be requisite to issue any new shares. A thirteenth call for $2 l .10 \mathrm{~s}$. has just been mude. This will make the amount paid up on $32 l$. on sbares of $50 l$. Leagth of line 11 miles, 4 furlongs. Working estinate 33 per ceat. Royal Assent July 21. Godwin, Engiaeer. Raised 50,000l. on luan, and it is proposed to take interest. Newry, Banbridge, and Belfast Junction; the engineer to survey the country between Nowry, and Belfast Junction; the engineer to survey the country between Nowry,
Moira, and Lisbura, as also Loughbrickland, Dromore, and Hillsborvugh.

14. Leeds and Thirsk.

To commence at Leeds, and terminate at Thirsk, passing throngh the most populous part of the West Riding of Yorkshire. Length 46 miles, 1 furiong. I chain. A mount subscribed $863,100 \mathrm{l}$. in 17.302 shares. Power to borrow 299,0001 . Reported against by the Hourd of Trade, and recommended by committee of group B. Working expenses 40 per cent. Royal Assent July 21. J. Grainger, engineer. Payne, Eddison, and Ford, solicitors. Office, 58, Albion-strect, Leeds. Proposed extension through the Valleys of Wharfe to Skiptunand the Nidd to Pateley, also to the north-east to Stockton.

1b. Leeds, Dewsbury, and Manchecter Junction.
 18,000 ibares of 501. each; canolta: 650,0001 .

To commence at Leeds in junction with the Leeds and Bradford, passing through Dewabury, towards Hadderstield, and terminating, in junction
with the Manchestor and Leeds, half a mile west of Dewsbory station. Length of line 20 miles, 3 furlongs, 8 chains. Estinated expense 626,000l. Power to borrow 167,0001. No report from Board of Trade. Recommeaded by committee of group B. Working expences 35 per cent. Royal Assent Juve 30. Measra. Grainger and Miller, solicitors. Office of the company, Leeds. Wm. Eagle Bott, secretary. 5l, call 23 Oct. Interest paid Feb, and Auguat.

16. Shrewsbury, Onvestry, and Chester Junction.

20,500 sharen of 201 . each; eapital 410,000 .
Will form a continuation of the North Wales Mineral railmay, and will complete the direct line of railway from Chester to Shrewsbury. Length of lige 23 miles, 6 furlongs. Estimate, 371,0001 . Power to borrow 136,000l. No report from the Board of Trade. Recommeuded by committee of group Q. Working expenses 50 per cent. Royal Assent June 30. H. Robertson, engineer. Amalgamated with North Wales Mineral railpay, allowing to the latter company for 20l. shares 2hl. 13s. 4d. stock, and for 101. shares 14l. 6s. 8d. and issning oew 10l. stock for extension, one for each 20l., and one for two 10l. Norih Wales Mineral railway.

17. Ely and Hunting don.

10,800 shares of 251 . each; capital 194,4001 .
To commence at Ely, in junction with the Eastern Connties and Lynn and Ely railway, passing through St. I ve's, Huntingdon, and St. Neot's, to Bedford. Length of line 22 miles, 6 chains. 87,298 shares; sobscribed a capital of 157,125l. Estimate, 100,046l. Power to borrow 64,800l. No report from the Bourd of Trade. Recommended by committee of group I, Working expenses 30 per cent. Royal Assent June 30. J. U. lastrick, enpineer. (all of 3l. 18s. Oct. 1. Offices, Lyna, Norfolk. Secretary, W. W'. Williams.
18. Gravesend and Rochester (Thames Medsay). 6,000 sheres of 201. each; capital 88,0001 .
To commence between the Town and Terrace Piers, through the Terrace Gardens and grounds of the Fort. over the lands adjoining the Marshes, under Gud's Hill, crossing the Medway, near Rochester bridze, and terminating at the Gibralter Inn, Chatham, Length of line 6 miles, 7 furlnags, I chain. Amount of capitai subscribed 127,500l. Estimate $\mathbf{1 7 0 , 0 0 0 l}$. Power to borrow 56,666l. No report from the Board of Trade. Recommended by committee of group A. Royal Assent July 31. Extension $\frac{1}{2}$ mile. J. U. Rastrick, engineer.

19. Preston and Wyre Branches.

12,000 inares of 201 . each ; capital 100,0001 .
To commence at Preston, in janction with the Preston and Wyre, pasg ing through the populous nanufacturing district of Over Darwen, term.nating, in junction with the Blackburn, Bolton, aud Darwen railway at Lower Darwen. Length of line 8 niles 2 furlongs, 6 chains. Estimate 50,000l. Power to borrow $\mathbf{3 3 , 3 3 3 1}$. No report from the Buard of Trade, and recommended by committee of group HH., as Lytham Branch, and Blackpool Branch. Working expenses 3: per cent. Royal Aasent July 21 . G. P. Bidder, engineer.

20. North Wrales.

18,000 tharew of 251 . ench ; capital $\mathbf{3 0 0 , 0 0 0 1}$.-Amalgmanted.
To commence at Bangor, in junction with the Holyhead and Chester railway, passing through the slate districts of Caprnarvonshire nod Snowdon, and terminating as Port Dynllaen. Length of line 45 miles. 10,620 shares. Subscribed, a capital of 205,0001 . Power to borrow 100,0001 . Working expenses 40 per cent. Ruyal Assent July 21. Sir Juhn Keunie, eugiueer. Negotiating witb Cheater aud Holyhead Railway.

21. Brighton and Chichester (Portsmouth Extension).
 6,000 shares of 500. each; capital 320,0001 . - Amalgaviated.

From the Rope-walk, Chichester, to St. James's.road, Portsea, with a branch commencing at the Farlington Waterworks to the Gosport brancb of the London and Suuth Western railway. Length of line 22 miles. Reported against by the Bourd of Trade. Single Iine, Ruyal Assent August 8. J. U. Rastrick, engineer. Mr. Ottley, secretary. Office, Dean-street. The above shares issued and sold to the Brightou Railway Cumpany.
22. Oxford, Worcestor, and Wolterhampton.

30,000 abares of 501 . each ; capital $1,5,0,0001$.
To commence at Woiverhampton, divergiog from the Grand Janction, passing hrougb the diatricis in the vicinity of Bilston, Tipton, Dudiey, Stourbridge, Kidderminster, Stourport, Droitwich, Worcester, Penhore, Evesham, Moreton, und Oxford, in junction with the Great Western railway. Leased in perpetuity to the Great Western railway at $3 \frac{1}{2}$ per cent. on $22,500 l$., and capital $1,125,0001$. Authorised loan, 500,0001 . Working expenses, 40 per cent. Royal Assent Angust 4. Bradel, engineer. N. T. Smith, secretary, Worcester. This Company bave buggit Stratford and Moreton railway, Stratford-upon-A von and Stourbridge (extension) canals, and bave sliares in projected Cheltenhum, Ox. ford, and South Staffordghlre railway.

29. Oxford and Rugby.
 12,000 ahares of 501 . esch; capinal eco,0002.

In juuction with the Great Western railway at Oxford, passing through Woodstock, Banbury, and Southero, and terminating at Rugby, in juncsion with the Midland and Birmingham railway, 7 feet gauge. Length 50 miles, 4 farlongs, 6 chains. Number of shares anbscribed for 9,000 , and capital 450,0001 . Anthorised loan, 200,000l. Estimated expenses, 500,000. Working expenses, 40 per cent. Hoyal Aseent, Aug. 4.

24. Glasgow, Barrhead, and Neilston Direct.

6,000 sharain : capital 150,000 .
Length of line 8 miles, 7 furlongs, 8 chains. Capital 150,000l. Estimated ex penses, 142000 . A nthorised loan, $50000 l$. Number of shares subneribed for, 6,142 . Capital 128,550 . Working expeuses, 45 per cent. Royal Assent June 30. N. Robson, engineer.
25. Liverpool and Manchester Extension. Capital 805,0001.
Estimated expense, 804,0001. Authorised loan, 268,933l. Working expenses 40 per cent. Rojal Assent July 61. Clas, Liddle, engineer.

26. Eastern Coundies Extemeion.

Estimated expense. Ely and Whittlesea deviation, 320,000l.; also Cambridge and Huntingdon line; estimated expenses, 150,000l. Capital stock 150,000 . Authorised loan $50,000 l$. Length of line 17 miles, 4 furlongs, 5 chains. Amount of capital subscribed, 113,000 . The Company do not raise any money by loan on shares for the Whittlesea deviation line. Boyal Assent July 21. M. E. Burthwick, engineer. Royal Asseat (Cambridge) Augnst 8. B. Stephenson, engiveer.

27. Yark and North Midland Extension..

York and Scarborough Deviation line. Estimated expense, 38,250l. of Bridlington branch, 87,000l.; and of Harrogate branch, 230,000l. Leagth of branch to Bridlington, 19 miles, 6 furlongs, 3 chains, and amount of capital subacribed $\mathbf{7 0 , 0 0 0 l}$, with puwer 10 borrow $29,000 l$. Length of Harrogate branch, 18 miles, 2 furlongs, 4 chains. Amount of capital snbseribed, 180,0001 ., with power to borrow 76,G66l. Working expenses, 33 per cent. Rojal Assent, July 21. J. C. Birkenshaw, eugiveer. Wm. Gray, jun., secretary.

28. South Eastern Exlension.

From the Tonbridge station of the South Eastern railway. Length of line 5 miles, 1 furlongs. 3 chains. A mount of capital zubscribed. 135,000l, with power to borrow 60,000l. Company also ubtained power to borrow 47,5601 . for widening and extension of the London and Greenwich, which was estimated at $66,500 l$. and nn increase of their capital of $142,700 l$; for that purpose also an increase of 180,0001 for the line from Tunbridge to Tonbridge Wells; as also an increase of $187,000 t$. with power to borrow 68,000 . for branch to Deal, and extension of the Suuth. Eastern ralway to Cantertury, Ramagate, and Margate. Wm. Cubitt, eugiveer. Royal Ascent Aug. 4, Aug 8, July 31.

> 29. Leeds, Dewsbury, and Manchester Junction.
> 13,000 shares; capital 650,0001 .

A line from Leeds, joining the Leeds and Bradford, through Dewshury to Hudderstield, juining the Leeds and Manchester at Kirkbeaton, with branch to Mirtield and Birstall. Length of line 20 miles, 3 furlungs, 5 chains. Eatimated expense, 626.0001. A uihorised loan, 160,000l. Number of shares subscribed for, 2,737. Capital, 487,850l. Keported against by the Board of Trade, and recommended by conmittee of group B Working expenses, 35 per cent. Royal Assent, Jude 30. Messrs. Grainger and Miller, engineers. 5th call, Oct. 23 . Interest paid, 4 per ceat. Fei. and Aug. William Eagle Bott, secretary, Leeds.

30. Exeter and Crediton.

2.800 shares; capital 70,0001.-Amsigamation.

To commence at Crediton, and terminate, in junction with the Bristol and Exeter railway, at Cowley Bridge. Length of line 5 miles, 6 furiongs. The whole of the shares subscribed for, with a capiral of 70,000 . Au. thorised loan, 23,3331. Recommended to be postponed by the Board of Trade, and recommended by the committee of group M, which sat only one day. Royal Assent, Aug. 9. R. Dimond, engineer. Tlomas Hactmate, secretary, Exeter. Leased to Great Western at $\mathbf{3 , 0 0 0}$. per anuum, and one-third of receipts if above 7,000l. per anuum.

31. Lynn and Dereham.

10,800 shares; capital 270,0001 .

Commences at the terminus of the Lynn and Ely line, and proceeds, by way of Swafhan, to East Dereham, in junction with a lide to Norwich. Leng th of live, 24 miles, 5 furlongs, 1 chain. Number of shares suhscribed for, 10,510, with a capital of 262,750l. Authorised loan. 90,000l. Estimated expense, $270,000 \mathrm{l}$. Recomnended to be pustponed by the Board of Trade, and recommended by the committee of group K to be adopted. Working expenses. 85 per cent. Royal Assent, July 31. J. U. Rastrick, engineer. Call of $31.12 \mathrm{a}, 6 \mathrm{~d}$. October 1st. Olfice, Ljon. Secretary, W. W. Williams.

89. Wilts, Somerset, and Weymouth.
 30,000 sheres of 501 . each; capital $1,500,0001$.

To commence, in junction with the Great Western railway, at Corsham, passing through the towns of Melksham, Trowbridge and Westbury. with branches to Devizes and Bradford. The line passes through Warminster, and the Valley of the Wiley, to Wilton and Salisbury, and the other diverges to Frome, Bruton, Castle Cary, Yeovil, Dorchester, Weymouth, and Bridport. Gaaranteed 4 per ceat. by the Great Western railway. Lengtu of line, 83 miles, 2 furlongs, 6 chains. Number of shares subscribed, 23,046 , and capital, 1,152,300l. Authorised loan, 500,000l. Estimated expenses, $1,500,000 \%$. Board of Trade reported in favour, and committee of group \mathbf{G} confirmed their report. Working expenses 40 per cent. Royal Assent, June 30. I. K. Branel, engineer. Leused to the Great Western at 4 per cent., and if per ceat. increase, should the Great Western railway pay 8 per cent. Interest paid, Juue 30, Dec. 31. Propose to alter the line, and extend it to Salisbury, with the consent of the South Western company.

33. Soxthampton and Dorchester.
 10,000 shares of 501 . each; capleal 800,0001 .

From the former to the latter place, by way of Redbridge, Brockenhurst, Burley, Ringwood, Wimbonroe, Hanworthy, and Wareham. Length of line, 62 miles. Number of shares subscribed for, 7,625 , and capital, 381,260l. Authorised loan, 166,666L Estimated expease, 500,0001 . Recommended by the Board of Trade, also by committee of group \mathbf{G}. Single line. Working expensen, 40 per cent. Royal Assent, July 21. Captsin Moorsou, engineer.
34. Guildford, Chichester, and Partsmouth.

20,000 shares of 501 . each; capital 500,0001 .
Commences at Gnildford. in junction with the Guildfurd and Woking line, passing through Godalming to Chichester, in junction with the Brighton and Chichester line; thence, through Emsworth and Havant, io Portsmouth and Farebam, terminating in junction with the South Western line. Tu be leased by the South Western railway, and guaranteed 4 per cent. on the outiay. Estimated expense, $350,000 l$. Authorised loan, 16i,900l. Length of line, 60 miles. Becommeuded by the Board of 'Irade, and conmittee of aroup L. Working expenses, 93,000 . per annum. Rojal Assent, July 21. J. Locke, engineer. Purchased by South Western, also Fareham Branch.

35. Newcastle and Berwick on-Tweed.
 36,000 sharet of 251 . each ; capltal $1,400,0001$.

Commences in junction with Nurth British line at Castle Hill. Berwick-on-I'weed, and terminates, in juaction with Bradley junction line, in Gateshead, with a branch to Nevilie-street, to join the Newcastle and Carlisle line, and a branch, 7 miles, to Blyth, and one 5 miles, to Alowick. Length of line, 95 miles, 3 furlougs. Number of slares subscribed for, 39,725 , and capital, $993,145 \%$. Aulhorised loan, 166,660l. Eatimated expense, $1,400,000 \mathrm{l}$. Hecommended by the Board of Trade, aod committee of gruup E. Working expenses, 40 per cent. Royal Asseat, July 31. K. Stephenson, engineer. J. Close, secretary.
36. Richmond, Surrey, and Weat End Junction.

13,000 shares of 201. each; enpital 260,0001.
To commence at lichmond, and terminate at a junction with the Sonth Westeru, at Falcon Laue, Batteraes, passing thus the districts of Wandswurth, Putary, Harues, uud Mortlake. Length of line, 6 miler. Number of shares subscribed, 8,715. Capitul, 164,300l. Autborised loan, \&6.000l. Estimated expense, 200,000 l. Kecommended by the Board of Trade, as also by the committee of group LL. Royal Assent, July 21. J Locke, enginerr. Secretury, Richatd Meade. Office, 3, Moorgate-street. Call of 4l. Aug. 30.
37. Lymu and Ely.

12,000 sharee of 261 . each; capital $36,0,000$.
From King's Lynn to the city of Ely, mpeting there the Northern and Eustern line and its extension to Norwich and Peterburounh. Lenkth of lide, 37 niles, 5 furlungs, 6 chains. Nunber of shares subscribed for, $11,620$. Capital, 290,720l. Authurised luan, 100,000l. Estimated expeuse, 300.000l. Lecommended by the Buard of Trade, and committee of group 1. Braoch to Wisbeach. Working expenses, 13,433l. Rogal Assent, June 30. J. U. Rustrick, engineer. Call of 2l. 10s. Oct. 1. Ufice, Lyon. Secretary, W. W. Williams.
38. Trent Valley.

62,500 thares of 301 . eech; capital $1.250,090$.
Commences at Rugby, parsing through Nuneaton, Atherstone, Tamworth, Lichfield, and terminates, it junction with the Grand Junction line, at Castle Church. Length of line, 49 miles, 8 furlongs, 4 chaius. Number of shares subscribed for, 57,442 . Capital, 1,144,840l. Authorised loan, 417,066l. Estimated expense, 900,000l. Reconmended by the Board of I'rade. also the cummittee of group \mathbf{O}. When cumplete, to be leased in perpetuity to the London and Bıraingham railway, guarunteeing the snme dividend as their owu line. Working expenses, 40 per cent. Royal As. sent, July 21. T. J. Gooch, engineer. Secretary, E. J. Cleather. ©ffice, 68, George street, Munchester. Registered, Aug. 21. Meeting, 20 Sept. Subscribed 306,000l. towards the North Stutfordshire.

39. South Wales.

56,000 shares ; capital $2,800,0001$.
Commences at a junction with the Cheltenham and Great Western railway, at Gloucester, crossing the Severn, through the Forest of Dean, by Monmouth to Chepstow, Newport, and Cardiff; thence to Cowbridge, Bridgend, Port Cawl, Neath, Swansea, and Caermarthen, terminating in two branches, one to Pembroke and the harbour of Milford Haven, the orber to Fishgnard. Length of line, 183 miles, 4 chains. Number of shures subscribed for, 42,000. Capital, 2,100,000l. Anthorised loan, $\mathbf{2 3 3 , 3 3 9 1}$. Estimated expense, 2,500,000l. Recommended by the Board of Trade, also by the committee of group P. Leased to the Great Western railway. Working expenses, 40 per cent. Royal Assent, Aug. 4. Brunel, engineer. Secretary, N. Armstrong. Office, 499, West Strand, London. Register of scrip, Sopt. 8. Meeting, 31 Oct. The Glamorgan Central Mineral, late Daffryn, Llysard, and Port Cawl, have resolved to unite with this company.

40. Monmouth and Hereford.

11,000 ahares; capltal 350,0001 .

Length of line, 36 miles, 2 feet, 8 chains. Number of shares subscribed for, 8,250 . Capital, 412,800 I. Authorised loan, 183,3331 . Estimate of expense, 550,000 l. Recommended by the Board of Trade, also committee of group \mathbf{P}. Working expeases, 40 per cent. Royal Assent, Aug. 4. Branel, engineer.

41. Blackburn, Darucen, and Bolfon.
 12,000 half shares of 501 . each; capltal 300,0001 .

To condect the towns of Blackburn, Darwen, and Turton with Bolton, by which a railway commanication will be established with Manchester. Lengih of line, 14 miles. Estimated expense, 300,0001 . Authorised loan, 100,000l. Recommended by the Board of Trade, and committee of group D. Working expenses, 40 per cent. Royal Assent, Jone 30. Jroup Datson, engineer. F. H. James, secretary. Oftice, King.street, Blackbarn. Registered Aug. 20.
42. Blackbarn, Burnley, Accrington, and Colne Extension.

$$
21,200 \text { shares of } 251 \text {. each; capltal } 530,0001 \text {. }
$$

Commences, in junction with the Manchester, Bury, and Rossendale line, dear Haslingden, connecting the populous towns of Black burn, Burnley, Accrington, Clitheroe, Colne, and Whalley with the town of Man. chester. Length of line, 24 miles, 7 chains; number of shares subscribed for, 19,013 , and capital, 475,325l.; autborised loan, 176,666l; recommended by the Buard of Trade, and committee of group \mathbf{D}; working ex. penses, 40 per cent.; royal assent, June 30; - Collister, engiveer; registered 19th July; James Smithers, secretary, Market-street, Bury.

43. Whitchares and Furness.

17,500 shares of 201 . each; deposite 11. ; capltal 350,0001 .
Commences, in junction with the Furness railway, in North Lancashire, now in progress of formation, and eventually to extend, by way of Ulverstone, to Lancaster. Length of line, 34 miles, 8 chains; number of shares subscribed for, 14,237; and capital, 284,740l.; authorised loan, $116.000 l$.; estimated expense, $350,000 l$.; recommended by the Board of Trade, also by committee of group II; single line; working expenses, 11,392l. per anonm; royal assent, July 21 ; J. Stephens, engineer; John Meyer, secretary, 1, Guildhall-chambers, Basinghall-street, London; call of 3l. 20th Oct. ; proposed extension of line to Ulverstone and to Lancaster, 26 miles, at an estimate of $750,000 l$. for which the stock is issued.

44. Caledonian.

43,000 shares of 501 . ench ; capital $2,100,0001$.
Commences at Carlisle, junction with Lancaster and Carlisle, passing through Lanarkshire and Dumfriesshire, and terninating, in junction with the Edinburgh and Glasgow railway. Length of line, 137 miles, 2 furlongs, 5 chains. Number of shares subscribed, 34,460l.; capital, 1.723 .0001 . ; authorised loan, 700,0001 . ; estimate, $2,100,000 l$.; recommended by the Boerd of Trade, and the comnittee of gronp DD; working expenses, 47 per cent. ; royal assent, July 31 ; J. Locke, and J. E. Errington, engineers; secretary, D. Rankine ; oftice, 122, Princes-atreet, Edinburgh; registered lat October.
45. Scollish Central.

34,000 shares of 251 . ench ; capltal 850,000 !.
Length of line, 47 miles, 3 furlongs, 3 chains; number of shares subscribed for, 26,311 ; and capital, 657.775l.; authorised loan, 283,330l.; estimated expense, $850,000 l$. ; recommended by the Board of Trade, and committee of group DD; working expenses, 40 per cent. ; royal assen:, July 31 ; Mesars. Locke and Errington, engineer; secretary, Mobert \mathbf{D}. Ker ; office, 34, St. John-street, Perth; registered, 20th Aug.; Leased to Eidinburgh and Glasgow at 6 per cent.
46. Aberdeen.

16,600 shares of 201 . each; capital 830,0001 .
Connects the city of Aberdeen with the towns of Stoneharen, Montrose, Brechin, Arbroath, Furfar, Dundee, Perth, Stirling, Edinburgh and Glasgow. Length of line, 51 miles; number of shares subscribed for, 12,9251 .;
and capital, 646,250l.; anthorised loan, 276,6661.; estimated expenses, $830,000 l$. ; recommended by the Board of Trade, and committee of group EE; working expenses, 33 per cent.; royel assent, July 31 ; Cubitt, eagineer; Geo. Keith, secretary, 33, Union-street, Aberdeen; call of 2l. 10s. Nov. 1 ; amalgamated with the proposed Great North of Scotland.

47. Clydesdale Jwnetion.

6,668 ahare of 501 . each ; capital 330,0001 .

Commences at Giasgow termini of railways, and passes through the Valley of the Clyde, and near the towns of Hanilton, Bothwell, Motherwell, and Wisbawton. Length of line, 15 miles, 2 feet, chains; number of shares subacribed for, 4,393 ; and capital, 219,650l.; authorised loan. 110,0001 . ; estimate of expense, 290,0006 .; recommended by the Board of Trade, and by committee of group $D \mathrm{D}$; working expenses, 40 per cent. ; royal assent, July 31 ; J. Locke, and J. E. Errington, engineers; secretary, Alexander Grahame, 124, St. Vincent-st., Glasgow; registered, Aug' 27 ; amalgamated with the Caledonian at par, and guaranteed 6 per cent. with division of profts; brougbt Pollock and Govan railway for 120,000l.

43. Edinburgh and Northern.

28,000 shares of 251 . each; capital 650,000 .
From Edinburgh, through Fife, to Dundee. Length of line, 41 miles, 7 feet ; number of sbares subscribed for, 19,830 ; and capital, 495,750l.; authorized loans, 216,6061. ; estimated expense, 650,0001 . ; recommended by the Board of Trade, and committee of group FF; single line; working expenses, 30 per ceut.; royal assent, July 31 ; T. Grainger, engineer; The Company propose various extension, and have issued new shares, 26,000 , of $15 l$. each, and allotted one to two old, und one to every three of Newport; extension shares of $16 l$. previously issued; secretary, Mr. Henry Lees, 4, St. Andrew-8quare, Edinburgh.
49. Glasgouc, Barrhead, und Neilston Direct.

6,000 shares of 251 . each ; capital 150,0001 .
Length of line, 8 miles, 7 feet, 8 chains; to form a direot line of communication; number of shares subscribed for, 5,142l.; capital, 128,5504.; aulhorised loan, $50,000 l$.; estimate of expeuse, $142,500 l$. ; recommended by the Board of Trade, and committee of group $G \mathbf{G}$; working expeases, 45 per cent.; royal assent, June 30 ; Neil Robsun, engineer; meeting Sept. 30 ; the Glasgow and Greenock railway work the line, the toll arranged with Glasgow, Kilmarnock, and Ardrossan company.

50. Scottish Midland Junction.

12,000 shares of 251 . each; capital 900,0002 .
Passes through the Valley of Strathmore, and will form a link of communicution between the Scottish Central rulway at Perth and the Arbrouth and Forfar and Aberdeen railways. Length of line, 33 miles, z furlongs, 2 chains; number of shares subscribed fur, 10,740 ; and capital $268,100 l$.; authorised loan, $100,000 l$; estimated expeuse, $300,000 l$.; recommended by the Board of Trade, and comnittee of group EE ; working expenses, 40 per cent.; royal assent, July 31; Messrs. Locke and Eccrington, engineers.

61. Dumdee and Perth.

18,000 sharea of 251 . each ; captul 200,0007.
Joins the Dundee and Arbroath line, and is 20 miles, 5 feet, 8 inches in length; number of shares subscribed for, 7,899 ; capital, 147,4756.; anthorised loan, 66,600l.; estimate of expense, $200,000 l$. ; recommraded by the Board of Trade, and committee of group EE; working expenwes, $\mathbf{B 3}$ per cent.; royal assent, July 31 ; J. Niller, engineer. Jhe Company have agreed to lease the line in perpetuity the Dundee and Newtyte, guarancee 1 per cent. upon a capital stock of $116,000 l$. and issue new stock for a uew company, the Dundee andStrathmore Junction, who are to have 0 per cent. diridend, the Newtyle subsequently to participate.

52. Kendal and Windermere.

5,080 shares of $25 l$. each ; capital 125,0001 .
In junction with the Lancaster ond Carlisle line, at Kendal, terminating at Windermere, and the Lakes. Length of line, 10 iniles, 2 furlongs, 4 chuins.; number of shares subscribed tor. 152 ; and capital, 3,8211 .; authorised loan, $40,000 l$, ; estimated expeuse, $125,000 l$. ; recommended by the Board of Trade, and committee of group II; royal assent. June 30 ; John Harris, engineer; T. Hudson, secretary; meeting, Sept. 23; a company is proposed for a line from Cockermouth, by Keswick, Amblesicke, to Windermere, called the Fnrness and Windermere; deviation of line at Keddal proposed at an increased coat of $25,000 \mathrm{~L}$.

53. Loucestoft Railuay and Harbour.

6,000 ohares of 20f. each; eapital $120,000 \mathrm{l}$.
From Lowestof, through Thorpe, Loddon, and Reedham, terminating in junction with the Yarmouth and Norwich live. Lengih of line, 11 niles; number of shares subscribed for, 5117 ; and capital, 108,9201; authorised loan, $40,000 l$; estimated expense, 120,0001 .; recommended by the Board of Trade, and by committee of group K; single line; wurking expenses, 2,7 Gol. per annum; royal asseut, June 30 ; G. P. Bidder. engineer; secretary, Richard Till, otlices, Guildaall-Juildiugs, Lundon, and at Yarmonth and Norwich.

51. Manchester and Leeds Branchca Junclion Captal 3to,0c02.

Extension of the Oldham and Heywood Branches, also of Buraley Branch to join the Mruchester, Bury, and Rossendale line; capital subscribed, $340,000 l$.; authorised loan, $120,000 l$.; length of liae. 13 miles, 7 feet, 8 chains; estimated expense, $360,000 l$; recommended by the Board of Trade, and committee of group B; royal nssent, Juue 30 . J. Stephenson, engiueer; office, Palatine-buildings, Huni's Bank, Manchester; F. Laurentz Campbell, secretary.

85. Bedford and London and Birminghama. 2,500 shares; capital 125,0001 .

In junction with the London and Blrmingham at Bletchley, runniug through a rich agricultaral district by Maiston, terininating at Bedford. Iength of line, 16 miles. 7 furlongs, 4 chaina; number of shares subscribed for, 2,187, and capital 109,950l. Autborized loan, 41,650l. Extimated expense, 125,000 . Recommended by the Board of Trade, and by committee of group T; working expences, 40 per cent. Rojal assent, Jave 30 ; R. Stephenson, engineer; scrjp exchanged for certificates 25th July; B. F. Scott, Secretary, 11, Old Jewry, chambers, London.

50. Wakefield, Pontefract, and Gook.

7,300 shares of 501, ench; capltal 385,0001.
Connect the port of Goole and Pontefract with the districts of Lancashire and Yorkahire, and by a junction with the York line near Snaith, with all parts of the Kingdom. Length of lioe 28 miles; cupital subacribed, 300,0001 ; anthorized loan, $121,6661 . ;$ recommended by the Board of Trade nad conmittee of group W; working expenses 40 per cent.; royel assent, Joly 31 ; J. Harris, engineer. Methley extension, 25 shares, 1 new for 1 uld, and new stock for proposed Great Grimsby, and Sheffield, and Wakefield, and Pontefract, and Goole, is to be raised $\mathbf{3}$ by Grimaby, 1 by Wakelield and Goole; the latter in shares of $20 l$. each, one new for overy old.

> 57. Great Grimsby, and Sheffield Junction.

12,000 shares of 501 e eact ; capital $000,000 \mathrm{~L}$-Amalgematlon.
To open a communication from Liverpool on the west of Grimsby, on the Eastern coast, and furnish the manafacturing and agricnltural districts with a communication with each other, and access to a safe port on the Eastern Coast. Leagth of line, 59 miles, 4 furlongs, 5 chains; the whole subecribed for ; anthorized loan, 20,008l.; cstimated expense $590,750 l$.; working expense, 30 per cent. ; royal assent; June $\mathbf{8 0}$; J. Fowler, engineer; amalgamated with the Sheflield, Manchester, and Sheffield, and Liacolnshire companies, as also the Great Grimsby dock and railway, and propose to include the intended Eust Lincolnshire Company; Secretary, J. H. Humfrey, Shefield.

53. Midland (Extension.)

From Nottingham to Lincoln, 33 miles, 5 furlongs, 3 chains, for which the authorised loan is 136,0001 ., and an increase of the capital stock of 405,0001 ., estimated expense $408,000 l$., extension from Lyston to Peterborough, 15 miles, 7 furlongs, 4 chains, for which the authorised loan is $41,650 l$., or 250,0001 . The increase of the capital stock 750,0001 .; estimated expense 750,000l.; capital subscribed, 109,350l. more for the Nottingham and Lincoln; royal assent, June 30; working expenses, 14,000l. per annum for Lyston and Peterborough; engineer, Messrs. Gand, R. Stephenson, and F. Swanwick. Buaght the Asliby-de-la-Zoncb canal for 110,0001 ; proposes to make a line by Hinkley and Muira, to Barton on Trent, also a canal railway, of Midland gauge, to Gribley Common, also Leicester, Swannington railway, for 140.000 l . at 8 per cept, 10,000l.; fur working atock; 7,000l. debl redemplion in 3 years.
59. London and South Western, (Metropolitan Extersion, No. 1.)

From Nine Elms to Waterloo and Hungerford bridges; length of line, 2 miles; capital subscribed, 739,180t.; authorised loan, 233,000l.; estimated expense, $800,0001$. ; capital stock, $800,000 l$. ; recommended by the Board of Trude, and conmittee of groap LL.; rosal assent, July 31 ; J. Locke, Eagineer.

> c0. Bristol and Exeter (Brawch.)
> 5,000 shares of 1001. each; capltal $500,000 \mathrm{~L}$

Length of line, 29 miles; number of shares snbscribed for, $2,850 l$. ; and capital 205,0001.; authorised loan, 106,600l.; estimated expense, 375,000l.; forming a junction between Bristol and Exeter, and the Great Western lise in the city of Bristol, with a branch to Yeovil; recommended by the Board of Trade and committee of group G.; working expenses, 35 per cent; royal assent; July 81 ; I. K. Brunel, engineer; leased to Great Weatern Railway, and proposed sale as follows: on capital, $1,080,000 \mathrm{l}$, and $430,000 l$., to call up at $10 l$. earh, at intervals of six months, until January 1849 ; for 100I. shares and antil Jenvary 1, 1852, for the $\$$ shares. After January 1st. 1838 , to have 6 per cent on a capital of $2,000,0001$., contingent on any new line or narrow gavge between Exeter and London; if mach is passed only to have 5 符 per ceat.

61. Leeds and Bradford, (Extension) Shipley to Colnc, Caplal 500,0001 .

From the Leeds and Bredford Railway at Shipley in Bradford, to Colne, in Leneablro; leagth of line, 80 miles, 4 furionge, 5 chains; capital
subscribed, 382,5001.; power to borrow 160,666l.; estimated expense, $500,000 \mathrm{l}$. ; recommended by the Board of Trrde, and committee of group D.; working expenses, 40 per cent.; royal assent; June 40 ; H. Fultor, engiveer; Office, Hunslet lane, Leeds; Secretary, W. E. Greenland.
G2. Birmingham and Gloucester, (Gloucester Extension, Stoke Brasch, and Midland Junction.)
Commences at the junction near Birmingham, and terminates in junction with the Midland Railway at Aston, with branches to Stoke Prior, Worcester, and Droitwich ; length of line, 1 mile, 6 furlongs, 1 chain; no abares subscribed or power to borrow obtained; recommended by the Board of Trade ; working expenses, 40 per cent. ; Augast4; J. Baylis,
engineer.

63. Aberdare.

1,000 sharen; capital 50,0001 .
Length of line, 8 miles, 5 farlongs, 2 chains, from Aberdeen to Taffs Vaie Line, oeur Ynys; authorieed loan, $16,000 l$; single line; royal assent; July 31 ; William Barber, engineer.
64. Ashton, Staky Bridge, and Lirerpool Jwnetion. (Ardicick and Guids Bridge Branches.)
Length ${ }^{13}$ miles, Manchester and Birmingham Line, and Ardwick to Ashton, Sialey Bridge, and Liverpool Line, and Newton; eatimated expenses, 90,0001 . ; capital, 90.0001 . ; authorised loan, 30,0001 .; working expenses, 33 per cent.; dnte of ect, July 21 ; Hankshww, engineer.

65. Berks and Hants.

8,000 eharen; capltal 400,000 .
Length of line 39 miles; Termini, Newbury, Hungerford, Sonth Whestern, near Basingstoke, and Great Western near Reading; anthorized loan, 133,330l.; expense 40 per cent.; June 30,1845 ; I. K. Brunel, engineer.

66. Blackburn and Preston Deviation.
 Capital 52,468; loan 10,0001.

Length of line, 3 miles, 4 furlongs, 3 chains; Termini, Blackbarn and Preston Line in Blackburn, and Blackburn, Buraley and Colne line, in Blackburn; capital, $30,000 l$.; estimated expenses, 66,989; royal absent; July 21 ; Collister, engineer.

67. Brighton, Lewis, and Hastings (Branch Extension).

Keymer branch, 9 miles, 1 furlong, 2 chains; 2,800 shares; authorised loan, 46,066l.; Hastings, Rye, and Ashford exteasion, 29 miles, 7 chains; 10,000 shares ; authorised lonn, 160,000 l ; increase of capital, 600,0002 ; and for Kes mer branch, 140,000 l. ; and extension of Brighton and Chichester (Portsmouth Extension), 22 miles; 6,400 shares; increase of capital, $\mathbf{3 2 0 , 0 0 0}$. ; single line ; authorised loao, 106,6601 . ; date of act August 8 ; J. J. Rastrick, ongineer. The Portsmouth Extension is from the Brighton and Chichester line, to Fareham, on the London and South Weatern, and the Hastings, from Hastings to Ashford on South Eastern. The Brighton, Lewes, and Hastings line is extended from Southover and Lewes, to the Brighton line at Keymer. Sold to the Brighton line for 7l. per share premium, by act had power to sell at 482,0001 ., the estimated act, and 101 per ahare additional. Boyman, Secretary, Olfice, 11, King Willianastreet, City.

68. Chester and Birkenhead! (Extenrion.)

Length, 7 forlongs; capital subscribed, 225,000l.; authorised loen, $100,000 l$.; capital stock, $300,000 l$. ; eatimated expenses, $250,000 t$.; froun Grange-lane to Grange-end ; dato of act, July 21 ; G. T. Payne, engineer.

69. Chester and Holyhead.

Length, 4 miles, 4 furlongs, 6 chains; eatimated expense, 500,0001 ; date of act, June soth; Robert Stephenson, eugineer; Secretary, George King ; Office, 62, Moorgate-street, London.
70. Cockermouth and Workington.

4,000 thares ; caflial 80,0001 .
Length of line, 8 miles, 6 furlongs, 7 chains; estimated expense 30,000l.; anthorised loan, $26,6661$. ; namber of shares subscribed, 3,113 ; and capital, 62,160l.; working expenses, 40 per cent.; single line; date of act, July 21; John Dixon, eagineer. From Cockermouth to Whitehaven line at Workington Harbour; G. H. Barnes, Secretary, Cockermouth.

71. Direct London and Portomouth.

Capital 1,500,0001.: Loans 500,0001,
Estimated expenses, $1,450,0001$; returned as passed in return of Honse of Commons, printed August 8, 18 is.
72. Dunatable, Lomdon, and Birmingham.

2,500 sheren; capltal 50,000.
Length of llve, 7 miles; anthorised loan, 16,600l; number of shares mubecribed for, 119 ; cepital, $2,389 h_{\text {; }}$ estimated expense, 50,0001 ; workiag oxpenses, 1,790l. per anaom; single line; date of act, Juse 30 ; Rober Stepheneon, Eagineer; Secretary, Thomas Long; registered, Auguat 8t; Ofico, Euaton-4quare, London.
73. Eastern Union (Ipswich and Bury St. Edznonds.) 16,000 shares ; cepital, 400,0001 .
Length of line, 26 miles, 6 furlongs, 3 chains. Number of shares subseribed for, 1,2680 , and capital, 317,0001 ; authorized loan, 133,3331 .; eatimated cost, 400,0001 . ; from Eastern Union line at Ipswich to Bury St. Edmarede; workiag expenses, 40 per cent.; date of act, July 81, 1845 ; P. Braff, engineer; office, Brook-sireet, Ipawich; secretary, James F. Sannders.

74. Edimburgh and Glagrow.

Length of line, 6 miles, 2 chains; capital subecribed, 216,0001 ; muthorised loen, $23,000 \mathrm{l}$; capital stock, 100,0002 ; estimate of expense, $52,000 \mathrm{l}$.; Forting expense, 80 per cent.; date of act, July 31 ; J. Miller, ongineer; branch to Stirling.

75. Edinburgh àd Hawick.

82,000 sheres ; captral, 400,0001 -Amalg imation.
Eength of line, 45 miles, 8 furlongs, 8 chains.; anthorised Joan, 153,38st; single lite; working expenses, 40 per cent.; date of act, Ang. 6 ; J. Miller, engineer.

> 70. Erewouch Valley.

3,800 ehares; cupltal, 190,600t.
Dengh of line, 18 milles, 6 farlongs; shares sobecribed, 2,920 ; capital, 143,002h; anthortzed loan, 61,0001 ; cotimate of expenses, 187,0001 ; date of act, Jahy 91 ; working expenses, 30 per ceur. ; engineor, G. Cope; from the Midland lise, at Lawloy, Derbyshire, to Manabield and Pinxton line at Selston, Nottiughamshire; secared to the Midland at 6 per cent.

77. Epping (Eastern Counties Jrovetion.)
 0,000 shares; capital, 2009,000L-Amalgamation.

Lepgth of line, 1 mile, 6 furiongs. Authorised loan, 66,600\%. Number of shares nobecribed for, 750, and capitul 18,750l. Estimate of expense, 200,000 . From Loadon to Blackwall and Eastern Counties' line. Date of act, ADg. \&: Hobert Btevenson, engineer in Bbekwall.

78. Glasgose Junction.

Capital, 150,000.
Tength of line, 2 miles, 2 furlongs; capital subecribed, 204,0001. anthorized loan, $80,000 l$.; estimated expense, 150,0001 ; date of act, sd and 21st Jaly; engiveer, J. Miller.
79. Glasew, Paisley, Kilmarnock, and Ayp (Cwareek Branch in Extension.)
Capltal, 204,0001.
Zength of line, 18 miles, furlongs, 6 chains ; estimsted expense, $350,000 \mathrm{~L}$; authorised loan, 68,000l. ; Working expenses, 30 per cent., and eximeted expense, 440,0001 .; capital stock in trade, 312,5001 .; anthorised loan, 104,1661. ; engineer, J. Miller; printed in parliamentary return as heving passed the Flouse of Commons.
80. Great North of Eariand (Clarence and Harthpool Jwnetion.) Capital, 21,000t.
A whorived to borrom 7.0001. Length of line, it of a mile; dato of aet, July 21 ; engineer, Joeeph Stevenson ; estimated expense, 2,772.
81. Great North of England and Richzoond.

150,000 shares;
Length of lide, 9 miles, 8 furlongs, stains; cuptital subscribed, 249,210L. ; extheted expenas, 112,3884 ; anthorised lonn, $50,000 L$; working expentes, 40 per west.; date of act, Joly $2 x, 1846$; enginees, Joweph Stopencer.

89. Guifard, Chichester, and Portumouth.
 Gaplas 8001.4 analmanation.

Gationi Junctin, prechased by Soush Wentern; appital stock in shares, 500,0001 . ; athorised loan, 1es,6es; leagth of gew live, 16 miles; Fareham branch; estimated werking expenso, 9,2001 . per annom ; date of ach Jaly 21, ן1845; eagincer. J. Locke; capital, 885,000h.; Rand 2 secrotary.
88. Eradierefinld and Moweheoter Railoray and Canal. 21,000 chereen; captral, C00,0006
Leogth of Rue, 22 miles, 7 furtoogs, 1 chain. Nombor of ehares gubecribed for, 700, and capita, 506.1301.; authertsed leans, sic,0002; estmated expense, 650, 00 Oh From Shembeld and Mmacheter lise at StaleyBridge to Mancheater. Leeds, at Kirinheaton; estimated working ox. pense, 40 per cent.; date of act, July 21 ; engineer, J. Locke; secretary, Edinard Ledsard; Guidinhl, Hucdersfield, Aug. 18,

84. Enddercyteld and Sheppleld Juaction.

Length of line, 16 millos, 4 furlongs, 6 chatns. Nomber of sheres rub-

Weat Riding and West Yorkshire Companien, and propose to extend from Hozins to Barnsley.

$$
\begin{aligned}
& \text { 85. Ifull and Selby (Bridlington Branch.) } \\
& 8,640 \text { abares ; capltal, } 2,161,0101 \text {. }
\end{aligned}
$$

Leogth of line, 31 miles. Number of shares subscribed, 6,812, and chpital, 165,3002 . ; nuthorised lomn, 72,000l. ; estimated expenne, 816,0004.; From Hull and Selby line to Bridlington; date of aot, eoth June; angineer, R. Stephenson.
86. Liverpool and Bury (Bolton, Wigan and Liverpool, and Bury Ertenoion.)

18,240 sharees capital, 012,0001 .-Amatgermation.
Length of line, 34 miles, 1 furlong, 20 chains.; number of shares subscribed for 18,978 , and eapital, 608,0001 ; authorized loan, 804,0301 ; eathmated otpeuse, 989,0001 ; entimato of worklog expense, 40 per cont.; date of ect, Joly 11, 1845 ; engineers, James Thompeon and Bir John Macpeill; sth call, October 18 ; amalgameted with the Manchenter and Leeds, Monday, October 8.

87. London and Croydon Enlargement. Caplfal, 180,0001.

Length of line, 12 miles, 4 furlongs; capital subscribd, [140,000]. authorised loan, e0,000l.; date of aet, Augod 8 ; engineer, C. H. Gregory.

88. London and Brighton (Horsham.)
 Capltal, 100,0001.

Length of line, 8 miles, 8 furlongs; capital sobscribed, 75,000 . $;$ authorised loan, 38,8884 . ; extimated expense, 100,000l.: from Three Bridgen Station, on the Brighton line, to Horsham ; working expenses, 40 per cent ; date of act, July 91, 1845 ; J. H. Rastrick, enginear.
89. Manchenter and Birmington (Ashton Branch.)

Length of line, 67 miies; estimated expense, 93,0002 : from Heater Norris to Sheftield and Mascheater line near Guide Bridge; workiog expenses, 30 per cent.; date of act, July 21 ; engineer, W. Baker.

90. Mancheater South Junction and Alhrincham.

 Capltal, 400,0001.Length of line, 9 miles, suriongs ; subacribed eapital, 400,000L; axthorised Jona, 1s8,s3sh; estimated expense, $400,000 \mathrm{~L}$; fron Manchenter and Birmingham, and Mapchester and Liverpool lines at Alkringhan; working expenaes, 40 per cent. ; dute of act, July 21 ; eagincer, W. Baker; secretary, John Lathan; office, Maschester and Birninghem: Station, Mancheeter.

91. Middlesberowgh and Redcar.

720 shures ; capital 36,0001 , depoalt 24 . 16.
Leogth of line, 7 miles, 5 chains; aumber of shares takea, 569; capital subecribed, 28,450l.; authorised loan, 12,000l. ; estimated expenditure, 36,000l. ; Working expenses, 40 per ceat; date of act, July 21 ; slagie line ; engineer, John Harris ; amalgamated, and guaranteed 5 per cent by the Great North of England and Stockton and Darlington companiea, and division of half the profis; 10l. paid November 4; Mr. Magnsy, secretary ; ofice, North Gate, Darlington.

92. Monmouth and Eereforth
 11,000 shares; captral $500,006 \mathrm{~s}$.

Length of line, 36 miles, 2 furtongs, 8 chaivs ; shares subseribed for, 8,250; capital, $412,600 /$. ; mithorised lown, 183,3831 .; astimated expense, 850,000l. ; working expenses, 40 per cont.; date of eot, Jnly 81 ; eug) neers, George and Robert 8tephenson; from the Cheltenham and Gruat Western Union Itme to Monmonth and Elereford ; sold to Great Weatmes.
98. Newemetie and Derlington (Brandilay Jumetion), Caplal 6000,001.
Length of live, 5 miles, 7 farlongs; capital subscribed, 18,0001 ; autisorised loan, 216,0001; estimated oxpense, 90,0001 .; wrorking expenses, 4,087l. per ennum ; date of act, Jnly 21 ; engiveer, T. E. Fiarrisoa.
94. Newcastle-upon-Tyne and North Shields (Tynemouth Ertension). 1.000 araree, capleal sa, 000 h

Length of line, 1 milic; anthorived loan, 16,6604; estimated expense, 49,0911 . ; working expenses, 40 per cent. ; date of act, Junc 50 ; engineer, Robert Nichalsen.

> 9. Newport and Pentypool. 1,1 th aberen; epptial ble,boe.

Length of live, 14 mites, 2 chains ; uruber of shatew rabserthed fop, 900 ; capital, 90,0001 .; authortsed lan, T8,164.; atimated expener, 129,000l. ; working oxpenses, to per ceut. ; date of ect, 31 Jafy; engisevr, T. Mind.

96. North Britich.

Coplem 2a000t
Length of line, 1 mile, 7 furlongt ; extiminted expoom, $47,00 \alpha_{-}$; ecthem rised loan, 53,2334 ; date of act, 21 July ; engineer, J. Miller; eecretary, J. F. Davion, 24, SL. Aadrev-equare, Edinbargh.
97. Norlh Uwion and Ribble Navigation (Branch)

teria Qmay, Preston ; ectimatod expense, $16,000 \mathrm{~L}$; anthorived loan, 0,0601 . working expenses, 25 per cent. ; date of act, 21 July; enginoer, Willinm Coulthard.

08. North Woolopich.

1,200 abarve, capital so,000:

- Imagt of Hee, 9 miles, 6 furloags, 6 chajns ; number of shares taken, 205; cepleal, e2,000l.; anthorised loan, 10,0001 . ; extimated expense, 30,0001. ; Eactorn Counties; single line; working expeanes, 40 per cent. dete of act, July 91 ; engineor, G. P. Ridder ; from the Eastern Counties I me, pear the mooth of the Len, to North Woolfich.

99. Norwich and Brasdon (Deviation), and Dise and Derekam (Branches). Capital 220,0en.
Eength of line, 17 miles ; capital mbesribed, 176,9106.; authorised man, 78,2001 ; entingted oxpense, 100,0001 ; working expenses 27 per eent. ; date of aet, II July; engineer, G. P. Bidder.
100. North Wales Mineral.

15,000 mares; captual 150,0000 .
Iength of line, 12 miles, 1 furlong, 9 ohains; namber of shares cub. saribed for, 11,415 ; capital 114,1500 . ; authorised loan, 50,0001 .; eatisnited expeose, 45,5801 ; from North Wales Minaral line to Ruabon; working expenses, 40 per cent.; date of act, July 21 ; enginger, P. Bobertion; secretary, John Marriner; meet at the Loodon Tavern.
101. Shefficld and Rotherham,

Capital 45,000l.
Lenpth of line, 3 foriong, 2 chalins; estimated expense, 45,0001.; from Shemeld and Rotherbam line to Sheffield and Manctester Iiae, in Brightside, Burlow, Shefield; amalgamation with the Midland; date of act, July 21 ; engineer, Mr. Swanwick.
108. Wear Valley.

2,650 ahwees, capital 82,0000.
Length of line, 11 miles, 6 furlongs; number of ahares subsoribed for, 1,300: cepital, 65,000l. ; anthorieed Joan, 27,2001. ; estimated expense, a, 0001; from Crock branch of the Bishop Anckland line to Watchlass \#ih, Froeterley; date of act, July 31 ; engiaeer, John Divon; Thomas MaNey, secretary, Derliegton.
103. Whilby and Pickering.

Capital 185,000L
Sale to York and North Midland : eatimated expense, 135,400l. ; autholi sed loan, $\mathbf{4 5 , 0 0 0 l}$. date of act, 30 June; engineer, J. Stephenson,

104. West Londor.

Capltal 60,000l.
Length of lise, 1 mile, 5 furlonge, 1 chain; from West London, at Ken* eington, to a point near Battersea Bridge; estimated expense, 60,000l., arthorised loan, 20,0001 .; working expenses, 40 per cent.; date of act, July 81 ; engineer, R. Stephenson.

> 105. Farmouth and Norwich.
> Capltal 40,0001 .

Length of line, 2 furlongs, 8 chains; estimated expense, 40,0001 ; date of act, June 30 ; engineer, J. P. Bidder; see also Lowestof railvay; office, Gnildhall-buildings, London ; secretary, Richard Till.

106. Hayle and Redruth.

From Redruth, throogh Cain Brea, Camborne, to Hayle, in Cornwall ; mogotiatiog for sale to Weet Cornwall; becretary, Mr. Fleming, Old Brond-etreet, London.

Tzr Magnetic Teleciaph.-The efiablishment of magnetic telegrapho, Fadiatips frow New York to the east, weat, apd sonth, to the extent of three or fomr haga, died milles, wo as to connect all the lerge cities of the Alautic border with this motropalis, Ia now in a rapld state of progreas. The line between this and Buffile is under woigh, add 00 aleo is the oae to Boston, to Hkesive thet between this diy and Wanhington, in-
 aed Comer Laland. All these limed are conducted by asociations of individuals who dertre their powers from the Inventor, Professor Marse, nov in Europe. It in supposed that the whole of them will be fintshed in the course of three or foar months; and that the Fetmeipal the between thie dty and Warbington will be eompleted io thae to frasalt the aext mesage of the Prealdent to this city, and to ennble tbe publishers to lasue it cigaltanmonaly with the Washington paptrs. When completed these ualted lines of celerraphic communicetion wh embrace a territory of neariy 800 miles from south to
 ecmmaniction. such asyatem of talegraphic commonication of all desaripions of nems - 11 motice the freat allantic citiet suburbe of this metropolis, and all animated by the Hone opiri and the same impulset, numbering, probably, populadon of nearly iwo mill.
 Ees on the fact of the etart. It will pot be forgotten that this vat and comprehengive acheme of telegraphic communcution wili be completed in the cource of a fev morthy, aed be in the hande of iodividuals for their own advantage and propoees, without any reppanaibily to covernment ur soctety in any partienlar whatever. One of the lines of cegrepa, and the mortent and most upprounctive, hat betaned hat fitf and Coaey Ialand, hat aireny made proponition to the newspapers, offriag to div then intelli-
 mant double that which is now paid under the add mettod. This in asmple of what any be expected from the other companica nad asopintiong provided they should be alowed to eatabiah their rath and comprebematre achetries mithoot being llable and reaponable to any of the logislative powers of the randiry. In Get, we belteve that the

ROYAL INBTITUTE OF ERITISH ARCEITIDGR,

1at Desember, 1846.-J. B. Papwonte, Y.P, in the Chair.
A paper was read by Joun Whichcord, jun., Associate, on
Kentish Raj stone as a Buldina Material.
This stone, now so moch used in the metropolis, in principally quarried in a district extending about 50 miles east and weat, through the centre of Keut, and having a breadth of from 4 to 10 miles. This district, whiah comprises the towns of Sevenonks, Maidstone, Lanham, \&cc. has Its surface within the limits of the green or Shanklin mand. The character of the sand raries considerably in the district alluded to, and the qualities of the building matorials which it yields are therefore very different.

Geological Character.

The Kentich Rag Blowe in usually found in beds of from 0 iphento 3 foet is thiokneas, and theep different layers are invariably waparated by a species of sand, known by the name of Hassock, which, in mome ceses, is enfficiently indurated to preseat a tolerably good working stona, used frequently in the neighbourhood as an intide lining to external Zay fepe pralla. Mf. Whichcond pripoipally confined him mamiks to the quarry at Boughton, in the meighbourhood of Maidsteve, fopw whieh the best quaslities of Bag are now obtaiped, and a drawing was exhibited to the menting, whioh espreanatad a seation of the atrale in this part of the distriot. The quarry at Boughton has deep worked for cowe centuries, and from it Was very probsbly procured the stone emplojed in the metropolis daring the period when the pointed style of architecture prevailed. Stones of a apherical shape, such os were used in the 14 th and 16 th conturios for artillery, are still found among the scenmulated rubbish.
At Boughton, as in most of the Rag Stone districts, the gerface layer of regetable mould is aucceeded by a bed of loam, which is cometimes 15 feet in depth, and varies in its character as it descends, changing from a atiff brick eerth to a kind of gravelly loam, catled in the dietriot Red Pins. It is succeeded by three veins of ferruginous sand of a red colour, alternating with the same number of layers of fine Hassock, which in this case retains its sandy character, and forms, with the Rag Stone lime, a very exeellent mortar.

Beneath the third bed of Hessock is fonnd the first of about 20 layers of limentone, which beara the name of Land Rag, and in found moch broken. It continoally occurs. that this bed thins off into detached modules, and sometimes ceases altogether. Its thickness is therefore very variable, but blocks of from 6 to 6 feet in length, and 8 to 10 inches deep, can occasionally be procored from it. The stone is here tolerably free to work.
As previously stated, this bed of stone is (as are all others of the strata) followed by one of Hassock. The second bad of stone is called the Header-Layer, used for beaders. The next is the Green Rag, which frequently divides and re-unites, the intervening space being filled with the Hassock sand : it is green in colour, and free to work, though not very sound. The layer of Hassock, which succeeds the Green Rag, is workable, and is mucb used in the neighbourhood for the purpose before mentioned; it requires very litule labour in dressing, and in the quality of resistance to moisture is superior to brick. The next bed of stone is called the Yellow Rag, and is used principally for pitching; it is sacceeded by the Pelsea, from which the largest blocks can be procured, come of 12 inches in thickness ; it is very hard and strong.
The next two layers of Higg are called the Coleman and the Little Coteman, and are of a hard flinty nature; they are sometimes used as henders. Wa have then the Great Rag, which is a bed of considerable depth, wometimes as much as 3 feet; but as it very often cleares into two thicknessos, and is full of crasses, no stoses of a large size can be procured from it; it is much osed for lime, of which it afforde the best quality. The bed of Hassock immediately under the Great Rag is of e very euperier quality, being of a fine, close, and free working grain, resembling the tieigeto Stone, and stands exposare to the weather exceedingly wefl. It is followed by the Newington CLeaves, which, like the Great Rag, often aplits into two layers; it is rery hard and finty. Two beds of Hassock, separated by a thin finty layer of Rag Stone, iptervene between the cleaves and the Whiteland Bridge, which is eqnal in quatity to any in the quarry; blocks of 12 feet in length, and of almoat any breadth, can be procared from it; its workable thickness is about 14 inches.
The next in order is the Mainbridge, similar to the preceding bed, though no stones of such large scantling can be obtained from it. It is soparated by a lajer of inferior Hassoct from a bed called Garl, used generally for headntones.. The Horsebridge succeeds it: this is a good stone; blocks can be procared from the bed 15 feet long, and 16 inches thick. The next layer, called Headetone Layers, is about 7 inches thick. This is followed by two or three header layers, inferior in quality, and alternatiog with their respective beds of Hassock, below which are what are termed the upper and under bottom layers. These jield stones of good quality and colour, and of considerable size. Next comes the White Rag, a soft acone, resembling chalk, and crumbling on exposure to the atmosphere; it reposes on a bed of bassocky clay, below which the quarry men have not penetrated, it being rery doubtful whether any lime-stone would be found beneath it; indeed, in some quarries, it has not been thought
worth while to work even an lew as this. Mr. Whichcord then mentions that the most favourable manner of working these quarries is to expose the whole section of the eliff, and carry on the work In such a way as to lay open the upper surfaces of each of the best layers of stone in some convenient part of the quarry. By this means the largest scantling can be procured at once, and the frequent difficulty attending the working of quarries in a different manner (that of obtaining large stones when wanted in haste).

Practical Properties.

With reapect to the mechanical properties of the stone, it stands next to granite in the list of British stones in respect of resistance to pressurebut the vente to which even the beat quality of this stone are liable, render is ansafe wben applied in such a manner, that the strain acts transversely to the length of the block. Mr. Whichcord then described the various modes of working and dressing the Kentish Rag Stone, mentioning that, as Ashler, it is usually worked with a pick, instead of being tooled, as the "Hassocky" apots which continually occur in it give it, when smooth, the appearance of bad Portland.

Wilh reference to the mortars made with lime burnt from this stone, it was medtioned, that it attains, after a time, a degree of hardneas equal to, and, in sume cases, evon greater than the Rag Stone itself. The durability of Rag Stone wall-work can therefore best be depended on when used with this mortar.

Mr. Whicheord referred to the mode of burning lime in the neighbourhood of the quarries, and the quantities used in making concrete, viz.six of broken stone, two of sand, and one of lime. He also gave a list of the prices, both at the quarry and at London, of the various qualities of atone, and of the prices of labour at Boughton.

Chemical Analysis.

The following analysis of the Kentish Rag Stone was made for Mr. Whichcord's paper by Mr. Phillipa, of the Museum of Economic Geology :-

Royal Exchange.
December 15th, 1845.-Mr. Kendall, V.P. in the ehair.
Mr. Tite read a paper.
"On thei Originnl Foundalion and Erection of the Royal Exchange, by Sir Thomas Gresham, with some Nolices of the late Building destroyed by Fire, and an Accuunt of the Romun Antiquities discorered in excarating for the Present Edifice."

The first branch of his sobject Mr. Tite illustrated by numerous extracts from the records of which the corporation of London possesses a rich collection, commencing with the original charter granted to the city by William the Conquerer, a document which he incidentally describes as being comprised in a few lines in the Anglo-Saxon language. Coming, then, to the authorities more immediately cunnected with the subject, Mr . Tite detailed the transactions relating to the builting of the Royal Excluange, through the munificence of the priocely merchant, by whom the whole expense of the structure was undertaken, on condition that the site should be provided by the city, from his first proposal to that effect in 1564. The purchase of the site cost the citizens $3,532 \mathrm{l}$. 17 a . 2 d ., including freebolds, leuseholds, and tenants' interests; and it is to be noted that the former class of property realized abuut twenty-three years' purchase-a value not very different from the arerage of later times. The building was completed and opened for use in 1567. During the progress of the work, a queation appears to have arisen between Sir Thomas and the city respecting the property in the building, which terminated in bis assuring, after his own life, half the profit of the shops and other tenements to the Corporation, and balf to the Mercers' Company; and it is from this division that the affairs of the Exchange have alwaye been in the hands of the mixed body called the Gresham Committee. The appearance of the original buidding is preserved to us in Hollar's engraving, which shows it to have been in a much better style of architecture than the Bourse of Antwerp, of which it has been pretended it was a copy. That of Amsterdam bears a much greater resemblance to it, but in this case the London bailding is the original, and not the copy; that of Ansterdam dated only from 1612. Shortly after the death of Sir thomas Greshan, some part of the building failed, apon which occasion the sombers of the Corporation endearoured to cast the repairs upon the widow of their benefactor. From a report made by the Gresham Coumittee, after the destruction of the building in the great fire, it appears that the arcades of the court were vaulted with stone, and that it had been uecessary to stay the supporting pillars by transverse iron ties. This report is dated on the 17 th September, $\mathbf{1 6 6 0 , s o t h a t ~ t h e ~ c o m m i t t e ~ h a d ~ l o s t ~ n o ~ t i m e ~ i n ~ t a k i n g ~ m e a s u r e s ~ t o ~ r e p a i r ~}$
the calamity they had suffered. Estimater for the new building were speedily provided by Mesers. Mills and Jerman, who appear to have proceeded in the plan of making out quantities, and giving them to the tradermen to be priced. After some coquetting on the part of the latter, who professed to deprecate any interference with the office of city surveyor, held by Mills, Jernian was at last uppointed the architect, and the first stone of the new pdifice was laid by King Cbarles 1I., on the 23rd of October, 1607. In erecting the new editice, the site was considerably enlarged, and it was the wish of the citizens to disengage the building from the houses, late Sweeting's Alley, which pressed upon it to the eastward, encouraged by an offer of the proprietor, Sweeting, to dispose of his property on the most liberal terins, and which ended, as such offers usually do, in deniands too ezorbitunt to be complied with. The tower of Jerman's building, which, from motives of economy, was constructed of timber insesd of stone, yielded to the effects of time in 1818, and was replaced by a stons cupola, designed by Mr. George Smith, architect of the Mercer's Company. With reference to the bailding lately conpleted under his superintendence, Mr. Tite confined himself to the antiquities. Four glass cases, cuntaiuing a uumerous selection, were laid on the table, consisting of pottery, coins, writing tablets and styles, a great variety of ohjects in metal, and a quantity of shoes and sandals in excellent preservation. The whole of these curiong ohjects were fonnd in one spot, at a depth below the general level of the sulid ground, and bedded it black snud-evidence that it had been a pond, and the receptacle of rubbish for the neighbourhood during the period of Roman London. Mr. Tite concluded with a porverful appeal to the nembers of the profession in general, on the subject of the preservation of Antiquities, and of supporting the measures recommended by Mr. Huwkins, in his letter read at a former meeting.

SOCIETY FOR THE ENCOURAGRMENT OF ARTS.

The Firat Meeting of the Society for the encotragement of Arta, Mamorfacturet, and Commerce, took place on the 17th, in the great room of the Society, in the Adelphi, which was completely filled.
B. Bond Cabrell, Eaq., F.R.S., one of the Vice Presidents, took the Chair, and an address from the Council was then read by the Secretary. The Conncil congratulated the society on the auspiciona commencement of their ninefy-second session. During the recess the society had undergone a complete reorganization, and the new system of management proposed by the Council had been almost unanimously confirmed by two general meetings, so that the society being thus rewarded, its youth would, it was anticipated, display all the vigour and energy of a new institution, combined with the stability and influence of an old onc.
It was the intention of the council to add largely this year to the valne and number of the premiums. In the fiae arts, the mechanical arts, the manufactures, agriculture, and commerce of the country-rapid improvements were in progress, which it bad been the peculiar province of this society for nearly a century to encourage and direct, and in which nearly 100,0001 . had already been expended by it with great public advantage. In tbe present session many valuable subjects werc about to be offered for competition by premiums, and so large a number of important papers were coming forward for notice, that the Council believed the auspicies under which this session commenced were unusually bright, and they therefore had to congratulate the members upon the improved prospects of the societs.

> Broad and Narrow Gauge

The first commanication read to the society was a paper on certnin improvemevts, in constructing the Locomotive Engines, and permanent Way of Railways, with reference to the question of wide and narrow gauge, by J. G. Bodmer, Esq., formerly of Manchester, now of London. In this paper the author examines the question of the relative merits of wide and narrow gange; he ascertains that the question is not one either of relative safety or danger, but that it resolves itself ultimately into this question, which gavge will admit of the most perfect means for obtaining high velocitics with greater regularity and economy. At present he admits the broarl gange has the advantage in more powerful and speedy engines. But he then proceeded to show that hy placing the cylinders oufside, and by increasing tbe firebox and the flue surface in the manner he proposes, and. by adopting the principle of compensation as in his double piston locomotives, high velocities may be obtained with security, safety and advantage. In short, that as powerful an engine in every way may be placed on the narrow gauge as on the wide one, and one equally well adapted to high velocities. He then went on to show how the chief limit in increase of power, and the corresponding increase of weight in locomotive engines, consists not so much in the constraction of the engines, as in obtaining a permanent way suitable for the support of such evormous loads. By these loads travelling at high velocities concussions are prodoced which derange the permanent way, and are at prcsent the chief sources of danger and cost, and the chief limit to the speed. He approves of the triangular sleeper, originally invented by Reynolds, and he proposes to use a modification of that on a larger scale, as a longitudinal bearing. He also proposes that the breadth of the rail should befso increased as to diminish the continual attrition so destructive to wheels, and procure greater durability. In the conclusion of the paper he suggests that an experimental railway ought to be constructed either at the expense of the government, or of the joint railways, for ascertaining the best weans for giving the increased velocity waich the public are beginning to demand in the
bet manner. The paper gave rice to a long and intereatiog diacusion, which elicited the opinions of engincers and scientific men present on the merite. Mr. Bodmer's plan. The principle on which his engines are constructed were approved by all who spoke on the subject, and the thanks of the meating were unanimously accorded to the author. The next paper read was a sequel to the former by the same author, on improved crank arles and axle boxes, by which greatcr security and economy are obtained in railway trains running at high velocitien. There were other papers on the list of the erening, one of them containing a valuable discovery by Mr. Nott, on the nature of the Pbotographic rays, and a method by which a great improvement it effected in Daguerreotype pictures. But the length and interest of the diseassion rendered it necessary to postyone that and the other communieations to a future meeting. The meeting was crowicd and deeply interesting, and angars well for the prozperity of the society under the new regine.

ROYAL SCOTTISH SOCIETY OF ARTS.

Monday, Nov. 24, 1845-Jobn Beatson Bell, Esq., in the Chair.
The following commanications were made :-
"Description and Drawing of a new Rife Breech." By Mr. Thowas Moder, gunmaker, Stirling. Communicated by Mr. Burna of Garvald. Mr. Mould's method is to attach two spiral "ribs" to the breech only, fur about twu inches where it screws into the barrel, aud not to the barrel itself, as in the common method ; the ribs being made to describe a curve equal to a whole tura in twelve inches. The breech, after being finished, is case-hardened. The barrel can be made much longer on Mr. Mould's plan without danger of stripping the ball. After firing with this rife, the tract of the ball can be clearly neen ronning in a spiral direction along the inside of the barrel, if the breech be unscrewed, and the barrel be held like a teleacope. The piece is also said to be much easier loaded. Referred to a Committec.
"Description and Draucing of a Ruilxay Alarum", by which the goard may communicate with the Engineer. By Mr. Andrew Carricr. This proposal is fora communication to be effected from the loconotive all along the train by means of rods passing bencath each carriaye, which are naized by chains after the carriages are attached to each other. On the goard polling the lever attached to this, a bell is atruck on the locomotire so ts to give waraing to the engineer when any thing is wrong, or when it is wished to stop the train.
"Deseription and Drawing 4 a Railucay Indicator," for showing at night, or in dense fogs, the speed of the engine, or distance it hus travelled from the station. By the Same. This indicator consists of a screw working into a pinion on the axle of the driving wheel, which carries a spiadle that works by means of a train of wheels, upon one that carries a band or pointer, showing how many miles the engine has travelled from the station. Mr. Carrick recommends that, ut each station, the eagineer sets the pointer to eero, and thus he will know almost exactly where the train is, even in the darkest night or in dense fogs.
"Descriptiox and Drauting of another Railucay Indiculor." By the Same. This is another form of the indicator. It cousists in having studs dixed along the railway at each mile, which on the engioe passing over them, come in costact with a bell cravk, und riug a bell fixed un the loconutive. The eqgineer can thus count the uumber of niles passed over.
Mooday, December 8.-John Beatson Bel.h. Eeq., V.P., in the Chair. The following communications were made :-
Notice relutive to the properties of
Patent Intonaco Cement, with illustrative specimens. By Mrs. Margaeet Heneietta Makshall, Millpurt.
It was stated that the principal claims to notice possessed by this cement, are its cheapness, hardness, and durability, and the almost boundless veriety of purposes to which it may be usually ayplied. That in architecture, it is alike fitted for walls, flowring, ceiling, and puinting slates, which it unites inko one solid immoveable body. That it sets in a few hours, and dries so rapidly, th.at a house platered with it may with perfect safety be inhabiled in eight days. That it is alike hard through its whole substance ; and, even as exterior cement, in imitution of stune, has remained uninjured and naaltered iu all weathers, never having been kuown to peel or throw of any salt from tho surface. That it is such a slow conductor of heat, that iron of equal thickuess, exposed to equal degrees, showed a balance of fif in favour of the Intonaco, consequendy it olfers a very great security from fire. That as it shows at least as great a power of resisting damp, lathing may be entirely dispensed with, wherever it is used as wall plaster; and partitions formed of it, according to the plan of the patentee, only two methes in thickness, present a much dirmer body, and rwore effectual deafening, than the $4!$ inch double lath partitions at present in use; besides being cheaper; -and that no vermin oi any description can penetrate or lodge in walls or partitions done with it. That this cement offers a perfectly new art of itnitatiug narble, which, immoveably united to the surface of sandstoue, and highly polished, will bear exposure to auy weather. Esery style of ancient ornmmental flooting can be imitated to perfection at moderate cost. That it forms an entirely new ground either for mural, or easel oil painting: the finished paintiugs possessing all the advantages of fresco, united to greater depth and brilliancy, and incalculably greater ease of execution. That as a ground for gilding, it has received the highest
approbation of practleal men; and is ready for the gold in 24 hours after monlding or modd

Accoont of Experimexts on Electro-Culture.-By Andren Fyre, M.D., F.R.S.E., Profeswor of Medicine and of Chemiatry, University and King's College, Aberdeen.

In this paper the results of trials on the application of electricity to vegetation, as recommended by Dr. Foster, were first staterl, the wires being applied to cabbages, \&c. In these experiments Dr. Fyfe did not find the slightest benefit to accrue. At the time that the trials were in progress, experiments were also instituted with the view of ascertaining whether tbere was an electric current along the wire, which whs done by the use of the gold leaf electrometer, and by delicate galvanometers. In all of these, there was not the slightest indication of electric current.
Dr. Fyfe's paper afterwards gave the reaults of trials on the application of galvanic electricity, this agent being applied in a variety of ways, to peas, beans, onions, potatoes. In some of these the galvanism ivas applied by sinking metallic plates in the ground, and connecting them with wires, sometimes sonk in the earth, at other times left abouc it. nud in contact with the plants. In other trials the galvanism was applied by the use of batteries, with which galvanometers were counected; the trials, in some ceses, being continued for several veeks. In all, not the slightest diference could be observed between the products of the galvanised and non-galvanised regetable. In the case of the putatoes the products were, in one trial, as 87 f for the gulvanised to 33 for the non-gelvanised. In another, it was as 46 for the galvanised to $51 \frac{1}{2}$ for the nou-galvanised. Taking the average of all the trials, the results were as $101 \frac{1}{2}$ for the galvanised to 105 for the non-galvanised.

From the results of his numerous trials, Dr. Fyfe concluded that no benefit whatever wras observed to follow the application of electririty, either by the mode recommended by Dr. Foster, or by galpanic rlrctricity-at the same time, he stated, that though in these trials no benetit resulted, he was far frons asserting that electricity would not be found heneficial ; the subject was worthy of prosecntion, and he hoped that others would be indaced to prosecule it, and to give it the scrutiny to which it was entitled.

ATMOSPHERIC TRACTION.

The power employed in exhawating the Main Pipe compared with the power exerted by the Train Piston; Paiction and Learaue being dirregarded in bolh caser.
I presume that Mr. Haydon's formula* are general ones, i. e. independent of the dimensions of the tubes and puons, as likewise of the length of the stroke of the pump and the number of the strokes; and that consequently I may assume, for the purpose of explanation, any dimensions, \&e., which F find most easy to deal with, however extravagant such diniensions may otherwise appear.

The preliminary exhaustion 1 will suppose to be effected by means of a piston placed within the main pipe itself. To produce the derree of exhaustion assumed by Mr. Haydon, viz: one third of the atmospheric pressure, or 5lb. per square inch, such piston must obviously be movel along twothirds of the length of the main; its montion terminating at the end opposite to that from which the train piston is to start.

The power, necessary so to move this piston, may be estimated as followt, (taking each side separately and cousidering only the effect upon one square inch).

Call the length of the main a, call $\frac{9}{8}$ of its length b, and $\frac{1}{2}$ of its length c, then $a=b+c$.

Opposed to the motion of this piston, througl b, there would be the constant atmospheric pressure of $151 \mathrm{lb}=15 \mathrm{~b}$.

Assisting ite motion throughout b, there would be a pressure varying from 15 lh at the commencement, to 3 lb . at the termination: if wa call the averaye of this varying presure x, then the assisting force would be $x b$, and the general expretsion of the resistance is $15 b-b, b$, or $(15-x) b$, to be overcome in effecting the preliminary exhaustion dowo to $51 b$ preasure per square Inch.

The train piston being now ready to start, the next object is to maintain it front of it, while it travels, the degree of exhaustion just apecified, viz.: 5 lb per inch; and for this purpose, I will auppose a second piston to be placed also within the main pipe, at a point some little in advance of the train piston, and that the power by Fhich it (the second piston) is to bs moved along the main, is so regulated at to draw it along exactly at the sume rate as that at which the train piston itself travels, whereloy the space between the two, may not become larger or smaller, as that, if it occurred would change the degree of exhaustion in front of the train piston.
The power necessary to move this exhaustion maintaining piston may be estimuted as follows:

It must move through a, (the length of the main): opposed to its motion there would be a pressure at the outset of 5lb, but by the time the piston liad moved through ${ }_{2}$ of the length of the main (or b) the pressure would have increased to $1^{2} \mathrm{th}$. This varying pressure being precisely equal in continuance and intenaity to the assisting pressure of the preliminary exbaustion, its average may like that be called x, and its total $x u$.

[^6]This piston must be forther moved through the rematruth is of the leogth of the main (or c) against an opposing preanare of $15 \mathrm{lb}=15 \mathrm{c}$, the rum of the oppaning forces if thenefore $a b+15 e^{2}$

To mesies its rotion there would be a preame of stlb thronghout the Zength of the main $a=5$ a. The general expression of the resiatapoe of thin piston is therefore $c b+15 c-5 a$; and far both pintons ($15-a$) $b+$ $(s b+15 c-5 e)$ or $15(b+c)-5$ a: Bat $(b+c)$ being equal to a, therefore $15(b+c)-b a=15 a-5^{5} a=10 a$.

The power operation upon the train piston is $(15-5)=10 a ;$ therefore, (leakage and friction excepted,) no power is lost.
It may be thought necesary' to enquire, whether, if an air-pump be need, this reaconing still applies.

To take the secondery exhauntion first, I thiak that Mr. Haydon's formons is just tas applicable to the supposed pirton, at it is to that of the atrpamp ; at each stroke of the pump world be merely a diminished representation of the one long stroke of the supposed pirton.

In reapect of the preliminary exhaustion, it is most casy to form a judgement by making a caleulation of the effect of one or more atrokes of a parap of dimenaions asoumed with reference to [oonvenience of calculation oaly. Fer intence; we may amame that the pump has twice the capecity of the min, in which case it wouid effect the prellminary exhanation by owe upward Aroke. The power neceswary to effect this atroke may be eatimated as follown: The opposing power is $2 a \times 15$. The neceevary power is therefore $(2 a \times 15)$ - $(2 a x)=$ The astisting power $2 a x,(16 s) .2 \mathrm{a}$. And an a$\frac{36}{2}$, the power is $(15-\infty)$.
$\frac{(3 \Delta \times 2)}{2}=(15-x) .8 \delta$.
' Now as upon the other supposition the preliminary exhanation of the main was found to require a power $=(15-x) \quad b$, there would be a lows in uning the pamp of ($15=x$) 2δ; but this amount represents exactly the powerconsumed in exhausting the cavity of the pump itself, which by the aupposition is twice the size of the main.
In my lant communication I atated that the only loss (diaregerding leakage and friction) was that of the power employed in exhauting the pumpi and branch pipes; and the above reasoning confirms that view of the matter.

I may observe lastly that, with amall pumps and branch pipen, this loss cannot bear more than an insignificant proportion to the whole power expended.
It has been argued tbat atmospberic traction is lize traction by means of a bighly eleatie rope, whieh requires to be tretched, at the expense of mach power, before it becomen rigid enough to overcowe the renistance of the lond, and which being to stretched, is assumed to afford no adraatagt over an ordinary rope.

Now it would be eary in this case to adopt an arrangement which would recover all the power employed in stretcbing the ropet. And in the case of atmospheric trection a mere glance at the subject ahows that such a recovery of power must take place; for otherwise, the preliminery exhaustion being analogous to the stretching of the rope, the subsequent exhaustions, to complete the analogy, must require as much power as would be sufficient to drag along the train piston by means of a rigid medium; i. a. a power equal to that of the train-piston itself! a proposition all but self-evidently erroneous. The power actiag upon the train-pition as previonaly shown being constantly $15-5=10$; while the resistance to the air-pump piston it 10 tbrough one third only of its atroke, with an average of about 3 during the remaining two thirds of its stroke, making a total resistance equal to about one half of the power seting upon the train-piston.
E. H.
[We have to thank our correspondent for taking great pains to investigate the subjecte of certain papers in this journal, and for commenicating his observations in a mont obliging manner. We cannot, however, carry our courtesy so far as to assent to his conclasions. His srrangement of a "apposititious "exhsuation maintaining piston," " some little in adrance of rthe trinu-piston," is wholly different from anything that ocears in practice. \checkmark It does not appear how this exhaustion maintaining piston is itself to be neroved-not by stationary; air-pumpa, for the degree of vacurm in front of it is rapposed to constantly diminish, antil the air actually recovers its natural density ; and this could only "take place on the supposition that the eir-pamp ceases working directly the train atarts.
The mere consideration, that in the air-pnmp the air is alternstely dilated, and condensed, ought of itself to shew that some power is lont, independ-

 drana alocg burizontally by a man. Suppome the man found the rope to stretch to double it length; 1 . e. to 200 feet, by the time It began to Iff the weight Eeing 50 gtretched, let the upper end (the 100 feet trom the woll head) be aucured upon the ground, (by spikigg or otherwite); and let the man then take hold of the rope clowe to the well hend; the silghtest force applled there will make the weight begin to tite; becane the coas has in his favour the reaction of the half of the rope which lies behind him, but as the welght rises, thle half of the rope will sborten, and tis reaction will dirolnfah conatankly cill it ceasen juat when the man has mored bo feet from the woll head, raidng the wedght 50 feel.

In thit opertition however one half of the power, originally employed in atretchlog the repe, will have been recovered.
In lthe mauner let the man make fant upon the ground the part of the rope whleh be sow holds, -go back to the well head, and drav the rope forward 25 feet, ralaing the weight $2 S$ foet; and be will further get back one quarter of the sald powrer.
He may regata $\frac{1}{8} \frac{1}{18} \frac{1}{8}$ \& 8 c, $n 0$ long at he goes on; whereby he may regaln all b
infintesimal fraction.
moved elocer topethar, and farther apart, than they are in thestr neturat state, it is clear chumforce munt be absorbed for the purpose. For to mop. pose that in eleatic thid hes the power of contrecting and filating titelifs to tmdue inert.matter with as fuberent power of motion.

The principles asumed in Mr. Hinydon's papper wero so entiroty in tha ondinary pouttre course of mathomaticad inveitigation, that no mathematidise would dreem of dispoting the nature of the lowe exhibited; an this can pomibly be done is to queation the amonat. If our correspondent wish to do this, he maut do it not as here, indirectly, bat by directly showing some error in Mr. Haydon's peper. He mast make no suppositioss armangements of parapa and pistona, but must follow themethod of thepaper in question, by taking the dimensions of the pump and tabe, and the number of strokes to be exactly what they are in practice.

The illostration of the man drawing a weight from a well is mecourate enough, except that the man's journeys monld be less and less eachtime, while the atroke of the air-pump is always of the same length; Hhe consequence would be that in the former case the loss of power might be mede much lete than it conid poesibly be in the latter. Ovr correspondent himealf amye, that there would be some low in the former cano,-that the power prefully applied woold never exactly equal the power expended; the queation therefore fs , a we mid, not one of principle, but a quention of mere amount.]

THB PROPOSED EXPOSITION OF MANUPACTURES AND INDUSTRIAL ART.

The preparations for the proposed exponition of Manufactures and Indur. trial Art, in connection with the Mancheater 8chool of Design, under the direction of our talented townaman, Mr. George Jackeon, ere in a forward atate, and the exhibition will be ready for the Christmas holidaym Mr. Jeckeon and his colleagres are goatlemen fully competent to the task they bave undertaken, and their success so far has even exceeded their anticfpations. It in now expected that every nook and corner of the Boyil In atitution will be required for the disply of the articlet, to anmeron will they be. From the answers alremdy receivod, it is expected that the cantro bations from the Potteries will be rich, indeed magnificent-acreral howen of eminence in the china trade having promised contribationa of the bigheat clast, and of considernble amount. From Stourbridge and Birmingham they have promises of an extensive collection in glams, comprising chandeliers and articlea of general utility; and from the latter place there will be a cons. derable quantity of japanned goods, brassworka, and manufactures of other descriptions pecaliar to the town. There will also be some very briliant spocimens, both in gold and silver, of the electro-doposit. Prom Coventry aplendid specimens of ribbons and gauzes will be forthcoming, and watches equal to anything of foreign production. Prom Leicester a display of hosiery; and from different places in Nottingham a spleadid collection of lacea are promised. Sheffield is to contribute specimens of its steel and other goods, comprising grates, fenders, fire-irons, cutlery, \&c. Glasgow is undez contribution for carpets, and some magnificent articles of large dimensions woven in one piece are amongot the specimens. Prom Paisley, shawls, scarfs, and other woven fabrics peculiar to the district are bespoken. From Ireland specimens of linen are to be exhibited, manufactured from Irime grown flax. London is to send silveramiths' goods, including aplendid apecimens of plate; and some magnificent collections of teatimonial plate are on their way to Manchester from thence. Among tbe manufactures of our town an effort is making, and the contribution will tocinde a large collection of printed cottons, de laines, and silks. The exposition of the latter description of goods rill also include vilks from Macclesfield, Spitalieids, and other places. The Council, we learn, have not restricted the exposition to articles of home manufactare only, bnt have induced several foreiga houses to exhbit and forward apecimens of their manufactare. As a farourable sample of the apirit in which they have been met on this point, we may mention that one house in London declined answering the application till a partner in Paria had been consulted. His reply was not very favourable, but he added, that in his opinion the Council had adopted "a principle with regerd to this exposition that ought long ago to have been adopted on the contivent, in allowing tbe foreigner to exhibit in compotition, and that the expositions on the continent would never he successful tin they adopted the ume principle." The Council, however, confine tbe exhibition to the production itself, and do not contemplate exhibiting, as at the Parisias exposition, the means of production. With regard to the School of Design itself, it is expected that on thit occasion it will fully bear out the anticipations which the public have been led to draw, and that the eppocimens will show the utility of such institations like thit, where they can bo properly condacted. We are also glad to find that the prizes offered by the Conncil, to stimulate designers of the town generally, bave had a good effect; and that the drawings sent in for competition are anmerous, and many of them talented.-Manchester Times.

RAILWAYS NOW AT WORK IN THE UNTTED STATES,

(Together with the length of each railway in miles.)

Maine, New Hampshbre,

Maseachusetts.
Portiand, Saco, and Portamouth, 50 m . Cneord, 35 m .
Borten and Matae, 56 m .
Bonten and Maine Extenion, 174 m .
Bonton and Lowell, 26 m .
Eletor and Yrovideace, 11 m.
Boadven and Worcouter, 44 m
Eutcitre, 21 m .
Cheriontown tranch.
Eetern, 54 m.
Fitchborg, 90 m .
Manas and Lowch, 14 mo
New Bedford and Tannton, 20 m .
Jorthempton and spragtehd.
Narwich and Worceater, 59 n.
OHd Colozy.
Etenghtom brasch, 4 m
Tuaston branch, 11 m.
Vermont and Masacirvette.
Weat Stoctbridge, 3 mm .
Fextern (117 milea in Mane) 156 m .
Wercester branch to Milbory.
Hocutionic, (10 monthes) 74 m .
comprotieut.
Hetford and New Haven, 38 m .
Antiond and Springfiabd, 25 t m.
amaington (year ending Sept. 1) 48 m .
Attion and Bum Kom
Alura and Rochenter, 78 z.
Asburn and Syracoee, 26 m .
Eutilo and Niagare, 22 m .
Brio (446 miles).
Fria, opened, 83 m ,
Inrem, 28 mu
Hodson and Bertahire, 31 m.
Long Ifind, 96 m .
Mohaink ard Hedson, 17 m .
Saratoge and Schenectady, 22 m .
felonotetady and Troy, 20! m
Byrmense and Uticn, 33 m .
Toanewards, 43 m.
Troy and Greenbanh, 6 m .
Twy and Eratogn, 25 m,
Fite asd Sebenectady, 78 m
New Jersey.
Cumden ated Amboy, 61 m .
Eicabethtown and Somarvilla, 26 m .
Kew Jerwey, 34 m .
Prevera, 16 m

Benver Meadow, 26 m .
Cumberland Valley, 48 m .
Harrisburt and Lapcaster, 36 m.
Hazleton brach, 10 m.
Little Schrylkill, 29 mp.
Blossburg and Corning, 40 m.
Manch Chank, 9 m.
Minchill and Schuyltill Heven, 18 a.
Norristomn, 20 m .
Priladetphia and Trenton, 30 m .
Pottaville and Darville, $29 \frac{1}{1}$ m.
Reading, 94 m .
Schuyltill Valley, $10 \mathrm{~m}:$
Willanaport and Elairs, 25 z.
Philadalptan and Baktoore, 93 n.
Delevares.
Prenchtown, 16 m .
Maryland,
Baitimore and Ohio (Oct, 1), 188 m.
Baltimore and Stugrohatras, 58 m.
Baltimore and Wainington, 38 m . Finginia.
Greensville and Roanoke, 171 m.
Petersbare and Roanoke, 60 mm .
Portemonth mad Bonnoke, 781 ㄹ.
Mchmond, Frederickaburs, and Potou mace, 764 m.
Richmond and Petersburg, 22 m .
Wincheter asd Potomac, 321 m . North Carolina.
Ralefg and Gaton, 84 mb .
Wilmington and Raleish, 161 m .
Sonel Carolina.
South Carolina, 136 m .
Colombit, 66 m .
Ceengiv.
Centril, $190 \frac{1}{2}$ m.
Georgia, 147 m .
Montgomery and Wesk Point, 89 m
Kentuchy.
Lexington ad Otie, 40 m.
Onio.
Little Miandi, 40 m .
Mad river, 40 m . Indiena.
Madion and Indianapolis, 66 m . Canada.
Champinfa and St. Lawrence, 15 m .

FITZWHLIAM MUSEUM.

The Syndicate appointed to repart on the atate in which the designs for tive beilding are left, and of the engagements made with the controcters for the excention of the work, have reported as follows:-
© The Fymdicate find by an eramination of the drawings left by Mr. Besevi (which heve been sent for their inspection by bis brother, Mr. N. Besevi), thet the deriges for the greater part of the work remaining to be acecuted ase in a forward state, bat they conceive that these desfges not hiving been perfected, require, for the completion of the work, the amateree of an architect of the same order as Mr. Basevi in profeasional eminence and shill.
"The Syadicate think th Aifaity dedrate thet the building abould be completed with a clowe shtherence to Mr. Bacti's intentions, to far as they appear is a cetuled form in his deafges.
\oplus The sypdicate have tho surethbed, by inquify of Mr. N. Becent and Tr. Eaker, the atate of peoding enragoments whth M8. Berer, and the reaits af thei toquify will be laid upos the se gistrar's tuble.
© The \&pmalime, contionteg the high profomional charneter of Mr.

a architect of the new Fitzwilliam Numeam, with iastructions to adhere as ciosely as may be to Mr. Basevi's deaigns in enrrying on the work to it completion."

In" secordmee with that report a grace pasued the Senate to appoint Mr. Cockerell architect of the Fitzwilliam Maseum, in the room of the lato lamented Mr. Basevi.

Newcastle Philosophical Socicty.-An excellent paper has been read by Mr. Armstrong (the inventor of the hydro-electric machine,) on the application of water pressure as a motive power, to be supplied from street mains. The lecturer illostrated his remarks by a model of a crade for linting heary weights, and he had the complete control of the motive power, and speed for raising, lowering, or turning round variable loads. He referred to a paper in the Mechavic's Magmexpe of April, 1840, oa the aubject, and wished bis elalm of priority of application of this power to be
 confrmed. The mechanical arrangement wis very perfect. The lectorer exhibited also a machime for circular motion ; a corved pipe, with water prese sure beneath; it a circular disc, or pintoo, with others vimilar to it, arranged at equal distances in the poriphery, and they mro, lize the reetng paddles, made to enter edgewnys into the corver pipe, and to tarn tranaverse to act as pintons; each saccessive piston entering before the preceding leaves the corved pipe. The machine is applicable to coppermill inthen, where a motive power of amount is required at intervala, and the cost of power is eatimated at only one-third the cost of manaal labour.

Astzonomical Obsezvations.-A parliamentary document has just been printed, ia answer to a retarn of Mr. Hume, for a eopy of instruetions to metromumers of the neveral obvervitorles as bome and abromd to the Jer 189-9, with the vumber of vor lumes of atronomtan obeervatone made of each obwervitory sloce that jear. It appears. that no fintructions were nent by the Bourd of Admbtralty to the Astronomer Royal in 1857-8. One volume of metronorical obeorratione te printed in each pear by the Royal Obvervitor. A report la anpualily made in the wouth of June to the Eoad of Villtore by the Astronomer fiogal on the stath of the obvervatery, and communicated to the Board of Admiralis. It is add ed, that at the Ropal Obseryutory at the Cape of Oood Hope no astronomlcal obsermatlons have been printed ilince the year 1839, the metronomer and his malitants laviog been chiety employed to the meeporement of an arc of the merldian. Dtiferent volumos of cetronomical observations made at Greenimeh and elsewhere have been printed alnce 1837, under the superintendence of the Stadonery-omite.
St. Maris Church. at Befzeler.-A local paper says that the resporations of this tine edifice are prograsing astiffactorily, and the work olready executed fa done in a subatantial manier. A berrel draln of cumitent dimenations bias beea ladd at a conalderable depth round the charch, which proves rery eficieat In keaping not only the door of the nare and chancel, but the whole bailding perfecty dry. The faggod ares and perapet wall, and the appronchet to the Ave entrances, wre Aulahed. The foandations of the fibofic have been carefulif examined, and the bepementa of the buttreaset, the walls. mod their roppective wemher moultags, repalred and restored to a conalderable hedgh; so that the itabillty of the structare may so far now be conaddered me secure at when fint arocted. The interior of the crypt in beligs proceeded with, and what bas for apes seemed onty a mipmble-looltipg cellar, choiked. ap with eccumalations of soll, and bones and debris of overy kind, alrondy aspomen a haodsome appearazce.
 That lord Prodbot, anyloud for he bormation, in EDglavd, of a puble natlonal colloetion In linatration of national matiquition, and purmanded that the Brltah Muspom ha the beat and most extenalively spalable place of depouil for such a collection, has made an offer on
 recognize and reserre. He proposet, we belteve, to pretent to the museed, through tho mediam of the Inatitute, and ga in result of the moeting at Wiocheater, hit collection o
 dition thet the trustem ahall undertake to set apart a proper place for collectione of theHad. Sueb la rbe report in naliquarian cirelet; and we hive reacon to bellove that the erample of Lord Pradhoe has already betn Froitrul in other ofiers of a ismilar hind, to the event of the arrangement whet is lts coodition taintng effect. We bave lithe donbt that a done in our teat nutional montilution, of the workt of Briteh and Medieval Art: and the don, in our proet national ianditution, of the worits of Bring hod Meilural Art: and tho manence of the Inslitate will then bive been early felt, in the formation, throagh their means and anthorty, of a departmeat waich has been so long rait to be in pecemary facture of cuch an eatabliabment. At the game time the Inatitate has no intenclon, White minalntering to their harger object, to abandon the formation of Mimilur collectiont for.
 of tta profects is to take advantage of the opportanities afforded by les extended corttopondence, in the colliection of matertals for local historg; A large namber of lmpretilons
 form, it pomble, is compinte colleculon of thepe memorials, for toe mite or their ratuble

It to reported that ea experimental squadron of meam revels will put to sea to try their reopective rates of salling and ateaming, and other foetares, an emelent and sorviesable woints of what, carly in the cocalps epripg, god thai guopery asemcise will be a beedIng fiem in thetr ifficta, is order to aceertala which ermanent to boot adaptod for vemele.

Vemel.		T004		Horse	Power-
Terible 0	**	1,04	-	-	
Petribution ..	-	1,641	\because	-	800
Arespr -.	-	1414	..	.	60
-lindistar	-*	1816	-	-	40
8ampeon (rience)	-		-	\bullet	450
Ardeat (sloop)	-	909	"	\because	20
Eeownt (exen)	-*	2,120	-*	-	400
Blact Eagio. .	-•	4	-•	-	

Earit Paintid Dfcorations．－Some curions remains of the early art of gaintlag，an practiaed In Engiand，bave been hately brought to vitw，at Southerop，in Gloucestershire．The chancel of the partsh church，of the Anglo－Norman ern，requiring restoration，on remoping the zecumniated coatings of whitewash from the wails，it wri diacoverad that it hat becen at one time a perfect gallery of ecriptural and other subjects， not the smallest portion，from the riof to the fioor，bevling been left unaforned．Alost of Giese quaint desipns were too far advancelifin decay to be deciphered；but the Nativity he Anmunclation，and the Decapitation of St．John the Buptist，are still apparent，and how that the recluse and devont dealgners possessed all then known of art，as well as II the learning of the time．A remarkable device for the de：oration of a asered edifice emalns in one of the deep recesses of the lancet shaped windows；it is the figure of a onth，in a red tuntc，shooting an arrow at a red squirrel in a bright yellow tree，the bow edd in the ripht hand．The costume of this figure seems to make the date somewhere sout the middile of the fourteenth centary－five handred years since．
Valdable Discovary．－A French mechanic furmed the idea that by sub－ eting iron drons to the slow cooling procesa which is known to produce a total change a the nature of glast，a new and ureful apecies of stone might be obtained；and as lron－ ross，such as tho large furnaces yleld，is a wholly uselens aubstance．the announced suc－ esarul result of his persevering attempte cannot but be matter of great interest，more upectalls at the present time，when the amelung furnacea of Eugland are in a hilberto nknown stute of activty．The object which the Frenchman sought to eccomplish wht， o impart to iron dross the compactuess and hardness of granite，and at the same time to ave the cost and latour which the heroing of the real stone requires．To this end he zonsrived to let the iron refuee，whlte in a fluld shate，run lnto Iron forms，which were pretously brought to a red beat by helng placed so as to receive the superfluous fame which fasuen from the mouth of the furnace；and in order to inaure the slow coollng， these firms are provided with double siden，between which mand is introduced，which is wrell known to be a bad conductor of heat，the whole ho thea brought agaln to a glow heat，and In llke manner again cooled off．By thie procedure，it is asserted，the inge－ nious discoverer has succeeded in forming pavlay stones，flaga，large building block and even plpes，of any given form，of a degree of hardners and polish，equal，if not superfor， to the beat hewn natural grauite，and at the most trifing concelvable cont．
The Iron Trade in America．－By an arrisal from New York，on Mon－ cay，we have the folloning intereating particulnrs relative to the development of the iron erade there：－＂＇The production of Iron In Penaaglvanta in 1844 was about 200,000 tona and it is eatmated that this year it will amonant to about 330,600 to 400,000 tona．It is， alto atimated from good duta that the total prodiction of in the United staters thit year wil not fall short of 00,000 tonf，and that the consumption will amount to about bov， cons，leaving a deficiency，to be supplied by importation，of about lo0，000 tons．We annex a table exhibiting the quanitity and value

Aggrogate Quan uty and Vulae oi Iron and Sleel imported Into the Ualted statern．

Yeats．		Tons，		Value． Dollara．		Per Ton． Dollart．
1828－29	＊＊	36，314	＊＊	2，417，292	＊＊	68
1829－30	\bullet	40，64．	＊＊	2，340，004	＊＊	56
1830．31	．	81，571	．	2.235 .363	．	49
1831．33	．	73，479	＊	3，697，380	．	一
1532－38	．	80，289	．	3，371，667	－	\cdots
1833－34	\cdots	78，140	．	8，958，396	．	一
1831.35	\cdots	69777．	\bullet	5710.193	－	一
1845－86	．	97 ， $2 \underline{211}$	－	5，839．131	\cdots	－
1836．37	．	102，866	＊＊	6，96：3，188	＊	－
1837．38	．	74，762	．．	4，036，063	－	54
1838－39	．，	115，637	．	6，688，5971	－	67
1839－40	＋	72，769	－	4，341，046	－	59
1840－41	＊＊	112，111	－＊	6，020，416	－	4
18．11．42	．	107，392	．	4，332，000	\cdots	40
1842．43	\cdots	37，405	＊	1，645，651	\cdots	43
$184 x+4$	－＊	105，277	．		－	37
		，261，074		03，837，596		50

Thls table ahows that，notwithitandiag the Immense increase in the conmmption of iron in this country，there has not been ang very great tacrease in the importation，ond that mand fur consumption．－The most extensive works in this country are those of the Mon Sapage Company of Miaryland．Ite present capital is $1,500,000$ dollars，with power to in． areate it to bu 0，mo．000 dollar．Its atock is uwned princlpally in Enrope．These are the only works in the United Stuten where rallroad Irou fit munufactured to any extent，and it is calculated that 20,000 cons can be made in a year．Bome of the eattorn rallroads now bokding are supplied with ralls by this company．The mines of the Mount Savage Com－ peny，and in fact all the iron mines of Murghand，are altuated in the Cumberland coal re glon，which，for the mannfacture ellion，ta and to be superfor to any other．＂

LIET OF MEV PATENTE．

eranted in england from november 27，to drcember 24， 1845.

Sir Months allored for Enrolment，unless otherwise expressed．

John White，of Galford，Lancaster，engineer，for＂certaln Improvements in enginet， machlnery or alparatue for raieing and furciug water．＂－Spaled November 27

Peter Spence，of Iurgh，Cumberland，for＂Iniprovemente in the mamufacture of cop－ peres and alum，＂一Noveinber 27.
Moses Poole，of Scarle－street，Middiesex，gent．，for＂cerialn Improvenents to hluder the oxydatlon of iron to all its varlous atates of cust metal，atet，malleable trou，and aloo $t o$ render malleable lron more hard and durable．＂（A communlcation）－November 27.
Eden Thomas Jomen，of Bristol，manufactaring chemstst，for＂Improvements in the epparatus ueed in the concentration of sulphute acid．＂－November 27.
Wlliam Maugham，of Newport－atrret，Surrey，conoulting chemist，and Archlbald Den－ Iop，the younger，of Upper Thames－street，genl．，for＂Improrements in the mandecture lop，the younger，of pper mames ilreet，geni．，for imprormber 27 ．
Edward Dell，of Woolwich，wine－merchant，for＂certaln Improvementa In apparatus for heating and warming．${ }^{31}$－December 4.
Robert Rettif，civll englneer，of Glasgow，for＂an Improved method of algnaliaing，or telegraphing on ten or land，preventing colifica at sea，and givlog signals of distrest by Improved luraers with glaspes coloured，sod signal cards，aprlleable wollwaye in all the varloan departments，at well as prevantlog of accidents when the trala lo at full apeed， showing the state of the tide In harbours，two the diurnal tor railwaye，towns，vilinges，犋．＂－December 4.
Willam Gonalge，of Neath，metalhurplat，for＂Improvements in obtaining products trom certain ores and other compound of certuln metale．＂－December 4.

Joha Lealie，of Condule stret，Hanover－square，tallor，for＂Improvementa la the com－ buation of gas．＂－Drcember 4 ．
Mowen Poole，of Serle－tiremt，Middienex，gent．，for＂I mprovements In locks＂（A come mindentiun．）－Decembrr 4.
Jamet Mencock，of Kiagton，Jemeice，merchant，for＂Improvements in puiping， decting，and zorting cofrec．＂－Dremeber 4 ．

Archibald Dunlop，jun．，of Thames－street，London，gent．，for＂Improvementa in the manufacture of aersted waters．＂－December 4，

Henry Bessemer，of Baxter House，Old St．Pancras－road，Middlesex，engineer，for ＂certain 1 mprovements in atmospheric propulsion，and In apparatus connected there． whith，part，or parts of which improvements are appllcable to the mannfacture of columas， pipea and tubes，and other parte are applicable to the exhausting and impriling of air and other fuids generally．＂－December 5.
John Roluert Johnson，Alfred－place，Blackfrlark，cbemiat，for＂Improvements in the matethala employed in constructigg and working atmonpheric rallwaya．＂－December 6 ．
Henry Heathcote Rusuell，of Millbank－atreet，Weatminster，civil engineer，for＂Im－ provementi in copistrucifing auspenstun bridget ind fiaducis．＂－December 6.
Josiah Wikinson，of Lincoln＇s Inn－Aelds，gent．，for＂certain Improvements in filerigg water and other fluids．＂（A communication．）－December 8 ．
Heary Augiting Box，of Great TitchGelil－treet，St．Narylebone，decorator，for at A aew method of polifiblng，dyelag，and colouring marble，atone，and certuin other material used in the conatruction or decorntion of houses and otber baildingu．＂－December 10.
Edward Green．of Walrefield，York，engineer，for＂A new method of economising frel， and certain improvements in retaluing and applying hest for generaling steam and heat－ Ing water．＂－Decemuer 10.
Thomas Willims，of Norway－street．Niddlesez，gont．，for＂a certain Improvement or improvements in wrenches or spariners．＂－December 10 ．
Willim Dinct，of Oldaton，near Dartmouth，Deron．Ewh，for＂Improrements in the making and Axing wiodow glang．＂December 10.
George Mordey Mowbray，of Paternotier－iow，London，wholenale draggiat，for＂an Im proved method of communicatlon between the person or persons havlag the charge of a Hilway erin and the controller of itm motive power，＂－December 10 ．
Robert WIlliam Thomson，of Adamsatreet，Adelphl，divll engineer，for＂an Improve－ ment in carriage wheelt，which is also opplicable to other rulling bodien．＂－December 10.
Henry Lawrence，of Wigmorestreet，Cavendiah－quare，gentleman，for＂an Improved b vitte，suitable for barness and other yurposes．＂－December 10.
George Lemch Ashworth，of Rochdule，Lancaster，cotton apinner，and Wilmon Crosaley， of the same place．manager，for＂certain Improvementa ln m chinery or apparatur for preparing and apinaing cotion and other bbrous substance．＂－December 10 ．
Jumes Garforth，of Dnaifinteld，Chenter，endneer，for＂certain Improvements in ma chinery or apparatus for connectlog of bollets，and other purposes．＂－December 10.
Alfred Vincent Newton，of Chancery－lane，mechanical droughtaman，for＂I mprove－ ment in printiag and dyeing varlous fabrics．＂（A communicstion．）－December 10.
Christopher Dunkin Hasi，of Bermondsey，master mariner．for＂Improvementa in the conatruction and adaptation of apparatue for propelling and itearing veesels on water．th－ December 10.
Charles Dowts，of Camden．town，gentlemen，for＂an Improved peper or meterin．＂ Chartes Dow．
December 10 ．
Wlllam Mushet and Robert Musher，Iron founders，of Dalkeith，Scotland，for＂Im－ provementa in moulding lron．＂－December 10.
Thomas Victor Allier，of Qual Salnt Michel．Parts，gentleman，for＂Improvementa in breals or machlaery for stopplag or returding carriagen．＂－December 10 ，
Fredericic Gye，Jun．；of South Lamheth，for＂Improrements in preparing eernted watern，and in veasels to contaln aerated and mineral waters．＂－1 Vecember 10 ．
Moses Poole，of Berle－street，Milddesex，gentleman，for＂Improvements la spparatase to be used for drawing and marking．＂（A communication，）－December 10 ．
Wullam Mac Naught，of Robertson－street，Glagow，engineer；for＂certain Improve－ mentin in the ateam engine．＂－December 10.
Isanc Hawher Bedfird，of Birmingham，for＂Improvements in the manafacture of window and other glage．＂（A communication．）－December 12.
Mowes Poole，of Serie－street，Middlesex，gentleman，for＂Amprorements in Aling bottles and other vesselt，and also in covering，topping，or eecnring liquids and othex mattern in botiles and other veasels．＂（A commonicatlon．）- Decmber 12.
Samuel Cunliffe Lister，of Manninghan，York．gentleman，for＂Improvements in card－ Ing，combing and apinulug twool．＂－Deceinber 12.
Thomas Findler，of Plint，miller，for＂Improverrents In the constructien and opera－ tlon of certaln parte of fint－grinding mills，and other grinding mille or machinery for griadiag．＂－December 16.
John Robert Johnson，of Nelson－spaare，chemist，for＂Improvements in purifylag sas， sud in the treatment of products of gas works．＂－December 20 ．
Henry Manderille Aleade，of New York，America，tentloman，for＂certaln Improve ments in the maunfactura of uread．＂（A communication．；－December 20.
George Ferguseon Wlison，of Belmont，Vanxhell，geatleman，George Grynne，of Re－ gent－street，gentleman，aud James Piliana Wilson，of Belmont，aforestid，gentleman，for ＂Improvements \ln tre
dies．＂－December 20.
Williem Hanula Taylor，of Picadilly，gentieman，and Francia Ronbiliac Conder，of Birmingham，clvil englueer，for＂ceriain Improvements in propelitag．＂－December 20 ． Birmingham，clvil englueer，for＂ceriain Improvements in propeling．＂－December 20.
Jabez Church，of Colchemter，gan engneer，for＂Improvements in the manufacture of Jabez Church，of Colchemter，gat engineer，for＂Improvemen
coke，and in the orens for productag the same．＂－December $\mathbf{2 0}$ ．
Joing Blyth，of Limehoure，englueer，for＂certain Improvements in diminiahing the riak of accidental explosious of gunyowder and otber ubstances which are liable to，ex plode，or ignlte by contact with fire．＂－December 20.
WIMlarn M＇Hardy，of galford，for＂certaln Improvementa in machinery or apparatom applicable to the preparatlon and aplaning of cotton，wool，sllk，flax，and other Gbrous aubstancea．＂－December 22 ．

Alfred Vincent Newton，of Chancery－lane，draughtsman，for＂Improvementa in comb－ ag wool．＂（A commupication．）－Decomber 22.

Semuel Heselune，Jun．，of Bromley，Middlesex，civil eagloeer，for at Improvements in machlnery or apparatus for dreating itones for grinding corn，graln，and other subatances．${ }^{\text {m }}$ （A communlestion．）－December 22.
Philtp Smith，of High－atreet，Iambeth，locit－amith，for＂Improvements la locles，1miches， and other slmiler fasteninge．＂－Dectmber 22.

CORRESPONDENTS．

Mr．Henry Carr，engineer of the Croydon Atmorpheric Railway，in con－ sequence of numerous inquiries，is anxious to state that the authorship of certain papers，which bave appeared in tbis journal，with the initials＂H．C．＂ eppended，is not to be attributed to bimself．

Dr．Shoklitz，Limburg，Anstria．On examining the invention，it appears to us so very impracticalle，thet we heve not thought it worth while so give an account of it．
Next month，＂Preabyterian Cburch，Dublin，＂and＂Railway Key，Cardif．＂

ON LIMES, MORTARS, AND CEMENTS.

From the Report to the Chamber of Deputics of the Commission appointed to consider the propriely of granting a pension for life to M. Vicat, Engimeer in chief, and Superintendent of Bridgea and Highways.

By M. Arago.*

(Translated from the French for this Journal.)
Your Committee, from the time of their first eitting, have fully assented to the motive which suggested the proposition on which you are called to deliberate. They felt convinced that in submitting the great discoreries of our conntrymen to the appreciation of the three constitutional powers of the kingdom, that in having recourse to all the solemnities of the law in regolating the remunerations which inventors may have deserved, they stimolate to the highest degree, and in the most beneficial manner the zeal, the ardour, the perseverance of men of genius.

We apeak, solely of great discoveries. Respecting extengive workg, howerer admirable in themselves, as this character does not legitimately belong to them, it does not appear our duty to invite the attention of the legislative Chambers.
These considerations mark out distinctly the course which we have to take. We have to oxamine whether M. Vicat is to be placed among the privileged men whom posterity will hold in remembrance; whether his works, when they came before the pablic, bad the indisputable character of novelty; whether they possess general interest; whether, in fine, the results arising from them ought to take their rank among the brilliant inventions for which our country justly claims honour.

This brief preamble will justify the detailed observations which you are about to hear. We considered that in sabmitting to analysis the strictest and most minute a merit, so well recognised as that of M. Vicat, we should inspire a salutary distrust in those mediocrities who woold have their names resound in this place. If the Commission have attained this end, they will, without donbt, bave satisfied beforehand one of the objects of the Chamber.

Mantfacture of Hydradlic Limes.

Lime, whether in a state of purity, or, as is more usual, mixed with other substances, is the material ased from the remotest times to bisd together stones and all the constituent parts of baildings. If lime be not foand in any part of the globe pure, the rocks from which it may be extracted-the calcareous rocks-exist almost everywhore. No mineral is so widely distributed by natore.

It is rare that calcareous stones are entirely pure, or exclusively composed of lime and carbonic acid. Their substance is usually made up of silex, aluminum, magnesia, oxyde of iron, manganese, \&c. Thence the terms adopted by mineralogists of argillaceous, magnesian, ferruginons, or magenenian limestones.

These limestones furnish by roasting very different limes. Builders distinguish many kinds of them-rich lime-poor lime-hydraulic lime. Rich lime increases greatly in bulk when slaked; its weight is then more than doubled. This property would be very valuable in respect of economy did not rich limes remain a long time without hardening, especially in the centre of masonry, and particularly where they are kept from the action of the air; rich limes, moreover, are dissolved to their last particles in water frequently renewed; this solubility of the lime in time converts masonry into mere heaps of stones: quay-walls, for instance, which have been supposed to have been built of strong masonry, and with the greatest solidity.

Is it necessary to cite examples to shew that the rich limes will not harden without the action of the air? We may point to the fact that \mathbf{M}. Treussart haviog bad to reconstruct in 1822, at Strasburg, the foundations of a bastion built in 1666, found there the mortar as fresh as if the manoss had laid it some few hours before. A similar circumstance was observed at Berlin by the architects who took down one of the pillars of the tower of St. Peter, built about 80 years ago.

Are we required to shew that the constant action of water dissolves rich limes in masonry? We choose amoug a thousand examples the demolition of the remains of the ancient sluices of the Vilaine. Duting this operation, it was found that, by the dissolving of the rich lime, there remained behind the revetement walls nothing but masses without cohesion, simple heaps of loose stones.
Poor or thin lime has all the defects of rich lime, and moreover, as its anme indicntes, but sligbtly increases in bulk. The use of it is therefore, m much as possible, avoided.

Nottces of M. Vicat's hydraulic lime, for reajatiog the action of water, whll be found is the Arst voltare of this journni, p .4 , apd in vol. YI, p .299 .

No. 101.-Vol. IX.-Pigedary, 1846.

Builders who desire to make their works lasting, mast employ exclusively hydraulic limes, especially for foundations resting on a damp soil.

Hydraulic limes are those which readily harden undor water. This property does not develop itself always in the same degree. The most valuable hydraulic limes begin to set the second to the fourth day after immersion; at the end of a month they are hard and quite insoluble; in the sixth month they assume the nature of certain linnestones, a blow breaks thent with a sharp sound, and the fractare has a laminated appearance.
The natural limestones are not distinguished in general from each other by any particular physical character of their texture, hardness, specific gravity, ur colour, which will enable as to predict what kind of lime they will furoish. The rich, the poor, and the hydraulic limes are imperfectly white, grey, fawn-colored, red, \&c. It is in the internal cornposition of rocks, in the nature and proportion of their constituent principles that the chemists have sought the real causes of the power of hardeniog under water (hydraulicité).
It has been long proved that the most pare limestones, the atatuary marbles, primitive or saccharoid, the marbies of Paros and Carrara, alwajs give by calcination the rich lime ; it is also well known that the property of hardening under water is communicated to lime by particular substances contained in the material of the calcareous rock from which the lime is made. But what are these substances, and in what proportion ought they to exist in the limestone, to pruduce the requisite property in a sufficient degree? On this point opinions have long been divided.
Bergmann (for the greatest chemists have occupied themselves with the question,) attributed the characteristic properties of hydraulic limes to the presence in them of a small proportion of the oxyde of manganese.
Guyton-Morveau adopted the idea of his illuatrious friend. It was evident, nevertheless, that the hypothesis did not afford a general solution : there are known to exist natural hydraulic limes in which there is no trace of the oxyde of manganese. It has even been stated that this ox yde does not possess the property assigned to it. A sluice constructed in Sweden, according to the notions of Bergmann, with a mortar composed of rich lime and manganese, was found so defective that it was uecessary to destroy it a very short time after it was constructed.
The earliest investigations which we are acquainted with on the composition of hydranlic limes, date from the year 1756, that is, from the epoch when Sreeaton proposed for bold task of building the Eddystone lighthouse. This great engineer then examined with the most scrupulous care the natural hydraulic lime of Aberthau, Glamorganshire. This lime had in England a certain celebrity. Treated by acids, it len a residue " which appeared to be a hluish clay, weighing about thth of the total weight of the stone." The reddish colour which this residue nequired by roasting, induced Smeatou to think the calcareous rock of Aberthaw (it was already called liat) contained iron.

Saussure pablished in 1786, in the second volume of his celebrated travels, some observations tending to attribute the hydraulic property of the limes of St. Gingoulph, in Savoy, to the combined infuence of manganese, quartz, and even clay, contained in the calcareous rocks of that locality. It must be added, for the sake of accuracy, that the illustrious naturalist leaves his opinions in the form of simple conjectures.
One mure citation, and we shall have gone over the whole of the researclies which preceded those of M. Vicat.
M. Collet-Descostils, Engineer of mines, having, in 1813, discovered a remarkable quantity of silicious matter in a very divided state in the lime of S^{2} nouches, attributed to the presence of silex, the hydraalic property, which is so energetic, and well known in this lime.
What was wanting in the conjectures of Sneaton, of Saussure, of Descostils? They wanted that wbich transforms simple conjecture into incontestible principles; they wanted the precision and clearness, the neverfailing marks of established truths; they wanted to be resolved and sim-plified-to pass, in a word, by the impulse of a powerful band, from the vague cloudy region of reveries into the place of practical truths.

In his first essays M. Vicat made use of syothesis ; every one who had remarked how much the crystalline or nolecular condition modified the physical properties of certain bodies could not attach, but a limited confdence in the advantages to architecture likely to proceed from the chemical analysis of limes. The experiments of M. Vicat were directed straight to the object in view.
The natural limes of Senonches were the type of perfection. M. Vicat composed an artificial lime, snperior to that of Senouches. He obtained this great result by calcinating, in proper proportions, chalk or pure lime, mixed with clay. By this experiment light succeeded to obscurity, certainty to doubt; the art of building had received the accession of an admirable discorery.
We do not suppose that this merit can be contested. We cannot believe that the desire, unfortunately too common, of robbing a contemporary of honor to the profit of the dead, will influence any one to exaggerate the ralue of the enoays, hypotheses, and conjecture, previous to the labours of the engineer of the bridge of Souillac. It may be proved incontestibly that M. Vicat is not less really the discoverer in the subject of hydraulic limes than Newton was when he published the Theory of the Composition of White Light, or than Franklin was when he proposed lightning condnctors to the civilised world. The great Sneaton essayed fruitlessly to render the rich lime hydraulic by the addition of clay without preparation; 8meaton mistaking, after repeated trials, the necessity
of roasting the clay, showed, moreorer, more clearly than all reasoning cotald do, the immense distance which separates simple appearances from realised and complete discoveries.
M. Vicat bas carried out his felicitous investigations in all respects relating to the nses to which lime is appled in masonry; the art of burning lime, of dispelling, in the most effectual and economic manner, the oarbonic acid, one of the constituents of calcareous rocks, is indehted for important remarks to the labors of our celebrated engineers; after the precise directions which these labours explain, there cau be no hesitation as to the methods to be adopted to foresec at once what will ultimately be the qualities of any given samples of lime. To understund the processes which must be followed to slake limes of different sorts, we may consult with much profit the result of the experiments of M. Vicat; the choice of the materials which unite with limes of all kinds to form mortars will no longer be a matter of blind routine.

The necessity of being concise compels us to mention merely under this head the interesting researches of M. Vicat. We suppress, for the same reason, the analysis of the refined theoretical considerations, by the aid of Which our engineer explains the gradual and prolonged action of limes on the substances with which they are combined in the miring of mortar. We regret also to be compelled to refrain from the agreenble task of retdering full justice to the admirable experiments of M. Berthier, one of the best chemists of whom France can boast.

Cements.

M. Vicat has occupied himself with equal success in investigating the properties of cements.
Arcbitects distinguish cements from mortars by their natural appearances. The and contained in mortar exists there in the form of gravel more or less coarse, and more or less apparent. The composition of cement appears homogeneous, although it contains lime, silex, and alumina.

No substance bas gained more celebrity among buiders than that known at the present day as Roman Cement. This cement, called originally aquatic cement, was made in the year 1796 by Mesars. Parker and Wyatt. It was the result of gubjecting to heat certain nodules of limestone of an ovoid form found in great abundance at some diatance fron London. Roman cement, mixed rather thick, solidifies in a few minutes either in air or water. There are certain wurks, the Thames Tunned for instance, which could not have been executed without Ro. man cement. Under other circumstances this rapid solidification is a real obstacle; and in such cases it is necessary to substitute hydranlic lime, of which the price is much less.

Parker and Wyatt manufactured their cement, and found a sale for it throughout Europe; builders used it, but no one took notice of the real cause of its singular properties. The discovery of this cause belongs incontestibly to M. Vicat. We Gid, in fact, that after having indicated the proportion of clay which renders lime hydraulic, the skilful experimenter published in 1817 this categorical observation-
"When we increase the proportion (of clay) to 33 or 40 per cent., we obtain a lime which does not slake; but it pulverises readily, and prcduces, when wetted and nixed up, a composition which quickiy sets under water."

The proportion of clay indicated is precisely that of the substance manafactured by Parker and Wyatt. M. Vicat made, then, from 1817, every kind, not only of hydraulic lime, but also of Roman crment.

The duty assigned to your Committee does not permit the citation of facts purely scientific ; they therefore desire to remark that the discovery of our engineer respecting cements comes, in a great measure, under the description of practical applications. Here, as in the case of hydraulic limes, and as in other cases to be explaided hereafter, geology, enlightened by M. Vicat as to the industrial value of limes containing a large quantity of clay, has directed its attention to these useful iuvestigations, and the French builders, not long since dependent on England, Lave dis. covered a great number of places where they can prepare Roman cement. M. Vicat himself bas pointed out more than 400. This new branch of industry is carried on with much success in many departements of France.

If the limits of this Report permitted, we could mentiou here many persons who have deserved great credit by the discovery of quarries of Roman cement, and, among others, a skilful engineer, whom the Chamber of Deputies reckons among its members, M. Lacordaire.

Pozzolanas and Tarras.

The natural pozzolanas, in the hands of ancient architects, tarras iv the hands of mediaval architects, have played too important parts to have eacaped the attention of M. Vicat. Despite all the difliculties of the subject, success, as regards practical results, has completetely crowned the patient and laborious investigations of the engineer.

The name of pozzolana is given to a volcanic substance found in great abundance in the neighbourhood of Pozzala, and of Rome.
Tarras is a conglomerate, aleo volcanic, found on the banks of the Rbine, and especially in the environs of Andernach.
To render rich lime hydraulic, it is sufficient to wet it in proper proportions with pozzolana or tarras. What more simple or convenient mode could be imagined? But in many localities the expense of conveyance renders it impossible to use either pozzolana or tarras. Many attempts have been made to prepare substances which possess the same properties, Chaptal thought he had resolved the problem by very much calcinating certain schists or ochreous clay. But even supposing the properties of
tarras and pozzolana to be reproduced in this manner, the difficulty was only shifted. The schists experimented on by Chaptal are not common in France; and there is, moreover, in the operation recommended, even if ochreons clay be employed, a circumstance the very high temperatare requisite, which opposes an irremediable difficulty.
M. Vicat resolved the questions into its elements. This solntion is as follows:-

Artificial pozzolana superior, or at least equal to the best Italian pomzolana may be obtained by a simple manner of using clay of the purest kind. This method consists in slightly calcinating the clay, in zerely driving of the water of combination, and always keeping the temperature between 600° and 700° centigrade ($1 \cdot 112^{\circ}$ to $1 \cdot 292^{\circ} \mathrm{Fahr}$).

The mind rests with satisfaction ou the solutions of problems of practical art when they possess this admirable simplicity. On the other baad, one is astonished to see an operation so easy that the workmen call it a dewr de main, earich a kingdom, or rather the whole world with a gubitasce eminently useful, and which appeared as if it must inevitably remain the privileged property of a corner of the earth once the seat of volcanic eraptions.

We should fail of our duty if, after having cited the discoveries of M. Vicat in the difficult subject of pozzolanas, we omitted to mention that M. le Geperal Treussart, whose premature loss tho whole army deplores, has left a work on this subject filled with useful observations and valuable remarks.

The publications of M. Vicat have long since satisfied all the necessities of art, for the execution of works in fresh water, in canals, rivers, and streams. The nea water gave rise to grave difficulties which no one had anticipated. M. Vicat has the double merit of having pointed ont the evil und indicated the remedy.

According to new and quite recent researches of M. Vicat, sea water has some tendency to decompose cements of every kind. It attacks indiscriminately those which contain rich limes or hydraulic limes, natural or artificial pozzolanas. This tendency results from the preseses in the water of certain acids which hare great affity for lime. M. Vicat has found the means of resisting thia prejudicial effect and removing it. He is at this time preparing to point out the limes, pozzolanas, and cements which, prepared according to the old methods, will resist the destructive action of the sea; and with respect to others, to shew the modifcations to Which they must be subjected, to acquire the same power of resistance. It will be apprehended that in so nice a question M. Vicat will be in, no haste to announce his discoveries. We may, bowever, state that the public will in a short time be put in possession of them. It is just to state that they already tend to the rejection of a certain kind of pozzolana proposed for the port of Algiers, and the employment of which has led to such disastrous consequences. The reserve wisely mainlained by M. Vicat gives him the opportunity of supporting his aystem by decisive experiment : the artificial pazzolanas employed with so much success at Calais by M. Néhou, Eogiveer in Cbief, are found to satisfy fortuitously the conditions, laid down by M. Vicat in his new labours, of preservation against the sea.

Statistics of Hydaadide Limes.

The materials for building recommended by M. Vicat did not meet with the usual fate of new things. The proofs of superiority ware palpable, and the old system at once acknowledged itaelf vasquiahed. Scarcely had a few months elapsed after the publication of the memoir of the Engineer of the Souillac bridge before the artificial hydraulic lime was brought into use at Paris for quays, at the landings of the bridge of Jene, for the construction of four large abattoirs, and for the wurks on the Canal St. Martia.
Since then the artificial hydraulic lime has been less uged; for it is now usually substituted for the natural lime of which the price is lower, and which possesses the same qualities. But we hasten to repeat the remark that it is principally owing to M. Vicat, that constructors daily avail themselves of new wealth in every part of the kingdom.

Our engineer had too much peuetration to avoid the conjectpre that if, according to his discovery, line became hydraulic by the simple addition of clay, there must be innumerable formations of argillaceous lime-stones throughout the kingdom capable of atfording bydraulic lime by roasting. The idea having taken possession of M. Vicat, be has for twelve years explored almost every one of our Departemenis. His publications under the modest title Statistice of Hydraulic Limes, have revealed this invaluable wealth in numberless localities where its existence was not even anspected. The Departenents where natural hydraulic lime is found in the greatest abundance are Lot, Lot-et-Garonue, Tarn, Dordogae, Garel, Ardeche, Drôme, Gers, Charente, Hérault, Cher, Allier, Nièvre, Yonne, Cóte-d'Or, Ain, Isere, Jura, Doubs, Haut-Rhin, \&c. Of twenty-four Departements already explored, there are no more than six or seven, of primitive earths, where bydraulic lime is entirely wanting.

We proceed to relate two facts which exhibit in a striking manner what was the state of the knowledge of practical men respecting the wealth of our country in hydraulic limes when M. Vicat commenced his exisninations for it.

When he visited Marseilles, a new basin was being dug. The contractors were at great expense to get rid of an immense quanlity of calcareons refuse. On examination M. Vicat found that this matter would fornish sufficient hydraulic lime for the constraction of the whole basin.

The following is a still more remarkable fact, especially when estimated by its consequences. -

At the time of constructing the canals of Bretagne there was great diffealty in procuring hydraulic lime. M. Vicat undertook the mission of risiting the localities, and almost immediately discovered in the quarries of Ponpean, near Rennes, between the beds of rich line which had been worked from time immemorial, a bed of greenish marl known by the same brule-mort-vert, which the lime-makers rejected. This rejected bed. after the examination of M. Vicat supplied not only all the works of the Vilaine, and the canal of Isle-et-Rance, but has become the sole recouree of that part of the kingdom for all hydraulic works.

Economical Conbiderations.

The price of lime almost always forms a considerable item in the cost of megoory. Liwes have very different properties which determine the dumetion of works nod the zoode of executing them. In countries where litse is abundant and of good quality, the buildings last for ages without hating required grest oxpenset for their erection. In such districts ha. bitatione, evea for the poorest classes, may be built with strict regard to healhfulaess and preservation from accidents by fire, by the violence of stormas, and the debernctive effecto of inundatione and great rains. It is © account of such useful applications as these that the labours of engipeers and chemists deserve the attention of the public authorities and the legiolature. Let ut consider for a moment this phase of the question : let as aeek to value the number of the services which, in this respect M. Vicat hes rendered to his oountry.
It was at Paris that the discoveries of M. Vicat firat received a powerful impalee from the infnence of M. Brayere, it is at Paris that we find a raleation of the eoonomy effected by these discoveries.
Before 1818 the hydraulic works of the capital were almost all exeeated it plaster or with rich lime. Thence arose the annual expease of pumproses and costly repairs. From 1818, the date of M. Vicat's first poblicetion, recourse was had to hydraulic lime. It is hydraulic lime which given to now buildings an almust infoito durability.
The aame solidity might have been obtained with the lime of Senonches ; but the lime of Seconabies conveyed to Paris costs 80 to 90 francs the cabic metre, while the lime from the quarries from which plaster is abtaiced, that lime which, before the researches of M. Vicat, was rejected as refose, costs aboat 40 france. This difference of cost reckoned for 37,000 cabic metres of lime, the quantity used in Paris from 1818 to 1841 is the construction of sewers, reservoirs, canals, \&cc. gives a total savieg of more than $1,500,000$ francs.*
One of the members of your Commission superintended part of the works of the fortifications round Paris. He has laid before his colleagnes detailed tables, from which it is concluded eatisfactorily that at Belleville alone during the years $1840 \cdot 1$-2-3-4 a saring of more than half a million [of francs] bas been the consequence of using certain lime which was found oa the spot, but which would have been considered of no ralue before the learoed publications of M. Vicat.
We now prooeed to offer some tables, in which the saving resulting from the laboars of the celebrated engineer appear on the grandeat scalo.

Staices and Barrages construcled in France in accordance rith the lawes of Aug. 5, 1821, and of Aug. 14, 1822.

[^7]LARGE bRIDGES of hewn stone, \&c.
To establish a comparison sufficiently exact between the cost of hridges erected on caissons and piles, and of those which, at the present day, are erected on a foundation in concrete, it will be necessary to take some unit of comparison which is independent of the nomber of arches and their size. We will chouse the area of the surface between the parapets for our par-
pose. pose.
Froceeding thus, it is found for bridges, where it has been possible to substitute the modern method for the ancient that the square totre costs, on the average, 1,312 francs.*
Now, for bridges erected under altogether similar circumstances, bat on foundations in concrete, the square metre has cost, on the average 625 francs. The proportion of the expense of the old system to that of the new, is as 100 to 47 . According to this calcuhation, if a bridge erected on fuundations like those of Jena or of Sevres cont, on the average, $2,600,000$ francs [104,0002.] a gimilar bridge built in the modern plan would not cost more than $1,222,000$ fr. [48,8801 .] consequently the saving would be $1,378,000$ francs. Since 1818 there have been 19 great bridges built on foundations in concrete, which, therefore, may be reckoned a saring of $26,182,000$ francs $[1,047,280 \eta$].

Of bridges of the average size baving a span of 15 or 10 metres for each arch the number is about 30 . For each, reckoning in proportion there would be a saving of 235,000 francs, or fur the 30 the saviog would be $7,050,00 n$ francs [282,000L].
As for bridges of a siugle arch of 15 to 20 metres apan, there have been constructed more than a thousand during the Interval of five and twenty years on royal higbways and departenent-roads. In each of these the average saving by the substitution for coffer dams of hewn stone with concrete, in the foundations has been 25,000 francs, or for the whole $25,000,000$ [$1,000,000$.].

Subpension Bridges.
Prior to July, 1843, there were anthorised to he constructed 327 supension bridges of one, two, three, or four spans. If we calculate each to have a span of 100 metres [325 feet English], each costing 100,000 francs $[4,0001$.$] , deducting from this sum 30,000$ francs $[1,200 l$.$] , the$ cost of the plalform and means of suspension, there remain $70,000 \mathrm{fr}$. for the foundations and masonry. Experience having showed that for bridges, as for looks, the expense has been reduced more than one half, there wonld be grounds for reckoning here a reduction still more considerable; still, wo will estimate it at one half, and thon the saving will be $22,890,000 \mathrm{fr}$.

Recapitulation of the Economy effected.

Other constructions in which economy has been effected but withoat sufficient documents to shew the actual amonat are,

1. Wooden or iron bridges, on foundations of masonry.
2. Bridge of a single arch, of from 6 to 10 metres span.
3. Marine quajs, dikes, basins, \&c.
4. Foundation of public and private baildings in towns.
5. Military Worys.

It is important to remark, that we have not taken into account the question of time. Now, in these matters, time is money, aud becomes, financially speaking, a consideration of the bighest importnnce. The new system of foundations allows the execution of works to be done in one or two years that formerly took five or six. There is therefore in this respect also a considerable seving.
One conclusion springs ont of all the preceding evidence-it is that supposing the construotive arts such as they were before 1818, the period of the discoveries of M. Vicat, the greater part of the important works in course of execution would have stopped by the considerations of time and expense.
If we did not estimate, how mach the remnaeration demanded Will acquire value from the imposing manaer in which it is granted, we should have omitted all these sums and the accompanying remarks. In a purely financial point of viev, what are 6,000 francs pension beside the colossal economies for which the country is indebted to the labours of M. Vical?

The Woarb of M. Vicat compared with thoae op the Ancients

Certain of the learned profess an admiration, absolute, passionate, for the monnments of antiquity. According to them, the Greeks and Romans bed discovered everything in the constructive arts. The solidity of edifices yet remaining show that the moderns are the real disciples. M. Vicat hus simply re-discotered the methods practised in Egypt, at Athens, at Rome, of which the remembrance was lost in the times of barbarism.

Although we do not perceive any injury that these reflections will do
to the labors of M. Vicat-although the discovery of lost truth seems to us altogether similar to the discovery of a now truth-your Counmission has devoted itself to a minute examination of the pretended superiority of the ancients over the moderns in the art of building. We have examined, moreover, whether this superiority can be maiutained on reference to the progress due to the discoveries of our illustrious engineer.
"Some of the Roman mortars have lasted eighteen centuries, A great number of modern buildings are in a deplorable condition!'

This comparison is essentially erroneons. To give it any value we must draw a parallel between none but the greatest monuments of the two epochs. The regults will then be very different to those on which the learned support their position.

The samparts of the Bastille were of extreme solidity even in the centre of the masonry. It was necessary to use gunpowder to destroy them. Gunpowder was also found necessary a few years ago to destroy at Agen the ruins of a bridge built about the year 1200. M. Vicat bimself ascertained that the mortar of the bridge of Valentré, built at Cahors in 1400, surpassed in hardness that of the ancient theatre, of which the ruins are seen in that town.

Ancient architects, like modern, built according to the nature of the materials at their disposal, and also according to fináncial exigencies, either edifices which were indestructible, or with the same exterior forms, temples, palaces, and houses, without solidity. The constructions of the latter class rapidly disappeared. The others alone have resisted the ravages of time and the violence of the seasons. The blind admirers of bygone ages, have they forgotten the words of Pliny, "The cause from which at Rome so many buildings fall is the bad quality of the cement."?

If, as it is pretended, the Romans knew certain methods of preparing good mortar, we ought to find this substance in all their public monuments with qualities almost identical. Now this is not even the case in comparing different parts of the same edifice. The Commission have remarked in many publications of M. Vicat's experiments which throw great light on this subject ; those, for instance, made with morlar taken from different points of the bridge of Gard; these experiments give resistances varying in the proportion of one to three.

Those who devote themselves to these comparisons shonld remember that time acts unceasingly in foundations on the hardness of mortar. The mode of action by which this conglomerate hardens-acquires adhesive-nese-is still a matter of controversy among the learned. But no one can deny that there are circnmstances under which it is impossible for this mysterions action to continue for a long series of ages.
It would seem forgotten, that in considering the knowledge of cements in the art of building, we are not reduced to simple conjectures. Vitrupias, contempora:y and architect of Aggustas, has left a detailed account of the precepts in use among the builders of Greece and Rome. These precepts are far from justifying our unreserved admiration of the ancients.
The ancients were not in possession of any exact notion concerning the chemical modification that calcareous stone undergoes in the kiln, a modification by wbich its friability is so much increased. Neither did they know anything of the kind of action which restores to the disintegrated molecules of this stone converted into lime, the adbesion and harduess of which they had been deprived by heat. The efforts of Vitruvius to give a plausible explanation were ineffectual. The same was the case until the chemical discoveries of Black respecting carbonic acid, with the attempts of the most illustrious successors of Vitruvius, Scamozzy, Philibert Delorme, Perrault, \&c.

One single word will disabuse all those who persuade themselves that the theoretic errors of these great architects are of no consequence. Take the instance of Philibert Delorme: to arrive at a maximum of solidity in edifces, he thought it necessary that the lime ahould be taken from the same bed of limestone as the materials of the masonry. This direction, if it had been followed out, would have involved an enormous increase of expense.

Builders who regulated the choice of their lime by the colour of the rock from which it is obtained; who were not acquainted with any natural hydraulic lime: who were lavish in mixing with their lime broken pottery and brick rubbish, cannot, without great injustice, be compared with modern constructors. Putting aside the excellent observations on the properties of natural pozzolanat, on the possibility of using this material to make enormous artificial blocks to be sunk in the sea, we find that the Romans have taught us nothing essential in the art of bailding.

For the rest, every attempt to exalt the merit of the ancient in the constructive arts only redonads to the merit of M. Vicat. The best mortar extracted from Roman monuments has, after two thousand years of antiquity, a hardness precisely equal to that which M. Vicat obtained with good limes in the short period of a year or eighteen months. In applying the comparison to average resistances, the advastage greatly preponderates for the modern mortar.

Opinions of Chemiets and Builderg on the Laboves of M. Vioat.
The importance of M. Vicat's discoveries is palpable. For about a quarter of a century all builders have taken advantage of them: now, in such matter, it mast be readily nnderstood that it mast rest with the actnal practitioner to pronounce a definitive judgment. Nevertheless, not to neglect any kind of informatlon, the Commission have thought it right to gather the opinions of chemists and engineers, who are occupied, with the
greatest snccess, in the application of science to the arts. In this examination we have met with the most flattering recognitions of the labours of the celebrated engineer; no one appears to have contested their novelty.

Is the first memoir of M. Vicat on the production of artificial hydraulie lime presented to the Academy of Sciences? Tbat learued body decide on the motion of MM. de Prony, Girard, and Gay-Lussac, that the memoir shall appear in the celebrated collection entitled Receuil des Sarants étrangers. To this mark of approbation, the greatest that academic commissiuns ever give, was soon added a proof of esteem sought for through. out the world ; the Academy named M. Vicat one of its correspondente.

The Council of Bridges and Highways, called upon at the commencement of 1818 , to declare its opinion on the artificial formation of hydraulic lime, declare, by their organ, the accurate and skilfol M. Broyere, "that the advantages of the new method were innomerable, that they dispensed with the costly employment of real pozzolanas, and that of stones of large dimensions, lavishly used in modern buildings, in spite of all the examples to the contrary afforded by the Romans and Goths." "We may predict," adds the sagacious Inspector-General, "that some years hence, no other mortar will be allowed in public buildings. When M. Vicat made known the first part of his statistical labours on the hydraulic limes of Frevee, the Academy decreed to him one of the medals founded by Montyon.

Let us take the opinion of M. Berthier, the most competent judge of the labours of M. Vicat who could be found in the whole world. "The researches of M. Vicat on limes and mortars ought to be placed in the rank of the best works due to members of the corps of bridges and bighways. His discovery relative to the manufacture of artificial hydranlic limes is of the highest importance In making it public, M. Vicat has acted the more nobly, because he might have made a considerable fortune either by selling the lime or by securing a patent of his invention."
M. Dumas, (we will qnote only those of the greatest celebrity in science) declares in his Chimie Appliqué aux Arts, that the solution of the long debated question of bydraulic limes is due entirely to the labours of M. Vicat. In speaking of artificial pozzolanas, the illustrions chemist observes, "It is, however, from labours in the Iaboratory that M. Vicat has been led to the important discovery-with which he bas eariched the arts. The state iu which he found the question renders the discovery the more remarkable."

We could borrow proofs equally fattering from a host of writers, and especially from two excellent articles by M. Chevreuil, inserted in the Journal des Savants. These opinions, notwithstanding the high anthorities from whom they emanate, ought not, doubtless, to prevent the commission from making the minute enquiry of which the Chamber has heard the results, but your commission, since they have by their own researches been led to the opinions professed by the Academy of Sciences, and the judgments of Gay-Lussac, of Berthier, of Chevreuil, of Domas, of Bruyere, desire to avail themselves of a circumstance which proves they have not erred.

To resume;
M. Vicat was the first to demonstrate that the properties of natural hydraulic limes depend on clay distributed throughout thoir substance, that is, on a particular action which silez united with alumina exercises on lime when these substances are brought by heat to a proper state.
M. Vicat has been the first to make hydraulic lime of all kinds, not only in small quantities in the laboratory, but in large quanties for the fonndations of his bridge of Souillac. The piers of this noble bridge rest on t foundation of concrete formed with artificial hydraulic lime. Since the labours of M. Vicat, means have been found of procuring, whenever it is necessary, lime, which readily sets in water.
M. Vicat has liberally given his discovery to the public. It is certain that if he had secured by a patent the privilege of making the artificial hydravlic lime, this engineer would have acquired an immense fortune.

The first discovery of M. Vicat has faded, if the expression may be permitted, beside the important results deduced from it. We have seen this indefatigable engineer traversing France step by step, seeking beds of calcareous marl, clay formations in which were united naturally in proper proportions, the constitutive elements of hydraulic limes; we have followed him during twelve years in this search which has become so successfal that there are now known on French ground by the sole labours of M. Vicat 900 quarries capable of furnishing bydraulic limes, while before there were reckoned only eight or ten. M. Vicat has so well appreciated the honour of having discovered and placed in the hands of constructors, such wealth hidden iu the bowels of the earth, or been rejected at its surface, that in order to complete this work he has recommended the advancement to which his standing and merit give him claims uncontested and incontestible.*

The works of M. Vicat on pozzolanas have been equally decisive. They have proved that the parent clays afford artificial pozzolanas superior, or at least equal to the Italian; and as nature has distributed clay with a kind of profusion on the surface of the globe, nothing prevents us at the present day from easily obtaining excellent pozzolana in erery region.

France, which before the time of M. Vicat, was tributary to England for Roman cement, could now supply the wants of the whole of Europe.

The general system of foundations, by means of concrete, dates from the

[^8] commenced,
discoveries which we have analysed, and particularly from the admirable worts of the bridge of Souillac. Engineers, to their honour, never refuse to ansign a large share to M . Vicat of the success which they obtain, even when circumstances permit them to have recourse exclusively to natural hydraulic lime, and natural pozzolanas. Thus, for example, on the occasion of the entirely successful completion of the new basin for repairing veasels at Toulon, founded 42 feet above the level of the sea, the able director of these works, M. Noel, wrote on the 24ih of April last to the Uader Secretary to the Department of Pablic Works; "At a time when the lew respecting M. Vicat is about to be discussed, it will not be superficous to bring to your knowledge a fact which gives a new importance to the Ieboars of the illostrious engineer who has done so much for the adrancement of our art."

Thanks to the laborious and patient researches of M. Vicat. works oace doemed imposcible, are executed at the present day safely in every peart of the kingdom, and without requiring enormous expenses.

Wo will not repeat the numerical computationa already given respecting the economy effected in public works by M. Vical's invention. Those computations should be relained in every mind. It would, in fact, be difficult to cite a discovery which, in the short interval of 26 years, has produced such colossal and useful results.
The Commiseion are unanimously of opinion, that in voting, withont some modification, the law which has been proposed by the Minister of Pmblic Works the justice rendered to M. Vicat would not be complete. They would desire that the pension of 6,000 francs should be accorded more explicitly under the title of a National Recompense. This is the odly change of which the Goverament proposition appears to us susceptible. Wo trast that the Chancellor, ajopuing our opinions respecting the services rendered to the country by M. Vicat, will assent to the amendment which we have the honour of suggesting, and which has already received the easction of the Minister of Pablic Works.

ATMOSPHERIC TRACTION.

Sre-Since the appearance of Mr. Haydon's paper in your November Part, I have been inclined to paysome attention to the atmospheric system. The farourable resalts actanlly obtained anter so few attempts led me to expect some error in the numerical example apponded to the foremontioned paper, especially when the length of the formula and the dificulty of substitation were taken into account. I made several attempts with the formula as it now stands, but in every case arrived at different resolts, and each of them at variance with that deduced from the work done each stroke. One source of error seems to hare arisen from taking $\mathbf{R}=99$, instead of its exact value $\frac{1053009}{1067374}$ for if $R^{n}=\frac{1}{8}$ we get $n=111$ or 87, nearly according as the former or latter is used. I was surprised at the difference in the results, but it teaches us how careful we onght to be to ensare approximations in our results. In my application to the example at Dalkey, I shall suppose the whole length of the connecting pipe to be used for propelling the train, as local circamstances compelled them in that instance, to place the engine at an inconvenient and extraragant distunce from the main tabe.
Let $\boldsymbol{\omega}_{\boldsymbol{n}}$ denote the work done during the nth stroke of the air pamp.
W_{n} denote the work done at the end of the nth stroke.
W_{n}^{\prime} denote the work done during the motion of the train, their having been n atrokes of the air pump before the train started.

W, the usefol effect commanicated to the tabe piston.
Then it is found by Mr. Haydon, that

$$
\begin{align*}
& w_{n}=15 \text { ak } R^{n-1}\left\{1-\overline{n-1} \log _{e} R+\frac{S-A}{A} \log _{6} \frac{S-A}{S}\right\} \\
& W_{n}=15 a k\left\{\frac{1-R^{n}}{1-R}\left(1+\frac{S-A}{A} \log _{E} R\right)\right. \\
& \left.-\left(R^{1-R n-1}\left(1-\frac{n-1}{n}\right)^{n}\right) \log _{e} R\right\} \\
& \text { Where } R=\frac{B+C}{A+B+C} \text { and } A+B+C=S \\
& \because(1-R)=1-\frac{B+C}{A+B+C}=\frac{A}{8} \text { or } \frac{S-A}{S}=R \text {, } \\
& \cdots w_{m}=15 a k R^{n-1}\left\{1+\left(\frac{S}{A}-\pi\right) \log _{\&} R\right\} \tag{A}\\
& W_{n}=\frac{15 a k}{1-R}\left\{1-R_{n}+R_{n} \log _{e} R^{n}\right\} \tag{B}
\end{align*}
$$

after the proper substitations have been made.

The correctness of the simplification may be tested in the following manner: $W_{n}-W_{n}-1=$ work done at the nth stroke-that done at the end of: the $\overline{\pi-1}{ }^{\text {th }}$.

$$
\begin{aligned}
& =\frac{15 a k}{1-R}\left\{1-R^{n}+\mathbb{R}_{n}^{n} \log _{e} R-\left(1-R^{n-1}+\overline{n-1} R^{n-1} \log _{e} R\right)\right\} \\
& =\frac{15 a k}{1-H}\left\{R^{n-1}-R^{n}+\left(-n\left(R^{n-1}-R^{n}\right)+R^{n-1}\right) \log _{\varepsilon} R\right\} \\
& =15 a k R^{n-1}\left\{1+\left(\frac{1}{\left.\left.1-R^{-n}\right) \log _{e} R\right\}}\right.\right. \\
& =15 a k R^{n-1}\left\{1+\left(\frac{S}{A}-n\right) \log _{q} R\right\}=W_{n}=\text { work done during the }
\end{aligned}
$$

nth atroke. Let n have such a value that $R_{n}=\frac{1}{} n$ then $n=87$ nearly.

$$
\begin{aligned}
W_{B 9} & =\frac{16 a k}{1-K}\left\{1-\frac{1}{8}-\frac{1}{8} \log _{6} s\right\} \\
& =\frac{5 a k}{1-R}\{2-(1.098612)\}=5 a k \frac{S}{\Lambda}(90138771) \\
& =720 \mathrm{~S} \times 90138771 \mathrm{lb} . \text { raised one foot. }
\end{aligned}
$$

Where $\mathbf{8}=$ vol. of the tube and air-pump cyliader expressed in feet.
$W_{8 y}=720 \times 10873 \cdot 74 \times \cdot 90131771=6,927,242$.
$W^{\prime}, 9=5 \times 176.7 \times 8688=8,835,720$.
$W=10 \times 176.7 \times 8588=16,174,926$.
$W_{01}+W_{j,}^{\prime}=15,274,926=$ work done.

$$
W=15,174,906=\text { usefal effect of Foric done. }
$$

Subtracting, 87,979 $=$ loss.
Hence the loss is about $1 \frac{1}{}$ of the power given out by the engine.
Lat $B+C=V=$ vol. of tabe to be exhausted $; v=$ vol. of air-pamp cyliader; $\mathbf{S}=\mathrm{V}+\mathrm{v}$.

$$
\begin{aligned}
W_{n} & =\frac{15 a k}{1-R}\left\{1-R^{n}+R^{n} \log _{e} R^{n}\right\} \\
& =15 a k \frac{(V+v)}{v}\left\{1-R^{n}+R^{n} \log _{a} R^{n}\right\} \\
& =2160(V+v)\left\{1-R^{n}+R^{n} \log _{d} R\right\}
\end{aligned}
$$

Where V and v are expressed in cubical feet.

$$
\begin{gathered}
W_{n}^{\prime}=2100 R^{n} V \log _{\varepsilon} \frac{1}{R^{n}}=-2160 R^{n} V \log _{4} R^{n \cdot} \\
W=2100 V\left(1-R^{n}\right) \\
W_{n}+W_{n=2}^{\prime}=2160\left(1-R^{n}+2160 v\left\{1-R^{n}+R^{n} \log _{E} R^{n}\right\}\right. \\
\cdot \cdot \operatorname{Loss}=2160 \times v\left\{1-R^{n}+R^{n} \log _{4} R^{n}\right\}
\end{gathered}
$$

For the loss in the Dalkey line we have $=9160 \times 134 \cdot 65 \times 1(\cdot 90138771)=$ $720 \times 134.65 \times \cdot 90138771 \sim 87,387 \mathrm{lb}$. raised one foot high.
This agrees very nearly with the former result, and therefore we may suppose that the necessary loss is correctly determined.
This we see varies as the valume of the air-pump. If W_{n} be a maximum $\frac{d W_{n}}{d n}=0$
$0=R^{n}-1 \log _{4} R\left(1+\left(\frac{S}{A}-n\right) \log _{6} B\right)-R^{n-1} \log _{8} R$, or $0=\frac{S}{A}-n,$.
$n=\frac{8}{4}=79$ nearly.
$\mathbf{R}^{\prime 9}=\frac{18}{}$ nearly, which agrees with Mr. Stephenson's experiments.
It may be observed that the above formalas are true, for positive integral values of n. By examining the diagrams which accompany the Re port to the Difrectors of the Chester and Holghead Railway, it will be found that the pressure of the air in the promp became equal to the pressure of tho atmosphere sooner than we should have expected from theory. This would no doabt be carsed in some measure by the heat developed during compression, but before the stroke commenced, the pressure in the pamp cylinders generally exceeded that in the branch pipe-so that probably more air rushed into the pump each time than was sufficient to re.
atore the equilibrium with the main tobe and its retreat being cat off by the valve, it was expelled by the piston.

I remain,
Your obedient servant,
F. Bashporta,

St. John's College, Cambridge, Jan. 16, 1846.

[It may be as well to inform the reader who is not acquainted with mathematics, that the object of Mr. Bashforth is not to controvert the principles of Mr. Haydon's paper, bat to effect simplifications by whioh the arithmetical computations are greatly facilitated. We are, we believe, indebted to these gentlemen for the only accurate mathematical investigations of a very important subject, hitherto published.]-Ed.

सrvisurs.

A Treatise on the Stean Engine. By the Artizan Clab. Part XVIlI. Dec. 1, 1845 : Loggman, 4to. pp. 16.
This work which has several times been the snbject of our reviews is now drawing to a close. Of the twenty-four monthly parts in which it is to be completed, three-fourths are now published. It cannot be denied that a vast mass of information is collected in this work, thongh some portions might bave been omitted without hanm. Of the mathematical investigations, parts are of a very doubtful description, and there is not mueh in the theoretical portion of the work which possesses originality. With respect to the practical viows, howover, the cause is very different. The writers have a way of lookiog right at practical questions which is exactly suited to the nature of the subjects; so that even when we dispate their views we are compelled to confess that they are fairly set before ns.

The present number is illuatrated by a large plate of details of the West India Mail Packets Clyde, Tweed, Tay, and Teviot, exbibiting in a very clear manner the forms of the cylinder and alides, the metallic packing, \&ce. The most interesting subject treated of in the letter press in a comparison of the merits of the principal forton of direct action engines which are divided, into five classes. 1. The Gorgon; 2. the double cylinder; 3. the steeple; 4. the donble cros-bead ; δ. the oscillatiog. We will give part of the observations made on each class.

1. The Gorgon Engines (thoee which have the connecting rod between the piston rod and the crank). "The objections to the Gorgon plan of engine are numerous and weighty. In the first place, only a very short atroke is attainable by this plan of engine; and although we are not of the number of those who subscribe to the doctrine, that expansion can only be productive of Its proper efficacy in a long oylinder, yot. wow believe that an eogine of a moderate stroke will work more steadily and smoothly than when the stroke is short and the reciprocation rapid. There is, moreover, a greal waste of steam at the ends of the cylinder when the stroke is short; and although the amount of this loss cannot be great, yet it is too great to be altogether disregarded. We do mot attach the Importance attributed by some to the deranging influence of a short connecting-rod upon the slide valve, but we attach a good deal of importance to the increased friction consequent upon the thrust, when the angle the conrectiog-rod makes is great,-not on account of the power absorbed, but on account of the dificulty of keeping the bearings from heating. To this objection it is 00 answer to say, that the frition of a direct-action engiae is as littie or kess than that of a beam engine; the vice being, that the friction is not fairly distributed, but so concentrated at particular points as to be productive of injury iv engines of the common proportions.
*There ls, however, a far more serlous defect of the Gorgon variety of engine than any wo have yet mentioned. It involves the use of a largo paddle.wheel by the elevation of the shaft, rendered necessary to afford room for the stroke; and the largeness of the wheel gives too great a velocity to the float boards, by which means a considerable proportion of the engine power is diesipated. There is nothing better known, than that in -all cases where there is a great disparity between the speed of the wheel and the speed of the ship, a large amount of the power is wasted in throwing the water back from the wheel, instead of being employed in forcing the vessel forwards; and in the Gorgon plan of engine, as applied to ordinary sea-going steamers, astious loes from this mource mast be perpetually going on, or else the engine anat be working under its proper speed and power. These objections apply to all short connecting-rod engines, of which the stroke is small and the shafl high; and in our eyes, they carry sufficient weight to jastify the condemaution of this species of engine in toto."

Several varieties of Gorgon engines are then brought under reviewthose by Boulton and Watt in the "Centar," by Miller and Ravenhill in the "Eclair," by Fairbairn and Co. In the "Odin," \&c. The first introduction of the Gorgon class is attributed to Messrs. Seaward, and the same defect is alleged against every one of the numerous varieties-that of having the shaft too high. The next clases treated of are
2. The Steeple Engine, "which is the lavention of Mr. David Napiar" has the nerit of being very compact and effectual, and in the case of river vessels, offers advantages which have led to its extended adoption. The protrusion of a large portion of machinery above the deck is, however, much objected to in the case of sea-going vessels, and Messrs. Tod and Macgregor now give the preference to the double cross head engines in such cases. It is a fault, we conceive, to muke the air-pump with the same stroke as the cylinder. Where the air-pump bucket moves with a great velocity, the valves strike so forcibly as to wear themselves out very soon. The injury might, bowever, be mitigated by the use of the Coraish equilibrinm valve, both for the delivery valve and the air-pump backet."
3. The Double Cylinder Engines. "Of this plan of engine we cannot ap* prove, and we think Messrs. Maudslay would act wisely by giving lt ap in favour of some less precarious arrangement. The Slamese plan involves an increased leakage, Increased friotion, and increased radiation, while the grand purpose of direct action-baving of room-is only imperfectly fulfilled. Should either of the pistons leak steam, moreover, or olther of the stuffing bores leak air, a twist must be given to the parts of the engiae, such as would arise if there were more pressure apon one half of a piston than on the other. Such a strain cannot, in our judgment, fail to be sooner or later injurions. The arrangement also infolves the use of a low eowdenser which the air-pump cannot thoroughly drain, and the pitching of the vessel, by causing the water to run from one end of the condencer to the other, sometimes causes the uir-pump to make an ineffectud stroke while at other times the air-pu, op is choked with water, which it can oaly with dificalty deliver, and fractures occur in consequence."
A. long description is then given of the engine of the Ellen Mac Gregor. A very decided preference is given to the furth and fifth classes above all the rest, and as the treatment of the question involves points long dispated among engineers, we will at the risk of making a rather loug extrect, give the decision with some few omissions.

4, The Double Cross-hend Engines. "The nature of the arrangement is the double cross-bead engine will be made manifest by a refereace to the engines of Mesers. Bury or Messrs. Fawcett. From the top of the pistonrod a cross-bead and side-rods proceed as in side-lever engines; and from the lower ends of these side rods other side-rods ascend to a cross-head, situated above the other cross-head, and which, by means of a short arm, communicates with the crank. By this expedient, the benefit of a long counecttrg-rod is gained without the disadvantages incidental to the plans already mentioned. There is only one air-pnmp in Messrs. Bury's engise, but it is double-aoting, so that, in effect, it is equal to two. A common objection to this description of pump is, that the air accumulates underneath the piston; but it will be remarked, that a provision is made to counteract this tendency, the bulk of the air-pump piston being made to travel past the port, so as to expel air as well as water. We may here remark, that it appears expedient in this engine to avoid injecting from the bilge into the lower condenser, as coal-dust and other foreign matters might be drawn into the air-pump chamber, which would resist the descens of the piston, and probably occasion fracture.
"In Messrs. Fawcett's engine there are two air-pamps, which are wrought by independent bell-cranks off a crank in the intermediate shaf The inferior cross-bead is made in the form of a cross, from the ends of Which two rods proceed to a cross bar working vertically in guides on each side of the cylinder, the effect of this arrangement is to bring the centros of the rods on each side of the cylinder in the same plane, whereby the twlat inchdental to an overhanging pin is avoided. Messra. Fawcett have; we understand, since this design was made, more nearly approximatod to Messrs. Bury's arrangement; and we believe their engines are likely to become a type which many will follow and many more approve."
5. Oscillating Engines. "The most plausible objection to the oscillating engine that we are aware of is, that the cylinder and atufing-box will speedily become oval, on account of the pressure necessary to communicato motion to the cylinder. The existence of a tendeney of this kind cannot be disputed; but it is so small in amount as to be imperceptible in practice ; and although, after a lapse of years, it has been found that oscilhating cylinders becume slightly oval, yet the amount of ellipticity is, for the most part, actually less than is foand to exist in the cyliuder of common sidelever engiues, after the same amount of wear. This, indeed, if the question be considered attentively, is by no means surprising; for the common parallel motion, if in the least degree out of adjustment, will exercise a most severe pressure upon the cylinder; whereas the maximum pressure that can be exerted on the oscillating plan is onty that requisite to overcome the friction of the pivols on which the cylinder oscillates, of which the amount is insignificant. Upon the stuftiog box, indeed, she tendency to wear oval may be inore operative, but, to counteract this tendency, it is made of unuspal depth, and a very substantial bruss bush is fitted into its interior portiot. The piston rod, moreover, is made of cast steel ; and, with these precautions, oscillating engines are found to work, for a namber of years, withous inconvenience from the causes mentioned.
"Many nantical men, and some engineers, have objected to osclllating engines on account of the movement of the cylinder, wbich, they imagine, would beoome a formidable evil in the case of a vessel rolling heavily at sea. These objectors do not seens to have remarked that the rolling of the cylinder in neither dependent upon, nor proportionate to, the rolling of the mhip, but in regulated exclusively by the movement of the piston; and we
mally do not see vhy mass of matter, in the form of a cylinder, should be more formidable or intractable in fte movements than a similar quantity of matter in the form of a side lever, orin any other shape whatever.

16 It has also been objeoted against the oscillating engine, that the duction passages are more tortuous than in common eagines, oo that the steam gets out of the cylinder less freely. We do not believe such to be the fact, if the comparison be made with the rommon run of marine engives; and in practice, no dimioution of efficacy from this cause is appreciable. The fact is, all the objections that have been raised to the oscillating engine ert merely hypothetical; they are antioipations of defects to be found out in large engines on the oscillating plan, and would probably be plausible emongh to carry some weight, were it not the fact, that they have been completoly controverted by experience. The remark, indeed, is heard sometimes even yet, that the oscillating method may do very well for small enginas, but is of doubtful efficacy for large ones. But the definition of lange engines has been contiausily ohanged, to eacape the contradiction experience afforded, and that size is, in every case, decided to be large, Which just exceeds the size of the oscillating engine last constracted. It is plain, however, that the grounds of this scepticism are being fast contracted; and, indeed, we think it requires a little controversial iotrepidity to set down engines of 62 -inch cylinders, which is the size of those of the " Black Ragle," as among the aumber of small engines. And if eagioes of this tive are fousd to oprerate well-mad those of the "Black Eagle" have been foned to perform most satisfactorily-it really appears to ns impossible to sappose that engines of 5 or 10 inches more cylinder would not be found correspondingly effective."

The points here discussed are many of them of that complicated nature, that independent reasoning will not suffice for the decision of them. Tbe altimate verdict must depend on a much more extended experience than we at present possess. However, notices such as the above, in which engines of each kind are examined together and their defects compared, have the happiest effect in removing prejudices.

Weale's Quarterly papers on Eagincering. Part IX, quarto, p. p. 210. 9s engravings. Weale, High Hulborn.

The present Part of Mr. Weale's eeries of magnificently printed and Illastrated volames, is that for Michaelmas 1845, but the publication of it has been unaroidably postponed to January 1846, owing, as it is stated, $t_{0}{ }^{\text {a }}$ the engagementa in Railway matters of two of the gestlemon contri. butors." There are four papers in the present number; of which the first and third may be considered together, as both are ohielly of a historical matare; the subjects of them being respectively "the Progress of Machinery and Blanofactares in Great Britain, from the earliest times to Queen Elisabeth," and "a memoir of the Thames Tunnel. Section II., by Heory Law." The frrat of these papers gives a historical account of the progress of the arts, year by year, in England ; the principal enactments sfecting manufactures and inventions, the importation of foreign improvementa, \&c: Some of the notices are very carious and interesting. -In 1404 we find Henty IV. ordaining "that none henceforth shall use to multiply gold or silver, nor ase the craft of multiplication under the pain of felony." The paper closes with an account of the disputes between Elizabeth and her Parliament, respecting the royal, fondly-cherished, privilege of granting patents for monopolies.
Mr. Law's paper is also interesting, and will be very acceptable to those who feel the value of tracing the history of Engineering. This branch of knowledge is much neglected at the present day; we seem content wlth ascertaining the actual state of Engineering, and care but little to know how and by whom the advancement of practical science has been effected, The paper on the Thames Tunnel supplies a very important point in the anoala of mechanics. It details in distinct and forcible language the wonderful skill and patience by which the difficulties attending that great Work were overcome, and deserves to be read with the greatest attention.
The second paper is entitled "Practical and Experimental Researches in Hydraulics, by R. H. Peacocke, E. C.;" the object proposed is to suggest formalae for calculating the discharge of water from pipes, \&c. The first inveatigation which the author makes, tends to show that the curve which water assumes when discharged from a pipe is not a parabola. It mis be as well to remark, in limine, that the form of the curve in which water meteally falls is never taken to be exactly a parabola; because it is matoral to conclude that if a projectile in air do not describe a parabola neither will falling water.' Mr. Peacocke, suggests a formala for calcalating the curve of falling water in the following terms;
"The hydranlic curve consists of ordivates of a parabola plus, (somethaes minon) a certain constant quantity which increases arithmetically as the corresponding abscissw increase." p.s.

It is not very easy to see how a "certain cunstant quantity" can increase arithmetically; and we find out afterwards that this quantity is no factor
at all, but something to be simply added to, not multiplied by, the length of the ordinate. We apprehend Mr. Peacocke's meaning to be-that his curve is found by adding to, or substracting from, the ordinates of a parabola, quantities proportional to the corresponding absclsse. For instance, in his first experiment he substracts from each ordinate the decimal part .07 of each corresponding abscissa, in the second experiment he substracts 009 of each abscissa, \&cc. But one great defect which seems fatal to his formola is, that it leaves quite undetermined what proportions of the abscissae are to be substracted. These decimal parts .07, .09, \&cep are wholly empirical, and only sultable for the particular cases to which they are respectively applied. He, himself says, of his "factors," as they are termed throughout,

"In Experiment	1. The factor is -.07.		
$"$	2.	Ditto	-.09
$"$	8.	Ditto	-.8 minute quantity not ascertained
"	4.	Ditto	+.03
"	5.	Ditto	0

On compariaon of these factors, and consideration of them with reference to the lengths and diameters of the tubes, and the amounts of "head"-it is not observable that the factors follow any definite law; though it is probable that a greater number of experiments would have proved the exiatence of a definite law. But the farther prosecution of the subject in that way, though it would have been interesting, was not oeceasery to my present purpose."
So that we really cannot ine what way we are the wiser for his experiments. In two ont of five of them he does not determine any "factor" whatever, and in the remaining three the factors apply only to the particular cases and suggest no general law.
It is important to remark that Mr. Peacocke merely obwerved the form of the curve near the orifice. His experiments for the determination of the curve do not extend to a fall of four feet below the diacharge'pipe. Now it is very possible the proposed formulm anay represent a curve, resembling that of falling water near its source, but widely diverging from it at a great distance from the source; for with short lengtha of the curre, errors would not be easily detected. It mag readily be conceived that by Mr. Peacocke's syetem of "factors" (determined, it is to be observed, separately for each case,) he may get a formula which coincides with the results of his experiments as far as they extend, but not much farther ;and we must be excased for adding that it is also posable to conceive the existence of a formula of eatirely different shape, and involving altogether different functions, which would represent the furm of the curve both near and at a distance from the origin.

The experiments are followod by an examination of formula, proposed by Mr. Smeaton, M. Prapy, Dr. Yoong, Cheralier Dubuat, M. Eytelwein, Scc. for the discharge of water. The following conclusions are ultimately nade.
"lst. How nearly the experiments are a mean of the two extreme formulæ, namely, those of M. Eytelwein and M. Geniegs.

2nd. How nearly the experiments are a mean of the two next formula, namely, those of Mr. Smeaton and Chevalier Dubuat.

8nd. How very nearly the experiments are a mean of the two most nccurate formule, namely, those of M. Prony and Dr. Young.

I think no scientific man will, after satisfying himself that my calculations are correctly made from M. Eytelwein's and M. Genieys' directions, make use of either of these gentlenen's formula."

Having some curiosity to know on what data the condemation of Eytelwein's formulæ, which has considerable reputation, was founded, we turned to Mr. Peacocke's examination of that particular formule, and fourd that he had by his own showing, taken the value of one symbol at one-fourth of that intended by Eytelwein. He says that. Dr. Young understands the symbol d in the formula " to signify the diameter, (of the discharge pipe) while I understand it to mean the bydraulic mean depth, or one-fourth of the diameter of the pipe," and then adds in a note that he finds on reference to the original work in German, that Dr. Young isright, but that he himgelf was misled by the Encyclopedia Britannica.
"I bave, since this essay was in type, referredito M. Eytelwein's original work in German ; and have found that d sigaifies the diameter, consequently the writer in the Eucyclopædia Britannica has (unintentionally of course) mis-stated M. Eytelwein's formula."
The paper certainly evinces great labour, but such an error as the abore is rather a serious one; and the writer must not be surprised to find that in a subject which has baffled the sagacity of the acutest philosophers, the proposition of new empirical formala will be regarded with distrust, uoless thoy be sapported by a weight of testimony far exceeding any hitherto collected.

The lat paper is a report of tho I astitute of France, on M. Aruolett's oyatem of Almospheric Railway. This paper is translated and preparad
for pablication by Mr. R. Mallet, A B. CE., who prefires an introdaction explaining "the views and objects" which influenoed him in pablishing the report in Figlish. After assigning various reasons, he brings forward the following in a paragraph by iteelf.
"My principal inducement, however, has been to make readily available to the English engineer the mathematical notes of M. Lame, appended to the report of the commission."
Now when we find, as we presently shall, that these " mathematical notes" are not only incorrect, but that there is scarcely one line free from gross errors, we can scarcely be expected to give great credit to Mr. Mallet, for his judgment in selection. It is necessary to state that M. Lame's investigations exclude the supposition of leakage in the main pipe: the reason, stated in the body of the report, is that " as this defect of the apparatus and the loss of power which it occasions have not jet been snfficiently considered, we shall neglect it in comparing the two systems."

We take the first dozen lines of the "notes" as a sample of their general character. The object is to calcalate the power required in the preliminary exhaustion of a tube of the length Λ and section S, from a density H to a deasity η.
"We will assume the tube to have a fixed bottom, taken for the origin of x, and that it is closed towards its other end by a moveable piston, P, beyond which the tube is indefnitely prolonged.
We readily perceive tbat the power sought is equal to that which will be required to draw ont the piston P, placed originally at a distance x $=\frac{\Lambda}{H}$ from the fixed bottom to the distance Λ. H being the density of the air contained in the tabe of the length $\frac{\Lambda \eta}{H}$ let p be the elastic force of this air for any length, x; we then have

$$
p=\frac{\Lambda \eta}{x} \text { or } \mathrm{H}-p=\mathrm{H}-\frac{\Lambda \eta}{x}
$$

and the power sought will be given by the definite integral.

$$
\begin{equation*}
\int_{\frac{\Lambda \eta}{H}}^{\Lambda} \delta\left(H=\frac{\Lambda \eta}{x}\right) d x=S \Lambda\left(H=\eta-\eta \log \cdot \frac{H}{\eta}\right) . \tag{1}
\end{equation*}
$$

In this calculation we first of all observe that the alternating action of the air-pumps, and the infuence of the external ralves (those through which the air is expelled from the pump) are totally neglected. But the whole amonnt of error is not perceived till we come to see to what use this formula (1) is applied. The conclusion from it is thas expressed, at p. 14. «Hence we conclude that in the English systom, the a vailable power expended, however the engine work, is exactly equal to the work done."
Now the fall force of the reasoning amounts to this-the passage quoted above, and commencing "we readilsperceive that the power sought is, \&c." assumes that the power expended may be measured by the uceful effect produced: having made this assumption, M. Lamé gets a formula from it, which be concludes that the power expended is equal to the ureful effect produced, that is-he assumes a proposition in order to prove the trath of it.

The mathematical reader will have no difficulty in seeing that this logic is as bad an example of reasoning in a circle as can possibly be found. But we want, if possible, to convince the unmathematical reader-for it is he who is most likely to be injured by errors so gross as this appearing in a work like the "Quarterly papers." M. Lame totally overlooks the loss arising from the employment of an elastic agent for communicating power. This siuple considoration, as we said last month, will shew that the power expended cannot be mathematically equal to the effect produced-the alternating action of the pump-piston alternately dilates and condenses the air in the pnomp-dilates it while draining it from the main tube - condenses it while expelling it into the external air. Consequently all the component particles of the air in the pump are first drawn further apart, and secondly are brought closer together, than they are in their natural state. Now to suppose that no force is expended in thus continually altering the constituent arrangement of the particles of air is equivalent to asserting that the change takes place spontaneonsiy, that the molecules can of themselves approach and recede from each other-that is, that they have a kind of vitality in them, an inherent power of moving shemselves.

It may seem bold to attack opinions sanctioned by such high authority as that of M. Lame; but philosophy does not recognise the weight of personal teatimony. It is the obvious daty of the reviewer to point out errors wherever be finds them, and his daty is only increased in importance
where errors seem confirmed by the celebrity of their adrocate. The proposition of M. Lame, to somewhat vary the view of it, may be stated thas:-The requisite exhaustion might be produced in the tube by moving a piaton within it through a certain distance; and hence the force required is the same whether the effect be produced by this hypothetical arrangement, or by that really employed in practice. That is, provided the result be the same, the means of effecting it are matters of indiference! Now this assumption that no more force is lost by the use of air-pumps than by an arrabgement more direct, but entirely imaginary, what is it but an assumption of the very question in debate, namely, whether the power, expended by the air-pumps \&c., be equal to the useful effect? It is clear that the mechanical means by which the effect is produced cannot be neglected in the calculation, for it would be easy to contrive machines which would effect the requinite exhaustion with a loss of 99 per cent of their power.

It is very true, that the investigation of Mr. Bashforth, in another page of this namber, shews that the loss under consideration is but omull ; bnt the mathematical trath remains independent of the actual amoont of the loss. Whether that amount be 1 per cent. or 09 per cent., the fact remains the same, that mathematics fonnded on the assomption that the effect produced is equal to the power expended mast be erroneous.

If any confirmation of this opinion were requisite, the following extract, from the "notes" of M. Lamè, almost immediately following the one made above, is perfectly conclasive:-
"Thus the power expended to form the vacuum in the tabe before the starting of the train is to the whole power as ($2-\log .3$) is to 2 , or since the hyperbolic logarithm of 8 is $=1.09861$ - the time of working of the engine is to the time of transit of the train as 2 is to 1.09861 , that is to say, a little more than double, or more exaety, as $9: \delta$."

Here it is asserted, that for a working pressure of 10 lb . to the equaro inch, the preliminary exhaustion will be always of of the whole power arpended. And it is particularly to be observed, that this conclusion is independent of the length of the main tube, or the size of the air pamp; whereas, in truth, the power expended in the preliminary exhauation depends most materially on the relation between the solid content of the pump and that of the tube. Every tyro in pneumatics knows that the density of air in an exhausted receiver depends on a formula in which the number of each stroke appears as a poroer or index. For instance, if the capacity of the pump and receiver together were to the capacity of the receiver alone as $20: 19$, the density after the first stroke would be expreseed by $\frac{1}{}$; after the second stroke by the square of $\frac{10}{}$; after the third by the cube of $\frac{18}{}$; after the fourth by the fourth power of $\frac{18}{3}$...... after the handredth by the handredth power of 98. Now these considerations, which are to be found in every elementary book on pneumatics, are totally neglected by M. Lame, not only in the passage here quoted, but throughout his investigation.

The "mathematical notes" next discuss "M. Arnollet's syatem," in which magazines of power are obtained by the exhaustion of large airtight reservoirs. The mathematics are here founded on the same reasoning as before-that is, the alternate action of the pump and the proportion of its size to that of the tube are quite left out of sight. It wonld be worse than useless to quote conclasions obtained ander these unsatisfactory circumstances.

What adds greatly to the regret, excited by finding these calculations in a report by a commission of the Institate of France, is the circumatance that M. Arago's name is attached to the report.
Engineering seems fated to be particularly unfortunate, in being obscured by incorrect mathematics. Were the confused heaps of mathematical symbols which beset the path of the engineering student merely worthless, we wonld not say one word respecting them. They might safely be consigned to oblivion. But, unfurtunately, these errors have the most pernicious effect on those who are least able to discover them. Mathematics of the very worst kind are constantly receiving the highest sanction when applied to engineering. In any other department of acience the authors would infallibly meet with condemnation. We can only give general advice to the student who is likely to be affected by these evils, -never to take on trust any mathematical conclusions except those sanctioned by time, and embodied in works of accredited anthority : respecting all new investigations, we recommend him to reject them altogether antil he feels his physical views sufficiently matured to enable him to investigate and confidently decide for himself.

RAISING THB SPIRE OP A CHURCH.
 (Prom the American Fromilin Jowrnal.)

" Aecount of the Raiging of the Spire of the Natiolfy, in Spring Garden, Philedelphia cownty." By N. LE Bron, Architect.
The Doric tower on which this spire was raiced, faces the east, and is 90 feet is height; it is strengthened at the angles by four buttreases, projecting at the base four feet ; the projection of these buttrestes is diminished at four ctages in their height. The interior figure of the tower at the base is a mpare, but mid-way it assumes the figare of an octagon by gathering over the brickwork at the anglen; the whole forming a construction of the meet solid character. The octagonal spire, which was flaished complete in froat of the tower previous to rising, is 80 feet high, inclading its crowning ornaments ; its width at the base is 12 feet 6 inches.

The spire was raised by means of two derricke situated on the north and sooth wall on the top of the tower, and placed about 18 inches behind the front posca of the spire, or about 3 feet back from the front of the tower, aad were 13 feet, 6 inchet apart, allowing about 6 inches on each side between them and the spire. Their feet were made convex and fitted into correaponding cavities worked in the oak sleepers which were securely bolted down into the sills of the spire, which sills were themselves secured to the tower by $1 \frac{1}{2}$ inch rods 36 feet long, and buift in the anglet of the
tever walle To svoid all the strain being thrown on the top of the walls at these points, diagonal braces were placed, extending 40 feet down the tower, and as an additional precantion to prevent the derricke from alipping at the heels, they were connected by lashinge fastened to iron bolt passed through them,-the heads were connected by two tackle blocks, which were only of use to keep them in their position till the epire was being raised. The guys from each of the derrickt, extended in three directions over the neighbouring commons.

The spire was connected with the derrickn by four double lashings, (each end of which was fatened to one of the spire posta at the foot, and two opans; the belt, which connected the spans, was 30 feet high above the base of the spire, (heing about 5 feet above the centre of gravity) and passed through the straps of the parchase blocke. The falls from the treble blocks on the derrick to the leading blocks, were in the interior of the tower, and the two capstans used, were.placed in the main story of the church, and were each manned by twenty men. Attached to the base of the spire were three gays, and at about 85 foet from tho hend were four more guys, all secured to gry poats.
. All the arrangemento having been made with the greateat care, on the 10th of Pebruary, at two o'clock in the afternoon, the raising was com. monced, and it was performed with the greateat eave. The apire wat kept plumb by the management of the gays attached to it. As the derricke were but 42 feet high, and the belt to which the purchase blocks was fastened was 30 feet from the bese, (at which height the distance from each derrick head to the spire would be about 3 feet,) there would be but 6 feet between the blocks when the spire would be raised;-they would thus necessarily bave lain almost horizontal, and caused a great strain on them; to avoid this strain, as the raising was progreating, the north and conth derrick grys were alackeaed to make the purchase block work more perpendicularly.

When the spire had been ralsed to its proper height in front of the tower, the two weat derrick gayn were worked by two crabe to draw over the derricks and swing the apire to its deatined porition. It had been deemed most prodent to work them in that manner, as in the hanling in of the back gays in the usual manaer, an oscillatory motion might have been communicated to the apire, which would have rendered it dificult to manage at this moat critical moment. The raising lasted an hour and thirty minates, and thirty minutes were required to secure it firmly to the sills on the tower by the iron straps;--thus the whole operation occupied two hours.

METHOD TO PROJECT CIRCLES ISOMETRICALLY. By Tzomas Prosser, C.E., New York.

Fig. 1. Draw the two Ibometrical diametert ; (i. e. the two exi-conjugate diameters of the ellipse which is to represent the circle,) unite their vertisen so at to form a rectagic with its diagonals; circomscribe the whole with a circle paning through each angle of the parellologram, the sides of which will thus form chords to its segmente; with the chord of half the arc of a lesser segment as radius, describe another concentric circle cutting the diagonals of the rectangie, at a, a, a, a.

From each angle of the rectangle as centres, and with ita largest side as radius, describe arca cotting each other within the rectangle at at b, b.

Fmm the ame centres, and with the diagonal of the rectangle m radias, describe arcs on the opposite side of the figure, as at c, c.

Prom each of the points a, a, a, a, as centres, describe arcs pasaing through the vertise of the isometrical diametera which are on the aame side of the conjugate axis, but on the opposite side of the transverse one. From the points b, b, and c, c, as centres, describe arce in contiouation.

REPORT FROM THE INSTITUTE OF THE FINE ARTS ON

 PUBLIC COMPETITIONS."Gentlemen-Competitions io art are now so frequent and so fully responded to that, withnut sound principles in their management, they must afecasarily be very injnrious to the artiats, however advantageons they mиy sppenr to the public; for instunce, in the case before us, if $\mathbf{1 , 0 0 0 l}$. has to be competed for, and 6 fiy artists enter the lists and spend 1,800l. of money and an amount of time equal to twenty-nine years of human life, as this iuquiry will demonstrate, they evidently lose 1.800 . and the whole of that time, anless there is compensation hy reputation, by acquired knowledge which may be turned to account, or in the sale of the competition pictures. If wholesome condition of pnblic taste, good sense in the arrangements, and strict justice in the awards at competitions, would, in some measure, afford this compensation, but the usual modes adopted in thrse trials of skill afford none; on the contrary, they are atteoded with many circumstances that embitter the feelings, aggravate the sufferings, and injure the reputation of enthusiastic competitors. Such a conrse must ultimately be injurious to the public as well as to the artist. The system has indeed much of the excitement and immoral teadeacies of a lottery.

In order to arrive at a better principle, we have inquired into the results of various competitions in different ages, and in several countries; we have ondeavoured to trace the amonnt of competency in the judges and of equity in the mode of arrangement, or of good faith in the superintending authorities. Aroung the ancient Greeks various plans were adopted, according to the more or less popular political institutions of the commusity. Where the arts flourished most, public opinion, in whatever form expressed, was the basis of public patronage. In some cases thr commuaity, considering the competing a rtisis most interested in a fair decision, actually left that decision to them; iu obers the opinion of the people was paramount; but even then suggestions from the artists were uttended to with deference and reapect, and not disregarded or condemned as is too often done among us. When Phidias and Alcamenes competed for a slatue to be placed on a columa or other elorated situation, at frst sight all opinions were in favour of Alcamenen, but Phidias demanded that both figures should be placed at the inteuded elevation, previous to the a ward being made. This was done, and such was the consideration of perspective effect by the one artist and its neglect by the other, that the people no sooser saw them at their required elevation, thao they changed their opinion, and decided in favour of Phidias. In this instance it is clear that the judges, i. A. the public, were not fully competent to their task, but it is also obvious that such artists as Alcamenes would have been equally unfit or eved worse; for, in all probability, relying on their practice and skill, they would not have taken the trouble to raise the competing statues to the proposed elevation, and in all likelihond they would have been more tenacions of a first opinion than the people were.

In the case of the citizens of Cos choosing a statue of Venus from two by Praxitelles, so far from delegating their judgment to artistu, they selected, from a mutive of delicacy, that which the technical connoisseurs denuunced as inferior. Posterity has decreed that in this, good sense triumphed over conventional excellence.

Much has beeu said of a mode of deciding some competitions among artists in ancirnt Greece, in which the competitors were each allowed two votes, under the notion that in the ballot, each would give one vote in farour of his own performance, and the other to the best of his rivals; as though all the candidates, ufter indulging a selfish conceit, would, as soon as that first impulse was gratified, become perfectly candid; as though the act perfurmed hy one haud, and its motive, were anknown to the other? Unless they were strictly honuorable and impartial, it is more likely that they would give buth votes to their uwn work, or the second vote to the most unlikely rival ; thus might the least talented stand at the hend of the poll: we have been informed of occurrences which conform this opinion, Ou one wconsion at one of our distinguished institutiona, a candidate was elected to au limporiant office, for which he was so totally unft, that the self-degraded electora had to request their own nominee to resigu; on another, an individual of considerable repotation, after proposiag and muking a warm eulogy of a friend's qualifications, was proved, by the unadimity of the vokes in favoar of bamself, to have sacrifced that friend to his own conceit. If candidates are honourable und true, oue vote is as good as two; and to it would be if they were all selfiph and cunoing.

Early in the fuurteenth century, a very important competition took place at Floreace, between Bruneleschi, Donatello, Ghiberti, und four other eminent sculptore; for under good and homonrable regolations, the greateat were not loth to compete. Subjects, to be executed in bronze, for the ornament of the gates of the Buptistery of $\mathbf{8 t}$. John, were coufided to their enulution, each bring provided, at the public expense, with every con-
venience of stedio, fureace, and other accommodation, that could eusure sacess, and a sum for personal expenses. Having done so much for the comfort of the artists during the period of their exertions, a competent tribunal nest received the consideration of the Flurentines; thirty.fuarmen of tagte and talent, some artista and some antateurs, wern appointed judges to determine which was eotitled to especial almiration, and public employment. Their votes were divided, and no decision obtained from them; but the magnanimous candonr of Bruneleschi and Donatello, who had oach the same number of rotes as Ghiberti, at once settled it in his farour, and proved the tribunal incompetent : those geacruss rivals gaw du rwom to doobt his superiority in that contest ; and posterity has sanctioued their opinion. The incompeteocy of this tribuoal was, however, but n-getively bad: it allowed the acales of justice to remaio in doubtful suspension. but it did not actually reverse its tendency, and cloud the prospects and fanse of a deserving candidate. A similar diffidence, or modest ignorauce, was remarkable when Leooardo da Vinci, aod Michael Augelo Buodarotti, made their great trial of skill at the Cuvocil Chamber; the rplendour of the one did not eclipse the majesty of the other, as the success of one man's talent invariably smothers the fame of every other in our modern competitions.

In France, during the period of religious animosity, from the reign of Francis the First to that of Louis the Fourteonth, public corupetitions were often productive of fioe works, as the best portious of the palace of Fuutaineblean, and the beautiful square of the Louvre attest. In those instances, native talent, both Catholic and Protestant, iu worthy emulntion, stands triumphant amidst the performances of foreign rivalry. The sume system was resorted to for the east front of the Louvre, and the award of superior merit was in favour of Claude Perrault, the pliysicinn and mathematician, but a corrupt court, where the spirit of iutellectual freedom had not survived that of anurchy and rebellion, could not rest satisfied with the result of competition and pablic opinion. Louis the Fourtenath endeavoured to set agide the design of Yerrault, and invited Bernini, the fashionable lialian architect and sculptor of the day, to visit his court and design something worthy the magnificence and spleadour of that pompous monarch. Priocely hooours attended on the foreign artist in his progress to the Franch capital, but Colbert found it advisable to lean tuwards the popular opioion: the king relented, Beraini retired with the sanme affected magnificence that accompanied his arrival, and the design of Perraule, lhe masterpiece of that era, before which even W hiteball sinks ia comparivon, was completed, at once a nodument to Fronch taste and a trophy to public opidion.

Under Napoleon, competition was far from pore. The jury of artiste for the Decenoal prizes adjudged the great prize fur a subject of ancient history to Girodet, for a acene of the Deluge. The emperor was dizappointed: he had expected that prize to be given to bis first painter, David, for the intercession of the Sabine woneo between their araged relatives and sheir Roman linsbands. The judges could not indeed be induced to convict theomselves of incompetency iu that decision; but, to conciliate the sovereign, in the next trial, they conferred the prize fur a nuorirpn subject on David's coronation, and not on the plague of Suffa, by Gros, whath they individually preferred. A sad exumple of artists, emonent for tabut and character, rendered dishonest by the interfereace of a potentate.

At the present time in France, where artiats constitute an infuential portion of the intellectual aristocracy (the arintorracy of talent and professions); where authority and intrigue are variously apportioned, no one competition is of rouch importance, for the effect of a partial decision by the court party, is frequeutly nentralised by an equally unsound award in favour of the injured artist, by eome municip-lity of oppodition pulitics, to whose prejudices an appeal is made, and who have in their gift a pruviocial commisniod.

In our own couniry, competitions are very nasatisfactory, and frequeatly alike absurd and unjust: io that for the Nelson memorial, the vacillutions of the committee in aetting aside their first hasty award, aud wivertising a new contest and exhibition, with their fiual confirmation of that firat rery donbtful judgment, compromised the dixnity of the cummitiee as anch as ita taste. and unuecessarily increased by many thousauds of ponnds the expense (besides trouble) of the artists. Tbat competition was fatal to the confidence of artists in a tribunal of amateure of rank and fortune, but that of the Royal Exchange with a tribunal of artists was still worse: : the jury of three emitsent architects, refused any premium to the design which they acknowledged to be the best. under the plea that it could nut be bailt fur the sum stipulated; nor was that decree reversed when contractora of reputation offered to undertuke it under aecurities; but they quve the premiums to other candidaten, whose desigus they declared to be quite ithpracticable. They were uast requested to prepare a design thenswelvea. It is noderstood, that two of those three judgre, after exumiaing und cundemaing all the designs, uctually conseuted w do so, but the onseemly proceeding was checker by public opinion. The ultimate competition was between two architects of cunaiderable and neurly equal infuence amung the civic authorities.

The recent competition exhibitions at Westminster Hall, fur tlie decoration of the Parliament Houses, were at first hailed us the beginn ng of a better system, mure intellectual and pure; bat up to the present tiase, the resulta have led ooly to dinappointment among the great body of the candi dates, and growing indifference in the public. Some artists, after being rewarded the first year, had their works treated as unwortly even to bo publicls exbibited at the second, whilat others have been appoiated for
ectual employment on one trial, or even without passing through the preacribed ordeal at all. Several who have appeared hooourably and with greeral approbation at all the exhibitions, have been utterly neglecied or discarded by the royal commission, although the leading object of its appointment was the encouragement of native talent in the higher walks of art, nnd the commissioners had prononnced the works of many of those artists "highly creditable to the country."

The whole of the evidence on competitions, tends to prove that in reapect of masters of art, a competent tribunal and equal justice have scarcely ever been obtained. In questions of taste, there is indeed so much room for doubs, that prevarication and partiality are less obvious and diagraceful than in simple questions of property, and yet the injury done to the sufferers is far greater where prufessional reputation as well as fortune is involved. Why shonld not artists, whose fame and means of existence are at stake, have as good protection from a committee of taste, as persons in trade are sure to find in a court of jastice? Why are not committees, like judges and juries, responsible fer their proceedings, either to a higher tribunal or to public opinion? Wby are they not, in like manner, obliged to examive and consider both sides of the question? Our jories are selected for their impartiality, and every accident in that respect is rectified, by allowing each cuntesting party to challenge the jurors: no faise delicacy wowards jurymen is allowed to weigh against the welfare of the parties before the court and the strict roles of justice. To see that they attend to their prescribed duties, and that the evidence is fairly placed before them, and not to interfere with the verdict, a judge presides who, after a long career of atody and experience, is placed above ordinary rivalry and coutention. in circumstances that render character, especially for impartiality and judgment, to bim, all-important. Shonld he, forgetful of his high rosponsibility, lean unduly to one side and misdirect the jury, an appeal lies to a higher Court, whero his error or misinterpretation is sure to be severely discussed, and, if a case is made out, hie trial is set aside or the verdict is reversed, without the least complacency for his authority and feelinge. Thus is the property of the humblest trader protected; thus the life or liberty of the poorest wretch accused of crime, is beld parmmount to all considerations of rank and statino. In questions of property, every possible discussion has long been affurded; wlinessen are examined, cross-examined, and re-examined, by conteoding advocates. The same protection bas of inte years been granted to persons criminally iudicteti.-And why should this wholesome respect for mutual rights be denied to men of intel. lectual pursuit--mothors or artists, who ewbark fame and fortune on the tide of public competition? Why should those to whou they entruat all that is precions iv their estimatiou, think lightly of their responsibility. Sumething like the system of judge and jury, or an assimilation to the beat of our prerogative courts can alone render competitions among artists fair, honourable, and rfficient, and give to the emanations of gesius their proper ralue among us.

In the case immediately before us. it is proposed that a prize of $1,0001 \mathrm{t}$ be giren to the artist who, in general competition, shall produce the bes paiutiog 12 or 15 fret one way, and 10 or 12 the other; the suhject is degoed, and, in several points, the precise mode of treating it. With so great a temptation, it is reasonable to suppose that many will overlook the expense, trouble disappoinment, ant serious inconveniences that a wait all but the one fortunate candidate; it is reasonable to suppose that fity artists may risk comfort and reputation in the attempt. We feel asgured that the gentleneo who propose this competition, besides the desire loobtain as fine a picture as possible, are anxious to make it worth while to men of talent and character to vie with each other in honourable emulation. They would pvince penerous delicacy towards the less successfal aminls who gave prowf of high tulent in the contert; for their object is not to encourage speculaturs to make a herriless durh at the 1,000 , nor can they wish for a gaudy meritricious picture, but one whereid the subject is fully considered, the character of each Ggure is faithfully studied and patherically delineated;-where the action of all is in due relation oue with the other, and the whole is combined into n rational and picturesque composit.on. Suchare the essentials of high art; they are best attended to in the simplest und hast expensive materials, such as involve a larger outlay of mind in proportion to that of money. Thus may the best results be obtained with as little injury as possible to the candidates, as all virtuous and religious meu nanst wish to do.

We now proceed to state the artist's case in two ways:-first, as it will stand if the advertised regulations are carried out; and next, as it would be, if our suggestions were adopted, supposing in either case the number of candidates to be ifty.
Fifty finished paintings, varying from 12 feet by 13 to 15 feet by 12, would iovolve the artistis in espenses (actual outhay) from 30l, to 406 . each; average, 36l.; total io muney, $1,800 l$.

In time expended, average 7 monthe; total 29 years; which, at the low estimate of 1501. a-gear amounts to 4,3501 ., making the whole outlay equivalent to 6.1501 . ; a positive loss in the aggregate of $5,150 l$. beyood the prize of 1.000 l .
As pictures so large, all of a giren sabject, pecnliarly treated, and blighted by the vulgar stigma of defeat, stand uo chance for sale, but really become a troutle and a naisance to the artists, we may fairly suy thas in the aggregate this loss is wholly uncoitigated, and that ten such speculative competitions would be aquivaleat u a loss anuong them of 50,0001 . or $1,000 \mathrm{l}$. ench, or in other words, a total luss of two bundred and tinety years of boman life, and 8,000l. of the artista' wuney.

By the mode we would suggest, the loss on the present occasion may bo reduced to about 300l. in money and 17 years of time; that is, comspared with the above, a saving of 5251 in money, and of nearly 12 years of time and exertion, whilst four or ive paintings and twice that nomber of artists would be held ap to distinction, instead of une, who in the ordinary way, engrosses admiration.
On a plan somewhat similar to the double competiton trial, adopted by the Freach inatitate at the election for students fur residence at Rome, Wr wonld have two exhibitions; thus, supposing the nuwber of cumpetitors to be as above, fifty. The first exbibition would be of 50 cartoons, half life size, and 50 studies, of halt figures, life size. Frum these, right or ten should be rewarded with preliminary prizes. To each the sum of 401. or 801 . should be paid, i. c. an equal portion of 4001 . These distinguished candidates are then eatitled and invited to compure with each other for the ultimate object. Thus the final preut strugale would be between these eight or ten, and the second exhibition would consist of their eight or ten cartoons and studjes from their lirst exhibition, and eight or ten finished pictures full size.
Four or five prizes shonld be awarded in this competition according to the number of good productions, i. e. 200l. among then. Thus four or five would receive 40l, or 50l. each, and as rany would have 80l. or 1001 .

Of these twice rewarded four or Give, by the final decision, one would receive the great prize of the remaining 400l. in addition to bia previous rewards, amounting together to 480 l. or 5001 . Surely the honour and advantages of such a victory, if properly ararderd, would satisfy an ambitious enthusiastic artist. Could any one, amidst the hoooursand comfort of the glorious harrest, envy his leas succeasful rivals the small returu their gleanings had procured them?
By this arrangement the outlay of money and lime of the competitors would be,
For 50 cartoons, average 181 . and 3 months each Total 8650 and $12 \frac{1}{2}$ years. 50 studies, average $8 l$. and 14 days $400-2$
8 or 10 (say 9) paintings, at $25 h$, and 5 months' average 225 - 2 푼

General Total $£ 1,275-17 \lambda$ year3.
Let us now consider the best mode of awarding the prizes, and tho way to secure a competent tribonal, withont which no good result can be deponded on. Much of the difficulty comen from the uncertaiaty of what is considered excellence in art; some adjudging by the dictates of contumon sense, untutored to the technical rules of art, others gaided almost entirely by conrentioual technicalites. Again, personal or professional prejudices have not been sufficieatly controlied by priaciples or by responsibility.
The following regulations appear to os entitled to consideration and adoption, vize the judges should consist of three, elected by the parties interested in the purchase; and three elected by the urtint conpetitors; in all six persons. They should be elected by ballot after comination : ut least, this rule should be strictly observed in reapect to those who represent the artists.
Each of the judges should separately, from others, examine and criticise the performances, and write his opinion of each, and of every work of art; and, paming those which be considers entitued to distinction, give his reasons for that opinion.
These written opinions to be given in previons to the opening of the ex. bibition to the public; but the result not to be coafirmed untila certain number of days alter its clusing. Then the judges should, tor the first time, meet and discuss each other's opioions, and the merite of the competitors; and, recording their matured judgments, decide by the majority ; the contrary opinions being also recorded, in order that public opinion be not smothered, as it now osually is, under respect for a supposed unanimons decision.

Gentlemen - Your committee beg to observe that, in this inquiry, they have considered it of the utmost importance to discuss botb sides of every question, and on several occasions, ite members have abandoned old favourite views, when the evidence or the argument outweighed a favourite prejudice; they are therefore the more confident in their anticipation of this report meeting with favourable attention, and serious cousideration at gour bands, and they siocerely bope it may eveutually lead to changes equally advantageous to artists, aud to the public; to the eatablishment of regulations more consistent with the immutable principles of equity and good sense, than those which have too often reudered competitions illusive and hurtful; and they trust that apparent difficulties in the upera. tion of a wholesome system, will not wergh againat the best inkrests of humanity, and the progress of the Fine Arts.

Prence Railifays.-The Toumal des Chemins de Fer pablishes the receipts of the French railroad companies for the year 1845, by which it appears that the railroads bave produced sufficient to pay a dividead of 6 per cent. on the amount of capital subscribed, hesides a prospect of a conaiderable increane in future years. "This result," observes the journal, "withous being extremely brilliant, is sufficiently favourable to encourage investinent. in railroad speculations; for not only is the increase of the receipts certain, but a roduction in the expense of working them may be expected."

MODEL OF THE PARTHENON.

The principles of pure taste are best taught by examples. One single specimen of the sablime and beantiful will exhibjt the aatore of it more clearly than whole folion of discussion about the abstract idea. It is for this reason that we must look to the actual restoration of works of ancient architecture, to their original purity as the principal means of elevating the public taste. That architectare has made rapid advancee durlag the last few years, and has attained a higher position than it formorly held in popalar estimation, is undeniahle; bat it is still far from ite true place, and not until the works of the architect become, as they once were, works of national importance, not antil architectare be restored to perfect purity and be thoroughly purifed of all talat of barbarism and all the stains contracted daring the debasement of the arts, will those who labour now so zealously for the Revival of the Art, have thoroughly accomplished their great task.

The Parthenon is nuiversally esteemed by the architectural stadent as the exemplar of one of the two great modes of arehitecture recognized amongst as. The perfection of Classic Art-the complete realisation of its true principles--the last appeal of architectural discussion mast be looked for amongst the rains of the Acropolis-whatever disputes we may have respecting the true spirit of classic architecture must be altimately settled by reference to this great authority. So that it is impossihle to overrate the importance of ascertaining clearly the precise nature of the original architectare of the Parthenon. It is the highest architectural Pandect; the true and right understanding of the code of laws which it embodies must be the sole foundation of all modern Commentaries.
In examining the resalte of Mr. Lucas's talent and labours now deposited in the British Museom, we criticise a work which is calcolated to work an important effect on the poblic taste. The model of a restoration of the Parthenon, placed where it is naiversally accessible, affords to the people a type of that of which they possess no actual specimen-pare Grecian architeafnre. Of the thousands who will inspect this model, there will be scarcely one, even of the most unrefined and uneducated, who will not be led to admire the wonderfal beauty of the temple representedfor this is the distinguishing featore (is it not, rightly considered, the being criterion ?) of parfect architecture, that its beanties are apprehended by the simplest onderstanding, and yet for their full appreciation task the energies of the most eredite observer. It may well be imagined that many of those who look with admiration on the representation of the masterpiece of Grecina art will enquire how it comes that we have nothing so perfeatly beaatifal in our country, as we may reasonably hope that the eye becomes more and more familiar with the principles exhibited in the Parthenon, it will grow more aod more dissatisfied with those of modern works in which these principles are most flagrantly vlolated.

We intend to confine our notice of Mr. Lacas's works to the architectural considerations. A criticism of the elaborate scolpture which the models exhibit does not come immediately within our province, except in so far as the arrangement of the sculpture effects the architecture of the building.

With respect to the external architecture of the Parthenon there are happily but few opportunities for controveray. The remaing are in a aufficiently perfect condition to exhibit in a clear and indubitable manner, all the graal featores of the exterior of the temple. With respect to the interior, however, our knowledge is not so eatisfactory. Time and violence have worked so busily wilhin this glorions fane, that now the beat ovidences of the original design are oflon no better than mere conjectures. We know the interior of the building was divided into two great chambers, the Opisthodoman or treasury to the weat, and the chamber which contained the great statue of Miverra, to the east ; but few traces remain of the architectare of these two great divisions of the temple.

In the restoration by Mr. Lacae, the roof of the Opisthodomus in supported from the ground by Ionic columns; the roof of the principal or eastern chember is eupported by a doable order of columas, the lower tier Ioaic, the upper Corinthian, and for this arrangement Mr. Laces assigns the following reasons in a small ootavo volume, ontitled Remarks on the Parthonon, boing the result of atudies and inguiries respecting thet noble building.
"In the restoration of the interior, I have adopted that view of the case which is eot forth in the seventh rolnme of the Museum writinge, publishod by the Trustees. Mr. Cockerell has, in that volnme, given a res. lishad by the Trastees. Ming. ©esed on the discovery I-bave, alluded to, of
the Corinthian capital in the eastern chamber;* and aupposing that this beartifal counbination contains the resalt of all the information on this branch of the subject, I had implieilly adopted it; considerable differenoe of opinion, however, exists as to the propriety of placing the Doric order over the Corinthian, an Mr. Cockerell has done, or even using the Corinthian at all wlith propriety. This objection was urged with great force by the celebrated Sicilian antiquary, Lo Duo di Serradifalco, on his receot visit to this conntry. Col. Leake's observations, however, appear conclasive as to the Corinthian order; the Doric over it does no appear to rest on any sure data, as in the Walhalla the caryatides are nased instead of the Doric. As this restoration is purchased by the trustees of the British Museum to illustrate the Elgin Gallery, I consider it needfnl this work shoald have the advantage of all the recent information that has resulted from the excavations and discoveries of King Otho; and by the kindneas of Col. Fox and Major Parker, I am placed in correspondence Fith the architects of the Walhalla, and also those now employed by the King of Greece at Athens, so that all information will be exhansted in the restoration of the interior. In Inwood's folio work, poblished in 1827, is engraved plate 22, a portion of a Corinthian capital that was bronght by him from the Parthenon, and which he considered a fragment of one of the lower tiers of columas of the interior ; and of the fragment, and his restoration from the same, an etching is bere presented. +
In regard, however, to the roof of the chamber being open over the statae of the goddess, that question has been much discussed; and it appears probable that the aperture over the statue was filled with some transparent sabstance, condocing alike to the double purpose of the protoction of so costly a work, and rendering its effect mysterions.

Nort. -The following communications on the subject of the interior of the Parthenon have been obtained from Athens, through the iofluence of Sir Edmand Lyons, the British Minister at that Court, from Mr. Pittakis, the present Curator of the Parthenon; and also from Mr. George Finlay, Who is esteemed a great authority on this matter.

Qwestions submilted to Mr. Pittakia by R. C Lucas.

lat.-Is the capital of a Corinthian column which Col. Leake alludes to in his work, as having been found in the eastern chamber of the Parthenon (and on which discovery Mr. Cockerell has based his restoration of the lower tier of columns in the interior of the Parthenon) in Athens ; or can any acconnt be given of it ?

2d.-Can any data be given for the upper tier of columns or support to the roof of the eastern chamber? Mr. Cockerell has used the Doric placed over the Corinthian in his restoration.

Mr. Pittakis's Answer to Mr. Lucas's Inquiries.

In answer to the first question, around the altar, which was the ascient Hecatompedon, the soil of which is lower than the rest of ihe Parthenon, appear signs of double columas. The first, which Mr. Cockerell saw, are about three feet in diameter; and thus it has been supposed, wrongly, I think, that those small columns supported the roof of the temple ; but when the mosque, which stoud on the south side of the temple, was knocked down and cleared away in 1814, traces of columas of five feet in diameter were discovered on the fooring, and are ntill visible; these colomas, which, from their size, were able to support the weight of the roof, were up to the half the height of the Temple of the Doric order; above them was another tier of columns of the Ionic order; bo that the lower tier was Doric, aod the upper Ionic. The same order of architecture prevailed in the Temple of Miverva. The traces of the Dorio order appear in two places, and I have shown the same to several travellern, particularly to Mr. Bracebridge, who may assist in this explanation if referred to. As for the upper range of columns, they were certainly Ionic. This I bave ascertained from fragments of this order which I have fonnd in the different excavations I have soperiatended in the Parthenon; and I also believe that the traces of those columns which Mr. Cockerell gave were made in the time of the Romans, when the Parthenon was restored; and I have found in excavating ap to the present period four pieces of the frieze of the Roman era, and they made use of the rame upper tier of columathat is, Ionic. An to the second question, six traces of the stglobstes exist towards the sonth of the Parthenon, and four on the north side; but they are of the Roman epoch, as I said before.
I do not agree with Mr. Cockerell in placing the Doric order on the Corinthian; and, if I may be allowed to offer my opinion, I should

[^9]
say, that in ancient times, when good taste prevailed in Greece, the Greeks aever made use of the Corinthinn order to support weighta, becanes this order is only an imitation of flowera, and naturally cannot support anything heavy; they, therofore, used Tripodes, or other architectaral arnaments; and used the Corinthian for amall, pretty, elegant baildings, such as the Tomb of Lysicrates; but the Romans lost this fine idea, and made the Temple of Jupiter Olympus of the Corinthian order, as also the Gate of Adrian.

From Mr. Finlay to Sir Edmend Lyone.

My dear Sir Edmund,-I have read over Mr. Lacas's questions and Pittakis's replies, and which I now return. The question is one of evidence, and I am not aware that enough exists to decide on how the Parthedon was roofed, or how that roof was supported. There were certain columns; bat the very ragueness of Pittakis's conjectures, aboot which are the Roman restorations, show how much uacertainty refgrs concerning the subject. The Corinthian was just as mach used to aupport an entablature as any other order from its earlient existeace, as may be proved from many Attic examples.

This subject, therefore, has been discussed, and it appearing probable that in the recent oxcarations the fonndations of the old Parthenon, that exist on the site of the preseat building, have disclomed traces of the Doric columas that sopported the former building; as frefeet in diameter is 100 great for the required height of the lower tier of columns in the interior ; and the evidence for the Corinthian order appearing conclucive for the upper tier, as the fragments that Inwood diecovered in the Parthenon, from their size, muat have belonged to the apper tier, and the aize of the Iooic according with the required size of the lower tier, this reatoration is now completed with the lower Lier Ionic, and the upper of the Corinthian order.

Fram the above extructs it is obvious that traces of the interior arrange meot of the Parthenon are so indistinct as to leave the mattor at least a fair subject for controveny. In the sixth volame of the large work published by the Trastees of the British Musenm as a catalogne of the Ancient Marbles in the Musenm Collection, Mr. Cockerell confesses that the orders of the colamas are not clearly ascertainable. We have endearoured to collect sil the principal facts and argoments reapecting the internal architectare of be Parthenon, and give them in this place, because, as had been maid, no subject ean be so important to the architectaral student as a precise knewledge of the constroction of the great type of Gracian architecture. The rensons for supposing a double tier of columns in the cella of the Partheocos reem lo resolve themselves into these two.

1. The presence of the tragments of a Corinthian capital delineated abore.
2. Indicatioss in the floor of the interior that colomns once stood there of so mall diameter that if of proportionate height they would not have sencted the roof.

Wo propoes to axamine enol of these reasons separately. With respect to the frrst it may, we think, be safoly pronounced that the fragments of ube Corpthian capital belong to a far more ancient date than the erection of the Parthenoa. In Inwood's large folio work, he gives an ideal rowortion of the capital to which these fragments belonged, but whether his resteration be correot or not, this is certsin that enough of the fragmeta ruacia to show that they are to be asoignod to an epoch when the -rie were in a very different atate to that manifested in the bnilding of the Parblogoca. Iawood trdeed gives a collateral teatimony in favoar of the bypethenis of a doable tier of colomas which appears at irst very plausible, bat which oe examination will not be foum to have much weight in
it. He says that there is a certain pecnliarity in which this fra gment re sembles another found in the tomple of Apollo, near Phigalia, which temple was built by the architect of the Parthenon-Iotinas. The point of resemblance between the fragments is this-it is observed in each volute that it is not fluted in the same way on both nides. It does not appear that the resemblance extends any further than this-that the general form and indications of date are the same in both capitals. But even supposing that the similarity were carried much farther than it really in, what does the argament amount to $?$ In two different temples built by Ictinus, we find two columns somewhat resembling each other. Bat surely this is no proof (of itself) of the existence of a double tier of columns in the Parthenon. For in the other temple built by Ictinus (that at Phigalia), it has never been even surmised that there was a double tier of columns. Here it is quite certain what were the purposes and situation of the Corinthian column. It is stood near one end of the cella and midway between the lateral walls, and supported the roof from the ground. It has never been questioned that this colnmn was a aingle one, not one of a range bu standing in the isolated position described, and supporting the centre of the roof by itself. In the case of the Parthenon, however, the circumstances are altogether difereat, for there the fragments are so small that they could never have belonged to a column which discharged the same office as that at Phigalia. The argument seems therefore rediced to this -if an analogy be made between the two cases, we mast infer the ase and sitastion of the one column from the use and situation of the other: and yet from the different sizes of the fragments it is impossible to conceive that they belonged to columas which discharged the same offices.

So that even if it be conceded that the Corinthian column was actually made use of at the Parthenon, the accidental presence of two small fragmenta seems but ecady data for the sapposition of a whole order. To the objection that the Parthenon fragments are of a date anterior to the temple itself, it may be replied that perhaps some of the matorials of the old Parthenon were used ap in the construction of the new. (For the Parthenon now existing is the second temple brilt on the same site ; its predeceseor, the ancient Hecatompedon having been destroyed during the invasion of Xerres, and the stones of it having been carried away to make military sortifications.) Now it is scarcely to be supposed, the old temple haviog been violently destrojed, and the materials of it ased for fortification, that at a subsequent period part of those materials (namely, the columas and their capitals) would be fond so perfect as to be worthy of being used again in the bailding of the new temple, which was to be the wonder of Greece. There is every reason for thinking that the Athenians were determined that the new Parthenon should be, what in truth it is, the mont perfect apeoimen of Grocian art. The constraction and decoration of tt taxed the energies of the greatest artists and scalptorn of that age, and not only the Athenians bat the whole Greclan race looked to the perfeot corspletion of it with the greatest intorest. It it then to be supposed that the poor economy of usling up old materials woald be readily allowed under any circomatances! And is it not in the highest degree improbable that colamas would be employed which in the important points of their ordew and thair dates differed from the othor colomas of the temple, and whtech bed moreover suffered all the matilations ineritable in the rough asagee of wariare $?$
2. The accond argument for the upper tier of colomona is that truces bave been found in the pavement, from which it is coscloded that columns of amall diametar coce stood thers-mosmall that the colamas coald mot have
been high enough to reach the roof. This certainly is a more formidable argument than the last; it shows that if columas corresponding to these indications actually existed, there must have been another order of colamos or some other architectnral members between them and the roof. This conclusion seemed perfectly unavoidable when Professor Cockerell wrote; but we seem now relieved from all necessity of a supposition of the kind by the subsequent discovery of traces of larger colvms which would have reached the roof. There seoms no reason whatever for supposing that these columas rather than the small ones were vestigios of the old Hecatompedon. It may be conceded that such traces would remain of the fonndations of the first building as would exbibit the prosition of its colomens and there is no great improbability in supposing that these traces woold not be wholly effaced by the erection of the new Parthenon.-We ourselves have repeated experience of the same state of things in our own, medizeval edifices. But there seems no reason for preferring the small columps to the large ones as having been those actually constructed in the new Par. thenon. If either set of remains are to be assigned to the previous building, we bave a perfect right to choose which we please - 80 that there is no absolute recessity for supposing that the small columns rather than the large were those of the Parthedon.

But there are several general considerations of a very weighty nature which lead $4 s$ irresistibly to choose the larger columos reaching from the parement to the roof as the set actually belonging to the Parthenon. In the sixth volnme of the work on the Museum collection of marbles, already referred to, Mr. Cockerell gives a representation of the interior of the temple restored; his drawing resembling the illustration of the present article, excepting in the orders of the colnmns. Now it will be observed that in Mr. Cockerell's drawing, and also in the woodcut bere given, the ower order of colamos of the cella are between two and three times the height of the upper order. It seems to us perfectly impossible that such an arrangem ent could have actually existed. The upper range of columns would be considerably leas than half the size of the lower range, and consequently one of these two things must have occurred-either the upper colomos mast have been constructed in total defiance of all due proportion of their height to their diameter (a deformity which such an architect as Ictinus could never have permitted), or else the columbs of the upper tiers most have been of less diameter as well as less height than those of the lower tier-an arrangement as awkward and nograceful as can possibly be imagined; for the intercolumniation ought to be proportionate to the diameter of the columns, and bere we should have the large columns of the lower tier and the small opper columos arranged at the same distances from each other.

This objection appears perfectly fatal to the existence of the upper range. It may be added that, viewed quite independently, the second tier of columas is but a poor make-shift contrivance for getting additional height, and one which we should never attribute to the architects of the Parthenon. The whole building-that is, where the architecture is clearly determined-exbibits a perfect simplicity and oneness of design, tofally at variance with this supposition, for which we have shewn that there is no absolute necsssity, and against which there are so many powerful a priori arguments. In the exterior of the temple the columns wore all of one order, and all supported the roof from the gronnd : if, in examining Mr. Lucas's beautiful model, the observer will imagine that the same arrangement was observed in the interior of the onilding, he will, we think, be disposed to agree with us, that the beautiful symmetry and unity of the whole is greatly enhanced on this supposition.

If we suppose the great chamber of the temple supported by a magnificent range of lofty colomns rising to the roof, the mind instantiy
pictores a noble interior, harmonising in its severe and simple beanty with what the eye bas been taught to expect by surveying the exterior of the building. If, on the contrary, wo suppose in the interior a range of diminutive columns sapporting others still smaller than themselves, our preconceived notions of the dignity and simplicity of the Parthenon are entirely overturned, and we are forced to allow that the Greeks themselves gave a precedent for the later parodies and burba. rous adaptations of their beautiful architecture.
There is good reason to hope that before long this matter will be settied beyond all dispute. Mr. Lucas is far too energetic a lover of the arts to leave his task half done. He purposes to show shortly the very scenes of which he has furnished so admirable representations, for the purpose of examining, in the minutest manner, all that remains of the Marthenon, and of clearing up, as far as possible, all controversies respecting it. All disciples of true architecture will await the true result of his misaion with interest, as tending to elucidate points of the very bighest architectasal importance. It may not be inopportane to call to remembrance that the distinguishing characteristic of Grecian architecture is wnity and simplicily, and that therefore, in all cases of doubt, we should lean to the opinion which favours the simplest form. In nothing is the simplex munditiis so admirably developed as in pure classic art, as distinguished from the sabsequent imitations of it ; and therefore it is by following up those traces which are indicative of the greatest simplicity, that difficulties are mast likely to be unravelled. With this lint we quit the subject, thanking Mr. Lucas for the valuable information which he has personally communicated, and congratulating bim cordially, not only on the acoedsion of fame which his models will win for him, but on having compleled a work which will have the most powerful effect in elevating the public taste for true classic architecture.

ON SACRISTIES.

Vers little has ever been said on the subject of Sacristies, or, as they are more usually called now, Vestries, in the Ecclesiologist. Yet it may be doubted whether such an appendage is not absolutely necessary to a church; from the impossibility of dispensing with its use, if the Divire offices are to be performed with any ceremonial, not to say decency. For not only is a receptacle required for the ornaments of the altar, the church, and the clergy, but it can scarcely comport with seemly reverence for any change of vestment to take place in the presence of an assenbled congregation: the high pews in the chancel, which used often to hide this process in mean conntry churches, baving by this time prelly generally dioappeared; and the device of screening off a part of the area of the church being now fitly regarded as an expedient scarcely justifiable under any emergency.

It is nut difficult to derive a geaeral rule for the right position, and for several important details of the arrangement of Sacristies from observation of our old cburches. For although existing aucient exauples are far from numerous, yet in a large proportion of untouched chancela, we may observe unmistakeable traces of Sacristies which have beta destroyed. From these we deduce that the proper situation of a Sacristy is ou the borth side of the chancel, towards its eastern part. The reasons for this position are obvious: it is near the altar (to the service of which the Sacristy, like the rigidly prescribed Diaonicum in a Greek church, more especially belongs); the door into it falls conveniently betweeu the end of the northern stalls and the steps of the sacrarium, the south side being pre-occupied by piscina, sedilia, and the priest's entrance; and perhaps its presence, always rather intrusive, is less 80 ou the nortis than it would be if it marred the southern prospect of the church, which io our climate is, as a general rule, in an inoffensive sense, the show side.

Ancient Sacristies remain in the above situation at \mathbf{S}. Nicolas, Soutbflet, Kent; S. Swithin, Leadenhum, Lincolushire; S. Mary, Reigate, Surrey, where there is a north chancel-aisle; S. Andrew, Backwell, Somerset. Sacristies in the same position once existed in SS. Mary and Michael, Trumpington; All Saiuts, Teversham; S. Mary, Fen Dition, Cambridgeshire; S. Mary, Stone, Kent ; and S. John. Shottesbroct Berks. These examples are taken at random. External corbels on the north chancel-wall; the absence of windows in that part; the presence of H north chancel door, generally blocked, (in additiou to the priest's door), the auter mouldings of which will often be found to be not of an external character; and foundations discovered in digging graves; reveal tho former existence of a Sacristy, and nre peculiarities nut explained by any otber supposition. In some few cases these may be traces of a chantry chapel; much more generally, bowever, of a Sacristy, allowed to full wo ruin, or destroyed, by the bolder of the great tithes. Again, chantries, more especially detached ones, belonged generally to manors, and contained monuments, for the sake of which they have been preserved. Chantries also opened to the church by arches, not by a small door; so that we may conclude the marks mentioned above to be true signs of a Sacristy, not of a chantry chapel.

Before we leave the quention of position, we mast condemn the practice of sume architects who, having partly received the fule we are laying dowo, have placed their Sacristies at the wentern part of the north sode of we chancel, in the angle between the north aisle and the chancel. Certinu adrantages seem to be gained by this alteration: it is particuleriy cunvenient for a concealed winding staircase to the pulpit; it avoids an awhward corner on the outside; it allows of the door being placed so fur weat as oot to interfere with the eltar epace, which is felt to be a gain now, cousidering that so many lay people resort to the Sacristy. Nevertheless, independently of the argument from authority, we prefer the old errangement, by which the proximity of the Sacristy to the altar is miniotained, the east window of the north aisle is preserved, a better distribution of light in the chancel is gaioed, and the stalls on the north side are len free. In a word, we think it will be felt that this arrangement harmonizes more with the disposition and keeping of an old church; and very often the feeling of a thoughtful observer of our old churches is worth altention. even though he may find it difficult or imposeible to deseribe in words the nature of, or the reasons for, his impression.

We are arare that examples may be found of Sacristies built in the middle, and not at the eastern part, of the north side, as at S. Margaret's, Leicester, where it occupies the middle of the three bays composing the narth chencel-aisle; or oven of Sacristies in the middle bay of the south side, as at All Saints, Maidstone, Kent; but this is the case, perhaps ex. olasively, in Third-Pointed churches, and those of a more dignified kind than the class we are now considering. The eastern end of the north side will be found, we believe, the usual place in moderate churcher of the Middle-Pointed period.

Another position, sometimes chosen in modern times, is to be severely reprehended. The Sacristy ought not to be eastward of, or behind, the altar, whether it be made by adrancing the altar and reredos and lenving a screeded space between it and the east wall, as at Holy Trinity, Cambridge, or by building a semicircular apse for it, as at Emmanuel church, Camberwell. We are aware that some have held that the apsidal Romanesque chorches in this country were originally so fitted: at S. John, Little Maplestead, Essex, the arrangement remains: we answer, that evec were this the case, which we do not believe, both the Romanesque atjle and the apse itself have passed away, and the Camberwell parody perhaps did not deserve mention.
Having thus settled the right position of the Sacristy, we will mention a fow forther particulars respecting this part of a church. We believe that generally it ought to have a lean-to roof, to distinguish it from a chantry, which, more often, if not always, has a guble. We are not aure that a separate gable is ever to be recommended, where there is no altar; for example, in aisles : the picturesqueness of three gables is, we are confident, a snare to some of our best modera architects. Still, if the Saeriety runs at right angles to the axis of the church, instead of parallel to it a gable may be allowed; hut this arrangement is not to be encouraged.

The details in the Sacristy may be of a less ecclesiastical character then those admitted into the church itself. Authority for this is found to a limited degree in the inatances above; the church of S. Mary, Oberwesel on the Rhine, and S. Leonhard, at Frankfort-ou-the-Maine, are axamplos in point. It may be questioned whether this licence is to be esteaded to more dignified churches. We cannot object to a fireplace aod a chimney ia a Sacristy : let them be boldly and undiaguisedly treated. Still we are not sure that a too secular atyle has not been sometimes ad. mitted.

Respecting lerge or town charches, the rales are not so stringent. In these the Sacristies may be in any convenient situation; of courne, nearer the altar than otherwise. Thus at S. Mary, Redeliffe, tbey are ou the north eide, and have an upper story of rooms fitted for residence; in the abley charch of S. Mary, Towkesbury, thes are beautifully raulted npartmeats to the wouth. In such churches the Sacristy ought to glow with colour and ornameats no less than the more sacred parts of the building. The Sacristies at S. Minjato, Florence, and Sta. Muria Gloriosa de' Yrari, Veoicm-the frat south of the south chancel-aisle, the latter suuth of tho mouth transept - are remarkable examples. S. Anamtasia, Verona, has a noble Sacristy, north of the north transept. The Duomo, ut Milan. has Sacrishiza north and south; an arrangement adopted, nol unbappily, in S. Paul's, London. At Cologne thes lie to the north; and the delached Bacristies at S. Peter's, Rome, lie also to the north of the north trunsept. Do the whole the north, for dignified churches also, is the better side. The Vastries of the churches in London built after the great fire-which provite many a sneer from auperficial observers for their supposed cora-fort-are rather to be regarded as instances wherein the architects have meatered the true idea of what they were building; placing it where mont convenient, fitting it for its various uses, (unfurtunately not solely redigions ones, and making it a not unworthy appendage to their costly charches. It was neither practical skill, nor bolduess, nor unimus that wea wating to our then architects. The Pagansm of their age apoilt it a.

Aod this consideration leads as naturally to observe the importance of architect's clearly mastering the idea of what he is going to detign before he begins. There is no part of a church which has nos its peculiar use, and ought not therefore to have a peculiar character. One does pot see how a northern or southern porch could be otherwise then a gibled buildiag, with its axis at right angles to the church.

Again, nothing can be more diativet, or pecnliarly appropriate to in use, than the character of a chapter-bonse. Similarly, a chantry, or an aisle with eastern eltar, would seem to require a gabled roof: a lean-to roof, again, befits the subsidiary use of a Sacristy. The selection, then, of the detached chapter-house form for the Sacriaty at a new ehorchat Keswick, aod at S. John Baptist's, Eastover, was a great mistake arising from a want of discrimination between the two kinds of building. Bot a less pardonable cunfusion of ideas is to be observed in the restoration of S. Martin's, Canterbury, where a nondescript building, part aisle, part chantry, is added as a Sacristy, and a cellar for the stove, towards the western part of the north side of the chancel. It is a great mistake also to build parvises for Sacristies. The position is most inconvenient, besides that the parvis had, and might havo agaia, an appropriate use. Nor can this use of an ancient parvise be well defended, oven where the sacristy has perished. This was the case at Kemerton, Gloucestershire, and led perhaps to the blocking up of the priest's door in that church. We have seen a modern design in which the chancel is raised and a Sacristy formed like a crypt helow it. It is conceivable that great peculiarity of site might justify this arrangement; bat it is not to be recommended.

It will be at once seen that if our observations be true, few devices are more essentially objectionable than one we have often deplored: namely, the use of a building, opening to the church, aisle-wise or chantry-wise, by an arch, and parclused off for a Sacristy, the organ perhaps being placed above. It is altogether a confusion of ideas.

Any secular uses of a restry are so incompatible with the religions ones, that we cannot conceive any arrangement which shall unobjectionably suit the two combined. We have confined ourselves to point. ing out the best course to adopt with reference to the Sacriaty con*dered only in its higher use,-Ecclesiologist.

SUSPENSION AQUEDUCT OVER THE ALLEGHENY RIVER, PITTSBURGH.

This work, recently constructed under the superintendence of John A. Roebling, the designer and contractor, has aupplied the place of the old wooden structure which originally was buill by the State of Pennsylvania at the western termination of the Pennsylvania Cumal.

The Council of the city of Pittsburgh, by whom, in consequence of an arrangement with the State, the tolls on this aqueduct are of late received, and who are bound to keep the work in repair, decided on ro-building, and after considering various plans, adopted that of Mr. Koebling, and entered into contract with him to re-construct the communication, for the gross sum of 62,000 dollars, including the rewoval of the old ponderous structure and the repair of the pier and abutments; a very small sum iudeed for a work of such magnitude. As this work is the first of the kind ever attempted, its cunstruction speaks well for the enterprize of the city of Pittsbargh.

The removal of the old work was commenced in Scptember, 1814, and boats were passed throuph the new aqueduct in May, 1845.

This work consists of 7 spans, of 160 feet each, from centre to centre of pier. The trunk is of wood, and 1,140 feet long, 14 foet wide at bothom, $161 / \mathrm{f}$
feet at top, the sides of feet deep. These as well as the bottom, are con feet at top, the sides bi feet deep. These as well as the bottom, are coms posed of a duuble course of $2 f$ inch white pine plank, laid diagonally, the two courses crossiug each other at right augles, so as to form a sulid lat-
tice-work of great sirength and atiffness, sufficient to bear its own tice-work of great strength and stiffness, sufficient to bear its own wright, and to resist the effects of the must violent storms. The bottum of the trunk rests apon trunsverse beams, arranged in pairs, four feet apart;
between these, the poats which aupport the sides of the trunk are let in between these, the poats which aupport the sides of the trunk are let in with dove-tailed tenong, secured by buls. Tbe outside posts, which support the sidewalk and tow-path, iucline outwards, and are connected with the beams in a similar manner. Each trunk-post is beld by iwo hraces, $2 \frac{10}{2} \times 10$ inch, and connacted with the outside posts by a dowble joist of $2 f \times 10$. The trunk-posts are 7 inches square on top, and 7×14 at the beel; the trassverse beams are 27 feet long, and 10×6 inches; the space between the iwu frunings is 4 iuches. It will be observed, that all parts of the framing are double, with the exception of the posts, so as to admit the suspension rods. Each pair of benms is suppurted on each side of the trumk by a double suspension rod of $1 \frac{1}{2}$ th inch round iron, bent in the shape of a stirrup, and mounted on a small cast-iron saddle, which rests ou the cable. These suddles are oonnected, on top of the cables, by links, Which diminish in size from the pier towards the centre. The sides of the trunk set solid against the burlies of masonry, which are erected on each pirr and abutwent as bases for the pyramids which support the cables. These pyramids, which are constructed of 3 blocks of a durable, comrse, bard-grained aand-stone, rise 5 feet above the level of the sidewrulk and sow-palh, and measure 3×5 feet on top, and 4×61 feet at base. The side. walk and tow-path being 7 feet wide, leave 3 feet space fur the passage of the pyramids. The ample width of the tow asd footpath is therefure contracted on every pier, but this arrangement proses no uconvenience, and was necessary for the suspension of the cables bext
to the trunk.

The caps which cover the saddles and cables on the pyramids rise $:$ feet above the inside or truak railing, and woald obstruct the free passage of the tow-line; bat this is obviated by an iron rod which pesees over the top of the cap, and forms a gradual slope down to the railing on each aide of the pyramid.

The wire cables, which are the main sopport of the stracture, are suspended next to the trank, one on each side; each of these two cables is exactly 7 inches in diameter, perfectly solid and compact, and constructed in one piece from shore to shore, 1,175 feet long; it is composed of 1,900 wires of fth inch thickness, which are laid parallel to each other. Great care has been taken to insure an equal tension of the wires. Oxidation is guasded against by a varnish applied to each wire ceparately, their preservation, however, is insared for certain by a close, compact, and continuous wrapping, made of annealed wire, and laid on by machinery in the most perfect manner. A continuous wrapping is an important improvement, which, in this case, has been for the first time succesafuly epplied.

A well-constructed and well-wrapped cable presents the appearance of a solid cylinder, which in strength greatly surpases a chain, made of bars of the same aggregate section or weight. It is not only the great relative strength of wire which renders it superior to bar iron, bat its greater elasticity, which euables it to support strong and repeated fvibrations, add still more to its value as a waterial for bridge building.

The extremities of the cables do not extend below ground, bat connect with anchor chains, which, in a curved line, pass through large masses of masonry, the last links occupying a vertical position. The bers composing these chains average 1 i $\times 4$ inch, and are from 4 to 12 feet long; they are manafactured of boiler acrap and forged in one piece without a weld. The extreme links are anchored to heavy cast-iron plates of 6 feet aquare, which are beld down by the foundations, upon which the woight of 700 perches of masonry rests. The stability of this part of the structure is fully insured, as the resistance of the anchorage is twice as great as the greatest strain to which the chains can ever be subjected.

The plan of anchorage adopted on the aqueduct varies materially from those methods usaally applied to suspension bridges, where an open channel is formed under groand for the passage of the chains. On the aqueduct, the chains below gronnd are imbedded and completely surrounded by cement. In the construction of the mesonry, this material and common lime mortar have been abuudantly applied. The bars are painted with red lead. Their preservation is readered certain by the known quality of calcareons cements to provent oxidation. If moisture shonld find its way to the chains, it will be saturated with lime, and add another calcareous coating to the iron. This portion of the work has been executed with scrupulous care, so as to render it unnecessary on the part of those who exercise a surveillance over the structure to examine it. The re-painting of the cables every two or three jears will insure their duration for a long period.

Where the cables rest on the saddles, their size is increased at two points by introducing short wires, and thus forming swells, which fit into corresponding recesses of the casting. Between these swells, the cable is forcibly pressed down by three sets of strong iron wedges, driven through openings which are cast in the side of the saddle.

When the merits of the suspension bar were discussed previous to the commencement of the structure, doubts were raised as to the stability of the pyramids and the masonry below, when unequal furces should hap. pen to disturb the equilibrinm of adjoining spans. It was then proved by a statiatical demonstration, that any of the arches with the water in the trunk could support an extra weight of 120 tons, without diaturbance to any part of the work. In this examination, no allowance at all was made for the great resistance of the wood-work and the stifness of the trunk itself. During the raising of the framo-wnrk, the several arches were repeatedly subjected to very considerable unequal forces, which never disturbed the balance, and proved the correctnese of previons calculatlons.
The stiffness and rigidity of the structure is so great, that no doubt is entertained that each of the several arches would sustain itself in case the wood-work of the next one adjoining should be consumed by fire.

The wood-work in any of the arches eeparately may be remored and substituted by new material, withont affecting the equilibriam of the next one.
The origial idea apon which the plan has been perfected, was to torm a evooden trumk, strong enough to support its own weight, and stifr enough for an aquedact or bridge, and to combine this atructore with wire cables of a sufficient strength to bear safely the great wright of water.

The plan of this work, therefore, is a combination which presents very superior advantages, vix., great strength, stiffices, safety, durability, and cconomy.
This system, for the firat time saccesefally carried out on the Pittsborgh aqueduct, may hereafter be applied, with the bappiest resolts, to railroad bridges, which have to resist the poworfal weight and great vibrations, which result from the passage of heavs locomotives and trains of cars.

Remarg.- The quantities in the following table are calculated for a depth of water of feet, which has been in the aqueduct ever since the opering. The depth contemplated was it foet; a greater depth in at present required on account of the raising of the bottom of the canal by bars and sediment, which have to be removed before the level can bo lowered.

Table of Quantities of the Aqueduct.

length of Aqueduct whithout ertenalona 1,140 feet.
Leagth of cables, 1,175 feet.
Length of cables and chains, 1,283 feet.
Diameter of cables, 7 inches.
Aggregate weight of both cables, 110 tona.
Bectom of 4 feet of water in trank, 89 aup' feet.
Total wetght of wher in aqueduct, 2,100 cons.
Welght of one span, inclodiog allt, 4:0 tona.
Agsinste onmber of wires in both cables, 9,800 .
Aggregate solld rection of both cablet, 53 nup. iaebes.
Deflection of cabies, 14 feet 6 Inchen.
Elecution of pymaide above plers, 16 feet 6 inches.
Weight of witer in 1 span belween piers, 275 tons.
Weight of whier in 1 span beiween piers, 275 tons.
Tenion of cables remalugg frotn thls weight, 392 tong.
Teniloa of one slagle wire, 2061 b .
Armage nultmate atreagth of one wire, $1,100 \mathrm{lb}$.
Ultimate strength of ceblea, 2,090 tons.
Tension revalidg from welght of witer opon one solid mquer lnch of wire cable, $11,8001 \mathrm{~b}$.
Tenfind remalling from welght of water upon one mquare inch of anchor cbates, 11,000 lb.
Prepiure resulting from welght of witer upon one pyramid, 137 tons,
one superficial foot, $18,400 \mathrm{lb}$.

COLOGNE CATHEDRAL.

It appears from the forty-ninth Report of the Committee of the Society for the Reatoration of Cologne Cathedral, that the advance made during the period embraced in the present Report consists, on the south side, in the additional height to which the pier of the transepts have been carried. In the same purt, the western entrance has been completely vanlted in, and the eastern begun to be ar. A great quantity of stone is lying ready cut for the work, and still more is expected from the quarries, in order, if possible, to vault-in the middle space also before the end of the year.

Similarly, oaly somewhat further, advanced are the works in the north transept. Here the three spaces are for the most part already vaulted over, and they will at all events be quite completed in the conrse of the present autumn.

The works in the northern nave aisle were put in activity immediately after the illustrious visit of Queen Victuria, it being necessary that the old roofing should be retained till up to that time. This has now been removed, and scaffolding is in course of erection in order to set to work upon the new vaulting. Seven bays of original vaultiog. as is well known, already existed on the north side; so that there remained but five to constract. But on the removal of the old roofing and woodwork, the sonth-eastesn pillar of the seventh bay was discovered to be built of brick in the most slovenly aud insufficient manmer. The groining bands and ribs of tuffstone springing from it were in the same way most meanly put tugether, the lines broken so as to form polygons, and the joints very fanlty.' Still, supposing this defect could bave been partly discovered from below by the naked eye, and the conclusion thence arrired at that this vanlting was of later origin than the other portions of the beautiful vanlting of the cathedral, with which it admitted of no comparison, this would not bave prevented it from being retained from antiquarian considerations, had the previously-concealed pillar proved at all adequate to support the pressare of the mass rising from it to the additional height of ninety feet and more.

This not being the case, this pillar and the vault belonging to it had to be given up to destruction. This is at present being accomplished, and the construction of the remaining spaces of vaulting suffers some delay in consequence. In general, the works will be carried on uninterruptedly with about four hundred men. Meanwhile the supply of stone is by no means kept up with the regularity to be desired, notwithotanding tha
arragements have been eptered into with ten difierent contractors. There is conaiderable difficulty in procuring stone of good quality in a sufficient quantity; and even were these stones obliged to be delivered in all at ooce according to given dimensions, the due succesaion would not be alvays obecrved, as the quarry-mon work out the material oaly as it can be procored to bett advantage from the rock.
At a previons meeting of the Committee, the following order of the Eing of Prasia was read:-
"I have received the report of the Central Reatoration Society's operadoas during the last three jearn, transmitted to me the and of last month, and bave taken cognizance of its centents with true satisfaction. From it 1 perceive with pleasure the constantly growing syapathy for the grand object of the \&ociety in crost of the provincos of Germany, and am mach gratified in recognising the credit which the Society's Committee bas geined irself by its wise and strennons conduct of the concerns entrosted to its cart. The judicious adminatration and application of the resouroes placed at its diaposal are sumpiently attested by the performeaces of the society during the short period of its existeace. These fally answer every reasonable expectation, and justify a still higher confidence in the soccesenfi prosecution of this sacred and noble work. To promote thise enccess to the ntmont of my power and with undiminished interest, forms ase of the objects to which my life will be deroted."

Fardraice William.
Seremeci, Sept. 1, 1845
To the Central Soclety for the Reatoration of Cologne Cathedral.
The total receipta of the Society amonnt to abont $\mathbf{8 2}, 180 \mathrm{~L}$.

BROAD AND NARROW GAUGE BXPERIMENTS.
We are indebted for the following particulars of the experiments made Defore the Gauge Commicrioners to the Morniag Herald, at prosent the afficial eocount has not been published."

Blond Gajez Expleinerith.

On 8aturday morning, Japuary 10, two more axperimental trips were ande oo the broed gauge (the Great Weatern Railway) in the presence of the Gavgo Commisioners; the weather was rather uafavonrable, the -oraing bein dafl and damp, and very litule wind stirring antil the aftersoov. The Herocles was again selected for the porpone; it is a powerfal angioe, having connected wheels 5 feot in diamoter, cylinder 16 inches, atrake 18 inches, and reighs 92 tons. At 7 h .59 m .24 s . she started from the one mile poest, Paddington, with a train of 18 trucks, coal-leden, an edditional temder, and a firt class carriage, whlch was occupied by Sir F. Bmith, Profeseor Barlow, Mr. Watson, Mr. Benoders, secretary to the cospany, Mr. Harseer, and Mr. Gibeon; on the ongine were Mr. Bronel, eapineer of the lise, and Mr. Gooch, saperintendent of the locomotive de-

[^10]pertment. This experimental train was driven from Paddington to Diacot, a distance of 59 y miles, where it arrived at 10 h . 18 m . 880. haring mede atoppages at Ealing, Bouthall, West Draytoo, Slough, Maidenhead, Twyford, and Goring. For the exact time of arrival and departure from the several stations the reporter has been indebted to Mr. 8ojmonr Clarke, the principal superintendent of the line, and it is as foliows:-

The distance was accomplished in $\mathbf{2 h} .97 \mathrm{~m}, 14 \mathrm{~g}$, , or at a rate of $\mathbf{8 6 7 5}$ miles an hoor. The weight of train propelled, exclusive of the engine, was 204 tons 18 cwt .1 qr .3 lb . Soon after the arrival of this train at Dident, the Ixion, a powerial paseenger engine, having driving wheeln 7 feet in diameter, came up with a truin of 15 trucks, laden with coal, to be attached to the train of the Horcules, making in all 28 trucks and one first class carriage. Anter all matters wore arranged this leviachian train proceeded on its journey; its weight, length, and the time it passed the difforent stations, are given from the same authority as that of the down trip :—weight 406 tons, 8 cwt 1 qr .10 lb . ; length of train, 282 jarde.

Performing the journey in 8 h .16 m .45 s , at an average rate of apeed of is miles an bonr.

The doration of this trip was 54 minvtes, 6 seoonds, which shows a speed of npwerds of 471 miles per hour. The maximam rete, between the 18th and 19th mile-posts, was eomewhat above 64 miles per hour.

Nageow Gades Exproimentb.

The experiments for teating the tractive capacity of the narrow-gange engine commenced on the soth Dec. Iast, opon the Great North of England line, between York and Darlington. The distance run was that between the first and forty-fourth mile-ponts-vis. 43 miles. This piece of railway has been selected in consequence of its belog nearly a direct lioe throughout its whole course, and from the very casp character of its grae dients. The engine selected is a new one, recently constructed, made at the celebrated locomotivo establishment of Mr. Robert Stephenson. She had been running for about a week only, and had not made any except experimental trips. Her performances were considered to be so good tnat ahe was fixed upon as the champion for the narrow-gauge intereats. She is a six-wheel engioc, with ootside cylinders; has 6 feet 6 inches driving wheels, and the top of her boiler is about 7 feet 4 inches from the reils.

The hour fixed for the atarting of the train was nine o'clock. There wore present to witness the experiment Professor Barlow, Professor Airy (two of the gauge commisuioners); Mr. Watson, the secretary to the commisaion; Mr. G. Hudeon, M.P.; Mr. Richardson, the mayor of York; Mr. Branel; Mr. C. A. Sannders, the eecretary of the Great Western company; Mr. Gooch, superintendent of the locomotive department in the same company; Mr. Bidder; Mr. Cabry, the eugineer of the York and North Midland; Mr. Harriaon, the engineer of the Great North of England; Mr. W. Stevenson, of the Great Western Company; Mr. Wyndham Harding; Mr. Berkoley of Mr. Bobert Stepheason's establiabment, and several other scientilc gentlomen.

The weight of the train was 50 tons only, and that of the eagine and tender together abous 28 tons. The weights of the experimental trains
opon the broad gange were（excluaive of engive and tender）fixed at 80 tons， 70 tons and 60 toan，bet the actual tonnages Fere 81 tons 18 ewt， 71 tons 123 cwt ，and 61 tons 0 cwt 2 grs ．It will be seen，thero－ fore，that the experiment apon the marrow－gauge line，the particulars of which we are about to detail，has no parallel working upon the broad－ gaoge railway；and that mhatever the value of the result，it can be recog－ nised only when the broed－gange engine shall have taken the same re－ duced tonnage for the same distance．

Starting．－At 9h．7m．＇15s，the train started from the station in order to proceed to the first mile－post，from which it had been understood the experiment was to commence．Upon the Great Western line the expe－ rimental trains left the Paddington termiaus，aod were brought to a stand－still at the first mile－pont．This，however，was not the case this morning．
The train passed the－

Train paseed				Time each mile．		Train paased				Time each mile．	
Ist mille．	h．	m．	8.	m．	3.	2\％rd mile－	h．	m．	8	m．	3.
poet at	9	12	17	0	0	pout at	9	47	60	1	25
2	－	14	23	1	8	24	9	49	85	1	45
3	9	15	45	1	20	23	9	61	35	1	${ }^{86}$
4	9	17	0	1	15	28	9	88	20	1	60
5	9	18	12	1	18	27	9	88	15	1	66
6	9	19	20	1	8	29	9	67	15	8	0
7	0	20	30	1	10	29	0	59	12	1	87
8	9	91	40	1	10	80	10	1	28	8	16
9	8	28	8	1	22	81	10	8	80	2	2
10	9	24	88	1	80	22	10	5	15	1	45
11	9	28	18	1	4	88	10	6	80	1	85
12	9	28	8	1	83	84	10	8	44	1	＊
18	8	80	4	1	88	8	10	10	85	1	51
14	－	88	6	8	2	88	10	12	8	2	0
15	9	84	0	1	84	37	10	14	8	2	21
16	9	85	45	1	45	88	10	17	18	2	22
17	9	87	28	1	87	89	10	19	0	1	41
18	9	88	50	1	28	40	10	20	20	2	20
19	9	40	25	1	35	41	10	21	84	1	14
20	－	42	20	1	85	43	10	22	49	1	15
21	9	44	45	2	25	48	10	24	8	1	19
22	9	45	88	1	40	44	10	25	10	2	2

The train stopped at the Darlington atation at $10 \mathrm{~h}, 27 \mathrm{~m}, 20 \mathrm{~s}$ ．It will be seen that the 43 miles were performed in 1 hour， 13 minates and 53 seconds，or at the rate of nearly 35 miles per hour．The maximum apeed （between the 5th and 6th mile－posts）was nearly 53 miles per hour，and the minimum rate rather more than $\mathbf{2 5}$ miles per hour．The average speed of the 80－toas train（exclusive of the engine and tender）upon the broad－ gange line was 47.5 miles per hour，and the maximum speed 55 miles per hour．There was，bowever，one thing greatly against the narrow－ gange axperiment of this morning，vis．－the wind．When the train left the York station the weather was not at all unfavonrable；the horizon promised rain，but very little wind was stirring．Up to the 10 th mile－ post the result promised to be pretty good；the last three miles had been done at about 52 miles per hour，and the narrow－gauge party calculated that the 43 miles would be got over in about 52 or 54 minntes．On reach． ing the 10 hb mile－post a heavy wosterly wisd came suddenly down upon the carriages，taking them obliquely in the direction the train was going． The effeot was felt in less than minuto－the wind redoced the speed from 50 to nearly 90 miles per hour．There could be no donbt about the canse of retardation，becanse from the 10 th mile－post the progress of the train was slow or fast in proportion to the length of embankment，open country or cutting．Immediately the engine entered a cutting，the in－ crease of velocity was most sensibly apparent．If she entered a cutting of a couple of farlongs in length or 30 miles an hour，she dashed out of it at 38 or 40 ，and before another couple of furlongs had been run upon an embankment exposed to the gale the speed became reduced to 30 miles per hour．

The retorn trip commenced at 12 h .8 m ． 15 s ．，and the train reached the frat mile－post from the York station at $1 \mathrm{~h}, 32 \mathrm{~m}$ ． 88. ，performing the 43 miles in 1 hour， 24 minutes and 53 seconds，or at a speed of about 30 miles per hour．A stoppage took place in this trip for water，by which two or three minutes were lost．

The experiments were reaumed on the following day．
The experiments yesterday with the 50 tons trains were considered so in－ conclusive，in consequence of the high wind which prevailed，that it was determined to repeat them to－day．The hoor appointed for leaving the station was $9 o^{\prime}$ clock．The train left at 9 h .2 m ．10s．，accompanied by Profescor Barlow，Professor Airy，Mr．Watson，Mr．Branel，Mr．Saun． ders，Mr．Gooch，Mr．Bidder，Mr．W yndham Harding，Mr．Berkeley， Mr．Cabry，and abont a dozen other gentlemen．The day was a favour－ able one．There wras a slight breeze to the north，and the rails were in a fair condition．Contrary to the practice observed In the oxperimental trips on the Great Weatern Railway，the train did not stop at the first mile－pont，and commence its experimental trip from a state of rest．In－ stead of doing this，it passed the post at the rate of about 8 miles per hoor．The following is the working of the train for the 43 miles，－thint is，measuring from the first milo－post ont of the York station to the mile－ post on the York side of the Darlington station ：－

The time occupied in performing the distance yesterdag was 1 hour， 18 minutes， 53 seconds，or at the rate of something less than 35 miles per hour．It will be seen that to－day the same distance was accomplished in 53 minutes， 28 seconds，or at rather less than 48 miles per hour，the max． imum speed，between the 5 th and 6 th mile－posts，being nearty 65 miles per hour．The wind of jesterday may therefore be considered to have offered a resistance equal to above 13 miles per hour．

The return train with the 50 tons left Darlington station at 11 h .21 m ． 0s．，and passed the first mile－post at llh．22m．18s．The followiog is the working of the engine ：－

				$\begin{gathered} \text { Time ench } \\ \text { mile in } \\ \text { eeconds. } \end{gathered}$					Time each mille in seconds．
Panaed lit	h．	m．	菏		Pamed 28rd	h．	m．	閨	
malle－prat at	11	22	18	－	mile－post at	11	81	28	77
2	11	24	88	160	24	11	52	48	75
3	11	28	28	90	25	11	53	66	78
4	11	27	${ }^{68}$	85	28	11	85	8	72
5	11	29	29	98	27	11	86	19	71
6	11	80	48	88	28	11	67	31	72
7	11	31	38	76	29	11	48	41	70
8	11	30	10	72	30	11	59	51	70
9	11	4	23	78	81	12	1	3	74
10	11	8	42	79	82	0	0	0	
11	11	8	58	73	88	12	3	28	141
12	11	87	12	77	84	12	4	82	08
15	11	88	29	77	85	12	5	48	76
14	0	0	0	$\underline{1}$	16	12	6.	49	71
15	11	41	50	181	87	12	8	11	72
16	11	48	8	79	88	12	9	98	72
17	11	4	28	74	89	12	10	38	70
18	11	45	85	73	40	12	11	43	70
19	11	45	42	67	41	12	12	53	70
80	11	47	48	66	42	12	14	2	69
21	11	40	0	72	43	12	15	12	70
22	1	60	11	71	44	12	1.	24	72

The next experimental trip was with an 80 －tons train；and at a few minutes after 2 o＇clock the train proceeded towards the first mile－post．

				Time each mile in seconds．						
Passed lat mille－poat at	h	$\begin{aligned} & 20 . \\ & 19 \end{aligned}$	88		passed 23rd mille－post at	$\begin{aligned} & \text { h. } \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 80 \end{aligned}$	0	76	
${ }_{2}$	2	11	48	130	24	2	40	18		
8	2	18	18	80	25	2	41	40		
4	2	14	84	76	26	9	48	0		
6	2	18	53	78	27	2	44	90		
6	2	17	11	79	28	2	45	84	24	
7	2	18	25	74	29	2	46	80	78	
8	8	29	40	75	80	2	48	14	8	－
9	2	20	62	72	31	2	49	88	8	
10	2	22	8	73	32	2	80	60	78	3
11	2	23	18	75	88	2	82	8		－
12	2	24	30	72	84	2	88	28		ת日，
18	2	25	48	78	3	3	8	49		－－${ }^{\text {－}}$
14	2	27	8	80	38	8	6	0		8.1
15	2	28	26	78	87	2	57	28		
16	2	89	40	74	38	2	89	0		
17	2	30	64	74	8	3	0	80		－ 1
18	2	32	12	78	40	8	1	65		
19	2	33	84	82	41	8	8	18		
20	2	35	0	86	42	3	4	42	8	
21	2	8	22	82	43	8	6	θ	6	－
22	2	37	44	88	44	8	8	8	12	－11

From this table it is soen that with good weathor torday，the came en． gine upon the same line，and going over the same gradient（for carres there are none），took 80 tons 43 miles in 88 minates， 30 seconds，or in 18 minntes， 23 seconds，less than she took 50 tons getterday with a side wiad against her．

Thrad Day.-In consequence of an accident by the engine ranaing off the rails, the experiments could not take placo.

Foverf Day.-Two more experiments were made with the goods train of 200 and 400 tons respectively. The engine employed was the Hercules. She in a tir-wheel coupled engine, with 4 feet 6 inches driving-wheels. Fire-box, 60 feet sarface; tubes, 900 feet; cylinder, 15 inches; stroke, 24 inches; weight, 20 tons.

The engine started from the firat mile-post beyond York at 9h. 36s., mada seven stoppages, amounting to 40 m .50 s ., and arrived at the 43 rd mile-poat at 12 h . 91 m .40 s . The actual time of running, therefore, was $2 \mathrm{~h} .14 \mathrm{~m} .20 \mathrm{~s} .$, or upwards of 18 miles per hour. The return trip from Derlington was with 400 tons, the train being above $\mathbf{3 0 0}$ yards long. The train left the 444 mile.post at 2 h .8 m .58 , and arrived at the first mile-post tt 4h. 2em. 24s., without making auy stoppages. This gives something like 10 miles per hour. The following is the working of the engine with the monster train, viz. 47 wagons.

Ist tithe performed ln.. $\mathrm{m}_{\text {i }}$ s.						24th malle performed in .. $\quad . \begin{gathered}\text { m. } \\ 3\end{gathered}$					
2	..	d	..	1	20	25	\cdots			3	50
3	-	-	-.	2	10	28	-	..	-	2	50
1	..	-	\cdots	8	80	87	-.	-	.	8	10
3	..	*	-	6	20	28	\cdots	\cdots	-	2	50
6	-	-	..	8	40	29	-	-	-	2	50
7	-	-	-	8	20	30	\because	-	.	2	40
8	\cdots	-	-	2	10	${ }_{51} 1$	-	\cdots	-	2	40
8	-	-.	.	2	10	32	..	\cdots	-	2	35
10	-.	-.	.	8	20	88	-	.	..	2	85
11	..	**	..	2	40	84	2	80
12	-	\cdots	..	8	20	35	..	-	..	4	${ }^{0}$
13	**	-.	..	3	0	86	.	.	.	5	10
14	-	-	..	8	0	37	\cdots	-	-	7	20
15	-	-	-.	2	40	88	-.	.	-	6	80
16	-	-	.	2	20	89	-	\because	-	3	80
17	\cdots	\because	..	2	10	40	.	-	-		80
18	.	\because	-	2	10	41	-	*	..	8	0
19	-	-	.	2	4	48	-	-	\cdots	3	0
21	-	\cdots	-	2	s0	43	-	\cdots	-	8	${ }^{0}$
22	-	-	-	8	20	4	-	-	-	8	20

It will be seen that the maximum apeed was nearly $\mathbf{3 0}$ miles per hour.

THE LATE ACCIDENT UPON THE NORFOLK RAILWAY.

At an inqoest commenoed in December last, in conseqnence of a fatal eccident on the Norfolk Railway, considerable interest was excited on eccoant of the contredictory opinions expressed by two gentlemen of the bigheat eminence for thelr knowledge of engineering-General Maaley and Mr. Bidder. General Pasley did not hesitato to assert in bis evidence that Mr. Bidder had, in the course of his examination, expressed opinions uquite erroneous and contrary to the first principles of mechanics. It is of the higbest importance to the engineering profession to ascertain the trath respecting eeveral very important views propounded during the inquest.

It does not lie within our plan to give a detailed account of the accident, is will be sufficient for our purpose to state simply that it arose from the engise ruaning of the ruiln. The following extracts from the evidence of Mr. Bidder embody the botions which General Pasley declared to be contrary to sonnd philosophy.
"The indination of the line where the engine had ran off was 1 in 100. The permanent way was as good a piece as any in England. It was constracted on a chalk embankment, the most favourable soil for auch work. At the point where the engine left the rail the embankment was raised about dive feet above the ordinary surface of the eartn. The chalk in the embankmeot was used in large lomps, and he thought the late wet weather would bave no effect opon it. On examining the engine he found the steam-reguLator indicated that the steam had been turned off suddenly, the effect of which woald be precisely similar to that which had been described by tbe previons witneas. The speed of the engive would be more retarded than the curriages, and the train would urge the engine on, forcing it off one side of the rail, and the carriages on the other. He attributed the accident to the impropriety of the engive-diver proceeding at a very high velocity and modenly shutting off the steam. Moreover, the line near Thetford being under repair, it required particular caution in passing over it, and if the deceased did mot exercise that precaution, it showed a great want of care on his part. He had no means of judging the exact speed the engine was going, bat bis opigiou was, that it mnst have been very great, far beyond that of the proper pead, riz., 30 miles an hour."

The evidence of the next witness examined after Mr. Bidder is important, not for matters of opinion bot matters of fact ; for it appears that be distinctly atated the circamstances on which Mr. Bidder fouaded his opinion to be, in reality, quite different from those under which the accideat took place. Coleman, the chief guard of the train says, that " no alteration was made in the speed more than asual," that the speed of the treis 4 up to the period of the accident did not exceed 85 mikes an howr," and thas " be had travelled on the line frequently as fast as be did on Wedseaday." He says also that jost before the accident, the engine gave a "tremendons jump;" that be could see dietinctly what the engine-driver

Fas doing, and that "the moment the engine jumped, Pickering tumed round and looked on one side, and then cat off the steam." He swore positivels that "Pickering did rot shut of the steam mntil after the engine had jwaped off the raile."

The evidence of Major-General Pasloy is an follows.

General Pasley-My opinion is, that owing to the peculiar construction of the engines, like the one that met with the accident on the Norfolt line, they are not the most auitable to the narrow gange, as they do not admit of any great speed without danger. They are perfectly secure on the narrow gange at a certain rate. For instance, the distance from the Harsling-road station to Thetford is eight miles, and 26 minutea is allowed to accomplish that distance. The distance and tino noted in the Norfolk Railway Company'a time-bill can be travelled over without any excessive apeed. If by any extraordinary negleot 10 minutes should be lost between those two atations, there is 16 minutes to go the eight miles, a rate of 90 miles per hour.

Coroner-Can you account for tho broken chair, which was 22 feet from the sleeper, that was cut apparently by the engine when It got off the rail

General Pasley-I shonld aay that the chair was broken by the motion of the engine. If it was defective before, the motion might oontribute to its breaking entirely.

Coroner-What description of engine was it that met with the accident ?
General Pasley-One of most extraordinary length of such a length as was never nsed on the narrow or any other gange before. If you will allow me, I wiH meation a circnmstance respecting these peculiar class of engines. Some months ago there existed doubts as to the safety of exprest trains to travel by, and knowing that oscillation of carriages was $n o$ proof of danger, or that their steadiness ensured perfect safety I determined to ride upon the engines, with a view of more easily detecting their unsteadi-ness-their oscillating indicating danger. I travelled lines in different parts of the country, and the only engine I found having sach an oseillation was one on the Sonth Eastern Railway, called the White Horse of Kent, manufactured by Mr. Robert Stephenson, and of the same peculiar construction as the one that went off the rails on the Norfolk line. I went on that engine at the rate of 44 or 45 miles an hour, and at that speed she rolled something like a ship at sea. The oscillation, when the train is going at such a rate, indicatea a danger of ronning off the rail. I told the enginedrivers and other authorities that if they ran 50 miles an bour, like the express trains on the Great Western Railway, the greater likelihood of the engines rolling over. I have stated that opinion to the Gange Commissioners. The difference between the engine you have alloded to as mannfactured by Mr. Robert Stephenson and those employed on the Great Western, is thas-The narrow gauge not offering so great a diameter of boiler as the broad, Mr. Stephenson, to remove the obstacle, constructed the loog-boiler engines to equal them in power, and they have failed in the purpose for which they were intended. The long boiler engives, which Mr. Stephenson persevered in, are four or five feet longer than thoee of original construction, the amoke box overhangs the fore wheeis, and the fire-boz and dome the hind wheels, which will cause them to oscillate. I think such an engine as the one in queation can goat 30 or 85 miles an hour, and I think I have gone at 45 miles an hour upon them; but when they approach 50 I think they are unsafe, and that is an opinion not hastily formed. I have mentioned it frequenuly to eagineers and supertntendents of railways, as well as to the Gange Commissioners. The Great Western Railway has been worked by engines of one pattern for the last five or six years. The motive fur forming the long-boiler engine was to gain a larger evaporating surface, and thereby obtaining greater power of steam. That however has failed, owing to the tube at the fore part of the boiler being so far distant from the fire-box, and not being exposed to the full action of the heat. The engine on the South Western, Manchester and Birmingham, and Graud Junction Railways, of the make of Messrs. Sharp and Brochers, with boiiers of moderate length, have equal, if not more power, and are capable of going at any speed they will admit of, providing the ground is in good order. I think these long boiler engines, if they are going at a rate exceeding 40 miles per hour, are liable to oscillate and run over the line. The cause is the defect in their formation. It is the wheels huddled together, or the axles under the boiler, that gives so much overhanging dead weight at each end, which I bave not fonnd with any other engines but those of Mr. Stephenson.

Coroner-Did you ever anticipate an engine of this description meeting with such an accident?

General Pasley-The fact is, I did not expect surh an accident could have taken place. I did not think that such an engine could have gone at The apeed it did in ranaing off the line. It is a rule with engine drivers to shut off the steam on a descending gradient, and in all my joarneys in railway travelling I never found them neglect doing so. I have frequently informed the engive-drivers of these engines of the danger they were incurring whed driving them at a rato verging upon 50 miles per hour. In the north of Eugland, however, I remember being on one of Mr. Stephenson's long-boiler engines, and two pair of the wheels were coupled together, and in riding opon it I felt more secure than I would apon the two other ones, as the conpling prodnces steadiness, and consequently safety. 1 wish to explain why I consider that the sudden shatting off of the stean could not have led to the accident-the grounds upon which I differ with other opinions. When the steam is shot off eoddenly, more especially on a descending gradient, the momentam will drag the tender and carriagt:
for a considerable distance, and presaming that the angine should become detached from the tender, its impetas would carry it far in advance; so much so, that the train wonld fail in overtaking it. The engine wonld proceed faster than the carriages. In order to show yon the effect of saddoaly ahutting off the steam, I was lately on en engine on the Bristol and Gloucester Railway with Mr. Connell, the locomotive superintendent, the Gange Commissioners being in the Irain, when I desired a greater speed to be pot on, and then requested the steam to be turned off suddealy. It was done so, and not the slightest effect was produced. Again, on the Great Western Railway I was on an engine with Mr. Branol-two tenders attached aud a goods'-train of 2.000 tons, with a speed of $\mathbf{3 0}$ miles an hour. I desired Mr. Brunel, when they had to stop at a station, to shat off the steam suddenly a minnte before the breaks were applied. It was done frequently, and not the least effect felt. The tender did oot crowd upon the engive, and neitber did the wagons crowd upon the tender. In sbort, abuting off the steam prodnces no effect, unless the breaks are applied, more especislly in descending an incline of 1 in 200. At the New Cross incline, which is 1 in 100, the trains are always stopped by turning the ateam off suddenly, and applying the breaks immediataly, and if the cause of the accident was really the shutting off the steam, accidents would be constantly occurring at New Cross. Whenever there was a necessity for sach a step I should have no hesitation in adopting it.
Corover-Then, Sir, you quite disagree with Mr. Bidder's opinion as to the cause of the accident?

General Pasloy-I consider Mr. Bidder's opinion perfectly erroneous; at the same time I wish to observe that Mr. Bidder is a gentleman of much ability, but in this case I think he is much mistaken; bis opinion is contrary to the first principle of mechanics. The dimensions of the engine are 19 ft 6 in . in length, without the foot-plates which the engine-driver and occasionally the stoker stand upon, which gives about 2 feet more. The distance from the centre of the front and hind wheels is 10 ft .3 in., so that the smoke-box is projecting before the fore wheels, and the fire-box and dome overhanging the bind wheels. In all engines, before Mr. Stephenson took out his patent for the construction of the long-boiler engines, the hind wheels are in the rear of the fire-boy and dome, and consequently there is no orerhanging dead weight at the rear of the wherls. When I first saw the engines I thought them very good in travelling at a moderate rate, but I now see no advantage in their construction or improvement. The fore part of the boiler being so far from the fire-box, the tubes being so much distant, the engines do not afford the puwer that was expected from them. The engines of Sharp, Brotbers, and Co., with moderate length boiler, possess equal or greater power, and are free from danger.

Coroner-Are there any signal posts to denote gradients.
General Pasley-After the firat arcident on the Eastern Counties Railvag, the Earl of Dalhousie,wrote to the board desiring that all the inclines should be marked out with posts, which had been done to guide engine-drivers; for at the accident at Litulebury, on thut line, the saperintendeat of the locomotive department, who was on the engine, and the driver, were really deacending a gradient without knowing it.

Cononer-Mr. Bidder has told us that on gradients of 1 in 200, engines are in the babit of travelling at the greatest volocity?

General Pasley-Then that is coutrary to my general experience. I never travelled an incline but that the steam bad been partially or perfectly shut off. It is a general rule to shut it off on going down an incline. I do not think that on a gradient of 1 in 200 , engines are in the habit of ranning at the greatest possible velocity.

Coraper-Then we perfectly anderstand you to say, that shulting off steam in dearending a gradient wrould not cause an engine to stop?

General Pasley-Certainly, if the breaks were not applied. If the docline is 20 miles in length, it will not stop until it comes to a level. It is the source of gravity. 1ts momentum forces it along.
The learned Coroner proceeded to sum up the evidence, and after commenting on the principal facts an related to the unfortunate occurrence, $r e$ marked opon the wide contrast of opinion entertained by Major-General Pasloy and Mr. Bidder. It was for the jury to determine, knowing weil that they would so decide as would ensure the public every safety.
The verdict was "Accidental death, caused by the imprudent conduct of the engine-driver in going at an excessive speed."

Geaeral Pasley, on bis return to town by the last train, rode on the ensine of the Eastern Countion Company, oue of the same description as those shat ran off the rails at Littjebury and Waterbeach, built by Stothart, Slaughter, aud Co., in order to test ifs capabilities. The apeed on one portron of the line hetween Bishop's Stortford and Stratford was for a short time upwards of 46 miles an hour, and the engine rode very steady; and in two or three instances, on nearing a station, he directed the engine-driver to tura the steam off suddenly, foll a minute before the breaks were put down, and not the slighteat effect was produced.
The reply of Mr. Bidder appears in the form of an advertisement, pablished in the Times, from which we make the following extracts :-
"The substance of the evidence which I gave was to the effect, that by the sudden shutting off of the steam of the engine, the carriages were no longer dramn by the engine, but that the engline was propelled by the carriages, and that this, in combination with other circumstances which (as I then stated) might not occur once in a thowand times, had, on this ocemtion, the efect of foreling the engine off the line.
"The grounds upon which I formed thia opinion are based apon what I mast still beliave to be melleastablishod law of mechanics-mpis., that in aiy nyttem of bodies moving together, if there be no reaintance, or if the
resistanee of each body be lo the like ratio to it wright, when the metive power ceasen to act upon them, these bodies will exert no infoence upse each other in any direction, but if the resistance to the motion of the bodies in front be greater than that which is required to surtain the motina of those which are behind, the retardation of the former will be more rapid than that of the latter, and will be impelled by them, and vice werol
"Applying this to the case of a railway train in motion, we have this fact for our gridance-that an engine requirea from 7 to 12 lb . per ton zoore to sustain its motion than the carriagte-it must inevitably follow, that the effect of auddenly shatting off the ateam causea the carriagee to overtake and impel the ongine forward, as stated by me in my evidence."
It certainly must be conceded that asuming with Mr. Bidder, the sesistance to motion to be 7 to 12 lb . per ton more for an engise thas for cearriages, the carriages will exert a premore againat the ongine when the steam is suddenly cut of. But the misapprehension on which Gemerad Pasley gronnded his censure of Mr. Biddor appears to be thir-that be prosumed Mr. Bidder's notion to be that the carriages aeted on the engine not by a continuous pressure, but by impact or collision. There is mo groasd however for supposing that Mr. Bidder eniertained this idea. At the atmo time while defending him from the charge of haviog errod in the first priciples of mechanics, we do not hesitate to deny the posesibility of the eecident having arisen from the causes assigned by him.

It appears from the very careful and elaborate experimeats of M. de Pambour, that the friction of an eugine when not drawing a trajp (the case here snpposed) is about 14 lb . per ton. The friction of carriages is 6 lb . per ton. This gives an excess of 8 lb . par ton for the friction of the engive. But from this mast bo deducted the resistance of the air, a moet important item in considering high velooities. The resistance of air on the carringes \boldsymbol{m} much greater than on the eugine in proportion to the weight of each. We shonld be quite safo in supposing that at velocities ranging from 30 to te miles an bour, the resistance from this cause is 9 or 4 lb . greater per tom on the carriages than on the engine. So that on the whole we may eafely conclude that when the engine and train are disconnected at a thigh relo city, the steam being cnt off at the same time, the excess of resintances on the engine is cortuinly not more than 5 lb . per ton.

Now we sball have no difficulty whatever in showing that the presarre which the carriages will exert on the engive under these eincametames is no greater than that which could be easily exerted by boy 18 or 14 jeara old. By the very simplest mathematios it may be demonstrated that the pressure is equal to 6 times the prodect of the number of toas which the train and engine wrigh respectively, divided by the simin of those anmbers.* For instance if we suppose the wright of the train 40 , and of the eagine 10 tons, the product of those two numbers (400) being divided by their mam (50) gives 8, which multiplied by 5 gives 40 lb for the preasare on the engine. Again, take the wright of the train at 60 tons, and of the engine at 12 tons, 12×60 is 720 and $12+60$ is 72 : dividing 720 by 72 , and then multiplying by 5 as before, we get 50 lb . for the pressure on the engine.

It most be carefully noled that the pressure bere calculated represents the whole effect of the train on the engine. There is nothing like impect or collision because the velocities of both engine and carriages are initially the aame, mod are gradually retarded.

Now it would be perfectly ludicruas to imagine that a pressare of 40 or 50 lb , would injure an engine or force it off the line. Taking the weight which a man can uaually raise at 200 ib . (no very high eatimate) we have for the pressure in question one-fifth to one-fourth of the average of homan strength. Even if we take Mr. Bidder's own acconnt and acanme the excess of resistance to the engiae over that to the train at 7 to 1 ll lb . pet ton, the case is made very little better, for aven then the pressare is got nearly so great as that which could be exerted by one man.

- Iat M be the number of tons which the train wolshy, Fhe revistavee per ton to th P the mutual presuare between the trin and engina: then mensuring the mecelecatios force from the time of dieconnectiog the swo, in the direedon of motion, we have

$$
\mathrm{M} \frac{d^{2}}{d t^{2}}=-\mathrm{MF}-\mathrm{P}
$$

for the motion of the carriagen. Por the motion of the engint we have, patalus 2 ' An the namber of tons, and F^{\prime} for resiatavea per ton,

$$
M^{\prime} \frac{d^{2}}{d t^{2}}=-M^{\prime} F^{\prime}+P
$$

$$
\frac{M M^{\prime}}{M+M^{\prime}}\left(F^{\prime}-Y\right)
$$

Bo that if we leavo mere generalitien and cometo actual calculation, the wibole theery seems fallacious anough. What is the pressure in the case in queation compared with that which the carriages and engines exert on each other when the ongios has to be reversed to move carriages backward? And this occurs dally and hourly without any very disastrous consequences.

A mach more serious souroe of accidents on the Norfolk Railvay appeare to us to be the manner in which the tranverse sleepers are laid. seing made from unequared timber sawn in half lengthways, their furm is hemi-cylindrical. Now theme half cylinders are not (we understand) laid with their that sides downwards, as in many other railways where they are of conrse firmly rupported by the soil : but in the Norfolk Railway the scepers are laid with tho flat sides uppermost. The hold which the roumed sides have on the soil is comparatively small, and it is obvious shat a preseare on one slde of the apper side of the sleeper might easily case it to slip round. If for instance, a stone resting on the edge of the sleeper were proseed apon it by the passing of the train, it would certainly tend to shit the poaition of the sleeper, and therefore of the rails.

My Rosert 8tapernson's Repomt.

The following report upon the causes of this deplorable occurrence has ween presented by Mr. Robert Stepheason to the directors:-

To the Directors of the Norfolk Railway.

Gentlemen,-Absence from London ou orgent business has prevented se complying earlier with your requeat that I should report to sou my obcervations on the statements made in the evidence given at the inquest on the late accident upon the Norfoll: Railway.
I returaed to town last night, and now proceed to lay before you such remarks as have suggeated themselves. In the outset I may state, that I concur generally with the engineering evidence given by Mr. Bidder and Mr. Marsball. I shall therefore confine my observations to the evidence of General Padey, but before I direct your attention to the individual atatemeats, I mast obeerve, that I have experienced considerable difinculty in dealing with them, in consequence of their being merely expressions of opinion, without adducing arguments or specito facts to support them. If the General bad, after giving an opinion, statod the particular reasons or reaglt of calculations which lod him to such conclusions, then their validity might have been tested. In the present instance such a conrse is doubly secessary, beconse the subject, from the tone assamed, is made not merely a acientific one, but one involving profosaional character. I shall, however, coafine $m y$ remarks to the former.
General Pasley commences by stating that the description of engine wes one of "extreordinary length, of such a length as was never used on the aerrow or any other gauge."

From this statement everybody would conclade that thle class of engine was not in very general ase; that little or no experience had been obtained of its peculiarities; that it was mexperimental engine, possessing several obrions defects.

Against this asampition I only think it necessary to state the fact that upwards of 150 engines of this description have been in daily use in this coontry and on the continent for the last two or three years; that the long boiler has, by every experienced and impartial locomotive manager with whom I have communicated, been received as a decided improvement; 20 mach 80 , that since this class of engine was first introduced, the boilers of odd engines have been, in several cases within my own knowledge, very considerably lengthened; thus offering the moat incontestable proof that the old construction of engino is admitted to be deficient in length of boiler. You will bear in mind that I am now apeaking of the boiler simply; the other parts of the construction of the engive upon which General Pusley offers an opinion I shull come to afterwards. I need hardly say, that during the working of such a number of engines over such a lengtb of time, it is iapossible to conceive the avoidance of accident. If this construction of angine involved danger to the extent stated by General Pasley: bat, as if to meet this argument, the General in his evidence qualifies his opinion of danger by saying, " tbat such an engine as the one in question cangont 50 or 85 miles an hour, and I think I bave gone 45 miles upon them."
I can only state my own experience loads me to a different conclusion, and that I have frequentiy been upon this description of engine when the speed far exceeded those above referred to without the slightest accident ocenrring.

Oscillation in the body of the engine at high velocities I regard as inoritable, no matter what the construction may be; bot this oscillation arises from causes which cannot have come within the Inspector-General'n sphere of observation. It is only the practical man whose opinion oa such points can be depended npon; it is not the occasional riding upon an encine that can enable any one to decide between the construction of one clacs and another, or to decide that dangerons oscillation is caused by an orerbangisg arebot or a loug boiler. In a word, to decide a point of this weil as its construction; for instance, the stesdiness of all sir-wheeled en. glase eseentially depends upon three conditions,

1. The distribution of the weight upon the three axlen.
2. The lateral play in the bearings.
3. The distance between the extreme axles, that is, the axtrone length of bearing upon the rails.

Of these the lant only is permanent ; the two finst are constantly subject to change. An engine which is perfectly safe and oomparatively steady to-day may become unsteady, and even dangerona at high speeds, in a short time by an alteration oither in the springs or by the lateral wearing of the beuring. Now, I have reasoa to know that the White Horse of Kent, the only engine which General Pasley quotes as having oncillated excessively, alhough he hes tried several others, was not in the best working condition at the time he made the experiment; no opinion with reforence tu its motion conld therefore with propriety be drawn without taking into account the condition in which the bearinge were at the time, together with the disposition of weight upon the wheels.

All engines when allowed to get play upon the bearings become un. steady at high velocities, and oscillation from this sonrce is aggravated if more than a due proportion of weight be thrown opon the middle pair of wheels.

I believe nearly all the accidents which have ocenrred by engines leaving the raila are mainly attributable to want of attention to this condlition.
In bud weather, when the ralls are slippery, the temptation to the engineman to increase the weight apon the driving wbeels is very great, and I have frequeatly known it carried to an improper extent. How far this may have operated in the Norfulk Railway accident cannot now be ascertained, but, referring to that which took place daring the progress of the experiments on the Great North of England Railvay, onder the Gauge Commission, I have ascertalned that this improper distribution of weight was one of the chief causes of the engine leaving the rails. On a piece of absolutely perfect road this cause woold in all probability nut have produced the result, but in cases of this kind the altimate result seldom, very seldom indeed, fows from one cause; it is the concurresce of fwo or more circumstances operating in the same direction.

If accidents on railways arose frow any pecolarities of construction is the engine, we ought to have them every day. If the overhanging firebox so much objected to by General Hasley were dangerous, it wonld be abcolutely inpossible to work the London and Birmingham one day without a series of accidents. The engines upon that line bave firobores projecting beyond the bearing axle fully 4 feet 6 inches, being 5 inches more than the correaponding projection of the Norfolk engine. The London and Birmingham line has been worked now nearly oight years with an anparalleled trafic with engines having overhanging freboxes, wlthout any accident which can fairly be attributed to such a peculiarity of construction.

I originally objected to this projection of the fireboz beyond the axle; but, after an experiment continued uninterroptedly for a series of years, with an ernorimous traffic, it would be absard to reject saoh praclical evidence and to hold to such an opinion.

It was this opinion that led me to the construction of the new longboiler engine, and the abandonment of the objection I origiaally entertained and acted upon. When I considered, moreover, that the Londob and Birmingham engines had, in addition to the overhanging frobox, a remarkably shurt bearing upon the ruil, aud, coosequently, admiting of the overhanging weight operating with increased effect, the testimosy appeared to ine conclusive.
The London and Birmingham engines in the commencement had a bearing upon the rail of ouly $5 \frac{1}{2}$ feet (they have since boen extended). Wherems the Norfulk engines bave a bearing of $10 \frac{1}{2}$ teet. On this point I need mot confiue my reference to the engines upon the London and Birmiagham, because they are not peculiar to that line; they are to be found on many others.
Whatever may be the effect of sach evidenoe apon the minds of others, I must confeas that to mo it nppears perfectly conclosive thet the overhanging box exercised no infuence such as General Pasley imagines.

In confirmation of this, I may state that yesterday, with a passenger train of 40 tons, with a buisterous side wind, I came from Darlington to York on the A engine, which has an overhanging bax and long boiler, accompanied by Mr. T. E. Harrieon, Mr. Fletcber, and Mr. Joweph Stopheason, for the express purpose of trying the oscillation of the engine. For several miles the speed exceeded 88 miles an bour, and in some we passed the consecutive quarter mile posts in 16 seconds, being 60 milos an hour. In addition to the overhangiag firebox, we ware all standing on the footplato with the engineman, excopling Mr. Joseph Stepbenson ; coneoquently, the circumstances wore peculiurly caloulated to excite oscillation, if the tendency existed to any appreciable extent. 1 am , however, enabled to declare mod positively, that this engine was not only entirely free from any dangervus oscillation, but as steads as any engine I ever rode opon. Here 1 will leave the question of overhanging firebux and proceed to notice the nezt peculiarity of the Nurfolk engine specially noticed by Gemeral Pasley-viz., "The wheela being buddled together."
In looking at this part of the subject, I am relieved from apy disouscion as to matters of opinion; it is rimply one of dimension, which admiss happily of no dispute. I therefore give you the dimension of Blanghter's engine, which the General retarned to town upon, and declared anfe and steady, and thoee of the Norfalk engine, which be condemns :-

$$
\begin{array}{llll}
& & \text { Ft. } & I_{n} \\
\text { Slaughter's eugine, distance betweep extrome axlea } & \text {.: } & 11 & 0 \\
\text { Norfolk engine, distance between extrome axles } & \text {.. } & 10 & 6
\end{array}
$$

I leare the General to sas whether this difference of six inches jastifies the epithet, "huddied together," as applied by him to the wheels of the Norfolk engine.
The General, in another part of his evidence, says, "These enginen (alluding to Slaughter's), although they are of a long boiler construction, have no overhanging weight like Mr. Stephenson's." This, like the last, is merely a question of dimension, the fact being that at the chimney end Slaughter's engine overhangs precisely to the same extent as the Norfolk engine-viz., 4 feet 9 inches; at the firebox end in Blaughter's engine the axle is placed underneath the middle of the firebor, whereas in the others it is placed immediately in front of it, withont, however, giving the engine more than 6 inches additional base upon the railway, and this in a diatance of 11 feet; yet this shade of difference, according to the General, makes the one angine safe and steady, and the other dangerous, and apt to "roll like a vessel at sea," and this without reference to the fact that the centre of gravity of the Norfolk engine is fully a foot lower than Slaughter's. Were it necessary to adduce any further evidence it would only be neces. sary to recall to mind the base of the London and Birmingham engines, where, with an overhanging firebox, the base of the rail does not exceed 7 feet.
I do not think that comment on such a conclusion is necessary : if a shade of difference of this kind be really adequate to produce such consequences as are here stated by the Inspector-General, the sooner the construction of every class of locomotive engine is revised the better.
General Pasley states in another part of his evidence, that "the narrow gauge not offering so great a diameter of botler as the broad, Mr. Stephenson, to remove the obstucle, constructed the long boiler engines, to equal them in power, and they have failed in the parpose for which they were intended." And again, "that owing to the fore part of the boilers being so far from the firebox, the tubes being so much distant, the ongines do not afford the power that was expected from them."
This paragraph I have no hesitation in declaring to be entirely erroneous. In the first place, the motive for lengthening the boiler had no reference to gange at all, because it is equally applicable to all gaoges; the object was to save fuel, by preventing the escape of a large quantity of waste heat up the chimney; in this it has been perfectly successful, which has been established by every oxperiment tried with this object. Even with the longest tobe yot introduced in locomotive engines, the temporature at the chimney end has beon found sufficient to melt lead, which is upwards of 200 degrees above the temperature of the water in the boiler. The opinion of General Pasley on this point is equally at variance with the most extensive experience with stationary engine boilers, which are much longer, with much less velocity of draught, It must be obvions to every one that every addition to the economy of fuel obtained by an enlarged evaporatory capacity is necessarily attended with a oorresponding increase of power, and therefore, as before observed, although my original object in lengthening the boiler was with the view of economical results, it has been attended with a large increase of power. I beg therefore to remove the impression produced by General Pasley's evidence, by emphatically declaring that the long boiler arrangement suggested itself to my mind, indeed was in actual operation, years before the question of gavges was agitated. I forbear here going into the question of gayge, which has been so pointedly introduced by lenera! Pasley both in his ovidence and in his letter in The Times, because it is both foreign to the sabject, and can lead to no result whilst it is under the consideration of the commission appointed for that purpose.

In conclusion, I am willing to believe, nay, I am siacerely convinced, that Geveral Pasley, in giving his evidence, was actuated by no other motive than a wish to arrive at the truth, but in the present instance I must be excused for regarding him as having ventured to give opinions upon a difficult subject, and one with which neither his education nor experience can have made bim thorougbly acquainted. In venturing thus to express myself, I am far from wishing to imply the least disres pectful feeling to General Pasley; on the contrary, my experience in the mode in which he has filled the difficult office of Inspector-General has led me to respect him, and at all times to aid him by giving himopinions on practical subjects whenever an opportunity presented itself; but in the present case I am so personally involved by bis evidence, and feel so strongly convinced that his views are entirely erroneous, and calculated to injure railway intereste, that to express my opinion with any reservation would be injustice to many railway compadies whose conflence I enjoy.

I am, Geatlemen, Jour obedient servant,
Rohert Stephenson.
24, Great George-atreet, Westminster, Jan. 21.

PALL OF A VIADUCT ON THE ROUEN AND HAVRE RALLWAY.

(Extract from a Private Letter.)

It being possible that the nows of the falling of the whole of the viaduct of Barentin, on the line of the projected railroad between Rouen and Havre, and within three loagnes of the former place, may not yet have reached you, I therefore hasten to send you all the particulars that I have

This event took place on Saturday last, the 10th Janaary, and has made a doep impression on the feeling and fears of the population of Havre, who look ed forward with mach anxiety to the speedy and safe accomplishment of an undertaking in which their commercial and general interests are 0 importantly involved. Now that the accident has happened, opinions, which were formerly kept ln subjection, are expressed withont reserve, and it would appear that doubts have long been entertained of the solidity of the worke, of the amount of care observed, and of the quality of the materials used io the construction of this railroad. One shudders at the Idea of the dreadfol consequences which might bave ensued had the rond been in full operation at the time of the accident. The fall of this eaormous Fork, raised to the height of 92 yards French, (about 105 English feet) above the soil, natnrally gives rise to the most serious apprehensions for the eventual'fate of two others, those of Malanney and Mirville, which the
same conditions expose to a like result. same conditions expose to a like result.
Public confidence in the general stability of the works upon this railroad has, by this dreadful ovent, received a blow, the effects of which can ouly Happily, no lives have been lost norg series of successful operations. vicinity destroyed by the fall of the wiad much property in the immediate river St. Austreberthe, was entirely knocked down, aud it was not the within an bour afterwards that the inhabitants of Barentin could make their way across the masses which eucumbered the road to the rescue of the sole inmate, who miraculonsly escaped with a slight wound only of the finger. The machinery and fragments of the mill were scattered about in every rection.
The Journal des Debats publishes the following letter on the sabject of the late catastrophe which occurred on the Rouen and Havre Railroad:you will insert it in to address you the following note, with a request that You will insert it in Jour next namber. The directors of the Roneu and Havre Railroad Company hasten to publish the first information transmitted engineer of the company. The directors henve by Mr. Locke, the principal the principal engineer, at which the anns bave aince had a conference with last evening was fully confirmed-viz., that the cost of the rebuilding of the viaduct of Barentio will be at the expense of the contractors, and that the reconstruction of the viaduct will not retard for more than two months the opening of the line. The plan of the reconstruction was this day arMinister of Publio Woris. The damage caused to the to-morrow to the neighbourbood of the viadnct is of no serious imed to the proprietors in the but to a slight indennity, already partly arranged.-E. Delacoor, Secretary to the Company."

THE JANUS STEAM SHIP.

(Wec opy the following article, addressed to the Editor, from the Times.) Sir-The frequent articles inserted in your universally circnlated paper relative to the Janus, indicate that the success or fuilure of the engines, Being thus confirmed in my are subjects of public interest.
Being thus confirmed in my opinion, I enclose to you the last report made on the original revolving engine erected by the late Admiralty in sent board the confidence they have manifested in engines gave to the presont board the confdence they have manifested in promoting the attainmeut
of an object highly interesting to the navel gervice of an object highly interesting to the naval service.
Those only who attempt to introduce an
the effects of jealousy and prejudice. I confide, hortant novelty can estimate to aid in their removal, and beg that you will, however, in your liberality cating engine has ever performed duty equivalent to 13 consecutive double voyages from England to America (as the Portsmouth engine has doube) almost without repair ! America (as the Portsmouth engine has done),

Portsmouth, Jan. 1.
Dundonald.
Report of the Earl of Dundonald's Rotatory Engine erected in Her
Majesty's Duckyard at Portsmuth.
On the 22d of December, 1845, two years and nine months of constant performance of the rotatory engine expires, during all which lime it bas been working in the most effectual and satisfatory manner, no derange-
ment of consequence having ever taken place.
It is presumed that these
laborious operation (requiring no more than slige months of constant and laborious operation (requiring no more than slight attentiou by the work-
men) have gone far to establish that quality which men) have gone far to establish that quality which, until now, had not
been sufficiently developed, - Damely, durabillty, end consequet conting of operation.
The principal repair this engine has required wes taken in hat aby nive montha ago. This was so tribing that six men could have acoout plished it in one day, but having been much pressed with work at the time one man ouly cotld be apared, which consequently protracted its comple. tion for one week.
Thus after four years and nine months constant working as a prime formed, nothing more can be wanting even by the most sceptical to esta-
bhah its merita as a powerful, ecosomical, and durable engine, eqnal in peint of efficieucy to any reciprocatiog engine in Her Majesty's service.

Should additional evidence be sought to establish further claims as a rival in steam mechanism, it is to be foond in the simple fact, that this first easey on the Earl of Dandonald's principle, althoogh at frst altered and motilated to bring it to perfection, is nevertheless at the present time perfeclly free from those indications of weakness and declining energy which any otber engine, nnder similar circamstances, might probably evince, as is proved by its exhibiting a vacuum at all times equal to $\mathbf{8 8}$ inches of mercury.

Another fact which gives great confidence in the utility and applicability of this principle is its freedom from liability to internal derangement, and consequently the service in which it is engaged is scarcely ever incon. venienced by stoppages.

The engine has not been opened for examination mince July last.
R. Taplin, Engineer and Machinist.

Her Majesty's Dockyard, Portsmouth, Dec. 81, 1845.

ARTIFICLAL ULTRAMARINE

Till within the last twelve or fifteen years the only source of this beartiful pigment was the rare mineral, lapis laruli, The price of the finest ultramarine was then as high as five guineas the ounce. Since the mode of making it artificially has been discovered, however, its price bas fallen to a few shillings the ounce. Artificial ultramarine is now manufactured to a very considerable extent on the continent, but, as far as I can learn, nowe has as yet been made in Great Britain. The chief French manufactories of altramarine are sitaated in Paris; and the two largest ones in Germany are those of Meissen in Saxony, and of Nuremberg in Franconia. Three kinds of ultramarine occur in commerce, the blue, the green, and the yellow. The two first only are true ultramarines, that is sulphur compoands ; the yellow is merely chromate of baryta. Both natire and artificial altramarine have been examined very carefully by several eminent chemists, who, however, have been unable to throw much light opon their true nature. Chemists have undoubtedly ascertained that ultramarine always consists of silica, alumina, soda, sulphur, and a little oride of iron, but no two specimens, either of the native or artificial ultramarine, contain these ingredients in at all similar proportions.

The last chemist who has examined ultramarine is Dr. Elsner, who has published a very elaborate paper upon it in the 23rd namber of Erdmann's Journal for 1841. The first part of Dr. Elsner's paper is historical, and contains an accocnt of the accidental discovery of artificial ultramarine by Tassart and Kulhman in 1814, and of the labours of subsequent chemists, He then gives a detailed account of his own experiments. . Dr. Elaner's paper does not, however, furnish any details by which ultramarine could be manufactored successfully on the great scale. Thus, for example, in regard to the necessary degree of heat, perhaps the most important circumstance in the process, he gives no directions whatever. We know, however, from other sonrces, that it sbould be a low red heat, as at much higher temperatures both native and artificial nltramarine soon become colour. less. Dr. Elsner, indeed, does not affirm that he was able to procure ultramarine in quantity of a uniformly good colour. In fact, the process of Robiquet, published nearly ten years ago, is the best which scientific chemists possess, though undoubtedly the manufacturers have greatly im. proved upon it. Robiquet's process consists in heating to low redness a mixture of one part porcelain clay, one and a half sulphur, and one and a balf parts anhydrons carbonate of soda, either in an earthenware retort or covered crucible, so long as vapours aregiven off. When opened, the crocible usually contains a spongy mass of a deep blue colour, containing more or less ultramarine mixed with the excess of sclphur employed, and come unaltered clay and soda. The soluble matter is removed by washiog, and the ultramarine separated from the other impurities by levigation. It is to be regretted, bowerer, that the results of Robiquet's process are by no means nniform ; one time it yields a good deal of ultrama. rine of excellent quality, and perbaps, at the very next repetition of the process in circunstances apparently similar, very little ultramarine is obtained, and that of an inferior quality. The fabrication of ultramarine is a sabject which well deserves the attention of English chemical manufacturers, as it could be carried on with peculiar advantage in this country. The chiof expense of the process is the fuel reqnired, which can be purchased in Great Britain for less than balf the money it would cost either in France or Germany. - Proceedings of the Glasgow Philosophical Society.

The Nelson Monument.-The completion of this work has at length teen detersioned on by the Woods and Foreath, and to thls effect a communication has been made to the artiats to whom the commlasione have been confided, by the Earl of Lacoin. The mabjects proposed for the four basai rellent are the netories of Cape 8 t. Vhoent, Copenhagen, the Nille, and Trafagar; and the scolpton appolnted to execute these worky are Mr. Wateon, Mr. Woodington, Mr. Carew, and Mr. Turnouth. The tour lions will be executed by Mr. Lough. The relleved works will be in bronse-the Yoas to etoce or srantie.-"Examliver."

ROYAL SCOTTISH SOCIRTY OF ARTS.

Monday Jan. 12. Sir Geo. S. Mackenzie, Bart., of Conl, F.R.S.B., President, in the Chair.

The following communications were made:

1. "A Development of the operation of the Harmonic Ration in a progressive series of Scalene Triangles, and of their effect upon the Rectangles which these Triangles produce, by the union of their hypothenues, woith Remarks upon the utility of auch a series in an Esthetical point of view. By D. R. Hay, Eaq.-Mr. Hay, in reading this paper on the harmonic ratios, exhibited by drawings, made in presence of the meeting, their operation, by a natural process, in producing a series of scalene triengles having all the harmonic properties in relation to form, that the natural diatonic scale of muxic has to sound. He showed that the beauty of proportion and symmetry depends upon the operation of the numbers 2,3 , and 5 , and thmt these uumbers operate in the formation of geometrical figures by the division of the circle into 360 degrees; asserting that no other mode of divition Fould produce the same results, because that number is in a peculiar manner (which he also exhibited to the meeting) a multiple of those three harmonic numbers. He also showed that, by the combinations of the sealene triangles reaulting from his process, a series of rectangles wat produced, and proved that these rectangles had peculiar harmonic qualities, that belonged to no other Gigures of the same species. He stated that such a scale wes a desideratum in architecture, and that its adoption would be attended with incalculable advantage in that as well as in every other art in which form was treated in the abstract. He also mentioned that his scale of harmonic formas Was applicable to curvelineal as well as rectilineal figurea, and that he wes engaged in a work in which this shoald be proved.
2. Description and Drawings of a Circular Sawo for general purpover, but more particularly for Agricullurists. By Capt G. D. Patrebon.-Thia saw, it was stated, is adapted both for cross-cutting and all other kinds of work, bat more particularly for running cuts throngh battens, dealh, \&c., and can travel through timber of any length. In croos-cutting, the workmen can canse the saw to advance or retreat by means of a handle. For loyg work the sam is driven backwards and forwards by machinery. Captain Paterson adopted the plan of making the saw travel instead of the wood, not only because by that means greater precision is obtained than by moving the wood to the saw (which indeed, in crost-cutting large trees in almost im. practicable), but also in order to avoid the riak of crippling the saw, which he had often known to occur from careless or inexperienced workmen twistiag the wood in the act of cutting. The sam is driven by belts.
3. Description and Drawings of a Railuay Indicalor. By Wiamiam AnDreson, mail-guard. -The machine, as it has been in action for three months past on the Dundee and Arbroath Railway, was exbibited. The indicator shows, at any moment, the number of miles the train has iravelled from the station at which it started, an well as the number to travel to the end of the journey. It also enables the engineer or any other perion in the train to ascertain at night or in dense fogs, within a few feet of the particular spot on the line upon which the crain is travelling. It also telle the rate of speed, and the different stations and localities which the train pesses; and also the hour and the length of time it takes to nun every mile. It wes stated that it would be an effectoal check to careless or reckleas driving, and would be also a complete check upon book-keepers, conductors, and every other servant connected with the train, as as the end of the journey it has only to be examined in order to show the time when the train started-when it reached every one of the different atations-and the precise speed at which it had travelled during any part of the jnorney; and were ite indicationa copied into a book, this would form a complete and lasting register of the whole working on the line.
A tail Signal Light, to be attached to the upright spindle of the indicator, was also described, viz. a revolving red and white light, which would chow at night the apeed of a train in advance of another at a ditatanoe of four or five ailes, and thus enable the driver of the following trin to keep at a proper diatance from the one in advance.
4. An antique cabinet Lock and Key of curious and ingenious worknarehip, was exhibited by Aday Gin Ellis, Rsq., W.S., F.R.S.S.A.
5. A Model of Mr.W. G. Gover's Remodeable Windono Sashes for the nore eary and safe means of Cleaning Findows entir ely within the apartment,The advantages of the invention are stated to be, that the iron corner-pieces strengthen the rasbea, and render them removeable, and capable of being taken inside the apartment to be cleaned. They also cause the sash to alide more freely and silently in the frame; and when closed, the window is perfectly firm, and free from any rattling or vibration. They can be applied either to new or old wiudows at a cost of 10 s . per window.

ARCHEOLOGICAL INSTITUTE.

January 9.-Sir Ricrand Weetmacott in the Chalr.
The increasing number and interest of the communications submitted to the Institute has induced the Committee to devote two meetings in each month solely to the exhibition of antiquities, and to archreological discusion.

The fint of thea convernaziones wes held at the apartments of the Inatitute (12, Haymartet), on Priday lat at four o'clock, as had been annonnced in the printed circulars of the Committes and the recently published number of the Areheolopical Jowreal.

On opening the proceeding, Sir R. Wentmacott observed that, before en. tering into an examination of the objects sabmitted to them, he thought it right to atate, that it was far from the Intention of the committee of the In. atitute, in holding these meetingt, to interfere in any degree with the proceedinga of the Society of Antiquaries. He conceived that there was a marked distinction in the province of the two societies. It was competent to the Society of Antiquaries to undertake far more important objecta; - lts range of research was wider, its resonrces were more ample. The lostitute was necesarily subaidiary-designed to act in a pioneer capacity, and to aupply by its extended correspondence those materials not otherwiae accessible, on which the more important labours of the Society of Antiquaries muat ultimately be based. The conatitution of the Institute was so framed as to em brace all classes interested in the atudy of Archasology,-not those only whose support wain vilable from their position and influence, but also those precladed by their limited means from joining the Society of Antiquaries, and deriving full benefit from lts valuable publications. By this more comprehensive enrolment, the Institute hoped to secure the co-operation of those who were the oficial conservators of our great ecclesiastical edifices, and those also whoce profestional education involved the study of Archeology; and of the national sympethy thus created the Society of Antiquaries wonld, he folit sure, reap the berefit. He confidently anticipated that, by the annual meeting, a very great atimulus would be given to the study of Archeology, and that in each sncceasive visit a new and intereating locality would be explored and illustrated, and many precions objects, which lie concealed in private collections, would be brought to light. By the smaller meetings, such as the commlttee held this day, they hoped to give the opportunity for much friendly intercourse and valuable discussion. He rejoiced to see, on the present occation, tuch a variety of Intereating ohjects and communicatioms as those laid before them, most gratifying assurance of the manner in which tbee meetinga would be supported by the members of the Iustituto; and he could only regret that the limited apace of their apartments did not allow them to aceommodate, on the present occasion, a larger assembly.

Sir Richird then called the attention of the meeting to some beautiful Italian sculptares in ivory, which had pased Into hia possession from the colleetion of Fiarman. He observed, that they probably represented, in a seriea of groapa, the incidenta of some legend or mediaval romance. They appear to havo been excented in the earlier part of the fourteenth century, and afford - remarkable example of a peculiar style of design, considered by foreign antiquaries to be Fenetian, and of which seversl specimens may be seen in the Masbe Charies X, at the Lourre, and several private cabinets at Paris and other parts of the continent. He alno submitted for inspection a head scalptured is tone, of the 13th century, from Hereford Cathedral, remark. able for the fine character of the featorea and general exprestion.

The Marquew of Northampton exhibited a bronze Etrancan vase, of numanal form, found at Bomaza, and a mirror ornamented on the reverse with ap engraved group of the Judgment of Paris, and a number of beads formed of vitreone pantes, diccovered near Rome, much resembling the beads found in Britigh barrows.

Several interesting primeval meapons of sint and bronze, discovered in Glaroorganshire, beloaging to the mnsenm of the Royal Institation of South Walen, were communicated for exhibition, by permission, tbrough Mr. G. G. Francis, local secretary to the Institute. A valuable illuatration of theae remains wes contributed by Mr. J. Winter Jones, consiating of an anique ascemblage of lance and arrow beads of silex, discovered in Canada, which, as Mr. Birch remarted, closely resemble in form and adaptation the weapons of the primeval tribes of Great Britain and Northera Europe.

Mr. Dilke axhibited a portrait on glacs of late Roman times, parchased at Strawberry Hill, representing a femalo buat, and that of a boy wearing the bulle. Thi portrait is remarkable, not only from variety of detaile of elemical costume, rarely to be met with, but also as an example of ancient denfon, showing a great knowledge of form and chiaroscuro. The bead-dreas of the fomale resemblea that of the Ernprese Julia Momaen, and the portrait in probably not inter chan the time of Gordinnus Africanus. The mode in which the work is executed is also curious it is apparently formed by acraping Fay parts of a black pigment, 50 as to show a gold ground below, the surface of the picture beiag protected by a glase plate cemented over it. Another beantifal portralt of the same zind was exhibited by Mr. Burgon; and other examples of this species of glass have been noticed by Buonarotti, in his Torr on ancient glasa.

Mr. Talbot exhlbited a marrant for the payment of 55 sols tournois to Rintandore, trumpeter of the Comte d'Angouleme, for hringing the "good and joyful nows of the death of Talbot and the defeat of the English before Cantillos," In the year 1433. Mr. Talbot also exhibited some Roman silver Imperial coins from Feapedia to Severus, foond near the Giants' Causemay in Ireland, and a Chineve porcelais phial aaid to havo been found in a tomb at Theben,-Mr. Bircin stated that all these phials were probsbily very much Later than their alleged date; first, from their being Inacribed with a charactor not carlier than the firat contary 3.0. ; secondly, from the fect that in the Chincee anals the firt mention of porcelain does not occur till the reventb century A. ©., and then it is apoken of as a rarity; thirdly, that the merchante were in the lablt at the present day of bringing these vases to Cuiro on the retur of the caravant from Mecen.

Mr. C. Villiers Bayly exhibited a slab of wood, probably part of a cower, ornamented, and with groups in relief and pounced work, appposed to reper sent a subject from some romance; the costume of the Agares was Italinop, of the latter part of the fifteenth century.

Mr. Poynter exhibited some atamped leathern havgiog of beautiful de sign, from Bradwell House, Bucks; they presented a good example of the decorations which supplied the place of hanginge of Arra, towards the clove of the seventeenth century.

Two drawings, on a very large scale, of early Christian, inscribed and sculptured crossea at Nevin and Carew, in Pembrokeshire, were exhibited by Mr. Weatwood. Mr. Weatwood atated, that these were the two fineat speeimens of this class of monument that he had been able to diecover, and that their date was probably the eleventh centary.-The representation of a remarkable sculptured monument, at Auldbar, near Brechin, was exhibitod at the same time, and several features of resemblance in design were noticed. This curious early Christian memorial had been commanicated to the lnetitute by Mr. Chalmers, of Auldbar.

Several communications were read to the meeting, among which was e letter from Sir Philip Bgerton, atating some ningular facts connected with the Roman occupation of Cheshire, as detailed by Mr. Hostage, of Northvich. Letters were aleo read from the Rev. Hugh Jones, D.J., and the Rev. H. Longueville Jones, announcing their intention of commenciag eresvations on the site of Segontium, near Caernarvon, where it was anticipated that interesting discoveries would be made. Dr. Joves atated that the walla of Caernarron Castle had recently been repaired in a most astisfactory manner, but that some portions of the town walls, the property of Mr. Ashetom Smith and Lord Newboruagh, were in a very decayed state.

DECORATIVE ART BOCIETY.

A continuation of the paper "On Cluromatic Decorations in England," was read by Mr. E. Cooper. He commenced by noticing the progreasive regard for coloured decorations exhibited during the Norman and Gothic epochs ; alluding to the simple and chaste effect produced by the polished Purbeck marble shaft at Ely, and the Temple Church, the rich granderar of the earlier stained glass windows at York and elsewhere; with the attendant painted decorations on ceilinga and walls, and the parements of encaustic tiles. He attempted to elucidate the principles which predoninate in the better examples, by explaining the general application of the three primary colours, and the more usual construction of the deagna. He then noticed the stained glass windows at King's College, Cambridge, Where the whole of the subject and detail are designed with a feeling of Remassance (it is supposed by Giulio Romano); he said, from personal observation, that nearly ail the coloured glass is what is technically termed pot-metal, so that where it is not so, as probably in the finest colones, it in enamelled glass; and he observed that drawing and shading were placed upon these, as is evident from the disappatance, is many cases, leaving the pot metal only. A discomsonance was alluded to, arising from the colonrs of back-ground and fore-ground in pictorial sabjects boing of the same intensity; and a method of producing light and distance by remoring more or less from the thickness of the enamel was angeested as appllcable to windows, and a apecimen was exhibited. Mr. Cooper then commented on the agreeable effect of stained glass windows when the walls are of simple or unlform colour, but arged careful consideration when the walls are decorated with pictures. He observed that the altar-piece at King's College is entirely veutralized in effect hy the overwhelming colonred raye of light entering in every direction upon it ; the earlier examples of Gothic windows were taid to allow the transmiesion of a greater proportion of pure light. He maintained that the ancient coloured glase had no sopeo riority over that now produceable, and that the provalent opinion of inferiority had arisen from the greater use of painted, inatend of pot-metal or enamelled glase. After some remarks on ancaustic tiles (apecimens from Reading Abbey), and the peculiarities of Gothic drawing, colouriog, and sculpture, Mr. Cooper described some examples of transition, or mixed Gothic and Italian character in the ceilinga of the Chapel Royal, St. Jamer's, and the chapel of Bishop West, in Ely Cathedral ; also the fine specimese of baronial decorations lately restored at Hampton Court. He then took occasion to censore the manner in which some of the coloured decoration in the spandrils below the windows of the aisles in Westminster Abbey have been destroyed or concealed by misplaced and absurd mythologioal monumeatal tablets; and he noticed some fine and well known examples of "high tombe" richly ornamented with marble, colour, and gildiog. The decorations of the Elizabetban period were noticed, and a apecimen of embossed, silvered and coloured leather hangings from the Munor Hoose, Billingshurst, was exhibited. The introduction of Italian architectare, by Charles, led to the concideration of the ceiling of the Banquetting Hoaes, Whitehall, painted by Rubeus, also of the works by Thornhill, Verrio, Languerre, and Charles de la Fosse at Greeawich Hospital, St. Panl's, Chatsworth, and Montague House (late British Museum). At present, he remariked, there appears to be a struggle for supremacy between the Gothic and Italian styles; and, in his criticisms on some recent decorttions, Mr. Cooper expressed an opiniou that the imitalions have been unsaccessfully applied, instanciog those in the Temple Cburch as partaking too freely of yellow ochreous tints, the Royal Exchange as being too petife and paltry for their parpose, the Conservative Club as presenting a bewilderiag profusion of trifing ornaments devoid of any important character
\square

or design, and materially diminishing any grand effect that the architect might have contemplated. After some remarks explanatory of his views on domestic decorations of the present day, Mr. Cooper submitted a quess tion as to the applicability of Gothic decorations to modern purposes, with more especial reference to the New Palace of Westminster; he adnitted that decorations should be in accordance with the style, and subservient to the architectural character of the edifice ; bat, he asked, must we therefore follow the earlier Gothic mannerisms? Copy the attempts of an age of comparative barbarism in Art? Or, are we to adopt all the improvements and knowledge of form of the present day? He contended that the Gothic did not admit of pictorial decoration in proper keeping, and that the modern school of painting presented too many inconsistencies. He concluded by asserting that the Italian style of the fifteenth and sixteenth centuries, as found in the designs of Palladio, Scamosi, Sansovino, and others, admitted of the utmost degree of refinement, both in sculpture and painting, and afforded profitable materials for stùdy for such a purpose.

INSTITUTION OF CIVIL ENGINEERS.

Eitracts prom tee Anntal Report.-Sebsion 1846.

Premtums.

Telford Medals, in silver, have been ewarded to Peilit Chilwell De la Gasde, for his "Memoir of the Canal of Exeter, from 1563 to 1724," and to Grorgz Edwards, M. Inst. C.E., for hia paper "On Blasting Marl Rock under water in the River Severn."-Premiums of Books, suitably boand and inscribed, have been awarded, to Joan Grorge Budmbr, M. Inst. C.E., for his paper "On the advantages of working Engines with High-pressure Steam expansively, and at high velocities, \&c.;" to Benjamin Lbwis Volliamy, Absoc. Inst. C.E., for his paper "On Railway Clock!;" and to John Balday Rsdman, Grad. Inst. C.E., for his "Description and Drawings of the new Cast Iron Pier at Gravesend."

Obituary.

The deceases are few ; they are Robert Thomas Atkinson, Member, and Lientenant Rdward Nicholas Kendall, R.N., and John Llewellyn, Associates.

Mr. Atrinson was the nephew of the late Mr. Buddle, and after being bronght up by him, assisted him for some years in his large mining and ensineering undertakings in the North. Not long before his death he took the management of the Seaton Delaval mines, where he is stated to have displayed great talent and judgment in difficnit positions. His cornmunication to the Inatitation in the session of 1842, "On sinking and coffering pits in the North of England," will he recollected by the members and increase the regret which must be felt for his loss.

Lifutinant Kendall, whose grandfather, Admiral Hicks, and father, Captain Kendall, were both distinguished naval officers ; received his education and became firt hoy, at the Royal Naval College, Portamouth. He entered His Majesty's service as a Midshipman in 1814, on board the Mutine. He served with credit in several other ships, and from his acientific acquirements was chiefly employed on the sarveying service; apon the trigonometrical survey in Orkney, Shetlend, the coast of Ireland, and in the North Sea. On the ftting ont of the Polar expedition, ander Captain (now Sir Edward) Parry, he volunteered hia services, and acted as Master's Mate on board the ' Pury,' Captain Lyon. He was subsequently selected by Captain (now Sir John) Pranklin, as one of his companions for the land Arctic expedition, and returned with the proud distinction of being attached to the ouly one of the Polar expeditiont that had completely effected its objects. The charts, drawn up by Lieutenant Kendall, from the astronomical observations made by Sir John Franklin and himself, remain as evidence of his talent and industry. He was then appointed, at tbe recommendation of the Royal Society, to the ' Chanticleer,' for the purpose of assisting the late Captain Henry Poater in a series of experiments on the pendulum, and various other branches of scientific research in the Equatorial and South Polar regions. He then condacted the survey of the Western Coast of Africa in the 'Hecla,' the officers of which vensel had nearly all fallen victims to the climate. He was then employed by the Secretary of State for the Colonial Department, in a secret and confidential survey of the boundary line of the British and American states, in New Brunswick, and executed his task in the most satisfactory manner. On his retura he compiled a complete map of the province of New Branswick, from his own astronomical and other observations. He then tarned bis attention to the subject of Steam Navigation, and after superintending for a Joint Stock Company, the building and fitting out of the 'India' steam ship, which was deatined for opening a direct communication with the Eat Indies, via the Cape, he was appointed to a post under the Royal Mail Steam Packet Company, which he only held for a sbort time, and then became the agent at Southampton, for the Peninsular and Oriental Company; and the Directors and all who knew him in that capacity, bear testimony to hia zeal, talents, and high integrity. While holding that porition, he was attacked with sadden illness, and expired on the 12 h of February, 1845, in the prime of life and usefulnest, being only in his 45 th year. He made several usefol communications to the lnstitution, and attended its meetings as frequently as was compatible with the nature of his engagementa.

SOCIETY OF ARTS, LONDON.

The second ordinary meeting for illustration took place on Jan. 21, at the Society's House, Adelphi. Edward Sperr, Esq., in the Chair.
The following communications were made-

1. On the theory of Photographic Action, illustrating the connection betwees the Photographic agent and Electricity. By J. Nort, Esq.-The substance of this highly important and original paper, which led to an interesting discussion, and was to be resumed at the next meeting, was as follows. "Since the discovery of Photography there is, periaps, no branch of electrical physics more interesting than that which comprehends the phenomena of phosphorescence. For though light be the apparent agent in the production of the photographic picture, yet the accompanying circumstances can only be satisfactorily explained by a reference to electrical principles. Light is a term merely relative to us, but light itself has no absolute existence no more than sound ; then how unphilosophic are the terms, latent light and light in darkness, which we sometimes hear, as if that which is merely an effect, could be regarded as a cause, or a physical force, at the same time that we kuow it is not possible to demonstrate the existence of any other physical force in natore than electricity.
"Light is, therefore, only an attendant circumstance in the production of the photographic picture, and this seams clearly proved by the fact of one body impressing its image upon another in the dark, when the bodies are approximated in electrical pliraseology is called the striking distance.
"As light then cannot be regarded as the photographic agent, electricity, which in all prubability is the principle of light, wonid seem to be, and the effects produced when phosphorence is developed through juxta-posed transparent media, of different densities or electrical affinities, bear s atriking an analogy to those which are produced upon a sensitive surface. when exposed to the action of light reflected from bodies in different de. grees of intensity as to render it more than probable, that what is undesstood by the term photugraphy, is a simple case of phosphorescence by insulation. For we find that some parts of the sensitive surface, then exhibit what may be called an elective affinity for certain substances, while others do not. The results can ouly be the effects of simultaneons attractions and repulsions, the manifestation of which is inconceviable independent of the presence of electricity.
"The question then arises, if the photographic picture be the resalt of electrical action, why may not the coloar as well as the contour of bodies be taken down, seeing that colour is not a properiy matter, but as a property of light- All bodies are seen only by refected light, and their colours vary in tint according to the position of the spectator with respect to the plane of reflection. For instance, in the normal of the plane of refection, the coloar of bodies is most distinct, and at every deviation from this point, the local tint changes, and in many cases, is totally extinguished when the eye of the spectator reaches the angle of total refection. Thus then, where the reflected light is the strongest, the colour of bodies is least perceptible, and vice versa.

These considerations induced me to try what comparative effect would be produced upon a sensitive surface, by light reflected at various angles of incidence from the plane of the picture.
"The effects which were thus produced were quite analogous to those which are observed in natore, the local tints of tbe bodies represented varying with every change that was made in the angle of reflection in which the picture was taken down, and the direct ray invariably gave less pictaresque results than when a paraliel glass was used. In some specimens taken with the parallel glass when they were looked at directly, all the appearance of a radiating refection were presented, and when looked at obliquely, all those of a speculary reflection, as if the snn were actaally shining within the plotographic picture itself.

These results gave promise that some remarkable effecta wonld be produced by polarized light, I therefore had a small sundial made, the style of which was formed by a bit of very fine silver-wire, and from the centre of the dial a bit of the same wire was erected perpendicularly, so that the hour angle and the sun's azimuth were given at the same instant.

By means of this instrament Mr. Nott observes, he was able to determine with a good deal of accuracy, the position of the sun, with respect to the plane of the picture that he wished to take a photographic representation of. The glass of the camers was slso made adjustable to the polarizing angle by an attached graduated quadrant.

When, by these means the light was polarized into the camera, by a donble reflection from the plane of the picture, and from the parallel glass it was found that the ohjects in deep shadow and those in sun-light were taken down simultaneously and with equal precision, and that without the slightest trace of solarization, exhibiting a sun-light view of the greatest truth and beauty, in which the transparency of the shadows and the effect of the distance prodaced by an exquisite gradation of tint, such as art could scarcely hope to imitate. This result of polarized light seems doubly interesting since the recent and beautiful discovery of Faraday, where a ray of extinguished polarized light is reillamed by electricity.
How far this discovery may enable us to determine the nature of the active agent concerned in the production of the photographic picture, we will not at the present moment presame to decide.
2. On the new Patent Oil Integument, or skin of Paint, by H. Pagb, by which great facility is afforded for interior or exterior decoration. The author, after pointing out the various inconreniences which the public experience in having the painting, graining, and oil decorations done on
the premises, proceeded to show some of the advantages which he obtains by substitutisg a prepared skin of paint for the ordiusry common painting. Tbese advantuges are very apparent is the decorativo of cailjogs, or in the exesution of any kind of flat ornemental work, whether it be imitations of woods, marbles, lettering io gold or coleors, on walle or wood-work, as it is only necessary that the dimensions of the parts to be ormamented should be previoualy taken, and the work can be completed at the artists' shop or study. He next proceeded to deseribe the process of manufacture, remarking, that the aking at present made are 12 feet by 3 feet, that being found the most convenjent size, but they can be made of any dimensions. A sheet of elephant, or any stont paper, rather larger than the skin required, is taken, and the surface on oue side only a prepared with a mixture of gum arabic, treacle, and water, upon which when dry a coat of paint made with boiled oil and white lead in the ordinary way is pat upon it; Fhen that is dry, the operation is repeated till the okin is of the required thickness, but two coats are found to be sufficient for general use. To separate the skin from the paper it is Iaid on a clean board, with the painted side downward; the paper is then wetted at the back with clean water, and after it has stood a jew minutes, the paint may be removed without any difficulty or the least fear of ita tearing. The same paper may be painted on thirty or forty times, but Hust ifways be prepared as described above. The puint whece removed E carefuily wiped with a sponge and then dried with a wash leather to remore any portion of the preparation which adheres to it. The skin is then folded and pot away till such time as it may be required for use. The mode of fring the skin is to rub down the surface to which it is to be strached, and, when thoroughly clean, it is gone over with boiled oil and gofd size; a smear is sufficient. The skin is then laid on with a soft ctoth, as in the ordinary paper-hanging. Several beaniful specimans were exhibited.

INSTITUTE OF BRITISH ARCHITECTS.

Jemary 12-H. E. Kendacs, Eeq, V.P.f in the Cbair.
A paper was read by John Britton, Esq., descriptive of Roslyn Chapel, near Edinburgh. This edifice was commenced in 1446 , and bis widow and maccessors continued the works, which had been left unfinished at the death of the fbuader, in 1479 . Mr. Britton observed, that his attention had beea directed by Mr. David Roberts to the aiale at the east ead, which is wider thatn the other; and it woakd appear that the plan had been changed after the stone-work for the vaulting was prepared, and in order to make it avail. able, the architect hal resorted to the expedient of carrying the arohes opon large projecting corbels,-a remarkable feature in the construction, which it would be diffcult otherwise to explain.-Mr. Burn observed, thas the picturesque tradition (so well handled by Sir Walter Scott) of the interment of the Sinclairs, shrouded in the armour and uncoffined, in a vault beneath the chapel, is destitute of foundation. There is a crypt, not ander, but bejondthe chapel, to the eastward, which Mr. Born believes, on a caraful examination never to have been used as a sepulchre; and there is oaly ene other sund rault, whers asme of the family bave been deposited in osiken coffims.-Mr. Fowler observed, that the nave of the building was vonlted on the uncorsmonp though not ningular principle of a solid roof, the extrados of the arch forming the axtarnal covering. The vaulting of the eant esd ainte la remarkchle for ite ercessive flatpess, and appeart to have bean retained in ite plase by iron ties groeved inte the otoact-a singularity in the comatruetion of the Middle Ages.

Mr. Domaldone read a letter frora Mr. Enowlen, from Athens, deacribing come late discoveries made in further disencmbering the Acropolis of its mbbials. One remali has bean to meertain, that the fucior of the Parthenon was supported by columns of the Doric order, 3 ft . $7 \frac{1}{1} \mathrm{im}$ in diameter, of Which the fated contoure remaia traced on the pavement. Mr. Dowaldson mede tome remarts on the nodel of the Parthenon by Mr. Lacas, exhibited at the Britial Mosecm, in which the lower pmge of interior columns is roproverted as of the Lonic order, and promised some further rebsarks on this cribeet at a fature opportumity.

Etbam Engine.-At the Academie des Sciences, Paris, Dec. 29,M. A. Segnjar read a notice of a naw sterm engiae, the invention of Messra. Icoard and Mercier. After describing the coustruction of this engine, M. Sopoier asys:-"It diffors from all that has hitherto been ingented, not oniy in its construction, hut aleo by the special manner in which tha steana is employed. Instead of being conveyed from tho generator to the motive apparatus, and ondergaing on the wray, or the moment when its actioa If required, all the losses due to the diminution of volume by the anuses of the cooling process, the steam is maintained at a vary eleveted temperature in the generating tube, and the ralations of the heated sarfaces and of hol water injected are calculated in such a way that the heat does net escape by the orifice until it has acquired as intrease of temperataro whieh permits it to act at onca as ateam and as dilated gas.

A NEW TAKEN OFA REVIEWER;

In a Letter to the Editor of the Ciril Engineer and Architect's Jourmal.
[We are compelled by an unfortunate misprint at p. 13 of this joarnal, and from an auxiety to avoid all appearance of injustice, to give insertion to the following letter. It is rather of a philological thas arobitecteral obaracter, and thin, together with a fall appreciation of the writer's ancita as an architeeforal critic, renders it whotly annecessary for the Reviewter to enter upon a detailed roply. We have taken the liberty of omitting one or two passages in which the writer's fealings have betrayed him into personality. The miaprint of the word "fagade" was marked an the proof-abects, bat the correction was neglested by the comporitor.]
Sin-To crave as a particular favour, or favonf at all, what I can demand as an act of justice, would be no particular compliment to yourself personally. It would imply that i thounht so meanly of you as to suppose that you would not feel yourself sufficiently bound by your own sense of honour and honesty to alford me, as mere matter of course, the opporfunity of exposing in your own Journal the not only very unfair but actually falsifyiug remarks which the "Review of the Companion to the Almanac" has rendered it the vehisle of. I need not adopt the snbmissive tone of a petitioner, nor do you require to be lickled by dainty phrases foto doing what your own feelinge mast prowpt you to at once, or if dot your feclings, mere regard to your own interest and to the character of yoor publication.

Your very clevar Reviewer bas blundered in the oddest manner throughout, and has connmitted batb mimself and yoor Joarmal. It not a doworight blander, it was carely a plece of great imdincretion on the part of the "Civil Engipeer" to assail, or anfur to be absaiked all t once, in its own columne, and that, with rancoroms apite, and uadisgaised Destility, thut very portion of the Companioe which the Jowfmal itself bas hitherto especially and almost exclustraby noticed, and has recommended to its own readers, as containiog much interesting architectural description, remark and information. I do not say that beounse the Companion had sll along been spoten of favourabty-at least eivity by the "Civil Espiseer," Lhe letter ougth for suere comentency's sake, to have continued to speak of the Companion in the sawe tone as formerly. In the conrae of time, pablications of the kind are apt to alter -and aher greatly for the worse. They quite lose their originul spirit and character, and merely live on apon the reputation which trey have acquired daring their season of vigoar. Such unfortanate change may bave come over the "Companion :" its architectural writer may be in the condition of the poor arebbishop of Grepada, and your Reviewer has ktodly uadertaken to be its borest, nod disagreeable trath-telling Gil Blas. A chaoge has of late come over oven your own Journal, althorgh it has not nambered quits so many yeara as the Cornpanion, consequently bas set become superannuated. That change, however, is of course one decidedly fou the better. Still, it has in come respects beew rather a teo sudden end atartiogs obe. Moet of your readers muat have been not a hitthe eateainoled by the "Review" in question. If the Cenparion-by which is to be undermaod the architectoral part of it-hat altogether degererated, mod is mo lenger of any interest and salue, it might bave bees eoolly dimenisced or hava beeat pasced over without any nolice at all.

Between not apeakiog favourably of a poblioation, and speaking of th abusively, thero is a wide difference,-a wide difference betweet mot praisingr and coursely reviling. Wide as it is, your "Reviower' has displayed bis agility by leaping over it at siogle bound. In performing which notable feat he has, ualockily, jumped plump ioto a guagmiae. L us bope, Mr. Editor, that he has not drapged your Joernal into it at the sarme time-In bis hurry to fire his blunderbue at the Companion he orea Loaded it so jocautiously that it has recoiled, and luid him aprawling.

Intended to be severe, his remarks alow chiely impotent savagesess; and if the does not actually foam at the mouth, ho bas discharged a grean deal of nowsensical froth from his pen. As to severity, I can be sevece myself; perbaps, Mr. Editor, you think me so now; it would, therefore, as ill become me to exclaim against that "qualiflcation,"-or what loeks like it-in your Reviewer's observations, ay it hae done bim to protest $\mathbf{s o}_{0}$ lustily against every-even the most innocent species of artifice, sham and deception, at the very time that he was imposing upon the readers of your Journal bis own distortions and manglfags of worde and meaniogs, as remarks actually made in the Compenion.

Such being the case, I might very welt pass them over as too contexpttDle for notice. Uadoubtedly, F miglrt do so-most others, perhaps would do, because that same "too contemptible for notice," is a very cheap and convenient mode of showing ore's phitosophy. I also should pertaps bave adopted it, had not the Reviewer among his other fabrications, hammered out and sberpened weaposs to be turoed agahast himself. There are in the world those who can very heroicaly subnit to bear any amonat of contempt so long as it is not expreased publiely. It is not the mere comtempt itsolf, het the publicity of it, which as all teuches them. Besides all which, bowever contemplible the matter may be in itseif, the opportonity of turning a Reviewer completely inside out is by far too teaspting. It in not overy day that a similer one presents itself, and perhaps it ts better so than otberwice.

As I have already said the Reviewar's perrersions and misrepresenta.
tions are so greas as instanty to expon themedven, yet very fow readers indeed take the tromble of comparing a Reviewor's remarks aod guotations with the book inedf thet hreppeas to be cadar motioo. And your Reviewer moed not ouly be of anch opision, but weat have felt pretty well assured in his own mind either that no readers at all ever do eo, or that the "Compenioe ${ }^{\circ}$ was of all books is tho wortd the sont anlitely 10 fall ta the way of the ronders of the Civil Emgipoer, elwe to woald hardiy twae rentured upea amertions cadealated to indace peoplo to turs at asce to the Don. panion, for the purpose of ascertuiaing whether the remarks on Publio Inprovenents wose as monsensical as he has represented thou.
The Reviewer comenenoes his attack on that chapter in the Companion with what in rather an unluciky slip for a gentleman who preteods to take ofters to lask, for carolesupess of expreation, and iasccuracies of Janguage, giving it es hite opiaion-atil a Roviewer's opinion oan be nothing leas chan a phaper-that the new range of baildinge rear the Royal Exchange, called "Ineemen's Pleoc," is praised for the " q walifiontion"! Which it leeot of al pomenem. Here, then, wo fiad "qualification" conforeded with "quolity," and trongh what the writer means to asy is obvious enongh, ho bere to right to oxpect that bis own meaninge vill be indelgentiy enade out the tio, when hohimasalf studies to misinterpret the at letat eqnally plaia meanings of otber writers. Perhaps he thought that a qualification" buing the longer cae, tras the finer sounding word of the timo, ead geve it the preference accordingly. Still, howower awkwardly exprosed, the ceseone itself may be just ; and it is certainly me sligbt venona upon one who protend to epeak of architecture, to any thet the praises bnildings for qualivies which they do mot at atl possess;-not but that snch mulaprop praise has beed dealt in very largely by arohilactarnd crisios.
The partlewlar merit cluimed for the building above mentioned is, that it is a fine and well-prupurtioned architectural maes, as will bardly be disputed by those who have seen it. Therefore, in order to make evident With what painstakiog ingenuity the lleviewer has proved it to be wholly onamerving of the character given it, it is nevessary first to give the remarks in the "Companion" at length, and then consider what sort of fair construetion the Reviewer has pat upoa ibem.

- Freeman's Place, is in a manner mo connected with the Royal Exchange" (mentioned just befure iu the book) "to whicb it may be considerod a mort of arctritectural satellite, that we proceed to notice it at once before we come to other general improvements and alteralioas of the bind, more especially as it distinguishes itself from all the rest by having mace the air of a single large editice, than a mere piece of street architoelure Tisis range of building, which immediately faces the east front of the Royal Exchage, and furms the opposite side of a wide paved ateoue between the two buildings, that is reserved for foot passengers only, is \mathfrak{j} n elyle of noble simplicity that says much for the good taste and jedgoment of its architects, Messrs. E. L'Anson and Son. Equally free from the usual comman-place of pretensious decoration-apt to run into the meretricious, and from baldness and iusipidity-apt also to be mired up with the farmer, it is at once sober and dignified- With neither too mach nor 100 hittle of embellishment, but oousistent throughont, and all of a piece. Not only is it a fine mass us far as mere sire goes, but the importance so dorived, is wuil kept up and preserved by the character of the "fenestration," which is suon as not to cut up tbe mass itself into Heleneas, as is too cenerally the casc, owing to wiadows being put too cloasly together, which inevitably occasions an ordinary dweiling-bouse to prevail, in upite of every uttempt to mask it by ornament; wherean this façade"-let this be particularly attended to-" is exceedingly well pro. portioned both as to the quantity of window opeuing as compared with the eatire surface, and well-prupurtioned also in regard to mass (about 160 foet by 60 high) wherelury the eje takes in the whole of it us a distinct architectural object.'

More need nut be quoted, there being already enough for the purpose, and also to show the bind of writing and architectural comment in the Companion, which, if nuse of the beat, are quite as good as what we geperally get from urchitectural jourauls. Now, after reading the above, monid any person in his senses suppose that by "fenestration" is to be underatood merely the ground-fluor windows, which, speaking architeoturally and ertistioelly, absiver much better to the name of glazed arcades than of -indows ? The desiga would have beeu precisely the same had the groundfloor arches beon euturely open, as for iustance, in what is called Covent Giarien Piazza. And did the Heviewer understand any thing of archilecture beyond a few crude notions about is, he must know that fenestration aud arcading require very differeut proportions in regard to the ratio between aolids and voids. So desperately determined, Lowever, is he to abose the Companion, und "to show the riuiculous and ignorant absurdity of the criticisun," that be obstinately shats bis eyes to what is meant by the term "fenestration"-for of the wiuduws and the general composition of the fagade te takes no notice-but invidiousiy confines himself exclusively th the groand-itoor, the very part which is not pointed out for notice in the Companion, applying to that alone what is evidently intended to be understood as characteristic of the general mass. So, in order to give some plansibility to his own distorted representation of the matter, and to make te appent that the author of "the ridiculous and ignorant criticism" alluded expreasly and exclusively to the glazed openings of the groand-loor, be coprerts the words "this Fagade," into "this Arcade!!" \#" *
Portaps ho will now atternpt to ayy that the alteration was a more misprint: If so, it was a most pat and convenient one at the time, and he aceordingly took care not to alter that when currecting the proof. Yet the mistake is so unluckily lucky and convenient, that without it the quotation

Woold mot hare emover od his pwrose at all, bat would rather have coll agrinst him! He hee in oonsequewoe out off, having exerted his inpenvity, gomewhat after the menner of the thlow ta ose of Hogarth's Election Plotures, who astride on a sign poot, is sawing it through sont vigeroushy, the result of which achievement will be, that be must eertainly come to the ground.
"To make assurance donbly sure, the Renewer takes somo paias to convince us of the marvellous fact, that when Conservatories are baitt to correspond with the architectore of the mansion they happen to be connected with-whether designed as arcades or otherwise-the spaces between the glazings are quite as wide as the piers of the groand-foor in Freeman's Place. What a notable piece of information! how wonderful that an arcede forming the ground foor of a street building should reaemble any orber arcade, more especially one used as a conservatory! Fortanate Wha it for the Rosal Exchange that the Reviewer did not turn round apen that, and discover the aggregate surface of the windows, compared rith that of the masonry, to be as great or greater than it is in many conservitories, for the reason that "the ground-floor of the building extibits eeve continued series of arched window-openings, separated oaly by piers."

Of course be himself has seen the bailding-or if not, there is a partial elevation of it ln the Companion to inforn him what is its design, and what are its proportions. Besides seeing it, he gives us to see that he examiped it very carefully-so very carefully indeed, as to see nothing at all in it except the single part which it served his purpose to look at, -which ho took a "rough admeasurement of," and concerning which be bad written some very rough remarks. The only thing in which he shows any smoothness is the gentle protestation-flung out as a sop to the architects them-selves-that he does "not intend the slightest censure of the actual arrangement of the windows." How vastly candid and generous ! how soothing and finttering it must be to them to be assured that their building is passable enough, only it does not at all answer to the character given of it in the Compunion, as being a noble and well-proportioned astylar façedo not cut up into littieness by too great a number of windows. How far snch really is or is not the case will be rendered tolerably evident by stating, that in a frontage of 160 feet or thereabouts, there are only thirteen windoze over tbe terazzo or ground-foor, which being treated as an arcade has, of conrse very much wider openings than the rest of the façade. The general fuçade is assuredly quite as solid io its proportions as those of the Reform and other palatial club-houses, -at least as regards the fenestration of the several flours, for it muat be admitted, that there is not guite so much space between one foor and another as could be desired. StiH, upon the whole, the Frecuran's Place façade is marked by the quality-or as the Reviewer has it, by the qualification of breadth-by which, I ought for his benefit to explnin, is not to be understood width.

The next subject of commentary, observes the Reviewer, is Trafalgar Square; whereupon he proceeds to comment apou the commentary in the Companion, after his own ingenious and ingeuuous fashion, The Civib Engineer pronounced, mome time ago, the two fountains in Trafalgar Square to be not only far from beautiful, but positively ugly, and not only ugly but of "intense ogliness!" which the Companion opines to be rather 'too severe,' assigning as reason for such opinion, that "the insignificance of their (the funntains) appearunce is at least an equal defect." Which observation has not been thrown away on the Reviewer, for he seizes bold of it it two ways, first to broach a novel aud very peculiar notion entirely his awn, and next to expose the writer's false and absurd logic. According to the Reviewer, Insignificance of appearance and Ugliness, -hitherto considered two distinct and very separable, although not always separateq qualities, are so incorporated together as to constitute one and the same; so that whatever is ugly must be also insignificant, whatever is insignifigant, ugly; whence it should follow that what deserves either one or the other epithet in the superlative degree is superlative with regard to both attributes at the same time, and "intease agliness" is equivalent to intense insignificance. Hence-If such very curioms argument be worth anythinga pigmy mast be a far uglier monstar to encoanter than ugliest Polyphemus, or what is the same thing a hideous monster of a giaut more insignificmat thas a pigmy. After this, it will be absurd to talk of things being "too insinnificant and conteonptible for notice." Nevertheless, there are some diff. culties attending the doctrine and its application. 'Insigaificance' has till now passed for being rather a relative than a positive qualitg: the same thing may be either insignificant or the contrary according to place and circumstances. What would be admired as a very olegant and tasteful ornament upon the mantelpiece of a lady's boudoir, might make but a very insignificant appearance in a stately and spacious saioon, yet would it therefore become at all ogly in itself?-hardly. To such awkward conclusion, however, those must arrive who go along with the Reviewer, the cariousness of whose ideas on that point of theory has seduced me jnto momething like digression. The notion which he has briefly thrown out is by far too good to be thrown away; wherofore it is to be hoped that he will evolve, expound, and elaborate it, taking it as the germ of a now "Philosophy of Æsthetics," which, if it should not edify will at leant astonish the pablic.
Besides the mistake of sapposing there is any distinction at all betwean ogliness and insignificance, the Companion has committed the egregions error of assigning one defeot, not as additional cause for censure, but in mitigation of very strong censure on account of some other imputed defect. Yet there is suroly nothing illogical in that, unloss logic consists more in verbal forms than ideas. The Reviewer excepted, every one is aware that
opposite defects neutralize each other more or less; consequently what is so far from being noticeable as to be insignificant, cannot be especially remarkable or offensive for its ugliness. Neither does the remark in the Companion admit that Mr. Barry's fountains deserve to be called ugly at all. It is rather levelled against the outrageously vituperative criticism which brands them with that epithet in the hyper-superlative degree as if they exbibited the very 'praterpluperfect' of hideousuess., When it was first bestowed on them, the expression " intense ugliness" seemed to be attered very inconsiderately, but as it has been brought into notice agaia without any admission of its impropriety, or with the least attempt to soften it down, we mast perforce conclude that it was penned deliberately at the time, and that its anthor still maintains it most reaolutely.

That critic's rocabulary must be exceedingly limited indeed, who can find no terms for the numerous intermediate gradations between beauty and positive ugliness and the oxtreme of hideousness. The Reviewer seems to bave only black and white upon his palette, and to daub every thing he notices with one of those two colours, as best suits his purpose at the moment.

In point of design the Trafalgar Square fountains are not remarkable for any particnlar beanty, neither are they so for the opposite reason. What is most to be complained of is that they are not upon a sufficiently noble scale. A single fountain equal in capacity to both the present ones would have formed a noble decoration-a far more imposing object in the centre of the square. Bat I forget-the Reviewer has an intonse horror of every thing that is imposing or partakes of imposition. Let us, however, see what sort of imposition he can, nevertheless, stoop to himself, what sort of sense, or nonsense he has made out of what is said in the Companion respecting the general appearance of Trafalgar Square. And here it is necessary to quote from the book.
"A more striking architectural fault as regards the enclosure or Square itsolf is, that the two side boundary walls, east and west, are made to slope according to the fall of the ground from north to south, although the enclosure itself is on a uniform level plane. Within the eaclosure this produces a singularly disagreeable effect, for the tops of walls are not made to rise and fall like hedges according to the inequalities of the ground."

Undoubtedly, this is not so well expressed as it might have been; still the meaning is sufficiently obvious, viz. that an unpleasiug effect is occasioned by the tops of those walls being made to slope, instead of being carried horizontally, and parallel to the fat pavement of the area. Yet the Reviewer has made it appear that it is complained of by the Companion, that "the tops of the walls are not made to rise and fall like bedges." How came tbat remarkably significant "The" to be conjured into the text?-or did it jump in entirely by accident, aod just into the very place where it so admirably snited the parpose of the honest and conscientious Reviewert Can that, too, be a meremistake? If so, the mishaps which have occurred in printing the Reviewer's comments, are not so much mistakes and mishaps as actual miracles. Still, prodigiously Incky and convenient as they may have been just at the time, they prove anything bot agreeable in their consequences, when they are pointed out. They occasion not only ugly, but "intensely ngly" suspicions; and those euspicions are rather confirmed than at all lesseded when it is perceived how atudiously the Reviewer labours to fasten upon the Companion znore silliness than it really contains. Where did ho find in the book itself such a Balaam expression as that of "making Trafalgar-square agree-able?-and, if it be not in the book, but one of his own concocting, where. fore should "agreeable" be printed with inverted commas, as if it was the very word there made use of, and the one constituting the silliness of the phrase employed. It is alse in some degree made to appear that, while it speaks of Trafalgar-square as an "ill-arranged spot," the Companion calls it "one of the noblest sites in Europe," those words being also printed between inverted commas, as if a quotation from the book; Which, not being the fact, the Reviewer ought to have guarded against misconception by saying, "what has been called by some," (most prople) one of the nobleat sites in Europe.'"

It is, however, absurdity in me to talk of his guarding against miscon. ception, when misconception and misconstruction, and misrepresentations are what he has evidently laboured at in all that be has said of the section headed "Public Improvements" in the Companion to the Almanac.

In like manner as he has reiterated his crusbing condemnation of the Trafalgar-square fountains, he has again attacked-for there can be very little doubt that the former attack proceeded from himself-the new building at Lincoln's Ina, on acconnt of deal being used for the ceilings of some of the rooms, which he not only derides, but absolutely vilifies as mere sham and deception, notwithstanding that it is the real wood which shows itself, without pretending to be any other material than what it actually is. In aseerting that the members of the In themselves vote the ceilings in question to be Brummagem, he may be right, for if be assists at the "Hall dinners," he of course can best tell whether they do or not-and his veracity is of course also unimpeachable. Still, few will agree with him that the sneering exclamation "Brummagem" is at all the criticiam of "gentlemen and men of edacated taate." On the contrary, it is a very Brummagem art of criticism, to which those only have recourse who have neither reasons nor arguments wherewith to support the opinions they pretend to hold.

Singularly enough too, just after seeming to allow that it is the clumsiness of the deception which renders imitative materials despicable, he is ahocked at the Companion for its commending the columas in the Co.
lossonm because they imitate white marble "most deceptively." Admirable consistency, truly! Are we then to suppose that, in his opinioa, the imitation wonld hare been all the more praiseworthy had it beec less snccessful and less deceptive?-Ihat the paltriness of deception is in proportion to the exactaess and trathfulness of the imitation.

At any rate he has started a fresh and fertile topic for discussion-ane which I mast here pass over, contenting myself with keeping it in reserve for some other occasion, ouly remarking that the Reviewer seems to consider Design as altogether secondary to Material ; wherein he shows himself to be a much more matter-of-fact kind of person than he has done as regards sticking to matter-of-fact qnotation. Accordjog to his notione, Pumpeii, with its stucco columns, Venice, with its so called "marble palaces," and Vicenza, with its Palladian fagedes of brick coaled over with intonaco, ought to be scouted as oxhibiting the mere Brommagem architecture. The Travellers' Club House, Pall Mall, is but of mock material ; and there is plenty of Brummagem, via. sham marble, or scagliola, not only in the other club-houses, but in Buckingham Palace and Sutherland House. Nay, there is even mock masonry-wood-work ceilings painted to imitate stone vaulting, in some parts of both York Minster and Ely Cathedral, surely, therefore, the deal ceilings at Lincoln's Inn are not such very dishonest things after all-perhaps honest enough to satisfy most people, if not one who is as straighuaced in his notions of honesty as the Reviewer Las shown himself to be.

To your own Readers, Mr. Editor, I leave now to judge if I am the ridiculous ignoramus which your publication has represented me; and whether I am capable of writing tolerably correct and intelligible English. This letter contains some pretty plain English, and also some sufficiently intelligible and significant hints, which you onght to thank me for not having made plainer.

> I remain, Sir,

Yonrs, \&c. \&cc.
The Writer in the Companion to the Almanac.

CHRIST CHURCH, PLYMOUTH.

Sir-In reference to your observations on the fault of a "show front," the "other sides" of my church being "merely plain masonry," it is only necessary to inform you that the sides of the building scnite with the buildings on either hand: that the Eastern end is entirely concealed, with no more than a space for light of ten feet deep; and, in short, that the front alone is visible; or that it alone will be visible when the intended school is built againgt the Southern side. The charch is already built in on the north side. Of conrse, nothing can be worse than the making of an insulated building with a "show front."

Yours truly,
G. Wightwict.
[Among the difficalties which architects meet with from the injudicioas wishes of those who employ them, not the least is that of erectiog buildings on sites wholly unsuited for them. A church of which the sides "unite with the buildings on either hand," most have three great defecte: lat. It has a show front which greatly diminishes its architectural value. 8ad. The difficalties of procuring light must be obviated by some uachurchlike arrangement : 3rd. The adjacent houses prodnce iaharmonions combinations and secularize the character of the charch.]-Ed.

ICKWORTH.

Sir-In a memoir which I have just been reading of Mario Aaprucci, an Italian architect who died in 1804,-aud who, I may observe, is omitted not only in Nagler's Kubatler-Lexicon, but in the ebormously copious Biographical Dictionary of the Society for the Diffusion of Useful Knowledge, -it is stated that he designed for "Milord Ervei," a splendid palace which that nobleman afterwards began to erert in England. By "Dilord Ervei" -that "gran mecenate delle belle arti," is of course meant the eccentric Hervey, Earl of Bristol and Bishop of Derry, but is it Ickworth that is the edifice alladed to? In the "Beauties of England and Wales," that mansion is said to have been begun from the designs of two Portuguese architects, named Carmalho,-which has always struck me as an improbability. Supposing, however, the latter account to be correct, what is the other "palazzo" "hich "Milord Ervei" erected or began to erect in England? Or is that a mistake on the part of the Italian writer, who perhaps confounded Ireland with England, in the former of which countries there is or was somewhere in the county of Derry-the name of the place, I do not now recollect-another stately conntry-seat, built by the "Bishop;" and which like Ickworth was remarkahle for the singularity of its plan, the body of the house, being in both instances, an ellipsis.

Whether the mansion in question be really Ick worth or not, the deaigns for it were engraved and published, that circumstance being alloged as sufficient reason for merely mentioning that specimen of Asprucci's abilities," che tutti, perché inciso, bastumente conoscono"-it being what is so well known to every one by means of these engravings. Be they ever so well knownin Italy, no copies of such work or engravings seem to have reached this country,-at least not for alle; neveriheless I take refuge
in the poscibility of their having been seen by some ono apong your read ers and correspondenta, who in such case will probably commanicate what he knows respecting them. If uo one else, the present Marquis of Bristol, no doubt, can, and no doubt also, would afford me the infurmation which at present I endeavour to olicit through your Jouraal. I dere say it would be the very first and last time of his Lordahip'a being ever troubled with so eceentric an application-one paying him the compliment of my taking zuch very strange interest in his mansion at Ickworth.
Strange as in the opinion of most persons such course would be, in my own opinion it is infinitely more strange that so remarkable a piece of architectare as that mausion is, should have altogether missed the celebrity -hich many structures far less deserving of it have obtained. Most of the bonses shown in "Vitruviassis" "Views of Seats," and similar collections, are scarcely worth showiny, at all-as stadies, or as urchitecture mere nullities-things not worth the powder and shot of engraving them; whereas Ickworth is unique if ouly on account of the lavish display of sculpture in reliepe on its exterior. Yet do those who can tell to a hair"b-breadth overy admeasorment of the Parthenon, know not of even the existance of Iekworth.

I remain, your's, \&c.,
Eccenteic.

REGISTER OF NEW PATENTS.

If additional information be required respecting any patent, it may be obtalned at the ance of thle Journil.
pURIPYING OF GAS,
Hemer Paillips, of Clist Honiton, Devon, Chemist, for "Improvemento in pwifying Gas."-Granted April 15; Enrolled Oct. 15, 1845.
In the purifying of gas by lime two means are resorted to, called the wet and the dry lime proceases; in some works one only of the two procesess is med; in other works both processes are used consecutively, and the lime employed for each process (where both are used) is fresh lime. The object of the present invention consists in using for the wet lime procem the lime which has been previously emploged for the dry lime procen, by which a considerable asving of lime will result. The gas is fint passed through the wet lime purifiers, and then through the dry lime purifiera; new or fresh lime in the ordinary mataner is employed for the dry lime process, and afterwards this lime is used for the wet process, to be immediately mixed with water, in a vat, vessel, or other receiver, to prevent it from becoming hardwhich lime, by means of additional portions of water, is brought to the proper connintency for the wet lime process in the same manner an if uning fresh lime for such parpose; and such mixtare of lime is applied in the ordinary apparatus ased for the wet lime proces.

propelling ratlway carriages.

Blijari Galloway, of the Strand, for "Improvements in propelling raifeny cerriages."-Granted April 10; Enrolled Oct. 10, 1845. (Wilh Brgreving, Plate III.)
This invention is for certain improvementa in rope traction, the object being to propel the train of carriages at a speed greater than that of the travelling or propelling rope, and is effected by means of an apparatus termed a "drag," attached by any convenient means to the first carriage forming the trin. The following is a description of the spparatua, reference being had to the drawings of which fig. 1 is an eleration; fg. 2 a plan; and fig. 3 , an end riew. Similar letters denote corresponding parts in each figure $; a, a$ is a rectangalar or oblong frame aupported on travelling wheels 6 b, which run upon suxiliary rails placed within those upon which the train of carriages move, the whole apparatus being so conatructed as to past underneath the carriages forming the train, or in other words that the train shall pass over the drag. $c c^{\prime}$ are two shafls snpported at each end in suitable bearinga at $d d$; upon each of the shafts $c c^{\prime}$ there are pullies ef, of different diameters ; $g g, \lambda h$, are two ropes extending the whole length of the line, the one marked with the letters $g g$ being a traveling rope, the other marked with the lettern $\& A$, being a fixed rope, the ends thereof being attached to a fixed point at the termini of eacb atation. The ropes g and h pass round the pollies $e e^{\prime}$, and $f f^{\prime}$ in the following manner, namely, the rope $g g^{\prime}$, which is the travelling rope pasea under the pulley of, over the pulley e, and round the driving pallies or drams connected with the engine at each station. It चill therefore be evident that if motion be given to the rope $g g$, such motion will be imparted to the pullies e e $e^{\prime}, f^{\prime} f^{\prime}$, the carriage or drag a, a, at the ame time remaining atationary. We will now suppose the stationary rope $H A$ to paea under the palley f, and partinlly round the pulley f, and to be fired at each end. By this arrangement it will be apparent that if motion be given to the pullies e $e^{\prime}, f f^{\prime}$ by the travelling rope $g g$, such motion would be transmitted to the rope $h h$, which would (if it were loose) travel at a greater velocity than the ropeg, in consequence of the difference in the dinmeters of the two pullies e and f. But in consequence of the rope $h h$ beiog a fixed rope, it necessarily follows that such motion will be given to the draf, which will travel apon the auxiliary rails at a speed double or trable the apeed of the propelling rope, depending upon the difference in
diameter of the pallies eand f. By this contrivance the itationary engines will only be required to work at one-third or oue-half the speed (depending on the different diameters of the pullies, in order to obtain the ame velocity as trains worked on the lines constructed on the present principle.

Mr. G. proposes at each station to detach the drag from the train of carriages which are taken up and propelled by another drag to the next station; the train of carriages in arriving at the atation pases over the drag; for this parpose the carriages must either be constructed so that the drag can pase under them or a recess must be made at each station for the drag to run into, so as to lower it sufficiently for the axles of the carriagen to pass over. The pallies $e e^{\prime}$ and $f f^{\prime}$ are capable of being disconnected by means of a clutch. hox, so that the train can be stopped at any part of the line without atopping the atationary engines.

bailfat carbiage buffers.

Thomas Walerz, of Euston Square, mechenic, and Geozoz Mills, o. Dover, coal merchant, for "improvements in springs and elaufic power a applicable to railway carriages and other vehicles, and to other articles an purposes in which apringz or elastic power is now used."-Granted July 3. 1845 ; Earolled Jan. 3, 1846.

This invention for springs and elastic power consists in the application of steel springs or other elastic substence in combination with atmospheric air to buffers of railway carriages. Fig. 1 shows a longitndinal section of a buffer constructed according to this invention, in which a a is a cylinder of castiron. δb are the buffer-rods which pase through boles formed in the end of the cylinder; ce are pistons made to fit tight within the cylinder, which is divided into two compartmente by means of a diaphragm e; $f f$ are holes in the piston, which are provided with valves opening inwerds; $g g$ are spiral steel springs, one end of which preseen against the diaphragm e, and the other against the piston, 80 as to force the same ontwards; the object of the valve is to admit air between the piston, and diaphragm daring its motion outwards, which air is prevented retarning or escaping from such place by meansof the valve at f; the object of this arrangement being that should a force be applied to the buffer, such force is not only counteracted by the spiral spring but also by the air contained within the cylinder, forming the baffer, which becomes forcibly compressed, and thereby acts an a resisting power to the opposing force.
Another modification of this bnffer is thown at fig. 2 , in which the inventors employ elattic hags of India-robber placed within cylindert, and filled with atmospheric air which is supplied through openings at $g \mathrm{~g}$.

Another part of this invention consists in a pecniar mode of obtaining motive power, for which purpose the inventors have shown in the drawing a sectional elevation of an engine to be worked by the vapour of ammonia, which is contained in a boiler pleced in a water bath heated to 212°. The vapour or motive power obtained from the ammonia passes through the eduction and induction pipes of a cylinder constructed in the ordinary man. ner, with the exception that the patentees employ India-rubber bags (similar to those described), within tbe cylinders above and below the piston, the object of which is to prevent the rapoor eacaping through the atuffing box or between the piston and sides of the cylinder.

IMPROVED ARTIFICLAL MANURE.
James Mospratt, Esq., of Liverpool, gentleman, for "Inprovements in the mawafactwre of manure."-Granted April 15 ; Enrolled Oct. 15, 1845. (A communication from Prof. Liebig.)

It has been ascertained, that the growing of any crop on land, and removing and consuming it wholly from the land where it was grown, takes away certain mineral compounds ; and it has been auggested by Professor Liebig. that in coltivating land and applying manure thereto, that the manare should be such a to reatore to the land the matters and the quantities thereof, which the particular plants have abstracted from the soil daring their growth. It has been observed in the chemical examination of marls and vegetable ashes, that the alkaline carbonates and the carbonate of lime can form compounds, the solubility of which depends on the quantity of carbonate of lime contained in the particular compound. It has forther been found, that the said alkalins carbonates can form a like compound with phosphate of lime, in which the carbonate of potash or soda is partly changed into phosphate of potash or moda. Now the object of this invention is to preparemanure in such manner as to restore to the land the mineral elements taken. away by the crop which has been grown on and removed from the land, and In such manner, tbat the character of the alkaline matters used may be changed, and the same rendered less solnble, so that the otherwise solublealkaline parta of the manure may not be washed away from the other ingredient by the rain falling on the land, and thas separating the same therefrom. And it is the combining carbonate of soda or carbonate of potash, or both with carbonate of lime, and also the combining carbonate of potash and sods with phosphate of lime, in such manner at to diminish the solubility of the alkaline salts to be used as ingredients for manure (suitable for restoring to land the mineral matters taken away by the crop which may have been grown on and removed from the land to be manured), which constitutes thezovelty of the invention.

Although the manares made in carrying out this invention will have varione matten combined with the alkeline carbonstes, no claim of invention
in mude thareto sepurately, and wech materials will be varied secorilong talithe masters which the hand to be manured requirea to bave patanmed to it, in addifion to the misesel substreces above mentioned. The quantity of anbenate or phosphate of lime, wed with carhenate of soda or potreh, may be varied acconding to the degree of aotubility desired to be obtriped, depending on the locality where the mannee in to be used, in order to reador the preparation less toluble, in lecatities where the average quantity of rain faling in the year is greet; bot in practice, it monld be difiealt to prepare menures to anit each particudar locality with exactmens, the average preparstion as will arit mont loondities widl be given. In making merore scourdivg to the inveation, carbonate of sode or of potash, or both are to be fused in a reverbaratory formace, such as it nasd in the manafactwre of rede-ash, with carbonate or phosphate of lime (and with such fused coupounde we mixed otheringredients as hereafter mentioned, so as to produce mannres; and such composition, whem cold, being greund into powder by edge stones or other convenient machisery, the same is to be applied to land as manare. And in order to apply such manure with precision, the analysia and weight of the previons crop ought to be known with exactness, to as to return to the land the mineral edements in the weight and proportion in which they have been removed hy the crop.

Two compounds are first prepared, one or other of which is the basis of all manares, which will be deseribed as the frat and socond preparations. The first preparation in formed by fruing together iwo or two and a half perts of carbonete of liree with ene pert of petash of oammorce (contrining on an average sixty carbonate of potesh, ten sulphate of petarh, and ten chloride of potasion or cemmon selt in the headred parts), or with one part of carbonate of soda and potash, mixed in equal parts. The second preparation is formed by fuaing together one part of phoophate of lime, one part potash of combserce, and one part of soda ath. Beth preparations ze ground to powder; ether alits ar ingrolieats in the state of powder cro edded to thene preparations and mised together, or those not of a volatile comsintency may be added when the preparatiens are in a mate of fusion, $\mathbf{n} 0$ that the manure may repremeat an nearly as posible the componition of the sabes of the precening crop. This is assuming that the land is in a high atate of tultivetion, bat if it be desired to grow a perticular crop on land not in a high state of eutivation, then the manare weukd be applied in the firat instance raitatle for the coming crop, and then in subsequeat canes, the manure prepared according to the invention would, as hereia described, bs applied to restore to the land wiat has been taken therefrom by the proced. pecrop.

Preparafion of manare for land notich has had a wheat crop grown on and removed therefrom.-Take of the firat preparation six perts by weight, and of the second preparation one part, and mix with them swo parts of gypeum -owe pert of calcined boses-wilicate of potash, (containing six parts of silica)-and one part of phosphate of magweaia and menoonia. This manore is also applicable to be reed fiter growiag barlog, oats, and plants of a sinilar character.

Proparation of menawe for land whioh has had a crop' of beam grown thereon, and remowed therefrom.-Take fourteen parts by weight of the firat preparalion, two parts of the second preparation, and mix them with one part of common salt, (chloride of modimon, \rightarrow qeantity of silicate of potash, (containing two parts of silica,) -two parts of gypsum, and one part of phosphate of magnesia and ammonia This manure is also applicable for land on which pess or other pleats of a similar character have been grown and removed.

Proparation of maswre for land on which turnim have been grown and romoved therefrom. -Take twelve parts by weight of the firt preparation, one part of the second preparation one part of gypsum, and one part of phosphate of magnesia and ammonia. This manure is also applicuble for land where potatoes or similar plants have been grown and removed.

The claim is for preparing and applying in the manufacture of manure, carbonate of potash and carbonate of soda with carbonate and phosphate of lime, in such manner as to render the alkaline salts in menufactured manare leas solubie, and therefore leas liable to be washed away by rain before they are astimilated by the growing plants.

STRAM ENOINES.

Richard Hamorth, of Bury, in the county of Lancaster, engineer, for certain improcemeads in ateam-engines,-[Granted Febraary 10 ; Eurolled August 10, 1855.7 -Reported in Newton's London Journal.-(With cngracings, Plate III.)

The principal feature of novelty in the invention is as follown:-The entire working engine has both the common reciprocating reotilisear motion, and also a circular motion rownd the contre of the driving-shaft; the steam cylinder being fixed at one end of a lever, whilst the crank ravolves loosely in step or bearing at the other ced of the same lever. '1 he boss or centre of this lever is kejed fast upon the main driving-shaff, and is intended to communicate the motion of the engine to the same. This motion is transmitted in the following manner:-Upon one end of the crank-shaft a spar-wheel is keyed fast; the radius of its pitch lise being equal to halr the distance of the centres of the crank-shaft from the main driving-shaft of the steam-engine. This wheel gears into another of the same diameter, which is fized, and remains perfectly stationary $;$ the main driviog-shaft revolving loosely through its centre: consegrently,
the wheel apoan the crank-that hes a dowhte metion to perform, being a rotary mevement round its own asis, commanicated from the piaton by pears of the connectingrod, as in ordinary steamengiaes, the other being a plavetary motion reund the main driving-shaft, occasioved by the epar-wheel upon the crank-ahalt revolving, while the other wheel (threugh the centre of which the main driving-shaft passes) remains pesfecdy stationary. The wheels beiog both of the same diameter, tre "planet-wheel" will complete its ofbit round the main drfing-shat and "sun-wheel" in exactly the same space of time as the crank takes to make one recelotion round its own certre. The object of these turprovemeats is to gain bath power and epeed, which is accomplished by the motion being communicated to the driving shaft by a mach longer lewerage than usalal the increase of power being in proportion to the difference between the length of the crank and the length of the lever, in the end of which it revolves: the speed is gaited by the shortness of the crank, as the piston has a sunaller distance to travel at overy atrolse of the engive.

In Phate III, ff. 1 , is a plee or horizontal viow of the lupproved steam-engine, to be worked by high-pressure ateam; and fig. \boldsymbol{i} is partial section, shewing more elearly the contrivance for the entrance and exit of the steam to and from the cylinder; a, foundation walls which support the main shaft $b ; c$, fy-wheel; d, steam-cylinder; e, con-necting-rod; f, crank ; and g, the crank-shaft. This crank-shaft g, instead of revolving in fixed bearings, as in ordinary steam engines, revolves in bearings at one end of the levers $h h^{\prime}$; the oeatre or bose of. the lever h, is keyed fast upon the main-shaft b; the steam cylinder $d_{\text {, }}$ being attrohed, by bolts asd lugs, to the other end of the levers h, h^{\prime}. The steam is admitted into the cylinder, for the purpose of ectoatiog the piston, is the following manner:-It will be seen, by referring to fig. 2, that the end b, of the ahaf in made bollow, having a midfeather i, through the centre, so divide the entrapco-pipe k, from the exit-pipe 1 , and revolves in a hollow stean-chest or chamber an, being packed strenetight by means of stufing boxes. Steam is introduced iuto tbis chamber by the feed-pipe n, and passes through the opening o, into the ep trance-pipe k, and thence through the slide-valve (which is of the ordaary consinectios) to the steam cylinder. The action of the piston oommonicates rotary motion by means of the connecting-rod e, and the crank f, to the erank-shaft g; upon one ead of this craok. shaft g, the phanetwheel P, is Eeyed, gearing into a van-wheel 9 , of the game diameter; this wheel q, has no motion whatever, but merely serves as a ruct; aroond which the planet-wheel p travels. Through the boss of the whed. q, the end 8 , of the main driving-shaft passes, revolving looeely. Thos it will evideat, that, in consequence of the wheel q, remainias perfectly ationary, the rotation of the crank-shaft g, will canse tex planet-wheel p, travel rownd the sun-wheel or circular rack g, it the eame spree of time in which it nevolves upon its own axis, thue cate. ing the eagine to revolve, while going throagh its reciprocating action; the main-shaft b, b^{\prime}, being the futcrman, and revolving with it, ian oone sequence of the bosses of the levers h, h, being keyed fast upon that shaft. In this improved arrangement of the sharnengine, in order to work the slide-valve, the excentric r, is stationary, and is connected to the vatie by a series of links and levers s, s, s; the rotation of the engine commonieating the requisite motion to the valve, the same at the revolution of the excentric r would do if the engine were fixed of statianary. Fig. z is a face view and section of a cam, to be uead in connection with this arreopeonent, in place of the excentrie, if it is in sired to work the engine expansivoly; this oam being catculated to et of the ateam ot half atroke.

The patentee remarks, that he has reprosented his invention ar applied to a high-pressure "statioesry" steam engine; but be couniders the improved "plagetary engine" equally maptod to condensing eos ginea, and whether employed for marine or otber parpesem.

Mandracture of gas.

James Murdech, of Btaple-ion, Middlesex, mechanical draughtaman, for "cerdeth impiovements in the manvfacture of gas, und in the apparctse employed thereim.-(Being a communication.)-Granted February 20ih; Enrotied Augast 20hh, 1845; with engravings. Ptate III.

This invention consists in certain improvements in the manofacture of gas for illubination, which are effected by means of an apparatus shown in the engraving. fig. 1 , is a transverse section, and fig. 2, a longitodinal section thereof, a, is for the coal. The neck a^{1}, of the retort is conmected by a horizontal tube with a vertical retort b, at the hack of the apparatus: and this retort b, is coanected by another horizontal tube c, parailel to the first, with the neck d, frum whence a pipe e, extends to the oooling toppe ratns f : the two horizontal tubes are termed purifying retorts; and each contains a apiral piece of iron. The retort 8 , is Dearly filled with coke or charcoal, and is usep for decomposing water, supplied through the syphorpipe g, which descoods neariy to the bottom of the retort, as indicated by the dotted libes in 6 g 2 . The lid of the cooling apparatas f, has, on its uader side, a loag mpiral chaonel, interrupted by stopa, so as to cange the ges, admitted into the apparatns by the pipe e, to pass over a large surface of Water, and occastonally through it, previous to its eqcape through the pipe h, to the gasometer. i, is syphoo-pipe, for carrying of the surplos water of the cooling apparatas. l, l, are fire-bricks to protect tbe retort a from the direct action of the tiame; and m, m, are openings, conducting ase

walker \& mills'e railway buffer-
Pig. 1.

WELLER's bRiok madeine -

Pig. $4 \underset{\square=1}{\square=0}$

.
frans to ench side of the retorts, and beating them by refiection from the roof n, of the farnace, componed of fre-brick. j, is a ressel coataining merer, to probect the frombars k, from the destroctive action of the fire, and by the sterm arising therefrom to increase the combustion of the fael.

The mode of working with this apparatus is as follows:-The covers of the parifying retorts are firat secured and carefully luted; tbe relort b, is meaply filled with coke or charcoaly and its cover secured and lated; a fire to thes lighted in the farmence, to briag the retort a, and parifyied retorts to a cherry-red beat, and the water retort b_{1} to a hright red heat; and Whes this beat is attained, the retort a, is charged with coal, and water is admitted, in amall quantities, into the retort b. The action of the heat apon the conl disengages gas mixed with tar, which passes into the first peeifying retort, and the sulpharetted hydrogen contaiaed thereis is decomposed by the coil of incandescent iron; ut the same time the tar under. goligg a second distillation is converted info gas, and mixes with that coming direct from the coal. The gas, which is now mare dense from its combination with the carbon contained in the tar, proceeds along the purifying retort, until it arrires at the retort b, where it mixes with the bydrogen resalting from the decompouition of the water by the ineandescent coke or charcoal, and passes into the second purifyiog retort, s, carryiag whe to the carbunetted vapoura and volatile oils which may have escaped decomposition, but which, in their course along the retort c, become decomposed by the heated coil of iron, and give out their carbor to the bydrogen. By this means the hydrogen becomes carburetted without im. poverishing the other gas. The gas iben proceede through the pipe e, to the cooling apparatus f, and thence throegh the pipe h, to the gasemeter. Instead of coal, resins, schistus, oils, fats, and simitar anbutancel, may be dietilled is this apparatus; and, provided the purifying retorta, with the coils of iron, are retained, the gas may be distilfed and purified at one operition, wihoet the emplogment of a water retort.

3ANUFACTU日B OF TILES.

Enctain Wezlet, of Capel, mear Dorking, Brick and Tile manafactoret, for "Improvencris in the manufacture of drain and other tiles and pipes."Granted March 27, 1845; Empolled Sept. 27, 1845,-(With an Engracing.) -Reported in the Repertery.

We gave a brief deseription of this iovertion last Bec., which for want of Wrawiogs was oot properiy underatood, we now give another description, with reference to the drawings, which will make the invention interigible. The menention consists of improvements in arranging and constructing aschinery for facilitation the making of drain, and other tiles and pipes.

Deacription of the Drawing-F'ig. 1 , is a side view of a machime, constrected and arreoged according to this invention. Fig. 2, is an end view; , Fig. 8, is a plav of the mactive; and the other fgures of the drawing show details; and in all the figures, the same letters are used to indicate the came parts of the machinery. $a_{1} a_{1}$ is the framing of the machine, the mature of which will readily be traced on examiaing the rasions igures of the donwingas The mahime is poonted oc four wheels, to facilitate the transport thereof from plare fo pface. b, b, are two vesoets, while which wort pistoras, for expressing the clay througt dies or moniding orifices at the outer ends of the vessels, b, b, and the macbinery is so erranged, that when one of the vessele b, is having the elay expressed therofren through the monlding orifice or die, sfificed therete, the oher vesel, b, is brought into a position for allowing the same to be flled with they. The vemela, b, are of a cylindrical form at their opper party, and tint the under parts, which will be found to be a very cosvenient form, perliculasl whee makiag batf cylinders, or beot tiles of large diameter,
 If is better to have sumentrat mope than half a cyliader ne stown, yei the chepre may be raried, so loug as the sectional figore of the vessels b, be eomposed of a curve and a straight or horizontal line. The vessels 0,0 , are mounted on necks or Lrunnions, to that they may move in bearinge. in sach manner as to assume at one time a horizontal, and at anotber, a vertion position, by which, whee eitber of the veseels b, has bees cappied by ta piotoe or phanger, it may be turned lu a position to be agaio flited. $c_{2} c$, are the two pistons or plangers, which respectively wort in the two vessels t, b. These pistons ase fixed to the two eads of the bar, d, which is sapported, and slides in a suitable bearing in the bridge, c. On the ander surface of the bar, d, is formed or afired a toothed rack, which is worked by means of the pinion, f, on the axis, g, such axis receiving motion, by means af a lever hereafter described. In each of the pistons is an opening, over which is placed a dap or valve, h, which allows of the air passing between the pistun and the clay, when the piston is drawn back, and thas is the drawing back of the piston facilitated. On the apper emrfice of the bar, d_{1} are formed four rows of ratchet teeth, two rows being formed so as to receive the catches or stops, i, which win retain the band from going back in one direction, the other two rows of teeth being formed or cnt in an opposite direction, so as to receive the two catches or stops, j, to retain the bar, d, from moving back when working in the other direckion; and the object of thas stopping the bar, d, is, that the piston which is in Work, may not be driven back by the air which may have been campresced between tbe piston and the clay, when the lever, a, is pat back, in order to make another stroke. The two nets of caiches or stops, i, j, are coes neeted together as shown, so that, by moving the lever, k, those stops or catches which have been in action are moved out of action, and those which
are out of action, are brooght into action. By this avrangement the bar will be behd from retnraing. in whichever way it may be working; and when the piston at the end of the bar, d, has been forced up to the ond of its stroite, the lever, k, is reversed, which will change the positions of the catches or atops, i and j, and then the bar, d, may be reversed in its of. rectioe of movement, which will, by the other piston, force out the cling from the other reasel, b, and ahow the venset, b, which has j uat bees emplied, to be moved in its axis or trunnions, so as to assume a vertical position, 道 order again to be filled with ciay. l, l_{1} are catches which retuin the vessels, b, in the horizontal or in the eertical peaition. It may be remarked, that although the vessels. b, b, are preferred when mounted on axes to be of the form shown and described, yet this part of my invention is equally applicable to vessels of a cylisedrical or other shape, from which clay is forced by pistons or plungers, through moulding oritices, or dien, to wake tiles or pipes; for such vesmels may, with equal advans tage, be monnted on exes or tranoions. The moulding orifices are formed in the said covers of the vessela, b, and are as beretofese, suitable for making tiles of different forms or pipes, and are wrelt aderatood, and therefore do not require to be deacribed in this specification. The bar, d, is moved to and for by means of the lever, m, which gives motion to the axis, f, firat in one direction, then in the other, in the followiag mananes:-m n_{y} is a ratchet-wheel fired on the axid, f : this ratchet wheet bas twa ant of teeth cut in opposite directions, and the lever, m, (the natare of which is cleariy shown in the draving,) has the deivers a, p so that when the leverhandle, m, is on one side the axis, it will, on being mired and loweped cause the wheel, n, and consequently the axis, f, to move rourd, which action will be contined till the piston (in action) bus completed its atrotes when the sarall lever, k, is to be moved over, which will zaverse the slopa or catches, when the lever, m, may be moved over to the other side of the axis, f, when the working of the lever, m, up and down. will eanse the axis, f, to be moved in the opposite direction, and by the othor piston, it will force out the clay from the other vesset, b, allowing time for the empty vessel, b, to be filled again with clas. The tiles, as they are forced out, are received on suitable "horses" as heretofure; and they are cut off by meass of the wirea, 9 , carried by the - bliding frame, r; and when the tiles are to be panched with hodes, sact asefat liles for roofing purposes, a suitable punch is applied, a, to the frame, r, so that in eauming the frame to deacend, a tile will be cut off, and punched at the same time.

An interesting experiment took place at Portmmouth oa the 19te Jen of the Excelleat, Capealn Chads, on the moat sperdy and eficeacious mode of deveroythy

 Ste Thomen cocbrabe. The arst expertment mook place of the 9th, but whit of
 the otd man pond and moored at a abort diatance form the Excefient. 8is furns of the odd mook pond and moored at a siort dialance from the Excetient. sir surnso

 powder, wat brought to the spot; tube end were esnt hater of port, ant pamert fand it, quick match belag attuched to the upper end of the purt-Are, ond the opposite extreme quick match being atcached o the upper end of the puratre, ond the opposite extreace brought through to the mouth ar the labe aboxe the waifr, they were ignited, and the of time (eight midoutea) was provided for the boat to get clear of the mana before the port. ire reached the powden whict k did on the the aheme modmeed, when a remendous explonlon wok place. On examining the apara and their fartextrigs afterwards, the folexprisg whe the reeuit:-HA feet out of the contre of both spars wore shivered into atome
 with ore or the chasn honings blown up whit tue drivirs, under the parts of the chisia cable, the result of which was that the thote of the spuan, wader the parts of the chand

 phe chio cable was thrown to to thy

 most apeedy method of recmoving such obstractionas thooe offired to the ctaina squad.
 were executed by Lleutenant Robert Jopber, gunnery lieutenmit to the Excellent, in a

Biffrimence of Time. - In the streens of Bruswels there may now be geen In the windows of the etweinariond sbeps heve mathogap clocke with the following

 different times of departurt.- NObserveieur."
An American Mambpagrinigo City. - The ten manufacturing compe-
 of eperm, and 19,000 of other oil. Of the whote popalation of Lowrift, 6,520 females, and 2,915 melee, together 9.225 , ere.eraployed as opersives, either in the millis or connected filth other mechavical employmontt. There are 33 mill sad aboat sso bores belonging in the corporitlons. The capitul Invested in manufacturtesg and moebhackal

The Amphion Frigate.-This frigate of 36 guns was launched at Woolwich on the 14th Jannary. The bullding commeneed on the 5th of Aprlt, 1880; she has slace been lengthened 16 feet by the bow, and fited in the atern for a screw-propeller as an auxiliary, ivery other part and fittigg being the same as a proper aniling frigate. She appears on be a shily vessel, and sits well upon the water. Her heure am is a buat or her quare form externailer, and a good ahip of war. The following are her dimenslons:she will be a fast sailer, and a good ahip of war. The following are her mimeng.

Leng th of the lower deck . keel for tonnage	\because	-	*	177 162	
Breadth extreme ..	-.	-	\bullet	48	2
.. For Lonnage.	\cdots	\because	\because	42	0
Depth in hold.. \quad.	\because	\because	**	13	4
Depth in hold.. ${ }^{\text {Burden in tona, }}$ (measnre,	\because	-	\because	1473	

pected to be a superior ship of war French mechanic formed the idea that by ubjecting iron dross to the slow coollag process which is known to produce a total change in the nature of glans, a new and upeful ipectes of atone might be obtalaed; and as iron drons, such as the lasise furnaces yeld is a wholly uneless substance, the announced sur, terett, tereat, more eapecially at the prezent time, when the amelchag rarakes of eught to accom. a hitherto unknown state of actirty. The object,which the Frenchman sought to accomplish was, to impart to iron-dross the compactoeas and hardneas of granite, and, at the same time, to suve the cost and labour which the hewns of the real atone requires. To thin end he contrived to let the fron refuse, while in a fuid state, run involron forms, Which were previounly brought to n red heat by belog placed to as to reselve the usperAuoua fame which inues from the mouth of the furnace; and in order tand fore jotroslow coollag, these forms are provided with double silides, between which annd brought duced, which is well known to be a bad conductor of, heat: the whole to then trought agatn to a glow heat, and in like manner again cooled of. By this procedure, is lasge sertid, the ingentous discoverer has succeeded in forming paring-atonet, gags, horge building-biocks, and even pipes, of any given form, of a degree of hardnest anding conequal, if not

The Manufactore of Steel in.Spain.-The following particulars, rempecting the fabrication of cant-iteel and Damascas steel, at the forges of Tolede, in reapecting the fabricalion may perhapa ve deemed intereating. It has beea found tbat ovens do not produce s auffelent hent to melt the steel, consequentiy they have been obliged to construct forges, and the metal is placed in cruclblen of earthenware, that withetand the greateat fire. The firat process is by mixiug the oxydes and blings of iron in a crucible, which is placerl in the forge, heated by charconl and contunued with coke. The crucible in kept abont half an hour in the fire, so as to become a clear red heat, after which it is exposed to the sir to cool. Then comes a second fusion, by taking 100 parts of this crystalleed matter, and mixing it whit 100 parts of Iron filinga, which, after being exposed to the fire for one hour and a half, a very pare motal is obtained for forging. The forging of the melted metal muat be done with great cantion, and at a drgree of heat far below briglt red. When it has acquired the temper necessary, is is reduced to oue quarter ita size by red. meana of heary bammers, and formed Into bars; after which it la filed at each end, so as to ascertain if it fo of good and pure quality, and the varleguted stripes can be given at plemsure. It is re-heated, and tempered at dark red heat, and robbed with wax, which prensure. It is re-haterwards polished with pummice stone, snd, to ancertain that it is froe from groase, it is emerged in pure water, which adherea to its surface; it it then dipped in acidulated water, and covered, afther being well dried, with oil for a day. The fabication of Damaicus steel is by placing three lines of cantateel one upon the other, and heating them together, so at to form but one blade. The composition its 61 b . of ront ron, 150 grammen of wolfram, and 144 ditto of carbonate of manganepe, which makes 21b. of Gine Dsmascus steel: puivertied nickel is almo used, but it must be pure and free from sreenlc-the beat nickel la that received from Germany. In giving the steel the different coloura, it is cleaned of all grease, and emerged in distilled water, mixed with oxalic acld, which cuuses the raions relas in the steel to appear. The working of utecl, one of the greateet branches of Spaniah commerce in the lron mialag diatricta whieb zbound in wood and coal.

LIET OF NTHW PATENTB.

GBanted in england from december 22, 1845, to jandary 27,1846 Sis Months allowed for Enrolment, unless otherwise expreased.
Heary Perahouse, of Birmingham, manuffecturer, for " a certaln improvement or cerenta in apparatus nied in counection with writing, and alao in atteching poatage stampa and labels."-Sealed December 22.
Jobn Paln, of Greenwich, in the county of Kent, englaeer, William Hartree, of Green, Jonn Panaker, engineer, and John Mathom, the younger, of the amme place, engineers; wick, iscenniner, enovements in ateam engines and machinery for propelling vontels for "certain Improvements applicable for other purposen."-December 23 .
Wich improvewens Coventry. warehouseman, for "certaln Improvements in looms."Decentier 23.
John Dearman Dunalcliffe, of Nottlngham, lace mannfacturer, and Wulliam Bnll Dex. John Dearman Dunalilife, of Nothogromenento in the manufacture of warp fabrich." ter, of the same
Daniel Towers Shears, of Bank Side, Soathwark, for " Improvasoents in the treatment Datel of slac ore for the purpose of producing zinc (A communication.)-December 24.
to the reduction or other ores of Flnsbury Square, in the county of Middiesex, engineer, for "Improvements in stesm angines, and improvements in
velocity of machlines for commanicating power. "-December 24. , doctor in philosophy.' Wilton George Turner, of Gatesbead, in the county of Darham, docior in philosophy. tor "an Improved mode of treating
John Ruasell, of the City of Edinburgh, secountant, for " a manofacture of glass tilen." John Ruasell, of the

- December $30,18+5$.
Thomess Swinborne, of Uncoln't-lon, Esq., for "Improvements In rallweys and in the nesas of propelling end carrying thereon."-January 3, 1246 .
Arthur Eldred Walker, of Bouverle-street, London, engraver, for certain [" improveArthur Elared Waiker, of Bourefleminet,

Conrad Haverkam Greenhow, of North Shielden gentioman, for "Improvementes in the onatruction of rallwaye and rallway cartagea." \rightarrow Janary 6.
Henry Watson, of Newcatie-apon-Tyae, brasty-founder, for "Improvemeatis in with draming air snd rapouri from furgec
ploylng kuch vapours."- January 6.
Joseph Romaald Boxek, of Chenpside, mechanic, for "Improvements in the copstrue.

Willam Smith Brown, the younger, of Brond. street, Rateliffe-croas, sall.maker, for "Improvements in the manufacture of equare and quadriateral alla, for ships and other vesmels."-January 6.
Jomeph Dougias, of Crose Cheaplag, Coventry, furnishlag Ironmonger, for "improvements in the pattorns used for ca ting and in canting metaln."-January 9 .
Charles Cbinnock, of Cook'n- ground s, Chelsoa, for "1 Improvemente in the conntruetion and methods of extending and compreanging attcles of furniture and domeatle une, atso applicable to cutiery, work men's tools, windown, blinda, shutters, and dmilar usefol par-poses."-January 12.
Charian Hancock, of Grorvenor-place, gentleman, for "certaln Impro vecuenta in the manufacture of gutte percha, and lts application alone, and in combination with other Heances."-January 12
Henry Schlows, of Fiosbary. square, gentleman, for an "Improved inntrument, or thtruments for produciog ignition."-Januery 12.
John Seaward, of the Caval Iron-works, engineer, for "Improvements in the steman. eagine, and in machinery for propelling."-Januery 12.
George Tillett, of Snow-hill, Irommonger, for "Im provernents in atoves and are-places."-january 13.
Jean Marle Durnerin, of Parin, Doctor of Medicine, for "Improvements is trenting mity matters."-January 13.
Thomas Moorcrof Benbow, of Birningham, surgeon, for "Improvemente in fastenlags for surgical and other band ages, and for articles of dreas."-Janame 13 .
Robert Bewick Longrdge, of the Bedinagton Iron-worka, near Morpeth, Northumberland, for an "Improved locornotive engine."-January 18.
Joneph Maudslay, of the frm of Maudslay and Fleld, of Lambeth, engineers, for "Improvements in propelling and p ropelling machinery."--Januery 18.
Edmund Leahy, of Cork, Ireland, CIFil Engineer, for " Improvements in locomoth carriagea, intended to be employed on ordiary ronda."-Janary 15.
Whiliam Denion, of Allerwash House, Baydon-bridge, Northomberland, gentieman, for certain "Improvempats in machines for the manufacture of tiles and ofther platict subatances."- January 15.
Whiliam Clark of Noteligham, and Willam Vickers the younger, of the anme place, Iace manufacturers, for "Improvements in manufacturiog lecu and other fabrica by lece mechinery."-Janaary 17.
Arthur Wellington Price, of Manchenter-atreet, Gray'a-lnn-roed, geotiemem, for
"Improvements In the conatruction of anchors."-January 17 .
Peter Taylor, of Hollingwood, near Manchester, machinist, for "certalo Improvements in Enachinery for propelling vensein, carrigges, and machinery, parts of which improvements ate applicsble to drawing and propellag fulda, also improvementa in the conatriction of vessele.- January 20.
Gerard Andrew Arney, of Mare-street, Hackney, gencleman, for "Improvementa in the preparation of gelatine, snd improvementa in Aning or ciarifying Hquids.-Janamery 20. John Bralthwaite, of Bedford Square, Civil Eugineer, for "Improvements in heatige, lighting, and ventilating.-January 20.
Whillam Vincent Wennington, of Goscote Iron works, Stafford, eaquire, for certain "Improvementa in, or Improved methods of cuting plate and sheet iron.-Janumry 20.
Richard Archlbald Brooman, of Fleetaitreet, London, gentleman, for certaln " Improve mente in rullway and eommon road carriages. (A communication.; Jaduary 20.

Whilam Mallis, of Mansion Houre-place, London. and Weat Brommich. Eenford Iron Master, for certaln "Improvements in the conatruction of hullatnga..Jangary 20 (A communication.)
Willim Newton, of Chancery-lane, Middlesex, Clivl Engineer; for certain "Improvements in manufacturlig ptled fabrics.-January 20. (A communicatoo.)
John Nott, of the city of Cork, gentleman, for oertain "Improvements in the means of communicating inteliggace from one place to another.-January 20.
Whilam Henry Burke, of Tottenham, gentieman, for certain "Improvements in the manufacture of fabrica which may, if requifed, be made air and waterproof; a part of the materiais employed berein, wren combined with other mattera, beling intended to prodnce covering for veselis of capacity.-Janaary 20.
Andrew Rurts, of St. Helen's, Lancaster, mannfacturing chemist, for certain Improve menta in the conatraction of furnaces, add spparatus connected therewith, for avapapo rating or concentrating sulphuric acid."-Janumry 20
John Spenceley, of Whitatabio, in the county of Kent, Master Biockmaker, for ${ }^{\circ} \mathrm{Im}$ provements in the conatruction of shlps and other vessels, sud alao Improvementia in apparatus to be attached to shipt and other vessela" "-January 20 .
John Walker, of Manchester, illk mannfacturer, for certain "Improvements in weatigs or manufacturiog plled or nopped clothe or fabrice, and aleo fat provements in machinery or apparatus for cuttlig the plle or nap of the same."-Jinuary 20.
Cbarles Wheeler, of Speenhamiand, Berkahire, machinist, for "certain Improvementa in the construction and working of ruilway.:"-Junuary 22.
Joseph Cooper, of Great Chartatreet, Hoxton, chemist, for "an Improved mode of separating cerraln of the find, and soluble parta of cortala regetable substances from the olld parta thereof,"-Januart 22
Frederick Whiliam Campin, of Fleet-itreet, in the City of London, geotleman, for "certain Improvementa in obtalning and applying motive power."-Janugry 22.
Danlei Ross, of Sonth-atreet, Southrart, bat manufacturer, for "improvementa in the manufacture of bate."-January 27.

CORRESPONDENTS.

The appearance of Mr. Bashforth's letter prevents as from inserting a very ingenious paper on atmospheric traction, received in the earlier part of the month.

errata.

In speaking of the plate of the englinem of the Great Britaln, in our last number, p.9. we were made to say that the engraving was "not sufficlently explanmtory," the ward
In the notice of the Model of the Parthenon, in the present number, p. 44, cal. 2, the Arst pote belonge to Mr. Lucar's book; the second la edtorial; the word " cella "is mis. printed " celler."

IDEA FOR THE FACADE OF THE BRITISH MUSEUM.

 (With an Engraring, Plate IV.)Little less than marvellous is it-certainly unaccountable, that so important a structure as the British Museum-the most public of all our poblic edifices, because that to which the public have freest access, should be regarded by the public and the public press with so much apathy and indifference. Or if it is not to be attributed to sheer indifference, the sullen silence which has succeeded to the bitter remonstrances made against the design for the Façade at the time the works for it were 6 irst commenced, argues despair. and the unhappy conviction that all the remonstrances in the world would have no effect upon those whom it bas behoved to consider very seriously what they are about, and to reconsider the design adopted fur the Façade, ere it be altogether too late. Poor as it would be, it would still be sonue sort of satisfaction to be informed what it is that has recommended the design in question, what are the particular merits and beauties discerned in it, and claimed for it. Instead of which, all that has been said about the intended Fagade has been strongly against it, without the slightest attempt having been made to reconcile us to it, by gainsaging any one of the objections which have been urged in condemuation of it. If they can fairly be set aside, the neglecting to do so looks much more like ecornful dibregard of public opinion, than like generous forbearance. However matters of the kind may have been managed formerly, at the present day, we have some right to expect to be tolerably well satisfed beforehand that a work of such magnitude and importance, will be found perfectly satisfactory when completed.

To bid ue wait-to suspend oar judgment until we shall have the entire Facade before us, is merely idle evasion, for the Model might all along have been exhibited for general inspection in the Museum itself, instead of being kept there under lock and key, jealously secluded from all eyes but those of a privileged few,-eyes likely to be far more partial andindulgent, than at all critical. Doessuch very cautious cigilance bespeak comfortable confideace-well-grounded assurance that the model justifes what was on one occasion said of the design?-but said, be it remarked, very long ago, when the name of its architect stood very much higher in general estimation than it does at present; and that, not because he himself has fallen off from what he once was-on the contrary, be remains just the same as he always was ah initio,-but becaose others bave far outstripped bim, and becanse several structures have in the interim arisen both in this and other countries, in comparison with which the British Museum will show erceedingly poor, - rescued from insignificance only by its mere magnitude as a building, and on that very account all the more distressingly unsatiofactory, because the occasion both demanded, and afforded upportunity for aomething infinitely superior. For that to be merely passable, which ought to be a first-rate piece of architecture of its sind, and to display all the very best qualities of the stgle adopted for it, amounts to nothing less than failure. We are annoyed by the disugreeable contrast which impresses itself upon us, between the what is and the what might hare been, and ought to have been.

In the case of the British Museum, those who will have to answer for the disappointment which the building will create, will bave left themselves very little excusc for their error. They will in a manner have made themselves doubly repponsible by waiving off all interference whatever in the shape of opinion, remonstrance, or the expression of wish that the building should prove at least not inferior to other contemporary ones, in the same or a similar style. Interference of that kind being totally disregarded, all the lesu acrupulous need we be about speaking out quite freely, being well assured that our remarks will not in the slighest degree disturb or perplex either the architect himself, or those who sanction his treatment of the British Museum façade.

There is oo necessity for waiting longerwhen the whole already exhibits itself very clearly to an architectural eye, the entire mass being shaped oot, and as much of it completed as very diatinctly shows the precise quality of the architecture, and the degree of Gnish and effect. There is oothing at all doubtful,--nothing left for conjecture : we cannot fatter ourselves with the possibility of being mistaken in regard to any of the architect's iatentions, or with the hope of being taken very agreeably by sarprise by aught that yet remains to be done. Even yet, indeed, there remains an opportonity for redeeming the Fuçade by introducing into it a magnificent feature that abould be superior to every thing which we now have of the ame kind. We are not therefore exactly too late, though certainly dot at all premature in submitting an idea of our own; though its
being in sufficieat time to allow of its being adopted, makes, we are fully aware, no difference whatever. By some, perhaps, it would be considered better timed, were it to be kept back ontil the possibility of adopting it, had altogether passed away. We of course lay ourselves open to the charge of presumption in pratending to correct the architect's desigo, more especially as it is one in regard to which the Horatian precept of Nonum prematur in annum has beeu observed in more than its fullest extent. Let us be deemed ever so presumptuous, we will not show ourselves sneaking also, by gently protesting that we feel exceedingly doubtful whether our variation would be any improvement after all,-that wo here produce it most hesitatingly, and reluctanly,-with many other pretty perjuries of the kind, which if Jupiter does not laugh at them, all sensible readers will at once see throngh. All that we have to observe apologetically is that the accompanying Elevation (see Engraving) purports to be not such a design as we could have wished to see adopted, but merely an alteration of the existing one, adapted to the Fricade as already shaped out, so as not at all to distorb the structure itself, or in any way interfere with what is actoally done, except in so alight a degree as to be of no moment.

Nothing more would be required than to enlarge the plan of the centre portico, making it of a different order and upon a larger scale than the colonnades along the rest of the façade, whereas now that portico will be merely in continuation of them, and not otherwise distinguished in the general mass than by the addition of a pediment-very insufficient to give a decided expression of loftiness to the ceatre of the composition. For the colonnades alone, as subordinate to the main feature, the present lonic order may be upon a sufficient scale, but it will not produce a portico upon a scale at all more majestic than some which we already possess-not comparable in that respect-or indeed, any other-with that of the Royal Exchange. Projecting only a single intercolumn in advance of the lateral colonnades, it will not display itself at all advantageously, neither will it be of sufficient depth within to be attended with much architectural effect on that account, or properly to adower the purpose of a Vorhalle, or open colonnaded vestibule containing the entrance to the buildiug, because it will be in a manner choked up with a second row of columas within corresponding with those in front, and dividing it into two spaces not at all wider thau the other colonnades. Great adrocates an we are for the use of internal columas in porticos, we are far from approving of the arrangement of them in the portico that is to be, of the British Museum. A certain degree of richness will, no doubt, be so produced, but, it may be apprehend. ed, it will cause the rest of the colonnading to look meagre and scanty, by comparison, especially at the external angles,-where we could wish to have suen square pillars, if only io order to break the monotong arising from such a number of columns as there will be, and nothing else. The whole façade will consist of nothing more than columaiation put up in front of a fenestrated structure. Take away the former, and so far from losing any thing essential to it, the rest would remain as good as ever, without there being aught to show that there had been columna, or that the structure was framed with reference to their becoming constitnent parts of it. Were they taken away, there would be no hiatusses on the design; it would be only readered astylar, with a single range of windows, not very dissimilar from the Hall of Commerce in Threadueedle Street, except that it would be somewhat less ornate. Over-decoration will certainly not be the failing of the façade of the British Museum : the absence of sculpture and all other artistic embellishment may obtain for it the reputation of simplicity from those who have $n o$ have no other idea of simplicity than that of nudity and bareness; get the inscription of "British Museum" will be necessary to apprise strangers that within auch structure may be found some of the most preoious rernains of aucient art and sculpture, and the model of the Parthenon, to boot. Eren the order itself is nowise distin. guished: it is a fair average example of Grecian Ionic, aod mothing more, and except that the shafts of the columns are duted, it is quite plain. It is in fact the same example as that employed for the Pust-office, without any attempt at difference of character and expression. Its werit therefore is merely of a mechanical kind, for it has uot cost the architect the exertion of a single fresh idea. What will serve for a Post-Oftice, will serve, it seems, equally well for a Museum; alihough there had need be something wore than usually striking in the order to make ameads for the tameness and moootony of the general design.

In our altered version of the Elevatiou, the Ionic order becomes a secondary one, and as auch contributes to contrast with and set ofr the Corinthian octastyle, which though considerably loftier (heing somewhat higher than the portico of the Royal Exchange) would not in its turn have the ef-
fect of diminishing the other colnmas by comparison, the latler belng on quite as large a scalo as wo are accustomed to. By exceeding that scale, and risiog np higher than the Ionic colonandes, the central portico wonld confer dignity on the whole fagade. That such combination of two different orders is not in strict accordanoe with Grecian precedent, is what we need not be told; yet it seems to us that, iostead of requiring excuse, such deviation from the letter of Greek architectural law, would rather tend to excuse those violations of it which there will now be, by proclaiming at once that the building does not affect to be severely Grecian.

The Plao accompanying the Elevation, shows the Corinthian octastyle to be brought forward two intercolumes in advance of the adjoining colonnades; owing to which it would be rendered unusually spacious, and would constitute a rather striking piece of architecture internally; while another advantage would be that the portice would display iteelf more prominently in an obliqne view of the façade. In the external elevation of our Corinthian Portico, there is nothing either amounting to derign, the sketch merely indicating the order and showing that the frieze of the entablature, and the pediment would be enriched with sculpture. But perhaps some little degree of novelty may be claimed for the mode in which the portico is connected with the latersl colonnades, which latter are entered through open doorways or portals, answering to the extreme intercolumas of the octastyle. Thas treated the portico would be better enclosed than if open at its ends, into the colonnades, and greater variety of effect upon the whole would be produced. One other thing that may deserve to be pointed out as partaking of novelty, is the position of tbe two statues against each of the extreme columns of the octastyle, in which situation ench figures would, we conceive, tell rery forcibly, and throw a good deal of play into the arcbitecture.
We are aware that such a portico as we have imagined could not be applied to the building in its present state: it would be aecessary to carry up the back wall of the portico higher, and also to raise the ceatre of the roof to the pitch of the loftier pediment. What then $!$ there would be nothing of very awful or unheard of extraragance in doing that; far better that, than to erect what may some time hence be doomed to be taken duwn again to make room for something more dignified. If Bir John Saane built the exterior of his Law Courts twice over ;-if the wings that were first put to Buckingham Palace were no sooner up than they were taken down again, the mere conaideration of a little more expense and a little more delay, ought not to deter from effecting even at the eleventh hour an alteration greatly for the better in the façade of the British Museum. That we ourselves consider it would be one greatly for the better is evident; and most persons we fancy, will be of the same opinion; still others may think very differently, in which case they are heartly welcome to be as free in their strictures upon as as we have been to speaking of the design which is now being carried ints execution.

DECEPTIVE ARCHITECTURAL MATERIALS.

 II.We pablished last month a long letter subscribed "The Writer in the Companion to the Almanac," controverting certain criticisms which bave appeared in former numbers of this Journal. It is not worth while to prolong an uninteresting and onprofitable controversy by replying categoricaliy to the ietter; at the same time, there are views suggestod by it on one subject-that of deceptive materials-which are certainly worth examining. It is a matter of very general interest to architects and those who employ them, that the general question as to the propriety of nsing deceptive materials, and also the specific questions as to what particular materials are to be considered deceptive, should be clearly and defnitively answered.

But a mere unsupported dictum will not be a sufficient answer. On aubjects like these the reader claims the right of reasoning and examining for himself, and will not be satisfied with simple statements of opinion, however authoritatively pronounced. It will be necessary therefure to observe some sort of method in considering the question, and as we have already assigned in the former paper with the same title as the present one, the abstract reasons for condemaing architectural dereptions, we sow purpose to examine the specific applications of the general rule.

It may then be first remarked that every rale of art which is of the nature of a restriction must be applied more strictly to works of the bighent
order than to those of a trivial or unpretending character. So that, in condemaing arohitectural deceptioes, the condemnation must be considered to fall far more heavily when it affects important public edifices, churcbes, collegiate buildings, \&cc., than when it refors to ordinary domestic architecture. There would, for instance, be no dispute as to the impropriety of making the great doors of a cathedral of some common wood painted in imitation of oak, bat it would be mere affectation to object to the use of "grained" deal in ao ordinary dwelling room. Neither, we presume, would there be found at the present day many defenders for an architect who constructed an elaborate ruof like that of Henry the Soventh's Chapel, of some cement or stucco resembling stone; but it would be absurd to conclude that there was any impropriety in using plaster ceilings in private houses. Neither, again, would it be possible to deny that m chimney piece of wood painted and varnished to resemble marble would appear contemptible in a noble banquetting hall; but it is quite poasible to conceive iustances where wood paiated like marble might be introduced without any grievous offence to good taste.

The more inmediate occasion of the present paper arises from the remarks which have been made in defence of the use of rarnished deal, and as thia material has of late been very frequently used in buildings of the higheat pretensions, it becomes a matter of great interest to the architect to ascertain under what circumstances its use is justifiable. It is elear that no reason exists for making it an exception to the remarks just made respecting the cases where imitative materials may be allowed, and those remarks are of the more importance with respect to varaished deal, because there are methods of using this substance by which it altogether avoids the risk of being rauked among deceptive materials. In many of the old mansions and seats of the nobility the wood-work is of the Norway pine timber, varnished; and this wood from its superior hardness and closeness of texture compared with common deal, admits of considerable deiicacy and minuteness in carving. The grain of the wood also is free from that coarseness which rendera deal generally inapplicable for ornamental purposes. The culour of the Norway pine wood when varnished somewhet resembles that of pear wood, and produces a very agreeable effect; the varaish also improves the appearance of the wood by developing its texture and "bringing up" the grain, which often exhibits considerable delicacy.

This point however is particularly to be noticed-that where the Nurway pine wood has been used with good effect, there has never been any altempt to produce deception by artificially diaguising the natural colour of the wood. This remark is most important, because, otherwise, all attempts to improve the natural appearance of architectural materials might be codsidered synunymous with architectural deception. It is very necessary for the consistency of our argoment, that this distinction ohould be clearly made; for otherwise it might lead to most absurd inferences. An unthinking person might, for instance, condemn the polishing of marble on the mere ground that marble when polished presents an appearance altogether different to that which it has in its natural state. But the esseatial distinction between the improvement of natural materials and architectural deceptions is-that by the latter, a poor and cheap material is made to look like some other well known material, which is more rare and costly. Marble, by being polished, cannot be said to be made to resemble anything more costly than itself; neither can varnished Norway pine when wnstaised be supponed to be a spurious and deceptive substitute for a mure expensive wood.

If, however, some chrap common wood, such as the ordinary pine be stamed of a dark coluar, altogether different from its natural hue, and if moreover, as in the case of the timber roofs at Lincoln's Inn, the stained wood is placed at such a height that the eye cannot detect the poverty of the material by its shapeless knots and coarse grain, it seems impossible for any one but a mere disputer about words to deny that in such a case varnished deal must fairly be reckoned in the list of deceptive materiahs.
It duen not appenr any answer to our objection to say that in this ease the wood is not painted. Of what consequence can it be whether the deception be produced by painting the wood or by staining it? The object of the discussion is to ascertain the fuct of the existence of deception-not the mode of producing the deception. So long as it remains undispated that a common material is made to look like another, better and more expeasive than itself, it really seems wholly immaterial to dispute about the specific means by which the deceptive resemblance is effected. The notice of ceiling at Liacolu's Inn, copied into our pages from the Athencem, stated that the wood was first stained and then varnished, and that the colour of the wood was entirely changed; these facts are perfectiy suff. cient for our argament.

It may appear perhaps that we are prolix and annecesearily minate on a point of comparatively little importance. This however is not the case. The particalar kind of deception which we now dotice seems growing into fashion, ad believing, at we do, that a great-if not the zery greatestbarrier to the improvement of modern arohitecture, is the tendency which has unhappily crept in of using all kinds of tricks and artifices and make. beliofs, we do not think that we can be mispending the time of our reader by endearouring to set forth clear and explicit notions on the subject. By accurately explaining the nature of one architeclural deception, we, by implication, determine the nature of all; and it may be added that it is the want of clear notions or this subject, and not the subject itself, which has occasioned those exaggerated inferences by which attempts have been made to throw ridicule on the important rule of architectural criticism now ander consideration.

It is not very easy to see from what canse have arisen the lond remonstrances which have been orged against as in justification of architectural deceptions. Were our condemnation of them an alogether dew and un-beard-of rale, it might be anticipated that objections would be raised against the doctrine, not on account of any inherent defects in it, but sim. ply for its novelty. But we do not claim the merit of novelty. The doctrise asserted by us has been assented to by almost overy thinking writer on architectoral subjects ; it was rigidly obserred by all the ancient architecte, both Classic and Christian ; and we may observe that in works publisbed at the present day, which contain architectural criticisms, the same principle is universally recognized, We quoted not long ago some remarks from the pages of The Builder, respecting the church built of terracolth, near Manchester, the tendency of the extract being to show that such a brilding ought to be condemned, not because of accidental failures in the vorkmanship, but per se as an altempt of the worst kind at architectural deception. To this teatimony we might add that of the A thencum, and it wonld be impossible to read a single number, scarcely a single page of the Ecclesiologist, withont meeting with numerous censures of the employment of imitatire materials.
We repeat boldly that there is acarcely a more fatal obstacle to the adrancement of architecture than the system now too prevalent of building showily, instead of well. There is no doubt that those buildera who have been trained in the "Cheap Gothic" school will feel much offended to find their mauldinge and mullions of patent cement, their walls of stuceo panelled to reserable masonry, and their showy-looking ceilings of stajned deal condemned for astentations vulgarity, but their diampointment does sot awaken our pity. From the days of Esop, the jackdaw has been condemned for excessively bad taste in arraying himself in the plumage of the peacock.

It is far better taste to ase bomely materials honestly and withont concealment, than to trick them out with a nulgar onreal magnifucence. There is an honest and substantial appearance in good dark brick work, which is far preferable to the splendour of the best mock-masonry ever constructed. Of the former material some of the noblest and most stately edifices have been boilt-fine old mansions, ancipnt gateways, halls and towers; the latter is the type of suburhan cockney architecture, it gladdens the eyes of retired tradesmen, and ascorts well with those notions of the beautiful which are learned at the counter or in the connting-house. It is perfectly congenial to the taste of the ruraliaing stock-broker, who prefers that bis rus in wrbe with its patoh of gerden asd smart summer-honse sbonld look spruce and trim, just like the new proprietary chapel-of-ease over the way; who sees no beauty in the old rillage church with its great sallen tower and dingy frowning buttresses, and prononaces the neighbouring baronial hall (which is coeval) a dull, dark, solemn place, which he would not ilve in for the world, for fear of growing melancholy and-romantic.

Now thongh we have no expectation or desire of converting such a eritio, the readers to whom wo now address onrselve claim that respect by education and profession, that it casuot be a matter of indifference whether they consent t, or disent from, the views here laid down. We cam have no fear that men, who are necessarily compelled to examine for themselves the principles of pure taste, will condemn the honest real architocture of the Grécian temples, and our own glorious cathedrals; the only ground of apprehension is that our rales mag not be expressed with sufticient clearness to prevent exaggerated and inconsistent inferenoes. The true criterion ac to the deceptive use of materials is-not that the vatural appearance of the anaterials is improted-bus that an attempt is made to cheat the eye, to impose the belief that what is in reality bomely and common is some well known substance of more cosily description. The eriterion is altogether independent of the particuiar method by which the
deception is produced, and it is also irrespective of the degree of succeasfulness of the deception. It is no palliation, but rather an aggravation of the evil, when the imitation is clone and minute, becanae in thin case the amount of deception is only increased. If a nobleman were to appear at a great public solemnity with false jewels in his insignia, he would certainly be making a display in the wora possible taste, and the rulgarity of his ostentation would not be diminished, if his paste diamonds were 69 well made that they passed for real.

It is well woriby of remark that the art of imitation has alvays been most successfully practised in countries and at epochs distinguished by the debasement of the fue arts. A painter who could paint a joint of meat, or a knife with all the minuteness of reality, might certainly claim the credit of being a good mechanical imitator, but could scarcely lake bis rank among the disciples of "bigh art." Imitation is the faculty of the Ape, and is most observable amung nations least elevated by moral and intellectual energy. Wonderfal stories are tuld of the minuteness with which the Chinese and Japanese imitate natural objectg, but nupe of the lofty beauty of their sculpture, painting, and architectare. The mimolic faculty is seldom predominant in men of origial genjus, and is never displayed in their greatest works; the substitution of the fictitious for the real, the minute for the beautiful, has unifurmly been found to presuge the neglect and speedy degradation of the Fine Arts.

8T. MICHAEL'S CHURCH, PIMLICO.

Notwitbstanding the rapid advancement of churcb-architecture duriag the last fow yearr, it must be coofessed to be still in a state of transition from the barburism of the last age, and to have as yet butimperfectly regained its original purity. A characteristic defect of modern Pointed architecture ajpears to us to be the want of that boldness and maseiveness which dislinguished the architecture of the fourteenth centary. There is in modern art a general tendency to what may be called, for the want of a better term, prettyism. This affectation of smoothness and delicate ornament is especially observable in sculpture and architecture, and in neither of those arts have we the energy and bolduess of the old artists. We seem altogether afraid of exercising that kind of courage which prodnced the strong simple lines, the bold salient angles, the sudden alternations of lights and shadows which distingalsh Westminster Abbey or King's College Cbapel. And it is the more to be regretted that these simple means of renderiug architecture effective should be altogether missed in modern buildings, because they seem to be the very memns which should be most valuable at a time when architects are conotantly complaining of the paraimony by which their efforts are restricted. Spenking economically, it must be clear that bold simple ornaments mast be cheaper than those of more delicate workmanship, and the architect can complain of no one but bimeelf if for want of the former his works appear ineffective.

The new charch of 8 l . Michael's, Chester Bquare, built from the designs of Mr. Cundy, possesses in a great measure that necessary play of light and shadow without which the first and distant view of a church can never be satisfactory. The plan of the bnilding is cruciform, there is a bold tower surmounted by a lofty spire, the roofs are of bigh pitch, and the combination of the various parts produces a very pictureaque specimen of the style adopted-the Decorated. The entrance is not at the west, but beneath the tower which stands on the north side near the norih-went angle, and is strengthened by buttresses divided into three stages, and panelled. Tbe buttresaes are surmonnted by pinnacles with crocketo and finials; between these rises the spire which is surmounted by a vane at the height of $\mathbf{1 6 0}$ feet from the gronnd. The roofs of the church are slated and have foriated crosses at the gables. The whole of the exserior is faced with Keatisb ragstone, with Bath-stone dressings oiled to resist the effect of moisture.

The entrance to the church is beneath the tower, of which the lower part is entirely open, and forms an arched portico. Similar examples exist at West Walton, Norfolk; at Dedham, Easex, and in one of the churches at Cambridge. Within the charch there is accomuodation for 1200 persons, 750 in pews and 450 in freeseats. The roof is of open wood-work, and is supported by piers between the nave and aisles. Tbefont which is at the west end, bas a cover of carved wood, and the pulpit and reading desk are low, and stand on either side of the "communiun recess," which is paved with encaustic tiles. The commnodments are written in panels beneath rich canopies, and on the south side are sedilia. If these are to be used there can be no objection to them in an architectoral poiut of view, if how
ever they be useless and are merely for show, the architect would have certainly done well to heve omitted them.

Wbere there is much to praise it is very painfol to have to find fault; truth and consistency however compel as to atate that there are many thinge in the interior arrangement of the charch which cannot be praised. There are galleries intersecting the piers and blocking ap the side windows; the shafts attached to the piers have poor bases which are hoisted on a species of stilts to the level of the pew-seats. But above all there is an appearance of unreality, objectionable in all kinds of architectare, but perfectly indefensible in that kind which ought to be the very highest and most truthful-church architecture. The walls of the chorch end of the staircases are coated with plaster on which black lines are drawn to imitate, or rather, mimic the courses of real masonry. Some of the window monldings are "run" in cement, and are the more deceptive because the mullions and corbels are of stone. The same remark applies to the shafts attached to the piers, which are partly of stone and partly imitations; the piers themselves are all of plaster decorated with the black lines aforesaid. The pews are of stained deal. Of the value of this material wo have prononnced a $8 n$ fifiently explicit opinion in another part of our present number. It may be added that here the coarme shapeless knots of the wood and the harsh lines of the grain have a very disagreeable effect The glazed and shining appearance of varnish is, to our taste at least, very objectionable. This however is merely an individual opinion, -bat it is a matter of certainty that the effect is very anchurchlike.

We regret also to find the appearance of sham windows-indentations or shallow recesses in the plaster of the walls, with imitation hood-monldings in cement. In the exterjor of the church there is also apparently an un. truthfulness about the western side which is treated as if it were the back of the chorch, (a chnrch ought to have no back or inforior side,) for on this side we find nothing but plain blank walls of masonry withont ormament, and with a surface entirely unbroken, except by one or two very small windows in the upper part. This defect is certainly not necessitated by the site of the churcb, which is quite isolated. The western side is not quite so conspicuous as the other sides, still it is far from being actually concealed. There are indeed bouses on the north side, but at such a distance as to leave plenty of room for viewing the bailding in that direction.

It is very tedions to have to repeat the same obvious tratbs over and over again. But till the lesson is perfectly learned and practically exemplified we must not cease to set forth the truthfulness and honest sincerity which the old builders scrupulously observed in their works. To express a species of excessive vulgarity by a vulgar phrase, there is in modern church-building a tendency to show-aff, which is atterly repagnant to the principles of good taste. And not only js this ostentation and affectation of fictitions magnificence contrary to reason, but it is against precedent also. The old architects uniformly used real materials and were never guilty of leaving one side of a chnrch poor and unembellished that they might lavish richer ornaments on the conspicuous parts. Until our own times the art of make-belief decoration has been monopolised by milliners and scenepainters.

We must not be anderstood to express these sentiments in an onfriendly spirit. The architect of St. Michael's Church cannot be censured for the existence of a widely-spread error which is doing the greatest possible injury to architecture, and which we boldly affirm must be corrected before the constructive arts can regain their original excellence. At the name time we must express regret that in the present case the architect should have fallen in with a bad custom, and we sincerely hope to see many excellent works of his, as bold and effective in design as St. Micharl's cburch, hut free from its faults in detail.

There is one good arrangement with respect to the comfort of the future congregation of the new church which must not be passed over. The church is warmed by hot-air pipes, which are contained in channels in the floors covered by grating. There is nothing like concealment here; the pipes honestly reveal their purpose-they are not concealed, but they are put where they do not obtrude on the sight, and are simply rendered inconspicuons. We have no doubt that the titled congregation who will frequent St. Michael's, will prefer this arrangement to the delightful inventions of the Cambridge Camden Society.

The first stone of the church was laid on the 20th of May 1844, by the present Marquis of Westminster, who subscribed 5000l, towards the building, and gave the fee simple of the site. The remainder of the cost
must be raised by subscription before the church can be consecrated. There is at present a deficiency of 5,2001 ., which includes the cost of an organ, bell and clock, and of inclosing the church-yard.

CHRIST CHURCH, PLYMOUTH.

The accompanying illustration represents the elevation of a Chapel-ofease recently erected in the parish of St. Andrew, Plymouth, from the designs of Mr. Wightwick, to whose courtesy we are indebted for the sketch from which our view is copied. Mr. Wightwick has also favoured u a with some brief but very pertinent observations on the strictures which appeared in the Jannary and February nombers of this Journal, respecting the manner in which light was obtained in the new building. He anys,
"I do not exactly see that a church united with other buildinge is necessarily so beyond all successful treatment as you suppose. Is it quite fair to call the only front that shows "a show front "" Is there any thing "unchurchlike" in the "arrangement" by which I obtain light ? viz., by a clerestory? 3rdly. The adjacent buildings harmonise with the church in style; the one being a residence of a simple Tudor character; and the other a School-building literally belonging to the church. Furthermore the building is but a Chapel-of-Ease."
With respect to the use of the word "unchurchlike," we would observe that it was meant to refer, not to the admission of light by clerestory windows, bat to the con-admission of it by aisle windows. It must be obvions that when a charch is lighted by clerestory windows alnne, either the amonat of light obtained must be insufficient, or else these windows must be so enlarged as to become very prominent features of the architecture, or at all events, to lose that subordinate relation which they bear in ancient churches.

The omission of aisle wiadows has also this disadvantage, that the whole of the north and south walls are bruken and unbarred ; and this again is contrary to precedent, for in ancient examples large surfaces of "dead" wall are uniformly avoided. Another disadrantage arising from the same cause is that the quantity of light obtained in the ceutre aisle must far exceed that in the north and sonth aisles. In Christ Church the lateral aisles contain galleries extending from the walls to the piers of the nave; and it is certainly against asage that a lateral aisle of a charch should as in this case be divided into two stories or compartments, each of which constitutes a spacious windowless recess.

Light obtained from upper windows alone produces an effect very different to that to which we are accustomed in Pointed Architecture. The lights and shadows are, so to speak, reversed. This may seem at first sight un unimportant remark, and one rather of an artistic than architectural nature, but if the reader will compare a building lighted by vertical

[^11]lights in the roof (6uch as the National Gallery, the Elgin Room of the Britiah Musenm, \&cc.) with a chamber in which there is a serios of side wisdows, he will see that the effects produced are totally different, and as the beanty of Christian Architecture depends most materially on the dis. position of ligbt and shadow, this consideration is by no means to be neglected. We pever should expect to meet with an ordinary akylight in an ancient charch ; in that case, it is immediately obvious that the effect would be contrary to the spirit of Pointed Architectare. It needs, however, but litule refection to be satisfied that there is a similar objection to the exclusive employment of clerestory windows. By the arrangement of windows similar to that in the National Gallery the light is $s 0$ generally diffused that it nowhere casts strong sharply defined shadows; this arrangement is therefore very adrantageons in a Museum of Art, but the effect produ. ced is essentially aecular, and very different to that "religions light" which is so beantiful e charucteristic of the Medizval charches.
It is however by no means necessary that a chnrch should be built in a perfectly isolated situation. Our noblest cathedrals have attached to them ecessory buildings (Cloisters, Chapter-houses, \&cc.) of corresponding date and architecture. Much injury has indeed been done by the injudicions temerity of modern "restorers" in their zeal to isolate ancient churches. We may here perhaps refer to M. Didron's vehement denunciation of the Vandalism which has recently destroyed the Chaptor-hoose at Troyes, and which contemplates a similar destraction at Ronen under the pretert of revealing the bennties of the Cathedral itself. But though it be perfectly allowable, and frequently deairable that a church should have depeadent buildings atteched to it, there seems no warrant whatever for so placing those buildinge as to prevent the admisaion of light to the charch by aisle wibdows.

Of course these remarks must be considered perfectly general in their tendency; it would be absurd to censure the architecture of the new chapel at Flymonth because the architect has not performed physical impossibilities. On the contrary, there is every reason to suppose that his expedieat is the very best which the circumstances of the case admitted. At the same time it is one which can never be defended, except on the ground of absolute necessity, and we certainly should never feel diaposed to approve of the omission of aisle windows, ualess the question lay between building the church without them-or not building it at all.

AMALGAMATION AND LEASING OF RAILWAYS.

In contination of the papers on this aubject, that appeared in the Journal for October and December 1845, my only apology is the difficulty of getting this description of information after nutil the period at which it appeared in the public papers, and although these papers may not claim the werit of original thought, yet their computation at the period of the Railway Fever of 1845, the one previous and the other after the dreaded month of November, mey in itself be some merit. In the last paper sperking in reference to the new infusion of lines of the session of 1845 , and the position of the remonat of the new lines that has not formed any alliance with the old companies, an alliance wes lndicated as probable, and which has since taken place, as will be found in the after part of this paper.
The remnant of lines not yet allied to, the old compenies is reduced to tbe Kendal and Windermere, Cockermouth and Workington, Newport and Pontypool, Weir Valley, Richmond (Surrey) and Leeds and Thirsk and these may be further reduced as the latter line, and the Great North of Fugland have come to an understanding so as not to compete, and the Weir Valley may be said to have the same interest as the Stockton and Darlington. As regards Scotland, the following are the groups into which the railwey interest have nsturally divided this conntry entirely from the East Coast; we have the North British, Edioburgh and Hawick, Edinburgh and Dalkieth, and meeting with the West Coast Interest at Peebles, which may be considered as a fired point. The Western write to be obtained from Carlisle, is by the Caledonian Line, 137 miles long, which is united with the Ciydesdale Juaction, Pollock and Govan, Glasgow and Garnkirk, and Caledonian and Dumbartonshire Junction, and West of the meridian of Glasgow, and North of Carlisle, is the gronp proposed to be called the Great Sonth Western of Scotland, composod of the Glasgow and Greenock ; Glasgow, Kilmarnock and Ardrossan, and Glasgow, Paisley, Kilmarnuck and Ayr, and Glaggow, Banhead and Neilston Direct, and Laking the parallel of Edinburgh and Glasgov, we have the Edinbargh
and Glasgow, and Lanarkshire Lines, viz: Ballochney, Slamannan and Monkland and Kirkintillock, also the Glasgow Junction, Scottish Midland, and Scottish Central, and Coupar Angus and Glammis; and East of Edinbargh, and North of the Firth, we have the Kingdom of Fife gronp, the Edinbargh N orthern, and Edinbargh, Leith and Granton, and from Perth Northward, we have the Dundee and Porth, and Dundee and Newtyle, and its continnation by the Dandee and Arbroath, Arbroath, Forfar and A berdeen.
The following are the groups of alliances in England. South of London, and to the East, we have the South Eastern to the Weat, the South Western, and intermediate the group of Lines compressed in the London and Brighton.

The district sems fairly assigned to each, and the three companies aro on friendly terms, and disposed to become consolidated ; indeed, two years ago, the 8outh Eastern offered 100,000t. per annam, for the Brighton, which would have been just equal to the present dividend.

North of London, and to the East, is the group composed of the Eastern Connties, Northern and Eastern, with proposed Extension to York, and the Norfolk, East Anglian, and Eastorn Union, and its Extension.

North of London on the East Coast, is the Midland, from Bristol to Berwick.

North of Londin, on the West, the Great London and Liverpool extension, to Carlisile.

London to the West, the first group Live is the Great Western, which with the London and Birmingham occupies the whole of Wales, the one South, the other North.

The Second Crose Line is from Liverpool to Hull by the Manchester and Leeds.

The Third Cross Line is from Manchestor, by the Sheffield and Manchester, Hull and Barasley Junction, and Sheffield and Lincolnshire.

The Fourth is from Shields on the East to Maryport on the WestjCoast, by the North Cosst and Carlisle.

The above general view may be confirmed in detail by a reference to the former papers, and the amalgamation there indicated, and since taken place, is the East Anglian.

The Board of Trade having ceased to report on new schemes, I recond their period of influence. The total notices together were eleren, the first appeared s1st Dec. 1844, and then in January, 14, 17, 24. Foor in Feb. 4,7,18, 28. Three in March; and nineteen reports were published, accompanied with twenty-one maps of districts into which they had divided the country, and the name of the different districts and date of reports are as follows.

First, Feb. 13. Kentich and South Eastern.
Second, Feb.24, Manchester and Leeds, and Newcastle and Bervick.
Third, Feb. 28. District of Berks, Hants, Wilts, Dorset and Somerset, -District, London, Worcester and Wolverhampton-District, Birmingham and Shrewsbury.

Fourth, March 4. Norfolk and Suffolk, Corawall and Devonshire.
Fifh, March 13. Trent Valley, North and North West of Ireland, epproaches to the Metropolis and Scotland.

Sizth, March 20. London and York, West of Dublin, South of Ireland, South Wales.

Seventh, March 31. Colchester and Harwich, Portsmouth, North of Leeds and West Riding.

Eighth, April 16, 1845, Lancasbire.
The influence of these reports will be felt in the present session. The Chairman of the Great Western at the Meeting, Feb. 12, 1846, says, "There could be no doubt that under the report of the Board of Trade, ${ }_{4}$ the trafic of Exeter and Yeovil was to be provided for by the Great Western." The Chairman of the South Western at the Meeting, January 21, says, the Great Western would not treat for a friendly alliance until the Board of Trade reported in January 1845; the Board of Trade made their report, and was appointed mutual arbitrator and sole referee betwen the two companies, which, however, tbe G. W. R. now decline, and the Board of Trade declined to interfere, and the Chairman further says, "An opposition was eventually made to that board, which could not be foreseen. Lord Howick commenced it in connexion with the atmospheric, and others followed by which the Board was overthrown." From the above there can be no doubt the quarrel between these two powerful Companies will be much perplexed, by the record of the Board of Trade Report. Nevertheless we have the experience of the last session, that the Committees of Parliament are jeulous of this interfereace, and are prepared to ect inde-
peadently as they sanctioned the following lines coatrary to the report of the Board.

Leeds Dewsbary and Manchester, Exeter and Orediton, Lyon and Dereham, Londonderry and Coleraine, Londonderry and Eanigkillea, Irish Great W eatern, (Dublin to Mallingar,) Leeda and Thirsk, 8hrowsbary, Osweatry and Chester, Ely and Hantingdon. The abandoament of a portion of the Groat North of England and Eastern Connties Line, seema to have had great infuence with the Board.

I have beencurions to know what lines, for which Acts of Parkiament had been obtained, havebeen abandoned, they are as foflow: 1811; Berwick and Kelso; 1812, Peorbynd; 1814, Mambilad; 1816, Peak Foreat; 1895, West Lothian; 1926, Dulais, Manchester, Oldham, Limerick and Waterford; 1831, Rothergled and Wellshot, Lanarkbhire, Sheffeld and Manchester; 1832 Exeter and Crediton; 1836, London Grand Jnoction, Thames Haven, Lannceston and Victoria; Deptford Pler. In looking over the above it will be seeo at a glance that many of the projects are carried eat by Companies incorporated sibce.
I will now proceed to give a general summary of the acts of each Session, and those which were refused the sanction of Parlimment, althongh from want of data I cannot separate those refosed into the two heads of New and independent Lines, and those promoted by Old Companies, or being amendments of former Acts. The first Act was paaced in 1801, and; in 1802, two ; 1803, one; 4, one; 8, one; 9, two ; 10, one; 11, three; 12, two ; 14, one; 15, one; 16,one; 17, one; 18, one; 19, one; 21, one; 28,00e; 24, two; 35, five; 26, six ; 87, six ; 28, eleven; 29, nine; 30, eight; 31, nine; 89, eight; 33, eleven; 34, fourteen; 35, eighteen; $\mathbf{3 0}$, thirty-five; 37, forty-two; 88, sirteen; 39, twenty-six ; 40, twenty-four ; 41, nineteen; 48, twebty-two; 43, twenty-four; 44, forty-eight; 45, one handred and twenty; and 1846, seven hnadred and twenty-one applications. And commenoing with the same period, there are distinct titles of new Companies, aad old ones wlth a distinct application exclusive of amended Acts, 1801, one; 2, two ; 8, one ; 4, ode ; 8, one ; 9 , three; 10, one ; 11, two; 12. one; 15, one; 17, one; 18, one ; 19 , one; 21 , two; 24 , two; 25, seven, 26, seven; 27 , one; 98 , flve; 29 , six; 30. five; 31, throe; 32, four; 33, five; 84, five; 25, vive; 36, twenty-four; 37, thirteen; 88, two ; 39, three; 41, one; 42, four; 44, sixteen; 1845, sixty-two; being upwards of 200 Railways with distinct titles, no Act is dated in 1805, 6, 7 , ror 1818, 14, or 1815, or 1820, 22, 23, or 1840, and 1848. Commenoing with 1801, the number of Railway Bills, that was pessed in each session, that I cad find account of is the following: in 1886, two; 1826, one ; 1880, five; 1832, four; 1833, five; 1834, four ; 1886, twenty-four ; 1887, forty ; 1839, nine; 1840, seven; 1841, six ; 1842, five; 1843, ten; 1844, twenty-three; 1845, one hundred and five.

I will now proceed to give an account of the alliances formed since the preceeding paper, vis:

Dundee and Newtyle, leased in perpetuity to the Dandee and Perth, at an annual rent of 1,4001 , or 14 per ceat.

Edinburgh, Leith and Granton, amalgamated at par with the Ediaburgh and Northern, on a capital of 310,000 , the preference shares are guaranteed $\$$ per cent, by the united companies, and 1 per cent by the original stock, of the Edinburgh, Leith and Granton, Lancaster and Carlisle, with the Larcaster and Preston Juaction.

Arbraath and Forfar, leased to the Aberdeen, from the 1st Feh. 1848, at a fixed rent of $5 \frac{1}{4}$ per cent, and half the surplus profil, after deducting $3 \frac{1}{2}$ per cent for working, the lessees have the option after 5 years of working as a basis, to fix the amunt of surplus profil to be paid the Arbroath and Forfar Company.

Scottish Midland, agreed to be worked by the United Scottish Central; and Edinburgh and Glasgow Companies, at 371 per cent on the gross receipts, gatanteeing a dividend of 4 per cent for 5 years, and to amalgamale at the end of that neriod, on the basis of the receipts of each line for the last two years preceeding. The Scottish Miciland purchased the Coupar Angus Line for $\mathbf{1 5 , 0 0 0}$., and the Glammis for 21.0006 .

Huddersfield and Manchester repudiate the lease to the Sheffield and Manchester, and set forth the Leeds and Thirsk, and Leeds and Dewsbury, as their natural allies, and that hereafter better terms may be obtajoed. either from the Mancbester and Leeds or the Sheffield and Manchester.

Leeds and Bradford, with Manchester and Leeds, two of the former converted into one of the latter Company's. 675,000l.. of new Manchester and Leeds fifths to be distributed among the Bradford proprietors. The Midland Branch to belong to Midland, Yurk, and North Midland, and Mancheater and Leeds Companies, and the Midland to run their trains to Bradford; equal calls and dividends and contributions to increase of capital and proportionate dividend in the interim.

East Anglian, name taken by the Lynn and Ely, Lyna and Dercham, Ely and Huntingdom, amalganated Companies, which took place as from 1at Jannury, 1846, the Extension of Lyan and Ely apportioned among the proprietors of each company, one new ahare for one old. The amonot paid in only ist per cent satil completed, whilat most Com. panies pay 4 per cent.

Chaster and Binhenimad, leased for 9 years to the Chester and Holyhead on the capital 8tock, 5 per cent for the first year, 6 for the secood; 7 for the third; and B for the lant four years.

Edinburgh and Glaggow, with Ballochney, Stamamnon, Meokland and Kirkintillock Lioes, the arrangemen tis taking the Ediaburgh and Glagow at 100, the proportion allowed is respeotively 871 for the fact, and 91 for the two remaining lines.

Grsat North of England, Claromee asd Hartiopool Jabction, amalgazested at par with the Hertlepool Dock and Raidway. Capital 80,000l., to pay 8 per cont from July 1846, to 1848, and 8 per cent to 1849.

Hartlepool Dock and Reilsoay, sold to the Newoatto and Darlingtor Inection, for 280. per 1006. share, to complete in 5 years, 10 per ceat in the interim, the Sbare Cepital $818,990 \mathrm{~h}$, asd 68,2501 . of the debt to be oonverted into of sharea, and inctuded in the arrangemeni. The old shares and quarters to te entitied to the issee of one sixth, posemsion to be givee on the serb June, I848.

Landon and Birminghan Raihoay, and Birminghan Narigation Compaoy.

The Southampton and Dorihester, with the London and Bouth Western.
The mere projects have net been leen active in reconailing conficting interests, asd the following alfianoes or emalgamations have taken place.

North Staffordshire, with Derby and Crewe.
Reading and Reigate, with Reading, Guildfond and Reigate.
Welch Midland, and Newport, A bergevenny and Hereford.
Waecney Valley, add Ipswich and Norwich.
South Eastern, and Dover, Deal, and Cinque Porta.
Lozdon and York, and Huntingdon, St. Iven, Wisbeach, and Sutton Union.

Chepstow, Fores of Dean, and Glouceater, with Welch Midland Extension.

Birmingham and Leicestor, and Direct Birmingham and Leicenter.
Leeds and Carlisle, and Yorkshire and Glasgow Union.
London and Birmingham, with Birmingham. Wolverhampton aed Stour Valley: Shrewshory, and Birmingham; Dudley, Madeley, Broneley and Iron Bridge United Conpany.

Worcester, Warwick and Rugby, with Rugby, Warwick and Worcester, and Warwick and Worcester.

Manchester and Rugby Direct, and Churaet and Blythe.
Lincoln, Wainfleet Haves, and Boeton, and Great Grimsby, Liocols and Louth.

Goole, Doncastor, Sheffield and Manchester Junction, and South Yorkshire Coal Company.
Sheffield and Lincolnahire, and Mancheater and Lincaln Union, and Gainsbro' Canal.

Trent Valley, Midland, and Grand Junction, and South Staffordshire.
Worcester, Hereford, Ross and Gloucester, Great Weatern, with the Worcester and South Wales Junction.
Aberdecn. Banff and Elgin, and Great North of Scotland.
Scottish South Midlazd, and Stirling and Dunfermline.
Edimburgh and Leith Atmospheric, and Direct Edinburgh and Leith Atmospbenc.

Tyne Valley, and East Lothian Canal.
Milland Great Western of Ireland, and Extension to Galway and Sligo, and the Liffey Branch, Longford Deviation.
Scoltish Grand Junction, now only from Oban to Lachlomond.
Forth and Clyde, on friendly terms with Scottinh Central, and Caledonian and Dumbartonshire.

The folloming Lines are Abandoned for the Session.

Chepstom, Porent of Dean, and Gloaceater. Wrerpool, Preston, and North Union. Woiverhamplon and Birkenhend.
Birmiogham, Wept Bromwlib, and Waleall Hull and Great North of Englad. Fleetwood and Clisberoe.
Birmingham and Dudley
Wolverhampton. Chrater and Birkeabead.
Birmingham and W oreeater.
Huddersfold. East and Weat Coast,
Great Weleh' Central.
Treot Valley Contunuation.
Whitby, Pickorite, Thirat, adod Great North of Engtad.

Norib and Emo Ruding.
Renfrew and 4 yr Coundes.
Snnquhar and Malptirl.
Scotush North Weatern.
Arbroath and Stoneharen
Lancashire and Enmtero Coumeten.
North Cheohire.
West End and Southern Coupaled.
Regeat's Cenal Ralloray.
Isle of Wight.
Direet London and Exeter.
Grent North ared 8outh Wales, and Woreester.

GAUSH: OF THE CATASTROPHE AT BARENTIN.

Our professional correapondents write to as expressing their inability to make out the truth regarding the reoent catastrophe of the Barentin viadact, and their desirs to obtain such authentic intelligence regarding the facts of the case as may enable us to guard, if possible, against the recurreace of similar casoalties, so disastrous to railway enterprise. Similar accideats have happened in this country, generally from injudicioasly tipping the staff out of wagons on the archer while yet very green, and unequally loading them so as to pasb in the hannch, and raising op the crown so as to deatroy the equilibrium of the arch. In other cases, the fonodation has given way; bat this Barentin case appears still to be a mystery.
From the Frencb papers we have ondeavoured, but in vain, to gather consistent intelligence. The statement seems directly opposite, and so mixed with prejudice and manifest ill-feeling, that it is not possible to groond any toterably consistent opinion on their statementa. Even the Freseh railway joarnal contradicts itself latiy, so as to display either the greatest ignorance or the greeteat projodioe, on a sabject on which everybody would anturedy have expected it to be intelligent and just. We there it ove day asporing as that the structure was built in conformity with the plams of the engioeer, that the railway company must therefore incar all the tows, and so leading the sharoboliert in thls country to believe that their plans were fealty, and that a design, of course ill-proportioned and injodiciousty pienwed, was the origo malis. Then, next woek, we find in the same joarnal a letter from the contractors themselves, giving the lie to the journal, and stating that the work was altered from the plans to suit thair wishes, that they held themselves and not the company responsible for the lose, and that they were immediately to recommence their work. This is a little ereditabie to the English contractors-creditable to Mackenzie \& Brassey, of whom we expected no less; it is in every wuy calcolated to enhance their character, which is respected both abroad and at home, and it is also a step which mast tend to give the public confidence in whatever they may in future ondertake. It also juatifies those directors of the company who have reposed in them implicit confidence for the execution of works of enormonsextent, and gives confidence also to English sharebolders. But what are we, what are the sbareholders in England, to say to a French journal, which professes to watch over their iuterests in France, and yet spreads false alarns among them and the public, so perilling the value of their property, by increasing the fears it ought to have assagged by a judicious and well-timed statement of the trath, and, when obliged to pabilsh an official contradiction from another source, does not eves frankly apologize for ita former delinquency, nor advert to the injuatice of which it had been guilty? Surely, it is manifent the interests of chareholders are not safe in such keeping.
We have, therefore, endearoured to obtain from our correspondent, from the apot, a true account of the accident; and we now give our readers, with the assistance of his sketches, a fair and tolerably precise account of the ratter. Bat, frst we give the contradiction referred to.
The following letter was addressed to the editor of the Journal das Chomins de Fer:-" Sir,-In reply to the article in your number of Saturday Lust, we have the honour to inform you that we take upon ourselvos the whole responsibility of the accident, and will begin to rebuild the viaduct withoat delay. We are not in a condition to say with certainty how the sccident originated, but are disposed to attribute it to the substitution (with Mr. Locke's approbation) of stone-work in the bases of the piers for the brick-work prepared in the original plan. This alteration was made at our request, with a view to accelerate the progress of the work, and fulfl the engagement we had contracted with the company. - We have the honour to be, \&sc.

Maceenzie \& Brassey."
The arches are semicircular, and designed of ample dinuensions and streagth-sme engineers, whom we know, would have been satisfed with coosiderably lees strength. The whole work was brick, excepting the bases of the piers, wiuch were of stone; and the fact is naquestionable, that on the day before the accideat not the slightest flaw had been discovered in any part of the brick-work, but that vertical cracks near the corners bad been abserved in the stone-work. Now, be it observed, this stone-work was athine facing hearted with rubble. Let our engineering reader look at the plan, and then let bim think over the probable effect of this-taking into accoant, as wo formerly atated, a little haste and a great deal of wet weather.
We must bere notice a sort of prufessional controversy which exists in France between the English engineers and the Freuch. We English like
brick-work-we understand it, andwe make it good, so good that from one endfto the other of the railway, not a single faw could be detected by the in-apector-general in any part of the brick-work of the line. The French engineers do not like brick-work. They are, perhaps, better acquainted with stone, and certainly like it better. Be this as it may, the consequence, as regards this work, has been as folluws:-This bridge was originally designed by the engineer and contracted fur as all in brick. The contractors partly to expedite the work and partly to please the French engineers, asked leave to make the bases of the piers up to a certain point in stone-work : they obtained the permission of the engineers to do so; and thus, in a desire to expedite the work and to please the French engineers, they have brought on themselves a loss, in which we must all sympathize with them, and which we can attribute to nothing but the best intentiona. This casualty, while it entails pecuniary luss, will raise the character of the contractors for honesty and responsibility, both here and abroad.
Well, to return to the accident. This stone base was 19 feet greater dlameter than the brick pier resting on it. The chief pressure of the weight of pier and bridge was thus brought to bear on the rabble hearting. The tendency of thia to crush the heartiog and burst the facing is manifest. The vertical cracks visible that morning in the stone casing were evident symptoms of it ; and as the apper work was perfectly sound, and bad been some time completed, and as the pile foundations are still perfectly sound as far as can be discerned, the canse is manifest.

The lessons it teaches are also obvious: we are all wise after the factwe can all now see that it was weak to yield to an idle prejudice and not ase brick throughout as intended-we can all see that it would have been better to wait antil the bricks were got, than to build work to tamble down! But who would have ventured to say beforehand, to this point may you go, both in haste and in materials, and no further? No! Contractors and engineers mast often make sacrifices of mere opinion to accomplish what they conceive their duty to the companies they serve; add if in doing oo, they commit errors, they are but men gaining experience, and they have to pay for it. But in this country, at least, when they bravely set their face to do their work honestly and well-and when taken as a whole, the work is honestly and creditably done, as everything is that English engineers and Eaglish contractors bave done in French railroads-they will meet with that sympathy and support from their countrymen which they bave a right to expect, and they will be entitled to that respect and esteem abroad, which their achievements must conmand from all right-minded and jadicions men.-Railway Chrosicle.

TRACT ON VOLCANOES, SPRINGS OF HOT WATER, AND EARTHQUAKES.

Daring the period of my altering the hot-water baths, at Buxton, in Derbyshire, I was aaturally led to reflect upon the causen of the various hot springs of water, and the regularity of the supply, and temperature at every season of the year. Thirty-five years have since elapsed, and the interval has afforded me many opportunities of judgiag whether the notions which I then entertained were correctly founded, and whether they deserved to be promulgated.

Readiog lately in a Colouial Joural an article on Volcanoes, which contains the fullowing remarks, I have been led to set met down the conceptions alluded to, and in reference to the writel'd observations, viz :-
"When these fres were kindled, by what sort of fuel they are still maintained, at what depths below the surface of the earth they are placed, whether they bure a mutual connexion, and how loug they may continue to burn, are questions which do not admit an easy decision. The greater number of volcandes rise in a cone, their mouth or crater, has generally the shape of a cap or an inverted tannel; but in yome instances the lava breaks out at the sides. When the fires find no issue they produce earthquakes. When Vesuvius throws off its inflammable contents by moderate and regular eruptions, the inhabitants of Naples have bnt little to dread on, the occurrence of an earthquake : after a long repose the volcano breaks out witb additival force; the extent of its infueuce is astonishing; that of Tonboras in one of the Islands of the Indian Archipelago, was felt througis a cırcular space of 2000 miles in diameter."
I subnit with great diffidence whether it may not be possible to show that the orizin of almoat all the internal heat of the earth arises simply from the attraction of the particles composing it, in fact constitating an universal pressure, greater in the exact ratio that these particles collectively have to one another. Let me instance, what we all koow, that indepandently of
the qualities of the component soil, in every perforational into the body of the earth the temperatore increases regularly with the depth of perforation, and that the water when reached has always a warmth proportionate to its depth under the incumbent soil, thos natural rivers have at their original springs (if constant) a warmen which in the coldeat weather prevents their freezing, and it has been ascertained that the well at Paris, the deepest we believe ever executed, gave a high temperature much above the heat of any other artificial spring.
Let me endeavour to explain my views by observing, that admitting as a theory, that the attraction or condensation of the materials of the earth, and simply sea sands, I conceive that at some enormously great pressare I believe they would be vitrified, 1 placed under Bramah's Hydrostatic engine, a short square column of Portland stone, viz. 2ft. 7in. high, and 1f. by 1.2 at bottom and top; this piece of stone burst asunder with the pressure 173 tons, the fragments being then quite hot, and the fracture was attended with a report as loud as that of a pistol. Now admitting that the pressure of each portion of the surface of the earth $\mathbf{1 . 2}$ by $\mathbf{1 f}$., soperficies, produced a heat such as described under the pressure of a colamn equal to the weight of 1737 tons, anincreased height may reasonably be sapposed to generate heat in the same progression until at length such heat would be produced, that expansion would follow, and at length a volcano takes place in some place of the west of the globe, probably where as at sea there is the least incumbent weight, or in some district of country where the nature of their constituent materials opposed the least resistance to expansion.

With respect to the heat of water, the refection on the most considerable geissers gives the same inference, for let us admit that water shall percojate the lissares of the earth to a great depth, and that its incumbent weight produces heat to such an extent that it boils over, and that after the heat escapes a temporary subsidence tales place, thus the exceptions of the geisser does not re-uccur until beat has been again regenerated by the same pressure which before produced it.

Possibly it may be opposed, that the regularity of Baxton, Baths, and other overflowing hot springs does notlead to this conclusion; I aminclined to think that where there are natural cavities in mountains which are recipients of water, and when the incumbent pressare is not excessive, and where there are orifices/ which discharge the superabundant water, it is not irrational to snppose that the vents just referred to perform the office of geissers, and as there is no obstruction to them by the narrowness of their orifices, or vast beight of columns or water, violent discharges do not take place.

A further observation on volcanoes, and earthquakes may perhaps deserve attention, namely, that in the districts where they bave more particularly been attended to, the component soils are in themselves of a nature liable to the action of fre. Sulphur abounds near Etoa.

It may be said, that admitting this doctrine of the generation of heat and the self-discharge thereof by its escape by volcanoes, and the invasion of hot water, and hot vapours, yet there must be some portions of the earth where these efforts of nature do not appear to take place. To this I reply that we are so ignorant of the lowermost structure of the earth, as to the inclination of their various beds, that it is possible Hecla the great vent of the North, may serve as the chimney of a great region, and that the other volcanoes mentioned in the remainder of the article first referred to, may discharge the superabundant heat of other portions of the Globe, for it is notorious that earthquakea are felt 20 or 30 degrees of longitude distant from the places where such eruptions have taken place.

It is therefore, I trust, no presumption to entertain those ideas that so long as gravitation exists, there will be a generation of heat, and consequently that this discharge of heat, is an important dispensation in maintainiug this Globe, and that although sonetimes dreadful visitations are wituessed, yet they are not without their benefits to the great bulk of mankind.

Johin White.

Paddle Box Boats Abandoned - The Retribution steam-frigate, Captain Lushington, having returned her padde-box boats to the Portsmouth dockjard on account of their great weight (12 tons,) will not have any more fadule box boats gitted, and the paddle-box is accordiagly already bollt up in the usual way, it being apparent that the veasel ean carry convenieotly as many boats an are necessary on board and apou her quarters, without encumbering hermelf with such heary appurtenancet. The remoral of the padule-bor boats has given this fine vessel a much viore sightly and light appear. ance, and no doubt will ease her in sea-golng. She is being fited with a connecting beam

BEVETMFI

An Esacy on an Improved Method of Construction for Viaducts, Bridges, and Tunnels, being an Application of the Principle of Universal Gravitation, as ilhustrated in the Solar System. By Messrs. Blair and Phillips, Architects and Civil Engineeru. London: Weale,1845. 8vo. pp. 10.
We are constantly called opon to criticise opinions which evince incorrect conceptions of mechanics, bat we seldom or never have criticised any diseertation in which the laws of natare are so glorioualy confonded together as in the pamphlet before us. To most (we hope, all) of oar readers ita title will sufficiently explain ite merits : the laws of motion and those of equilibrium are throaghout taken as identical; the equilibriam of arches, \&c. is referred to the " principle of gravitation as illustrated in the Solar System !" Risum teneatis amici?

We will not attempt anything like merions argument respecting the views proponaded in the pemphlet. It it necessary to a satinfactory discassion that the dispatants should have some similar viewa: we should imagine, however, that Mesars. Blair and Phillipa have not one idea in common with us respecting the theory of the arch. Dissimilarity of opinion may reach a point beyond which argument is fruitless. It is possible to diverge so fer from the highway of received opinions as to render a retarn to it sbsolutely hopelens. Our authors seem in this predicament. However, that the reader may judge for himself as to the possibility of their hereafter returning to the paths of orthodory, we give one or two short extracts.
"If an arch be turned over any opening, and a wall be buitt apon it, the arch supporta very little besides ituelf. There is no weight for it to support. because the position which a regular wall takes is that of a continued meries of corbels, which corbels meet in the centre, and form a direct lise from the centre to each pier. This reminds us of a general law of gravitation by which all bodies, when unimpeded, fall directly to the earth's centre, and, if impeded, take a direct line tending in some degree towards that centre.

With this law of nature before oar eyes, let us examine-1st, the semicircular arch. This form of arch is used very much, and is by many considered of great strength. Now we wish to show that of itself this arch is very weak. It is weak, becanse, when a weight is placed on any one part of it, there is great danger of it becoming deformed."

The remarks are illatrated by absurd diagrams in which arches are represented as distorted by a superincumbent pressure into all kinds of impossible shapes. The suthors seem to think that when an arch fails it in by the slipping of the voussoin on each other; whereas in practice it is univerally found that the friction of the vonssoins is so great that they cannot slide, and that the arch can only fall by the opening of the jointa. The poist endeavoured to be elucidated by these diagrams is that all curved arcbes must be distorted by pressure upon them, and that a perfectly flat arch is alone free from this danger. The reasoning is as follows :-
"Why is this? The reason is evident. The line of the arch is curved, and as curved (and in proportion to its curve) liable to bend.
"Fre come then to our great point, namely, that weight falls in direer lines, and not in curves, as is supposed; and the nearer our supports approach to a straight line, the more atrength we obtain. If this is irue and it cannot be denied, the elliptical arch is of all arches the weakest."

It really is no more than charitable to inform the writern that the strength of an arch depends not only on its curvature but also on that which they have altogether neglected to consider-the depth of its roussoirs.

We are informed by our authors that they take no credit to themaelvea for the plan of building arches flat, but they pronounce the whole bods of ciril engineeri blockheads for not baving previously thought of it.
"It may, however, and, we doubt not, will be said, that what we advance is plain and easy, and that we need not claim to ourselves any credit for istroducing it. We acknowledge that it is both plain and easy; indeed we stated this at the commencement of our description. But who is he that has applied this plain and easy method? If we cannot claim any credit. surely they that have overlooked what we have now taken up may be ret down as ignoramuses, and not deserving the name and title of ciril engineers. For why should the best method of construction be set aside, and an inferior one adopted? Why shouid thousands and tens of thousands of pounds be thrown away in that which is worse than useleas-injurious? And why should we praise men who, directly in face of the laws of the universe, would erect a fabric whose stability they doubted, or which would not atand the test of time and the researches of science?"

After this the least that the Institution of Civil Engineers and the Iastitule of British Architects can do, is to ordain a fast and go into mourning.

4 Complete Treative on the Ollique Arek. By Periz Nicrolsons. Third Ddition. London: Groombridge, 1846. 8vo. pp. 110; 43 lithographic pinter.

Thin is a new edition of a work reviewed in a former rolume of this Jourmal. The object of the treatise is confined to the explanation of the geome trical forms and position of the Vouseoirs of Obligue Arches, and does not comprise the mechanical theory of these uructures-the subject is in fect a particalar branch of Descriptive Geometry. The three prellminary chapters meat of thone principles of piane and solid geometry which are necessary to the explanation of the conatruction of oblique arches; the theory of which difided into two portions-the theory of oblique arches, with spiral jointa and that of oblique arches with plane joint, the diatinction between the two tiods of arches is thas defned.

An offique arch with spiral joints, is that in which the surfaces of the beds ad the rufaces of the joints are both spiral surfaces.

If an oblique areh with spiral joints be executed according to the principles here eatablished, and cut by a plane perpendicular to the axis of the cyfader, the section will exhibit a series of straight lines, dividing the are of a cirele into amaller arcs, and the lines being prolonged, would meet in the entre.

An oblique arch with plane joints is that in which the beda of the stones tre planes, pasaing throngh the axis of the cylinder. The planes of the foints being parallel to the axis, intersect each face of the arch in very oblique angles, and only one of the joints can be perpendicalar to the froe. All the otber joints, as they recede from the centre, are more and more oblique till they reach the anmmit of the arch. As every oblique joint canses the angles made by the face and that joint to be very unequal, the obtuse angle vill be much stronger than that which is acute, theseangles being supplement of each other. Therefore oblique arches with plane jointw should never be need where great atrength is necessary; and where the angle of obliquity in very acnte, the oblique arch with apical jointa should only be employed, at the spiral joints are as mearly perpendicular to the face an the construction rill admit"

Of course in a work like this one of the first requisites in simplicity and precision of language. The difficulty of conveging by words (and even by diagrams) clear ideas of solid geometry can only be overcome by the now, ecrapalons adherence to the plain and nacomplicated aodes of expremetont. Oar author seoms to have geacrally paid great attention to this point. Among the new portions of the present edition is a description of an oblique bidge over the river Gannleas, to which the following general observationa are appended.
"To construct an oblique arch entirely of stone it, in come conntries where it is dificult to procure, very expensive. However, in order to brild one Which will be anficiently atrong at a moderate price, It in necestary that the imposta or apringinge should be of atone, and, to have the appearance of cood work, the quoibs which form the ring. Btones and the head of the arch cheald sioo be of atone. Then the intermediate parts of the courses may be of brick, (allowing perhaps four cournes of bricks to each stone springer,) depending on thickness at the abutment. To work the apringeri and the quoin-heads, the same templeta will be required as if the arch had beon constructed entirely of stone. Previons to setting the brick cournes, the boand. ing or laggings ahould be truly adjusted and fixed; and, for the regulation of tbe work, the bed-lines should be drawn thereon in their true position. In order to try the work as the bricklayer proceeds, he onght to une a kind of ect-square, made of thin board, containing an angle exactly the reverae of the templet ; and, consequently, the curved edge will be concerve instead of being convex, as in tbe arch-square. The sides of each course being made to agree with every application of the set-square, will he what it ought to be. In stone coursea, if the stones are truly wrought, the apiral anfinces of the beds will all agree with a set-square; and, therefore, in this cese it will be monecessery to provide one."

There are several aseful trigonometrical tables appended to the wort, in orier that the maton may find ln it all the information which he reguiras, withont the trouble of referring to other booke. The platen are well execoted. At the end of the volume we ragret to soe several " teatimoninle rowgarding the success which the athor has had in the application of his principles to the escourtion of oblique arches." These testimonials appear to be satisfectory in themselven, but they are ont of place. Geometric principles are not patent medicinet.

Conctse Tables to Pacilliate the Calculation of Earthworke requived in the Compruction of Raiharys, \&c. By Jobs Hiease, Bofineor. London:

This is a very weoful litule book, and the portable form which it ausames it not its lesst recommendation. The object is to determine the volume of the solid formed by earthworks in cuttings and embankmeats.

There is this difficulty in determining this solid, that only one nide of it
is rectangular or of the same width thronghout-namely, the plane surface of the roadway itself,, which, in embenkments, is the highest, and in cuttings the lowest aide of the prismoid; the other siden of this solid vary in all their dimensions, and though two sides opposite to each ofker mary be of noequal areas. For instance, in a eutting which comanences at the foot of a hill and terminater at a tonnel, the depth of the cutting gradually increases, so that the perpendicular face at the month of the tuanel is of greater area than the parallel vertical plane, supposed to be drawn at the base of the hill. The two oblique sides of the catting also necessarily widen they approach the tonnel. Opposite portions of them may aloo be unequal to each other, the depth of cntting to the right and left of tho railway depending on the original form of the hill. Mr. Hughes takes a very simple method of ascertaining the solid content of the prismoid. Ee imagines it divided into numerous small portions by vertical planes parallel to the faces at the commencement or end of the cutting: so that, in fact, the solid is considered as made op of numerous thin slices of equal thickzess, but varying in their vertical areas, which are trapezioms. It is clear, that by ascertaining the area of each of these trapezioms, taken at a certain determinate Interval, the solid content of each alice may be doe termined by knowing its thickneas; and, adding all the eolid contents so foond, we have the total volume of the cutting. The came method, of course, applies to embankments. It is important, however, to remark respecting the method here adopted, that the more numerous the croms sections are, the more closely will the result approximate to absolute accuracy.

It is clear also, that Mr. Hughes's method contemplates the case \mathbf{f}^{3} which the upper side of the solid is curoed. The tables hitherto pablished have referred only to the particular case in which the solid is bounded by planes only. The following extract may be introdaced to show how far the present work differs from those of an analogons natare which heves preceded it:-
In extensive works, sach as railways and oparals, the value of the earthwork is about one-foorth of the entire cost of construction; and, therefore we find that engineers have given their attention to correct the approxima. tions with which, in past times, the parties were satisfied, as well who executed road and canal workn, as their superintendents. The appearance of the elaborate tables of Macneill, and of those in a more condensed form attributed to Bidder, went far to eradicate the practice, almost universally prevalent, of taking arerage heights from a longitudinal section, or of averaging the areas of the cross sections; a practice recommended by the facility of application, and haviog nothing in its form, until reflection was bestowed upon it, to excite suspicion of erroneous resnlts in the minds of those who were deeply interested in its trath. The damage to the intereat of contractors, in point of quantity, was, however, in all probability more than equivalent to the additional prioe paid to them for executing the work ; but all errangements which depended on balancing embankment ad cuttings were frequently found to be unavailable, and the disappointments from this sonrce were set down to a chage of bulk in the material removed, which was assumed withoat sufficient exemination, and which, natil more competent persons took such arrangements into their owt hands, covered the ignorance of the survoyors from the eyes of their ployers.

Bidder's table requires that the longitudinal dimensions should be taken with a Gunter's chain, a standard never introduced in the drawings of specifications of the arobitect; and, as well as Macneill's tablen, does not extend to beights greater than 50 feet, whilat cuttings occur on railways more than 100 feet in depth. At the entrance of tunnele they are rasely less than 70 or 80 feet, and ombankments of 80 feet in beight are not es. common. I naturally, therefore, directed my attention to the means of obviating this inconvenjence by employing the general formule for the cestent of a prismoid, of which Macneill geve a demonstration as applied to a restricted case, and upon which restricted case both his tables and Bidder's were calculated. The partioular case taken by Macnoill, it that of a solid bounded by a horizontal rectangular plane at the bottom; by two parallel, trapemoidal, vertical planes, of unequal heights, at the ends; by two trapezoidal planes, equally inclined, on opposite siden of the ven tical, at the sides; and by asth plane at the top, passing through the parallel bases of the end trapesoid.

Tre Seapension Berper az the Falle of Niacara,-It is proposed to construct a ruapendion bridge sbove the Falls of Nagara, so as to Joln the Canedlem ENllwh and the United Btaties. The execution of it ho to be consided to Mr. Charte ELleth, of Phlledelphia, or to Mr. John A. Koebling, of Pittsbarg. Mr. Ellet lately vidice the epot, for the parpone of emainhng the localty, mad to meertadn the precticablitit of crectiag 10 great a detideratam, There is a bridge which erista about a mile and a hall
 aratmenta, from giee ade to the othar, doen not exceed 640 . The expenees tor eceballd it, and be mbecriber himels to the amount of 4, siOh .

THE BROAD AND NARROW GAUGES.
 Repomy of the Royal Commissioners.

May it please your Majesty,-We, the Commissioners, appointed by writ, under your Majesty's Privy Seal, bearing date the 11th of July, in the ninth year of your Majesty's reign, to inquiro whether, in future private acts of Parliament for the construction of railways, provision ought to be made for securing an uniform gauge, and whether it would be expedient and practicable to take measures to bring the railways already constructed or to progress of construction, in Great Britain, into uniformity of gauge, and to inquire whether any other mode could be adopted of obviating or mitigating the evilapprebended as likely to arise from the break that will occur in railway communications from the want of an uniform gavge, beg dutifully to sobmit, that we have called before us such persous as wo bave judged to be, by reason of their situation, knowledge, or experience, the most com. petent to afford us correct information on the subject of this inquiry, and we have required the production of such books and documents from the various railway companies as appear to os to be the best calculated to aid oor researches.
We have personally examined into the asual course of proceeding on varions railways both at home and abroad, especially those which are incident to a break or interruption of gange, and we bave pertonally inspected several locomotive engines as well as mechanical contrivances invented, either for the general use of railways, or for obviating the specinal difficulties presomed to arise from the break of gauge, or otherwise conuected with the subject of our inquiry, and as we believe we have now carried our investigation to the utmost useful limits, we feel in a position dotifully to offer to your Majesty the following report.

break of gatuge.

1. Our attention was first directed to ascertain whether the break of gauge could be justly considered as an inconvenience of so much importance as to demand the interference of the Legislatare.

Gloucester is the only place where a break of gauge actually exists at the present time. It is caused by the meeting at that place of the broad or 7 feet gauge with the darrow or 4 feet 8 f inch gauge. There are other points, however, where a transfer of goods occurs similar to that which most result from a break of gange, and persons well acquainted with railway traffic have do difficulty in eeeing the nature of the inconvenience that would arise from any further intermisture of gango : and we humbly submit the observations that occur to us as to the whole of this important part of the question.

We will divide the sobject of the break of gange under the following heada :-
lst, as applying to fast or express trains; 2dly, to ordinary or mixed trains; 3dly, to goods trains, and 4thly, to the conveyance of your Ma. jesty's forces.

1st. Fant or exprent traing.
We believe that the inconvenience produced by a break of gavge will, in some respects, be less felt in these than in other trains, because the passengers travelling by fast trains are usually of a class who reudily submit to many incoaveniences for the sake of increased speed on the journey, and who are perhaps generally less incombered with loggage than persons tra. velliag by the slower trains; and as it is understood to be the кeneral practice that no private carriages or horses are convejed by these traing, the inconveniences of a break of gauge are reduced in this instance to the removal of the passengers and a moderate quantity of luggage; and, although sach removal must create delay and some confasion, as well as personal discomfort, especially at night and in the winter season, besides the risk of a lose of luggage, yet we do not consider the break of gauge, in this instance, as being an inconvenience of so grave a nature as to call for any legislative measures, either for its removal or for its mitigation.

2dy. Ordinary or mised tralne.
In these trains the passeagers considerably exceed in namber those who travel by the fast trains, and they have generally a mach greater quantity of luggage. To snch travellers a change of carriage is really a serious inconvenience, and it is a well known fact that persons travelling by railways in communication with each other, bat onder different managements endeavour to make soch arrangements as to admit of their travelling by those trains which afforl them the accommodation of occupying the same carriage from the beginaing to the end of their journey.
The managers and directors of railways are well aware of this feeling, and in nome instances where they do not allow their carriages to ron throagh, yet with a view of dimlnishing the inconvenience to which this ex. poses their passengera, they send a lugage train from terminus to terminus, to provent the evil of a removal of the passengers' luggage ; and aome railwey companies iocar considerable expense in running trains of return empty carriagen, in order to accommodate the pablic by enabling travellera to avoid a change of carriage on the journey.
It is by the ordinary or mized trains that private carriages and horses are conveyed, and the removal of either from one track or horse-box to another, at any part of the journey, would be attended with inconvenience and delay; aod winh regard to the byrnen, it would involve coasiderable tiak.

We arrive, therefore, at the conclacion that the break of gauge would nfict considerable inconvenience on trarellers by the trains now
ander consideration, and that this inconvenjence would be much increased at points of convergence of more than two lines.

The change of carriages, horse-boses and trucks, and the transference of luggage of an entire train of much extent, must even in the dey time, be an inconvenience of a very serious nature, but at night it would be an intolerable evil, and we think legislative interference is called for to remove or mitigate such an evil.

sdly. Goode trains.

From the atatements made to us by carriers on railways, and from onf own observation, we are induced to believe, that not only a considerable degree of care, judgment, and experience is necesany in the stowage of merchandise in railway wagons, but also, that it is desirable that when properly packed the articles should, generally speaking, not be disturbed until the journey is completed. We find that in the arrangement of merchandise, the heavier goods are placed at the bottom, and the lighter at the top of the load, and so secured as to prevent friction as far as practicable from the jolting of the wagons; and it is conaidored very desirable, with a view to prerent loss by pilfering, that the sheeting. which is placed over the load, should not be removed till the completion of the journey. Indeed, acting apon this principle carriers find it profitable to send their wagons partially filled from various stations on the live, theroby increasing their toll to the railpay company, rather than jucur the risk of loss by theft, to which they wonld be exposed by uncovering the wagons on the journey to fill up with intermediate local goods wagons that may have started with light loads from one of the termini.

The stations for re-arranging the goods trains are therefore as fow at possible : thus, between Leeds and Lundon, the points for unsheeting the goods wagons are only Derby and Leicester, and between Liverpool and London, the re-arrangement is confined to Birmingham and Rugby; and even at those stations the proportion of wagons which !are ancorered is very small: Indeed, it is stated that at the important town of Birmingham five-sixths of the wagons pass withont re-arrangement.

In the convejance of machinery and articles of a similar class, which are both hetry and delicate, it is of the ntmost consequence that the load abould not be disturbed between the beginning and the end of the journey; a change of carriage, such as would result in all probability from a break of the gauge, woold altogether prevent the transport of such articles by this mode of coveyance.

We beliave that the traffic upon the line of railway between Birwingham and Bristol has been greutly restricted by the interruption of gange ham Gloucester.

Ia respect to the conveyance of minerals, the inconvenience of a break of gange would be very serious; the transfer being attended with an expense which would be sensibly felt in consequence of the low rate tolls charged on such articles; moreover, many descriptions of coal, such as a considerable proportion of that of the Midiand Counties, are gubject to great deterioration by breakage.

In regard to various articles of agricultural produce, the loss by removal would be less than on other classes of goods; much inconvenience, however, would be found in the transfer of timber; and the difficnity of sbifting catlue would be so great as to present an insurmonatable obstacio to such an arrangement, from the excited state of the animals afier travelling by railway, and the resistance they in consequence offer when it is attempted to force them a second time into a railmay wagon.

4thly. Convegance of Troope.
There is another use of railways which we have deemed it necessary to consider; we allnde to the transport of your Majesty's troops, with their military stores, \&c., either in the ordinary movament of corps through the country in the time of peace, or in the mere pressing and urgent case of their movements for the defence of coast or of the interior of the country.

We have carefully weighed the important information given to us by the Quartermaster-General of your Majesty's Forces, as well as by the In-spector-General of Fortifcations, both officers of great experience; and we deduce from their opinions, that although a break of gauge on the line of route would produce both delay and confusion, yet that, as in time of peace it is usuaily practicable to give notice of the intended morements of a body of troops, the inconvenience of the break of gauge might be to reduced as not to bean evil of great importance; but, in the event of operations for defensive objects againat an enemy, the inconvenience woald assume a serions character.

It would appear, that for the defences of the coast, the proper coarse would be to retain the great mass of troops in the interior of the conntry to wait until the point selected by the enemy for his attack should be secertained with certainty, and then to move upon that point such aa overWhelming force as should be adequate to the emergency.

It is obvious that the success of such a system of defence must depend upon the means of conveying the troops with great dispatch, and withoes interraption on the journey.

The troops should be carried with their equipments complete in all their details, and with their artillery and ammonltion ; and it thereforo appears indispensably necepsary, in order to insure the requisite supply of carriages where perhaps little or no notice can be previously given, that the whale, ahould be conveyed in the same vehiclen from the begimaing to the end of the journey.

The effect of a break of gange might in this view of the case expoos the conntry to serious danger.

To all claspes of merchaodise, as well as to all military operalions conmected with railways, one general remark will apply, that in starting from ans one point it is uscally practicable to obtain a sufficient nomber of wagoas for whatever may be required to leave that point, however Irrepriar the traffic;may be; but, at the convergence of several lines, where the greater number might be of a gauge not corresponding to the gange of the other lines, if it happened that all were uausaally loaded at the same time, it would probably be impossible to provide on the latter an adequate number of wagons to carry off all the loads thas brought ; the alternative would be, on the one hand, to submit to great confusion, delay, and inconvenience, on all the converging lines having the majority on the aame gange; or, on the other hand, to maintain on the lines being in the minority a very extensive stock of carriages, which in general woold be tbtally useless.
There is one point which forcibly presses on our attention, and the truth of which mast be readily acknowledged, but of which the importance is not at firat equally obvions ; it is, that the greater part of the inconveniencies to which we have alluded are not inconveniencies of rare occarreave, aud which would affect only a small number of persons, but, on the contrary, that many of them would occur several times in the course of every day to a greal number of persons at each point at which a break of gange migbt exist. The cumulative amount of such inconvenience would of necessity be very considerable, and we feel bound to sum up our conclusions by stating that we consider a break of gauge to be a very serions evil.

11. Mechanical mbans of transfreence prom one Gadge to the'other.

We are now brought to the second stage of our inquiry, which is, to discover the means of obviating or mitigating the evils that we find to result from the break of gauge.
The methods which have been laid before us, as calculated for this pure poee, are as follows:-

1. What may be termed telescopic axles ; an arrangement of the wheels and azles of carriages, permitting the wheel to slide on the axle, so as to contract or extend the interval between them in such a manner that they may be adapted to either of the gauges.
2. A form of truck adapted to the broad gauge, but carrying opon its upper aurface pieces of rail 4 feet $8 \frac{1}{2}$ inches asunder, so that a narrow gauge carriage may be run upon these rails without any disturbance of its Wheols.
3. A method of shifting the bodies of carriages from a platform and set of wheels adapted for one gauge, to a different platform and set of wheels adapted to the other gange.
4. A proposal to carry merchandise and minerals in loose bores which may be shifted from one truck to another and of which only one would probably be carried upon a narrow gauge truck, while two would be convejed on a broad gauge truck.

1. Telewnpic Aries.

Of these varions methods, the first-ifit admitted of being used safely and extensively-would be, in its application, the easiest of all.-By the operations of detaching the wheels from one limiting hold, of pushing the earriage along converging or diverging rails, nntil the wheels were brought to the required width, and of then connecting them by another liniting bold, the transformation of the narrow gange carried to the broad gauge carriage, or vice versa, woold be completed. But this construction is jiable to grave oljjections. It is stated to us as a matter of experience (and we believe it admits of satisfactory explanation), that very small unstendiness of the wheels of a railway carriage upon the axle readers the carriage liable to run off the rails. A far more serions objection, however, is, that the safety of a carringe and the whole train with wich it is connected would depend apon the care of the attendant, who has to make the edjustment of the axle-slide.

Is is true that there are other cases, as in the attendast on the switches and signals, which depend upon the care of the person who is stationed to work them: bat the circumstances differ very widely. In these cases the attendant has a single act to perforn (or at the utmost, two acts ouly,) he is not hurried, and his whole attention is concentrated on very simple duties.

In respect to the shifling arles, the attendants would have to adjust a great many carriages in succession (as there are sometimes a hundred Fagons in a goods train), the adjustment mnst be made hurriedly, and often in the night; and the attendant's thonghts would probably have been partly occopied with the loading of goods and other station arrangements.

On the score of danger, therefore, we think that tho construction must be at once abandoned. But we think it proper to add, that even if there were no such essential gronnd of objection, a construction of this nature could not be adequately aseful unless it were ertended to every carringe which is likely to pass the station where the break of gauge occurs. Under the existing asstem of interchange of carriages, which is adopted by all the raitway companies whose lines communicate, and of which the advantages are recognised in special clanses of the scta of Parliament applying to several reilways, carriages belonging to distant railways will frequently be found a the place of junction of the two gauges. This construction therefore, would lose mach of its wility unless every railway carringe were made in conformity to if, that is, unless a vast expenditure of capital, and a correspooding annual expense in replacing worn-out carriages, \&c., were incurred oven on railways rery distant from the break of gange.
3. Shiling Niarrow Geuge Cerriages on to Brond Gange Trucks.
2. The plan of placing a narrow gauge carriage upon the top of a broad gange truck has, on the face of it, this obvious difticulty, that a broad gauge carriage cannot be placed in the same manner upon a narrow gange truck, and therefore, unless not only the broad gange railway, but also as others communicating with it, be furvished with trucks proper for carrying narrow gauge wagons, and with narrow gange wagons also, and unless the loads travelling towards the narrow gauge be placed only in these narrow gauge wagons, the syatem effects nothing as regards the pasaage in one direction. But even with regard to the passage from the narrow gauge to the broad gauge, the system will not bear examination. If the trucks are supported on aprings, there is practically a difficulty in running the wagons upon them; and if they are not sapported on springs, they will sustain great injury on the journeys. If they are loaded singly there will be a great delay; if they are placed in a row, and the narrow gauge carriages are ran through the whole serien, very great caution will be necessary to secure each carriage both in front and in rear. When heary loads are thus placed in elevated positions, and when the security of each depends upon adjustments hurriedly made, there will be the danger to which we have alluded in noticing the first proposed construction, Finally, an enormous amount of dead weight will be carried on the broad gauge line. We reject this proposal as entirely jnapplicable to the traftic of railwaya. 3. Shiftug the bodies of carrlages from one set of wheels to another.
3. The system of shifling the bodies of carriages from road wheels to railway wheels is practised successtully in France, where the diligences from Paris to distant towns, proceeding on road wheels from the Messagerie of Paris to the railway station, are carried on a peculiar railway truck as far as Rouen and Orieans, and are then again placed on road wheels to continue their journey. At the low speeds of the Freach railways this system is safe, but we doubt whether it would be safe with the speeds of the English railways. Moreover it deprives the railvay system of one of its greatest conveniencies; namely, its readiness to receive a lmost any number of passeugers withont warning, and to carry them to any distance, small or great. Carriers' carts are also conveyed (but to no great amonnt) i^{n} the same manner. In France, as we andersiand, it is not thought likely that the system will be in any degree retained when those railpays shall $h^{\text {ave }}$ been pxtended further. The same remarks, we conceive, would apply entirely, or in a great measure, to similar proposals for the shifting ${ }^{2} f$ the bodies of railway carriages; but as this plan has never been ${ }^{0}$ trenuously arged, it is unnecesenry to criticise it more minutely.

4. Converlag Goods in Loove Boxes.

The system of conveying goods in loose bozes, carried upon railway trucks, has been seriously discussed. It has been repeatedly tried, and we are able therefore to give an opinion on it, fornded on experience.

The result of this experience is, that in one instance of a temporary character, where the whole operation was under the control of one engineer, it succeeded, in other instances, although always under the control of one engineer or one company, it has usually failed; and these fuilures bave occurred where from the deterioration, cansed by hand-shifting, to the mineral conveyed, it was matter of anxiety to avoid transference of the load from one box or wagon to another, and where no expense was spared in the erection of machinery proper for the transference of the loose boxes.

These failures, it is to be remarked, occurred in a traftic which is comparatively regular, viz., that of coal; in traftic of a less regular charucter the ceuses tending to produce failure would be very much more numerous.

We consider that this method is totally inapplicable to remedy the inconveniencie of a break of gauge.

Some of the witnesses whom we have examined are of opinion that there would be less difficulty in unlouding the wagons of one gauge, and placing the articles in wagons of the other gauge, by having two rows of wagons on the different gauges, marshalled alongside of each other; but having witpessed this process at Gloucester, we are of opiuion that such a system is totally jnupplicable to an extended traffic.
We sum up our conclusion on this head, by stating our belief that no method bas been proposed to us, which is calculated to renedy in any important degree the inconveniflaces attending a break of gauge.
III. Policy of Uniformity of Gadge.

Considerntions on the general policy of establishing an uniformity of gauge throughout the country.

We approach this momentons question with a full conviction of its importance, and the responsibility that rests upon as.

That an uniformity of gage is now an object much to be desired, there can, we think, be no quetion. In the earlier period of the railway history of this country the great trank lines were so far separated as to be independent of each other, as it were, isolated in their reapective districts, and no divertity of gauge wat then likely to interfere with the pernonal convenience or the commercial objects of the community; but now that railway are spreading in all directions, and becoming interlaced with each other in numerous places, that isolation is removed, that independence has ceased, and the time has arrived when, if steps cannot be taken to remove the existing evil of the diverity of gauge, at least it appears to ua imperative that a wider apread of this evil should be prevented.

If we had to deal with a question not affecting the interents of partien, who are not only anconnected, but who are opposed to each other in a spirit of emolation, if not of rivalry; or if we were dealing with the property of the
public, and nat of private trading companies, we shauld merely have to consider whether that uniformity of gange which we deem to be so deairable wonld be to dearly parchased by an alteration of one gauge to suit the other, or of both to some fresh gange which might be considered preferable to etther, if any such thero be-

Bat our porition is different from this, since wh have to consider not only the relative length of the different aymems, the comparative mechanical eff. ciancy of each, the general superiority of one above the other, their adaptation to the wante of the country, and the poasibility as well as the policy of a change, but also the pecuniary means of effecting it. We have furthor to ook to the consequences of an intecruption of the traffic daring the progress of an alteration.
Double Gange Railcogy.-Thare is atill another viaw of the question, and that is, the expediency of having, on lizes of railway, sdditional rails, me as to afford the facility of nuing engines and carriages on both gauget.
This axpedient, in whatever form adopted, cannot be considered as free from dificulties. If two rails, forming a narrot gauge way, are placed betwees the two rails which form a broad gage way, carriages of the different gaget may rom in the same train, withont alteration even of their buffers, Which in the ordinary construction of the carriages correapond eraetly on the broad and narrow gauget. But the expense of sach an insertion world probably be not less than that of an entire change of gauge, including in the latter, the change of engines and cerrying stock; and the complication which it would introduce at the crosaings might produce danger to rapid trains, unlest their speed were diminished at approaching such points. The difficulty of packing the rails, if longitudinal sleeperm were nsed, would also be much greater than if rails of only a single gange were employed. If a aingle rail were iuserted eccentrically in a broad gange way, so as to form, is ounjnnction with one of the broad gange raile, a aarrow gauge way, the expance of the insertion, mad the danger of the crossings, as well as the dificulty of packing the rails, would be somewhat diminished, but it would be imprudent io ron carriages of the different gauges in tho same train, and a it would probably be the policy of the nilway company to adopt for their own stock of engines only one of the two ganges, and to interpose those difficulties which amount to a probibition of the use of other companies engines, the inconveniences of a break of gauge would exiat in almont all their force at orery janction of a branch railway on a diferent -ruge.
We coonider, tberefore, that the general adoption of such a system ought not to be permitted.

We remark however, that the dificoltiea to which we hava alluded may be greathy diminished on any railway where the system of combined gaugen is cordially taken up by the company; and we think that great respect ought to be paid to the rights which the companies may be anpposed to poseess in the methods or systems which they have devised or adopled. At the same time, we lay it down as the first principle, that inter-communication of railwayt throughout the conntry ought, if postible, to be secured. If, to obtain the last-mentioned object, it ahould be neceseny to alter or make a change in any exinting railways, we think that it may be left as a matter of ulterior oopeideration for the Legislature, whether in thees limited instances the comhination of gangen may not be allowed.

Whatever may be the coarne which at the prosent time circumatances will permit, it will appear from the opinion wo bave expreseed, that wo think, batractedly nqualization desirable; and we ahail therefore proceed to canaider what gange would be the beat in sach a system of equaliation.

We shall examine this part of the question under the following heads :1. Safety-2. Aocomodation and convenience for pasengers and goods.8. Speed.-4. Eeonomy.

1. Comparative Safety.

We are of opinion that experience will, in this matter afford a better test by Which to compare tbe aystems of the broed and narrow gange than any
theory; and we therefore bave made inquiry into the nature of the accident theory; and we therefore bave made inquiry into the nature of the accidents
recorded in the official reports of the Board of Trade, as well as of such as have happened since the lant report was published.

We find that railway accidenta arive from collisions, obstructiona on the rond, points wrongly placed, slipe in cuttings, subsidence of embantmentu, a defective state of the permanent way, loss of gauge, broken or loose chairs, fractares of wheels or axlen, \&ce; and, lastly, from engines running off the line from some other cause. Wh these several classes of accidents, all axcept the last are obviously independent of the gange ; and with reference to this last clas, we have thought it right to endeavour to determine whether the advocates of either gange could fairly claim, in regard to these wecidents, a preforence for their reapective syatems, on the score of greater security to the traveller. In these lista We find only six accidents of the kind we are considering recorded from October, 1840, to May, 1845, whereas there bave been no less than seven Fitbin the last seven months, and these aro attribataile to exceasive speed, the majority having happened to express trains. Of the whole number of these accidenta, three have occured on the broad gange and 10 on the narrow; the former, however, differ iu their charactor from the latter, the carriages only, in the last two ceses, having been off the line, whereas, in all the 13 narrow gange cases, the engines have run off, and the consequencen have been more fatal. Wo mast bere obsarve, however, that the exteat of
the narrow gange linea in 1,901 miles, and that of the hreat only 274 ; therefore the corsparison wonid be onfavourable to the broad ganpe if connderel merely with regard to their relative longth; but it mast be bocae in minat that the general apeed of the Great Weatern coonidernbly excoeds that of many of the narrow gavge liget, and than some coneiderntion in en that mecount duc to the broad garge.

The primary causes of engines gettiog off the rina appear to be ove driving, a defective road, a bed joint, or a bediy balanced ongine. If, in oemsequance of beavy rains or other enfavoerable circomatances, any part of the roed becomes resound, the engine rinks on one side as it paroce alogg oweh part of the rail, suddenly rises again, and is thos thrown into a rocking aod lateral oncillatory motion, with more or lem of volenee eccording to the rate of apeod, and a very similar effect is produced in patsing at high apeeds. from one curve to another of different carvature. A suecession of atrains is thus thrown upos the rails, and if, before the rocking sobsides, the wheel meets with a defective reil or chair, which yielde to the impohe, the evgine and train are thrown off as a necessary consequence; but, as far as we can see, such casalities are equally likely to bappen on either gauge, ot ber circomatances being aimilar.

It has indeed been stated by some of the witnesses whom we have examined, that the broad gange is more liable to anch accidents, from the ctrcnmstance that the length of the engine, or rather the distance between the fore and hind axle, is less in proportion to its breadth than in the narrow gauge enginen, and tbat therefore the broad gange engine is liable to be thrown more obliquely across the lines, and in cese of meeting with an open or defective joint, more liable to quit the rail; hat we cannot admit the validity of this objection against the broad gavge lines. It may be that the proportion between the length and breadth of the engine hat some intreme on its motion, and that the motion is somewhat less steady where the difference between the length and breadth in considerably diminimbed; but practical facts scarcely lead to the conclusion that the safety of the traina fo endangered by the present proportion of the broad gange ergines; for it appears that on the London and Birmingham Railway, where the enginet hitherto employed have been, generally, short forr-wheeled engines, the dintance from axle to axle not exceeding 7 feet, or 7 feet 6 incber, no such socident as we are contidering has been reported; and we are informed by Mr. Bruyeres, the superintendent of that line, that no such aceident has ever occurred. The same remark applied to some other narron gange lines; and if, as has been atated, exemption from these accidenta has reanited from the close fixing of the engine and teader adopted on this line, the same oystem might be adopted on any other line, whether on the broad or narrow gauge. An evil may also sometimes arise in six-wheeled engines, by the centre of gravity of the eugine being brought too mach over the driving wheels, and the springs being so adjusted for the sake of the adhesion of the wheels to the rails, tbat the front Fbeela would have little or no weight to support and woald be thus in a condition. by any irregularity in the road or otber obstraction, to be more easily lifted off the rails. But here again, if this fanlt in the construction or adjustment has been anywhere committed, it in a falt or defect wholly unconnected with the breadth of gauge.

Another cause of unsteady or irregular motion, dangerous to the safety of the train has been stated to be the great overbanging weight beyoud tho axles of some engines of recent construction, and of the weight of the outside cylinder beyoud the axle bearings. So far an this construction is concerned, it certainly appertaina to aarrow gauge linen only ; but at the aame time we must remark, that it is not essential to their working.

Upon the whole, therefore, after the most caraful consideration of this part of the aubject, we feel bound to roport, that as regards the safety of the passenger no preference is due, with well proportioned engines, ta either gatge, except perhapa at very high velocities, where we think a preference would be due to the broad gange. On this part of the sobject wat would beg to point to the nature of the evidence of Mr. Nicholas Wood.

> Reluthre Accomotadon for Pusengers and Gooda.

Paseengers.-The first-class carriages of the broad gauge are intended to carry eight passengers in each compartment, and the compartments are nometimes subdivided by a partition and inside door. On the norrow gauge lines the first-class carriages are usually constructed to carry only six passengers in each compartment; and we find that about the same width is. allowed for each passenger on both gauges. Some of the original mail carriages were adapted for four passengers, and we believe that the publichad a preference for these carriages over buth the other descriptions.

Until lately the broad gauge carriages were altogether more commodious than those of the narrow gauge, but recently carriages have been introduced on several of the narrow gaugo lines nearly as lofty as those on the broad gauge, and equally commodious; in short, we now see no easential difference ss regards accommodation and courenience to individual passengersin the Arat-class carriages of the two gauges.

In the second-class carriages on the broad gauge, six-persons sit side by side, each carriage being capable of holding 72 patsengera. On tbe narrow gauge generally, only four pasaengers sit side by eide, the total numher in each carriage being 32 ; in this respect we are inclimed to eonsider the latter are more comfortably accommodated.

With reference to the case of the carrisge, and the smoothness of tha motion, we have had very contradictory evidence, and it must he admitted that great difference is oxperieseed on the anme line at different times. depending upon the state of the romd, the spring of the carriage, the number
of grons in a catimga, to bring the epritgry into actior, the pootion of the cerringe in the train, and the speed at which the train is propelled, of all which canditions ere independent of the breadth of the gauge. We have homever, with a viow of maling our obsecrations on this quection, travelled coveral time over all these lines heving their stations in Loedon, and after melieg to the beet of our jodgment, every allowance for the circumatancen abovo-wentioned; we are of opinion thet at the higher veloctice the motion is uarelly gmoother on the brond gages.

Morehadiee,-It is now to be considered whether either gage has a suparionity ovar the other in regard to the conveyance of geteral merchrodive.

Celor this heed we class manufactured goode and their raw material, miverel prodacta, sueb as conl, lime, fron, and other oren ; agricaltural produce, meeh as corn, hope, wool, cattle, and timber.

On these peinte wo have teiten the evidence of persons well sequainted with the carrying trade, and from their information, and our observation, it does not appear to be of consequeace to the parties sending or receiving goode whether they are transmitted in wagone containing five or six tons, or the wagons of larger eapacity, provided that the cost and security are the name, and that the carriers nodertake the responsibllity of any damage thet may reault from the sizo of the load. But Measm. Horne and Chaplin, and Mr. Hayward, who are largely interested, and have had great experience In the carying trade, have expressed a strong opinion that the smaller wagon is far the more convenient and economical. The same opinion is still more atrongly expressed by these wituesses we have examined who have experience of our mineral districts. These persons state that the smaller wagon can be roore easily handled, and can be taken along sharper carves thm would be anited to a broader wagon; that auch sharp curves are very common in mineral works and districts, and that the broken nature of the ground would render curves of greater radtus foconvenient and expensive.

Another important difference between the two gauges, in this commercial view of the question, would present itself in localities in which there may be a dinficulty of readily obtaining full losda for the wagons at road stations. Here the defect of the dead weight, which we find to apply more partica. lerly to the broad gange, would be greatly increased unless another evil of atill greater commercial importance were created, that of detaining the warons to receive full loads. On the whole therefore, we consider the narrow gange at the more convenient for the merchandise of the conatry.

2. Relattre Speed.

Whth a view to form our judgment on this subject, we have examined the tme-tables of the several companies having express and fast trains, and the retnras furnished by those companies of the actual speeds attained by the erpreas trains, on 30 successive days, from the 15 th of June to the 15 ch of Joly, 1815.

We have also, on various occations, travelled in the express trains, and soted the speed, mile by mile.

The result has been, that we are fully satisfed that the average speed on the Great Western, both by the express trains and by the ordinary trains, erceeds the higheat speed of similar trains on any of the narrow gange lizes. But some of the latter have trains which exceed in speed the corrempondiag trains of the Bristol and Gloneester line, and also of the Swindon and Gloucester line, both of which are on the broad gauge; but these latter, it is to be remembered, are still of recent construction with unfaveurible onfves and gradients; and we have been informed by Mr. \boldsymbol{R}. Stophenson, in his evidence, that at ove period the speed on tho Northern asd Bastern line even exceeded that of the Grant Western.

In treating of a difference in the speed, other circumstances besides the mere gange must be considered. The inclinations and carves of the Grent Western Railway, betwren Lomdon and Bristol, and oven for 40 miles beyond Bristol, are, with the exception of the Wootton-Basset and the Box inclimes, particalarly favourable to the attainment of high velocities; and it is treportant to remark, that the inclinations and curves on that part of the Northers and Eastern Raitway where the competition in speed with the Great Westera was the most anccessful are generally of a similar charanter.

Ose of the priveiple motives professed for constructing the Great West en Railway on the broad gauge was the attaining of high apeeds, and the cforit of the proposers and defenders of that construation has therefore been deeply engaged in majataining them.

The effect of gradients on the apeed of the Great Western trains, even with the powerfal engines used on thut line, is shown in the Time Table, page 24, where we Gind that while the speed from Paddington to Didcot by the express train is $47 \frac{1}{4}$ miles per hour, from Dideot to Swindon it is only $41 \cdot 1$, and from 8wiodon to Gloucester only 81.7 ; from 8 wiadon to Beth it is 482 , bel returaing only $37 \cdot 2$: from Bristal to Tannton the speed is 46.3 , and from Tanaton to Exeter only 80-2.

Pescibility of Futwre Inoroase of Speed.-We mast observe, however, that while the Great Western Company have not altered in any degree the phat of their engines, the higher velocities of the narrow gauge lines have been attained by the introduction of a more powerful kind of engine than was employed at an earlier period, and probably the pew engines now used on the narrow gauge are as powerful as they can well be made within the fraits of their gauge; whereas the brond gange lines beve atill a means of obtainlng an increase in the power of their engines, and of increasing their speed, providing the road be in a condition to sustain the great increased
forve which most resalt from any ineramed weight of the engine moring at such high velocities.

Whether the permaneat way is in soch a state at present is very questionable, or evea whether it be pasible in all vicissitudes of weather to maintain it in such a condition. We ought not to lose sight of the fact, that since the introduction of expreas trains the accidents arising from engines rumaing off the line have been much mone common than in former years iodeed, these accidents have been more numerons within the last seven months than within the preceding fire years, and it is questionable whether this contest for speed ought to be carried to any greater length. We are, indeed, strongly inclined to the opinion stated by several ongineere in their evidence, that it is the stability of the road, and not the powner of the engine, that will presaribe the limits of safe speed.

On the first introdaction of paseenger railways, speeds of about 12 miles. per hoar only were anticipmed; the rails then employed weighed ouly 35 lb. per yard, and the engines about six or seven tons. As soon as speeds of 20 and $2 d$ miles per hour were ettempted, it was found necessary to have rails of 50lb. per yard, and engines waighing 10 and 12 tons. Siace that time the rails hare been inoreased in weight progreasively to 65lb., 751 b , and 88 lb . per yard, and the weight of the engine on the broad gauge exoceds 22 trans, and on the narrow gauge it now approaches 20 tons; indeed, we have seen a narrow gauge engine on six wheels weighing $30-$ tons. We doubt, however, whether a corroaponding stability has been attained in the road itself.

Outside Cylinder Engines.-Amongst other changes for increasing the power of the engive and the-speed of the trains of the narrow gauge lines there have been the giving an increased length to the eagine, and the placing the cylinders on the outside of the framing; but it is the opinion of some of the witnesses wo have examined, that this position of the cylinder has a tendency to produce a greater wear and toar of the journals, and a consequent rocking and irregular motion of the engine on the line. This, however, while the engine is of medium length, has been denied by Mr. Locke, who has had great experience in the working of outside cylioder engines. But it is atated by Mr. Gray and Mr. Gooch, that where the length of the engine is greatly increased, this incraased length, by causing the extremities of the engine to overhang very considerably the fore and hind axles, has a great tendency to increase the irregular motion produced by the outside cylipder.

Mr. R. Stephenson admits that in some of the later engines this irregularity does exist, bat he attributes it to the weight of the piston and its appendagen, observing, "I do not believe that it is the steam that aauses the irregalar action, but I believe it to be the mere weight of the pistons themselves, and therefore if we could contrive to balance the piston by the weight upen the wheels, we should get rid of that very much."
At all erente, from whatever casees the motion may arise, the osciliations are very considerable in some of these long engines, and such as can scarcely be considerad safe at high valocitios.

This great length of engine is, however, by no means essential to the attaiamont of high speeds on narcow gauge lines.

We fonnd by timing the exprest trains an four different journeys on the Sonth Wentern line, in both dipections, that the whole distance was performed very satisfactoriiy in about 1 hour and 62 minutes, ineluding the time of two stoppages, being at ag average rato of 41 miles per hour, on a line which, in one direotion, rises for a length of more than 40 miles on a very prevailing gradient of $\mathbf{1}$ iu $\mathbf{3 3 0}$; and in the other rises for several miles on a gradient of 1 in 280. On eash occasion a distance of five miles, on a tevel part of the road, was passed at the cate of 53 miles per hour.

The leagth of the engiae boiler was only eight feet sesen inches, the driving whecis six feet six inchee in diameter; the leading wheels had both inside and outside bearings. The diameter of the cylinder in one case was 15 inches, in the others 144 iaches, both outside, and atteched to the smoke-box.

Evaporative Power of Bread and Narrow Gange Engines-In proceeding to compare the locomotive engines, we remark, in the 6rgt place, that the fire-boxes, boilers, \&ca., of the narrow gange engines still possess a amaller evaporating power than those of the broad gange engines, although recent attempts have been made to raise the former to the level of the latter; bat those attempts have not succeeded; and it is indisputable, that whatever can be done for the narrow gauge, in this respect, can be surpassed on the broad gaure. And we concur in opinion with many of the ableat engineers, who have stated, that the engines of both genges havo nearly obtained tho speed and power which it would be justifiable to emplos in reference to the present strength of the rails and the firmaess of the earthworks.

Diameter of Dricing Wheels.-We remark, in the next place, that the diameter of the driving wheels of the broad gauge engines is greater than than that of the driving wheels of the narrow gauge engines, and, although, in many of the narron gauge engines the nse of the external cylinder has enabled the manufacturers to bring the boilers nearer to the driving wheel arles, and has thus permitted an increase of the diametes of the wheel, still it is almays in the power of the constructors of broad gange engines to make a corresponding change, and thus to maintain the superiority; for tho larger diameter of the wheel is unquestionably favourable to high speed, both because the steam is used to greater advantage, and because the alternating shocks opon the machinery are less rapid. It is, however, extremely dificult to say at what speeds this ad. vantage becomes appreciable. Wo think it likely, that as fac as the speed
of 40 miles an hour, there is no great difference between the two, but that for speeds of 50 or 60 miles an hour the difierence may be worthy of notice. It becomes important, then, to inquire what may be the greatest speed that will probably be desired or maialaided on railways for ordinary purposes.

It is certain that the wishes of the public will be limited only by considerations of economy and safety. The greater the speed the greater will be the cost ; and it appears to be the opinion of many of the officers of railways, that it would be difficult to maintain with safets the present express speeds upon the great trunk railways.

The chief impediments to maintaining the present express speeds are-

1. The dificulty of arranging the trains, where the traffic is frequent, so that the firit trains shall be entirely protected from the chance of interfering with or coming into collision with the slower trains, or those that stop at numerous stations.
2. The difficnity of seeing signals, eapecially in foggy weather, in time to enable the engine-driver to atop the fast trains.

We feel it a dnty to observe here, that the public are mainly indebted for the present rate of speed, and the increased accommodation of the railway carringes, to the genins of Mr. Brnael, and the liberality of the Great Western Mailway Company.

As regards the applicability of the atmospheric principle of traction, or of any other principle differing from the lucomotive, we see no difference between the two gauges.
4. The Question of Economey.- Under this head we have to consider the cost of construction, the purchase of the plant, which consista of engines, of carriages, and of other carrying stock; and lastly, the cost of working.
There can be no question that, in the first construction of a ruilway, the narrower the gauge, the smaller will be the cost of the works. This ap. plies to tunnele, bridges, viaducts, embankments, cattings, sheds, work. shops, turn-tables, transverse sleepers, and ballast, and the purchase of land; but it does not affect the rails, feoces, drains, and station-bouses. The exact difference, however, must depend in a great degree upon local circumstances, and no opinion can be given of the precise rutio of difference without going into a very minate calcalation of each line on which the two aystems are to be compared; for instance, in a line free from tunnels or viaducts, and in a llat country, where there are neither cuttinge nor embankments, the difference would be limited very nearly to the quantity of land to be purchased (the sererance and damage being about egual in both cases), the amount of ballating, and some increase in the cost of the sleepers; whereas, in a very undulating country, the difference would be more considerable.

As to the cost of the maintenance of may, supposing the congtruction to be the same, that of the broad gauge must be rather the greater of the two.

Cost of Locomotive Poucer. - In respect to the cost of the engines and carrying stock, we have to observe that they are generally more expensive on the broad than on the narrow gange. But, on the other hand, it is asserted by the adrocates of the broad gauge syatem, that as the engines will draw greater loads, as the carriages will accommodate a greater number of passengers, and as the wagons are capable of conveying a larger anount of merchandise, the work can be, and is done, at a less charge per ton, and that a compensation is thus obtained for the inceeased outlay. How fur this is fonnd to be practically the case is the neat subjeot for inquiry.

We were very desirous, if it had been found possible, thoroughly to investigate this part of the subject by means of the ofticial data called for by us, and furnished hy some of the principal cumpanies, contaiuing a statement of their working expenses; but we find the circumstances so different, that very litle satisfactory information can be thus oblained, that has been obtained, that has strictly a reference to the economy of the two gauges. There are, of conrse, various matters that have un influence on the actual cost of locomotive power and general traffic charges, that are in no way connected with the breadth of gauge; such as the nature of the curves and gradients, the price of coke, the general nature of the traffic, the mode of Working that traffic as adopted by different companies, the employment of encines of greater or less power, that increased accomsmodation to the public which involves an extra expense for return carriages, \&c.
The London and Birmingham, and the Great Western Ruilway, as metropolitan lines of great traffic and of considerable length, would ut first sight appear to furnish the best means of comparison, aud there is, in fact, no difficulty in comparing the actual expenses; but these lines differ essentially in the character of their gradients and in the amount of traffic, estimated at per mile, and, above all, they differ in the character of the engines they employ.

Four Wheel Engines.-The London and Birmingham Company have, from the commencement. persevered in the use of light four-wheeled engines, while the Great Western, availing themselves of the facilities their gauge affords, have adopted large and powerful engines, which are worked at nearly the same cost per mile as the former; and if such engines, as those on the London and Birmingham line, were essential to the narrow gauge, the question, as to the economy of working, might be at once decided in favour of the hroad gauge; but this is by no means the case; several narrow gauge lines employ engines of grent power, hud work, in cunsequence, much more choaply than the London and Birmingham; therefore, the comparison between the working expenses of this line aud of the Great Western can ouly be considered as a test of the prin.
ciple of working with light and with heary engiaes, and not as farainhing a test of the working economy of the two ganges.

It is a common praclice with difierent railway companies, in their halfsearly reports to their proprietors, to state the per centage of their varions expenses, under a few distinct heads, as compared with their revonee; and from these it appears that ou the Greal Westers, the locomotire charges, during a period of three years, have varied between 8.8 and 11.1 , averaging 9.7 per cent on their income, and on the Loadon and Birmingtam they have varied, within the same period, betweea 7.0 and 9.36 , a7eraging about $8 \cdot 6$ per cent. on their income; and, therefore, on a superficial view of the queation, the London and Birmingham would appear to have worked their line at a cheeper rate; but ralid objections have been made to this comparison on the part of the Great Wostern; beosuse it is obvions, from the several returns we have received, that the London and Birmingham Company has far the more abundant traffic per mile, and ought, therefore, to be expected to perform its work at a leas per centage on its income. It has been stated by Mr. Gooch, that as locomotive superinteadent on the Grest Western, he is called npon to sopply a oertain amount of locomotive power, and that the cost of such power is almost entirely irrespective of the load or namber of pessengers it is made to draw; but that these numbert are of great importance in comparing the locomotive expenses with the revenue.

In page 27 of the appendix to this report, an abstract and comparative table are given, founded on returns furnished by the Great Western and London and Birmingham Railwuy Companies, showing that the reveane derived from the passengers' train is 64 per cent. greater per mile worked, on the latter than on the former line. It must, therefore, be obvious that, as a test of economy for working, we cannot adopt the principle of a per centage on the revenue, deither will the cost per mile run give a more just comparison as to the ecuaomy of the two systema, because it is a wellknown fact that the London and Birmingham Company have been conveying their traffic with engines of inadequate power, and that great ecobomy would result to them by the adoption of larger engines.

Other difficulties also occur in the comparison of these expenses on differeut lines, in consequence of the difference in the form of the accounts, and of the circumstance of one company adopting the principle of baving a reserve fund for renewals, and other companies having no such fund.

Probable Cost of Locomotion on Great Western if made with Narrav Gauge.-We are, therefore, of opinion that the most satisfactory comparison that can be made of the economy of working the two gaages, will be, by applying to first principles, endoavouring merely to determine what the working expeuses of the Great Western line, with their preant amount of traffic, wonld have been, provided it had been made a narrow pauge line, and worked with such engines as those employed on the 8orth Weatern and some other narrow gauge lines.

The average weight of a passenger-train on the Great Wentern Rallway (independent of the engine and tender, which weigh 22 tons) appears, by the retaras sent to us, to be 67 tons; and the average number of pascengers per truin for the half-year ending the soth of Juve, 1845, as appears by our comparative table, page 27 , is only $47 \cdot 2$, whose weight, includiag their luggage, may be estimatod at about 5 tons.

Mr. Gooch estimates ench carriage and its passengers on the broad gange, to weigh about 91 tons, and therefore there would be seven carriages to make ap the 07 tons abore specifled. The moat commodious carriage on the narrow gange lines, such as those on the South Western, weigh less thinn 6 tons; seven such carriages woald therefore weigh about 34 tons, and being capable of containing 126 first.class parsengers, .Weighing, with their laggage, $12 \frac{1}{2}$ tgas, the total load would be only $40 \frac{1}{\text { t }}$ tonn. Now we find, that even n ith a trallic as large as that on the London and Birmingham lailway, the average per train would only be 84.9 passengers, weighing about 8 tons; so that, under the supposition of a trafic of this extont, the luad of the seven Darrow gange carriages so occupied would only be 42 tons.
But Mr. Gooch estimates, from his own experiments, the relative powers of traction of the urond gauge engines, and of the narrow gauge engines of the Suuth Western Railway, whes working at the same speed, as $\mathbf{2 . 0 6 7}$ to $\mathbf{1 , 3 0 9}$, or as 67 per cent., the load of the broad gauge in tons, to 45 tona which would be the corresponding load for the narrow guage, so that the narrow gauge engiae has more power over the 42 tons it would huve to draw than the bruad gauge has over its arerage lond of 67 tons, both exclusive of the weight of the engine and tender, the oarrow gauge carriage in this supposition being supposed to contain 84.9 passengers, and the broud gauge only $47 \cdot 2$.

If, however, it were necessary, 284 first-class passengers might be placed in the seven broad gauge carriages, and, as it has bofore been said, 126 in the seven narrow gauge carriages; but it appears likely that this extent of accommodation would only be called for on such rare occasions, that the question of providing for it, oxcept by assistant power, cannot be taken iuto consideration in the present comparison.

It is obvious, from the foregoing statement, that the nerrow gauge ongine of the class we have been considering has more power over the seven narrow gange carriages, and a load of 126 passengers, than the broad gange engine has over the seven broad gauge carriages, and the load of the same number of passengers ; and that, therefore, if the Great Western had been a narrow instead of a broad gange line, the South Western engines would have bad the same command over the existing passenger traffic of the Great Western as its own ongines now have with the present construction of that railway.

We mut romark, however, that this calculation is for trains consisting exclesively of passengers and their personal luggage. In the Great Wentern average trains of $\mathbf{6 7}$ tons there is an allowance of about 16 tons for pasengers and luggage, including gentiemen's carriages. Allowing the same weight of luggage on the narrow gange line, the train woold still not exceed 60 tons, which is considerably within the power of tho narrow gauge engine. For it appears, by the experiments that have heen recently made on the Great Western Rajway, the details of which are given in the appendlx to the evidence, that the Great Western engine is capable of propelling 18 tona at a greater spoed than the average speed of that line; and, consequently, by the proportion above sfated, the narrow gange engine would be capable of propelling 55 tons at the same rate. We conclude, therefore, that the work would be performed at about the same expense for locomotive power.
That there may be cases in which not only the full power of a broad gange engine is required, bot even the ascistance of a second engine is quite certain, but such trains form the exception, and not the rule, in railway passenger traffic, and we doubt the soundaess of a principle which involves a great expense in construction, for the sake of possessing capabilities so seldom called into action.*
It is proper to observe, that the foregoing comparison would have appeared to stand more in favour of the narrow gage, had we taken for the engine of comparison, one of those engines, of whose iucreased capabilities some of the supporters of the narrow gage nystem have informed us; bot we have preferred the comparison afforded with the South Western engine, from its being the one on wbich Mr. Gooch of the Great Western Railway, superintended the recorded experiments-hence our dednctions are made from dala furnished by the advocates of the broad gauge system, withrat drawing anything from the evidence on the other side; and as these deductions sufficiently demonstrate that there is no economy in the locomotive expenses for passenger-trains resulting from working a line on the broad gange system, even on such lines as those which have at the present moment the most abundant passenger traffic, uny analyzation of the evidence offered in support of the narrow gauge syatem appears to us to be quite superfloous.
Groes and Net Loads.-There is one point, however, stated in Mr. Gooch's comparative Lable, and repeated in his evidence, which appears $s 0$ mech at variance with the results we have obtained from other data, as to require explanation.

Mr. Gooch has asserted that the Great Weatern Company work their pas-enger-traias at half the expense perton, at which the London and Birmingham Company work their passenger-trains. The fact is, however, that Mr. Gooch's calcolations refer to the groms and not to the net loads; and therefore, the comparison is not applicable, so far as regards the profits of these companies, and affords no proof of economy in working the passenger trafic on the Great Western system,
There can be no doubt, judging both from Mr. Bronel's evidence given to ns, and from bis report to the directors of the Great Western Railpay Company, that he originally expected there would be on the Great Western Railway a demand for carrying greal numbers of passengers at high velocities, but from his own evidence it appears that the only heary passenger traffic upon that railway is between London and Reading, and between Bath and Bristol, being a total distance of about 50 miles, out of 245.

On the remaining pars of the line the passenger traftic, par train, is small.

Dicision of Traffic.-If the convenience of the public wauld admit of the whole of the passenger traffic of this portion of the line being convejed daily by two or three large traius, Mr. Brunel's views would have been perfectly correct in providing such powerful means; but experience has proved that the public require passenger-trajns to be ruu many times during the day, and with this frequency of trains, such nombers of passengers as Mr. Bruvel has provided for cannot be expected even on railFays of the largest traffic, so that practically there is a waste both of power and of means. In the case of "goods' traffic," the circumatances are not the aame, railpay conveyance for merchandise seems only to be required a few times in each day, and the trains are generally large. The "through" wagons have, for the mont part, a full load, and the disproportion between the gross and the net weight is consequently much less than in the passenger trains; still, bowever, it appears from the evidence of Mr. Horne, and of other persons connected with the carrying trade. that on the London and Birmingham Railway it frequently happens that wegona aro forwarded to a considerable distance, to "road-side stations," containing pot more than a ton of goods: and there cen be no doobt that this must happen on any logg line of railway. The same also occurs in wagons coming in from branches along the trunk line, and in all auch cases the heavy large wagon of the broad gange must be disadvantageoas; bot although the evil is not 60 great with goods' wagons of the brond gage as with their passonger carriages, still the loas by dead weight is greater with these than with smaller wagons, and we do not percoive any edvantages in the brosd gange to counterbalance it ; for whore apeed is not an object, and this is the case with goods' trains, wo believo from the evidence whavo received, that engines of nearly the same trective power are to be fonod on many narrow gange lines as those in use on the broed gauge.

- It appeara that durinc the half-year endiag June $\$ 0$, 1845 , the number of milea run

New Railway,-Tiaus far we have cobsidered the quention with refere ence to the railways as they now exist, and composed, in a great measore, of trank lines of considerable traffic, bot the rajlways to be mude in fature will, in some degree, be bramches or lines in districts having traffic of lese magnitude than is to be provided for in the exisling railways; and hence, if for the greater trunk lines a superiority werel due to the broad gauge system, that superiority woold be leas for lines yet to be constructed of a maller amount of traffic; and, necessarily, if the preference were given to the narrow gauge for the existing lines, that syatem would be still more entitled to the preference for the railmays of smaller traffic to which we look forward.

Experiments on Broad and Narrow Gauge.-We must here add that towards the close of ourinquiry, Mr. Brunel requested, on the part of the broad gauge companies, to institate a set of experiments to test the power of their engines, and Mr. Bidder, on the part of the narrow gange companies, undertook, in consequence of such application, to make corresponding experiments on the narrow gange. After sanctioning these trials, and being present at the performance of them, a record of which will bo found in the appendix, we may observe, without entering into a minute detail of the results, or the discrepancies between the returns as furnished by the two parties themselves, that wo consider them as cousirning the statements and results gives by Mr. Gooch, io his evidence, proving asthey do, that the broad gange engines poseess greater capabilities for speed with equal loads, and, geaerally speaking, of propelling greater loads withequal speed; and, moreover, that the working with such engines is economical where very high speeds are required, or where the loads to be convejed are such as to require the foll power of the eugine. They confirm. also, the evidence given by Mr. Bidder an to the possibility of obtaining high evaporative power with long engines for the narrow gauge; but under somewhat pecaliar circumstancen. It appears, moreover, that the evaporation thas obtained does not prodace a corresponding useful effect in the tractive power of the engine; a circamstance that would probably be differently explained by Mr. Gooch and by Mr. Bidder; bot as we do not refer to the power of this description of ongine in the deductions we bave made, it is unnecesgary for $\mathbf{a s}$ to allude further to them.

Conclusions.-After a fall consideration of all the circomstances that have come before us, and of the dedactions we have made from the evidence, we are led to conclude-

1. That as regards the safely, accommedation, and conrenience of the pas. sengers, no decided preference is due to either gauge, but that on the brood guxge the motion is generally more eany at hifh pelocitice.
2. That in respect of speed, we consider the ndoantages are with the broos gauke, but we think the public aqfaly would be endangered in employing the greater capabilities of the broad guyge mack beyond their present use, except on roads more consolidated and more aubstantially and perfectly formed, thanthose of the existimg t!ees.
3. That in the commercial ease of the tramport of goods, we believe the narrow gauge to poscess the greater conveniance and to be the moresuited to the general traffic of the cometry.
4. That the broad gauge involoet the grecter oullay, and that we hace not been able to discover either in the mainfenance of way, in the cost of locomotive power, or in the other annual expeners, any adequate reduction to compersate for the additional first cost.
Therefore, esteeming the importance of the highest speed on express trains for the accommodation of a comparatively small number of persons, however desirable that may be to them, as of far less moment than mfording convenience to the general commercial traffic of the conntry, we are joclined to consider the narrow gange as that which should be preferred for general convenience ; and, therefore, if it wero imperative to produce uai. formity, we should recommend that uniformity to be produced by an alteration of the broad to the narrow gauge, more especially when wo take into consideration that the extent of the former at present in work is oaly 274 miles, while that of the latter is not less than 1,901 miles, aud that the alteration of the former to the latter, even if of equal longth, would be the less costly as well as the lose difficult operation.

Intermediate Gayges.-We are desirous, however, of guarding onrselves from being supposed to oxpress an opinion, that the dimensions of four feet eight and a half inches is in all respects the mosts suited for the general objects of the country. Some of the engineers who have been examinedt by us have given it as their opinion, that five feet would be the best dimension for a railway gauge; others have suggested 5 ft .3 in., $\delta \mathrm{ft} .6$ in.r and even 6 ft , but nove have recommended so great a breadth as 7 ft ., except those who are more particularly intarested in the broad gage lined. Again some engineers of eminence coatend that a gange of 4 ft . 8 i in. gives mmple space for the machioery of the ongine and all the railway requirements, and would recommend no change to be made in the gauge.

- We may observe, in reference to this part of the question, that the Eastern Coonties Railway was originally constructed on a gauge of 5 feet, and has since been converted into a gange of 4 feet 81 incles, to aroid a break of gange ; and wo have been informed that some lines in Scollaad, originally on the gange of 5 ft .8 in ., are about to be altered to 4 ft .8 in . for the same reason.

Gayge of Forcign Railcays.-Whatever might be the proferable coarsewere the questions now to be discussed of the gange for an entire system of. railways, where none previonaly axiated to clash with the decision, yot, under the present state of things, we see no sufficient reason to suggest or recommend the adoption of ay gange intermediata between the narrow gauge of $4 f .81 \mathrm{in}_{\mathrm{g}}$, and the brond gauge of 7 fl ., and we are peculiarly
atruck by the circamstance, that ahoont all the continental railwaye have twen formed apon the 4 ft . 8 fin., gauge, the groeter number baving been undertaken, after a long experience of both the broad and barrow gauge in this country ; nor mast the fact be loat sight of, that some of these railways bave been constructed as well as planned by English engiseers, and amongst liat aumber.we fad Mr. Brunel, the original projecter of the brand gauge. Mr. Branel wen aloo the engineer of the MerthyrTydvil and Cardiff Line, which is on the 4 ft . $8 / \mathrm{in}$. gruge ; and wo think that the motives which led to bis adoption of the narrow gauge in that instance would aqually apply to many English lides.

We are sensible of the importance, in ordinary circumstances, of lemvang commercial enterprise as well as the genius of scientific men onfolterpd; we therefore feel that the restriction of the gauge is a measure that ehould not be lightly entertalned; aod we are willing to admit, were it pol for the great evil that mut inevitably be experienced when lines of unoqual gauges come into contect, that varying. gradients, curves, and tenfic might jostify some difference in the breadth of gauge. This appears to be the view which Mr. Brodel originally took of the subject; for the Great Weatern proper is a lime of unusual good gradients, on which a darger passenger traffic was anticipated, and as it touched but slightly on any mineral district, it embraced all the convenionces and advantages of the broad gauge aystem, and was comparatively froe from the infuence of thoee defocts on which we have commented; but such a breadth of gange, homever scilable and applicatle it may have originally been considered to its particular distriot, appears wholly inapplicable, or at least very ill saited to the requirenienta of many of our Northern and Midland lines.
In references to the breaches already in connexion with the Great Weatern Railway, we may obeerwe. that the greatoat average train on the Oxford branch, for two weeke in July and October, was only 48 tons; on the Chelconham branoh, it did not exceed 40 ; between Bristal and Exeter, 53 ; and botween Swindon and Bristod, it was under 60 toms. With rach a limited tratic the power of the broad gauge eagine seems beyond the requirements of thene districta.

Expence of Altering Braed to Narrev Geuge.-We find from an eatimate farnished to us, and the geceral grounde of which we see no reason to diappute, and the expenge of altoriog the exieting broad gauge to parrow gange lines, including the alteration or enbetination of locomotives, and carrying stocks, would not mach exceed $1,000,0001$. ; yet we neither feel that we cen recomsnend the Legidature to eanction such an expense from the pablic menies, nor do we think that the companies to which the broad gauge railways belong can be cedled epon to incur such an expense themselves (hering made all their works with the authority of Parlizement), nor eren the more limised oxpence of laying down intermediate rails for narrow gauge trafic. Still less cail wo propoce, for any adrantage that hes been suggested, the alteratioc of the whole of the railways of Great Britain with their carrying stocks and enginen, to some intermediate gauge. The outhan in this case woald be very muct more considerable than the sum above mentioned; and the ovil, incoovenlence, and danger to the traveller, and the interruption to the whole trafic of the conatry for a considerable poriod, and almona at oma and the came thene, would be suoh that this change caspot bo seriously extertainod.

Guided by the foregoliag considerations, we mont datifully submit to your Majesty the following recommendations:-

1. That the gayge of 4 ft .81 in . be dectered ty the Legislature to be the gauge to be uned in all public reilsayys now mader construction, or hereafter se be constructed, is Grees Britain.
2. That muleas by the consent of the Lagioletarre, it chould not be permittect to the directors of axy railowy company to alter the gauge of mech railoay.
3. That in order to complete the goneral chain of narrow gauge communication from the north of England to the southern const, any mitable mearure chould be promoted to form a marron gamge link from Oxford to Reading, and thence to Baringoteke, or by any aborter romle connecting the proposed Ruyby and Oxford line with the South Wentern Railosay.
4. That as any gumetion to be formed woith e broad gange line ceould incolve a break of gauge, provided owr frst recommondation be edopted, gread commercial consonience mould be oblained by reducing the gange of the present broad gayge lives to the marroup genge of 4 feet $8 \frac{1}{i n c h e s, \text { and wee, cherefore, }}$ think it destrable that some aquitable meashe chomid be found of producting such entire oniformity of gauge, or of adopting such other course as roould - admit of the narrovo gayge carriages pasing, without inferruption or danger, - walong the broad gaxge lines.
(Signed)
J. M. Praptaic Burith,

Lieut.Col. Rojal Eugineerr.
G. B. AIEY, Antronomer Rojal.

Peter Barlown.
Broed and Narrow Gauges
flotworn of Railocys furmichod by the Bound of Trade, 1845.

The Broad Gauge includes the Great Western, Chellenham branch, Oxford branch, Bristol and Exeter, and the Bristol and Gloucester comploted. The South Devon now progressing, and the Bristol and Exeter branchen, Cornwall, Exeter, Crediton, South Wales, Wilts and Somerset, now the parliament.

The Narrow Gauge inclades 32 miles of the Arbroath and Forfar and Dundee and Arbroaih Ratiway, 6 ft .2 in . gauge to be altored to $4 \mathrm{ft}, 8 \mathrm{j}$ in., and the Irish gauge is confined to railways in Iredand.
Table oxhibiting the Expenditure of the Great Western and London and
Birmingham Railways for Locomotive Enginen, Carriages, and Wagoms,
from the commencement of the traffic to the present time; also the Ro-
venue Returne of each for the last two years, and the Expense of Loco-
motive Power, as deduced from the Half-yearly Reports of each Conpany.
Great Weetera.-Total cont of locomotive englnes, tendern, carriages, and ungones io 304h of Jupe, 1845

carlaget, and wagons, to 30 th June, 1846
con408 8
and wiron repaist triuded in the half yor locomotive, carriagt, latter have amounted in the in the half.yeurly
Great Weatern.-Prom lat July, 184 ?, to 30 th June, 184
Londos and Birmingham.-Frou Ist July, I\&43, to 80 th June, 1815^{*-}
The cont of locomotive power, including repairs of locomotive endnas, coal, colze, wagen, and all incldental chargen, have amoanted In the same period to-
Great Weatern. - From let of July, 184s, to 80th of June, 1845 .. 155,9en London and Birmingham-Prom let of July, 1843, to 80th of Jume, 1845

146,1728
The ravenve tor the "ame two years, for the carriage of panemger, mails, soods, sce.-s
Great Weatern.-From lit of July, 1848 , to 90 th of June, 1845 =a 2,617,903 8
London and Birmingham. - From lat of July, 1848, to s0th Jane,
1845
 aponnts to-
Great Weatern. \rightarrow Total milleage from list of July, 1843, to 30th of June, 184

1,785,78 14 :

London and Birmingham,Totil mHeage" from lat of Jaly 1898 128,524,209
to 30 th of June, 1845
121.529,040

Batho of cont of engine and carrigge phart Great Weatern and London and DIringinen.
Batio of cont of engine nod earriage finn
Ratio of repalrs of engline for 2 years
Batso of eont of loeonotive pever for 2 year
Ratio of eost of locomotive perver for 2 yeari

1	to	768
1	10	1821
1	to	-04
1	to	945

Doring the periods which these returns embrace, the lengths of line worked by the Great Weatern have varied by the opening of different hioen and branches ; but from the 80th of December, 1844, to June 30th. 1845, the number of miles worked have been consiant, riz., 222 miles. The length worked by the London and Birminghan has also beenj constant dnring the same period, and Mr. Creed in his evidence states (exclading the branches) that the distances worked was 113 miles, and the revenue and mileage on this leagth, that is still exclnding the branches, he given as below.
Bimilar atatemente are given in the appendix of the revenue, milieages ke., on the Great Western for a like period ; from which we have the fold lowing comparisons:-

Great Weatem, length of Ine worted
London and Btrmingham, length of tine worked
Great Weatern, totil pascengern' mileage

Great Wewtern, milles ran by paspenger tralin
London and Blrmingham, miles ron by phaenger train
Grast Weatern, average number of pasengers per tram
London and Biralogham, average number of parsengers per trains
Grat Weatatr, wverage patangers' revenue per tring per mile
London and Birmingham, average parmogers' revenue per tralos per mille
London and Birmingham, average parapger revenoe per tralin per alle ".
14.

Improvement of the Sayern-The River Severa, which is subject to

 from Beiddey 0 W Worcoster, a ditizance of seventien arilet, and from Worcenter to Ghoo cester the HVer fo being deepened by dredging and closer enbankwent, the Bevers 40 umising the erection of Weirs. Within the connty of Worcester. By the operation α dredglof, bas rocky shoals have been endrely removed. The hardent rock soe thet blagted under water, and, therefore, taslly removed by the dreding machinem. of 200,000 tons of marl, roek, gravel, and soll have already been raiped from the bed of the Gevera by Mesea. Grisell and Yetots drodsing machine alone, bealdet what has been removed by another contractor. At Gloucenter it has been neceasary to ramove the entire foundation of one of the plers of the old bridet, and in the courna co this operation ane cardone relics of anctent coins have been diacorenes

- Buesenes,-The whole of the guns for the old fortifications have now cived from Wootwich. They gre es in number, and are of the following deacription $z=$

 Woalwhich; the masonry on which they are to rett is all ready to be Ifid dome IV quas are to be placed as follows:-20 on the Fialfmoon Battery ab the Polnt, is on the Admiral's platiorm overloplotos the reld bathery, and the remalnday so alons the works protecting the barrecks. The new workt progress rapidiy; the battery formiag oppeand the dockyard gate is now carried to the helght of the platome its forther progreit bac, bowever, bete deferred till the formadon of the deep ditich by which is n to be peoterte, and on which all the workmen are now concentrated. Wooden peofles are mor op 角t apother betterr, with whlch thit ls to be conoected by a mukctay whil, Fhise te the anit

NEW CHURCHES.

All Sainta, Rise, Yorkshire.-Consists of a nave and chancel in the First Pointed style, and cost ahout $\mathbf{4 0 0 0 l}$; it is capsble of containing 200 persons. The chancel is ascended by one step at the nave and two more at the altar. The stalls aod the fittings througloont are of oak; the foor is laid with eacanstic tiles; the wall as high as the string-course is inlaid with tiles. 4 recess iu the wall is used for a credence. The east window of three lancets, is filled with stained glass by Wailes. The stonework between tes received decorative colonring, and the walls are ornamented with scrolls. The spaces between the beams of the roof aro painted blue with gilt stars. The capitals of the pillars are gilt.

Honcrtom.-A new chorch is building in Homerton from the design of Mr. Ashpitel. When wa have praised its material, Kentish rag with the dreasings, \& c., in Caen stone, and its general plan, chancel, nave, southaisle, porch, and west tower, we have said all that wo can in its favour. The chancel is very short, a'nd a sacristy is added to the north-west inatead of the corth-east of the chancel. Again the style chosen is Third Pointed, but with a poor attempt at tracery of the Middle pointed period. The morldings throughout are very inaccurate. The weat tower is square, with a corner turret; all on too small a scale. The aisle is to have a eparate gable, with great haunches.
St. John, East Chislehurst, Kent.-The ground plan of this church is a wide oblong, without any pretence to chancel. There are vorth. south, and west galleries, the latter containing the organ. At the east end of the south cloister there is a door labelled "Chapel Clerk's Office." Correspooding with this on the north side, is another door, with the inscription " Miniater's Vestry" upon it. Thealtar, an old oaken table well carved; altar chairs the same; an altar-piece of Carrara marble; altar-rails of masive grey marhle; a pulpit of oak paneled with bas relief, a beragonal font of white marble; a brass lectern; a litany desk (torned the wrong way), these form a catalogue of gems seldom met with in this conntry. Indeed the whole have been imported from the continent. There ure two thin western towers capped with short shingled spires. One of them conthias six bells. The style of the church is intended to be Italian. The Windows are all roundheaded triplets glazed with gronnd glass; that at the east end is incladed in an enormous arch of construction. The masonry is of fint, with dressinge of red and white brick, and white ashlar. The roof is of stained deal. The church is said to have cost nearly $8000 l$, and bolds 500 worshippers. The architect is a Mr. Wollaston. Here one has again to lameut the lavish expenditure of mones opon an untrorthy design.

West Meon, Hampshire.-Consists of a cbancel, (30feet,) nare, (70,) Fith aisles, sonth porch, and west tower. The style is the transition between First and Middle Pointed, and yet there is not to be a apire. The material is fint dressed with stone. The reredos is a trefoilod arcade. There are sedilia, only however two in number, and a credence. The roof and aeats are of deal. The flooring of the chancel is blae and white lins. Measrs. Scott and Moffatt are the architects, and the building parlakes too much of the fineness conspicuous in their designs. In particular we object to the pert-looking anmeaning window over the north door.
Loughton.-We have seen a lithographed view of "the new church, Loughtoa," taken from the N.E., to which Mr. S. Smirke's name is attached as architect. It is a most unsatisfactory production: of English Romanesque stgle, cruciform, with low square central tower, having no capping whatever above its parapet. The windows are all large aud round-beaded : the side walls high: the strings clamsy: the buttresmes very oulike Norman: and the whole effect quite different from that of any ancient charch we erep saw. The view shows a north-west porch, a door in the north transept, and a third door into a kind of belfry turret, whicb occupies the angle betweeu the north transept and chancel. The faces of the two gable-fronts ahown in the view are recessed, not under corbel tables, but inder a latsided triangular head following the lines of the low gable, in the most remarkable way. We thought it bad been long ago admitted that all Romanesque towers ought to have a bigh capping; nothing can be itnagined worse than the flat parapet in this example.
Brockhem, Betchucorth, Surrey-Consists of chancel, (not long enough, but very minch better than the ordinary rua, nave, transepts, an eustern aisle to each transept, north porch, and ceutral tower. We bave often protented agalnst the adoption (except under peculiar circumstances,) of the cruciform arrangement. In this case it was especially bad, because the funds, we anderstand, fell short. The siyle is First Pointed. The Lascets are not too broad, hat too short, and far too high up: the east end contains a triplet of a very nondescript kind. The north porch is immensely too large, and absardly elaborute. The string-course is grievously Eavity. And, worse than all, the piers, both of these aisles and the belfry arathes, are made indeed of local stone, but are to be cased, and all ihe monldings, run, in plaister. On the whole, this church is very unwurthy of Mr. Ferrey.

Tubury, Berkshire,-A small charch, the shell of which did not cost more than 600l. or 700, has been built here frum the designs of Mr. Pugin, at the expense of St. Mary Magdalen College, Oxford. The most striking featare is the roof, of quusually sharp and lofty pitch: which has been ceasared as excessive by many who are moat disposed to favour high roofs. the well-known example of the roof of All Sainte, Skeltun, way be pleadrd se a precedent. The west end diaplays a bell gable of two arches, and a gualrefoil pierced between the heds, with a Auriated crose abuve. All
the windowi on the gorth are of one namow lisht with trefoll heads; the east window of the chancel has three lights with flowing tracery, and those on the south side are of two lights in form and proportion like thooe on the north. The plan consists of chaneel, vestry in the north side, nave, and south porch, the whole paved with small tilos of a dark red colour. The altar aod pulpit are of stone, both plain, as is almost overy delail of the church, with the exception of the font, which is very richly and beautifully carved.
St. Jaures, Woodside. - We have seen a wood-engraving of this church. from the north-west. The architect is Mr.C.W.Borleigh, of Leeds. The style is Middie Puinted; and the plan consists of a chancel, nave with west bell-cote and west door, north aisle, with a separate gable, and north porch. All the gables are coped in stone, and have crosses. Upon the whole we are well satisifed, and hope to meet Mr. Burleigh again.

Sundown Brading, Isle of Wight.-We have seen a lithograph of the new church about to be erected at Sandomn Brading, Isle of Wight, in the First Pointed style. There is a south aisle under a geparate gable. The east Window of the aisle is a triplet, and too much like a chancel enst window. The tower with broach spire is engaged in the aisle at its west end. The ruofs are of a good pitch. Mr. Woodman is the arohitect of Sandown church.

CHURCH RESTORATIONS.

St. Mary, Batcel.- Some very interesting wall-paintings, were lately dis. covered in the semi-Romanesque nave of the decanal church of St . Mury, Battel. In spite of carnest remonstrances the churchwardens have axain whitewashed them. The splays of the clerestory windows were filled with whole length figures. The works in the chancel and its aisles will be done in the right direction, these being free from churchwarden's iufuence.

St. Mary, Snedtiwham,-The magnificent Middle Pointed west window of this church has been opened and repaired by the exertions of the curate. It is to be filled with stained glass by Mr. Warringtou.

St. Wichael, Sowton, Devomshire.-The church of St. Michael, Sowtoa, Devonshire, bas been recently rebuilt, nt the sole charge of J. Garrett, Esq. Mr. Hayward is the architect. The style is Third Pointed. Tho plan consiats of chancel, nave, north aisles, and western tower. The atone is red-saudstone ashlared; the dressings are of Caen stone. The exterior effect is described as belng religious and noobtrusive. There is no saving of expense externally, and there is mach en richment within. The windows are filled with stained glass chiefly by Willement.

St. Leonard, Beeford, Yorkehire.-This church coasisted of a chancel, nave, and south aisle, and presented all tho dinfigurements of saah windows, pagan Tatemad-Brady galleries, with a low ceiling entirely bidiag the wood-work. The restorstion has been andertaken and carried out in an excellent spifit. A new north aisle has been added, containing four windows. In the nave the ceiling bas been removed, and the old roof has been eariched with cusps, \&cc. The gatlery which occupied the western end, and corspletely blocked up the tower, and a very beautiful arch, bai been palled down, and opens to view a fiae Third Pointed window. A large stack of pulpit and reading deak is whortly to be replaced by new ones of proper proportiona.

St. Mary, Rumeey.-The magaificent abbey church of St. Mary, Ronsey, is noder restoration by Mr. Ferrey. The spirit with which the work bes been undertaken is deserving of all praise. Wo are grieved however to see such little respect paid to the peculiar character of the Romnaesque masonry. The new work is fine-dressed and close-jointed. Such an alteration goes far towards destroying the gennineness of any building. The offensive gallery which spanned the church has been already awept away, and the lantern is about to be opened.

St. Mary, Easterll, Kent.-The chareb which is maisly Middle Pointed, is of that peculiarly unmanageable form, a chancel and nave, with a singlo aisie (a south one) wider than the nave itself, and with a separate roof. The nave has a chancel arch, not the aisle. A rood-screen has been put up aud the east ead of the aisle parclosed off. The parclose has no opening at all, leaving the chantry to be entered perforce through the chancel. The woud-work is very costly and well-jntentioned, wanting however in simplicity and in force. The prayer-deak we are sorry to any looks west. There are altar chairs, arranged however north ad couth. We may in passing, romark the extreme shortness of the chascel. The nave and aisle are filled with open seats of oak, with poppJ-heads.
St. Botolph, Boston. - The restoration of the magnificent charch of 8t. Botolph, Boston, under the saperintendence of Messrs. Scott and Moffatt, bas commeaced. The interior of the nave has already been deauded of whitowash, and some architectural restorations have been made in the exterior.

St. Denis, Rutherfield, Kent.-The shingle roofing of the spire (sarmounted by a nuble cross and a cock), aud the interior of the chancel have beeu repaired : the piscina, sedilia, uud the atoup at the Priest'y door, all in the soath wall, have been restored. The piscina is circular-beaded; the sedilim are tirat Yointed, and composed of two arches of uaequal span, separated by a single shaft, aud apparently intended for ove and ino occupants respectively. The pavemeat of the eptire atacrarium has beea raised.

St. Julian, Wellow. TThe oak open benchus in the aave have been carefolly restored, aud the fine cuod-ecreen oleaned. The chancel has been rebuilt and its roof leaded. Itm fitiogs ase unfortunately of dem. A weat
gallery is permitted to remain. The font is removed to its proper place and a north door is opened.
St. Nicolas, Crantry, Surrey.-The chancel is seated stallwise, but without returas: the details are poor. The paviag is of encasastic tiles. The sedilla have been restored, but are not used, nor can they be while the altar raila remain. There is a poor eagle, a polpit wantiug height, (a fualt on the right side), and a readiug-pew that faces wouth. In the nave are two horrible but elaborately panelled galleries between the first and aecond pewa.

St. Margaret, LyRn.-The parclose of the chancel of St. Margaret, Ljnd, is is course of restoration by Mr. Patterson, carver, of that town; under the superintendence of the Lyan end Weat Norfolk Architectural Sociely.
Jesus College, Cambridge.-We are delighted to be informed by a correspondent, that the master of Jesus College, Cambridge, has announced bis intention of presenting five stained glass windows for the lancets on the north side of the choir of the college chapel. The "Five Sisters." of York, will be the model.

THE COLLECTION OF SEWAGE MANURE.

In connection with the efforts that have recently been made to improve the sanatory condition of large towns, one of the moat important propositions is the plan entertained, applying to agrical are the rafuse and drainage of London.
It is argued, and apparently with good reason, that by this plan not only would large quantities of valuable manure, which is now wasted, be usefully applied, hut that also, the plan would involve more effectual means of removing it, than by the flow of the Thames, and that a fruitfal ciuse of miasme would be removed.
Two modes of effecting the reqnisite ohject have been suggested. In the First Report of the Health of Towas Commission are published various reports and estimates made by Mr. Smith, of Deanston, in which he suggests the practicability of dispersing sewage water of lands in the vicinity of London by a system of fixed jets or hose pipes, and more recently details are given in a prospectus issued by tho Metropolitan Sewage Company, to which Mr. Smith's name appenrs as consulting engiveer. The scheme is stated by the prospectus to bave been mafured for convesing the sewage water of London, by means of a syatem of pwaping enginea and pipes analogons to that of the great Water Companies, and thus distributing the fertilising flaid all over the land, in such manner and proportions as may be best adapted to the various kinds of geld and garden cultivation. The average quantity required for agriculture is estimated at 80 tons per acre, which can be supplied within about 20 miles ruard the metropalis at less than a quarter of the coat of stable or farm-yard manure, and at one-tenth of the experse.

The contents of these sewers are to be raized by powerfal steam-engines and distributed by pipes over an extent of sixty square miles, through the gardening and agricultural districts to the west ward. A' sum of $\mathbf{3 0 0 , 0 0 0}$. only will be required to carry this part of the plan into effect. On comparing the relative expense of conveying solid und liquid manure, it is calculated that the cost of the conveyance of liquid manure by pipes, is, at the very outside, one.ticentieth of the transport of solid manure by curts.

The authority quoted is Mr. T. Hawksley, Engiaeer, of Nottinghum ; he states in evidence that the cost of transmitting water to a distance of five miles, and to a beight of 200 feet, including wear and tear of pumping machinery, fuel, labour, interest of capitul invested in pipes, reservoirs, engimes, \&ec.. amounts to $2 \frac{1}{2} \mathrm{~d}$. per ton ; the cost of carlage to the same distance and height will, under favourable circumstances, amount to 4s. per ton.

This plan depends chiefly upon the authority of Mr. Smith's report and estimates, published by the Health of Towns Commission.

He appears to have made several experiments respecting the diffusion of water by jets; in applying the results of bis experiments to the case of sewage manure. He states that the water must be at a pressure of from 100 to 150 feet at the point wher it is to be distributed by hose over the land. Winh a pressure at the bose of 120 feet, he found that he could, through a 21 inch hose and a one incb nozzle, distribute water over an uren of tuo statute acres-but to be safe, say one statute acre, and if the laud rises an aldition must be made to the pressnre equal to the rise in the land. Mr. Smilh states that for his estimate he assumes 200 feet total height to raise the water.

Great doubts have bowever been expressed as to the practicahility of distributing the sewage water by jets. In a report to the London Sewage Company Mr. Wicksteed, C.E., proposed an altogether different plan, and bronght forward powerful argnments for condemning in toto Mr. Smith's scheme. The following extracts embody the principul points of his reply:-
". The quantity of sewer water to be sopplied is equal to $\mathbf{1 7 , 9 2 0}$ gallons per acre per annum, one-third of which Mr. Smith says can be delivered in per acre per or 99.55 gallons, or about 16 cubic feet, per minute. At this rate the engine would supply 5 jets only at a time. Mr. Soith provides fo: 04 jets, and 8 lines of services each two miles long, which gives 8 plugs to each line of service pipes. Mr. Smith says be never intends more than two jots to be playing af one time on 8 aervice. But if, instead
of the jets playing for an hour over an acre, they aro playing for rather more than three hours; then two jets on each service, or 16 jets, may be playing together, and the engine will supply them.....The additional head required to overcome the friction of the water passing through the main, services, and hose, will be eqnal to 24 feet; but if only 9 jets, or half the number in the former estimate, are playing at the same time, then the water must travel through the hose at twrice the velocity, (to deliver an equal quantity of water) and the bead of water to overcome the friction must be 36 feet, and if only 5 jets are open at the same time, as proposed by Mr. Smith, to deliver the same quantity of water in the same time, the additional head required to overcome friction would be still further increased to 67 feet. Mr. Swith however secms to have lost sight of the fact that friction of water through pipes increases as the squares of the velocity, and that to force dooble the quantity of water through the same nized pipe, is equivalent te doubling its velocity, and would therefore require four times the pressure, and consequently an addition must be made to the proposed bead (viz. 200 feet) of 24 feet, 35 feet, or 67 feet, depending pron the number of jets opened at one time, which regulates the delivery; and if in the latter case the level of the ground proposed to be manared should be 133 feet above the town, there would be no pressure at the nozzle to create a jet at all, unless the bead or pressure be increased beyond the 200 feet, and which bead, to produce the effect Mr. Smith proposes, must be 224 feet, or 235 feet, or 267 feet, depending upon the number of jets playing at one time. But taking the most favourable arrangement for working the jets, which will be when the greatest number are playing at one time, the proposed head most be increased to 224 feet, and the power to $336-10$ horses, and this will be putting the scheme in a much more practicable form, and will enable me to check the estimates.

Mr. Smith however further asserts that the twelve inch pipe is ample for double the extent of country, and therefore considers he may reduce his estimate of the cost of the main to one-half. \dagger-lf the main is ample for double the extent of country, it must be capable of conveying double the quantity of water, and of supplying the additional number of services for doulle the extent, aud the head required to overcome the friction will be increased; with sixteen jets playing on each plot, it will be equal to 92 feet instead of 24 feet; with eight jets on eash plot, it will be 104 feet instead of 35, and with five jets on each plot, 135 feet instead of 67 . It is evidently erroneous therefure to suppose that the same sized pipe could convey double the quantity of water "to supply other sections of land of equal extent."

Again: Mr. Smith gives another estimate of the cost of supplying double the quantity of sewer water to the same section, and assumes that this can be done for the same outlay, forgetting that the head for friction must be quadrupled; and that if 16 jets are to be supplied with double the quantity of water, it would require a head of 96 feet instead of 24 feet; and for 8 jets it would be 140 feet instead of 35 feet; and for 5 jets 268 feet instead of 67 feet ; but taking, as before, the most favourable case, that of the 16 jets, the head of water must be 296 feet instead of 200 feet; and the power required for raising double the quantity of water, under this increased pressure, must be equal to 88.8 instead of 90 horses power.

The next point for consideration, and a most important one, in reference to the supply of sewer water by pipes, is the actual number of days during the year, on which the engines can be kept at work pumping the sewer water on to the lands-as it is evident that upon this point must depend the power of the engine, the size of the pipes, and the capacity of the reservoir for preserving the sewage, at periods when it caunot be thrown over the land. Assuming the periods for this purpose to be on the aggregate equal to sis weeks in the year; and that the engine will be constantly pumping sewer water during this time, 7 days per week, for 12 hours each day, the quantity of water raised by the engines must be equal to $\mathbf{6 , 3 0 0}$ cubic feet per minute.

As the sewage water is constantly flowing every day throughont the year, while the period for delivering it upon the lands is but six weeksi.e. 504 hours in 8,760 , it is evident that the reservoir must be capable of holding the supply afforded during 8,266 hours, or $5,020,278$ tons ; consequenlly the capacity of the reservoir will be $6,663,917$ cubic yards, and at a depth of 12 feet, or four yards, its area at the mean water line will be equal to 344 acres-if a square, the length of each sido will be 1,290 ygrds, or nearly three ouarters of a mile.

Taking Mr. Smith's standard of 200 feet as the whole pressure at the engine, which, as he proposes to raise the water over a standpipe column, may be considered sufficient, \ddagger the power of the engines required will be equal to 2,389 horses, and should it be thought advisable to increase the pressure, the power must also be increased in the same ratio.

In explaining the plan proposed to be substituted, Mr. Wicketeed adduces some general reasons for sopposing that the cleansing of the metropolis would be secured effectually by mechanical means, than by the tidal action of the river. At present it is necessary to make the main sewers of great capacity, because their contents can be delivered into the river, at or That this elevation may be expected in cases where it is necensary to go to a diataree
from the town, eeecas to harc been anticipated by Mr. Smith himeelf, in his etatement quoted in page 12 of this Report, where be states "That the water of most tuans can be dispoted of at from 60 to 100 feet, and will weidom be required to be raised more that 400 feet.
\dagger "One-half of the cont of the main pipe is orly charged, as, from the position and capactity tt is gufficieat to supply other sections of land of equal extent."-See Mr. Soolth'a Report on the Application of Sewer Water to Agricultural purposes. Published by the Bealth of Toman Commision.
t The hegig of the atandploe lately erected by me at the Grand Junction Water Worka, nemr Kew bildge, is about 210 foet,-the helght of the Monumems is aboat $\% 02$ feet.
oear low water only-s priod at which the delivery upon the shores mont offensive to the public; and although this part of the evil might in some measure be remedied by the adoption of the plans proposed by Mr. Walker and Mr. Paze, for extending the existing sewers into low water, till the contamination of the river vould remain the same. At all other atates of the tide, the sewage is pent op and held back, these large sewers becoming reservoirs, to contain the quantity collected during those periods in which the height of the tide prevents its discharge into the river.

Another evil now arises, not more offensive than Injurions: the fonl air not being carried off with the current into the river, necessarily and naturally rises through any openings it can find, and astream of noxions eflluvia is evolved.

A further diadvantage resulting from this peuning up of the sewage, is, that the current through the sewers being checked, the water becomes quiescent, and the heavy particles previously held in mechanical snspension are deposited, and accuanulate. When the current in the sewers re-commences, it is slow, depending upon the rate at which the tide falls into the river. Until it has fallen below the level of the pent-np mewage, there is no fall in the sower. Then as the tide falls inch by inch, so does the fall in the sewer increase, but not in the same ratio, because the water being always runaing, the relative difference between the two levels is always diminishing. The case would be different were the sewer water held back by mechanical means, until there was a sufficient fall of tide in the river; bat it is not $80-$ the process is gradoal, and no fall is obtained sufficient to scoar away the accumnlated deporits. Hence the necessity of manual labour to clear away these offensive deposits, which must be brought to the surface, or for machinery for carrying it off by flushing, and the demand for larger supplies of water, which would be aseless uoless there was an uninterrupted current in the sewers.

The following is an outline of Mr. Wicksteed's own plan of making the sewage manure available. He proposes to collect it in one large reservoir where it is to be dried and packed like gunao for sale. As regards the northern side of the Thames, it is proposed to constract a Circular Sewer of eight feet diameter : to extend from the end of Grosvenor-road, to pass through, in an easterly direction, Tothill-street, Westminster Abbey-yard, King street, Whitehall, Strand, to the end of Fleet-street; from thence a ewer of twelve feet diameter in continuation across through Ludgate-hill, the south side of St. Paul's Church-yard, Watling-street, Caanon-street, Tower-hill, Ratcliffe highway. Commercial-road, under the river Lea, above the Iron Bridge, and from thence in a straight line through the West Ham Marshes, to the proposed works, in an angle formed by the western banks of Barking Creek and northern banks of the Thames.

The pecessary communication between the present sewers and the intercepting sewer will be effected by means of shafs from the top of the proposed sewer to the underside of the existing sewers, so that whatever so flows through the present sewers must flow into the intercepting sewer; unless in case of long ountinued rains or storms, when if much mure than double the usual quantity of water should pass down, then as won as the intercepting eewer is fally charged, the surplus water would run of through the old channels into the Thames. The sewers will, however, at these tlmes, be relieved by an additional outlet of large capacity, the proposed sewer forming a commanication with the Thumes at Barking. All the flaps at the mouths of the present sewers will have to be made water-tight, to prevent the water of the Thmmes lowing at high water into the intercepting sewer, unless reguired, although this, of course, will oot prevant their being availuble for allowing the surplus waste to flow into the Thames whea necessary.

The new sewer has a fall of 12 inches per mile, which will give a velocity of $120 t$ feet per minute in the 12 feet sewer, and $988-10$ feet per minate in the 8 feot sewer. The main sewer will terminate in a receiving reservoir, in the Barking Marsbes. The engines will be equal to an aggregate power of 1,000 horses, and will be capable of raising, when worked at their full power, 56 feet bigh, $18,112,320$ cubic foet in 24 hours, equal to more than $2 \frac{1}{3}$ times the present ordinary quantity of sewer water. The seper water will be raised into reservoirs sufficiently elevated to allow of its eolid contents being deposited at a level above the Trinity high wuter mark, so that it can easily be shipped, or loaded into railway trucks, and that the refuse liquid inay be diacharged at all states of the tide. And intly, the depasit in the reservoirs will be removed periodically, and dried by artificial means, and then compressed and packed up, ready for transmission by land or water.

TUBULAR BRIDGE OVER THE MENAL.

The following is an abstract of the report on this gigantic undertuking, made by Mr. Robert Stepheason to the Chester and Holybead Ruitway Company, and read at their last meeting.
"I have throughout the experiments carefully studied the resalts as they developed themselves, and I am satistied that the views I ventured to express twelve months ago were in the main correct, and that the adoption of a wrought iron tube is the mostefficient, as well as the most economical description of structure that can be devised for a railway bridge across the Menal Straits.
"In the course of the experiments, it is true, some unexpected and ano malous resulte presented themselves; but none of them tended, in my mind. tu show that the tubular form was not the very best fur obtaining a
rigid roadway for a railway over a span of 450 feet, which is the absoluto requirement for a bridge over the Menai Straits.
"The first series of experiments was made with plain circular tubes, the second with elliptical, and the third with rectangalar. In the whole of these, this remarkable and anexpected fect was brought to light, viz., that in such tabes the power of wrought-iron to resist compression was much less than its power to reaist tension, being exactly the reverse of that which holds with east-iron; for example, in cast-iron beams for sustaining weight, the proper form is to dispose of the greater portion of the material at the bottom side of the beam, whereas, with wrought-iron, these experiments demonstrate beyond any doubt that the greater portion of the material should be distributed on the apper side of the beam. We have arrived therefore al a fact having a most important bearing opon the construction of the tobe, viz., that rigidity and girength are best obtained by throwing the greatest thickness of material into the upper side.
"Another instractive lesson which the experiments have disclosed is, that the rectangular tube is by far the strongest; that the circulas and ellip. tical should be discarded altogether.
"This result is extremely fortunate, as it greatly facilitates the mechanjcal arrangements for not merely the construction, but the permanent main. tedance of the bridge.
"We may now, therefore, consider that two essential points have been finally determined-the form of the tabe and the distribution of the material.
"The only important questlon now remaining to be solved is, the absolute ultimate streagth of a tube of any given dimensions. This is, of coarne, approximately solved by the experiments already completed; but Mr, Hodgkinson very properly states, that others, with tubes of more varied dimensions, should be coutinued, in order to clear ap some anomalies which still exist.
"The formala, as at present brought out by Mr. Hodgkincon, gives the strength of a rectangalar tube of the dimensions I proposed-viz, 450 feet long, 15 feet wide, by 30 feet high (assuming the plates to be one inch thick) equal to 1,100 tons applied in the centre, including the weight of the tabe iteelf; bat, dedacting the latter, equal to 747 tons in the ceutre, or double this, supposing the weight to be aolformly distributed over the whole 450 feet.
"This amount of strongth, although sufficient to carry any weight that can in practice be placed upon the bridge, is not sufficiently in excess fur practical purposes. It is on this ground, therefore, I bave requested Mr . Hodgkinson to devise a few more experiments in the shape best calculated to free the formula from all ambiguity. In the meantime, bowever, as I consider the main question settled, I am proceeding with the designs and working plans for the whole of the masonry, which 1 expect to bave the pleasure of suhmitting to you in a fortnight from this time.
" You will observe in Mr. Fairbairn's remarks, that he contemplates the feasibility of stripping the tube entirely of all the chains that may be required in the erection of the bridge; whereas, on the other band, Mr. Hodgkinson thinks the chains will be an essential, or at all events a usiful aaxiliary, to give the tabe the requisite strength and rigidity. This, however, will be determined by the proposed additional experiments, and docs not interfere with the construction of the masonry, which is designed so as to admit of the tube with or withoat the chains.
"The application of chaios es an auxiliary, has occopied much of my attention, and I am satisfied that the ordinary mode of applying them to suspension bridges is wholly inadmissible in the present instance; if, therefore, it be found hereafter necessary or desirable to employ them in conjunction with the tabe, another mode of applying them must be devised, as it is absulutely essential to attach them in such a manner as to preclude the possibility of the smallest oscillation.
"In the accompligiment of this I wee no dificulty whatever; and the designs have been arranged accordiagly, in order to avoid any further delay.
"The injurious consequences attending the ordinary mode of employing chains in suspension bridges were brought under my observation in a very striking manner on the Stockton and Darliugton Railway, where I was called upon to erect a new bridge for carrying the railway aorose the river Tees, in lied of an ordinary suspension bridge, which had proved an entiro failure.
"Immediately on opening the suspension bridge for railway trafic, the ondulations into which the roadway was thrown, by the inevituble uuequal distribution of the weight of the train upon it, Were such as to threaten the instant downfall of the whole structure.
"These dangerous undulations were most materially aggravated by the chain itself, fur this ohvious reason,-that the platform or rouldway which was constracted with ordinary trassing for the purpose of readering it comparatively rigid, was suspended to the chain, which was perfectly flexible, all the parts of the latter being in equilibrium. The siructure was, therefore, composed of two parts, the stability of the one teing totally incompatible with that of the other; for example, the moment an unequal distribution of weight upon the roadway took place, hy the paswage of a train, the curre of the chain altered, one portion descending at the point immediately above the greatest weight, and consequently causing some other portion to ascend in a corresponding degree, which necessarily raised the platform with it, and augurented the uadulation.
"So seriously was this defect foand to opernte, that immediate steps were taken to support the platform muderneath by ardinary trasaing; it
short, by the erection of a complete wooden bridge, which took off a large portion of the strain upon the chains. If the chains had been wholly removed, the subatructure would have been more effective; but as they were allowed to remain, with the view of assisting, they still partake of these changes in the form of the curve consequent upon the unequal distribution of the weight, and eventually destroyed all the connections of the wooden framework underneath the platform, and even lonseod and suspended many of the piles upon which the framework rested, and to which it was ntteched.
"The study of these and other circumstances conofeted with the Stock-ton-bridge lead me to reject all idea of deriving aid from chains employed in the ordinary manner.
"I havo therefore turned my attention to other modes of employing them in conjunction with the wrought-iron tube (as snggested by Mr. Hodgkinson), if such should be found necessary upon further investigalion.
"As I have already stated in this I perceive do dificulty whatever; indeed there is oo other construction which has occurred to me which presents such facilities as the rectangular tube for such a combination.
"Having. I trast, clearly explajned my views in reference to this important work, I have only to add that in two months I expect every arrangement will be completed for commencing the masoory, which shall bo conducted with the atmost activity aod vigoor.
"I can scarcely ventore to say, until after these arrangements are finally completed, at what period we may calculate upon the completion of this bridge; but I canoot recommeud you to calculate upon the whole being accomplished in leas than two years and a hulf."

WEIRS ACHOSS RIVERS.

Report by the Coxmmittee of the Clyde Truatres on the Weir Qwestion.
The Committee believe the present position of the Clyde Trustees, as regards the question of the weir proposed to be erected across the Clyde, is usfollows :- Prom the Act procured last Session of Parliment by the Bridge Trustees, containing clauses to the following effect:

1. That the Bridge Trustees are entitled to form a new dam or weir at or ubout one handred and forty yards ubove Hutcheson's Bridge, having a lock or work therein, or connected therewith, at the expeuse of the Clyde Trustees.
2. When these works are erected, the Bridpe Trustees are then authorised to remove the weir or works placed at the Stockwell Street Bridge by the Clyde Trustees, at the Clyde 'Irusters' expense
3. The Clyde Trustees are obliged to cuntribute a sum towards sinking and building the piars and foundations of the new Bridge at Stockwell Street. And the Clyde Trustees are obliged to maintaiu the weir aud lock constructed by the Bridge Trustees, at their expense, in all time coming. No detuiled plans or estimates exist of the weir and lock. The Act provides that the cost to the Clyde Trustees, of the whole works for which they are made liable, shall be fixed by two Engiuecrs or Arbiters appointed by the Sheriff.

Whether the Clyde Trustees ought to contribute to the building of a Bridge over the Ciyde, is not within the remit to this Committee; and having stated the present position of the Clyde Trustees as regards the weir, the Commitiee proceed to the consideraton of the effect of the pro. posed dam or weir upon the navigation of the Clyde.
The Committee believe that all Engimeers now act upon the principle of giving the greatest possible freedou of admission to the tidal waters, as the best means of improving aavigable rivers, -the recession of these waters carrying down with them to the sea, the alluvial matter held in suspense by the wisters of the river; and in proportion to the quantity and velocity of the retiring tidal wave, is the benefit derived from its cleansing and deepening power.
In order to carry out this principle, oow well understood and universally acted upon, Engineers widen, straighten and deepen the channel of rivers, from the wea opwards, as far as the tidal wave can be eaticed to come, and break ap and remove all obstacles to its progress, whether natural or artificial. The tidal wave in the Clyde, accordiag to the report of the late Mr. M•Quiston, confirmed by sobsequent observation, can be made to flow aeven miles above the City of Glasgow, and give an udditional pressure and impetus to the retiring tidal wave of not less than eighty-millions of cubic feet of water at ordinary tides; and if the river be properly deepened, even this quantity of water may be increased. The Committee therefore take leave to recommend that no weir or dam be erected across the Clyde within the reuch of the tidal fow.
The Trustees are aware that the largest portion of their stated outlay is upon dredging in the River and Harbour; and the Committee are satisfied that a very large proportion of this outlay might be saved by the employment of the powerfal natural agency of the tidal waters. The expense of dredging from July, 1840, to July, 1844, amounted to a very lurge sum, and it constitutes by much the largest item of our annual expenditure. The heaviest portion of this expenditure was upon the Harbour, where dredging is performed at great iucouvenience to the shipping, and to the business of the Port. Nor will it in the opinion of the Comsmittee, ever be otherwise, until the River above be cleaned and deepened, and a body of water procured sulicient to scour the Harbour, which at prewent serves as a mettling pool for the upper waters.

It will be ald that the Clyde Trostees have no power onder their Act to operate upon the River to the eastward of Stockwell Street Bridge, and that their Acts bind them to maintain the present level of the River.
The Committee believe that if the Clyde Trustees can show that the Navigation of the Clyde is to be benefited by an extension of their powers, say for seven miles above the Stockwell Street Bridge, penetratiug ioto the heart of the mineral districts, Parliament will gract these powers ; and is regard to their obligations to maintain the present level of the River to the east of Stockwell Bridge, for the protection of certain public works, the Committee believe that the Clyde Trustees were coerced into the admission of these clanses into their Bill, and that there are other and better modes of protecting these works than by a weir across the Clyde. The Committee refer to the analogous circumstances and condition of similar works along the coorne of the River, beneath the Stockwell Sireet Bridge, because, if a like protection to these public works had been sustained, there could have been no deepening or improvement of the Clisde Navigation. The Committee, in short, believe, that no public companies, whether constituted by Act of Parliament as Canal Companies, or Water Companies, Joint Stock Companies, or private individuals baviog works on the banks of a navigable river, using its waters, or having a right of access thereto, can for thoir interests control or prevent the improvement of a poblic davigable river, as far as the tidal flow reaches.

From the absence of all detailed plans or descriptions of the works to be erected at the weir, the Committee cangive the Trustees no information as to the beight or elecation of the intended weir; bat from its containing or being connected with a lock, the committee are led to believe that the wir or dam must be elovated to such a height as to enable the lock to he wrought at all times of the tide, and in all conditions of the river, or it is evidens it mast be useleas for mavigation purposes. The Committce cannot believe that so bold and injurious a measure as the elevation of the channel of tho Ciyde would be attempted, although there is an indication of such an intention on the rery small plad submited to I'arliament; and without such elevation, the works described appear to the Committee to be either useless or impracticable.
The Committtee, therefore, take leave to recommend that the Cl_{y} de Trustees apply to Parilament next Session for powers to open up the navigation of the Clyde to adiatance of say seven miles above the City of Glaggow. to constract all necessary works, and levy such dues as shall be jodged fitting and proper. They will thus, in the opioion of the Committee, give great facility for the conveyance of minerals, country produce. and traffic of every deacription to and from the Harbour; and what in of equal, if not of greater importance, they will, by the recession of the tidal waters, be onabled to keep the whole channel of the river clear at a very moderate expense, and thereby be enabled to devote several thousands a year, now expended in dredging the River and Harbour, to other purposes.
The Committee farther recommend that the Clyde Trustees intimate to the Bridge Trustces their intention of going to Parliament dext Session, in order to prevent the Bridge Trustees from constructing a weir acroas the River Clyde, with a lock or works therein, and that the Bridge Trustees, in the erection of their Bridge, do not in the meantime interfere with the bed of the River, so as to prejudice the Clyde Trastees in their position as regards the Water Company and other parties.

Before concloding their Report, the Committee also beg to direct the attention of the Trustees to what is already partially before the Trastees, viz. - the attempt opon the part of a Canal Company, to take possession of the River Clyde at and above the proposed new weir at Hutcheson' Bridge, and to make additional works in connection with that weir. The Committee have not beed able to procure a sight of the plans of the worka which the Canal Company propose to attach to the weir; but as the whule scheme implies the existence and continuance of a weir across the $\mathrm{Cl}_{\mathrm{i}} \mathrm{de}$, the Committee trust the Clyde Trustees will not be consenting parties to any such scheme, but will oppose it with all their power and joterest, and compel the Canal Company to terminate their works within the norshers line of high water.
And the Committee farther recommend that a copy of this Report be sent to the Lords of the Admiralty, and another copy to the Tidal Harbour Commissioners.

Arcbd. M'Lellan, Contener of Comarilfor.

INSTITUTB OF BRITISH ARCHITECTS.

Janwary 26.-J. B. Papworth, V.P., in the Chair.
The Very Rev. W. Buckland, D.D., wat elected an IIonorary Member, and P. C. Pearose, Esq., an Associate.

A letter was read from Herr Zanth (honorary and corresponding member of the Institute), at Stutgard, descriptive of a Cavido, now nearly completed from his design and under his auperintendence, for the King of Wirtembarg. The atracture-amed after the royal owaer, "Wilhelma," is of atone, in the Moresque style, the courses of the masonry being colonred white, yellow, and red viulet, and covered with copper, partly gilt. It is aitnated in a winter garden, in the midst of foor conservatories with porticoes, otepm and terraces, and parterres;-it consista of a veatibole, an Oriental court,
with fouptain, pleture gallery, a diven, aloon, an eating-room and appurteasnces, a aleeping and dressing room, and a bath with an arched ruof, decorated with pendants. The conservatories and porticoes are of cast iron, very alender, and richly omamented;-in the same tate, the concervatories divided into two aiales, containing various rare flowers, abut agtinat two pavilions, surmonated by glazed octangular cupolat, for tropical plents ;- She entire extent is about 350 feet; at the end of the conservatories the porticoes commence, which form the enclosure of a flower-gardet, for the private use of the king.

Mr. C. Ponler, Fellow, on presenting some plans and designs relative to the proposed Thames Embankment and railway street, read a paper on the projected linet of railway in the metropolis about to be submitted to Parliament. Mr. Powler stated that he was indebted for most of the details to Mr. Aurtin, the engineer (Hon. Secretary to the Metropolitan Improvemen: Society). Who had been at conaiderable pains to prepare a plan of the whole of those lines for which the deposita had been completed. He need scarcely any, that there had been a number of other achemes, which had not survived the fatal effects of the panic ; of those that remained, it appeared from the plan that there were tucenty-one different lines, comprising 100 miles of proposed railwiy. within a circle of five milet from St. Paul's. The spaces cheduled for termini within a circle of fourteen miles of St. Paul's, together with that necestary for the construction of so much of the lines, constitute an area of littie short of 200 acres, being equal to that portion of London ertending from High-atreet, Whitechapel, to St. Paul's Cathedral, included between Ieadenhell-atreet, Cornhill, the Poultry, and Cheapside, on the north, and the river Thames on the month : nearly equal to one-third of the City, and little less than one-half of that devaitated by the conflagration of 1666. On a moderate calculation, it would involve the deatruction of between 9,000 and 10,000 houses, and cause an expenditure, for the purchase of property alone, of about fifteen millions sterling. Mr. Powler stated, that a memorial on the subject had been forwarded to the First Commissioner of Woods and Porests by the Metropolitan lmprovement Society, aggeating that the Metropolitan lmprovement Commission should take the subject into their consideration at an early period; and observed that it behoves not only all professional men, bat all who deaire to see a right direction given to this extraordinary movement, to assiat in promoting the ame in order that this branch of ralway communication may be dealt with separately and distinctly, so that a comprehensive and ayatematic plan may result from what at present is a heap of confusion, arising from the fact that eacb line has been separately laid down, withous reference to, or the know. ledge of, what is proponed by any other. Mr. Powler alluded to the new prisciple of railway itreets, and to the double object that the Thames Embankment and Railway Junction Company had in view in adopting it, namely, that of carrying out a great public improvement in conjunction with the exteasion of railway communication; likewise that, in tbe event of Government acceding to a separate and distinct consideration of metropolitan lines, an opportanity was at present afforded which could never again occur of effecting the improvement of this great metropolis, at to selubrity, conreaience, and splendour, without, probably, any sacritice on the part of the Covernment. Mr. Powler adverted to his design for carrying a railway over London-bridge, as one of the means proposed to connect the lines now termioated at the soutb ead of the bridge with that projected through the City from Hungerford-market to the Blackwall line. This was proposed to be effected by the addition of arcades; covering the footways with iron framework, extended over the carriage-way to carry the rails: the former of these additions had been projected by him in one of the denigns submitted to the House of Commons, when the reconatruction of the bridge was under consideration.

February 9.-Mr. Tirs, V. P., in the Chair.

NEW MODEL OF THE PARTHENON.

A discumsion took place which excited more than ordinary interest, and attracted a very crowded meeting of the members of the Institute, the subjeet being the consideration of certain questions respecting the original architecture of the Parthenon, suggested by Mr. Lacas's models recently deposited in the British Museum.

Mr. Locas commenced the discussion by reading the following paper, of which he has obligingly furnished us with a copy.
Mr. President aad Gentlemen,-I beg to offer yon my best thanks for jour obliging courtesy, in the opportunity thus afforded me of introducing the aubject of the Restoration of the Parthenon, before it may be, the most s repre, but at the same time certainly, the most competent tribunal-and I briog this subject before you with much anxiety, conscioos as 1 am that the portion of my work jou are most likely to sit in judgment on, is that h which my previous stodies had been but corsorily directed, and but that I appear before you rather to court correction than to injpart inforaiathan. I sbould now feel as though I were bearding the lion in bis own rea. Sir, it is our lot to live at a period wheo improvements in every department of scieoce have been carried to great results; and though in the Gue arts, a commensurate development of successful energy is not yet appareat, the time is now come when the artists whose warks are the most radaring chrouicles of the great events of their period, should bestir themselves, for it caunot have escaped our observation, that within the last few jears simaltaneously and apparently without any connection, a general teadency to revive the study of high art bas spruag op in the most intellectual parts of Eorope, in Grimany, England, Denmark, France-while in

England, from many happy circumbtances, art appears likely to asame bigh position.

I have, Sir, in the conrse of my reading met with the observation that to have a difficult subject thoroughly inventigated, we shonld set to the task one who has a fitting amoont of natural qualifications, but who is entirely ignorant of the theme; place at his disposal all means and appliances of study, and if it be his aim (as mine is) to investigate eolely for the pros duction of the truth, you may then get the subject treated witb all the rean of the advocate, united to the calmaess and sobriety of the judge, even though the subject matter be so important as the master work of Ictinos, or the profonnd science displayed in the triamph of Phidias; a theme so glorious immediately rouses in the mind of the investigetor all the latent or dormant energies of his natore, with no inmecurate early impressions to remove from his mind, no erroneous foregone conclusions to bias his judgment, be surveys with ardour and enthusiasm, but records with calmneas and indifference, untramelled by the vividness of early impressions; he is competent to seize and to analyze all the salient points of controversy, and to arrive by induction at soond conclusions.

But from this mode of procepding one defect may be anticipated which ought to be goarded against, namely, that in invertigating the details of an interestiog subject, a few points already too partially investigated may be taken for granted, and therefore some matters not apparenily importans to the high bearings of the case may be overlooked or underrated; but it is my good fortone to introduce the resolt of my labours where the spirit of them will be fairly appreciated, will for minor blemishes not materially effect the whole performance in its general appeal to the underatanding, and 1 am sure that you, Sir, will always appreciate work according to ite merits, and judge the artist with respect to his intentions, and the peculiar circumstances under which his work was executed. Our subject, Sir, appears naturally to resolve itself into a recapitulation of the kuown and adnuitted facts of the case, including its general history, architectural construction and sculptoral adornments, with a consideration of the doubtful or uncertain portions, included in which is to be placed the question relative to the interior of the Temple, its polychromatic adjuncte, the Cbrys-elephantine statue of the Gioddess, the central portion of Esestern Pediment, with the missing metopes frieze-shields, \&c. and having examined these matters I propore very briefly to investigate the principles that guided these great artists in the adomment of their works. It is neceasary for the unity of the subject I should notice the known parts, but only very briefly.
It is well known that the Parthenon was erected at Atheny about i.c. 4i0, in the most flourishing and glorious period of that great republic, under the auspices of her greatest statesman, Pericles, and from the designs of the greatest sculptor and of the most celebrated architeot of the ancient world, Pbidias and Ictinus. It stood on the summit of the Acropolis, was a Doric temple, 227 feet in length on the upper step, by 101 feet in hreadth. It was constructed entirely of Pentelic marble, and, including a stylobata of foor steps, was 66 feet in height; it was called Hecatompedon, or the building of a hondred feet; and from its united excellencies of design, decoration and material resulting from the fine taste, unbounded means and munificence of Pericles, it may be recorded as the most perfect that was ever executed. In the Parthenon was consummated the noble triple union of architecture, sculpture and painting; in to was the artist'o triumph complete, and art reached its acme.

In the construction of the columas of the exterior mach subtlety of managemeut appears to bave been used, such an the well known facts of the inclination of the columns $1 \frac{1}{4}$ inch inwards, and that of the outer or angular ones of the exterior being larger by $2 \frac{1}{\text { in }}$ inches diameter than the others and I have also been informed that the enstasis or swell is dissimilar in the different columns, and that the diameters of others besides the end ones are also different; but the most curious circomatance is the last I bave heard, and which I believe a talented member of goor Institute, recentiy arrived from Athens, can testify to you, vir., that all the capttals on the south side of the temple are 6 inches smaller than any others, and I hope also now to learn if the diminution of these capitals be contined to the ovolo under it, or whether it serve to increase the entasis of the columns generally; other forther peculiarities of structure may here be alloded to. Mr. J. Pennethornc in his work observes, that he found the upper step of the Parthenon to form a simple curve rising 3 inches in the centre, that higher in the front the curve changes its charncter, and in the architrave becomen a curve of a donble curvature. And Mr. Bracebridge juformed me that on stretching a string from the two ends of the front lower steps he found that the centre of it receded two inches from the atring.
[Mr. Lucas then detailed at sonse length the history of the Parthenon from the tine when the Acropolis was besciged by the Venetians in 1687, to the time of Lord Elgin-the general character of the sculpture, \&cc, but as these points are fully considered in Mr. Lucas's published observations, they are here omitted. After a minute examination of the designs of the sculpinre in the pediment, the lecturer proceeded as follows.]

In restoring the Parthenon the question that is most difficult to grapple with, and least likely to be successfolly investigated, is the interior of the Temple, it having ondergone so many transformations, each possibly leaving some trace or vestige, and those vestiges so comminated together that little satisfactory information can be expected to result from the most determined application. Those most competent to judge on this matter generally arrive at ditferent conclusions. As regards the roof, some suppose it was open, and others that it was entirely closed, and that the natural light of the heavens was supplied by artificial light, but both these soppositians appear to be untenable; the open roof hypothesia being met

By an ancient opigram on the statue of Jopiter in ivory and gold, in a temple similar to the Parthenon, namely, that if the god rose he would carry the roof with him; while the eatire closing the roof and consequent exclusion of the best light for a statue, the light of day, seems very improbahle. A partial opening admitting light, by the means of some semitransparent substance, appears in the absence of all proof the most feasible supposition.

As to the colamos that supported the roof equal obsonrity exists, the most probable supposition being the last one on the subject, and which has ouly been lately brought to light on destroying the musque, in 1844. M. Pittakis, in a letter to me on the subject, givesit as his belief, that the traces of Doric columas found on this remoral of the mosque, with a diameter of five feet, supported an upper tier of the lonic order. This statement of the diameter of the lower or Doric tier, being of the proportions of five feet in diameter, is confirmed by the personal observations of Mr. Bracebridge, and of Mr. Penrose. On the other band, in letters read at this Institution, from Mr. Knowles, month since, the diameter is given at 3 ft . $7 \frac{1}{2}$ in. I am at a loss to account for this great discrepancy on a subject so interesting, and apparently so easy to be ascertained. Now admitting the Doric to have been the original stracture, and five feet the diameter, it then appears from the following diagram that there would be no space for an upper tier, for if it be an lonic one, it must havo been disproportionately small compared with the bulky Doric below. Sapposing the Doric to have been used, I am rather dieposed to believe that an upper tier could not have been used, but that some other architectural featare must here be substituted.

No. 1 Outer Colamn.-No. 2 Colamn of the Pronmus.-No. 8 Sise of the traces of Colamng lately discur ered.-No. 4. The arrangement of the interior in the restorasion.
With regard to the chief sources of authentic information as to the use of colours by the ancients, the sabject has been exhausted by the able remarks of the various writers on this matter; Mr. Hamilton, in his translation of the report of the committee who investigated the marbles of the Parthenon, appears to have had no bias on the subject, and the inferences I derive from his translation are, that some of the early temples must have been white, and that others were certainly painted, but no hint is given as to the period, and as to the actual tints on the most perfect specimens of remaining colonr in the temple of Thesens, Semper found some blue colour nader the necks of one of the antra, and therefore drew the conclusion that the whole of the wall of the cella was blue. Scheubert on the other hand sayshe found on the same spot colour, and that it was yellow, and yellow in his opinion was the colour of the cella. Another observer found what he cousidered red, aud draws similar conclusions. But although chis discrepancy oxists on this point, all agree. in stating that above and below the frieze, iu the Parthenon, the meander ornament was painted in a reddish brown. On that brown, gold has been discovered, and therefore some suppose the colour to have been the ground for the gold, and this also applies to the elegmat palm leaves, on the facia, below the triglyphs and the ornament on the pediment.

Admitting as we must, from the amount of evidence that the Greeks did use much colour on their works, yet with regard to the actual mode of applying it, or the period of its most general use, we are in a state of great oncertainty.

It has been observed respecting the purity or impurity of taste in the use of colour by the Greeks, that this consideration was foreign to a restoration, that it was for as to decide on the question by the proofs as addnced, and that in restoring we must restore colour as demonstrated, and that we have no right to set any fastidious idea of our own in the use of colour in opposition to the practice of the Greeks, where that practice admits of proof. To this however I would beg to demur, that from our practice in the ase of colour, we have no right to assume, that the ancient Greeks ased colour as we now apply it, especially in their application of it to their
highest uses in painting their divinities. We have it in evidence that the colamns of the Parthenon were painted red, but the circumstance that the paint exists in the opening of the joints of the columns demonstrates that the colour was applied at a late period, subsequent perbaps to som earthquake or other commotion, because on the completion of the temple the joints wore so close as to prevent the insertion of colour. Now it doos appear to me, that of a style of art so severe and chaste as the architeotmre and scolpture of the Parthenon, the high excellence can only be coun. prehended and appreciated, by our having still in existence enough of the precions fragments to form some conception of the effects of the whoie. What Find of idea could we have formed of the architecture and sculpture from mere deacription or fragmentary evidence? Let ni refleot-wbat idea does our own art give us of the perfection of Greek art, except as a close imitation of that which actually exists. Withont the actual work of the Greek artists before us, who could have propoonded any reauccitation of its high excellence either in form or execution? And in like manner from the aatere of things, $I \mathrm{am}$ eatitled to contend that in the best times α Greek art, where coloor was applied, it was used with equal ceverity, chastity, skill and purity, as the scalptare and architecture domonatrato, and therefore reasoning from analogy as from fragments alone, we could not hope to restore as a whole, neither can wein oolour hope to reconatruct with our limited opportunity of observing, not so mach pertaps as to the actnal tints as to the mechanical application of them, aler the beantifal sculpture had received all its wonderful discriminative touches, the marking of bone, tendon and muscle. Does it seem probable that men of such cultivated tastes would have smeared over these highly wrought forms with cil and earth? Does it not, Sir, seem more probable that the surface was staimed with colour, not coated with a pigment? in using colour to embody the furms of their deities, we may be assured that the same amount of skill, pure taste, and beantiful appliance would be nsed as was shown in producing and finishing the actual form. Viewed in this light, it is by the power of the inagination, and this power alone, that we of these latter days can compreliend the glorious aspect of the Parthemon, in its integrity of colour as well as form. It may be that my bias may reader me an incompetent judge on this subject, but I bave searched with mach assidnity, and I believe that all the colour I have seen readts from the surface being stained, not painted. In some parts colour romaining, shews the pure surface of the marble where it has beea protected by the pediment; and where exposed. In some parts the original bnrface is still preserved by the means appliod to tint it, and as the other surrounding portions are deeply corroded by time or drip, wo I believe that the process of tinting hardened and preserved the semitransparency of the marble; and of that mode of execution as applied to sculpture, I do not think we have acquired the secret.

Having thus briedy explained the structure and decorations of the Parthenon, we proceed in our endeavours to investigate the principles of design that characterise this great work of Phidias and Ictinns. The effect which their work creates on our minds appears everywhere to be produced by the same means, - variety and contrast in onity-whether in its architectural construction, in the selection of the subjects for the sculptures, or in their composition and treatment. In the architecture, the solemn and rigorous uniformity of its masses, and the severo proportions of the columns, contrast marvellously with the boundless diversity of the lines of the sculpture. And while onity is thas preserved by the symmetrical character of the whole structure, clearly and intelligibly stated to the eye, and commanding the observance of the mind, the attention is enchained and preserved by the beautiful and harmonious play of light and abade resulting from the inner colvmns of the pronaus being smaller than the outer, and being placed on steps, which carry the inner architrave higher than the outer. The beautiful frieze is thus placed above the apectalor's first glance, and reserves for him beauties veiled from his first impression, and therefore far more effective in their unobtrusive display at the proper period.
It was thus, by an inexhanstible power of invention that Phidias produced that great improssion, which all minds gifted with a perception of the beautiful acknowledge, in the contemplation of the Parthenon; and, for ourselves, let it be ourstudy to d well on these noble works, and to seek to imbue ourselves with their spirit and power, in the choice of noble theme, in composition and treatment. This, then, is the proper infuence these moble examples should exercise on our art, to produce a truly National School of Sculpture; for we cannot be blind to the circumstance, that merely repeativg the forms of Greek art ; wust altogether fail in producing such a desideratom. Greek art was perfect because it was national, because its pecuiiarities suited alike the national feeling and the national religion. An attempt to repeat the mere forms, whether uuited to their mythe or without that appeudage, must fail to satisfy in any department of art, as far as regards the producing an English School, either in poetry or sculpture, painting or architecture; yet the contemplation of the myths of the Greeks is full of interest and use, as adding to the amount of our knowledge of the operations of the human mind, and here we may learn how man sometimes produces results so perfect as to become laws, and as it were to form an eternal model of fitness and propriety, the reanl of wants perfectly supplied, of ideas perfectly embodied, of national feelinge incorporated with and represented by national emblems.

It requires indeed a considerable knowledge of Greek art to be able to appreciate the fullamount of influence it nay axercise, and a still more thorough acquaintance with their works, to comprehend their real scope and
depth, asd it is not therefore surprising that a high general estimate of this art ahould prevail, and yet that it should be but litue understood, or that fta infuepce should be limited. It may be said-What are the ezcelleacies we are to seek and to use, to form as it wore part of our anaionality I I answer the general comprehensireness of plan, ifs fitness, its greadenr, ite profonad science, and general nobility of treatment, so anlike The meanmes of plad, rigidity and utter prostration of science, so often diacoverable in works, prodoced ont of the pale of Greek art.

The whole chain of dependent facts was evolved and laid ont to be exaraised; the most delicate shades of trulh scrupulously distinguisbed, and at no seience can exint without demonstration, the whole exiated as one. Architecture and Scylpture, and Painting blended into consumonte harmony : the Parthenon was a magnificent porm, comprehended at a glance, and in this poem of a thousand stanzas, every separate verne was a poem in itself, bat sabdued and aiding to the general effects by the fiteces of its application, and the barmony of its proportion. This accnrate aytematic form which gives to Greek art its utility as an examplo, indeed ts to bo fonnd no where else, and without it we cannot anderstand the cience of art in its truth. Now to speak of a general system as applied to Mediavel art soonds rather curious. I speak here of the adoromenta rather than oonstruction; they seem a collection of fragments-here a consistency, there an absurdity, hint and hypothesis, doubt and dogmatism, feeling and reason, cold mathematical abstraction, and the most gorgeous poetry, the drama and the lecture, the serious and the ridiculous, all thrown uogether by a hand careless in its profusion of riches, both disjointed, and constituted - these are the characteristics of the most perfect specimens of Medisual art, and in this art they often seem to have overlooked ibat great advantage in Greek art, the exquisite beanty of their forms. Whether it was elimate or natoral temperature, or education, or social circumatances that gave the Greeks their delicate perceptions of universal beanty, no people ever existed in whose happineas it was so necessary an ingredient, or to whom it was so profusely ministered by the genius of their composers. Their whole aature was so refined that truth stripped of grace and beauty, conld no more touch their minde than religion their hearts, unless veiled uuder a gorgeous mythology.

The Greeks succeeded is producing perfection in the art or science of portraying the human form in ite most perfect beauty : this we also must use; for wilhout it our art must retrograde. But we require something more than the meience of beautiful form: we must use the form, and superadd a apirit of nationality. The sculpture of the ancients is the most faithful, the most eloquent, the most enduring chronicle of their greatoese. If, in his solemn discourse over those sluin in battle for their country, Periclesconld my that of illustrions men all earth uas their tomb, and that their names were not marcly graten on the sepulchral marble among their oucn kindred, bub Morediup for ecer, in the unwritten registers of memory in other lands; w may we say, at the close of this our essay on Phidias, that though the glory of it, manifested to bis countrymen in distinct and familiar characters and in the fulness of its meaning, is to oor distant age ooly dimly and distantly revealed; if we know it only by the few frage sents wo heve preserved, or by those scattered in foreign lands, or by cold delineations and still colder descriptions, yet the image of the art unrvives in the mind of man, to be reflected again and again in the thought of reate posterity, an unwritten record and silent witness of the greatanes of the Atbeaian people, and the genius of their sculptor.

They so sepulchered in such pomp do lie,
Thut kings for such a tomb might wish to die."
Whea Mr. Lueas had finisbed, Mr-Donaldson read the following remarks :
You will doubtless, gentlemen, have been struck with the energy and Gredpess of purpose with which Mr. Lucas has followed op his project of worting ont a reputation for himself by a restoration of the Parthenon, the fame of which, he boped, would bring him favourably before the notice of the poblic, and no less pleased by the frankness with which be has commonicated to us bis ideas on the subject.

But there are other considerations of very great importance, which offer themselves in connection with so vast an nadertaking. The boldness of the attempt must be justified by the qualifications of the enterprising artist. The tate and practical akill of the sculptor must be seconded by the learning of the astiquary, the professional experience of the architect, and the precision of the modeller. It seems beyond the range of human probabi lity, that any thing leas than a visit to this noblest of ancient monuments, and many weeks, nay months, devoted to the study of it on the spot, could mable any ooe, however gifted, to solve satisfactorily the many doubiful questions which hang over its complete restoration. We know that Palladio thrice visited Rome ere he ventured to publish his monuments of Roman architecture. Branplleachi returned again and again to study the baths, the teroples, and the ruins of that ancient city ere he felt satisfied to undertake the construction of the dome of Santa Maria dei Fiori, at Florence. liacois repeatedly went to Naples to measure and draw the remains of Pompeii, in order to ensare a scrupulous and faithful record of the excaated buildings.
If Mr. Lucas had pablished his model and descriptions of it, as a restoration of the aculptures of the Partheaon, if the laudatory paragraphs, inacrted by his admirers and friends in the public prinis, had confined ibeir eulogies to this, and bad laid no higher claim than to the merit of having restored the work of the immortal Phidias, I shonld have left to others uncre competent than myself, and better acquaiuted with that sister art, to have examined into the proprieties of the restoration in that department. Bat the title-page of Mr. Lucas's own pamphlet, copies of which we owe
to his friendly courtery, states that one of the models exhibits the temple en it appeared in its dilapidated state in the secenteenth century, and execufed from the existing remains, or from ututhentic drawings. The other being an atlempt to restore it to the fulness of its original beauty and splendour. It is upon the fallacy of these statements, as regards its architectore, that I feel obliged at once to protest agginst the modelg-the one as not being a faithful representation of it in its dilapidated state, not executed from existing remaias nor from authentic drawings-the other being inaccurate generally io its architectural details, and being deficient, inatead of exhibiting the fulness of its original beanty and splendour.

I feel called upon to examine the subject thus specially, for the architectural errors are so contrary to the canous of the art, that the character of the profession is implicated, when we see that the Trustees of the British Museum give the stamp of approbation to these mistakes by purchasing the models, and exhibiting them in juxta-position with the very marbles of the Partheoon itself. We must give them full credit for wishing to do full justice to the high reputation of Phidias; it is only to be regretted that, from parsimony or ignorance in themselves or those around them, they should have forgotten the claim of Ictinus to the character of the first architect of his own or any age, and as having produced in the Parthenon a work free from every defect, pure in every detail, graceful in every proportion.

In the model of the Parthenon in its dilapidated state, Mr. Lucas has erroneously represented on the architrave over the columns of the Posticum, the fillet caps over the gotts. He bas not placed them ot the augles, and bas continued them along the flanks. They now exist at the angles, and at equal apaces along the front, as shown by Staart, and there were none es usual along the fiank.

Mr. Lucas has continued the antso cap mouldinge along the wall of the Posticum, and along theflank wall of the cella, in both which positions they never existed. Mr. Lucas has represented cornices on the inner face of the cella wall where they do not exist, nor according to the most probable mode of restoration, ever could exist.

These introductions are totally at variance with the drawings of Stuart, and cannot possibly be extant in any other anthentic drawings as stated in the title-page of the pamphlet.

I must now venture to allude to the restored model. In the first place, it is less accurate as regards the ateps, than that of the rulned temple. In the latter there are only three, in the former four. Upon referring to $m y$ own studies made on the spot, I find three stepp of marble, and below the lowermost a slab of the same height and about the same projection of atone, and thus specifically stated in my sketch. There is then a much wider slab of stone, and a drop beyond of $\mathbf{S} \mathbf{f} .4 \mathrm{in}$. It appeared conclosive to my mind, that the stone slab was a portion of the pavement of the area around the temple, which was laid with slabs of stone, the opper surface being level with the upper face of the stone slab under the thind marble step. In fact, it would have looked iucongruous to have had one step of stoae and then three of marble. Besides which we have the teatimooy of Vitruvius, who says, Book III. c. 3. "The nomber of steps in front should always be odd, since in that case the right foot, which begins the ascent will be that which first alights on the landing of the temple." We know that our great master borrowed all his canons from the Greeks, and that the superstitions of the ancients had a common origin and a common acceptation.
The restored model shows no traces of the plinth which existed between the lower parts of the columns of the Posticum, and of which there are in. disputable signs in the Parthenon. This plinth, which was 9 feet 1 inch bigh, and half as wide again as the centre auting, received the standards of the metal grating which inclosed the intercolumniations up to the summit of the capitals, as is ascertained by the mortice holes still existing in the antzo. This metal work was for the parpose of giving security to the Posticum, as within it were exposed to public view many of the votive offerings of heauty and value, the riches of the temple, and being placed within the metal railing, they were prevented being iojured by accident or purloined by the evil disposed. This grating was probably of bronze gilt, and many Roman bas-reliefs offer authority for a restoration.

The next inaccuracy to which I wish to call attention, is the doorway. The old aperiure had been narrowed long since, either by the Venetians or Turks, by the introduction of slabs in irregular conrses; beyond these slabs the wall is perfectly plain. Reasoning from the magnificence and importance of the Parthenon, which would be evidently deficient in effect if the doorway were a mere square aperture; reasoning from the analogy of the Erecibeum, which has a magnificent doorway, although an edifice of less importance than the Temple of Minerva, and reasoning from the evidence to be fonnd on the apertures of the Propylea, which had evidently brouze dressinga, I have little hesitation in stating my opinion, that the dressings of the Parthenon were of bronze, and that the model is siagularly unfortunate in baving consoles or trusses, which support nothipg, are ac companied by no corresponding embellishment, and are contrary to all reason, propriety, and example. I have already alluded to the continuation of the mouldings of the anta caps, retained in the restoration, and quite contrury to fact. We now come to the interior of the cella, and considering the complexity of the opinions offered by Messrs. Pittakis, Finlay, and others, who wore consulted by our author, it is not surprisiog that be should have found himself involved in a maze of difficulty. It appears that Mr. Cockerell, in the seventls volume of the Museum Publications, has restored the interior with two orders of columns; the lower are Corinthian, the upper are Doric. All the rules of the art, ali amalogy, and all
prohability have run counter to this daring arrangement. In the temples of Pastun we fad a double tier of columas, one over the othir, to support the roof of the hypethrutm, both Doric; but the casual statement of Mr. In wood, that a portion of a Corinthian enpital was brought by him from the Parthenon, and a similar fragment discovered in the Temple of Apollo Epicurins, at Bassab, near Phigalia, seem to have been considered sufficiently grave anthority for the introduction of the Corinthian, as one of the inner orders of the Parthenon. Assaming at once that Mr. Inwood got it from the Parthenon-How did it get there? Was it there originally? Had any otber traveller-the precise Spon and Wheller, or the laborious Stuart and Revett ever seen it? Among the strange metamorphoses by Venetian, Turk, and Greek, may it not have been converted to the purpose of construction from some stray fragment beyond the verge of the Parthemon, as being lighter and more easily applicable for their purpose than the ponderous blocks of the construction of Ictious? May it not have been purposely placed there by some wily Greek to give it additional value in the eyes of one, who was eager for any fragment of Attic art, and profasely liberal to every one who contributed to his collection? The introduction of the Corinthian orderinto the Parthenon involves so wany serious questions in the art, that its adoption must rest upon sone more authentic proof than that which accompanied this questionable fragment. But let is assume that it came from the Parthenon, and was always there; is it too much to require the restorer to pause and consider whether this may not have biena fragment from some object quite distinct from the architecture ? for wo know, from Pausanius, that all the Greek temples of any size and repotation were filled with statues, groaps, pedestals, candelabra, ears, tazza, tripods, rases, seats, and other articles of wood, metal, and bronze; the votive offerings of the conqueror, the supplicant, and the superstitious. Mr. Lacas has introdaced the Ioaic as his lower order, and the Coriathian above; a restoration more consistent with onr preconceived ootiond, yet still open to seriona objection. However, he has given a regular entablature to his lower order, whereas, judging from the Pastan Temple, and tbe reason of the thing, a mere architrave or beam were more ftiog. But a more serions objection presents itself in the arrangement of the ceiling, which is made to overhang the upper range of colonons for the purpose of coatracting the aperture of the hypethrum. This presents 80 much difficulty of construction, and seems so much in advance of the science of the Greeks at that period, that I cannot but consider it as apocryphal, as also the pedimental form of some of the compartments of the coiling, and the sloping roof over the aisles of the cella.

I bave not wished to lengthen my remarks by allusions in detail to some questionable portions of the sculpture. I may, perhaps, be ventaring on groand for which I am as little qualifled to judge, as Mr. Lucas is to form an opinion of the architecture: but I must own, that I could have wished that the sculpture had been modelled with a rafinement and finish more corresponding with the exquisite execution of the matchless original. I conld have wished that one's ideas of the digaity, the spleadour, and proportion of the Chrys-elephantine statue, and the grave majesty and beauty of Minerva herself had been more reulized than it is in this conception; and it appears to me that the want of pure drawing, the total absence of Attic elegance and correct proportion in the rude illustrations of his pam. phlet, do little justice to the iutelligeace of the author in the letter-press. I could have desired that the modelling and putting together of the architectural details had been less characterised by coarseness and want of delicacy. And I must own, that the prominence given to the aculptures of the pediments, the projections of the heads and limbs of so many of the figares, sean to me so much to interfere with the lines of the architectare, and themselves to be 80 mach cut up by the intersection of the corona, as to produce a most nosatisfactory intricacy, and disagreeable contrast. Neither the drawinge of Carry (perspective views taken from a low point), nor the casual signs of a water drip, which may have arisen from a misplaced slab above, nor the solitary instance of a questionable indentation of a fragment head-more than probably a rebate to receive the bronze helnuet, nor the projectivn of the horse's jaw at a part where no shadow broke the contiauous line of light, seems to me to justify the solitary instance of so marked a principle, which would have itself established a rule iu all future cases, but which has never, that I am aware, been followed in any succeeding instances in ancient or modern times, that have pretensions to be considered as classic works of art. I shall conclude with one more reference, and that is to the polychromatic embellishments timidly indicated over certain parts. Mr. Lucas states, that he is not called upon to run any risk of making a gaxd of this restoration of the Parthenon, or to depart from the severe simplicity, which is the characteristic of all the art of Pbidias. The testimony of tradition as recorded in the Transactions of this Institute, the evidence on the monument itself, the fragments recently dpg up, all prove that polychromy had it full developaent in the Partheuon. The fragments discovered in the foundations, attested the antiguity of the practice. Will Mr. Lucas venture to say, that the Purthenon, when so embellished, wus a gaud? Will be assume the question, and say that the simplicity characteristic of all the art of Phidias was colourless? What is the testimony borne by the monuments of aucient Egyptian architecture? What by the prodactions of mediaval art?

If, in regard to the extent of polychromatic embellishment, Mr. Lucas nesitated among conflicting opinions to go to the full extent of some of the advocates for unqualified adoption of colour, I could understand his pra. deace; but it seems equally rash to reject all colour is to adopt it throughout : and reasoning does not seem to jualify the introduction of culour in
one or two parts only, which by their very solitariness contrast most harshly with the rest of the model.

In suhmitting to your notice these obsersations opon these models, I have felt called upon to do so, in order to vindicate the professional character of the English architect, which is perrilled by the conspicaons position given to a work of art, professing to be a restorntion of the noblent monument of antiquity, and uniting the knowledge, science, and learning of this country. Tho accuracy of the English arcbitect has bren acquired hy many personal sacribices, laborious investigations, and painstaking accuracy. The work of Stuart and the productions of the Dilettanti Society, had eatablisied the fame of the English, as the revivers and best illastrators of Greek art. But what will be the opinion of foreigners upon English architecte, if this defective and erroneous restoration be assamed, as the proof by which to estimate the res earch, and knowledge, and skill of the English architect in 1846. In this I do not so much allade to Mr. Lucas, as to the Trustees of the British Museum. Mr. Lacas has been imprudent in calling this a restoration of the Parthenon in all the fuleess of its original beauly and splendour. Hehas looked at it merely as a sculptor; and the architecture he has considered as subordinate to that his firss object. The Trustees should have called in the advice of some ose or more of the many architects who have measured the Parthenon stone by stone. They should have provided Mr. Lucas with the most perfect model of the building that modern research could have produced; and our sculptor could have worked on his restoration of the sculpture, anembarassed by considerations of the details of the architecture, for which be was neither prepured nor Gited by previous study, as he has himelf $_{\text {wit }}$ modestly arowed.

I now conclude these remarks, put together in the brief interval of namerous and important professional avocations, not to detract from the merit of Mr. Lucas's courageous attempt, but, as 1 have said before, to vindicate my profession from the imputation of those unfortunate blemisbes, which, although they may not affect the reputation of the author as a sculptor, seriously peril the fume of the English architect, scholar, and antiquary, in the estimation of the accomplished and learned foreign artista of Eurape.

Mr. Lucas in reply, observed that he felt much indebted to Mr. Donaldson for bis valuable suggestions, and for the obliging manner in which they were conveyed. He was not prepared to accede to the propriety of all the alterations proposed by that gentleman, bat he readily allowed that in several points his own opinions were modified by what he had just heard. Much epplause was expressed by the meeting at the frank manner in which Mr. Lucas made this avowal. Ho said that with respect to the iotroduction of fuur steps instead of three at the base of the temple, he had been guided by the authority of Colonel Leake. In the small model which Was uade as a preliminary to the execution of the larger work now in the British Museum, there were but three steps: bat the alteration had been made in consequence of the statement in Colonel Leake's book, that the number was four, and his determination had been confirmed by a letter which he had recoived from Mr. Walter Grenville, stating that there was a fourth step now obscured by rubbish. He felt however the fall force of Mr. Donaldson's argnment, and in fact he had, from an anticipation that an objection might be made on this point, so arranged his model that the requisite alteration could be immediately effected if he ahould herealter feel himself sufficiently authorised in making it.

With respect to the contiauation of the mouldings of the antre all round the temple, he had been guided by the drawinge of Stuart. As the fascia and string course certainly went all round, and as in the plates published by Stuart, the lines beneath those members were alao drawn as continued, he considered that be bad accurately interpreted the intention of the trawings by the arrangement observed in the inodel. It was also necessary t, observe that his original models had been submitted to the inspection of many highly competeut persons, but though he was indebted to them for several valuable suggestions, no objections had been expressed au to the particular architectural features in question.

With respect to the strictures on the inclination of the doorway and the form of the consoles, he had no defence to offer. He was convinced of the propriety of Mr. Donaldson's remarks, and intended to adopt his suggestious. With respect however to the introduction of railings at the entrance he could not express the same concurrence. It appeared to bim that these features were purely matters of detail, and it was obviuus that there were many mere details of the interior which it would be not ooly impossible, but improper also, to represent in a model. In cases of this kind, especially where the artist had no guide from the remains of ancient fragments, sone liberty must be given to him of using his own discretion. It certuinly appeared to him that the railings in question might be with propriety omitted.

The first part of his work which he had finished was the Chrys-olophantine statue of the goddess. In the course of this work the idea bud ac curred to him of naking a model of the temple, but be had originally entertained no higher aim than that of making the model a sort of cover for his statue. He ubserved that he agreed with Mr. Donaldson in not liking the present statue, und had pledged himself, without solicitation to the trustees to replace it by another containing the result of his latter experience. The objection that he had made, that some purts of the sculpture in the pediment iutersected and protruded beyond the corona, and had thereby broken the continuity of the cruice, was the objection of an architect rather than of a aculptur. His answer wus this-on examining the shoulder
of the Ilissus, it Fould be found that this part of the statue was marked and worn by the constant dripping of water, and it was therefore clear that this part of the figure could not have been sheltered by the projection of the coraice. The Ilissus was only a fragment, still from the attitude it coold at once be seen that the head must have been higher and more forwhrd than the shoulder; and as the shoulder must have been, at the very loast on a line with the cornice, the head must have projected considerably bejond it. His reasoning was confrmed by the drawings of Carrey, who bad represented the sculpture as intersecting the line of the cornice. The case of the Ilissus was by no means a solitary one, es, for instance, the hore's bead and the fragment of the head of the Minerva of the western pediment, and Carrey represented the same state of thing as existing in urmerovis instances throoghout the temple. Mr. Lucas said he was therefore hy no means prepared to assent to any change in this respect, but firmly maintained his original opinion.
He had made preparations for shorlly visitiog and minutely examining the temple. He felt very much indebted to the Institute for the angsosthons which had been expresued there, and for the manaer in which his exphanatioa had baen received. His great and anxions desire was to render to model as perfect as possible, and he earnestly assured the members that he wes desiroms of hearing every ohjection that could possibly be brought against it, as by these means errors would be corrected end doubtuel points es far as possible explained. For his own part, he promised that no effort should be wanting towards the fulfilment of these important objecta.
The Persipent expreased in warm terms the obligation of the society to Mr. Lucas and Mr. Donaldson for the information which they had affordad. He would observe respecting the railings of the Opistholomus, that as that part of the temple served as the treasury, and contained the votive offerings which were of immense value, it seemed necessary that it should be grarded by railings, and he thought they might properly be represented in the model. He invited Mr. Lucas to examine some models of the Parthenon in his own possession, which bad been made by a gentleman who had measured every square inch of the ground. A great benefit arising from the exhibition of Mr. Lucas's modela would be the enlightenment of public taste, and the illustration it would afford to those not conversant wh architecture, of the form of the Parthemon. He was convinced that many who visited the British Museum, had an impression that the Elgio Martles were hung round the interior walls of a room resembling that in which the remains are now deposited. The new model would serve to conrett this error. The President concluded by expressing in very happy terms the thanks of the meeting for the papers which had just been read.

Mr. Donaldson said that he must make one remark before the meeting eparated. He trusted that the Inatitute would reader every assistance to Mr. Luces in the investigation which be was aboot to commence, and would use fts infuence with the Trustees of the British Museum, that they might liberaliy offer to Mr. Lucas every possible facility and asststance in the prosecution of his undertaking.

Feb. 28, Mr. Tirn, V. P., in the Chair.
Mr. Pemrose read a paper on the entasis and other carved lines observed. in the architecture of the Parthenod, but as the paper of Mr. Lucas, on a somewhat similar sobject occupies a large part of onr present number, we ment defer the report of Mr. Penrose's paper till next month.

ROYAL SCOTTISH SOCIETY OF ARTS.
 January 26. The Prisident in the chair.

The following communications were made :-
In place of Mr. Lawnon's Paper on Hurricanes, which wee postponed till eat meeting, the Decretary gave an Account of Mr. Jacob Owen's (of Irehand) Paper on the Results of Experimente on the reletive Strength of difforet form of Eetaining Walls.
2. Accounts of some Expperimonds on Blectro and Gahomo Cultwere. By Williay Fuariz, Eaq., Aberdeen.: In this Paper, Mr. Fraser gave an secomat of the results of numerous experiments he had made on the effects of eleotricity and galvaniam on the growth of seeds and vegetablea. In one set of experiments, he had passed a corrent of electricity through the meods before sowing, and in othera, he passed the galvanic current through the earth ia which tbe seeds were town, and he also applied it to the plants. Be experimented in various ways, but with no benefit to vegetation, either from electricity or galvanism; for, although the seeds through which he had pawed a current of electricity previously to sowing, sprung ap quicker then those not sabjected to that process, just as seeds dn which have been previonily steeped in water, yet, after a while no perceptible difference could be seen betwixt the plants from clectrified seed and those from seed not stbjected to that process. Mr. Praser, in conciurion, suggeste the form of an apperatus by which be thinks, it could be clearly seen whether galvaniam produces any benificial effect apon plants.
3. Description of a Drawing of a Horizontal Condenstan Pump, for dorizontal condensing Steam Engines. By Mr. William D. Meiflejoris. In this condensing pump, Mr. Maiklejohn state that the condeanation will take place much more rapidly, and that there would be a very conaiderable raving in the first cost of the condenser.
4. On a Swbstitute for Railvog Bridgen. By Mr. Janes Mincer, Watchmaker, Perth. Mr. Miller mbmits, that in amall bridges for railway
there is too great a rigidity, when built of atone or brick, and that they are liable to be destroyed by their want of elasticity, and their not yieldint to the vibration of the train; and he suggests that they should be made of strong rings of iron, apon which longitudinal iron bars sbould be rivettedsomewhat in the form of a cooper's chauffer. They could be mada at a distance, in pieces, and carried to the apot, and there bolted together.

February 3.-Gyonge Wixsox, M.D., F.R.S.E., in the chair.
The following communications were made :-

1. Description of a Nero Clock, impelled by a combination of Gravitation and Electro-Magnetism. Invented by Mr. Alexamdee Beyson, Chronometer, Watch, and Clock Maker, Edinburgh. In this clock the common pendulum is used. It is kept vibrating, in equal arcs, by a small falling bar, or detent, which is raised every second by the attraction induced in a moft electro-magnet. The magnetism is excited by constant batteries placed in the bottom of the clock-case, which may be kept in action for asy deairable period, and when changed it is not necossary to stop the clock; as before the spent battery is out of action, the other, which is newly charged, is is full operation. The wheel work, showing minates and seconda, in moved by the gravitating bar or detent immediately on its being attracted by the elec-tro-magnet. When this clock is rade to show minutes and seconds only, as in observatory clocks, it consists of two wheels only, and when it is mada to show hours, three wheels are necesary. The contact-breaker is wis peaded on knife-edges inmediately above the pendulum bob, having a gold concentric arc, on which press two very slight gold aprings. In this are is inserted a piece of ivory, which breaks the current, and permita the falling bar or detent to fall on the pendulnm so as to keep op its vibration. By the method of coincidences it was stated, the pendulum was found to keep its motion with the utmost steadineat, at compared with a compensation mercurial pendalum beating seconds.
2. On the Causes of Hurricanes in the West Indies, with Huntrative Diagrams. By Robert Lawson, Esq., Assistant-Surgeon, 47th Regimeat. Commanicated hy Alexander Bryson, Eaq. In this paper Mr. Lawsod gives further instances, both from personal and recorded experience, of hurrieanes in the West Indips, exhibiting phenomena not conformable to the law of Hare, Espy, Reid, or Redfield ; and while adopting as trne meny points insisted on hy these eminent observers, endeavours to prove the dependence of those mighty conralsions on the moon's inluence, which seem to have escaped all observers in this field of inquiry except the indefatigable Howard.
3. Description, ilhustraled with Drawings, of an Improved Method of Manufacturing Pyrarilic Spirit (Wood Naphika of Commerce), Pyroligneous Acid, and other producta, from the destructive diatillation of Wood. By Captain Georgr Dacres Patreson. This commonication contained a description of the manufacture of Pyroxile Spirit and Pyrolignite of Lime, with various improvements, the principal of which conainted in a new manner of stifing the charcoal, so at to free it from the noxion gates, and in the distillation, which is conducted on the principle of distillation in yacwo. The arrangements were stated to effect great saving in fuel and labour. The vaconm is formed by steam, and by a simple arrangement the condensed vaponr is entirely drained off from theiotill prior, to the supply of liquor being forced up from the charging Back. A simple apparatoe whas deanibed for guiding the workmen at to the diferent atrength of the liquor; and a plan of a rectifier, by which the essential oil in more easily separated from the spirit, was also given, by which means, and others fartber described, the Pyroxilc Spirit, it was atated, could be procurod in great purity.

SOCIBTY OF ARTS, LONDON.
January 28.-W. F. Cookx, Esq., in the Chair.
The first paper read wat by Mr. Clandet, on "some princtoles and prarefical facts in the art of Photography," and contained a refies of wiry thtureating scientific researchea, and commanicated several important discoveries in this sew and curious field of research. It was a sequel to a communich tion read by Mr. Nott on a previous evening, in which he had endeavoured to establish that the rays which make the photographic picture are different from those which produce light, and this he thought he had proved by means of pictores formed with a polarized ray reflected from parallel plates. Mr. Clandet contends that the rays of light are the agent. He had made many experimente on forming pictares by reffection, but had not been able to dibcover any essential differesce betwlat them and such as are formed by the direct rey.-His next series of experiments regarded the photographic quilitien of light of different colourn ; blae proved to be the most powerful photographic agent, yellow the weakeat. One of the moat beautiful experiments by which this was proved, consisted in throwing the primatic apectram an paper and on the silver plate, the colours being marked on the paper and the effect remaining on the photographic plate-he thas showed that the photographic priam presents effects very different from the apparent intensity of the prismatic spectra. A remarkable specimen was shown of a ailver plate, on which the rays of light had brought out a powerful picture without the action of mercnry.-Another series of experimenta mado was on the photographic action of the rays of the moon, which had formed a powerfal picture by five minutes exposare; he hoped to be able to obtain a very accurate Daguerreotrpe of the moon's surface, drawn by herself, on a ailver plate.

Considerable divcusion follomed, the annonncement in the paper as recaired with much approbation.
"On a New Code of Signat and the Construclion of the Signal Lamps."By Mr. Retrin, and illastrated by models and experiments. By the simple rie of a pair of slides attached to an ordinary lantern, a combination of signals is effected, by which the lost of life and property by the collision of steam boats and sailing vestels, might be simply and cheaply a voided.

February 4-William Pole, Esq., F.R.S., Vice-President in the Chair.
The following papers were read:-
The frat communication was "On the Theory of the Construction of the Portland Vase." By Miss P. Ensill. -Mias Enaell considera the Portland Vere to havo been constructed in the following manner. A jar of blue glass was formed in the usual way by the glass blower, and ita whole surface moghened-it was then encloved in a mould similar to those uned for the formation of alabater relievos; the jar and mould were then exposed to the action of one of the petrifying springs of Italy, and thus a clear transparent sabatance was deposited on the rase, in such proportiona as to form the Ig ores in that heantifully white semi-transparent material, which is exhibited in the Portland Vase. She then gave variona details for the practical carrying out of the operation, and suggested the propriety of andertaking a series of experiments, with a view to conatructing vases of a similar description.

Mr. Doubleday, the gentleman who was charged with the restoration of the Portland Vase, and which is now under his care, having examined its structure most minately, proceeded to give the following account of the manner in which it had been formed. The base is of blue glass and has been made in the nsual manner by the glass-blower, the white figures are also of glass and perfectly united with the bane. The blue jar having been formed, was dipped into a pot of white metal. and so the lower part of it became entirely covered with a niforn coating of white glass. The material to work upon, which is thas described is in all respects similar to the cameo, and has been operated on in the same manner. With some talent and considerable artistic skill, by a process like that of gem engraving or cameo cutting, the white glase has been cnt away in different forms, and various thicknesses by the artist; he considered that not less than 3 or 4 years of continuous labour would be required in order to produce such a work of art.-Several other gentlemen then joined in the discussion, the result of which was to establish the fact that we possess in this country both materials, mechanical means, and artists capable of executing similar works to the Portland Vasc, and that those workn, if executed, would necessarily, from the length of time and skill required to execute them be the most rare and most costly that art can produce.
"On a New Theory of the Formation of Meleoric Stones." By Artrup Walt, Esq. He considered they were derived from subterranean origin; lie showed hy analysis that abundance of materiala and means are presented for the formation of those meteors in the bowels of the earth, and their descent from the atmosphere witbout going into the planetary spheres to seek for their cause.

February 18.-E. SpeER, Esq. in the Chair.

The discussion on the Portland Vase was resumed.
Mr. Douhleday, of the British Museum, who has repaired the Portland Vase in a manner so admirable that the fractures are scarcrly visible, presented a number of specimeas of ancient manufactures in glass, illustrntive of the theory which be deduced on the trae principles of its construciion. Mr. Apsley Pellatt, who was present, exhibited to the society, through Mr. Blasbfield, a very beantiful model of the Vase, it being one of the origioal and most perfect copies made by Wedgwood. He explaineil fully to The meeting, as a practicul manufacturer of alass, the exact process by Which be conceived that that vase was originally formed. He explained how such objects of art might be constructed at the present tiay, sad the difficulties which stood in the way of their conatruction. Mr. Christie, of the Vauxhall Glass-works, explained another mode in which the two colours of glasses wight have heen originally united.
"On Railway Lvcomotion, with reference to the effects of Centrifugal and Centrijetal Forces." Hy Mr. C. H. Greentow. He proposes for the purpose of increasing the safety of railway trains to suspend the bodies of the carriaged upon mo hurizontal axis, in such a manner that the centre of gravity being equal, shall equipoise the centrifugal force. He gives to the rails the form of a hollow circular tube, aud to the flanges of the wheels a corresponding form, by which he cunceives that the forces tending to throw the tram oft the line would be counteracted. The wheels also are so constructed that the spokes furm a atraight iine passing between the raila and the centre of gravity of the body; all these arrangements are designed by him to give increased snfety and stability to the railway trains. A. long discussion ensued, in which many practical engineers and scientific gentlemen took an active part. It was maintained by some of them that no Increased stability was given by pernitting the centre of gravity to oscillate, but on the contrury it would thereby be considerably weakened, and; that the wheels would not adjust thenselves to the partial variations and irregalarities in the condition of the railway; that there woald be attrition between the rails and the fanges of the wheels and that of the circular form of rail being of cast iron would not be safe. To these allegations Mr. Greenhow gave various replies, and the discussion was prolonged to a late hour when it iras adjourned.

AMERICAN PATENTS.
 (From the American Franklix Journal.)

"Improvement in the Coupling and Stuffing Bax for shafts, specially in. tended for submerged propellers for Ships." By R. F. Lopsk, Pbiladelphia. Oct. 9, 1845.
The outer tube of the stuffing hox, instead of being permanent, is tapped into a metallic casing surrounding it so as to admit of screwing it over the lapped or other joint of the shaft, so that when this tube is drawn in, the two stafts can be separated, and if desired, the propellicr drawn out of the water, and when screwed out, passes over and prevents the two shafu from being separated.
"Inprovement in the Current Water Wheel." By J. D. Robinson, Lllinois. Oct. 24, 1845.
The buckets are earh composed of aeveral narrow stript attached to chains binged to a cylinder, 30 formed 28 to permit them to fold in one direction, but not to go beyond a line radiating from the centre of the cylinder to which they are jointed-when acted upon by the current, these buckets are thrown open, but so soon as they begin to make back mater they fold on the periphery of the cylinder, and prevent undue resistance.
". Improvements in Tide Mills." By Jobn Gerazd Ross, New York. Nov. 9, 1845.
The wheel is placed in a race, at one end of which there is a tide gate hinged to a wall beyond the end of the race and shutting againat either side of the race; and at the other eud of the race there are two current gates, one termed the "inner correat gate," and the other the "outer current gate ;" these are binged to the ends of the race way wall, and shut against a pier placed beyond the end, and in a line with the middle of the width of the race way. The current in passing along opens the "current gate," and after acting on the wheel, passes out through the "outer current gate," and on the return tide the pressure of water closes this "outer current gate," which causes the current to pass around to that aide of the tide gate opposite to that at which it entered on the rise of the tide, throws it ageinst the opposite side of the race-way, acts on the same side of the wbecl as on the rise of the tide, and passe; out through the "inner current gate." The dam walls are formed with pits, open at the sides for the free ingress and egress of the water to act on floating caiasons which sustain the wheel and always keep it at the required elevation. The shaft of the wheel (or wheelg) is connerted with the frame-work of the mill by bars radiating from the axis of a cog wheel, into which work the cogs of the master wbeel.
"Improvements in the Mean of Removing Mud, Sand Bars, foc. from the Beds of Rivers, \&ec. By Dennis Vermilion, Washington, D. C. Nov. 9, 1845.

A mass of logs are put together in the form of a boat, to be moved down by the corrent, tide, or otberwise, and which from its great weight and atrength will acquire great momentum. Iron breakers sharpened at the lower end, pass obliquely through apertures in the mans, and extend domn to the depth required to act on the obstruction to be reraoved. At the stern there is suspended a drag rake, connected with the boat by means of two arma that alide freely in apertures in the ends of a cylinder which ia hung on appropriate journals ; and for the purpose of raising this rake, cords extend from it to a windlass on the boat. The operation of the apparatus is this-the boat being put in motion by the curreat, or otherwise, is directed tnwards the sand bank, or other obstruction, and the hreakers and rake laving been set to the required depth, the breakers cut up and loosen the sand, mud, \&c., which is then raked into deeper water.
"Improbements in Horizontal Wind Mills." By Daxirl Dennet. Nov. 13, 1845.
The wing or vanes of this are jointed to radial arms, and are anspended by cords to vibrating levers that pass through, and are jointed to, the shaft above the arms to which the wings or vanes are jointed, so that by this arrangement the moment one vane hegins to make "back wind," (as it is termed, it is blown down, and hy its connection with the one on the opposite aide of the shaft draws it up to catch the wind.
"Improvements in Water Wheels." By Jorn L. Suitr. Dec. 10, 1845. Two of these wheels are pat on a horizontal shaft, one on exch side of the trank or tunnel through which the water is applied to the wheel, the face towards the tunnel being open for that purpose. The apertures or iasues for the water extend from the shaft to the outer rim, which is scosloped for that purpose, and are formed by the forward edge of one bucket. and the back edge of the other, these being placed diagonally for this puspose. And to the back edge of each of theae buckets there in a lanch radial in its length, and parallel with the shaft in the direction of its width, which extende to the inner face of the wheel, or to the floor.
"Improvements in the mode of preparing, applying, and wing certain fincer for the reduction of Ores in the Blast Furnace." By Jonas Townas, Madison, Lake county, Ohio, Dec. 7, 1845.

What 1 claim as my invention, and desire to secure by letters patent, is the application of tbose earths or minerals which are dissoluble or diffusible with water, and have an adhesive nature, and can be made into a paste, pap, or grout, with the ahore or other liquids, and can be applied as other fases for the reduction of ores or minerals in the blast or uther farnaces. I claim the application of the above preparation, as herein descrihed, to other minerals as well as iron, which have a similar objectional tendency, while smelting, that is fonad with iron. I do not claim any special right to the use of the ahove fuxes in a dry or natural atate; it is only after they have been mixed or diffused with water or other liquids, and formed into a paste, pap, or groot, and applied as a conting or adhering substance, as herein described, that I claim a my invention, or discovery, and desire to secare by letters patent.

* Opeming and closing Waste Water Gates." By Robert Robinson.

The gate is provided with a chain which passes over a roller, and is attached to one end of a lever, the otber end having a box suspended to it. When the water riscs too high, it passes over a dam, and fills the box, which, by its preponderance, sinks, and opens the gate; and the box being provided with small holes, after the water hat ceased to flow over the dam, it rans out of the box, and thus gives the preponderance to the gate, which is then closed by the pressure of the watar.
"Hydraulic Gate, for Locks, Docke, \&c." By Gro. Meath. Antedated July 3, 1841.

This improrement consists in using for the gate, singly or in two parts, the segment of a cylinder for the front of the gate, with the radius which cuts the centre line of the arch of the segment lying horizontally, and with the arch next the water which is to he passed. This front of the gate rests for its support against the pressure of the water, on gudgeons at the centre of the cylinders, which are connected with the front, either by arms, or by the sector of a circle, at the two end of the segment.

For a composition of matter for "Iubricating the rubbing surfaces of na-chinery."-Increase S. Hill, and Joseph Dixon, the former of Boston, and the latter of Taunton, Massachusettr, January 31, 1845.

The patentees any, " our composition consists mostly of zinc, (which as is well known belongs to the class of cheaper metala) hardened by being compounded with what we denominate a hardening comporition. This latter com. position is formed of the following metal, mixed in a state of fusion in the proportions hereinafter specified, viz., 15 parts of tin to 35 parts of copper. This composition in a state of fusion is to be mired with molten zinc and tin, (although tin is not absolutely essential) in the proportion of the two parsa of the said hardening composition, of 19 parts of zinc, and from three to five parts of tin, according to the peculiar purpose for which the composition is to be used, the tin apecified to be added last, having the tendency to render the componnd when cold more or lesa ductile, according to the quantity of the same incorporated therewith. The metal formed without the addition of the last named proportion of sin, when broken, will have the appearance of cast steel of coarse quality, but the addition of tin will make It stronger and cause it to be finer in grain until four parts of the same will be added, when the appearance of the metal on its being broken, will be like that of fine cast ateel and more closely resemble the same than any other ztetal. The great atrength of the composition combined with a certain degree of softness which it possesses, renders it highly usefol in the construc tion of bearinge for rubbing surfaces of machinery, as it is capable of resist. ing for a great length of time, the effects of wear and attrition. The large proportion of zine used in forming the compound renders its use in the mechanical arts, much less expensive than the metal ordinarily emplojed for these purposes, the cost being much leas than any other componition in which copper and tin are the principal metals."

REGISTER OF NEW PATENTS.

If addilior al information be required respeeting eny patent, It may be obtala id at the athoe of thin Joarnal.

atmospheric railways.

Wilmam Syegs Ward, of Leeds, gentleman, for "Improwements in eahauting air from tubes or vessels for the purpose of working atmospheric railoays, and for olher purposes."-Granted June 25 ; Bnrolled December 25, 1845.

The object of these improvements relates to the arranging and working of the valves of air-purops for the purpose of exhausting the air from the trec-sion-tabes of atmospheric railmas, and also for the purpose of eahanating air from any ressels or tuben upon arge acale. In asing air-pumpa as
hitherto practised for working atmospheric railwayt, power is lost in opening the inlet and outlet valves, by the action of the air entering into, and expelled from the cylinder of the pump, and the violence with which such valves close is ohjectionable.

The inventor's mode of conatracting air-pumps is such, that the power reguired for opening and shutting the valves is supplied by gearing, or mechanical morements, from the engine, or other source of power by which the air-pump is actuated, so that the inlet valves are opened and shut alternately, almost immediately after the commencement of the atroke of the piston of the pump, and the outlet valven are respectively closed, or pushed home, at the end or conclasion of the stroke of the piston. The gearing afterwards releases the valve, which is retained on its seat by the presaure of the external air, until the air within the cylinder of the pump becomes nearly of the same density as the external air, when the valve (if the lower outiet) falls by its own weight, or (if the upper outlet) it raised by a counterpoise of greater weight than the valve, or by a spring, thus moving rather in advance, or at though in anticipation of the current of expelled cir, and affarding a free passage for it.

Fig. 1, A, represents the cylinder of the pomp, B, the piston, C , the pistonrod, $\mathrm{D}, \mathrm{D}, \mathrm{D}$, pipes communicating between the main, or vessel to be exhausted, and tbe upper inlet valve-box, E , and the lower inlet valve-box, F . G, represente the upper ialet valve, and H, the lower inlet valve, which valves, G, and H, are attached to the rods, I, and 1 , at V, and V, by joints, allowing a slight motion, so that the valves may the better close on their respective seats. The rods I, move air tight, in stuffing-boxes K, in guides, by levers L, and connected by the rod T, part of which only is shown. M represents the apper, and N the lower ontlet valve, attached to the rods O , and O, moving in guides, and which valves, M and N, may be respectively closed by the levers P, fixed and acting upon the tappets Q, so as to close the valves M and N alternately, but not to open them. The upper valve M is counterpoised, and someribat overweighted by the lever K R, and the weight S. The lower valve N opens by its own gravity, when not closed by the lower lever P, or supported by the pressure of the atmosphere against a partial vacuum in the lower part of the cylinder A. The levers P are connected with an excentric by the rod W, part of which only is shown.

The mode of action is at follows:-Suppose the pump has already exhausted the main, or vessel connected therewith, to half vacuom, and is making the down stroke; the air from the main, thercfore, enters at the upper valve, which was opened by the lever L, immediately after the commencement of the down stroke, and the lower valve H, was closed at the same time. The upper outlet valve M, was closed simultaneously with the conclusion of the ascending stroke, and remains closed during the down atroke; and, at the same time, the end, $P a$, of the lower lever P, released the stud, or tappet Q, leaving the lower valve N, at liferty to open by its gravity; bat the air in the cylinder of the pamp having had, at the commencement of the stroke, only balf the density of the external air, the valve N , will have been supported until the piston descended to about the middle of the stroke. The gravity of the valve N, will then overcome the cohesion of its surface, and of the valve-seat, and open, leaving a free passage for the air to be expelled from the bottom of the cylinder. When the pirton approaches the bottom of the cylinder, the valve N, will begin to be raised by the lower lever P, the motion of the piston, from its connexion with the crank of the engine actuating or driving it, will have become slower, so that the aperture will, nevertheless, be adequate for the expulsion of the air; hut at the turn of the stroke, the lest-mentioned lever P, will close the valve $N_{\text {, }}$ quietly, so as to avoid any detrimental concuasion consequent on the change of the atroke. The upper inlet valve G, will be closed, and the lower inlet valve H , will be opened. The apper outiet valve M , will be left free, but, as before explained, will remain cloced, until the density of the air above and below it are nearly equal, when it will be raised by the counterpoise or weight S.

Another part of the lwaprovements considts in the combination of Jarge vessels with air-pumps, so that such vomels, having been previously exhausted, shall assist the pumpe in the exhaustion of the traction-tuhe. Tbe cylioder of the pump must be of such dimensions, as to be capsble of restoring the exhaustion of the reservoirs in the interval between the running of the trains on the section of railroad ithis required to work. And the steam engine is to be of ouch power as to work the pump, and restore such exhanstion of the reservoirs with facility, in the before-stated period, after the first reservoir hat boen exhausted, but such exhaustion need not be continued to a very high gauge; for example, the first reservoir may be exhausted until a barometer gauge attached thereto phows the beight of about fifteen inches of mercury; by a change of position of the cock Q, the second reservoir may thoa be exhausted to about twenty inches of its gauge, and lastly, by a further change of tbe cock, the third reserioir may be exhausted to about twentyfive inches of its gauge.
Amother part of the improvementa consists in the construction of the pistoma of lerge sir-pumps, hy making the packing of the pistons of leather cat into bends, of the breadth of about one-sixth part of the diameter of the cylinder of the pump. Such bands are united by sewing, and also with the well-known cement of isinglass or fish-glue diasolved in weak spirit, or are united by other suitable means, so as to form a continuous circle of about the same diameter as the pump cylinder, but considerably conical, so as tn facilitate the bending hereinafter mentioned. The bands of leather, after being softened by water and pleced oppon a blook of similar size to the piston, are then bent and consracted so that about ame-third part of the breadth may fit the cylinder and the other two.dhird parte may be attached to the piston, and secared by plates of mosal screwed to the main part of the piaton.
The claim is for so arranging lepparatue or gearing with the valves of airpumpe, as to close the outhet valree but not to opan them, the gearing leaving such valvos at liberty to apen when ralieved from tha pressure of the sir. Secondly, the to combining xemelt or reservoint vith aixpumps in working atmospheric railways that the air may be pumped from the traction-tubes of atmospheric railways into partially exhausted vemens or rwservoirs, and, when deaired, the pressure of the air pansing from such traction-tubes into such partially exhausted vessels ar rowervoira may be used for giving motion to air-pumps. And thirdly, the mode of perking pidans of air-pumps as herein described.

William Palaser, of Clerkenwelt, in the cenaty of Middlesex, mannfacturer, for "Improvements in worktong atmospheric railways, and in lubricuting railuay and other machinery.'L-Granted June 5 ; Enrolled December 5, 1845.

This invention consists in applying tallow, oil, or other fatty matter, or of oil prepared in the form of soap, insoluble in rater, to line the tubes and to aid atmospheric railways; and the seid inveation also consiats in applying auch materials to the lubricating railmay and other machisery. Any quantity of the tallow-oil in taken and heated in a copper or boiler to the point of boiling, or nearly ao, aud then litharge is stirred in so long at the aame is taken up by the tallow-oil, and uatil the litharge falls to the bottom and is not taken up by the tallow-oil; after atirring for half an bour from the time the lant quantity of litharge has been introduced, the melted matter is removed into cakk or other auitable receptacles. By this mesps a coap insolable in water, will be produced, suitable for the purposes of the invention.

The claim is for the application of tallow-oil or other falty matters, or oils prepared in the form of soap insolubic in water, by menas of litharge or other metalline matters, to line the interior surface:s of the traction-pipes of atmospheric railway, and also for lubricating machinery as berein detcribed.

Joseph Cliff, of Wortley, Yorkshire, fire-brick manufacturer, for "Im* provements in the manufacture of alum, and of aluminous compounds, from a substance not hitherto used for that purpose, and in the production of an inproved fire-clay from the residumm thereof.'-Granted June 5 ; Enrolled Dec. 5, 1845.
This invention relates to fire-claya containing a great quantity of alumina, eapecially the "Wortley fire-ciay." Por extracting the whole or the greater part of the alumina, and converting it into alum and aluminous compoands, and in using the purified clay, either alone or combined with otber fire-clay, for making fire-bricks, glass-honse pots, crucibles, gas-retorts, and imilar articles. Any fire-clay containing alumina in excess, is firat ground, then calcined, and afterwards anbmitted to the action of sulphuric, nitric, muriatic, or other acid, diluted with water. The mess being lixiriated with water the alumina is obtained in solation, and this solation is freed from iron by the employmentof pruasiate of potash, gailic acid, culphuretted hydrogen, or aome other suitable agent, the solution is then evaporated by itself, to get the gulphate, nitrate, or muriate of alumina, according to the acid ueed; or the sulphate or muriase of potash, soda or ammonis is mized with the so lution, and evaporated or cryatallised to obtain the alum salte, and then, by roaching, the alum of commerce is formed. After he whole or greater part of the alumina has been extracted, as above described, the purified and residuary earth may be emploged, alone, or combined with other clay, in the manufacture of fire-bricks, glaseboune pots, crucibles, gas retorts, and nimilar articles.

Jonn Hopring, of Brand-street, Greenwich, in the county of Kent, setveyor, for "certain improvements in rails and trame fir railroads and trame-ways."-Granted July 3, 1845 ; Bnrolled Jan. 3, 1846.

The object of this inrention is to employ rails, trams, or continnous mirfaces of mood, upon which the wheels of engines and carriages may travel as on the ordinary raile or trama, consisting of a piece of timber, pleced longtudinally and bolted between two cheeks of iron.

not AIR ENGINR.

Iszax Bagas, of Great Percy Street, Claremont Square, engineer, for "Improvememts in obtaining sootive power by air."-Granted Juns 26, 1845: Enrolled Januery 26, 1846.

The first part of this invention is to cause condensed air to pass from a vacuam placed within a flue, and surrounded by fire. to the cylinder of ath engine, so as to give motion to the piston of the same by its elastic and expansive power, the condensed air being supplied from time to time by means of a double acting pump. The heated air after having worked the engine is conducted by means of a pipe to the furnace or fire, for the purpose of increasing combustion.

The apparatus consists of a cylinder, constructed somewhat in the ondiasry!manner, having induction and eduction ports with suitable valves. This cylinder ia placed rertically witbin a closed receiver, or strong iran vossel. fixed in such manner that it is surrounded by a fue, and can be heated by a fire for the purpose of expanding the air within it, which after having worked the piston of the engine pasues through the eduction port, and is conducted to the fire if desired. The piston rod is atfached in the ordinary manner to the crank, and upon the same shaft is a second crank for working the force, or air-pump. which at overy stroke forces into the raceiver a quantity of air equal to that expended in moving the piston. The specification is acoompanied with three or four sheets of diagrams, showing sections of the cylinders \&c., which woald be too elaborate to give in detail. The annered rough sketch show the position of the working cylinder, receiver, and air pump, which we have no doubt the reader will underitand by the following description $-a$ a ir the

receiver or reserveir, fixed in brickwork and surronnded with a the proseeding from the furnace; b is the cylinder of the eagine placed within the same; c in the piston rod connected with the crank-ibaft in the usual manver by a connecting rod; $d d$ are the valve rods worked by weans of excentrics ; e is a double-acting air pump for forcing air into the receiver $a ; f$ is the piston rod connected with a second cravk formad on the crank-ghaft, which latter crank is placed about 140 degrees in advance of the other crank, in order that the resistance may not be greatest when the pewar is least. In starting this engine atmospheric air is to be forced into the receiver equal to 4 atmospheres, by means of hand pumps or otherwise; the fire is then to be lighted, which will have the effect of expanding tbe air which is then admitted into tie cylinder; when motion with be given to the piston, and crank shafts, (not shown in the diagram.) and by means of the eecond cronk such motion will he imparted to the piston rod f, of the air-pump e, which is provided with two induction and two eduction valves, and intended to force into the receiver a just at much common atmospheric air at has beea expended in giving motion to the piston in the cylinder b, the alide valves-of which are morked expansivelyi; g is the eduction pipe of the air-pump, and is connected to the receiver, the induction pipa being open to the atmosphere, br closing which the engine will be stopped, in consequence of the aupply of air boing cut off.

HIGHTON'S SAFETY RAILWAY CHAIRS

The pecaliarity in the fasteniag of the rails by means of the Safery Chair and Key Wedge, consists in making the side of the chair next to the key with a concave instead of a plane surface, and using a peculiarly shaped cast iron wedge, in connection with the key. After the limber is imserted
into the chair, a mafety wedge in to be driven into the ker wear to the side of the chair as stown in the drawing. This forces the key inte the coneavity of the chair prodacing perfect contact between the ker and the interior of the chair. The key being thus made larger in the middle than at the ende, in usable to leare the chair notil fordibly driven ont by the Beamer. The wedge is prevented from splitting the key by the combined ation of the two projections cast in the sides of the wodge at its lower end, and the shape of the interior side of the chair. When tbe wedge is beitg driven into its place, these projections cat all the fires of the wood ament as the wedge enters the key; and as many as fire or six wedges rapy if required, be driver into the key withont splitting or iojuriag it in the leart degree.

The end attained by this description of fastening for the rails of a railway consists in the imposibility of the keys shaking out by the combined action of the shriakage of the keys in dry weather, and the passage of the Lpios: an adrantage of the greatest importance on all lines of railway using deirs.

The nceomparying engraving shows that it is impossible for the key to shake out until it has shrunk at least a quarter of an inch; this a wellmesconed key will never du: but should the shrinkage io very dry weather amonat to anything oear this, the driving in of an additional aafoty wedge will make the key as fast as ever; and it will then become more perfect than at first, as its fibres will be more closely compressed, and consequently, leas subject to alteration in size by change of weather. The weight of each safery-wedge is less than 2 oz ; aod the inventors state that more irom is sared in the concavity of the chair, than is sufficient to make a safetywedge.

Fig. 1 is a vertical section of the chair, showing itr key and wedge. Fig. 2 is a flat or front view of the fastening wedge. A is the chair. B the rail. C a wooden key driven in a horizontal direction betw een the rail and chair, and transversely across the chair. \mathbf{D} is the metal wedge driven vertically downwards into the, key with its width laid in the direction of the length of the key, forcing a portion of the key against or into the hollow cide $d d$ of the armaa of the chair, the key is thus secored between the ril and its chair.

We undertand that this improvement has been adopted with success on three miles of the Taf Vale Hailvay, and after being in use for three months, ane upwards of 1,200 trains pussing over the line not a single hey ves removed.

RAILWAY PROCEEDINGS.

We propose to give under this head celections from the dectasona of the sob-committee - Wer alapdtag orders. It mual be anderatood that the dections are not always IDal, a 4 pediliosers may of befare another committee on the shading orders, whe rasp if the me the recommend the House to walve the confurmance to the atmoding ordere.

House of Lords, Fea. 0.

* Besolved, that it in the opinion of this committee that such portion of the stading orjer No. 924 as requires a deposit of ooe-tenth of the amount abscribed, stroakd be suspended with respect to all such railway bills as shall commence in the House of Lords during the present session.
"That no such railway bills shall be read a first time in this house noless a deposit of oae twentieth part of the amonnt subscribed should have been Find on or befure the 6th of February.
${ }^{4}$ That no suct rallway bills shall be read a third time until a forther deposit of one-twentieth purt of the amonnt subscribed shall have been in life munner paid.
"s Revolved also, that it is the opinion of this committee that this bouse would not reccive any petition for a railway bill after Monday, the 23rd of February."

Hodez or Lords, Feb. 13.
The House of Lords resolved that the standing orders be amonded as enlows:-
That it is the opinion of this committee that the standing orders of this hoose with regard to railway bills, should as respects railway bills comsenced in this house during the present session, be altered in the following particulars.
That standing order No. 210 be altered in the following particalers, Vis, that on the bill being reported to the honse from the committee on the bill, or at any time previously, on the petition of the parties to mach bul, or any of them, the bill shall be referred to the Standing Ordera Cone.
miltee, which shall inquire whether standing onders, the compliance with which is directed to be proved befure or repoted by the Standing Order Committes previonaly to the third reading of the bill, have been complied with; and the committee shall report on the matters referred to them in the same manner as they are directed to report on other matters referred to them by the standing orders.

That five clear days' notice be given of such meeting of the committee, and that it be proved to the satisfaction of the committee, that the standing orders had been complied with five clear days before such meetivg of the committee.

That the Standing Orders Committeo shall not meet to consider the compliance with such of the standing orders as are directed to be provect before them until afler the expiratign of seven clear days from the presentation of the petition if the bill rente to England, or until after the expiration of 10 clear days if the bill relate to Scotland or Ireland.

That every petition compalining of non-compliance with such of the standing orders as are directed to be proved before the Standing Orders Committee subsequently to the first reading of tho bills, shall be presented three clear days before the meeting of the committee to consider such atanding orders.

That standing order No. 220 be altered in the following particulars, vis., that the service of every application required to be made to the oveners or reputed owners, lessees or reppited lessees, and occupiers, by the fourth paragraph of the said standing order, may, unless a petition complaining of the want of due service of such application shall hare been referred to the Standing Orders Comaittee, be proved by the evidence of the agent or solicitor for the bill, stating that he gave directions for the serrice of such. application in the manner and within the time required by the atanding orders, and that he believes that sach application was so served; but in case the Standing Orders Committee strall mot be satisfied with the ovidence of the agent or solicitor, the service of anch application shall be proved in the usual manner.

That ne bill commeneing in thia house and empowering any company already constituted by act of Partimmeat to execute any work other than a thas for which it was origivally emtabliwhed. shall be read a third time ualess the Committee on Standing Orders shall have especially reported. that the requisitions contaiped in paragraph No. 5 of such order have been complied with.

That standing arder NO. 284 be altered in the following particulers, vic., that as respecta all railway bille which shad comaence in this hoose during the present session of partiament, it shall be proved to the satis-. fiction of the Standing Orders Committee that a sum equal to 1-20th part of the amonnt sabweribed has been depoaited, io the manner required by the said standing order, on or before the 6th day of Pebruary inst.; and it shall likewise be proved to the satisfartion of the said committee, before the third reading of such bill, that a further tum, equal to 1.201 h part of the amoant smbecribed, bas been deposited in like manner.

That standiog order No. 2ets be altered in the following partietiara, vis., that it shall be somoient if the proof required to be given by the last mentioned standiag onder be adalneed before the Standing Ordert Commitiee at ay time previons to the third reeding of the bill.

That all the standing orders applleable to railwey bills, except anch of them or such part of thom as are altered by or are inconsistent with the aforesaid standing order, shall epply to the pailway bills comanenced in this honse during the preneat sescion of Parliament, and to the proceediags on euch bills.

Hedse of Commons.

Piret Report, Peb. 5.

The alect committee appointed to comsider the mode in which the bouse shall deal with the railway bills proposed to be submitted to the House during the present seasion, and who are empowered to report from time to time to the House, have considered the matters referred to theta, and agreed to the following report:-

That for the parpose of facilitaling the dispatch of railway basiness. during the present session, it is expedient that a portion of the railway bills shonld commence in the House of Lords.

That with respect to any railway bills which, in parsuance of these resolations, shall commence in the Hoese of Lords during this session, this Hoase will not inaist on their privilege with regerd to the clauses fixing and regalating rates and tolls in such bills.

That with a view of affording oarly and increased means of employment in Ireland, it is expedient to gire facilities for the early consideration of Irish railway bills.

That, for the attainment of this object, it is expedient that all Irish railvay bills shonld, in the present session, commence in the House * of Lords.

That it is expedient that all hills which compete with or ought to be congidered in connexion with any bills, the promoters of which shall prove themselves entitled to the privileges agreed to be granted in certain cases by the resolutions of this Honse of the 7 th July last, shall commence in the House of Lords.

That the parties promoting railway bills which, by the above resolutiens, are to commence in the Honse of Lords, may (notwithstanding any proceeding respecting such bilts in the House of Lords) prove before the ccm-
mittee on petitions of the Hoose of Commons that they have complied with the standing orders of this House, and the repart of euch committee shall be ordered to lie on the table. If the committee should report that the standing orders have not been complied with, their report shall be referred to the commillee on standing orders, whose report shall be ordered to die on the table.

That when a railway bill shall have commenced in the Honse of Lords, and shall be sent down to the House of Cominons from the House of Lords it shall be read the frst time in the House of Conmons, and shall then bo referred to the comnittee on petitions, to ascertain whether the railway bill so sent down is substantially in accordance with the atauding orders, as determined by the House of Commons.

SECOND REPORT, FED. 10, 1846.

1. That a committee of fire members be appointed, in be called the Claselfication Committee of Rallway Billa, and that three be the guorum of ancb comalitee.
2. That copies of all petitions for rallagy billa presented to the House be lald before he ald committee
3. Thut the committee of clanaification shall inquire and report what rallomay bilis compete with, or ought to be considered in connexing with any ratluay bills, the promotert of which shall have proved themenlves entitied to the privilege agreed to be granted in
certaln cases by the rusolutions of this House of the 7th of July last.
4. That the commistice of claselfication bball form into groupa all other rallway blll which, in their opinion, it would ve expedlent to submit to the same committee.
5. That as soon as the committee of clasitication shall have determined what rallway blls are to be grouped together, they shall report the same to the House, and ell peti. tions agalnat any of the said bills shall be presented to the Honse three clear days before
he meeling of the committee thereon
6. That no rallway bill be ruad a frat time later than the next day bat one arter the report of the commitiee on petitions or of the standing order commitiee on auch bill, tas the ane may be, shall have been lain on the lable, except by speclal order of the House
7. That there be not more than seren clear days belween the firit rending of any rallway bill and the second reading thereof, exerpt by special ordar of the House.
8. That the breviste of every rallway bill aball be lald on the table of the Houne, and e printed and deilvered one clear day before the second reading.
9. That such ralloway bllis as shall have been read a firt time before the House shall agree to these reaolutions, shall be read a eecond time within seren clear days thereafter. 10. That such of the standing ordern al relate to the composition of the commition on Private bilis, and the order consequent thereon,
10. That committees on rallway billa during the present meation of Parlfament ahall be 11. That commitices on rallway bilis during the present med on of pariameat ahall be von. That each member of a commitcee on a rallway bill or bills, ahall, before he be en-
11. That each member of a committee on a railway bilior or bils, ahall, befote he be the titied to attend and role on wuch commitiee, siga a deciaralion that hif conatituenta have no localinterest, and that he himself hat no personal interget for or against any bil reserred to him; and no such committee shall proceed
Is. Thint the propioters of a rallway bill ebult be prepared to 80 into the committee on
 the bill on auch day as tbe committee of selection ohali, subject to the order that thert be seven clear daye between the mecond readis of every private bill and the aitting of the committee thereupon, think prop
shall bave reported on such bill.
12. That tbe committee of arlection ahall give each member not lest than 14 dayt' notice of the week in which it will be geceasary for bla to be in attendence, for the purpore of serying, if required, on a ralluray blll compilttee.
serving, if required, on a ralluray bill complitte.
13. That the commatiee of selection shall plive each member a muffient notice of his oppointment as a member of a committee on a raliway bill, and shall trangit to him a eppointment as member of a commitue on a railway bill, and shali tranamit to him a copy of the 2th resolution, and a lank form of the declaration therein requit
request that he will forthwith return to to inem properiy alled up and aigned. member the aforesuld deciaration, or an oxctien which they shall deem gufincient, they member the aforenald decisration, or an oxctuet Which they a
14. That the commitiee'of selection shall have the power of aubstituting at any time before the first meeting of a committee, another member for a member whom tbey thall before the first meeting of a committe, another member
deem. That power be given to the committee of selection to send for persons, papers and 18. Tisat power be given to the commitiee of selection to send for persone, papers
reme
recnrds, in the execution of the dattes ingosed on them by the foregoing remolutions. mitter, unless in the case of aicknewn, or by leave of the Hoase.
mittee, unateall in the case of aicinem, or by leave of the hoasp. a majority of voices, Including the voice of the chairman and that whenever the voices a majority of voices, including the voice of the chairman ; and that, the chalrman phall have a second or casting vote.
shall be equal, the chairman phail have a second or casting vote.
21 . That if the chaiman shall be absent from the committee the member next in rote21. That if the chairman shall be absent from tbe commit
tion on the list (who shall be present) shall act al chojrman.
15. That committees shall be allowed to'proceed so long. three members shall be pro20.nt, but not with a lesm number, ualesa by apecial leave of the House.
16. Tbat If on any day within one hour after the time appointed for the meeting of a committec three memberm shall not be present, the committee ghall be adjourned to the committer three membera shan not be present, she commituee shall be adjourned to the same hour on the next day on which the gooce shan wit, which hed been ared for thal
day. That in the cone of a member not being present within one hour after the time ap pointell for the meeting of the committee, or of any member absenting himeelf from his poiniti for auch committee, auch membershall be reported to the Houge ai ita next sitting. ':b. That ench committee shall be appointed to meet on each day of it sittiog, not later than 120° clock, nnless hy the repular vote of the committee.
17. That committees on riliway bilic have lesve to sit in the present actal
thadng any adjobrnment of the House, If the committeea shall so think it.
18. That every comroitiee on railway bill shal ax the touls, and shall determine the maymum rates of charge forthe conveyance of parsengers (with a due amount of luggage) and of goodi on much railmay, and such rates of charge shal include the tolla, and the maseogers (with a due amount of lugzage) and of goode upon euch railway; but if the rinaseogert (with a dut amount of lugsage) and of goode upon much railway; but if the committer thatl not deem it expedient io determine snch maximum rates of charge, House, which epeciad report ahall accompany the report of the bill.

THIRD REPORT, PEB, 17.
The number of petitions for rollway bills, whlch have been prosented this ension, have been stated by your committee to amount to 562, vis.:-

Por rallwayt in Englend and Weles
Bcotland
Ireland
895
120
47
The above pumbers ivciude petitions for amigemation bills, and in some cases there are more petitions than one for the same scheme. After the deduetion to be made on this account, the number of disifinct rellway shemes appetin to le-

For Fighland
 Scotland
 Ireland

As, however, many of these schemes may fall, from non-compliane with the standiog
orders, the nomber of blils presented to Parilament may posulbly fall cousiderably short order, the nomber of blle presented co Pariament may positbly fall causiderably short of this amount, and your committee are of opinlon that it wil mot be necresiary or expedtent in the prewent setelon of Parliament io refer mere
done, owing to peculis circumgtances, in the inat mation.
From a etatement prepared by tbe officeri of the Board of Tpale. It would appear, that If the aame pitnciple of gronping which was adopted lant year should be followed in the present seasion;' the railway schemes in Engiand and Wales might be formed into 51 grouph, and thoce for Scolland tato 10 ; about 01 melect commituce wonld therefore be required.
As the boume hat aiready orderel, tbat all Irlsh rallowiy billa, and a eertata limiled clay of English billa, (the latter of which are tacluded in the foregoing atatement), should commence In the House of Lords, it in impaasible to say how mamy of these may be sent down to the Houge of Commons. The number of groupa Into which rallway scbemes for the United Kingdom were dirlded last year whe 62; but, owiog to varlook circumatnaces, only 45 committees appear to beve actually ant.
The necematy of considering to great a number of railfay blile, in addition to other private bllis, may certalaly be expected to produce an uansual and Inconveuient premare upon the time of nembers of the house; but your commitice truit, that as committeen on railway billa may in this seasion begin to ait at an earlier period than in theiant, it will not be found impracticable to constitute the requlatie number of committees during the progrese of the ceasion.
Under these circumatances, your committee have not deerped It adviable to recommend to the honie to make any selection from, or to plice any limitition on, the pumber of railway gehemes to be submitted to the considerstion of Parliament during the preaent ceston.
As your committee, however, believe that much of the time of the select committan on rallway bills is consumed, with litile public benefi, in minute sud detailed inquirias Into the amount of trafic and the probable profit to the projectora, your committee are of oplulon that the standing ortiers on tbese points ahould be altered, and that it should so longer he obiligatery on commitiees on ratiuray bilia to make apecial reports on them.

At the ame time, your committet have no wish to fetter the discretion of the select committes to make such inquiriea at they may judice proper with regard to popalition, and to the extent of accommodation that would be afforded to the public, where they conn sider such finformation to be required.

Your comanitiee beg further 20 suggest, that power be given to select commitione to refer the conslderation of any unoppoged rallway bill Included in- the group riferred to them to the chairman of Waya and Meang, and the members ordered to prepare and bring in the bill, to be dealt with as otber unopposed hills.

Standing Order, No. 87.
On Thnrsday, Feb. 19, in the House of Commons Nos. 7, 8, and 9, of the Standing Order; No. 87 were rescinded, this will get rid of a very expensive, tedious, and troublesome part of railway proceeding, as it will no now be compulsory to produce evidence relative to traffic.

Datum Line, Order No. 25.

A doobt arose in the minds of the committee respecting the London and Brighton (Dorking Branch) Railway, whether the dutum line taken from the proposed junction with the London and Brighton Railway was taken from a sufficiently fixed point, and was in compliance with order No. 25 The committee accordingly postponed their decision, bot subsequently decided that in this respect the standing orders had not been complied with.

The receplion of the petition of the London and South Western (Romsey and Redbridge Junction) Railway, was objected to on several technical grounds. Among other objections, it was urged that the datum line taken from the top-rater of the Andover and IReigate Canal was aut sufficiently fixed. One engineer stated that the top-water was always nearly on the same level, it being regulated by a weir, but two other witnesses gave evidence of a very differeat nature on this point. One of the latter, who was employed on the canal itself, stated, that so far from the weir being sufficient to preserve the level, it was very small, and when tbere was much water he had to open a hatch to let it flow out. The snb-committee declared that the standing orders in this case had not beeu complied with.

It appeared that in the North Staffordshire (Churnet Valley Line) there were three fixed points given in the plans from which a dotuas line was to be drawn, one only of which, however, was the sobject of controveray before the committee. The petition stated that one datum line depended on a point 418 feet below the "soflit" of the arch of Cockshott-bridge, and bia agent contended that this point was not fixed, but variable and uncertain. The whole turned ou the meaning of the "soffit." The opponents called several witnesses, among whom were Mr. Leather, a civil engineer of some years' practice, Professor Hosking, of King's College, London, and Mr. Tite, the architect of the Royal Exchange, who atated that by "soffit" they understood the rohole of the interior 3urface of an arch from springing to springing, and not the top or crown. One of these wituesses said, that with such a point given to him he should consider himself at liberty to take the measurement for the datum line from any part of the iuterior surface of the arch, and that, therefore, this was a fluctuating and not a fixed point. On cross-examination, most of these witnesses admitted, that from this word being used io reference to a level, they might probahly suppose it meant the top of the arch.

Mr. Borke, on behalf of the line, bronght many experienced engineerá among them Mr. Vignoles, Mr. R. Stephenson (the engineer of this railway), and Mr. G. B. Bidder, whe proved, that whatever echoolmen might understand by the word "soffit," no doubt could exist in the mind of a practical manas to its meaning, eapecially in a case like this, where height or depth was to be measured from it. These gentlemen distinctly stated, that none but a tyro in engineering could suppose it to mean any other porfion then the top of the arch.

The Chairman announced that the commitee (No. I) considered the atanding orders complied with in this case.

The datum line of the Lapcashire and Yorkshire North Eastern Railway, was taken on a level with the topwater of the Leede and Liverpool canal, Which would be crossed by the proposed line. The Cluairman doubtod whether this could be allowed as the fixed point to which the datum should be referred. The engineer explained that there was a weir of stone work close to the point from which the level was taken, the water had not fallen below a certuin point for the last 16 years.
This buing considered satiafactory, the committee decided that this bill should be reported as having complied with the standing orders.
In the committee on the Grout Grimbly and sbeffeld Jubction Extenalon Raliway (No. 3) Bill wha oppoeed, and the frat allogation was that the 'dusum' line shown upon the eections of the plane wes not the same throughout the line, ass iwo diferent datum'Hnes Trese thown in diferent irugthe or parta of the line. Mr. Parkes objected to the allegation

 Formaren fom the iatter 'datam' line Lis in a branch not loctuded in the proy Dock. Mir. Porner sad the iatter dalam line was in a branch not incinded in the prrsent bill. Mr. Drabs sand che second allegation wat that the point from which the 'datum' line was Evan was the level of a atake driven into the ground at the polut of janction with the Forangaam and Lincoln Rellivat, now in courat of construction; but did not state of Hacolo. Who wated that the state was in hls orehard, pext to the call, and ardener enown gtare" of the Notingitum and Lincola Rallway. There whs no atuke in the crove. The Chairmin ald that it appeared the gate wh. There why no stare in the Hien-etreet, but in the orchard, and therefore was incorrecty deecribed. Wrat inde of the the raference tbat it urat at the polnt of fanction with the Notingham aud Liocola Hotd oo the weat alde of the High. street, clearly deactibed the point meant, and that the nitare wat eorreetly deacribed as betng on the welt asde of the High.elteet. He called Mr. Fomier, Mr Joieph Gibbi, and Mr. Harriagtion, who all said that no engineer conid mic. tate ea to the point referred to, and that they shonld conalder the stake a fired point at it was protected by hw, it beting an offence to take any of them up. 'The 'daturn' ankes
 that the teveld. were kept up slong the line. The Chairmas mald, thet the Coumittee wire of opinion that the deacription was not accurate euough, beildes haring zome
 the cave to the sedect cormittee. The standing onitrs had aot been cumplied with in this emane.

Suascaiption Contract.

When the South-Eastern (from the Waterloo-road, near the HungerfordBridge, to the Greenwich Railway) Ruilway, had been gone through, the Chmirman stated that the committee (No. 3) could not decide that the promoters in this instance had complied with the standing orders, inasmuch es a considerable doubt was raised in his mind, as well as in the minds of the other mernbers of the committee, whether the subscription contract entered into was such a one as, consistently with the inteutions of the bouse, they could consider sufficient. The coutract presented to them was one Which comhined several different projects, for which separate and distinct estimates had been made-i. e., there were several classes of works to be constructed, but only one subscription contract for the whole, and not a separate one for each of the estimates. The contract certainly provided in its pages for the parties binding themselves only for so moch as would be applicable for the particular work or works, \mathbf{A}, \mathbf{B}, and \mathbf{C} respectively, to which they might have subscribed. But, in order to prove the subacription contract for A, it appeared to them it was necessary to admit the proof of that for B and C, a course which be considered was not a strict nor such a compliance with the standing orders as was contemplated.

Mr. Burke, on the part of the promoters, urged that a precisely similar contract had been considered subicient in one case last session.
The Chairnan said, that was in the case of an nopposed petition, and might have been overlooked, and could not therefore furm a precedent in this instance. The question, consequently, whether this project had complied with the standing orders must remuin over until be had cousulted the Speaker and the different chairmen of the other committees.
An objection was made to the Staines and Richmond Railway, an account of the deposit of 10 per cent, not having been paid by the aubscribers according to the provisions of the Joint Stock Act. It was admitted however, that 10 per cent. had been paid into the Court of Chancery, in compliance with the standing orders of the House of Commons, but it was contended that the deed itself proved that δ per cent. only had been paid by the sub. cribers themselves.-The Chairman, after hearing the ohjection, stated that this point had repeatedly been decided; and that if the amont requared were actually drposited in the Court of Chancery, the commitiee could not inquire by whom it had been paid; whetber it was by the subceribers or by some person for them was quite immaterial. The chairman accordingly decided that the alanding orders had been in this case complied with.
Av objection was made to the subscription contract of the Ayrshire and Galloway Railway, on the ground that Richard Hodgson and William Macdoaald were parties to the deed in a double capacity, as trastees of the first part, and as subscribers (with others) of the second part, and thus covenanting with themselves for the performance of certain matters ; which be conterded was repugnant to the practice in England and to common sease, inasmach as it placed the parties in a position in which they might be called upon to sue themselves for a hreaoh of their covenant.

Mr. Conoell, for the promoters, stated that the contract had been drawn op in conformity with the practice aud the law which obtains in 8cotland, where it was competent, in certain cases, for a man to sue himself under a deed. Heappreliended also that, in the case of a debt due from one member of a firm to nnother, the firm might logally sue that member.

Mr. R. Mackay, Writer to the Signet, on the same side, said that a legal objection bad never been stated in Scotland effectually againat the power of any party to aue because he was a shareholder. Under the common
law of Scotland a party could sue himself. It was of daily occurrencHe had taken the opinion of the Lord-Advocate on the point that morning who ridiculed the idea that a party could not sue himself by the law of Scotland.

The Chairman desired the room to be cleared for a dipision. On our re-admission, he stated that, in regard to the objection of Mr. Burke, the committee had decided thatithe standing orders had not been complied with, inasmuch as the subscription deed was invalid, in that it did not bind tho subscribers, within the meaning of the standing order 40.
The committee on standing orders confirmed this decision of the subcommittee, but subsequently in the House the Attorney General declured that the contract was not illegal, consequently the report was referred baclo to the committee.

Notices,-Order, No. 17.

It was contended by Mr. Connel, on the part of Sir W. Napier, that the section of the proposed Ayrshire, Bridge of W'eir and Port Glasgow Junction Ruilway, so far as it related to the parish of Kilbarton, was not in accordance with the standing orders, in that the notice which had been served on his client. Sir Williass Napier, did not inform him how a road in that parish which tive petitioners intended to lower 15 feet would affect him, as they were required to show in the heading of the scheduln (form referred to in stauding order No. 17); secoudly, that in respect to the position of the road. the level of the same, and the manner in which the railway would affect it, these particulars were all inaccurately described.

The committee, after minutely pxamining the sections on this point, and considering the order referred to, overruled the objections.

References.-It was contended by the opposition, that a narrow strip of ground in the parish of Port Glasgow, and described as vacant ground was in the occupation of the Gourlock Ropeworks Cunpany, and belonged to the Glasgow and Greenock Railway Company, aud not to the purtics named in the book of reference.

The petitioners' agent called a witness to prove that he had made diligent inquiries as to the ownership of the land in question, and that in prose, cuting those inquiries he was raferred to one of the servants of the Glasgowr and Greenock Hailway Company, at the station adjuining this piece of land; who inforioed him that he (tho servant) had received iustructions fronr head-quarters to withold information from parties concerned in the proe jected line.

The Committee were of opinion that the petitioners had used due diligence in ascertaining the ownership of the land, and that if parties refused to give such ioformation wherebs the promoters of a railway were led into error, the allegation of error came with bad grace from such partiess Therefore, in this case, the standing orders had been complied with.
Important Decision with regard to opposing a Bill before the Standing Order's Committee.
Mr. Burke, on behalf of a petitioner againgt the London, Newbury and Bath Railway, stated that he could prove that the hnoks and plans deposited in the office of the House of Commons differed from those whicls had been deposited with the cierts of the peace. He conteaded that the petition was sufficiently in compliance with standing order No. 9 to entite him to be lieard, for as the plans and books of reference were incorrect, na. landowner or occupier could know whether his land would be alfected or not. and, therefore, was eutitled to petition.

The Chairman said he had conferred, not only with other committees, but also with other persons, to whose opioion ho was inclined to bow, and he had come to the conclusion that where the objection had refereuce to the subscription contract, or other matter affecting the public, then any one of the public might petition. Where there zous not any party affected, thea the standing order No. 9, did nol apply, but it was mude for the protection of indiridunle, where there wus a party affected, then that party must ba cognizaut of an assent to such petition. He would not say the party affected muat necessarily be a landowner or occupier. The committen might hold that ander special circumstances some other person might be affected within the meaning of the order.

Mr. Burke expressed himself much pleased at the decision, which he was certain would affect some hundreds of petitions. He then withdreva. the petition.

Animportant allegation was made by Mr. Coates againat the Bill of the Berks and Hants, (Hungerford Extension) liailway, on behalf of a petitioner opposing the bill annexed to the promoters' petition, that power was sought by the Great Western Railway Company to raise the sum of 850,000 . . yet the ataid notices did not make mention of any application to Parliament for the amendment of the acts relating to the said consany, nor had such nolices been published in all the counties in which the works. of the said company were situate.

Mr. Pritt read the notices from the Gazette, and contended that they were amply sufficient, and given in compliance with the standing orders.
The Chairmmn desired the room to be cleared; and on our re-adnuision, after an interval of upwards of half-an-hour, the Chairman intimated that with respect to this allegation, the committee had come to the following recolution, namely that the committee wore of opinion that the standing orders had not been complied with, inasmach as the notices of application to Parliament to make a railway did not state the intenticn of the Great Western Railway Cumpany (though subsequently stated to be the owners
of the said Berks and Hants Railway）to amend their acts for the porpose of raising a further sum of money，but a separate notice of the same dates respectively was given by the Great Western Railway Company to amend their acts，yet such last－mentioned notice did not contain the names of places through which the works were intended to be made．

Royal Obseryatory，Paris．－A contemporary states that there is being constructed on the top of this building，atudy cablect，the walls of which，is wel an the celliog，are of pure cryatal．It in in thle chamber that M．Arago will work and watch the stara，planeta，apd cometa，by the analstance of a monater tefoscope，which it now betag mende．It in axpected thet thls new trampareat obecrvatory will be ser mil Daled by ine nionth of July next．

The Dauntless and Arrogant frigates，on the desiges respectively of Mr． White，of Cower，and Mr．Procham，materer shlpwright of abla matubitishmeat，are pro－ greealig very mpidiy towanda readinoss far hanchingt their timbering in finiched，and chelf celliag mod planking．The Daundens（Mr．Fincham＇a dealgo）tis interded an a cuetm
 following are the priciciple dimensions of the Arrogemt．Length between the perpen．
 Breadth moulded， 4 feet；Depth of bold，is feet；Burden in tons， 1,800 ；Horse－power for serew， 300 ．This fine uhip if in the mont forward state of the two，and presentar boidnesp of outthe very much admired by all who have eden her ripee abe bes been plenked．She presents a vary handsome booldig model，and is expected to prove a per－ fect man of war．

LISF OF NTHW PATEMTIE．

－grantid in england ymok jandart 29，1846，to febedary 25， 1846

Sis Months allowed for Bhrolment，unless otherwise expressed．

George Proderick Hall，of Norfoll－matreth，Fiterop－Equars，in the county of Middiowex， pawnbroker，for＂certaln machinery or apparkins for wriding asd wookidy，mambering， cutting，checking，and expediting the delivery and recelpt of pewnurokern＇dupilicates， pacs－ticketa，and other like documents．＂－Sealed Januery 29.
Jomes Brown，of Ball＇s．row，Bigh telde，Coventry，for＂eertain Improvements in wenving．＂－Jenuary 29.
Augratus Tort Porder，of Leamtagton Priore，in the controty of Warwick，tollicilor，for ＂an Improved promp or enpine for ralsiog and impelling linelmatic ginide，and producing motve power．${ }^{n}-$ Jannary 29.
Charlee Cowan，of Valley－field mills，in the county of Edinburgh，paper manufacturer， for＂Improvemente in the manufacture of paper mill－board，and other mimliar sub－ tances．＂－Japuary 29.
John Greenwood，of Chareh，in the county of Lapcaster，mesuifucturiag eberibot，for －Improzements in dyeing Initey－red，and other colours．＂＇－Junamy 22
George Bomell，of Larkhall－lane，Claphan－common，Surrey，for＂conting with a metal the surface of ariclea formed of eopper，or coppar alloys，or tron，whether wrought or the surface of ariciea formed of eopper，
Michael Rimington，of No．10，Rufford．Now，Iollington，in the county of Middiesex，sen－ theman，for＂Improvementa in oblaining and applying motive power．＂（Commaulcailon） －Januery 81
George Hinton Borlli，of Amimal，in thecounty of Middiever，endineer，for＂Improve－ menti in tbe meanfacture of iron．${ }^{\circ}$－January 11 ．
Andrew Etlenne，of Bation－garden，in the city of Lasdon，gentleman，for＂Improve ments in the conatruction of railways，rallway carriagen，and in the means of praventiog accidente on rallwnye＂－Jnouary 81 ．
James Pribrow，of Tottenham，in the county of Middlenex，etoll enghent，for＂emitain Improvemento fa propelling on，fand and wawe．＂－January， 81 ．
Fenry Hightin，of Rusby．In the county of Fiendoic，martor of arts，for＂Improvement in electric telegraphs．＂－February 8.
Edwin Cheashire，of Birwoingham，ausgeon，for＂Improvementa ln apparatus to be ap－
 rallway cerrangen．＂－February 3.
Samal Browa，of Gravel．lane，In the countr of Burrey，Enclineer，for＂Improvementatin gas engines，and in propelliog carringes and wemals．n－Febriary＇s．
Thomas Foxall Grifthe，of Woiverhampton，for＂Improvements in stamping and shaping sheet metal．＂－Febraary 8.
WIlliam Gardett Taylor，of Ealliwell，in the county of Lancenter，cotton iplanor，and William Taylor of Hallwell，aforeasid，inbourer，for＂Improvecinents in consuming wioke and economiling fuel．＂${ }^{\circ}$ February 8 ，
Whilimm Malitan，of Bradford，in the coanty of York，macuthetarer，for＂certala Im． prowements in the powar－Loom－＂－February 4
Willem Greener，of Blraingham，gan makre，and Willam Edwards Btate，of Peek－

Thomes Clarke，of Heckney，Middlewer，engineef，Mart Proeman，of 8ution，in the county of Surfey，pealleman，and Joba Verioy，of Poplar，in the county of Middieser， for＂certaln Improvementa in obtainiog and applylog motive power，parts of which are spplicable to the regulating and controlling of fulde．＂－Pebruary 11 ．
Jamen Palmer Brodd，of Fitalyters Iron Worki，8waneen，merchant，for＂Improve－ mente in the manufacture of from．＂－Febrang 11.
J ohn Kealligg，of North－mewn，Fiserof－aquare，in the cocnity of Middieecs，acaglioliat， or＂certeala Improvements in the mepuhcture of cement．＂－pebruary 11.
Joneph Plerre Ollined，of Rue Mardgnac，in the elty of Paris，profesior of mathe－ metice and philosophy，for a Improvements in the production of heat in ceneral．＂ Pebrang 11.
Charlen Tetley，of Bradiond，to the Weet Buthas of the cornty of Yort，atock and it are broker，for＂ceptaln Improvetienta in machinery for relang and lmpelling water and other Iqquida，and also thereby to obtain mechanalca！power．＂－Febraery 11.
Willem Edward Newton，of Chancery－lane，in the comity of Middienex，dril en－ － E heer，for＂Improvements in the construetion of lastrumenis or apparatua for ascer． i Alalng，regtstertug，and regulatiog the apend of cartigen and meohinery．＂（A communi

Addrew Bmith，of Priace＇satrett，in the eoponty of Middiesex，engiseer，for ${ }^{\omega}$ Im－ prowments in coeting or corering metele for the parpoce of preventing oxidation．＂－ Fabrasry 11．

James Mardoch，of Staples－lan，in the county of Middiesex，mechanical draughtam for＂an lmproved process for preparing a certala material for the parpoee of paintione＂ （A com mualication．）February 11．
George Stevenson，of Tapton－house，Chenterfedd，In the coanty of Derby，englowe． cond Willam Howe，of Newcastie－upon．Tpue，in the county of Northum
chanic，for an improvement in tocomotive atenm－englars．＂－Febrany 11.
Willam Wharton，ruperlotendent at the Eusion－square station of the Londoa and Bromaghaw Reliway，for Improvemente in straps and bands．＂－Febrasy 11.
Chariea Rewley，of Blrminghem，batton manufacturer，for＂Improvementa in battoce and other factenisge for wearing apparel，and in the menchinery for manufucturing parts of the said futening．＂－February 18 ．
John William SLaobridge，of 38，Bradenell－place，New－rond，Xiddleser，geotlemen， for＂en lipprovement in the manaficture of certals descriptions of alles and of er tibries．＂－Pebyery 18.
Joha Brocklehurat，of Holborn，in the county of Middlesax，hamp manafoctrite
 Ter Pebrupry 11.
James Nasmyth，of Arundel－atreet，in the county of Midieaer，gentieman，ste wem－ tain Improvements in eagimes or machines for obtanalog and appljing modre power．${ }^{2}$ Febratry 16.
Wuham Bdwand Newton，of Chancery－Lane，in the coonty of Midilesex，cirll enginer
 mpateatloo．）－Pebraery 17.
 tmproved combingtion of materfals to be used as a aubstitatie for letther or for wanco proof cloth tesd other similar useful parposes．${ }^{n}$－Febronty 17.
Juen Nepomwceno Adorao，of Mexico，in the repablic of Mefleo，gealleman，tor them

Edouard Augaite Dealre Oufchard，of Rne des Beuneur，Pars，in the kingano of France，for＂Improvementa in prinulag calico and othor fabrici．＂一Febraer 17.
Stephon Etleveat，of Chwreb－itreet，Sobo，in the county of Middieser，for at Improve mente in stoven．＂（Communiestlon．）－February 17.
Nicbolas Praneofs Oorbin Deaboisaterres，of Rue Salnt Plerre，Mootmartre，In the Kiv gdom or Prenee，gentlemen，for＂Improvementi to prepariag and bleralog fathem Februnery 17.
Joaeph Cilnton Robertion，of 166，Meet－atret，London，civll engiaesp，for atmprow－ meate in nall mating machinery．＂（Communication．）－Fibraery 18.
Robert Nisbet，of Lamden，in the county of Berwick，esquife，for＂eertaln Improve mants in locomotive englnes and railvay．＂－February 10°
Puter Clamenen，of Lelcenter－\＆quers，Middlenex，eequire，for＂certain Improvemant in machinery for weaviog，and is prepartog material for maviog．＂（Communication） Pebruary 20.

John Pintt，of Oldham，in the coanty of Lancaster，machinith，for ${ }^{3}$ cartain Impinve－ menta in machioery or apparatint to be omployed in the preparation ard spinning of

John Britten，of Liverpool，chemiet，for ${ }^{\text {th }}$ certaln Improvementa in the method of ap－ plying beat for the purposes of heating，cooklag，and evaporatiog，and in the apparata connected therewith．＂一February 26.
Peter Bancroft，of IVverpool，merchant，for＂certaln Improvements In the method of procest of refning and purifying animal and regetable oils and grease．＂－Febimery 2% ．

John Fiareoort Brown，of Brunswick－place，Barnabury－road，gentleman，for＂Improve
 February 26.

Thomas Murgatroyd Dean，of Btockpoit，in the county of Cheater，engineer，fer ${ }^{4}$ certain improvemente is machinery or apparatur apploaule to to the furnaces or inf placet of atemen－engines or other boilera．＂—Pebruary 25 ．
Mowes Poole，of the Patent Onfice，London，gentleman，for＂Improvementa in cleaniots and separaldng srala and other meeda．＂（A communlention．）－Felurnary 2 ．
Antonio James Mayer，of Ashley－crescent，City－road，for＂Improvemwall in entate wood．cetting minchines．＂－Pebraary 25.

Jowne Eellmana，of Mallhausen，In the Department Da Hant Rhia，Frence，mantioe maker，for＂Improvementi In certain machinea used for preparing to be epun cottoen maker，for＂Improvementi in certain machines

Wiulam James Cantelo，of Parls－street North，Lambeth，for＂Improvmenta in appa ratu for hatching oggs and ralalng the young，and for heating hot－boumes and other buildinge．＂一Pebrury 25.
 method，or new and lmproved methods of ornembnting window－farniture and articiat of npholstery in general．＂${ }^{*}$ February 25.
Whllam Moberteon，machine maker，of Gatealde，Renfrewhire，for＂extale larpoove－ meats to the mechlnery for epinging and triating coteon，ally，wool，fix，and other 6brous substanees．＂－Pubroar 25.

George Alezander Tbompeon；of Comnaught．terrace，Eyde－perk，gentlamen，and Joseph Wright，of Eolborn－bart，mechanic，for improvemente in propelling venelis －Pabraery 25.
John Maddack，of Bingtern，Staford，exthenware Eanufacturer，for ${ }^{\omega}$ a mow and ln－ proved method of bullding and congtructlng klos and ovent need by pottert and mana facturent of china and eatheapare．＂－Pebruary 25.

CORRESPONDENTS

Mr．Foster＇s book on Book－keeping relates to subjects which do not fall within the scope of this Journal．
Received－Mr．Neville＇s paper＂on the pressure to sustain banke of earth ；＂notice of this paper is in type，but is unavoidably postposed to next month．
The natices of new and restored ohnrches in the present number are abridged from the Fecelesiologist．

Can any of our readers refer us to books or documents containing the hirtory of Bt．Margaret＇s Church，Westminster，and detalling the natare of the modern alterations．
M．The restorations of Notre Dame at Paris are made at the experso of the Fronch Government．

ON THE ENTASIS AND OTHER CURVED LINES OF THE PARTHENON.*

By F. Penione, M.A., Magd. Coll., Cambridge, Ascociate of the Iostitute.

Read at the Royal Institute of British Architects.

(With an Engraving, Plate V.)

It is an admirable principle of this Institation that it has for its object the bringing together of rarious points of information from its different mambers, inasmuch an no one can see or understand everything. It woald be contrary to the spirit of this proposition, to expect that no one should get ap bere to spenk who had not materials for an entire evening's lecture. In secordance with these views I shall only detain you a short time, to inform you of the results which I have arrived at, in a limited survey of the Partheson; all the measurements I took having reference to its acientific, not in decorative construction.
It is a very convenient season for such discusaion, after the very edifylog and ugreeable evening which we passed bere on the lat occasion of our meeting, when the seal of Mr. Lacas aod the remarks which he called forth from Mr. Donaldson, brought the snbject so vividly into discussion.
However I will proceed at once to what I have to say-The fist point to be considered is the carvature of the steps-it is obvious that the earlier inventigators of the Parthenon had no opportunity of observing this as the grond was covered with rubbish, and it is so slight as to elude the eje onless brought down to the level of it.
Had Vitravias however been in credit, the following passage would have seficed to suggest it, "The stylobate or step should be so set out as to hare in the middle an addition by means of nnegual footstools (literally), i. e. unequal blocks. For if it be made level, it will appear to the eye sank in the middle (literally channelled) to the eye." Agein, "When the capitale are fioished they must be arranged on the absfis of the columns, not level, but according to the same measurement as before, so that the aymetry of the architraves and apper members mas correspond to the came addition as whe made in the stylobate."
This was frat observed in the Partbenon, I anderstand, by Mr. John Peabethorne. He unfortunately, however, allowed the Germanas to have the credit of prior publication; it made its appearance in a Vienna archilectoral journal, four years ago. I have a drawing (oee plate), made from my observations of the east front of the Parthenon. I levelled it, I believe, rery correctly, as my instrument, on being taken to the opposite end, gave axcely the same liae. I bave drawa a black line along what I suppose to have been the original line ; the shaded line marks that which I obtalined from my measurements ; these, in which I was asisted by Mr. G. Kenmedy, were taken with the French metre, aod I have reduced them to Eaglish feet and decimals of a foot, which, I think, is the best system we can ane for ecientific mensuration-it were much to be wished that it hoold become universal. A circumstance which would render this change less troublesome to workmen is, that the 100th of a foot is nearly the mame s the eighth of an inch.
Now, observing that the sixth column from nouth eart angle is the highest fox tus sitnation of all the colamas, and that the architrare above has a creck about 00 feet in width, I infer that that point has been set most frmily in the foundation, and the rest have all settled more or leas about it. This may perhapi have been all the result of earthquakes, as I found that the bese of the central columas of the west front were -08 feet higher than thove at the east end, and the base of the south angle columa of weat froot was 00 feet higber than that at ita porth angle.
In the east front it will be seen by the drewing that the north-enat angle α upper step is 028 feet lower than south-east angie, showing a settlemeat in that part of the building, which is also attested by the aforesaid anck over the architrave of the sixth column. It will be seen that on the south half of the front the step runs very nearly straigbt, except that at the agular column there is a little more aboot, probably to throw off the water belter. And the angalar column is about 02 feet longer than the otbers to compensate for this. The step, at this point, has a gradient of abont ithe atterwards som nearly. The chief riee is -022 feet, which is about the sume as the amount which the columss lean from the perpendicular.

[^12]The height above level of fourth column from the east on the sooth fank in -23. It is quite clear that the step has been lowered a trise by settement, as the stones of the atop immediately under the columas adhere so clowely that they have actaally grown together, as Stuart found to be the case; bat lower down the joint is appareat eauagh.
An hyperbola may be drawn approximating very nearly with the line after allowiog a very litte for these settlements, which have unqueationebly taken place, and as the conic sections have beed applied constantly in the construction of this and the other temples at Athens, 1 think it oot improbeble that they were regrlated in this matter by that curve.
Can any geometrical or optical considerations suggest the necesalty for this addition in the middle of the step?
Vitruvias does not go so deep into this as be usually does on oplical quentions ; he merely says that the atep if level will look channelled. It occurs to me that it is in the pediment and not in the step that we are to look for the secossity of this correction.

It is a matter of constant esperience that the presence of a curved line distorts any right line in its vicinity, as for instance, the tangent to a clrcle always looka bent contrary to the curvature of the circle, and the same thing is no lens true of the chord. A amall segment of a large circle may be made to look straight, or even bent contrary to ite real direclion, by the justa-ponition of a carve of greater curvature.
Tho mame thing obtains more or less in a pediment where the converging lines have altimataly exactly the aame relative position as an arc and its chord. And any portico to which these corrections are not applied will give something of this feeling, if we look attentively at its angles. Another confrmation of this view of the matter in, that in the great temple at Psatum, (nadoubtedly buill some time before the temple of Theseus, the addition to the stylobate and entablature is applied only at the ends; the fanks are horizontal. At Segeste, whose greatness is probably posterior to the glorious days of Athens-and consequentls their temple is to be referred to a later period-the addition is on all sides as at the temples of Athens. This adjustment could only be required in temples seen directly opposite. So in the Propyloen, we do not find any addition made to the stylobate.
We have heard something of a curvalare of the entablature in an horizontal plane as well as the vertical. Mr Lucas stated last meeting that he understood from Mr. Pennethorne that such was the case. I admit that both the fronts of the Parthenon are bent inwards, but not that it was co originally.
In the east front of the Parthenon the four first architrave atones are in a continuous plane nearly vertical ; the fourth is bent slightly inwards away from this, the rest are quite irregular. The entire defexion in the enst front is not more than -09 feet.
I obsorved that the joints of masonry on the fronts are almont all crushed, so that it is clear that there has been a alight disturbance of the original plane of the building; indeed, the angular colnmen give lem declination than the central ones.
Ifound that the fourth column from the south-east angle leant -28s feet; (this is the same as that given in the supplement to Stuart.) From the north-east angular one I deduce 225 after allowing for the amount of aetLlement due to the crack above the sixth column. I cannot admit that such horizontal carvature was ever intended. Vitruvius does not mention it, nor can any reason be assigned that I am aware of for the use of it. Constructive and optical advuntages are obtained both by the leaning of the columns and the raising the stylobate aud epistyle. It is evident that, in a country liable to earthquakes, a certain degree of pyramidal construction given to the building muat be of statical advantage. The slight distarbance which hat actually taken place has thrown the north-east angle column aboat 07 feet to the right hand, and it would have leapt away from the building in an unsightly maoner had not there been an original declination three times an great inwards.

Still I do not compare my argament a priori with that drawa from marks of crushing and setuement on the building. As Wilkins fell into a and mistake when commentating on these very subjects in Vitruvias, when he states his belief that it was only a fancy of Vitruvius, and did not enter into the works of the ancients. Vitruvias is very positive abont the lean. ing of the columna, and states that their inner face sbould be parallel with the wall of the cella. The columns of the Parthenon have not zearly to much lean an this, however owing to the nature of the curve of their
entasis, they are so at their springing, whici may perhaps be Vitrovias's meaning, as there is no instance, except, I believe, the temple at Tivoli, of $s 0$ great a declination as he describes. It was well knowa generally among the apcients that such wes the cano. Ciooro relates an amusiog atory, in his oration against Vorres, how Verres was very anrions to do something in the brilding way, and rentore a certain temple of Castor at Syracuse. He canne into the temple, and on examining it, found overy thing sound and in good repair. He turned about him, and asked his confdentials what he should do. One of them jotingly said, "Why, Verren, you have nothing to do here, anlees, perhape, yon would like to met the columos perpendicular." That man (Verres), most ignorant on all sobjects, aske, "What do you meas by perpendioular ${ }^{\text {" " They answer }}$ hin, that there war hardly any colomn which could be perpendicniar. Then sadd be "By Hercnles, lot on do so, and put them perpendicnlar." Cicaro thus holds op Verres for derision, for being ignorant an matters of teste.

It seems to me that the following consideration suggested the inclination given to the colnmas:-In conseqnence of the diminntion of the colnmns, the npper spaces become larger than the lower, and an the oye measares the whole length of the architrave by the sum of the intercolumniations, it would appear longer than the step, and conseqnently the columas would appear to diverge from the gronnd, nnless auch inclination be given to the angalar colnmos as shall correct this false impression.

Vitruvias staten that all the members above the capitals shonld lean ontwards ith of their height. This, I believe (and I have acen some very carefol measurements of Mr. Scoles'a, made with reference to this), does not obtain in any Greek boilding. The corona of the Parthenon, indeed, has an inclination outwards of 1 is 100 , but all the rest of the members lean inwards in the direction of the colamas $;$ it is clear that $\frac{1}{1}$ th wonld be too much, and eapecially at the angles would sppear nearly fth, which would look preposterons. I have no doubt that the $\frac{1}{2}$ th in the text of Vitruvius is corrapt, or elee Vitruvins mast have generalised too much; I should prefor the former hypothesis.
, There is a emall difference both in the west front and east front. In the outer intercolumniations of the Parthebon, that to the sonth is in both fronts abont foth of f foot wider than the northern one. Can this have arisen from a desire to make the intercolamniations towands the south-which are more seen, both on account of sun and situation-more nearly eqnal to ench other? In the temple of Thesens the same boids but oice sarsed. In both cases the addition is given at the side which from its position is most commanding.

The joint of the etone of the arohitraves pext the angles is on both sides made to lie a litule within the centre of the column (or towards the centre of portico), by means of which the two metopes next the angles are squares, and the pert two differ, by a sall quantity, from that figore. It must hevo been thought that it was more important to get the angular metopes exactly eymmetrical on each face, than two contiguons ones on the eame face. This adjatment, however, is not 50 apparent on the flanke and west front as it is in the east front; but the east was the pripcipal front theorotically, though in the Parthenon the weat front was seen more from the town.

There are some small and curions varieties in the abacus in different parts of the Parthenon. The more ordinary one on the east, west, and north sides is ith upper step. The abacus of the aggoiar colomo is $1 \frac{1}{3}$ Attio dactyli, or neariy foth greater. I divided foth of the upper step of the Parthenon (i. e. one Attic foot, according to the Greek fashion) into 16 dactyii, and have found these divisions to agree very well with the mailer dimensions, which were taken by myself as well as by others, and with fragments in the British Musenm.

If the abacus be divided into $\mathbf{3 0}$ parts, $\mathbf{8 8}$ sach parts will give the lower, and $\mathbf{2 2}$ parts the upper, diameter of the colnme. The angular abacus is th the height of the colomn; the thickness of this abacus is fith of its breadth. On the sonth side every abacus is less by 2 q feet than those on the north side and fronts, and is equal to $6 \mathbf{y}$ Olympic or Atlic feet, or fot of upper atep.

These capitals, being always seen cither from the city below, or from the very narrow space between the temple and the wall, on the platform itself of the Acropolis, in quick perspective, a large portion of their under sur. face wooid be seen, which would give them a greater appeerance of size than the others, which are not generally viewed from a similar situation, and which would, therefore, appear more at in elevation. The abacus in the Britigh Masenm is from the sonth aide.

I now come to the entasis of the columne. In the Parthenon it is $s 0$
alight as merely to correct the false impreasion which the eye almays recolves from columas whose sides are really straight lines, for the eye naturally fixes upon and measures the column at the neck, and the springing or base, bet has aothing to compars it with in the middie, 20 it loees at that point in importance and requires compensation.
The eatasis of the columas of the Parthenon is aboat that which weald be given in an Ionic column of the ame height, according to Vitruviug's rale, viz, the thicknens of the fillet of one flute. I have found, from measurements talen at the edge of the flutes, that this eurvatore reanlts from the colamas being hyperboloids of revalution. The generating hyperbola has aprincipal axis equal to 1 Attic foot, a focal distance equal to 20 Attio feet; i. e., the distance between foci is equal to 60 Atic feet, the line of the foci at a distance of twice the abacus balow the upper step.

It is well known that the conio cections have been nsed very genernlly in these Greek buildings, bnt I am not avare that the exact nature of the entasis has been before demonstrated. In conflmation, I will ouly appeal to Mr. Scoles. Hearing that he had some accurate measurements of coe of the columas, I asked him for his vertical measuroments, and promited to bring him the horisontal diameters corresponding. On comparing thene with his measnrements the coiscidence was so striking that I am morally cortain that I have obtained the true nuture of the cnrve. I have aleo consulted the dimensions of the columns of the Parthenon, given in the supplement to "Btuart's Athems," with a highly satiofactory reaclt; I have also found the columas of the Thesens, to be hyperbolic. A exrve obtained geometrically with line and rule, owing to the nnequal action or the elasticity of the string, gives a trifing deviation from the curre obtalned by calcnlation, and approximates still nearer to the entasis of the colomas. It is not to be supposed that, in forming their colvmas, the Athenias artists struck the hyperbola foll aize, for then they would hare required a atraight-edge about fifty feet long, which would have been very vomanageable; but any hyperbola, constructed with the aame principal axia, vir, $a=1.018$ feet, will have its horizontal abscissa full size, and the verticel ordinates is some proportion, which can be easily determined. Conso quently, to obtain any number of dimensions for conatructing a colnma like thoee of the Parthenon we should proceed thus :-

Take a straight-edge H, about five foet long; fix a string at one end of this straight-edge h, and let the other end traverse, npon a table or drawing-board, round a fixed point, H, by means of a pin or awl. Let the string be cat off exactls $\mathbf{2 . 0 2 5}$ feet shorter than the length, H h, of the rod. The string being fired to the moveable end of the rod h, and to a fred point 8 at some convenient distance $\mathbf{H} \mathbf{S}$,
 from H, vir., about three feet.

Now lot the straight-edge revolve about H, and keep the string tight againat it with a pencii, as at \mathbf{Q}; thus will an hyperbola, $\mathbf{P Q} \mathbf{A}$, be traced on the board, having all its horizontal dimensions equal to the real size, and its vertical according to some scale which can be very easily determined :-

Draw A Y perpendicular to $H S$, and, at a digtance, $\mathbf{N} \mathbf{P}=\boldsymbol{f}^{\text {th }}$ of the axis we have been using, viz., $\frac{1 \cdot 018 \text { feet }}{11}=092$ feet, draw P F peraliel with A. Then set off $\mathbf{F} \mathbf{Q}=686$ feet, which is equal the entire diminution of the column, and the segment QPwill be proportional in height to the shaft of the colvma, and if it be divided so as to represent $81 \cdot 4$ feet, the scals so ob tained will give tho full siso eatasis at any point required.

A somewhat similar method may be used
 to ohtain any desired entasis for any column that may be required, having firat fred upon the amonnt of the entasis and the diminution of the colnan by first drawing tbe corve as bere described, with any convenient axia and foci, and then applying a straight-odge until we get exactly or approzimately the amount of entasis and diminution required; dividiag the leagth of the arc so obtained for a vertical soale of the column; but as this implies something of the loose nature of a tentative process, itwould of
courne be mare tetisfectory to ix exectly the opper, lower, and middle pointe of the proposed curve, the distance below the apringing of the focal line, and theo obtaia the curre by an analytical, or, when posaible, by a rigid geomotrical procese; the Arat method, however, is very eanily done and capable of great exactoens.

The hyperbolic form is admirably adapted for Doric columas. The comoboid of Nicomedes, which is 10 very beantiful in Corinthian, has a point of contrary lezure near the neck, which is inconsistent with the alidity and digaity of Doria.

Before I leave this subjeot I will asy that by slightly modifying the pelete, \&eco, and string in the ceometrical draving of the byperbola, multitudes of beautiful curves are produced, some of which are very like those of the races and amphora of antiquity. There can never be any need of drawing curres arbitrarily by eje, the there are an infinlte variety of regalar carres, suited to every possibio want of art or science. I canpot holp alloding to the exceeding beanty of the curres produced by Profeasor Willis by his epicycloidal chuck.

Are these isolated principles: Or aro they not rather connected by ane oed beantiful connecting liak?-I cannot yet attempt to decide: comething Eact have been left to the eye and judgment. Bot it would be estreordiany that such wondorfol adjentasente-snch subile corrections, worked too with suoh precision and geometrical accaracy, should be in each ease masoly empirical. Withoat the most accnrate measurements of thao small difforential quantitien, takiog into comaderation every crack and morement among the blocke of marble, it mast be hopeleas to diecover it. There is ampla Aeld for a work which shall be the staodard of the seinetilo, as that of Stuart is of the decorative architecture of the Grooks

Roferemes to the Engrweing.

The engraving is a skotch showing the rise in the stylobate and the incliastion of some of the colnmas in the East front of the Parthenon. The difierences in the steps, \&cc, are drawn to a scale equal to one-ifth of the real sise, and the remainder one 150 th of the real size. The dimensions are given in feet and decimals of a foot; the figures under each columu show the height of the steps above or below the level line. The Irregalar lise at the foot of the columns shows the existing line of the steps, and the line abore it the probable original form.

The apper and lower courses of the columns are the scamini impares of Vitruvius; all the rest are symmetrical and perpendicular to the axis of the colome. The lef hand outer column leans to the right 206 , and the right haad one leans to the lef $\cdot 15$.

THE DECORATION8 OF TEE OPERA BOUSE.

The example that is to be, of the New Palace of Westmlanter, and Which is bow only in prospectu, may be sald to be operating by enticipatios. All branchea of decoration connected with architecture are, in city phrase, looking mp, and even mural pictorial embellistment, in encaustic, if not yet in fresco, has begon to be introduced among us, -and that, per: hape, with more hurry than good apeed. What was the firat application of it is by no means a very prepossemsing specimen, the decorations in the arcades of the Royal Exchange being almont Indicrously inconsistent with the parpose of the building, - 0 greatly at veriance with all propriety of character, that were they very mach better both as to execution and general effect, they would still be anmatisfactory. Strange to my, although De_{e} corction would meem to hold out the fairest opportunities for the exercise of inventive talent and the indulgence of fancy, it seems to be shackled by and uader the thraldom of "Precedent." Even in Ornamentation we either can, or else allow oursolves to do nothing without asking permission of Precedent. Our most approved novelties-our neweat fanhions in furaitare and the ftting-up of rooms meldom amonnt to more than the re-introduction of obsolete and by-gone ideas,-not of ideas legitimately borrowed ia order to be modified aod so remodelled as to be made our own, but taken bodily, and copled with serrpalons exactness, on which very account what is interded for fdelity becomes no better than abardity, and what was ox. cellent in its own time-in accordance with the apirit and circumstances of that time, is resdered more or less rldiculons by misapplication. We hug and pique onrselves upon our wonderfol talent-the only wonder being that it shoald be thought such-for imitating what has some time or other leen done before. We plume ourselves npon boing plue arale que I'Arabie,
—more Pompeian than Pompeif, more ala Quatorze, than the great Louis: All a la grecgue and ala Hope one day, wo are all Elizabethas the next ${ }^{\text {i }}$ Renaissance, mad Roman, by turns; Gothic or Grotesque, according jast es fashion dictates.

The Opera House has just been embellished a la Raffaclleague, and by good luck-by sheer good lack it happens that that style-in reality the d la Titus is admirably well suited for the decorations of such a place, it being playful, poetical, and fantastic enough, for which very reason the application of it to a pontifical palace becomes somewhat questionable, not but that it would have been highly commendable in some of the successor: of St. Peter had they emulated the noble example of Titus himself. $\mathbf{B y}$ those who have spoken of them, great stress is laid upon all the decoration of that theatre being taken verbatim from accredited authorities. We are awed into admiration by the names of Raffaelle, Romano, De Udine; such piece of ornament, we are assured is from Genon, another from Mantua. Then we have Guido's Aurora on the sofitto of the prosceniumer which if not poignantly satirical, is admirably appropriate, twelve o'clock at aight being the hour when the votaries of Fashion ehout out

> "Uprise ge then,
> My merry merry men,
> This is our opening day!"

Whather any of the miniature subjects in the panels on the fronts of the boxes be immediately taten from Raffaello and his contemporaries or not, is of very little moment, since as subjects they are utterly lost, and a few dabs of colour would show jnst as well, it is enough that the gencral effect is good,-light, sportive, fantestio, and not overlonded with meaning! This so to call it, uameaning arabesque style of decoration may be allowred to be admirably in keoping with the lyrio or musicel drama, both beling outrt, and avowedly imitating mature only at a vory great distance, and exceedingly conventionally: the nature of both is the nature of fairy-land, and only a formal blockhead would object to them that they are natare a la lettre. Arabesque may be regarded as the musical style of the picto rial art, and as distinct from subject painting as singing is from speaking. It is only the nltra-prodery of common sense that objects to such application of the pencil as nonsensical and absurd. In fact it is its ragueneas and want of express meaning, together with its reaunciation of any pretension to imitate natural objects naturally, that reoder this mode of paisting preforable to piefure in direct imitation of nature, for betng allied with architecture so intimately as to assume somowhat of the eatere of the latter art. Free and playfully fanciful, it is at the same time architeotonic, accommodating itself spontancoualy to linear and symmetrical arrangement.

One very great thing in finvour of the piotorial ombelliahments of the Opers House is that they are seen only by artificial light, which shads orer them a glow whose very warmth sobern them, whereas by day painting of the kind is apt to look garish if not tawdry. In a theatre it is in its proper element, the very etmosphere of the place being artificial; and where all is artificial, the artificial becomes the natural. Hed there been even less of " picture" introduced $\rightarrow 0$ we might any dragged in among the properly so-called pietorial decorations, better taste would, we think, have been shown. Besides Guido's Aurore over the proscenium there are four circnlar compartments in the ceiling containing copies of Albano's Beecons. In what reapect they are at all significant we cannot divine:-there are not four, but only one Opera "Season" in the course of the year. Invapplicability of subject we could, however, wink at; but beaides that wo protest against the absurdlty of sticking up "pictures" upoe a ceiling where as "pictures" they can not possibly be properly seen, -and here they show only at mere spots,-even as panels in the coiling, thoee compartments are quite at variance with mond archltectural design and combination. Nor do we ecruple to asy this, although the ceiling is sald to be taken from one in the celebrated Villa Medonna at Rome. We can only any, pity that instend of being taken, it was not left where it was fonad; and that Mr. Johnson, the commander-in-chiof of the artistiond forces employed, did not eet bis wits to work, and devise something better of his own, As to the "4home" itself, it is by no meane a model for a theatre: all that it has of proscenium is confined to ficor and coiling betweea the orchestre and curtain, the boxes being continnod quite up to the iatter, 50 that the audience are almont miogled with the actort.

NEW CHURCHES.

Sia-Will you allow me to notice the inaccuracy of the acconnt of All Sainta Church, Rise, Yorkshire, extracted from the Ecelesiologiat, and given in your last number?

For that account, should be aubstituted, -That this chareh consista of a chancel (correctly proportioned) and nave, with a south porch, a massive tower, and broach spire, "in the first pointed style " n the nave will seat $\mathbf{8 2 0}$ persons; the cost is about $\mathbf{2 4 , 0 0 0}$. The exterior is wholly of Yorkshire (West Riding) grit stone, in regular courses, backed with brick; all the inside arches and splayed jambs of the windows and jambs of doors are dressed stone; the nave walls are plastered, but two lines of scrolls are cut ont and filled in with Martin's cement, which is used to cover all the walls of the chancel. The east window is a triplet, plain ontside, but inside, the arch is richly moulded and supported by detached pillars. The chancel pillars and arch are old, and were found in the old walls in so perfect a state as to be used with safety in the new building.

This church was built for Richard Bethell, Esq., upon the site of the old church, near his mansion. Hot-water pipes are laid under the middle aisle from a furnace and boiler, built externally; the pipes are covered by cast brass gratings. The whole of the chancel is paved with Messrs. Minton's encaustic tiles, and round the altar the wall is covered with figured tiles up to the window sills. All the seats, palpit, lecters, stall ends, tec., of chancel, are of Norway aak. The roof has no beams, but is of the early form, found at Howden, Hemsworth, Fenton, Cottiogham, the

Augustines, London, and many others, which, when left open, are, after five centuries, found in a perfect state. Each rafter forms a perfect truss; the spaces between them are usually 18 to 22 inches; these fir trusses are painted as oak, all the boarding a pale azore, with gilt stars, shaded, taken from an old boarded ceiling in St. Mary's Church, Beverley. From authority of ancient decorations in England and on the continent, the walls are coloured drab or stone一the scrolls as parchment, rather lighter than the walla, margined with lines of scarlet -the texts in the characters preceding the Black letter (novissima monachates). All the pillar shafts are crimson; the lesser mouldings of the caps and bases are gilt, the hollows azure; the arches red and blue, with the under sides of the moulding covering them gilt. The stone reveals of the windows are coloured with water colour-pale blue; the light reflected from this pale blue is very considerable, and was shewn to great advantage doring the execution of the work, as the stone absorbed the light. A corvice of wood covers the walls, which has the three primary colonrs introduced, the gilding, answering for the yellow, is narrow in proportion to its intensity, or rather, brilliancy. The painted glass wiodows, by Wailes, are good: the only fault being in the imitation of old and defective glass in nome portions.

From the account in the Ecclestologist, one shonld be led to suppose that this was a small extravagant building, filled with gandy decorations and quackery : wbereas it is a plain substantial edifice, the material coursed, as was the practise with the ancients, and it is founded on the true masonic principles, even to the mouldings-mothing atrictly copied, but composed. No two buildings are to be found alike, -and why? Simply for this reason: that the pridciple, on having the key, is inexhaustible; and, by

LEVEN CHUBCH, HOLDERNESS, YORKBHIRE.
morkiag upon that key, minutes will suffice to produce new subjects, where days may be expended in copying. Almost every ancieat church, 100 , contuips the diegram, upon which it has been composed.

I enclose you a sketch of a small village charch, which is formed apou that diagram, built at Leveo (four miles from Rise), and which is little more than a restoration of the old church of Leven-the old pillars, archet, font, piscina, and other portions are used in the new building ; the chureh was dedicated to St. Faith. At the end of the soulh aisle wras a chantry; part of the old rood was found and removed there.

As I am anxious to reform many of the errors into which modern architects have fallea, I will shortly send you some practical observations

PLAN OF LEVEN CHURCE.
N, Nave.-A, Alale.-C, Chancel.-V, Vestry.-P, Porek.
which I have made on ancient ecclesiastical works during the last twentyfive sears or more.

I am, Sir, Your very obedient serrant,
Loodon, March 10th, 1846. R. Dennis Cbantrell.
P.S. I have now some new churches in progress on this principle first pointed," at Halifas; "second" (decorated), at Hudderafield and at Leeds ; "third" or perpendicular, at Keighley, which latter, though perfect as a building, mant be degraded by galleries, which I cannot acknowledge as in any way belonging to the building.

 IV.
ON THE STRENGTH AND FORM OF THB MENAI TUBULAR - BRIDGE.

The plan devised by Mr. B. Stephenson for a railway bridge consisting of a wrought iron tube 450 feet long, is $s 0$ bold in itself, and suggests such very important and instructive lessons respecting the theary of girders, that an investigation of the principles on which it in proposed to constract the Menai Bridge, and of the form which it will be necesasary to give it, in order that its strength may be uniform in every part, cannot fail to be io. tereating.

Before entering, however, on the investigation of this particular case, it may be as well to notice briefly the views of those eminent pbilosophers who have undertaken to investigate theoretically the strength of beams. We find here as in every other branch of the phyaical eciences, that the labours of each succeeding inveatigator have tended to define and simplify the opinions of his predecessors; and it is not only very interesting, but very useful to trace historically these modifications, because by considering the difficulties that have had to be overcome before fired principles could be established, we are led to see the essedtial nature of the principles themselves.
The first philosopluer who endeavoured to determine the lawe regulating the strenglh of bodies acted upon by trausverse atrains was Gallileo. The chief error of his theory was that he assomed that when a body was about to break by an excessive pressure, all the parts near the fracture are in a state of tension. Another of bis suppositione was that the tedsion of all the parts of the section of fracture was the same. This second error wae in part avoided by Leibnite, the next writer on the aubject; he mosumed that the teasion of the beam defiecter by a pressure varies as the distance of the particles from the concave side of the beam; he however adopted the frst mistake of Gallileo, namely, that the particles of the deflected beam were all in a state of tension. James Bernoulli acems to have been the first to whom it occurred that the particles of the beam exerted different kinds of action on diferent sides of it, that the convex side

Was extended and the concave compressed, and that cossequently on the one side the strains were of the nature of tensions, and on the other of presurce. The dinple deduction from this view of the case was that there is some place between the two sides of the beam where the extension of the particles ceases, sod the compression begins,-that $i s$, there is a line in the beam which is neither lengthened nor diminished in length by the defection. To this llne Bernoulli gave the name of the Neutral Line : his riews are now exclusively adopted; the ouly dificulty still existing refers not to their accuracy, but the means of applying them.
A very simple illustretion of the faot that a defected beam is partly compressed and partly extonded, may be obtained by bending a twig of hazel or Whllow; if the bark be tender and fexible, it will be found to have a corragated appearance-io be gathered up in folde-on the concave aide, and on the convex side to be tightly stretched or actually bnrat asuader.

The chief dificulty in the above familiar instance, and one which indeed Bernoulli's theory ls generally subject to, is the determination of the precise place where the material is neither stretched or compremed. But there ls also another objection which will frequently hold-Bernoulli adopted so much of Leibnitz's theory as assumed that tbe tension of any part of the beam varied as the distance of a fixed line-that line being according to Leibnitz in the opper or lower surface-according to Bernoulli the seulral line between the two surfaces. Bernouilli's law of the molecular forces was in fact this, that if at any part of the beam, a plane be drawn perpendicular to the neutral lines, the elastic forces perpendicalar to that plane (whether of the nature of pressures or tensions) are proportoand to the distances of the mulecules from the neutral line. This law was founded on Hooke's priociple that the restitutive forces of a body are proportional to the amount by which its natural length is iocreased or diminished. But it is found in practice that it is possible to apply 30 great a strain to a body that Hooke's law ceases to be trae; in other words, tbat there is a degree beyond which if the extension or compression of a body he carried, ita reatitative powers will no longer contince to increase with the strain, but will aetually diminish. The point is called the "elastic limit;" the nature of it may be illustrated by beading a fexible strip of metal or wood to such an extent that the reatitutive forces are no longer sble to restore the original form of the body, which remains permanatly bent.
The dificulty certainly is often opposed to the application of Bernoulli's Inws, because it is a matter of common experience that beams may be so moch atrained and beat as to permanently retain their defection when the lond is removed.

The most celebrated of the modern writers on the theory of the strength of ginders are M. Poncelet and Prof. Moseley. The elaborate researches of the latter contained in the Gfth part of the Mechanical Principles of Enginecring, are well known to the English reader. In these reacarches bowever, the weight of the girder itself is neglected as small compared with the load to be supported : but as in the case of the Menai bridge, a great proportion of the strength of the material is required to support its own weight, a separate inrestigation seem to be required.

Distinctions between girders, arches, and suspension bridges.
It is very aecessary that the offect on girders by which the molecular section on their upper and lower sides have opposite tendencies should be clearly conceived in the mind : for it is this opposite tendency which conulitntes the essential strength of girders. It is also their characteristic, by which they are distingaished from the other structures for supporting loads between piers or abutneots. In the arch the material is entirely in a state of compression, in the suspension bridge, of tension-in the girder alone part of the material resists compresaion, and part resists extension. Did bot this property exiat, the girder mast, like the arch, and the suspension chain be more and more stretched, the more nearly it was herizontal. It is known that no Enite tension will make a snspension chain quite borizon. tal, and that when the deffection is small the strain and tendency to rup. tore is very great. In the arch"also it is kaown that where the curvature is small, the lateral thrust is greatly incressed, and that when the height of the arch is very great compared with its span, the strain on the matorial is not much more than that of the superincombent mass. In the girder, however, it is fonnd that no advantage is gained by giving the surfaces a great curvature; the strongest and most useful form which can be devised is that for which the girder is equally strong in every part, and for the attaimeat of this object, the curvilinear surfaces of the girder may bo made very moch fistter than would be the carves of an arch or anapension chain, sabjected to equal strain uader similar circumstances,

Another important characteristic of the girder, doe to the opposite tendenoy of the molecular action on its upper and lower sides, is that unjess. it be positivoly bent by its load, it exerts no lateral force on its abutments A beam anpported on two props will exert upon them a vertical pressure only, and however moch it may be loaded will exert no horizontal force at its extremities ooless the load be sufficient to alter its geometrical form. In an arch or suspension-chain, however, the smallest load requires a corresponding lateral force, this force being in the former of tbe nature of a throst, in the latter of a tension. The distinguishing property of a girder in this respect is due as has been said to the antagonian of its molecular actions, for it is demonstrable that whatever lateral forces its particlea exert on the lower side are counterbalanced by equal and opposite forces on the upper side, so that altimately the resultant horizontal force is zero.

Form of section of greatest strength.

Before proceeding to determine the amount of the strains actually exorted In the proposed Menai tobular bridge, it is necessary to consider what form of the tramscerse section of the girder gives the greatest utreagth. These considerations candot be expressed more clearly than in the following quotation from the fith part of Professor Moseloy's work already referred to. The extract deserves careful perusal, as the correct comprobension of it will clear up all difficulties as to the means by which the strength of girders is obtained :-
"Since the extension and the compression of the material are the greateat at those points which are most distant from the neutral axes of the section, it is evident that the material cannot be in the state borderiog upon rupture at every point of the section at the same instant, unless all the material of the compressed side be collected at the same distance from the arutral axis, and likewise all the materisl of the extended side, or anless the material of the extended side and the waterial of the compressed side be tespectively collected into two geometrical lines parallel to the deutral axis; a distribution manifestly impossible, since it would produce an entire separation of the two sides of the beam.
"The nearest practicable approach to this form of section is that represented in the accompanying tigure (fig. 1), where the material is showa colleoted in two thin but wide flanges, but united by a narrow rib.

Fig. 1. That which constitutes the strength of the beam being the) resistance of its material to compression on the one side of its neutral axis, and its resistance to extensind on the other side, it is evidently a second condition of the atrongest form of any giren section that when the beam is about to break across that section by extension on the one side, it may be about to break by compression on the other. So long, therefore, as the distribution of the material is not such as that the compressed and extended sides would yield together, the atrongest form of section is not attained. Hence it is apparent that the strongest form of the section collects the greater quatity of the material on the compressed or the exteaded side of the beam, according as the resistance of the material to compression or to extengion is the less. Where the material of the beam is cast iron, whose resistance to extension is greatly lese than its resistance to compression, it is evident that the greater purtion of the material must be collected on the extended side.
"Thus then it follows, from the preceding condition and this, that the etrongest form of section in a cast iron beam is that by which the muterial is collected into two unequal flanges joined by a rib, the greater fange being on the exteaded side; and the proportion of this inequality of the fange being just such as to make up for the inequality of the resistances of the material to rupture by extension and compression respectisely.
"Mr. Hodgkinson, to whons this suggestion js due, has directed a series of experiments to the determination of that proportion of the fanges by which the strongest form of section is obtained."

Effect of the rertical ribs.

.
Fig. 1. and (2) by and (2) by estables, tendency of the molecular action already spoten of is maine These two offices of the vertical ribs ought to be rightly understood Respecting the first, it may be observed that for n given quatity of matorial, the strength of the beam increases with the dintance by which the upper and lower flanges are separated. This increave of strength does not arise from the increased mass of the rib, so much as from the circumstance that the further the flangea are apart, the further are they from the neatral line within the girder, and, consequently, the greater is the leverage of the malecular forces. The advantages of
making the molecnlar forces act at a great distance from the noutral is illnatrated in e very strikiug way in the floor-joists of a house, which are aniformly laid on their thionest edges, in order that their npper and lower surfaces may be separated by the greatest posible interval. Again, if a Itat alip of wood, such as a tat drawing ruie, be preased on ita broad side, there is no dificulty in bending it ; if, however, it be premsed on its thin edge it will be almost imposaible to produce a defection. Now, it is carefully to be noted that in both experiments the nature of the forces called into action are precisely the same; the material remaining unchanged, of conrse the cohesion or elastic force is nachanged also; the only difference is that, in the second case it acts with moch greater adrantage than in the first, simply because its leverage is incrensed.
It is but a very alight extension of this idea to conclude, that the form of the greatest possible streogth is that in which all the elastic force acts at the greatest posaible diatapoe from the neatral line, or in which all the material is collected in the upper and lower langes, exeept what is absoIutely neceasary for the dae consection of them by the rib or ribs.

This brings us to consider the second ofice of the rib-the establlahing a rigid coanection between the fanges. It is not sufficient that the flanges should merely be kept asuader: for this purpose an open railing of vertical bars wonld be suficient. But it is easy to see that if such a contrivance were sabstitated for the colid rib, the "antagonism" of the molecalar forces would not be maintaibed. It is absolately necesary that the upper and lower flanges should be in opposite states of elasticity and that they should mutually concretact esch other. These requisites canoot be answered unless tho web be rigid-not only vertically, to provent the fianges appronching each other, but also laterally, 80 as to act in every part as a rigid lever, of which the fulcrem is in the neutral line, the molecalar actions of the flanges conatitnte the balanced forces.

Before concluding these preliminary remarks, it may be as well to notice one pasage from Mr. 8tephenson's Report, pnblished in the last number of this Journal. He says-
"Another instructive lesson which the experiments have disclosed is, that the rectangular tube is by far the strongest ; that the circular and olliptical ahould be discarded altogether."

It may, howerer, be fairly asked, whether it were necessary to make that a matter of experiment which might be unhesitatlugly predicted by the ordjuary lawe of mechanica? It is clear that, comparing a curvilinear and a rectangular tube of given depth and containing a given quantity of material, the latter is that in which the greatest proportion of the material has the maximan leverage, and conequently that the rectangular form is that of the greatest strength.

1. Prectical Limaits to the length of the Girder.

It will be found in the following methods of calculation that the particolar form of the trasserse section adopted by Mr. Stephenson, affords pecallar facilities for the determination of eacb problem withont incerriag the diffculties which are asually opposed to the application of the theory adopted by Bernoulli. It will be asaumed in all that follows that the ribs are only suficientiy strong to bear their own weight, and to maintain the neceasary rigid connection between the npper and lower langes-that is that the whole of the available strength of the material is applied where it may have the most nsefal effect. It will remaln to show heremfor how the flanges may be made to aatiafy this acanmption, or how far they will modify it.

It is proposed for the Menal Bridge that the plates of iron shall be one inch thick; this constraction very nearly satisfies the conditions of the greatest strength as laid down in the oxtract from Moseloy's Eogineeriag given above. The first problem whieb will be the determination of the greatest poasble length of a girder of the depth proposed (30 feet) 00 that it may bear its own weight.

It is found by experiment that wrought iron will bear with safety a strain of aine tons to the equare inch, and if that amount be mach exceeded, the material begias to stretch. Now as the beam cannot be deflected without some part of its material stretching, the point to be determined is this-what is the length of the beam when by its own weight a strain of nine tons to the square inch, is applied to the metal. It is obvions that if the beam be of naiform depth, the longitudinal strains will be greatost io the middic.

Let A B C D, fg. 8, represent a loogitodinal meotion of oue-balf the girder, which is aupposed to be cut in half by a vertical plame at CD. If wo suppoee the half beam to the acted upoe at C D, by forcen similar to the,

molecular setions which actually exist at C D in the uodivided bean, w is clear that the conditions of equilibrinm will not be affected.

The forces acting on ABCD arem-1st, P the epward prensure of the aben ment (the beam being suppoeed uniform $P=f$ the weight of the beas, $\boldsymbol{r}_{\text {; }}$ the ordinary conditions of equilibrimm). 2nd, a dowaward force W eqsal to the woight of ABCD, and acting at the contre of gravity hali way between A and D. Ird, the moleonlar actions at CD.

Respecting theso molecular actions it is to be observed thet they are wholly horisontal ; for P and W being both equal to half the weight of the beam $P=W$, and therefore if a third vertical force wreve introduced the equation of vertical forces could not hold. The molecular forces are therefore horieontal; they are also equal and opposite, for othervite the eque tion of horizontal forces coold not bold. As therefore we heve sopposed the plates A C, B D to be of comparatively amail thickness, we may app pose the molecular actions to be represented by two forces M, M, in the directions indicated by the arrow heads. The only effect of representian all the forces of compression by one single force, and all the forces of tension by another single force, is the assumption of that which is practically true, that all parts of the section C ezert equal preasuren, and all parts of the section D equal tension, and that all the forces at C and at D, act so near each other that they may in each case be represented by a single force.

Taking momeats abont $B, W \in \Delta D=M . A B$.
Now we suppose the tension at D to be 9 toas or $20,160 \mathrm{lb}$. to the squav inch; consequently if we call the aree of the section D , a tmebee, Mz 20,160 a.

W Is the weight of the plates BC and AD: if the leagth of aoch of them be l inches, its solid content is a l cubic inches, and since the weigbs of a cabic lach of vrought iron is about 28 of alb. the weight of each plate is $a l \times \cdot 28$, and W is double this or 9 a $l \times 9$. Substituting in (1.)

$$
\begin{aligned}
& \text { c } l \mathrm{AD} \times 98=20,160 \text { a AB } \\
& t=\frac{20200}{2 g} \mathrm{AB}=79,000 \mathrm{AB} .
\end{aligned}
$$

AB the depth of the girder is in the proposed bridge 30 feet or 860 taches. Therefore maltiplying 800 by $\mathbf{7 2 , 0 0 0}$, and extracting the square root, we get the value of l in inches: this ralue will be found eqnivalent to $424+3$ feet. Hence we arrive at the following conclation, 1 baing half the leagth of the girder ;

The greatest lungth of a gindor 30 feet deep, which will auppart its wes woight eafely is 848 feet.

It will be observed that this conclusion is indepeodent of the arch of the cross sections \mathbf{C} and D , or of the widtb of the girder. This circnmetance arises from the tension and wright being both proportional to the arom section.

2. Tension at the centre of a Girder 450 feet long.

The length proposed by Mr. Stephenson falls far within the limits of length determined by the last proposition. The next point to determine is the actnal tension per squars inch when the length is that of the Meani Bridge-namely, 450 feet.

Using the figure and notation of the last proposition wo have pattiag io 2), the ralue of l or $A C=225$ feet (-9700 inches), and the value of $A B$ = 360 inches ; and putting also t for the tension per inch at D.

$$
\begin{gathered}
a \times(2700)^{2} \times \cdot 28=t a 860, \\
t=\frac{7,890,000 \times \cdot 28}{860}
\end{gathered}
$$

Effecting the operation indicated by this equation, we fod the valen of f to be 5670 lb ., or $2 \cdot 68$ tous. Hepce we come to this conclusion-

When the girder is 450 feet long the temsion prodwced at its centre by th ecight is rether more than si sons to the aquare ineh.
This conclusion like the lact is independent of the aree of the nevion" CorD.

8. Fertical strale on any part of the Cirder.

It has been demonstrated in tbe Arte proposition that the molecnlar te-
tions ant eatirely horivontal at the centre of the girder ; this howerer is not the case at eny other part of it. We shall find that if a section be suppoeed to be made at any point but the centre, that the molecular actions have to be replaced by a vertical strain in addition to the horizontal conple of tension and preasure, and it will be fonnd also that this rertical strain increnes continnously from the contre to the oxtromities of the girder. while the horizoatal couple on the contrary is greatest at the centre and ero at the extremities. The effect of this vertical strain, if it were sufGeiest to produco rapture, would be-not to tear the material asunderbot to make the particles Et the surfinces of the section glide upon each other. It may be shown however that the vertioal strain is so small that this effect noed not be epprohended, and in faot may be negleoted without appreciable error.

Let $A \mathbf{B C} \mathbf{C}^{\prime}$, fig. 4, represent the longitudinal eection of a larger portion then half the beam, the vertical line $C^{\prime} D^{\prime}$ being now boyond the middle point. Let W^{\prime} be the waight of $A B C^{\prime} D^{\prime}$, and let N be the sum of the vertical strains acting at C^{\prime} and D^{\prime}. Then we have for the equation of vertical force:-

$$
\mathbf{W}^{\prime}=\mathbf{P}+\mathbf{N}_{\mathbf{t}}
$$

But the value of P is the same as in fig. 8 , and is of course naltered by the vertical section being removed to $\mathbf{C}^{\prime} \mathbf{D}^{\prime}$; that is, the value of \mathbf{P} is, as before, W or half the weight of the girder. Hence

$$
\mathbf{N}=\mathbf{W}^{\prime}-\mathbf{W}
$$

That is, the vertical strain is the difference between the woight of the portion of the beam on whicb it acts and the weight of half the beam. From the last equation it is clear that \mathbf{N} increases as \mathbf{W}^{\prime} increases, and if the section be taken close to the further extremity of the beam where W^{\prime} is mearly equal to the weight of the whole beam, N will be equal to $2 \mathrm{~W}-\mathrm{W}$, or half the weight of the beam. Giving \mathbf{N} this its greatest value we may readily escertaln the strain which it produces per square iuch of the vertical eection. Taking as before the area of the section C^{\prime} or D^{\prime} to be a inches, and therefore of the two together $9 a$, and putting n for the vertical strain per aquace inch, $N=2 a \%$. Also the solid content of the two plates together is 2 a multiplied by the length 8400 in . (450 feet), and sinee the wright of the cabic iuch of iron is 28 lb ., the total woight of the two plates is $\mathbf{2} 4 \times 8400 \times \cdot 28$. Hence since N equals half this wreight;

$$
9 a v=a \times 5400 \times 28 .
$$

It will be fonad from this equation that the ralue of v ia 756 lb ., or the greatest verlionl atruin por aquare inch is rather more than one-third of a cam.

It is chear that this strater wrould bave so catill an effect to produce ropture that it may safely be neglected.

4. Tenrion produced in the Girder by a given load.

It bas been shown that the greatest strain produced in the girder by its woight merely is rather more than $2 \boldsymbol{q}$ tons to the square inch: 50 that If 9 sues to the equare inch be taken to be the degree of strain which may eafely be applied to the material, we have rather less than $6 \frac{1}{y}$ tons to the equare ioch, which may be produced by the railway train or other load upon the bridge. It is clear that when the load is at the centre it has the greatest effeet or moment abont the points of support at the extremities. Let as sow examive what atrain a given lond would of itself prodoce at the centre eeglecting the woight of the girder. Becurring to fig. 3 , let us suppose the force marked W no longer to exist, and that at the point D a force ω, equal to weight of the given load is applied. Let the force marked M now sepresent the strain produced by w. Also lot \mathbf{P} instead of its former value the the value now required, mamely, 1 it : then it will be clear by reasoning cimilar to thet in Prop. 1, that no orrticel force but w acts at D. Taktan maperta about C, and putting $P=\frac{1}{1} w_{0}$,

$$
\Psi^{+A D}=M \cdot C D
$$

$A D$ and $C B$ are in the proportion of 995 feet : 80 feet, or $15: 2$, so that we seny eabatitute for the above equation; $\mathrm{M}=\mathbf{Y}^{\boldsymbol{n}} \mathrm{o}$ 。

Hence whatever number of tons w may weigh, the strain produced by wo will be 3 times as many tons. To liad the number of tons strain per aquare inch of the eertical section, we observe that the width of the plate is sopposed to be 16 feet or 180 ioches, and its thickuess one inch, 80 that the area of the section is 180 square inches, and consequently the strain per inch is the 180th part of M. Consequently the strain per inch is equal to

$$
\begin{equation*}
\frac{15}{4 \times 160} w=\frac{16}{720} m=\frac{1}{48} w \tag{3.}
\end{equation*}
$$

From this equation we get the fullowing simple ralo-
For ewery 48 tone load acting at the centre of the bridge a strais of 1 fon per square is produced on the metal plates.

It follows from this that since after deducting the strain produced by the weight of the bridge an additional strain of rather less than $6 \frac{1}{2}$ lons per Inch may safely be produced by the lond, the load which could safely be applied at the centre of the bridge is rather lese than thres hundred and twelve tons.

In Mr. Stephenson's report it is calculated that the bridge can bear a load of 747 tons at its centre. But this discrepancy may easily be accounted for, by supposing that Mr. Hodgkinson's experiments had reference to the breaking weight, whereas here the load calculated is that which with the weight of the bridge would produce a strain of θ tons to the square incb. It is to be observed also that in the present calculation the amonnt of the ertreme load is somewhat underrated, because it is supposed to act at a siogle point, whereas in the case of a railway train it would be distribated over a considerable portion of the length of the bridge, and consequently when the train was at the centre of the bridge, the part of the load cut off by the vertical section C D, and resting on $A D$, would not act wholly at D, but the centre of gravity of this portion of the train would be applied at a point somewhat nearer the extremity, and the moment of the load would be proportionably smaller.

This howevor dues not make material difference. Yr. Stephenson ways in his report that for practical purposes a strength equivalent to 747 tous in the centre would be insufficient; it is elear therefore that es 812 tons (which is leas than half this load) causes a atrain of 9 tons to the inch when the dimensions of the bridge are those here assumed, it is necessary to detarmine other dimensions by which the strength may be increased. There are two ways of effecting this object-1st, by inereaning the denth of the.girder; 2nd, by increasing the area of the transverse section of the piaten, (that is, by giving the plates greater width, or greater thickness, or both). There is indeed a third method of increasing the strength, namely, by iucreasing the dimensions of the vertical ribs beyond the degree of strongth necesaary for the rigid connection of the upper and lower plates, but this method is so unphilosophical and involves suoh a traste of mato. rial that it may fairly beexcluded.

The examination of the means of obtainjug the requisite degree of atrength by increasing the thickness of the plates, and the depth of the tube shill be given in the next number of this Journal. It is proposed also to examine how the dimensions of the tube may be varied in different parte of it so that the strengtb may be uniform thronghont, to examine the effects of expansion and contractive of the material by variations of temperature, the form of the vertical ribs so that they may be aufficiently etrong to perform their affice without adding to the strain on the flanges, and lastly, the effects of imbedding the ends of the tabe in solid masonry.

It may be as well to say one or two words to prevent the purpose of these suggetions being misinterpreted. They are certaiuly not intended for the gaidance or direction of the distinguished engiveer who has planned the Menal tubular bridge, and whose scientific knowlodge is fully adequate for the calculation of its dimensions; but to those who bave not folly considered the principles of the strength of girders the present inveatigations may offer an instructive lesson, eapecially as the conclnaions are derived not from gratuitous and dangerous hypotheses, but from the common funda. mental principles of statical equilibrium.
H. C.

The syndicate of the Fitzwilliam Museum, Cambridge, have received from Mr. Cockeroll designs for completing the hall and staircase of the new building for parts of which Mr. Basevi had nut left any settled designs. Working drawings and estimates were ordered to be prepared forthwith.

ON ATMOSPHERIC RAILWAYS.

Resictance from the Heat deceloped in the Ai Pump.

By F. Bashyorth, B.A., Fellow of St. Jobr's College, Cambridge.
There are considerable differences between the mean theoretical and experimental resistances to the air pump piston, for given heights of the isurometer, as stated in Mr. Stephensou's Report on the Atmospheria Syslem. The discrepancies, for low heights of the barometer, are easily ezplained by a reference to the diagrams from which the numerical resplte were deduced. It bere appears that the exit valve by its lapplag throigh a very considerable space, caused an incrased and useleas resistance. In addition to this, it will be seen that at the rery commencement of the atroke, the indicator frequently gave a pressure of nearly 1 lb . per square inch greater than the pressare in the tabe. This no doubt was cansed by the stream of air rushing into the cylinder in the same manner ws water into the bydraulic ram. Thas the mass of air enclosed and expelled was greater than what was supposed by theory.
When the barometer rose to about 10 inches, although the above two disturbing canses diminish with the increased rarefaction in the tabe, the differences of the theoretical and experimental results increased. This was so considerable that Mr. Stephenson was driven to suppose that in uddition to the beat developed, a considerable leakage in the air pump existed. It appears, however, that the first cause is quite sufficient, and that the connecting tube must have admitted 206 cubic feet of air per minute at the density of the atmosphere. Let

$a=A B=$ length of atroke of air pump piston.
$k=$ area of air pamp piston.
$\mathrm{n}=$ pressure of the atmosphere on a nuit of surface.
$\mathbf{P}_{1} \mathbf{P}_{\mathbf{3}} \ldots . \mathbf{P}_{n}$ the pressnre of the air in the tabe aftar 1, 2, strokes.
$\rho_{1} \rho_{3} \ldots \rho_{n}$ the deasity of the air in the tube after 1, 2,....m strokes.
$\mathbf{V}=$ volume of the receiver. $0=$ volume of the pump eylinder. Suppose that at the wh atroke when the pump piston has described a space $\mathbf{B} \mathbf{M}=a-$, that the density of the air ls p and pressure P. Then

$$
\frac{P}{r_{n-1}}=\left(\frac{p}{p_{n-1}}\right)^{K}(\text { Millor's Hydrostatica (38.) })
$$

Also $\rho V=p_{1}(\mathbf{V}+\nabla)$.
$p_{1} V=p_{g}(V+r)$.
\&c. $=\&<$.
$P_{n-1} \mathbf{V}=\boldsymbol{p}_{n}(\mathbf{V}+\theta)$.
$p^{*}=p_{n}(\mathbf{V}+0)^{n}$ 。
$P_{n} \quad=\rho\left(\frac{\mathbf{V}}{\mathbf{V}+\theta}\right) \pi=\rho \mathbf{R}^{n}$, виррове
A lso $\mathbf{P}^{\boldsymbol{m}}=\boldsymbol{\Pi} \mathbf{R}_{\boldsymbol{n}}$, for the rarefaction of the air goes on slowly, and it is in contact with 20 large a surface of metal, that wo may consider the tem perature to be aniform, and . . the pressure and density. The tead. eacy however would be in favour of the atmoapheric traction. $k \in P_{n-1}$ $=$ mass of air inclosed at the commencement of nth stroke $=k x \rho$.

$$
\cdot{ }_{x}^{a}=\frac{p}{\rho_{n-1}} . \quad \text { Also } P=P=\left(\frac{p}{\rho_{n-1}}\right)^{K}=\Pi R^{n-1}\left(\frac{a}{x}\right)^{K}
$$

when the exit ralve opens $\mathbf{P}=\mathrm{n}$, and suppose $x=a$,

$$
\text { then } 1=R^{m-1}\left(\frac{a}{a}\right)^{K} \text { and } \frac{a}{a}=\left(\frac{1}{R}\right)^{n-1} \frac{1}{K}
$$

Work done in compressing the air $=$

$$
\int_{k}^{a} P d x=\Pi R^{n-1} a_{a}^{a} \int_{\left(\frac{a}{x}\right) d x=R^{K} R^{a k}}^{K-1}\left(\frac{a}{a}-1\right)
$$

$$
=\frac{\pi a k}{K-1}\left(\frac{R}{x-1}_{x}^{n-1}\right)
$$

Work done in expelling the air $=n k x=n R^{\frac{n-1}{K}}<k$.
Work done by the assistance of the air in the tube

$$
=\Pi R^{n-1} k \int^{0} \frac{V d x}{V+(a-x) \frac{v}{\Delta}}=-\Pi R^{n-1} \frac{V}{v} a k \log _{4} R
$$

Hence work dode during the nth stroke,

$$
=w_{n}=n a k\left\{R^{n-1} \frac{V}{v} \log _{e} R+\frac{1}{K-1}\left(K_{n} \frac{n-1}{K}-R^{n-1}\right)\right\}
$$

Work done at the end of n stroken.

$$
\begin{aligned}
& =W_{n}=\pi\left\{\frac{1-R n}{1-K} \frac{\nabla}{v} \log _{e} R+\frac{1}{K-1}\left(K \frac{1-R^{\frac{n}{K}}}{1-R^{\frac{1}{K}}}-\frac{1-R^{n}}{1-K}\right)\right\} \\
& \text { If } \omega_{n}=\text { a maximnm, } \frac{d w_{n}}{d n}=0 .
\end{aligned}
$$

This gives $n=100$ nearly corresponding to a rarefaction of between 21 and 22 inches, which agrees exactly with experiment. If we do sot allow for the heat developed, theory gives 19 inches.
gTEPHENSON'S REPORT, TABLE NO. P.

Height of baro meter.	Theory.	$\begin{aligned} & \text { Dife- } \\ & \text { rence. } \end{aligned}$	Experimants.	Theory which hent.	Diffe rence of Theory and Expertmen	The numbers fonad in Table V. of Mr. Stepben-
	$2 \cdot 6$	0.8	$3 \cdot 4$	$2 \cdot 6$	$0 \cdot 8$	son's Report correapand to
7	2.6 8.0	0.8 0.7	$8 \cdot 8$ $4 \cdot 1$	8.0 8.4	0.9 0.7	
8	8.4 8.7	0.7	$4 \cdot 5$	$3 \cdot 8$	0.7	the valves of (-) fur
10	40	$0 \cdot 8$	$4 \cdot 8$	$4 \cdot 1$	0.7	
11	48	0.8 0.8	$5 \cdot 1$	4.5	0.6 0.6	every inch of the berome
12	4.8	0.8 0.8	8.6	$5 \cdot 1$	0.8	ter from 5 to 27 juches,
14	3.0	$0 \cdot 8$	$5 \cdot 8$	5.4	0.4	where II $=15 \mathrm{lb}$. and K
15	$5 \cdot 2$	0.7	$8 \cdot 9$	${ }_{5} 8$	0.3	$=1 \cdot 416$. The value found
16	5.8 8.4	07	6.0 6.1	6.7 6.1	0.8 0.0	by comparing the theors-
17	$5 \cdot 6$	0.8	8.8	6-2	0.1	tical and experimental re-
19	8.5	$1 \cdot 1$	6.6 6.7	8.8	0.8	locities of sound. The
20	8.8	1.2	$6 \cdot 7$ 6.8	6.4	0.8	accompanying eable ex-
31	$5 \cdot 4$	1.4	6.8	$6 \cdot 4$	0.4	bibits the theoretical ad
23	$5 \cdot 1$	1.4	6.6	6.8	0.2	experimental values of the
24 24 28	48	1.4	6.2 6.7	$6 \cdot 1$ 8.9	0.1 -0.2	mean resiatance to the pis-
25 26	$4{ }_{4}^{4}$	1.2 0.9	6.7 4.9	$8 \cdot 9$ $5 \cdot 8$	-0.2	ton.
27	8.4	0.9			-0.6	

In addition to the above teat we may construct theoretical diagrame, end compare them with those found by experiment.

The equations to the part deacribed before the exit valve opens

$$
\begin{align*}
& \text { is } y=h^{\prime}\left(\frac{a^{\prime}}{x}\right. \text { when heat is neglected } \tag{a.}\\
& \text { and } y=h\left(\frac{a^{\prime}}{x}\right)^{K} \text { in the other case } \tag{в.}
\end{align*}
$$

where h^{\prime} denoten the length of the lino between 0 lb . and the dotted lize in the figures representing the pressure of the air ln the tube, and a' the leagh of the diagram. (a^{\prime}) evidently represents a seriez of rectangular byperbolas referred to the same axes as asymptotes.

The curves (β) are found to agree very nearly with experimenth, whith (a, are very different when the height of the barometer is about 20 ineber.

Both theories bave their use. It has been seen that when beat is meslected the work done by the engine, and the useful effect may be cowsidered equal. The other by its close agreement with exporiment enables os to estimate the necessary loss of different arrangements on the supposition that the machinery is perfect.

Between 10 and 25 inches the loss arising from this source is 16 or 24 per cent. of the useful effect, and is another reason why the rarefinction in common inatances ought not to be pushed beyond 18 or 19 inches.

UNFAITHFULNESS IN ARCHITECTURE.

By unfalitualaens in architecture we mean-the employment of forms or materials in soch a manner that the true character of the architectore is diagoised. This definition includes the use of materials deceptively, the application of architectural members to wrong purposea, the introduction of them when not used constructively, and lasty the decoration of the conspicienous parts of a building in such a manner that the eye is deceived as wo the architectural character of the paris unseen.
A curious instance of unfaithfaluess in architecture bas recently been exhibited in some brildiags connected with the Croydon Atmospheric Railway, in the employment of structares, resenbling in form the turrets of Pointed Architecture, as chimney. From these turrets may be seen isaning day by day dark volumes of smoke, and consequently all the upper portions of the ornamental work are blackened with soot. This begrimed specimen of mock architecture is of course so ridiculous that the most coperficial observer can detect the absurdity of it : bat it must be carefully soted that thougb in this case the accident of the discolouration has rendered the architectural error palpable, it is not that accident which conatitstes the error-the principlea of pore taste would have been quite as much violated even if the ridiculons appearance of the soot-covered monldings had not readered the violation manifest. At the same time we ought always to feel saliofaction when these accidents occur, because they render obvious to the mast aneducated observers, the defects which otherwine would be condemned by those only who had stadiously examined the priociples of arebitectural taste. Though in fact we shall usually find that in all fastances like these of the Gothic chimneys, some attendant diaaster is sure to follow, which by a kind of architectural retribationpunishes the error by a signal publication of it.
To retarn bywever to the general subject, we may remark that one of the neceseary consequences of architectural nofaittrulness is the neglect of what has been aply termed apparent conotruction. This term (Grrst introdnced by Prot. Willis, we believe), signites that development of the con utraction of a buildiog by which it is made manifest how each part is sapported, and in what manoer each member contributes to the sability of the whole. It is not of course to be argued that wherever apparent conatroction is oniformly observed, the architecture is necessurily benutiful; because in that case we must be prepared to find beauty in a hot, a sty, or a atable; for in these structures the principles of apparent construction are generally observed for the sake of economy. But still the converse proposition may be safely asserted, oamely, that where apparent construction is violated one of the sources of the beautiful is neglected; and it also reems an unavoidable conclusion that where forms which are individualiy benatifal are combined faithfully, the resultant mast necesearily be beautifol aleo.

It is necessary that the exact value of faithfulness as an element of beauty should be thus clearly ascertianed, because it is not uncommon to hear those who argue most zealously for the necessity making architecture faithful, speaking as if they thought that by securing to it this single merit, perfection was attained. For instance we find une of our contemporaries procouncing the architecture of the Paribeuon, failliful and therefore beautiful, whereas it is clear from the common iustances which we have addoced, that faithfulness is separable from beauty-that it is but one eleweot (though an essential one) of beauty, for we may readily conceive the possibility of architecture being faithful which is not benutiful, though it be quite impossible ω imagine perfectly benatiful architecture which is sot faithful.
We will take an instance, and perhaps our selection may appear a bold one, to illuatrate our meaning. The dome of St. Paul's, nutwithstauding the astonishing constructive skill which it displays is distinctly an example of neglect of the rules of apparent construction. The exterior dome instend of being supported entirely by the substructure, us it appears to be, is in fact carried by a timber framing resting on a cone of brick work concealed between the inner and outer cupolas. On this cone of brickwork also rents the ladithern, which apparently is supported by the outer dome. Moreover the lateral thrast to the cone is resisted not by buttresses or other zapports openly displayed, bot by a hidden iron chnip, which by its tenacity preserves the atability of the masoary.
If it appear very bold hetorodaxy to adduce such an ipstance as this, we -ril bring the architect himself as a witness to curroborate our opinion. It will be remembered that the original design submilted by Sir Christupher Wren, for St. Paul'ゅ, was rejected. In this Brst design, of which a model
exists in the present cathedral, "he endeavoured to gratify the tante of the connoisseure and criticka with something coloss and beautiful, wih a deo sign antique and well stadied, conformable to the best atyle of Greek and Homan architecture." Respecting this second design however-that altimately adopted, we are told in the Parentalia, that he "then tarned his thoughts to a cathedral form so aitered as to reconcile as near as posible the Gothic to a belter manner of architeclure."-That in, he attempted an impossibility.
The character of St. Paul's, as has been recenlly stated by Profensor Cockerell in his lectures, is (indepeadently of the jadividual members) that of a Medieval Cathedral. A cruciform building with a lofty central dome, it is obviously as differeat in form as it possibly can be, from the ancient classic models. And consequently in reconciling classic architecture to forme which it never contempleted, and for which it was not designed, it was necessary to iffport numerous contrivances which never belonged to the original style, and which therefore of necessity involved the violation of the principles of apparent construction.
To take another instance, and perhaps the most fagrant one in the same building, -who would imagine by inspection from the exterior, that the whole of the upper order round the charch is notbing bot a mask to conceal the flying buttresses behind it which are similar in purpose to those which in the ancient cathedrals are not only displayed openly, but are among the most beautifui features of the architecture. Of the hundreds who pass $8 t$. Paul's daily, how few are aware that the whole masonry which appears above the lower range of columns is an isolated mask, that it has nothing to do with the interior of the building, that it might be removed without prodocing the slightest change in the interior, that in fact it is merely an ap. pendent excrescence answering no purpose whatever except that of concealment.*
It can scarcely be denied that the adaptation of classic architecture to the medireval form involves incongruities and necessitates unfaithfolness of construction. The mere consideration that the cbaracteristic of the one style is verticality, and of the other horizontality, seems sufficient proof that the two can never be successfully reconciled. In these particulars, namely-the predominance in the one of vertical, and in the other of horizontal lines-the two styles are not merely different but are diametrically opposed to each other. And it is clear that this antagonism is so direct, that it can never be avoided escept by the violation of the principles of one or both kiuds of architecture.
This truth has been laid down with sufficient distinctness by others than ourselves; but there is another great distinction between Cbristian and Classic Architecture, which thuugh generally neglected is a most frequent cause of architectural unfaithfulness-Classic Architecture is characterized by onity-Christian Architecture by molitiplicity. In the most perfect specinien of the Classic style, the Parthenon, the ground plan is the simplest possible, a rectangle, and all the details are combined so as to reprement to the mind one single uncomplicated idea. In the most perfect specimen of the Mediaval style,-Colugue Cathedral, perhaps-tbe effects of awe and astonishment are produced hy the combination of an infonite number of the most varied forms: the effects therefore in these two cases depend on entirely different principles. We endeavoured to explain this distinction in a former paper, by designating the one style as ataluraque, that is, resembling a statue or sculptural group, ia which every part contributes to the development of one single thought or action, and tbe other as picturesque, because it derives its beauly frum the same various and complicated groupings which characterise the highest kind of painting.
If it be once admitted that Grecian and Christian Architectore are reapectively distinguisbed by knily and mulliplicity, it fullows as a necensary consequence that an edifice in which the design as a whole is Medizoral, and the individual menhers Classic, nuat be incongruous. It would, wo think, be scarcely denied that, were it necesonry at the present day to build a new metropolitan church of the asme inportauce as St. Paul's, notwithatanding the general admiration of the architecture of Sir Christopher Wren, the attempt to combine the cathedral form with the elements of Corinthinn architecture would not be renewed.

Architectural criticism bas frequently been censured for deficiency in fixed leading principles. Those whose office it is to pronounce on the

[^13]enerits of modern buildings are aconsed of forming their judgment on oircomatances peculiar to each individual case, and not on broad seneral 7ales. The criterion however which we here advocate, that of faithfulness is certainly sufficiently general and definite. It were difficult to overrate the advance which modern architecture might make, were the necesaity of vaing forms and materials faithfully once fully established in the minds of architects and critics. Eren if such an obvious trath as this could be once Armly eatablished-that a column when not used as a support, is simply a deformity-that the hoisting of a column on the first floor of a building, or the sticking it againat the face of a wall, where instead of supporting the building it is anpported by it-if only auch plain lessons as these could be learned, we should have made a bold step towards the attainment of purity of taste.
Those who really love the art, and feel a generons zeal for its advance. ment, should devote their best euergies to the development, and establishment of philosophical prideciples in it. It is a painful but noavoidehle refection, that while in most other professions the ability of the practitioner outrons the desires of the people, modern architecture acarcely over satisfes theif expectations. There is no difficulty however in assigning a sufficient reason for these deficiencies. Almost all other branches of modern skill exhibit a spirit of a philosophical accuracy which exactly accords with the intelleotual genins of the age; in architecture alone we are atill trammelled by obsolete forms, and inatead of adopting the principles and emalating the excellence of the pureat ancient architecture, continually reproduce the barbarous incongraities invented by our more immediate ancestors.

CHURCH ARCHITECTURE, AND CHRIST CHURCH, PLYMOUTH.

Only by the encounter of opinion with opinlon is it that prejudice can be overcome, and truih elicited in matters of opinion, criticism and taste. Such encounter, however, candot take place unless contrary, and conficting opinions are brought forward in the same quarter, so that the same readers may learn what is said on both aides of the question; otherwise they get ooly ovemperhaps the weaker half of the argument, which passes for being unanswerable, merely because it is unanswered, or not allowed to be answered, all that would make againat the side which has been taken up, being stodiously suppreased. Such convenient one-sidedness generally takes the plausible name of consistency, and it certainly fatter: the indolence of those who having made up their minds upon any subject of inquiry, once for all, do not like to be disturbed and put to the trouble of reconsidering what they would fain believe to be incontrovertible. Yet oven sound opinions are apt to grow rusty by time, and the adrocacy of them to degenerate into mere dogmatism, if they be not oc casionally atirred up and turned over afresh. This has been decidedly the case with regard to architectaral opinion and criticism, in which browbeating assertion founded chiefly upoo previous anthorative dicta, has been substitated for convincement, whether in confirmation of or in opposition to such authorities; for nearly the same superstitious reverence for precedont which prevaila in regard to architectural styles, prevails also in regard to architectural doctrines. Nevertbeless, even doctrines that are mound in the main, require sometimes to be forther explained, to be illustrated by positive example, and to be set io a fuller and clearer light; and it is owing to this act being done, that 10 far from being able to defend the traditional opinions and arguments which they have adopted at the outset of their atudies, people feel bewildered when they find them impugned, and unable to defend them, though they may be obstinately determined not to give them up, or even admit any qualification of them.

Wherofore should not architectural criticism, instead of being confined to the narrow and beaten track in which it is now made to move-or rather bobble along just at the heels of precedent-a sort of laquais de place to it, and sometimes a Will-o'ethe-Wisp, 一why, I ask, ahould it not be allowed to range freely and exercise itrelf as it lists t It is time for as now to turn our atte ation to something more than the consideration of styles alone, and the mere settling of dates and matters of that kiod, to which the atady of the art as a branch of literature and criticiam bas bitherto been almost exclasively limited, the merely historical and antiquarian quite overwhelming the eshetic; whereby auch study has been rendered one that chiefly exercises the ficulty of memory, leaving that of taste inactlve, and
inert. If in addition to the historical and non-architectoral wo obtato tolerably full matter-of-fact description, it is nearly the otmust that we ever do. Take our English Cathedrals-for they have been mose frequently and more minutely spoken of than any other structures of the kind; which among them all has been made the subject of a complete critical and aesthetic examioation, noticing every peculiarity in it? In other words, bave we any artintical descriptions of them? -that sort of description which not only illustrates but illaminates, kiodling ap into beauty, irradiatiog and making clearly perceptible what is also bardly discernible to ordinary eyes?

No wonder, therefore, that persons in general hold architecture to be a dry study, and find it to be a distasteful one, encumbered with grave and learned pedantry on the one hand, and a dully plodding, and mepe mechanical pursuit on the other; while as to the vaunted mystic ex cellenoe of 'proportions,' thanks to those who hare systematized them, they are to be got at ready-made-for the matter of that so is criticism too, and the essence of it consists not in judging of buildings according to their istriosic and individual merit as productions of architecture, but in prejedgiag them according to certain conventionalities, and wherever those are broken through, in condemning withont forther inquiry. Nearly the same onesidedness which once scouted Gothic architecture altogether, as barbarous, prevails now, the difference being that it is in contrary direction, puabing veneration for it to superstition.
Cumbersome tedionsness, amounting to nothing as arohitectural inform. ation, and bewildering unreadableness are the prevailing faults of mont of the recent publications which profess to speak at length of our ancieat architecture as exemplified in particular buildings. As to modern churches, though they obtain more frequent and a far greater share of notice than almoet all the other classes of buildings pot together, they are criticised only E.clesiologically, or else cried up as wonders in newrepaper paragraphs that read very mucb like paid-for newspaper pulfs. Mr. Wightwick may, thenfore, consider himself singularly fortunate, and his Christ Church at Prymouth especially favoured by the latter baving been made the subject of remarks partaking of controversy; and as I maself think think it has been captiously censured for what I am inclined to look upon as an improvement rather than the contrary, in modern charch architecture,-at least where galleries are introduced, I avail myself of the opportunity arising out of what has been said to offer some further observations. Besides that, I honour Mr. Wightwick for being one of the few of the profesaion Who think for themselves, without vaiting to be prompted by precedeot on every occasion. Candidus owes him some reparation for having published, some time ago, a paper in one of the leading periodicals, entitled "Wightwickiam," intended to be commendatory, but which some dall matter-of-fact blockhead in a Plymouth newspaper pronounced to be nothing less than a complete cut-np l-whereas, had that been my objeet, I should have exhibited my ability in cuttiog-up after a very different fashion. Perhaps, for the benefit of the country gentlemen, that is, country nemapaper editors, I ought to give warning that I am not going to cut-up Wightwick now; lout au contraire, to give him my good word-and it may go for just as moch as that of many others.

In his reply to the strictures upon his church at Pismouth, Mr. Wightwick asks if it be "quite fair to call the only front that shows a show front." Most certainly not, if that term is to he taken, as was evidenily menot in an injorious and reproachful sense; and if not so intended, it is only an Anglicised version of the Italian 'faciata,' and our naturalized Anglo-Italize word 'façade.' As a term of a reprouch in contradistinction to 'façade," that of 'show-frout' applies only where the other sides of a building ave seen, yet are quite out of keeping with the display affected in the principal one. The British Masenm, for instance, will have a veritable show-front, and oven that front will be in some measnre diafgured by the paltry buildings which are allowed to come into sight between the main body of the edifice and the west wing. It will be said by some that a church ough to stand quite apart from other buildings, so se to show more than a mere façade towards the street : yet such 'ought' is' not rery ovident, dopending in a great measure apon circumatancea, and even where theo is nothing to prevent a church from boing quite insolated; that may be rather a disadvantage than not in regard to architectural design, becaume if the funds are limited, oither architectural finish will be confined almoet exclusively to the weat or entrance end of the building, which therefoee becomen a mere show-front, or auch inconsistency is avoided only by impoverishing that and making the whole exterior equally poor and jasiptd throughovt. One or other of these flagrant defects is exemplified in moet of our modern atructures, whatever merit mome of them may poseess is
other respects; and one of the latent of those orected in the metropolis, which showe very well from one point of view, looks almost ludicrously mean, owing to the body of the church being fully exposed to view on the morth side, it being a mere pigmy in comparison with the tower and spire, af the foot of which it seems to have squatted down.

After all, 'show front;' perhaps, might pass, were it not for something mueb worse, the napardonabie peche mortel of Mr. Wightwick's church being that it is lighted on the sides only by clerestury windorn, there being noac in the aisles. This is found fault with as unchurch.like, -and if by ' unchurch-like' were meant nothing more than that it differs from what we me eccustomed to see in churches, the epithet would be suitable enough; bat it implies a very great deal more-nothing less than something unbecoming to, and what ought on no account to be adopted for charches. Yet Why not?-more eapecially if situation requires it, when such mode of obtaining sufficiency of light in spite of the external obstructions accasioned by surrounding buildings, ought to be prized as a great advantage in itself and one immediately derived from the Gothic style, and in effect characteristic of ecclesiastical examples of it. Were it found that an interior having no other side windows than clerestory ones, can be but imperfectly lighted, the objection might be considered tolerably valid; but such certainly does not appear to be the case in regard to Cbriat Church, because is the extract given from the Plymouth Journal it is spoken of as being "cheerful as the day," though that may be onls a lourish of newspaper rhetoric. Be that as it may, we need not travel to Plymouth to ascertain whether it be possible for a chureh so circumstanced in regard to windows 10 be adequately lighted, because there happens to be one now erecting, and fast adrancing to completion, near Fitroy-square, which instances every one of the points that are deemed architectural heresies and deviathons from orthodox ecclesiology in Mr. Wighterick's structure, it being bailt in between bouses, consequently having only a show-front, and being lighted on its sides by clerestory windowe only. In regard to the Plymouth structure, it has been assumed somewhat confidently that it must be either insafficiently lighted, or the clerestory windows so enlarged as to become * very prominent features"-of course disedvantageously so. Excess of size in its clerestory windows is certainly not the fault of the other church jnst alluded to, for there they consist of very small aperiures put in pairs over each arch of tho aisles; yet so far from there being any deficiency of light, there seems to be rather too much, and that it requires to be moderated by diapored glass, notwithstanding that at present one of the end wiadown is coverad up by temporary boerding before it. Lilllo, indeed, can be said in favour of tho interior itself, since it is bare and poor, but ite unsatisfactoriness is certainly not oceasioned by there being no wiadows in the aisles, sioce were there any, the effect would be rather for the worse then the contrary.
ω We never shoold expect," it is urged in argument agaiost Mr. Wight wick's bailding, " to meet with an ordinary akylight in an ancient church," which remark, as far as it has any drift at all, seems to imply that such is, neveribelesa, the case in his modern ode, although to anawer to the namo of akglight at all, his clerestory must be a very exiraordinary skylight in. deed. That the exclusive employmeat of clerestory windows, or in other words, of wiadows placed aloft, so that light streans down into the build. ing, is contrary to the spirit of pointed architecture, is more easily asserted than to be borno out by proof. The effect so produced is certainly a pe. ouliar and unusual one, but it bas gederally been prized accordingis as of rare merit. This it is which if it does not constitute, contributes so greatly to the peculiarand charming effect of the octagon in Ely Cathedral. To say that and similar instances do not answer to the title of "clerestory would be oaly cavilling about words, because the point for actual consideration is, not whether such term can be correctly applied to instunces of the kind, bet whether such mode of lighting a Gothic interior principally, if not en. trely, from the upper part of its sides, be contrary to the spirit of the style iteelf or not; or if not exactly that, be "un-church-like." That it must inevitably be the latter, and that the character of an interior so lighted most partake of that of an exhibition-room or picture-gallery bas been de. aisirely taken for granted, elee why should the National Gallery be referred to as proving most convincingly that the effect attending light admitted from above mast be "essentially secular." Why! except thas single circamatance, there is nota single particular of resemblance, and even in regard to that there is a difference, the rooms alloded to being lighted by sky-lights or lanteras in the ceilings. Undoubtedly the light is there generally diffused, because it was intended to be so, neither is there 05 decided architectural expression or any plas of light and shade, there
being nothing whatever to produce eitber the one or the other. Doel it follow that every other interior into which the light is admitled at all after the same manner as in a pictore-gallery or museum, must on that account resemble an apartment of the kind? Can no difforences as to style, as to design, as to arrungement, as to fitting $u p$, as to quantity of light, \&c., overcome such fatal resemblance to a secular building ?

Had it been inteoded to judge fairly what striking architectural expresaion aud effect may be achieved almost entirely by admitting light from above, a very secular building indeed-namely the Bank of England, might have been referred to as exhibiting a variety of modes and ideas of the kind, all of them attended with differences of effect. There might even have been pollcy in eapecially pointing to the halls and offices in the Benh, as that would have furnished a very plausible protest against the moseemliness, if not actual profaneness, of adopting for religious bnildings an arrangement in regard to lighting, that could by any possibility be likened to one desecrated by having been made ase of in a temple of mammon.

It is amusing to observo how readily people allow themselves to be scared by bugbear words and mere names, 'secularity' is one of them, as if everything in and about a church ought to be totally distinct from, and bear no mort of resemblance whatever to anything else of the same kiad employed in buildinge of a different character. If such ought to be the case, we ought to be informed how it is to be accomplished. Some of the leaven of secalarity is freely onough tolerated in churches without scandalizing even the most scrupulons,-cuats of arms, for instance, monoments with folsome epitaphs, and other mundane varieties. Roome witb either lantera lights, or with windows only overhead in the upper part of their walls, are not so exceedingly common that such mode of lighting can be regarded as secular and unchurchlike on that account, And if there be anything at all in symbolism, light frove above, proceeding immediately as it were from heaven, while all external objects reminding as of this overy-day world are excluded from view, might surely be thought equally appropriate and significant in a church. It is not denied that side windows in the aisles are characteristic of our ancient chorches, and if in modern ones they aro made worthy features in themselres, and the cbaracter establlshed by precedeat can be folly kept op in all other respects, well and good; but where aisles serve only as recosees for seats and galleries, windows in them chielly render the deviation from anolent precedent all the more offenrive-in fact, a positive, solecism, oxactness being profusedly aimed at under circumstances which reoder it unathin. able. If we can imitate with perfect consistency, with suoh thorough observance of former architectural costurne, and with such deceptive fidelity that a modern structure can perfectly counterfeit an ancient one, correctness, thongh after all it amounts to do more than copying, may pass for a merit ; but when altered circumstances require a different mode of treatment, it is for the architect to comply with the exigencien of circumetanoea without forfeiting any of the spirit of the style be adopts, but on the contrary to engraft upon it fresb ideas that may sorve as precedent bereaftor. Truly, it is not every one or any one that can do this; otherwise architecture would not deserve the name $1 f$ Arr. All the more honour therefare be to those who can.

Cardides.

PARSEY'S AIR ENGINE.

The facility with which unprofessional observers are deceived respect. ing the ralue of mechanical inventions is really lamentable. The locomotive air engine is a case in point. This contrivance was deacribed with an engraving in our last volume, p. 298, and we should have contented ourselves with the notice then given, without again alluding to the subject, hat that we find this invention lauded in oewspaper paragraplis as calculated to produce a revolution in the system of locomotion. To the scientific man the laggage of the paragraphs alluded to will suffice to prove that they are written by incompetent persons, but the general reader has not the same means of ascertaining the value of these encomiums, We wish to call attention to a notice which has been forwarded to us by a Dublin Correspondont. The object is briefly to show that for a journey of thirty miles there would be required 37,200 cylindera full of air, or as many cubic feet, if each cylinder full be a cubic foot, (a very low estimate); and that supposing this air ten times as mach compreased in the reservoir as in the cylinder the capacity of the reservoir must be equal to one-tenth of the 87,200 cubic feet ; that is, the magazine if eight
teet diameter, would be required to be 75 feet long. Of course it woald be preposterous to carry with the engine a vesal of this magnitude.

In the first place, no power is gained by using compreseed air, becavse as mach force must be employed in condensing the air into the receiver, as the condensed air can exert when brought into action. Next let as see what size of ingazines or cases would be required for a railway locomotive worked with compressed air, for a thirty mile atage.
"The cylinders of a modern locomotive are about 14 inches diameter, that is, the pistons have each an area of about one foot; the stroke is usually abont 16 to 18 inches, and the circumference of the driving wheels is about 17 feet; they will coosequently make about 810 revolutions in a mile; the pressure in the pistons is about solb, on the inch. Then, assuming that the air is compressed to a pressure of ahout 5000 lb . on the inch, we have the elements fur calculating what size of magazines or cuses would be tequired."
"Asthe wheels would make $310 \times 30=9300$ revolutions in $\mathbf{3 0}$ miles, and as the two cylinders would each be filled twice during each revolution, there would be $9300 \times 4=37,200$ cylinders full of oompressed air required to carry on a locomotive 30 miles ! Assume that the air mas worked expansively in the cylinders, and that only a cubic foot was admitted at each half stroke, the quantity of air compressed to 60 lb . on the inch, wonld be 37,200 cabic feet ; but as the uir is supposed to be compressed to 500 lb . on the inch in the portable magazine, its cuhic contents would atill require to be 3,720 cubic feet! To hold this would require a cylindrical magazine of about 8 feet diameter, and 75 feet long! Ruther a bulky case to move about, or carry along a line."

We have only one remark to make in support of these conclusions, and that is, that not ooly would there be no gain of power by the above arrangement, but many sources of absoluto loss. In the first place there would be the friction of the engine pumping the air into the magaine, and in addition the friction of the locomotive engine worked by the compressed air. So that comparing Mr. Parsey's aystem with the preeent locomotive system, there would be for every journey the friction of two engines instead of one. Another source of loss would arise from the fact that all elastic fuids when compressed develop their latent heat. Now as the elasticity of air is greatly increased by an incresse of heat, it is clear that the development of latent heat would in the present case greatly increase the labour of pumping. This increased elasticity by the generation of heat would however be all last, for the magazine would be rapidly cooled by the radiation of its motallic surface. Another loss would arise from the refrigeration of the air by its dilation when passing from the magazine to the cylinder.

It may be said that air conld be pumped Into the magasine so slowly that the development of heat would not be apparent to the senses. But this is only concealing the evil instead of removing it. It is true that the heat might be generated so slowly that the radiation of the cylinder would carry it off as fast as it was produced, but this would simply render the evil nom apparent.

Coutrasted with the provious quotation which avoids all difficaltiea arising from the variation of the pressure in the reservoir, we bave a letter addressed to the Mining Jowrnal in favour of the new invention. We wish to draw attention to one error in it, because it is one very likely to be committed by a person not familiar with the theory of preamalics, and as it entirely vitiates the calculations. The writer calculates "that to draw a train 60 miles with a tractive force of 8000 lb . the work done must be $1,188,000,000 \mathrm{lb}$. moved through one foot," and the letter conclades in the following manner.
" Let it be proposed, to compress the air to 1000 lh . pressare, which will give a medium working pressare of 600 lb . per square inch; 1000 lb . pressure per square inch is equal to 66 atmospheres-consequently, a column of air compressed into 68 times its density-one foot high, and I iach square at the base-will lift 600 lb .66 feet high, or $35,000 \mathrm{lb}$. 1 foot high; consequently, a column of compressed air of 68 atmospheres, being 1 foot high, and 1 foot square at the bace, will lift $83,000 \times 144 \mathrm{lb}$. 1 foot high, or $4,752,000 \mathrm{lb}$. 1 fout high. Then, as $4,752,000 \mathrm{lb}$. will require one cubic foot, what will $1,118,000,000 \mathrm{lb}$. require $\mathrm{P}-\mathrm{Answer}$,237 cubic feet. In like manner, if the air were compressed to 2000 lb , the contents of the magazine required would be 60 feet. A magarine of 8 feet diameter, 9 feet long, and itinch thick, would, therefore, be amply sufficient; the weight of such magazine would be $\mathbf{4 0 0 0} \mathrm{lb}$.-An ENGINEER: Londow, Feb. 18."

The chief error in the above paragraph is the assumption with which it starte, that if the air be at 1000 lb . presaure at the first, and at 15 lb . pressure at the lant, the average pressure will be about half way between these " Of coarse lf the promure be 1000 lb , to the linch in the reservolr, the adse of it will we reduced oot-bal?.
two pressures, or equal to 5001b. Now we want to show that the average will not be nearly 80 moch an this, and the explanation is worth attending to, because it shows the danger of "jumping" at conclasions.

Suppose, for aimplicity, the case taken in the extract, of the air in a tube 66 feet long, and of noiform diameter, being compressed so as to oocupy only one foot of the tube at its end: what we want to find is the work done by this compressed air (or the number of pounds moved one foot by it), while being dilated back to its ordinary density. Tracing its progrene foot by foot from the first foot to the sixty-sixth, we find that at the socond foot it occupies twice as much space as at first, at the fourth foot, forr times as much space, at the eighth, eight times as moch, \&c. Consequenul the pressures at the lst, 2nd, 4th, 8 th, \& c., feet are respectively 1000,500 , $250,125,80$. Now the mere consideration that at the recond foot the density is reduced to 500, showe how torribly the average has been overrated in the above extract, where the rapid decrease of preasare is neglected, and the air is supposed to act with the same average force throngbout the 06 feet, which in fact it exerts only from the first to the eecond fuot.

We could not without a fer mathematical symbols calculato the esaot emount of work done in the present case, atill wo cun give an approximate mothod readily intelligible to any one acquainted with the first four rules of arithmetic. Let as consider what would be the pressure of the air at the Grst, second, fourth, eighth, \&c. feet, and let us suppose that it pasess from ench one of these stages to the next without a diminution in pressare. This supposition of course exaggerates the amount of mork done. Then from the first foot to the second it moves 1000 lb . through one foot; from the second foot to the foarth it moves the balf of 1000 lb . through two feet ($=1000 \mathrm{lb}$. through one foot); from the fourth foot to the eighth it moves the fourth of 1000 lb . through four feet ($=1000 \mathrm{lb}$. through one foot, \&c.) Arranging the results in the form of a table, we bave-

Wort doee or aumber of 10. moved ope foot.

Ist to 20d foot,
2nd to the half of
4 th to 8 th, quarter of
8 th to 16 th , one-elghth of
16 th to 32 nd , one-alixteenth of
32nd to 64 th , one-thlity-recond
22nd wo 10 , 1000 lb . throngh 82 feet - 1000
Thls gives the total work up to the 04th foot; for the remaining two fect add two sixty fourths of 1000 lb . (about 31 lb), and we find finally for the total work done, that according to the above calculation (which is a very favourable one) the number of lb . moved one foot is 6081 . The " Kov gineer" makes the number $\mathbf{3 3 , 0 0 0}$, or more than five times as much !

The following method gives the true result much more socurately. If the pressure at a distance of 1 foot from the end of the tabe be 1000 lb , at any increased distance x the pressure will be $\frac{1000}{y}$ and $\frac{100}{x} d x$ Fill be the work done through a short distance $d x$, . . the whole work dove will be $1000 \int \frac{d x}{x}$ between limits 05 feet and 1 foot $=1000 \times \log _{0} 66$ $=1000 \times 4 \cdot 1880=4189.6$.

The amount of work then really done is equivaient to 4189 lb . moved through one fook Comparing this with the quantity calculated by the "Engineer," (namely, 33,000 lb.), we find that ho bas made it between seven and eight times what it ought to be.

It is really lamentable to see people delading themselves and others in this manoer. The newspapers state that Prince Albert saw the model of the air eagine, and expressed his approval. It is not however stated that he made any calculations, or that his royal power ertended to a sumpension of the laws of elastic fuids.

We had almost forgotten to mention that the pressure in the reservol supposed to be 1000 lb . to the square inch, is more than ten times as mach as the very extreme pressure which is considered safe in the boiler of a locamotive engine.

Dredeing Machinery for Eeypt.-M. Cave, of Paris, who contracted for the building of the Chaptal, iron ateamer, with all her machinery conplete, which is about leaving France, is now busily engaged at Roonet, in shipping off to Alexandria, in Egypt, the different materials to complete the large dredging machine, for which he has contracted with the Pacha, Mehemet-Ali, for the purpose of dredgiog the Nile, so as to reader it parfectly navigable. This is only a preliminary step towards the cutting of a navigable ship canal across the Isthmus of Suez, to join the Red Sea with the BIediterrancan-one of the grand projects of the Emperor Napoleon.

PRESSURE ON RETAINING WALLS.

In the frst volume of the Transactions of the Institution of Civil Engineers, Ireland, is published a paper by Mr. Neville, on the horizontal resistance required to sustain banks of earth. The formule arrived at in this puper were printed at p. 242 of the last volume of our jouraal; and a letter having appeared at p. 359 of the same volume, subscribed "A Young Engiaeer," asking for a demonstration of the results given, Mr. Neville has been good enongh to send us in reply a copy of his printed paper. Before, however, making any extracts from it, we wish to state an objection which appears to ns to apply generally to the mechanical considerations on which the mathematical investigations are based. If, howevar, we mistake Mr. Neville's views, he will, of coarse, have the opportraity of replying.
The earib bebind a revetement wall of a railway cutting pressing on every part of the masoary, the equations given by Mr. Neville determine the reanltant of all the borizoatal presoures, but the moment of this resultand the application are len undetermined. Now, the determination of the value of the resultant pressure, is not snfficient of itself for ascertaining the necessary strength of the retaining walls, or rather, that value, if it clone be determined, dues not afford the slightest assistance whatever in examining the conditions of equilibrium. The case contemplated by Mr. Neville appears to be one which seldom if ever oecurs in practiceanmely, the moving of the revetement wall bodity forward without overturning. Whereas, in reality, the real points to be ascertained are the necessary thicknesses of masoory, to prevent, lst, the slipping of the coarses of bricks on each other; 2nd, the overtarning the atructure abont its base.
In order to the ascertaining these two points, two sets of equations are required. The first set of equations nust exhibit the variations in the degree of pressure on the revetement at diferent heights from the ground. It is manifest that the pressure will not be uniform, that it will generally be greater dear the base than the top of the wall. Consequently, to prevant the courses of masonry slipping on each other, the "wall of equal streogth" (that la, the wall in which the strength is everywhere proportionate to the pressure) will be of the greatest thickness at the base and diminish apwards. To ascertain the varying form of the wall the law of variation of the different presiures must be ascertained. Mr. Neville has, however, considered only one single pressare to be acting on the wallanmely, the resaltunt of all the pressures, which, in reality, exist.
The next point to be ascertained is the tendency to overthrow the wall by turning it about its base, to this end we must have equations exhibiting not the value of the pressures merely, bat their moment or lecerage. For it is clear that of two equal pressures acting on a wall, that which is applied al the greatest distance frum the base will bave the greateat purchase or effect to throw down the atructure. To find therefore how strong the wall must be built to prevent its being overturned, it will be vecessary either to ascertain the resultant force and also its point of application; or (if it be possible) we may determine the sum of the moments of the pressures on every point of the wall. In analytical language if p be the presure on a noit of the area of the wall at a height x from the base, the quantity to be determined is $\int p x d x$.
The calcolations of the paper before as would be perfectly satisfactory, If it were possible so to bnild the retaining wall that by means of it a presaure equal, and exactly opposite to the resaltant of the pressures from the earth could act at the same point of application. This, bowever, is obrionsly impossible, for the horizontal resisting force exerted by the wall is applied at the base, since all the strength of the structure is derived altimately from its connection or cohesion with its foundations. The rezollant pressure of the earthwork is however applied at some point above the base; the two furces, that which sastains the wall, and that tending to overthrow it, cannot therefore be supposed to be applied at the same point. The determination of the value of the latter force, therefore, is not of itself of any value, for it may bappen for instance to be applied at a distance of two feet from the base, or at a distance of four feet, and in the latter case its effect will be twice as great as in the former. It is not the pressare, but the momentum of it which is to be sought for, and without this be determined, no useful result can be deduced from tie mathematical investigations.
M_{r}. Neville quotes in a note the concluding remarks of a paper on the
resistance to banks of earth, by Tredgold, in the slat volume of the "Philosophical Magazine," and adds "It is, however, evident that Tredgold was mistaken in this conclasion." If Mr. Neville will again refer to the original, he will, perhaps, see that the mistake is his own, and arises from a misapprehension of the sense intended to be conveyed. He might, by-the-bye, have taken a hint for his own investigation from Tredgold, who is carefal to determine not the pressure only, but the moment of it.

OCEAN WAVES.

(We bave ollghty abridged thas interesting paper from the "Naoticel Magazise.")
Oceanic waves, from whatever source they may arise, have always been regarded as objects of interest to command our attention, yet very little is known of the laws whereby they are raised, angmented, or transferred. Landsmen, when actually embarked in stormy weather, are generally so deranged by sea-sickness and the ship's motion, as to be readered unfit for observation or philosophical research. On the other hand, practical seamen, accustomed to the sea from an early age, although not altogether disqualified, become so familiar with all kinds of waves, that the subject is a matter of indifference to them.
It is, however, very certaiu that erroneous notions are entertained abont waves, for we read in works of acknowledged merit, that the height of waves above the mean sea level, seldom exceeds six or sight feet, yet the language of poetry and metaphor raises them into aqueous mountains.
Some sense, and a good deal of nonsense about waves, was published by a section of the British Association for the advaucement of Science. Being smitten with the mania of making obsercations on waves, and leaving Daddy Neptune to make the actual experiments, I seriously set to work at my official resideuce, which is within thirty feet of the Atlantic, and 3,800 miles from the nearest land on the north-east coast of South America; the waves, therefore, coming from the south-west have "a pretty considerable fetch." I had, perbaps, the best opportunity, and much inclination to collect as many facti as possible about the wares, that are aimost constantly commanding my attention. I now send those I made at Plymouth, believing they may be useful; as nothing of the kind has ever been published, they afford data for mathematical research. The observations are arranged in a tabular form, with very brief remarks of my own, extracted from a paper of mine, where the subject is more fully discussed.
Observations made on Waves reaching Bovisand, east-end of Plymouth

No.	Date.	$\begin{aligned} & \text { Dpth } \\ & \text { of Peen } \end{aligned}$	$\begin{gathered} \text { Dlat. } \\ \text { trat. } \\ \text { relled } \\ \text { by } \\ \text { Wive. } \end{gathered}$	$\begin{gathered} \text { Time } \\ \text { of } \\ \text { of } \end{gathered}$	Dist. from Wave to Ware.	Conrue of Wave.	Whad.	Barometer.	milen. per hour.	$\begin{gathered} \text { Alti- } \\ \text { Lude } \\ \text { of } \\ \text { where. } \end{gathered}$
		$\begin{aligned} \text { feet. } \\ 46 \end{aligned}$	feet. 8265	sec.	feet. 820					${ }_{8} \mathrm{fer8}$
1	Aus. 11.	$\begin{aligned} & 46 \\ & 48 \end{aligned}$	$\begin{aligned} & 8265 \\ & 2265 \end{aligned}$	$\begin{aligned} & 61 \\ & 60 \end{aligned}$	$\begin{aligned} & 820 \\ & 175 \end{aligned}$	E.N.E.	N.N.W.at N.E. light		21.9	8.
3	" 7.	48	2.760	188	1104	N.EDN.	E. fresh.		11.0	2
4	" 18.	488	2760	64	84.5	N.E.	s.E.	\# 7	25,4	4
5	$\because 14$	44	2760	75	345	N.E.	S.E.etrong	" 7		$4{ }^{4}$
6	" 28.	42	2760		450	N.EbN.	S.b.W.	- 36	28.5	
7	" 28.	60 45	${ }_{2760}^{2761}$	60	442	N.EDN.	S.W.atr.m	" 15	27.1	${ }_{27}$
9	$\because 30$	40	2760	67	404	N.E.	S.W.	" 24	24.2	mod
10	Oci 1.	47	2760	6	245	N.E.	N.E.Ught.	" 57	27.1	Lov
11	184. 2.	45	2760	75	306	N.E.	colm	$\cdots 7$	31.7	${ }^{\text {long }}$
12	Jan. 14.	40	2760	72	394	N.EbN.	N.W.		22.6	
18	March 1.	4	2760	75 65	804	N.EbN.	N.W.	$\cdots{ }^{2} 8$	21.3 25.2	"
14	April 29	43	2760	65	460					"

Remarks on the Observations.
No. 1.-San Carion to Boviand Rocks.
2.-This evenlog only ten waven oror spece.
3. -Distance traversed from San Carios Buog to Pier.
4.-Waves become crowded near the Pler.
b. The eat wind han probebly diminithed the ruloelty of the waves.
6.

* On thil day, the height of the waves, unbroken, win measured, by means of many observations. The mean level of emooth, water on the tide geage whin pated, and the eys of the observer being 81 feet above the sea level, his visible horison wras 89,620 feet. The buoy on the Tinker Shoal wha distant 6,180 fret, and as the waves reachad this buoy and ralaed it, the summit of the wrave was in a line with the observer's eye and hin vaible horizon. Since the digtance of the vialble horison and helght of the eye are given, and the distadce of the Tinker Buoy also given, the height of the wavet at the buoy may be found, becanse, $39,529: 82$ feet : $39,520-6,180: 27$ feet, the helght of the Mave above the mean larel, and as the sea was breaking in a depth of ave fathoms, the depreapoas were equal to the 54 feet.
7.-Crubea belay wahed down on the breakwater.
8.-Tide ebbling, barometer rielog, and set brestivg in Ave fithoms.
9.-Small waves have rac into large ones.
10.-H) ${ }^{2} \mathrm{gh}$ water.
11.-Swell subalding.
12.-These waves ralsed by the south-weet wind of gesterday.

18 and 14 -These waven indicate an eppronchlog south-west wind as they sabside.
These results wore noted with the greatest care, and may be taken as pretty correct. Without going into a discassion of the very many results that may be obtaiaed by analyzing the table, I may slate two or three facts, viz:-
$1 s t$-The velocity of waves is retarded as they advance into shoaler water. I have actually seen a wave overtaken and emerge into another, No. 1.

2nd.-The velocity of waves is not dependent on their height, No. 8 and No. 10.

Srd.-These oxperiments on a large scale appear to prove a result obtained by Mr. Scott Rassell on a small scale, viz., that when the depth of the water equals the height of a wave, it breaks, and becomes a wave of translation. (See No. 8, remarks.)

4th.-Deep water facilitates the undulations of waves, (September 28th, No. 6 and 7), the tide rose eight feet, and the increase in velocity of the waves was one-and-a-half feet per second.

Leaving your readers to make comparisons or draw conclusions, I may briefly assert that the hydrostatic and hydrodynamic force that water exerta is far from being so well understood as it should be by those who assume the duties or appellation of "civil engineer." The man who contrived the bage iron tank, which burst the other day at Liverpool, when only two-thirds full, destroying much property, and drowning several percons, knew nothing of the pressure that his tank would have to sustain when filled with water. The hydrostatic pressure at any depth, is as the square of the depth $=$ the sam of all the pressures above it.* In compnting the force that a wave is capable of exerting upon a solid immersed in the sea, we bave to take into consideration the rate at which the water moves or impinges against the solid, in addition to the hydrostatic pressure upon it. There are many gentlemen who add C.E. to their names, and who believe that the impulse of a volume of water in motion upon a solid structure opposing it, will be as the volume into the velocity, as is the case when one solid impinges upon another, as a mass of ice upon a stone. But a little reflection will convince us that the force which a volume of water moving exerts upon a solid obstacle, is not proportional to the velocity of water, but to the aquare of its velocity. The velocity with which a wave is thrown forward is equal to the velocity with which the uadulation was previously moving, and although a very high wave is always dangerous, it is not always the very highest wares that are the most destructive.

If reference be made to the table of observations, it will be seen that No. 7 had waves moving at the rate of forty-six feet per second; these waves were far apart, and of middling height. They were, however washing the huge blocks of marble about on the breakwater, and knocking down the cranes opon it, whilst much higher and more crowded waves moving at the rate of 41.8 feet per second, were less destructive to the works, (see No. 8.)
The effect being, (ceteris paribus), as the square of the velocity, we may estimate what the height of the waves, moving at the rate of 46 feet, shou'd be, to equal the impulse of the waves 27 feet high, and travelling at the rate of 41.8 fect per second.

Put $x=$ the required height.
Then $41 \cdot 8^{2} \times 27=46^{2} x$. Now by this equation the value of $x=22$ feet. Hence it would appear the height of the wares on the 28th of September must have been greater than twenty-two feet to produce the results upon the breakwater, although their height was certaidy less than the height of those measured on the following day.

William Walxer.

[^14]
ON THE TEMPERATURE OF THE EARTH AND SEA.

A Lecture on this subject was delivered at the Royal Inatitution, by Mr. B. A. Taylor. He observed, that the atmosphere is an eerial film sarrounding the earth, but, although of almost inappreciable thinness whes compared with the earth's diameter, it forms a non-conductiog investment resisting the radiation of terrestrial heat into space. The mean density of the earth, according to Baily, is $5 \cdot 66$, or about twice $2 \cdot 8$, the deasity of rocks and strata constituting its surface. We infer from hence that the mass of the earth, must be formed of materials lighter than the comman metals, as iron, tis, lead, \&c. Its specific gravity falla between that of titanium and teiiurium. From careful inquiry it appears that the temperatare of the surface of this planet depends entirely on heat acquired from the sun. Part of the heat thus received is conducted to a certain depth below the earth's surface; and part radiates into space. The grealeen natural cold on the surface was observed by Erman at Yakntsk, the capital of Eastern Siberia, where the thermometer stood at 72 deg. below the zero of Fabrenheit. The temperature of spuce beyond the limits of the ate00 sphere mast therefore be much colder-too cold to admit of the maisted. ance of life under its present conditions. The heat of the an penetrates the earth to but a very small depth. Diurnal variations of lemperature ar not perceived below two or three feet, while the annual variations do not affect the earth's crust below $1-400,000$ th of the diameter of this planet On the alternate heating and cooling of this film of depth depend the vicis situdes of climates, seasons, and cycles of years.

Mr. Taylor then stated, that, at a certain depth below the oarth's sare face, there is a stratum at which the thermometer is almost stationary This atratum is consequently termed the stratum of iarariuble iemperaturs. The deptli of this stratum depends-1st, on the directoess with which the sun's rays fall; and, 2ad, on the conducting power of the superficial strath It must, therefore, be different at different loculities. At Paris the depth of this stratum has been accurately ascertained to be 90 feet below the sar face, at which depth the temperature has, for 50 years, remained constaen at 53 deg. Fah. In other differeut parts of the world, this stratem varies in depth from reasons already assigned. In the tropics it in three or foor feet, in the temperate regions from 55 to 60 feet below the surface, white in the regious of exireme cold, solar influence does not extend beyond three or four feet, the ground below this depth being found always frozen, to the extent of 400 feet. Generally, howerer, the temperature of this invariable stratum differs but little from the mean temperature of the place. Mr Taylor then directed attention to the important and universal trath, that, when carried below this stratum of invariable temperature, the thermome ter rises. The rise is not, however, the same at all depths in all places. As there are iso-thermal lines on the earth's surface, so there are ino-rowthermal lines beneath it. Many lucalities, as five of the principal mines is Cornwall, the well of Grenelle at Paris, the Monkwearmonth mine of Sunderland, Joseph's Well at Cairo, \&cc, were noticed as indicating the great carvature of the iso-geothermul line.
The theory of the existence of internal heat was then estahlished from1. This progressive rise of the thermometer in descending inio mines ead other excaratious.
2. The high temperature of the whier of artesian wells.
3. The high temperature of natural thermal baths or springs.
4. The phenomena of volcanic eruptious and earthquakes.

From accurate examination of these sources of inquiry, there has been found that the thermometer rises in mines one degree for ubvat every 50 feet of depth ; a result confirmed by the fact that the temperature of wates in artesian wells increases in about the same proportion to their depth. The heat of thermal springs has been fonnd equal to that of boiling water, and the perfectly fused condition of substances pjected from volcanoes isdicates a temperature of 1000 deg . The opinious of various philosophers respecting the cause of the central heat of the world were reviewed. Buffon held that the eurth was a vitrified ball in the act of cooling; Leslie and Halley that it was a hollow sphere, made up of stories like a house ; others, that the interior of the earth is in a perfectly molten state, the heat at twenty miles below the surface being sufficient to melt granite. Haviog pointed out the objections to these various hypotheses, Mr. Taylor affiraned, as an apparently certain fact, that this internal heat does not affect the temperature of the earth's surface. He particularly dwelt on a calculation made by Arago, that if in the period of 2000 years the earth had cooled only 1 -300th of a degree, the fact would have been indicated by a diference in the length of the day, in consequence of that coulraction of its diameter
which any diminished temperature of that planet would have occnsioned. Mr. Taylor quoted also records which proved that the elimate of Taseany tas undergove no change during the last 200 years. With respect to the temperatare of the sea, many difficulties are offered to accurale observation. The vocertainty as to the depth to which thermometers can be sunk, the toduence of cold and warm currents, the laws regarding the circulation of beat in liquids, and the effects of heat on the density of water, present merious obstacles to accurate results. The most careful observations and calcalations give an oceanic temperature of from 34 deg. to 44 deg. It is probable that the submarine strata are sufficiently thick to preveat the free conduction of central heat, while the effects of heat on the density of water, logether with its rapid diffusion throughout the mass of the ocean, would render a high temperature imperceptible at any one point. On the other hend, the abundance of insular volcanoes sufficiently testifies the existemce of igneous matter beneath.

From these considerations, Mr. Taylor concinded-
I. That, at a certain depth below the surface of the earth, there is a cource of heat which increases as we descend.
4. That this heat canoot be derived either from the sun or from chemical changes.
3. Thut this heat neither perceptibly affects climates or seasons, nor intinences the temperature of the surface of the earth, nor of the depths of the ocean, nor of the atmosphere.
4. That the vicissitudes of climates and seasons are entirely referrible to calar influence.
5. That this induence even at its maximum, does not penetrate below $1-400,000$ th of the earth' diamcter.
6. That, although we have positive evidence that subterranean heat exlats, we can neither measure its intensity, por determine the exaot ratio of its increase towards the ceatre of the earth.
7. That there is no evidence to show that the earth is gradually cooling from a high temperature.

EXPLOSION IN A SEWER AT IXELLES.

A report has recently been published in a Brossels Journal on the ceases of an explosion which occurred on the 2nd of January last, at Ixelles. The following acconnt is taken from this report, which however we have ont translated very faithfully, as in several places we have mado onissions for the sake of brevity. The report is signed by M.M. Nollet, Dieudonne and Spaak ; their principal object seems to be to remove all apprebension at to the possibility of explosive gases being generated in cwers.
It is etated that the street gas pipe under the Eiterbeek road was broken, ed that in consequence there was an abondant escape of gas which penetrated the sewer in which the explosion took place. A nother main gas pipe under the Ixelles road was also broken; but this second accident might have resulted from the explosion, which caused a great deal of damage in the neighbourhood. The sewer in which the explosion took place had been in use only twelve days. The commissioners on entering the sewer in which there was roon to stand upright, found in it water dighty blackened; but the fame of a candle hurned in it as brightly as in the external air, respiration was not impeded, and there was but very little odonr.
The water from the Ixelles road after passing through trapped gratings falla iato a bsick cistern, from which the overflow, after leaving the heavier deposits in the cistern, passesinto a conduit from which the liquid deprived of the insoluble matter ${ }^{\circ}$ passes into the sawer.
Mach rain had previously fallen. The water was consequently contandy retrewed; the temperature of it was also below zero (centigrade), and there was little vegetable matter present.
Two qurations presented themselves. Was it possible, as had been
 there were-

\because	\quad.	89
\because	\because	8
\because	\because	6
		100

suggested, that carbonated hydrogen conld have been generated in the sower iteelf, and there formed an explonive mixture! Again, in what manner could this mirture have been produced?
The reply to the first question is, that carbonated hydrogen could not have been formed either in the sewer or the branch pipes; that peither the nature of the substancen, nor their stagnation, nor the degree of temperature, nor the length of time, fonr conditions requisite for the supposed decomposition, permitted this hypothesis.

If it be true that in the Pontine Marshes and other marshy places whera there is a large quantity of mad, composed principally of the detritns of vegetable matter, and constantly covered by water heated by the sun, bubbles of carbonated bydrogen escape, especially when the mud is stirred, it is when the four conditions determined above concur to produce the phenomenod.

But it may be said that eewers contain freces and other animal subatances. The examination of the nature of the gas emanating from theee subatances has been undertaken by a commission appointed in Paris to saperintend the purifying of ancient sewers. The average of $2 t$ experiments gives the following result : -

Orygen	-	\cdots	18.10
Arote ..	*	-	78.70
Carbonie acid gas	.	--	$2 \cdot 80$
Solphuretted hydrogea	-	-	$\cdot 9$

In no instance was the gas infamed doring the visits: on the coatrary it was remarked that the dame of a candle burned foebly and sometimen was extognaished. This was a necesary conseqneace of the composition of a gaseous mixture in the sower of Rue du Chemin Vert at Paris, of which the following is the analysis.

This gas was asphyxiant ; it instantly extinguished the fame of a taper.
In one instance only M Serpette, Inspector-General of Sewers, at Paris, fonnd a gas which inflamed on the introduction of a lamp; the flame of the gas went out and again eaught fire, but this phenomenon which never oocurred, but in this one instance, took place in a sewer of the Rue du Ponceau, where the mud was very deep and had long been undiaturbed, and the gas burned without explosion. All the facts are detailed in the work published by Parent du Chatelot on the sowers of Paria, and in his trestise on public health published in 1836.

Une more instance is known of fire occurring in a sewer at the appronch of a flame, but this occurred from the passage into this sewer of a liquid refuse containing a large quantity of tar prodnced at some neighbouring gas works.

With respect to the explosion in the main sewer at Irellea, it in asoertained that the main gas pipe was broken before the explowion noar the drain of the Etterbeek road took place. Several days before the accident occurred a strong odour of atreet gas was perceived in the neighbourhood. This odour is easily distinguished from that of drains, and it was wo strong that notice of the eacape of gea had been given at the gas works. It is to the mixture of this gas with the air of the drain that the explosion must be attributed.
To prevent the recurrence of so serions an accident, it is proposed to make the gas tubes of increased thickness where they traverse cross streets, and to itabed them in brickwork. It is also proposed to replace the existing close covers of the draing by openings which will facilitate the renewal of the air. The inside of the drains also has been carefully coated wlth plaster, so that there is no cause to apprehend that a detonating mixture can be again formed under circumstances resembling those which led to this diseatrons explosion.

- Height of Vesovios.-According to the latast observationa of the soientific men charged with the geoderical works of the kingdom of Neples, the haight of Vesuvias, at its most elevated point \rightarrow point which bes undergone no change for many years-che puata del Palo, is 19084 midtres (3948 feet) above the mean level of the men.

STYLES AND METHODS OF PAINTING SUITED TO THE decoration of public buildings.

By C. L. Eastlate, R.A

Secretary to the Commissioners on the Fine Arts.

External Conditions of Works of Art.

The materials and dimensions of works of Art, and the situations and lights for which they may be inteaded, are termed external conditions; as distingaished from the character of sabjects, the aims of individual artists, the tendencies of general taste, and similar influences. The former class ouly, as affordiog definite grounds for investigating and as suggesting practical inferences, can here be considered. ${ }^{1}$

Whatever be the external conditions, it is essential that the visible impression of the work shoald, ander the circunstances, be as complete as possible. To insure this, not only the executive means, but the qualities to be represented still require to be adapted or selected accordingly as conditions vary. Such methods and resources constitute in each case a specific and appropriate style; the criterion of which is, that the amount of excellence resulting from it is unattainable in the same degree by any other means.

The question respecting the relation of painting to external conditions is not unimportant in considering the tendencies and claims of different schools. In general, the great masters seem to have inquired what the outward resources at their command could best effect. Such a habit, instead of confining, was rather calculated to enlarge their invention and to vary its forms. The result of their labours is the sufficient ground of the world's admiration; but their docility cannot be duly appreciated without a reference to the local circumstances ander which they worked.

An inquiry into the principles which may regulate such varieties of style appears to be especially requisite when painting is employed in the permanent decoration of public buildings, and may now be resumed with a more direct object, as particular localities in the new Honses of Parliament approach their completion. In such further investigation it may sometimes be necessary to advert to the statements and illastrations that have been before submitted.
The conditions now proposed to be considered are-

Dimensions, Sitmation, Light, and the Means of Representation.

Large dinensions (in respect to the sixe of the entire painting), requiring a corresponding point of view ; the height at which the work may be placed, requiring a distant point of view independently of dimensions; imperfect light; and a method of painting possessing limited technical resonrces, are all to be considered as camacs of indistinctress, ${ }^{9}$ requiring to be connteracted by such menna as the method of art adopted can command; by anch means as may appear preferable on general grounds, and which, supposing its practical dificulties overcome, may render that method the fittest.

The relation between the longest dimension of a picture, and the distance from which the work requires to be viewed, may here require to be again remembered. Once and a half the extent of the longest dimension (whether in width or heigbt is lmmaterial is the minimom of distance to which the spectator can retire in order to see the entire surface. A circle cannot be embraced by the eye till the spectator retire to a distance equal to once and a half its diameter.

The law relating to the next condition is a necessary consequence of this. In some cases, the situation of a picture, independently of its dimensions, may require that the work should be viewed at a considerable distance. A painting placed opposite the eje, and measuring 14 feet high (sucb boing assumed to be its longest dimension), would require, according to the foregoing law, to be seen at a disiance of 21 feet. But if the lower edge of that painting be 26 feet from the ground, the spectator must retire to the distance of at least 60 feet before the eye can embrace it ; for a painting equal to the whole beight (40 feet) would require that distance.

This is the atate of the case with regard to the compartments to be painted in the House of Lords. They are 20 feet from the floor, and may be reckoned to be about 14 feet high.:

At the end opposite the throne, the compartments art in recesses, and will be lass fully lighted. At this end, therefore, all the causes of indistinctoens above enomerated are combined, and may suggest a counterecting treatment in the paintings accordingly.

If, on the one hand, these considerations may furniah an answor to those who look for finish and minuteness of detaii in speciwenas of fresco-painting that have reference to such a situation; it will be acknuw. ledged, on the other, that the general treatment which may be calculated to correct the consequences of such conditions is a problem requiring

I It bas not been thoutht aeceseary agin to consider the queation of the mdaptation of elyle in paioting to that of the architecture of the new Houece of Purifunedt. It may be anfluctent to repeat that the Tudor htyle in England is coeval with the beat examples of Italian art, snd that If Raphael bad mecepted the Invitation of Henry VIll. to Wait thit conntry, ediliees erected dartag or before the reign of that monarch might have been adorbed with the grat artlat' warks. Gecond Report p. 65. Compare Birat Eeport p. 19.
 poial of riew, whother the consequence of the dive of the work or of its situation, in in freelf a cruse of ladystactoest, the sise of the objects represented, tf calculated to c cercet thic, is amons the rrmedies, but, to will apperf, may sometimes be owerjooked. - The bejcht of the compartmente to the point of the (Oowhle) arch in le foet; but the pleture, properly so called, mey be coneldered to lermingte two feet icwer.
some experiance to solvo. Fortonatoly, reference is possible to the example of great artists under similar circums:ances.

Dimenaiona.

The instances are not frequent in which the size of the objects repre sented on a large surface is too small for the distance which the size of the entire painting requires. Raphael's first work in the Vatican, called 'The Dispule of the Sacrament,' would be such an instance if the room in which it is painted were large enough for the spectator to retire to the requisite distance. This is not possible; the whule of the painting cannot be embraced by the eye at once. The experiment can, however, easily be made with the engraving; the small size of the figures, as compared with that of the entire work, is then apparent. This imperfection, as is well known, was rectified by the artist in bis subsequent works in the Vatican.

Situntion. ${ }^{4}$
The next condition-situation, without reference to dimensions, presents greater difficulty. Michael Angelo, after having painted the second compartment in the ceiling of the Sistiue Chapel-about 60 feet high-appears to have found (as is, in fuct, the casc) that the size of the figures was inadequate to the distance at which they were to be seen. Condivi relates that the artist was on the point of abandoning the work because of some supposed defect in the lime : but the real cause of his temporary dissatisfaction is apparent in the subsequent change in his style; the figures in the compartments last executed being more than thrice the size of those in the first puintings. ${ }^{s}$ Thus, whatever nay be the dimensions of the picture (and in ceilings the compartments are cuamonly amaller than the diatance would require), the size of the figures must always havo reference to the place of the spectator. ${ }^{\circ}$

In this instance, therefore, although the space was scanned by an experienced eye, the means employed to counteract the effect of the existing conditions were miscalculated. The example shaws the necessity of simplicity, magnitude, and distinctness for works requiring to be seed at a distance, and is also valuahle as affording encouragement to our artists, should they think that their first efforts are in any respects not altogether adapted to the place for which they were intended.

Light.

It will appear from the practice of another great painter, that imperfect light required, in like manner, magnitude and simplicity of parts; while, at the same time, large masses of deep shade were avoided. The frescoes of Corregrio, in the tribune of the church of S. Giuvanni in Parma, were remarkable for these qualities. An idea may be forned of their genemal style by the portion which remains (now in the library at Parma, repre senting the 'Coronation of the Virgin'). Pungileoni remarks' that the figures generally were considerably larger than life, not so mach in wis instance on account of their distance from the spectator as because they wero seen by a subdued, reflected light. The result was probably satisfactury ; fo: objects require to be magnitied, even when neeu near, to counteract the indistinctness arising from want of light.

Means of Representation.

A fourth case is that in which the indistinctness to be guarded against arises from the means of represtriation. Fresco, with its limited scale of colonr, cannot produce such varied effects as oil-painting; but a moch atronger inatance of defective means and of the excellencies which the necessity of counteracting them may iuduce, is to be found in the Cartovos of Raphael. The ultiuate works for which the Cartoons served were copies wrought in tapestry-a mode of represcintation which, in the early part of the sixteenth ceutury, was far from exhibiting even the comparilive fore of coionr, and light and shade which it afterwards attained. ${ }^{\circ}$ With a view to such faint transcripts, however, the great artist worked; he knew that his drawings would be tranaferred to them, and that in the tupestrie: alune, possibiy, his designs might live.' Distinctaess was nevertheless at taiued, without any sacrifice of such of the proper attributes of painting as was compatible with the means employed; and without any violation of probability. Wheu we consider the great qualities which were combined
4. In pictures of procesions or unconnected incidents, the treatment here refurred to eannot be consldered a deiect
s The figures in the third compartment conespord in slise with those in the firat (etther for the ake of uniformity or beckuse the scaffolding immediately under the criling prevented the artist fiom making his observations earlier); the great change begtas io the fourth. It in acercely neceanary to obsetve that large foreground fgurea are quite compublile with mubjecto requiring numerous actors. Nicharl Angelo's treatment of the nubject of Hamau is na example. The figures in the subjoct of Noah (the first ceiliof compartment) mipht, even with tie preseut conipontion. have been an large as those th the Creation of Eive. The ctrcumatance of the cetling aubjecta lant expeoted requiring fewer Ggures in therefore not to be conaidered the only caube uf the change in the arrise': style. See Condifi, Vile di Mlehelagnolo Buobaroti, Firenze, 1746, P. 27. The Gure edition of thle work wea published in Rome, 1538 , in Atichsel Angelo's lifellme.
The eabjects in the small gold.coloured medallionsin the rriling of the Sissipe chapel must have been, even at Arst, slmosi iurisible from below. They are, however, to be te. garded as mere decorations.

Themorle Isturiche di Aatonto Allegri, Parma, 1817, rol. I., p. 134.
The admiration of Itsitian conterpporarlea is excuanbis. from the novelty of the mandfocture at that jeriod. The prabers of Paris de Gramsis, Vanar, and orbern onay be coas pared with the juster remarke of Gann, Cartoneusia, London, $1834, \mathrm{p} .80$; and Cattermoke The Boot of the Cartoons. London, 1840, p. 21 .

- Duch deoigns were treated as mere working drwwingt; they wreve cot into sllpa fer the execution of the tupestrics, and were then thrown astde fill agola wanted for the sacoe purpoee. It was in this mutilated stete that the cartoops at Hamp ton Court were

with these requisites-when we find that such apparently unpromising conditions had the effect of raising oven Raphael above himself, we cun hardiy refuse to admit that a due employment of limited means of repre centation may, at least, invite attention to the most important attributes of art.
In cases like those that have been adduced it is prohahle that the qualizies which wight ft the works for the circamstances of place, light, or materials for which they had been calculated, would be looked upon as defects on near jaspection. The critics on art who have had the best right to exercise an anrestricted judgment, have ever dwelt on the necessity of inquiring what qualities are to be chiefly looked for in the subjects of our observation. ${ }^{10}$ It may be sometimes requisite even for persons of caltirated jodgment to bear in mind that the excellencies on which the highest reputation of great artists is founded, are to be sought, not so much in the beausy of parts as in the grand or tastefal arrangenent of the combined work, in the harmonions relation of entire masses, and the grace of eatire forms. These qualities, which suppose the labour of the mind because they have reference to a whole, have ever constituted the worthiest criterions of merit, in the practice of the arts.

The influence of conditions, similar to those in question, on every department of painting, may be traced in the works of great artists; for, from whatever cause the sense of vision is imperfectly addressed, the selection both of qualities in anture and of the technical means ftted to represent them, will be influenced accordingly. Bnt, before pursuing the inquiry, it may be desirable to state the elementary facts connected with visible distinctness, since these, thongh familiar in reference to natore, are more complex in relation to works of art when seen under particular circumatances.

Causes of Distinetness in Nature.

They have boen defined as follows : an object in Nature can only be apparent, by differing in its visible attribates from what surrounds it. The chief causes of this distinctass are-difference of position ; of mere magnitude ; of light and shade; of form, and of colour.

Accordingly these attrihutes constitute the general resources of the artist; but it will be for him to inquire which of those means are more especiully calculated, onder any extraordinary conditions, to produce a result which shall satisfy the oye. The nature of the resources thenselves will require to be first considered.

Position.

The differences of Position exist either superfcially or in depth. In baceo-rilievo, for instance, they are (either in the horizontal or perpendicalar sense) superficial. In painting, on the other hand, although they ere superficial as regards tho actual plane, they are chiefy songht and axpressed in (upparent) depth ; one of the great aims of this art being to conceal the Hat aurfece and to represent space. Various practical and ocher considerations, presently to be noticed, tend, howerer, to limit this etribute in works executed onder the conditions before supposed.

Magnitude.

The differences of Magnitade are either real, ${ }^{29}$ as at one and the same distance; or may be only appareat, as the result of perspective. The cubulivisions of the remaining causes of diatinctuess above enumerated will be referred to hereafter.
It must be evident that gradations in magnitude will be more full and varied when they comprebend, if only in a limited drgree, the perspective diminution of forms. The great Italian artists seent to have considered this essential to distinguish painting, however severe in style, from bassorilieru, in which the varieties of magnitude are real.is But in the works before referred to by Michael Angelo and Raphael, this parspective dimimulton of fignres is confined to nargow limits; partly because the technical means may have been wenting to mark the relative distances of objects when the work was seen under the conditions required; but chiefly because Giqures moch reduced in size cannot be consistently rendered expressive as acturn or spectators. In the second compartment of the ceiling in the Siatine Chapel before mentioned, the effects of tise perapective are expressed Without restraint ; but the indistinctness which was the consequence was probably among the causes that induced Michael Angelo to reduce the apace in depth in the other compartments (as regards the figares) alnost to the conditions of scuipture. In Raphael's T'rnnsfiguration the figures on the Mount are bupposed to be distant with reference to thosa below; but, had they been so represented, they would bave been devoid of maning and importance: they are, therefore, by a judicious liberty, trought withic that range of vision where expression, actoin, and form are cogrizable.
On great exception is, however, not to be overlooked. Correggio, who was devoted to pictaresque gradation ander all circumstances, and sometions at any bacrifice, adopted a different cuurse. The perspective dimination in the cupolas at Parma (to say nothing of the objects being

[^15]represented as if above the eye) is extreme; so that oven the priacipal figares are altogether subservient to the expression of space. This was the chiof object; but the grandeur of form and character which the nearer figures exhibit has been justly considered to place these works far above subsequent efforts of the kind, which, in the hands of the "machiniats," soon degenerated to mere decoration.

If the criticisms which the frescoes in the Duomo at Parma called forth on their completion had any fuundation, it may be inferred that the great distance at which the Gigures were seen rendered it impossible, in some cases, to discern the nicer gradations of light and shade which are essential to make perspective appearances intelligible. Such considerations mest, at all events, operate to restrict foreshortening under similar circamstances. But here, again, it is to be remembered that painting is still distinguished from basso-rilievo. Examples of foreshortening are accordingly to be met with in works intended to be seen at a considerable distance. and in which the technical resources were very limited; for instance, in the Cartoons of Raphael. The amount of foreuhortening which is introduced in them may be considered to be the just medium. Its effeet in rounding and connectiog the groups, and in giving a due impression of depth, is in accordance with the truth of those works in other respects, and (even in the tapestries, While in their unfaded state, may have been quite compatible with distinctness.

The transition from this picturesque treatrnent, and still more from the unlimited depth of Corregfio's compositions, to the flatness of a style resembling that of the early mosaics, is violent indeed. ${ }^{4}$ In cases where a gold ground in introduced behind the 6gures, painting really approzimates to basso-rilievo, and to the conditions of the Greek monochroms, witbout even the advantage of the figures and the ground being of the same quality. Under such circumstances, Deither perspective nor foreshortening can be introdnced to any extent. The varieties of "Position" are aluogt confined to one and the same plane, and consequently the relations of Magnitude are real. The splendour of the gilt field, though subdued by being roughened (for this is absolutely necessary), betrays the comparatire dulness of the painted surface, and the final outlines on the ground (even making allowance for the gradation of real light on a large reuplendent surface) are in danger of being too uniformiy distinct, unless a darkening colour be partially inded to the gold.

The union of absolute reality with initation is rarely, if ever, satisfactory, as it is essential that the most important qualities should exhibit the nearest approach to nature. As an accompaniment to painting, there is, therefore, no defence for the gilt ground, when it appears as such. Fur the rest, it cannot be admitted, on the one hand, that art need be reduced to mediernl peaury in order to agree with this hard condition, if adopted; nur on the other, that even the extreme restrictious in representatiou which it actually involves, considered in themselved, necessarily suppose incompletenesin Ao analogous style springs from those restrictions which, in adheriag to its uwn resources, may still have ite characteristic perfection. Wherever there is gradation, wherever a greater quality hecones conspicuous by comparison with the lesser (even if abstract lines alune be the means of represeatation), we recugaize an important priaciple of art.

Light and Shade.

The inflaence of the general conditions before mentioued may next be considered with reference to Light and Shade. The varieties of this source of distinctness, though intinite, are, like those of Magoitude, merely differences of degree. The circumstances best calculated to displuy it will be again considered in examiaing its relation to colour.

The example of Correggio, which was adduced with reference to perapective and foreshortening, may also appearto recommend the onpluyment of chiaro-scuro without restriction, under any circumatances; but this, his favourite sttribute, was confined, in the instances of the cupolas at Purma as compared with bis oil pictures, to a light scale, especiully in the upper portions of those cupolas. It is evident tbat a durk effect woald have ill suited both the places and the subjects.

The instances are rare, and not always saccessful, in which extensive surfaces, whether on canvas or on walle, have been covered with masses of low half light and deep shade. Such musses, as is well known, are especinlly ill adapted for fresco, on account of its tendency to reflect light only from its surface. ${ }^{14}$ Among larger works of the kind, one of the best specimens is perhaps Raphael's fresco of the Deliverance of Peter from Prison. Bul, although successfill in this instance (as far as the material permitted), the great artist did not resort tu the same style ou other occasions; on the contrary, in a subsequent work, the Incendio del Borgo, in which the subject might have justified a free use of chiaro-scura, he did not employ it to any great extent. The reasons for employing it in the first instance appear to have been accidental. 20

[^16]Other examples, with all their excellence and even with the advantages of the richer method of oil painting, are more or less nusatisfactory, from causes independent of the materials. The sight scene of the Martyrdom of S. Lorenzo, by Titian, is heavy in its effect. ${ }^{17}$ Of Tintoret's darker works it would be unfair to speak, as the shadows have too often become black, either by time or by tome mischievous technical process. ${ }^{\text {a }}$ "The celebrated Nigbtwatch, as it is called, by Reunbrandt, is generally acknowledged to be overloaded with shade; ${ }^{20}$ and the Santa Petronilla of Gnercino is a monument of great, but in that inatance, misdirected powors. These are the most remarkabic examples of dark pictures on a colosesal scale. The Last Judgment, by Micbael Angelo, now obscared by time and the smoke of candies, must always have bad a solemn effect from the depth of the flesh colour (a treatment which may be traced to the infuence of Sebastiao del Pionno), bnt there are oo masses of deep shade. As the work is in fresco, mere blackness would have heen the result had such been introduced.

The unfiness of masses of extreme shado in paintings of considerable dlouensions (withont reference to the material) is explained by the fact that the distance at which the work requiren to be viewed tends to obliterate the fainter lights and reflections in such masses, thos changing depth to flat obscurity.so In subjects which require gloom, it is still easentinl that the indistinctness should be felt to be intentional, and not to be the result of such distance. The size of the work should admit of the spectator being su placed as to see all that the artist intended to be seen. The 'Notte' of Correggio can be thas perfectly seen at the distance which its size requires; but, in looking at the 'Night-watch' of Rembrandt, nader like conditions, the spectator is presently compelled to draw nearer. The conclusion is, that the amount of darkness in the latter is too great for its size, and on the other hand, that moderate dimensions may render such a treatment, if suitable on other accounts, not only unobjectionable, but desirable. The finer gradations of low tooes can be appreciated only on near inspection. Subjecis, the intended place of a work, or other circumstances, independently of dimensions, 2^{2} may interfere with this consideration, but it is not the less true that the scarcity of light which would be inappropriate in a collossal picture is quite compatible with the physical conditions here referred to, in regard to works of smaller size.
The Venetian painters, as compared with those of the schools of Lombardy and the Netherlands, appear with few exceptions, to have systenatically avoided a preponderance of deep shade. 9 a This must be understood as meaning no more than that their treatment of light and shade was calculated for works of large dimensions. From the first, the great Venetian colourists were accustomed to execute frescoes in the open air, and sometimes in situations where the distance at which the paintings could be viewed was far greater than their size required. ${ }^{33}$ The elements of distinctaess and breadth were thus familiar to ibem, and, it mast be confessed, were sometimes transferred to works which, admitting of near inapection, wight have suggested a different treatment.
"Venetian shade," which, notwithstanding the occasional darings of Tintoret in more capricions directions, is characteristic of the school, and Which the praise of Agostino Carracci has rendered proverbial, is the worthy auxiliary of composition on un extensive scale, and is fitted, by combining distinctness with breadth, to correct the uncertainty which arises from distance or want of light; it is calculuted to give place and meaning to form, to display the remembered attributes of colour, and, while it renders force of local hues indispensable, to combine solidity with clearness. The view which the Venetian artists took of nature was consistent with the ordinary destination of their works.

They appear, in most cases, to have assumed that the objects to be represented were seen by the diffused light of the atmosphere, as upposed to the case where the light is derived from a particular source. The practical result of this is that intense shadow is smaller in quantity, and that the picture is chiefly composed of gradations of half and reflected light; brightness thus marking projection 84 and obscurity, depth. It bas often been

Rafael ron Urbino, Leipzig, 1839, vol. 1., pp. 192, 434-5. Of Raphael'ı fresco Wilkle obserres, "t the St. Peter in Prison, finely as it it erranged, is bisk and colou less." See Thoughts on the Flelative Value of Presco and OLf-palndug, by B. R, Huydon, Loncon $1842 ;$ p. 31 .
${ }_{4}$ Compare Burnet, Practical Eints on Light and Shade in Pajating, Loudon, 1838,
P. 48 This in the case even with some of the fine woriga in the ficuole dis. Roceo, th Venter.
19 See Reynoids, Joumey to Fianders and Holland; and Kugler, Handbuch der
Gesch chte der Ifelerel, Yol. ii., p. 178 . Gench chte der Melerel, vol. il., p. 178.
an it has been before observed that although an object may be locreased in magnltude to any exient, in proportion to lis diatance, and in order to accommodate the spectator, yet its force of jight and shade cannat be increased beyond a certidn poins, and that point not to be incremed in proportion as distance lucreteet, it ts unavoldably diminlabed by not to be increased in proportion as
is In moderp exhibitions where no space is lout, and where, consequently, the eye to Intupaced by the effect of the masn, an entire wall approaches the conditionit of a large Inhueaced by the efrect of the mash, in ontire wali appraches the conditiona of a large picture. Hence the anount of Uight in the companent partit of thi
to be great. A subdued window Ight may alco have iti infuence.
go The relative amount of Iight, shade, and half-light, in the works of the coloorlate, at given by Reypolds, is well known, aud it will be remembered that he made bla obserat given by ieynoids, is well known, aud it will be remembar
vatione chiefly from large plctures. See noten to Du Fresmoy.
ga The circumstance of Tillan and Giorgione painting on the façade of the Fondaco de' Tedench! in wall krown. (The remalna of some of the figuree there paloted by them, do' Tedenchi is wall krown. The remains of some of the figures there paited by them, pow quite obilierated, were etched by Zancti in the tat century: two were engtaved by other artists still exint in Venice and in varlonis towns of Fitull.
\$4 The "central light of a globe" (Pusell, Second Lecture) would not be the moet favourable, with refesmese to the spectator, for displayiot the object, or for enmurita a
said that in Vonetian pictores (more constantly than in those of other schools) the foreground objects are, relatively to their hues, the lighteat; the retiring ones being lower in tone. The diminntion of the force of shade in remoter masses, the introduction of accidental cast shadows, of dert hues near, and bright objects, buildings, or sky io the background and disiance, way conceal without altering the artilice. This syatem of effect in Vedetian pictures corresponds with that of general nature, and, like that, is too familiar to be remarked ; 38 but its apparent simplicity conceals a scale of gradation the fuloess of which may be more dificult to compres than the pronounced effects of confined light. Hence the unaffected cban racter of "Venetian shade; and hence, at the same time, its powers in marking the essentials of form, while it leaves the general iden of colour unimpaired. 36

If the arists of the northern schools may be accused of wometimes employing the effects of a confined light for scenes supposed to take place under the broad atmosphere, the Italian painters (for the practice was not confined to the Venetians) must bo acknowledged to have as often adopted the opposite course; viz., that of representing scenes in interiurs as if seen under a diffused light. They appear to have thought that objects so illa. mined are more intelligible in picturea requiring to be seen at a distance (as was the case withultar-pieces), and that such effects are in themaclres more large and beautifui.

The effects themselves, thongh dorived from the observation of nature in the open air, were produced by various artifices in Italian painting-rooms The most common (still in use) was that of employing oiled paper instead of, or before, the glass of the window. A Mudonas of Raphael's takes its name (dell' Impannata) from the oiled paper window, probably that of the painter's studio, in the background. Leonardo da Vinci, who is carefol to distioguish between ombra, "the diminution of light," and temebre, "the privation of light," ${ }^{\prime}$ frequeatly recommends atteution to the effects above described, and speaks of the modes (prubably then comnoa) of pruducing them. He remarks that objects seen in a diffused light are more beautiful than when lighted frow a confined source, and that when represented in pictures they are more intelligible at a distance. ${ }^{\text {a }} \mathrm{He}$ recommends the mitigated light of evening, or of clondy weatber, in preference to the direct light of the sun, in order that shadows may have due gradation. ${ }^{29}$ He observes, that not only the equal force but the hardness of the bonndaries of such shadows, if imitated in pictures, tends to render objects confused when seen at a distance. ${ }^{30}$ The latter appearances (bard-edged shadows), he adds, "are especially condemned by painters." His contrivance for securing the larger effects which he recommends, is to stretch a linen arring across an open conrt. In one instance he suggests that the walls sbould be blackened; in anolber, thut they should be painted fleah colour, and be altogether open to the kiy. Elsewhere be mentions the "Inpannata" (for ordinary liphts) ; ${ }^{2}$ and again proposes an expedient, similur in its resulis, for softening the edges and varying the strength of shadows by lamp light.
Neither Leonardo nor the Venetians were ever deficient in force; bat the latter in making the fullest use of the principle thus dwelt on by the Floreatine compensated for their comparatively small amount of 'temebre,' as nature compensates for it, viz., by intense local colours. This resource never led them to neglect the study of chiaro-scuro on their own large, and, it may be added, difticult principles, but only served to conceal its artifice. So intent were they on securing relief, as well as breadth of general effect by means of light and shade, that they frequently defined the perspective
balance of light and shade. The expreasion in, however, usnal and allowable, and the Venetinn themselves were not more accurate; their technical tern for 'lighting up' with the brush, was 'colmizare, from colmo, summit, most prominent polnt. See Bowchiat, is Curta del Navegar Yitoresco. Vea. 1660, p. 283 .-Light in hullowi, or rather allght is Curta del Navegar Yitoresco, Vea. 1600, p. 288.-Light in hellowi, or racher mome cases, fur example in plaster casta, the appempance is asalsted by a difference of the
 Yeeps ite place, the artifice of tbe gradations of light escapew observaton, an it does in nhe ture. The Venetians seem to have conaidered that the office of light is rather to exhbit the yualuties of material olyects then to display ftself. Effects of light are geperally confined in thrir workin to the distance, where, an regarid figures, form and colour are no
longer important. ge Znnetal (Delis Pitura Vencilans. Vea. 1771, p. ©9) juntly obserfes, that in the hends of litian the bromder ahades do not approach the toree of the shadowa under the reatures. Compare Barry, Worta, vol. H., Pp. 45, 49, 81 .
g y 'Irattato della Pittura. Roma, 1617, p, 274.
g: Ib., p, 357 . "Distiactnees of local colour and precision of autline, are the pecallag character of objects placed out of the effect of strong (eun) Ught." Burnet, Practical character of objects placed out of the effect of
Riata on Colourin Painting, Landon, 1843, D .18.
ys Ib., p. 836 . When Reynolds, apeaking of Vapdyck's St. Sebastlan, now at Mraich, obaeives, that it is painted io bie first mancer (whed he imilated Rubens and Titian; whith "supposes the sum in the room" ${ }^{\text {m }}$ be can only mean the refected or difiused rays not the direct ight, of the sun. The picture which he deacribes, suffitently proves that
the latter effect ts not imitated. In mome of Hubens's works, however, the effect ap proachen that of the direct sun-litht.
oo lb., p. 71. He elaewhere observes that objects represented with manget of intentw shade, instead of appearime distinct at a diatance. appear "dnted.' Dark ohades under auch circumstances, (having no longer the quality of depth, assume the effect of neutral collify the Juaf 248 . - The equal force of thade in many of Guercino's pictures might eximan
 paratura sharpaess he redoces their force, 30 an to give the impresion of a mittgated sanpight.
a a $1 \mathrm{~b}, \mathrm{p} .70$. The Impannsth may mean cloth at well as olled paper. Nokt of thrat contrivaces, abviously fit only for a bright climate; but the observation of nature and the technical expedients which were then habitual to the artists had aleo reladion to the due eftect of works in vast localliles. It was the more essentlal to preserve the general eppearancet of nature In colour and light and ghade, because the forms In votive alter-plecest trent often Indiridun.
dapth of their compositions and the place of each Ggure by means of chiarowero alane. Tintoret was in the habit of placing large paintinge thas *edied, but before any colour was added, in the sitastion which they were ultimately to occopy, in order to judge of their effect and keeping. ${ }^{9}$ The babits of the Veartian and other colourists in thus occasionally proparing their pictures may be adverted to hereafter in an inguiry into the earls methode of oil painlugg.

Form.
The trentment of forms : which is applicable to pictures intended to be seen at some distance, has been already parily considered in refereuce to certaio worke by the great Itulian masters. It is further to be observed that the means employed to insure distinctaess in this department of paint. ing may, without due cavtion, tend to confound its style with that of soolptare. It is obvions thut forms are most intelligible when they are freest from peculiarities; therefore when in any extreme case it may be necemary to connteract indistinctncas, it would appear that a generalized treatment is indispensable. But in aculpture this intelligible appearance ans only be produced by means of form; whereas in painting, colonr (which is like mander admits of a generalised treatment) can powerfully contribute to such a result. The representation of 1 gures of anusually coloseal dimentions need not be supposed. 44
The arandest examples of painted figures on a coloseal scale-the Prophets and Sibyls, by Micbael Angelo, in the ceiliog of the Siatine Chapel do sot exceed is feet. In such representations, as those celebrated worke prove, painting can still maintain its complete independence as compared with the sister art. The figures in question though, strictly speaking, abstract conceptions, have the force of character of real beinge. It is also to be observed that in the subjects by llaphael in the Vatican, the treatmeat of form does not approach the conditions of sculpture; as a proof of this it is to bs remarked that the portraits latroduced in those eompositions do not appear incongruous. Thus, although it may be admitted that the most intelligible furms are those which are freest from cocident, and that such furms must be best calculated for works intended to be viewed at some distance, yet it appears that, even in the most limited syles of paioling, the degree of generalization which is necessary, with a view trerely to distioctness, need not be confonoded with the more abstract beioty of sculpture. 1f, again, the subject should require an approxima. tion to the lavier, the fall display of the proper altributes of puining, which may be compatible with the existiog external conditions, is indispensable. Thus colour enables painting to vary its forms and characters contisteutly with the intelligible effect at present assumed to be requisite, and is, therefore, the deparment of this art in which an abstract treatment an be best adopted consistently with its independence of sculpture. In general, the region of the 'ideal' (the largest view of nature) is more afely approached by meana of artributes which are exclusively characteristic of the art; the poetic impressions of each mode of representation are then of a distinct order.

But to whatever extent characteristic details in llving forms woold be dmissible In the higher styles of painting, the causes referred to would vaquestionably operate to linit the iutroduction of jomaimate objects and aceessories, and would influence their treatment.
It is unnecessary to repeat what has been before observed on this subject; a considerstion in conuection with it is however not to be overlooked. Nert to the great requisite that each mode of representation should rest ctriefly on its own resourees, the works of great artists teach the principle that the nothlest ubject of imitation should always be the nearest to nature. In sculpture, and in painting when employed to represent human actors, this coblest object is life, with its attributes of action and thought. When the feld for displaying this quality is even confined to a head, it is still required that no circumstance represented should surpass it in completegese of imitation. Rarely in the works of the best Gireek sculptors or io those of the ercellent modern painters does an inanimate object exceed in trath the represeatation of the living surface. The contrivances with a view to insure this insubordination are, necessarily, mott daring in sculp. tore, in which certain qualities are in danger of being confounded with reality. It will generully be found that the employment of conventional pethods (as opposed to the more direct truth of representation) increases in proportion as objects are easily imitable, and, consequently, in danger of interfering with the bigher aim. Thus, to take an extreme case, rocks,
at See the Introdocary "Bruve Inatrusione" in Boachint'g Reche Minere della Pitt twis Vepesisns. Van. 1074. Tinwret and Bacaan, the darkeat of the Veurtian palatert,
 charo-mcuro mas, however, more derived from Interior and evin frum noctural effects. Boch were to the hablt of notne small moduls illumined artifcinily y leas (in Basean's case) wre the mite of noting ecctients of light than for the purpose of observigg its crenasion on objects more or less respoved from the source. Boschini remarks that, whth the Venelian palaters, "every room anowered the purpoee of the open aif it mpaning that they could five the effects of open light, either from conurivacire like thooe sbove meatloned, of Irom observalon and practice, whervar they mithlt be placed while paining. Bee La
 1648, rol. 2, p. 85.
EE The "diferences of form" (almoes apother word for the ralble world) eas onty be
 thon, end axteot. Lase are asld to be mataed by extention; they may be contrasted in inaf direction, and are repeated hy parallellom.

34 It te rewarkable that the only unclent example on record of painting than employed
 10 fact The extrethe modern tastance, a consequence of the folly of the artat ratiber then of bls maployern, is the cupola of the cathedral et Florknce, begun by Vmart, and

which in marble are cometimes made identical with nature (thereby betraying the incompletenes of the art), are generally cunventional in fine scalptare. Witness the basso-rilievo of Perseus and Andromeds, and rarions examples in statues where rocks form the support of the figere. In order to reduce what would easily amount to literal reality to the conditions of art, the substance in this instance is, so to speak, uncharacterised. s

In paintiog, the instances are rare jn which such absolute jdentity wilh nature is possible. ${ }^{\circ}$ The representation of a fat surface, of coloured patteras, and painted objecty, are almost the only cases; and far less artifoo is sufficient to reduce them to the condjiong of imitution. But es regands the aecessity of superior truth in the living surface, compared with all other objects, the principle is the same as in sculpture. The contrit. ances to insure this superiority, without viulating nature or betraying the artifiof, are among the distinguishing merits of fine pictores. Inanimate objects may often form a considerable part of a composition, and therefore cannot be neplected; the colonrists, as has been often obeerved, have contrived to give interest to such subordioate materials, by dwelling on a purtion only of the qualities of the substance, and selectiog snch qualities, with a viev to give value to the flesh, as if they were merely forced into notice by the existing comparison. In the instances io sculpture where absolute identity with nature is to be guarded cgainst, it appears that the substance requires to be in a great measure unclsaracterised; in the cases now referred to, the objects are ooly partially characterized. The principle is, howevar, the same in both methods; art is permited, or rather required, to be appareat, in proportion as nature is in danger of being too nearly epproached.

Colonr.

The general treatment of colour which is calculated to assist distinctness, canoot be better exemplified than by the practice of the Venetian school. It may be first necessary to recur to the elementary facts before noticed.

It was observed, that an object in ature can only be apparent by differing in its visible attributes from what surrounds it ; its distinctness in a word, sopposes the presence of some or more qualitics which are wanting elsewhere. Thus, the imitation of the appearances of nature is especially conversant whilh differences; it is opposed to (absolute) equality, and is fonoded on Gradation and Contrast.

The first, a difference of degree, comprehends Magnitade and Light-and-shade. By means of their varieties,-perspective, depth, relief, and roundness, io other words, substance and space are represented. ${ }^{\prime}$?
The second, a diffarence of kind, comprehends Form and Colour; by means of which physical and even moral characteristics are expressed. Position, as an incommunicable attribute, belougs to the same category.
The possible interchange of these ivo sources of variety (as regards their effects), is constantly exemplified in onture and in art. An abropt difference of degree amounts, pructicully, to contrast; the full scale of differences of kiud involves gradation. Contrast itsolf is imperfect without the an xiliary element, by meaus of which equality even of antagoniam is prevented and one impression predominates.
The great office of colour is then to distinguish. Each object in nature has its own bue as well ay its own form, and heace the origin of the painters' term 'local colour.' This charucteriatic difference becomes more strikingly conspicuous at a moderate distance, when objects are seen as wholes, and in their largest relations and oppositions; for in a nearer riew, the eyo is necessarily more cunfined to their component varieties.

On the contrary, light and shade, being common to all substances, and preseating differences of degree only, is less powerful at a distance as a mesns of distinguishing objects from each other; but in a nearer vlew, when its inflaite gradations are appreciable, it is sufficient, without the addition of colour, to express the relative position even of contiguons objects, as well as of their component parts.
Accordingly, while chiaroscuro in all its richnoss and deliancy is iodispensable in pictures that are to be viewed near, colour is no less desirable in colossal works, or in such as can only be seen at a distance.

When employed under such circumstances by the Venetisns, its larger apprarance, above described, was selected in preference. The 'local hue,' dieplayed and infuenced as it must be by what surronods it, was especially dwelt on by them as a means of iusuring distinctness. The onion of due variety (a union which, in all cases, tuste alune can define), with this integrity of local tint, has been considered to be one of the great excellencies of Titian, who, nevertheless, changed his styic-uccordingly as his works were to be seen in vast balls and churches, or in ordinary apartments-from the most daring force of local colour to the fuller har-

[^17]mony of briken tints observable in aear objects. The abstraot treatment is more exclusively the atyle of Giorgione $;^{: 8}$ by him it was first carried to its utmost linits, and was sometimes, perhapa, too indlacriminately employed, without reference to dimensions and distance.

The general style in question has been well defined (making some allowance for the stress on irs leading attribute). by Mengs, whose observations no this subject are ndopted by Fuseli. These writers observe, that "the breadth of local tint" referred to was attained by taking the predominant quality in a rolour for the only quality; by painting a complexion, for instance, ${ }^{4}$ which abounded in low tones, entirely in such tones, and by generalizing, in the opposite sense, another near it, of a lighter character; by paintiog a carnation, abounding in raddier tints. entirely in such tinta, and by depriving of all such tints its neighbour that hall few." The ain being distinciness, qualities thet were common to several objects were exaggerated in the one that had most, and comparatively suppressed in the others. The same principle, derived from the observation of nature in her largest aspects, was extended to erery visible 'difference of kind.' The soft elasticity of flesh (ever a great object of the colourists) was, if possible, inore than usually dwelt on in the neighhourhood of substances which, either from their genemal nature, or from the character which they were made to assume, were calculated to give it value; for not only infexible and sharp substances, but cometimes drapery was made to serve this end, independently of colour, by abrupt folds, and crisply painted lights. The shine on the surface of skin was omitted generally, but most so when polished surfares were near it; while these were allowed to reflect light like mirrors. Gradation supported the comprehensive system; colours were varied not merely in their hues, but in their mass. degrees of brilliancy, and other qualities. Vivid colours were therefore few, and thus the end even of distinctness was barmony. Lastly, the same breadth which obliterated diferences in detail, obliterated them also, to a certain extent, and according to the scheme of effect, in opposing masses; thus was insured, yet witbout the appearance of artifice, that plentitude of impreasion which the eye requires.

It must be apparent that not all the contrivances above adverted to world be applicable in works intended for a wear view. The emphasis on local colours, for example, is in them no longer necessary to insure distinctuess, and, moreover, might supersede peculiar beauties; yet the example of the colourists may show bow much of this greatness of atyle may be sometimes infused with effect, even into aarrow dimensions.

The system of the Venetians comprehended other methods, which may be considered, in a great measure, peculiar to the school, and which were equally calculated to counteract indistinctoess. Among the means adopted by then for securing sucb a result, their treatment of certain colours, as affected by light and shade, merits attention. The artifico was, as usual, derived from the observation of nature in the open air. At that distance Where the entire object acquires full force of local hue by the opposition of what surrounds it, the focus (if the expression nay be allowed) of its colour will vary, according to the real depth or lightness of its tone. That focus will sometimes be in tho illumined parts, sometimes in the 'diminished light,' which we call shadow, accordingly hs the particular hue requires more or less light to display it. All forcible colours are most apparent in their brightest parts, even when the light is powerful. All delicate colours are impaired, and sometimes nearly effaced, in atrong light, and are then most apparent in their shadowed portions, where they become deepened by means of reffection. But, let the same object be transferred frum the open air to a confined or less vivid light, and the effect is reversed; the shadows become dark and, generally, neutral, and the colour is displayed in the light only. The larger system, though adopted by. the Venetian painters from habit and predilection almost indiscriminately, was eapecially employed by them in works intended to be seen at some distance. Fuliness and breadth were in such cases indispensable; and by a judicious use of the effects in question, they increased colour without sensibly diminishing light. The extreme and exaggeraterl inatances of this treatment were generally in situations which admitted only of a distant view. The abuse of the scyle was indeed sufficiently guarded against by the principle, seldom forgolien in pictures of the achool, that colours require in all cases te be mure or less aubdued and broken, for the suke of general harmony. This object was even partly attained by the practice referred to : the ordiuary (and most commouly applicable) principle is, that colours should be neutralized in shade; but, in the excepted cases abuve described, where they are most displayed in reflection, they require to be, and are in nature, in a great measure suppressed and neu. tralized in their illumined parts. This is assisted by the colour of the light, which, although assumed to be nearly white, appears comparatively wario on cold light colours, and the contrary on warm ones. Harmony, therefore, was also promoted by this method.

The influence of certain conditions on the leading departments of painting has nuw been considered. In this examinatiou, the effects of distunce od objects in nature, and also on their painted representations, have been adverted to. The two are not to be oonfounded; but the question respecting their relation presents no dificuity in a practical view. It is quite certain that the most distinct and easily recognized appearances are

[^18]beat adapted for pictures requiring to be viewed at some distance. The machinery of art is selected accordingly. The point, or degree of remoteness in nature, where colour is most diatinct (that is, mont large and powerful), is not the point where form is so ; for figures must, even at such a moderale distance, be considerably reduced by perspective. It is not the point where ontline is so; for, in ordinary cases, outlives are soon blunted by distance. The artificial combination of the breadth of general appearances with due distinctoess of form is not dictated merely by the necessities of particnlar conditions, nor is it confined to particular schools; it ts a liberty which all have taken, and is one great source of what is called ideal beauty ; for the "enchantment" which "distance leads" is thus combined with precision.

Such are among the expedients adopted by the great painters, in order to coubteract indistinctness. The considerations which weighed with them may not only be applicable in similar cases, but may show the necessity of employing the resources of art generally for the same great object, viz., that of satisfying the eye in order to affect the mind. The selection and adaptation of particular resources, with reference to particular conditions; the view of natare, and the use of art which may ba calculated fur different circumstances; have all one and the ame immediate end. But the test of a due application and economy of the means fitted for such various cases will be, that their conventions should be unmarked, and that art and its contrivances ahould be forgotten in their altimate impression.

It remains to observe that if the qualities in various departments of ert above considered are fit for works execuled under the conditions of dimensionis, situation, aud light, before enumerated, then fresco-painting (sopposing dne practice in the method) is calculated to display those qualities For example, its unfituess to represent large masses of shade is not objectionable because such a treatment is not desirable according to the above conditions. In colour, the stress on local hues and the integrity of masses (not incompatible with harmony and due gradation) which have been employed by great painters in works chiefly intended to be seen at a distauce, are quite consistent with the resources of frescu; while in form, the distinctasas and simplicity which appear to be desirable are especially adapted for its means.

It has been already observed that the Venetian painters were in a great measure indebted to the practice of fresco painting for that comprehensive style of colouring which treats objects and their surrounding accompaniments in their largest relations. Tbe early rivalry in fresco of Titian aud Giorgione, on the exterior of au edifice near the Rialto, in Venice, has been already noticed. Their works, chiefly consisting of aingle figures, were there numerous. Besides that building, the following houses in Venice were painted on the outside by Giorgione. A façade near Santa Maria Zobenico, auother near S. Vitale, two others in the same neiglbburbood, the Casa Soranza, near S. Paolo, his own house, near S. Silvestro, and the Casa Grimani, near S. Ermacora. The houses painted fresco on the exterior, by T'inturet, Paul Veronese, Zelotti, Pordenone, Schiavone, Salviati, and others, would form, in each instance, a longer liat.

The modern revivals of fresco on the continent appear to have chiedy had the Flurentine atyle in view; it may remain fur the English artiat to engraft on this and on the matorer Roman taste the Venetian practice. Is was formerly a questiou whelber Venetian colour was compatible with the grandest style of painting, but that prejudice may be consideted extinct. Unfurtunately, the best of the Venetian frescous were painted in the open air, aud most of them live only in description. The frescos of Pordenone, in Piacenza, and two of Baphael's (the nass of Bolsens and the Heliodorus) in the Vatican, ure probably among the best examples of colour in this method now existing. The last mentioned, according to every hypothesis, were painted under she influence of an artist of the Venetian achool. Their date corresponds with the arrival in Rome of Sebastian dal Piombo, whose powerful style of colouring may have been emulated by Raphael; aod Morto da Feltre uppears to huve been employed on them. Both were of the school of Giorgione.

Opposite conditions to those first enumerated.

The resonrces which hare been bere dwelt on are to be considered as applicable, iu many cases, to one class of conditions only. The different means and aims, which entirely opposite circumstances might require or suggest, bave beeu already oocasionally noticed, and may now be recapitulated; with a view to obviate the partial conclusions which a somewhat exclusive view migbt appear to involve.

The external conditions, relating to light, situation, dimensions aml methods, at first proposed for consideration, were called "causes of indistinciness."

Let those conditions now be reversed. Let the dimensions of the picture and of the objects represented ${ }^{50}$ be such that the spectaior may contemplate the work at the distance of two or three feet (or whatever distance may be requisite to insure most distinct vision). Let the picture be opposite the eye. Let the light be altogether adapted. And let the means of represeutation be oil-painting, the resources of which are all. sufficieut for complete imitation.

[^19]
Consequences in style.

Oa the former principle theae conditions may be called causes of distioctacas. They are compatible with, and therefore invite the introduction of, all (agreeable) qualities which in nature can be appreciated only by mear inspection. Such qualities now become characteristic of the style, for the above external conditions-involving a just adaptation of technical means, not only permit, but require that every excellence which was inadmisable or uaattainable under other circumatances, should now assert ite claims. On the same principle, provided the work can be geen with perfect cunvenience, the means before employed to counteract indistinctoess may now be thrown aside-not merely as unnecessary, but because they may interfere with the complete representation of a new order of facts. These appear to be the general principles of the school of the Netherlands, especialiy in mabjects of figures. The leading qualities which aro the realt may be thus enumerated.

The assumed near point of view, permits and invites the introduction of a large proportion of low tones, all the gradations of which are now appreciable. These are rendered lumioous by inteuser but still transparent shades and acquire richness from the scarcity of strong light. Accidents of light-bot excepting sun-light, are admissable, and offen even desirable; they are no longer in danger of interfering with the intelligible represenbation of form and colour, and may be necessary to give that degree of inferest which the subject candot always command.

The employment of perspective and foreshortening is unrestricted; the last appears to be avoided in do case in which it would be intelligible in artare. Varieties in the place or "position" of objects are especially sougbs in deplh.

An assemblage of broken, harmonious, and nameless hues is next to be remarked, nmong which the slightest appronch to what is called positive colour is effective. This sobriety has vevertheless the effect (with occasional exceptions in the school) of giving a predominant impression of waroith, sad of thus vindicating the general character of colour as distinguished from mere chiaro-scuro.

The varieties of sharpness and softness in the houndaries of forms and is their internal markings, mast ever exist where there is a backgronnd and light and shade; the relation between them is therefore the same as 00 a larger scale, but the extreme diminution of Ggures in cabinet pictures gederally iadaces atmost precision in the sharper parts. Lusty, where each object may be discerned without dificulty, yet by means of delicate gradations of light can keep ita place and thus be easily iatelligible, detaila may be copious and forms altogether individual. Thus is again furnished the link between appropriate technical means and the choice of incidents, and besce the predilection with the masters of this style for familiar and eren tedvial circumstances. On this last point it is however to be remarked, that where so much judgment and well-directed skill are present in the wort, our respect is commanded even by the uapretending nature of the anbjects; aad where these are not offensive, they can hardly be said to diminish the satiafaction of the spectator who is alive to the higher objects of the artist. A greater danger to which this style is liable (in finished pictares where bnman actors form the subject), is that of making the accessories und inanimate nbjects truer to nature than the representation of life. This defect is, however, avoided, even in elaborate works, by the best masters of the school.

To conclude; the resources, whether abundant or limited, of the imitnlive arts are, in relation to asfure, necessarily incomplete; but it appears that, in the best examples, the very means empluyed to compensute for their iacompleteness are, in each case, the source of a characteristic perfection and the foundation of apecific style. As it is a ith the arta compared with each other, so it is with the various applications of a given art; the methods employed to correct the incompleteness or indistiactness which may be the reanit of particular conditions are, in the works of the great masters, the cause of excrilences not attainable, to the same extent, by any ohber means. In the instance last meationed-the school of the Nether-lands-it is apparent that no indirect contrivances or conventions are necessary to counteract the effects of indistinctness ; on the contrary, all that woald be indistiact in other modes of representation is here admissible with acarcely any restriction. The incompleteness overcome, which is here the cause of pecnliar attractions, thorefore resides solely in the cunditions eod imperfections in the art itself, which, on near inspection, aro in greater daager of being remembered. These are a flat surface aud material pigments; and these are precisely the circumstances which, by the skill of the artists in the works referred to, are forgotiten by the spectator. The consequesces of the dificulty overcome are, as usual, among the characteristic perfections of the style.

The two extremes of "external conditions" and their corresponding aybes have been hore chiety considered. The intermediate modes und combinations are innomerable; but in considering the question to what extent and in what respects the extremes of style may be compatible with each other, it will appear, on a review of what has been stated, that the grander view of nature and of the technical means Gited to represent it may be satisfactory in reduced dimensions in the department of form rather than in thone of colour and light-and-shade; and that, on the other hand, the comliation of the usual characteristics of small pictures with large dimensions, if powible in light-and-shade and colour, is impossille in furm. The lastsamed attribate being the indispensable medinom of the artists' conceptions, it follows that the interchunge of subjects flted respectively for the two ajks can only be admissible as regards the treatment of grand subjects
in small dimensions; and even then at the risk of the conventions of the grander atyle being too apparent.

ON THE QUALITY OF LIME PRESERVED FOR FRESCO PAINTING.

By Professor Faraday.

Led by the statement that the keeping of the lime in a slaked condition for a couple of years is a great advantage to it, I took some specimens from the stores which have been so laid up at the Houses of Parliament, for the parpose of examining them in this respect. It appears to me that this lime (which is in a state of paste) is in a very sof and amooth condition in comparision with what would probably be the condition of the lime recently slaked; a condition which seems to be due to its thorough disintegration as a masa, and its separation particle from particle. On amalysinc it I found that it contaiped a little carbonic acid, but aot much; for in 100 parts of the dry substance there were but $5 \&$ parts of carbonic acid; these 100 parta, therefore, would contain 88 parts of quick or oncarbonated lime, and 12 parts of carbonated lime, which considering the processes of burning, carrying, slaking, \&c., that it had to go throngh, and the necessary time of exposnre to air before it was laid up in atore, is a very small proportion. 1 do not believe that the lime, which is more than 4 inches in, from the exterior, has received any portion of carbonic acid doring the two years of its inhomation.

In respect of the effect of keeping lime for a time, I am led to think, without however having formed any strong opinion on the sobject, that the beneft is dne to the fine tezture which it gradually acquires; and as there is no doubt that if two surfaces were prepared, the one with fine sand and lime in particles comparatively coarse, and the other with the same kind of eand and lime in particles comparatively far more perfectly divided, that these two would act very differently both as to the access of carbonic acid from the atmosphere and the transition of lime dissolved in the moisture of the mass from the interior towards the surface; so there is every reason to expect that there woold be a difference in the degree of action upon the culours at that snrface, and also in the time at which that action wonld come to a clote.

WOODCROFT'S SCREW PROPELLER.

wOODCROFT v. sMITH.

The Jadicinl Committee of the Privy Council met March 11, Lord Brougham, Dr. Lushington, the Duke of Baccleuch, and Lord Cottenham being the members present, to decide upon an application for the extension of his patent made by Mr. Woodcroft, the inventor of a particular form of screw propeller.

Mr. Jervis appeared to sapport the application; and the Solicitor-General, besidea watching the proceedings on behalf of the Crown, apprared in opposition on behalf of Mr. Smith and the Ship Propelling Company, who have adopted his patent.

Mr. Jervis, in stating the case for his client, maid, that the invention for which a renewal of his patent right to which application was now made. differed entirely from evers other kind of propelling screw in existence. It was formed on the principle of a spiral, represented by the winding of a circular line round a cylinder. The patent was granted in March 1832. and he now applied to their Lordships for an extension. The history of patents for screw propellers (of which be enumerated the advantages) was as follows :-In 1794 Mr. Littleton had taken oat the first patent for an invention of that kind, which he proposed working by hand with the capstan, and which was to be either partiaily or totally immersed in the water, according to circumstances. The next patent for a screw was Mr. Shorter's, taken out in July, 1800. It consisted of the two vanes of a smokejach, not sabmerged, and adapting itself to the movement of the vessel by a universal joint. In 1815 Mr . Trevethic proposed the Archimedead or fixed screw, working in a cylinder. In July 1816, Mr. Millingtod got a patent for the application of a smoke jack placed begond the rudder, and worked with the universal joint. In February, 1825, Mr. Perkins patented an invention for baving two vanes, working in opposite directions, placed at the side of the rudder. In 1829, Mr. Commeraux patented a perfect one-tarn screw fixed parallel to the keel, and held by a stage orected for that purpose beyond the rudder. The date of Mr. Woodcroft's patent was in March, 1832, and the difference between his spiral and the screw of his predecessors was, that whereas the former consisted of a straight line coiled round a cylinder, the latter was made by a circular line so coiled round. The effect of this invention has been to economize the power of the engine, to deatroy the vibration, and to produce a greater speed with fewer revolutions, If a spiral worm was coiled round a cylinder, the angle given thereby would decrease, and the "pitch" therefore increased throughout the length of the shaft. Mr. Wooderoft, in his specification, proposed applying this "spiral" in different parts of the ship, and amongst other places before the rudder-post, by cutting away a part of the hull. Mr. Smith's patent, which was on the application of a perfect screw of one turn placed in the centre of the dead wood, was taken out in May, 1836. In 1837 Mr. Ericson patented an invention which differed from that of Mr. Perkins
only in being anbmerged and placed bebind the rudder. In 1888, it being ascertained that a perfect ecrew of one or two turas could not be worked by the obstruction of the back water, Mr. Lowe took out a patent for cutting the ecrew into arms or blades, which worked between the rudder and the stern-post. In April, 1830, Mr. Smith entered a memorandum of dir. claimer, by which he stated that be fonnd that a screw of two turns woald not do, that the trae principle was to take two half turas of a ecrew planted in the centre of the "dead wood." Afier explaining the evidence that he had to produce as to the usefulaess of Mr. Woodcrof's inveation, Mr. Jorvia concluded-Having expended 1,200l, and opwards in pushing his invention, and having only received in return about 430 l ., Mr. Woodcrof was entited to such a renewal of his patent as would enable him to remanerate himself, not only for capital laid out, but for the time and talent which be had spent upon it. Mr. Woodcroft had made several other inventions, and in applying for a renewal of his patent, he proposed introducing an lmprovament on the original plan, by which to alter at pleasure the variations in the " pitchos."

Mr. Carpmael stated that he had stadied the subject of the screw propeller for several years. In the use of ordinary ecrews, the water was put in motion by the first part of the screw, and being of the speed of the second part of the screw, choked the screw. The advantage of this ecrew was that the second part was so constructed as to outstrip the motion of the water, so that the inatrument was an operative one, whatever might be its leagth. All other screws consisted of a straight line wound round a cylinder, bat that of Mr. Woodcruft was a circle, or segment ot it, wound round a cylinder. Tredgold, in his work on propulsion, proposed that the screw should go on with a decreasing angle on an increasing pitch, but be stated nothing about a circle wound round a cylinder, which was Mr. Woodcruft's principle.

Cross-examined by the Solicitor General.-Mr. Commerany's patent was a spiral by lagguage, but a screw by description. The word "spiral"" or "scrow" did not truly designate the distinction. The word "heliz" whe used at present. He bud seen the screw of Mr. Woodcroft in a vessel at Bristol, which had come in from sea about three years ago. With that exception he had never aeen it in use. He had neverknown a screw used practically till the time of the Archimedes, in 1839 and 18s0. From that time the use of the screw had increased greatly, both in the Royal and mercantile navy. The screw he saw at Bristol was only one fourth of a convolution, and a three-threaded acrew. In practice it was called the one-eighth of a convolution. He had never seen the ordinary serew in operation of more than one convolution; bat as far as his experience went it would not work. He was satisfied that Mr. Woodcrofis spiral would work with more than one convolution. The varying angle would, he thought, operate all through. The spiral was between the gtern-post and the rudder-post, raised for the purpose. Smith's patent was placed in the dead wood. Woodcrof's was not technically a splral, because it did not run op to a point.

Mr. B. Slaughter said he bad built two vessels fitted up with Mr. Woodcroft's "spiral." He had tried other screws in the vessel before Mr. Woodcrof's, and he greally preferped the latter.

Cross exmmined by the Solicitor-General, -The other screwa he had tried were not ander any patent, and had varied from one-fourth to one-tenth of a convolution. He tried nine screws of varying diameter and the same pitch. Being dissatisfied he tried an increasing pitch and found the advantage of it. He had thus accidentally stumbled on Mr. Wooderoft's invention, and Inding that, he applied for a license. With Mr. Wooderof's he bad attained a speed of 14 miles an hurar, while with others be had only secured a speed of seven or eight miles an hour. In the one case the water "slipped" off the blades, and in the other it did not.

Mr. Morray, asaistant-engineer to the Admiralty, said that he conld apealy to two Crials, one on the 13th of A pril last, and the other on the 18th of March, in which the relative merits of Mr. Smith's and Mr. Woodcroft's invention had been attested. With that of the former the results were as follows :-With the engine giving 26.28 strokes the rate of speed was 8.18 knots, the slip being 143 , or $27-758$ per cent., and the revolution per minute 104.84. With that of the latter the results were-with the engine giving 24.152 strokes a revolution per minute of $95 \cdot 00$ a apeed of 8.169 knots and a slip of $2 \cdot 155$, or $23 \cdot 562$ per cent. The result exhibited in Mr. Woodcroft's favour a speed aearly as great, with less power of the engine, and much less slip. If the facts which he had atated were reduced, a difference would be shown of one-sixth of a knot per hour in favour of Mr. Woodcroft. He was aware that by otber experiments Mr. Smith's screw had attuined a greater velocity.

Mr. Cowper, an engineer, said, tbat the invention was a new and very ingeninus one. He illustrated its effect by an experiment on the air with tin blades modelled after Mr. Woodcrof's screw, and which when spun rapidly round on an axis by a piece of twine, as a top is apun by a boy, few up with great force to the ceiling. When the side was reversed, and the experlment repeated, the model was not moved from the axia it revolved on.

The Solicitor-General anbmitted that the present was no case of a useful invention at all. There was nothing new in the ides of nsing a serew for propelling vessels, as it bad been in existence as long ago as 1794. It was Mr. Smith's discovery that the screw should ;be placed in the centre of the dead wood which first led to its practical utility. When the serew was so placed and redaced to between one-fourth and one-eighth of a convolution all other points with regard to its construction became immaterial. Before

Mr. Smith's invention the screw was placed in onsuitable parts of the vessel, and none of them had ever ancceeded. The Solicitor-General then proceeded to explain, with reference to the models prodaced in court, that it was only by adoptiog Mr. Smith's discovers and inserting the serew in the dead wood that Mr. Wooderoft had ancceeded in making a practical application of hia patent. He read an extract from the specification of the latter gentleman, the strongest point in which wes as follows:- The spiral propeller may also be placed ander the stern of the vessel, ts seen in tgures 5 and 6, where a part of the hull is removed." The improrement claimed by bim had nothing to do with the position, but was one in reference to an increasing angle. At the time when Mr. Wooderon took out his pateat it was no improvement at all, for want of the discovery that it shonld be placed in the dead wood.

Lord Brongham.-But it is now beyond a doubt that some steamers may have no "dead wood" at all.

The Soliciter-General.-Practically it might be so in the case of a Dutch built ressel, but not one for steam communication. In all vessels there was but one stero-post, and it was playing with langaage to introduce the terms which had been osed in the evidence. He should refer to Mr. Woodcrof's specification hereafter, but in the mean time he would ask if the space filled by Mr. Woodcron's screw were not so occupied, would it not be the "dead wood." If 10 , then Mr. Woodcroft's screw was inserted in the dead wood. In his drawing there was no continuation of the keel, but as undue prolongation of the deck, and a stern-past to which the radder was attached. No particular ratio of angular increase or decrease was claimed by Mr. Woodcroft, and Mr. Commeraux had already discovered the priaciple. In the patent of the latter the term "spiral" was nsed, and in the drawing the increusing angle was clearly marked. The convolutiona in the drawing were as three to iwo.

Mr. Cowper was here recalled, and stated that there was no intimation of an increased pitch in the drawing, even taking into account the word spiral in the specification.

The Solicitor-Geueral then gave up that point, and proceeded to argue that as Mr. Woodcrof had in his specification only provided for one convolution or more, and as there was only evidence of its answering for oneeighth of a convolution, there was no direction in the specification which would guide a workman to the only form of the invention which had practically been found to answer.

Lord Brougham.-The drawing No. 12 shows only one-eighth of a comvolution, being exactly what is now used. His claim is quite reseral.
The Solicitor-General. - Mr. Carpmael had stated that the spiral woold work with any number of convolations, but notwithstanding the amonnt of experience oo the subject now, not more than one-quarter of a revolatiea had in any screw been found to anawer. After 14 years' opportoaity for experiment, it had been so, and the onus probandi therefore lay os Mr. Wooderoft, for showing that the spiral wonld work at more than one revotution.

Lord Brougham delivered the jadgment. In all cases where there was a disputed right as to patent, and where the validity of the pateat eught come into question, there were two things to be considered. The fret wae whether the case to prove the invalidity of the pateat was so clear as to remove all ardinary doubt; the second was whether the case was modonbtful that that Court would rather retire from its cousideration and mot docide it. In the former case they would not grant the exteosion, becanse they did not see the merits, and because they would not put the oppocing parties to the vexatious process of bringing their scire facius in the law courts. But where the mattor was doubtful-where confieting evidence and questions of law equally arose, that Court would not refuse the discretionary power vested in them by Parliament merely because it was alco a case in which the validity of the patent was contested. The present case came under the first principle be had stated. There was nothing to mate it clear that the patent should not be sustained outil they twolk away the merit of the invention. If the patent turved out to be invalid, it woodd only be the extension of such a patent for so many years. Now, as to the merits in this case there could be no doubt. His Lordship geve it as hil own opinion on a scientific point, that Mr. Woodcroft's invention was a mooet ingenious application of mathematical principles to mechevical eads, and he commented on the evidence which had been addaced on the sabjeet. It was not enongh to object that the patent bad been long in coming isto operation, for the steaw-engine, and many other discoveries. were open to the same observation. All his time, his ingeouity, and his labour had probably been exhausted by Mr. Wooderoft on this work. Tbey bad every reason 10 believe that he would be for the next few gears in happier circumstances, and more likely to receive compensation. On the grounds be had stuted, their Lordsbips were of opinion that a period of six years should be given by way of extension to the petitioner. What he had said was without reference to Mr. Smith's invention, which might be a mont ingenions one.

The Seew Arch an Old Inventron.--" Now visiting the Aloatar (cathedral at Seville), but tirst observed a siogular Mouriah skew arch, ia a oarrow street leading from the cathedral to the Puerta do Xeres; it proves that the Moors practised this now assumed modern invention at least eight centuries ago."-Ford's Spain.

THE BOODROOM MARBLES.

For the following communication from Boodroom, Asia Minor, we are iodebted to a correspondent of the Times.
Our arrival at this once celebrated place, anciently called the city of Faticamaseus, is caused by a request from his Escellency Sir Stratford Canaing, the Minister at Constantinople, to remove and receive on board for convegance to England mome ancient marbles, supposed to be a part of the tranb of Mausolus, erected by Artemisia to the memory of her husband, asd which way, in the days of the kings of Caria, considered as one of the seven wonders of the world. The monument, io question was, no doubt, a anss of unusual splendour, and from this magnificent sepulchre tombs and the like edifices received their names; it was built by four different archi-tects-Scopas erecied the east side, Timothens the south, Leochares the weat 1 Brucis the north. Pithis wes also employed in raising a pyramid over this atutely superstructure, and the top was adorned by a chariot with foor borses; the expeuse was immense, and called forth the remark made b) the plilosopher Anaxagoras, when he saw it, "How moch money changed into stones."

The marbles were found inside the fortress, and built into the ramparts, and connterscarp and bastions, at various beights from the ground, varying from 40 foet to 12 feet; are of considerable size, being from 7 feet by 3 feet, and of great thickness, varying from 25 to 46 cwt ., and 14 in number. This forress witustood many sieges, especially the one maintained against Alezander the Great. under Memna, and another during the time of the knights of Malta and Khodes. It is now a Turkish castle, miserably provided with the munitions of war, and bearing striking evidence of the state of Turkish command. Three of the friezes were outside facing the north, oce was embrdded under a high wall on the lefl side of the second entrance, three were uoder the drawbridge leading to the citadel, three more were taken from an outer wall of a moat or treach; two from the right of a wrill in the fourth portal, and two from the south-east wall. They were thickly conted with whitewnsh to correspond with the rest of this atrongbold of chivalrous knights, and the greater part resisted, for some time, the trepreman tried to be made apon them io loosening the brickwork tor their ertuction. It may here be mentioned, tbat the citadel of Boodroom, as it is called, bas, on its various walls, ramparts, and bastions, many shields - marble, and near to every one of the antiquities were specimens of the ane. No doubt they were considered by the holders as oroaments to their beralite devices, and their position evidratly bespoke that they were so Faced as a commemoration of some gallant achievement of the warrior tho defended that particular spot. In the inside of the largest tomer there eppeared one with the Gigure of St. Grorge and the Dragon, having on each of jts sides nine lesser shirlds, and over the first gate of the drawbridge one betokened that the knight had served in Palestine, bearing undersoeth the following inscription:-

"I. H.S.

"Salve, nos, Domine vigilantes;
"Nisi Dominas custodierit civitatem
"Frustra vigilet qui custodit."
Leaving, however, these mementos of pecaliar interest, it may be mentioned that the bigures on the marbles are in a very masterly style. The majority of them are sadly defaced by time, weather, and lime; from their charaeter they are evidently meant as a picture of the wars of the "Amaen a few are in a state of preservation, and present to the eye a rare epecimen of the sculpture of the age in which they were executed; some poartray wowen stricken down by the ruthless hand of the warrior, and their mbdued bodies are exquisitely chiselled. Bat to illustrate this remark, there is une which cannot fail to impress the spectator, and which I thing stands pre-eminent-it is the death of a woman by the hand of a man, stretched on the ground, with her head fallen on the left arm, the rishi haod clencbing the earth in the last struggle for life, ber conqueror, whib head bent and shield before his breast, stands looking with peculiar ferocity on the bloody deed he has committed, whilst an Amazon, with outatretched borly and uplifted arms, appears in the act of wreaking vengeance - hise who has slain one of her sex.

The village of Boodroom, for it cannot be called a town, is a specimen of Tarkisb indolence, and were it not for its ancient site, would offer little phasare to the risitor. There are some fine remains of what the city of Fithernasers was, on a hill, besides what was most likely an amphitheatre; and thoogh mady of its massive stones and marble seats lie scattered in the grass and rank vegetation with which it is overgrown, still there is a safcient perfecuess to dénote that 6,000 people could have witnessed the aceses therein enncted. Un a summit at a short distance from this -pet are several calacombs, confaining chambers or vaults for their dead, me wre sealed by stone slabs, and so firmly, aa to reaist an iron crowbar: ose of them was found to contain nearly 40 lachrymatories. These chambers of death have a very curlous appearance from the entrance of the barboor, and are seldom visited either by Greek or Turk. About a mide in the country stands in tottering form what was once a gatoway, but Which is in a very ruinous state, and not far from this place are several manll arched buildings, near which mast have been an entrance to the city, as sereral parts of the wall can be traced through the rich olive groves. Abpiaing under the wide spreading branches of a talio.tion in enem. Fempa, epparently of great antiquity. Time amd pieve of a temple, mach decayed. Several nime
it, and the pillars are in a very fottering condition. There are about $\mathbf{9 , 0 0 0}$ bouses in Boodroom, inhabited by Turks and Greeks. The soil is rich, bot in lieu of green pastures, unwholesome weeds spring up before the eye, proving how much given to indolent habits the Torks are, how they manage to sastain life cannot be told. There is the appearance of their cultivating the olive, ig and almund trees, but even these require but little manual assistance. Sume coins of ancient date were obtaived; sickness and disease appear in almost erery family, and some, from want of medical as. sisfance, were found to be beyond bumanskill.

Thaoks to Sir Stratford Canning, England may now congratolate herself on possessing some of the finest specimens of ancient sculptura in existence; for although those in the interior hare been guarled with such jealousy by the Torks, that no eye, suve those of the officers of the Siren, have ever been set on them, those on the ses bastion have been visited by celebrated travellers, and pronounced to be litue inferior to those of the Farthenon.

REPORT OF EXPERIMENTS ON GUNPOWDER, MADE AT WASHINGTON ARSENAL, IN 1843 a 1844.

By Captain Alpaed Mordecai, of the Ordnance Department.
This Report embodies the results of many thosseods of accurate experiments made by Capt. Mordecai, nader government authority, with instraments constructed in such a manner at to ensure perfect accuracy. Having had the satisfaction of inspecting the instraments, and of hearing from Capt. Mordecai an account of the methods of experimenting, we can speak of thern with the greater certainty. The force of gunpowier, since the time of Hutton and the Frencb experimenters, has heen calculated by metna of the balistic pendulum and of a gon pendulum. The gun (in these experiments a twenty-four and a thirty-two pounder) is suspended in an iron frame, hung on knife edges of hardened steel, like a balance beam, the Whole supported (a load of $10,500 \mathrm{lb}$.) on massive stone pillars. The recoil is measured on a limb of brass, having a curve, of which the frame work and the gun are the radius, and graduated to read to seconds by means of a vernier which is moved by the recoil, and retained at the point of greateat vibration by a slight apring. When the gan is adjusted and at rent, its axis is a borizontal line, and the vernier stands at zero on the scale.

At a distance of ouly fifty-ive feet (between the centres), is inserted the pendulum block for receiving the shot and measuring its relocity. This pendulum is a counterpart to the gun, as regards its mode of suspension and motion, which is also measured in like manner on a graduated arc. This "block" as it is called, resembles a mortar or wide howitzer, with a bore of four and a balf feet deep and fiffeen inches ralibre, and filled with leathern bage of and, and a bedding of lead. This block, the frame and counterpoise weigbts, weighed 9,358 lbs., and was suspended $s 0$ as to hang when at reat, with its axis perfectly in one and the same line as the asis of the gon. When prepared for use, the aperture of the pendulum block was covered by a sheet of lead, which served to make the deviation of the ball from a right line, by the hole which was pierced in it. This deviation was found to be very slight.

It seems, to a permen unaccustomed to anch experiments, a rether darins attempt to fire a thirty-two pound shot, at the distance of only 50 feet, in the mouth of another gun. Bat that velocity which, left unrestrained, would rerve to carry the shot for miles, is in this apparatus reatrained withia the range of a few feet, and imparts only a moderate motion on the great mase of matter on which it impinges, which can be wholly and accurately eatimated. Capt. Mordecai remarks, that "an observer, placed in such a poiftion as to see the face of the block unobscured by the amoke of tbe gun, perceives, at the moment of linpact, a circle of reddish whife flame surrounding the hole made by the ball." He supposes "that this flame may he produced by the combustion of minute particles of iron aod lead ignited by friction." He further remarks, that "in firing a thirty-two pound ball into the pendulum block witb a clarge of eight pounds, the sand immediately before the ball was compressed into a solid mass, forming an imperfeet sandstone sufficiently firm to bear handling. A specimen is still preserved in that state, after a lapse of more than eighteen months." This aand, when examined, was found quite free from any calcareous cement. An apparatus of quite similar structure, on a proporaionate acale, was used for muskets. In these experiments powder from a great number of manu* factories, and of great variety of composition, grain, and fidish, was tested. The elemen's for calculating the strength of gunpowder, obtained by these experiments, were resolved by the formulx of Hution and tbose which more recently have heen employed by the French at Metz. This portion of the labour is performed with the accuracy and atill which characterize all the higbly educated officera from Weat Point Academy. Capt. Morrecai concludes from the resulta of his experiments, that the only reliable mode of proving the strength of gunpowder is to test it, with service charges, in the arms for which it is designed; for which parpose the balistio pendulums arms for which it is de

The initial velocity of the masket ball, of 0.05 in windage, with a cherge of one hundred and twenty grains, should be

With	new	musket	d		an	1,500
${ }^{\prime \prime}$	4	rifte	${ }^{4}$	"	"	1,600
"	fine	sporting	${ }^{6}$	${ }^{4}$	4	1,800

The common eprouvettes are of no value as instruments for determining the relative force of different kinds of gunpowder.

The proportions nsed in making our best powder, 76.14.10, and the Rnglish 75.15 .10 , appear to be favourable to the strength of powder. The beat mode of manufacture is in what is called the cylinder mills under beavy rollers, and this process alone is connidered capable of making good sporting powder. The English have employed this process for fify years, but the French still use the old method, by itamping or pounding. The "gravimetric density's should not be leas than 850, nor more than 920 . The charge for cannon for all ordinary parposes should be one-fourth. No purpose, even breaching a battery, requirea more than one-third the weight of the ball. For amall arms the following charges are proposed; for the percussion musket, 110 grains; the percuscion rifie, 75 grains; the percussion pistol, 30 grains of rifle powder. It is proposed that masket and rifie balls should the mase hy comprestion, instead of casting, at at present.-Silliman's Aner. Jowrnal.

REGISTER OF NEW PATENTS.

If additional information be required reapecting any patent, it may be obtalned at the stice of thil Journal.

ping alarem.

Fancis Taylon, of Romsey, in the county of Hants, burgena, for "Im. procementa in giving alarum in case of fire, and in extinguishing fire.'Granted Angust 6, 1845 ; Earolled February 5, 1846.

Fig. 1 shows a tranaverse section, and fig. 2 a front elevation of an apparatus for giving alaram in case of fire; a is a tube of glass having a bulb or ealargement about the middle part thereof, this tube which is to be filled with mercury and hermetically sealed at both ends is supported in

two brass sockets; b c, $d d$, is a brass or other metal box composed of two parts, the frnut part d being attached to the back part by the strength of the glass tube; e e are two pieces of tape of about balf a gard each, more or less; ooe ond is attached to the upper and lower, or front and back part of the box, the opposite ends being joined to a detonating packet containing some explo-
 sive mirture. This apparatus may be bung np in any part of a room most likely to give immediate alarum in case of fire, which fire on attaining a few degrees of beat above the temperature of the room would expand the mercury, and have the effect of bursting the tube, and thereby let fall the front part of the box, and cause the explosion of the detonating mixture, which would give the alarum required. The specification shows several modifications of this principle; it also shows the application of one for atopping the draft of the chimney, so as to impede the progress of the fire. Fig. 8 is a transverse section of the chimney, baving fixed therein a few feet from the bottom, a rectangular frame a, and plate b, which plate is kept in a vertical position by a chain c passiag over two mall pullies, the opposite or lower eads of this chain aro attached to an apparatus constructed on the same principle an that above described, fixed over the man-tle-piece, which in case of fire would burst as aforesaid, and let fall the plate b, and have the effect of stopping the draft, therebs impeding the progress of the fre.

COPPER OHESA.

Frederice Baneart, of Champion Park, Denmark Hill, in the county of Surrey, Gent., for "certain improvements in treating certain metallic arex and refining the products therefrom."--Granted August 7, 1845; Enrolled February 7, 1846.
The improvements relate to ores containing copper, whether combined with sulphur or not; and consist in mixing the different ores in such a manner, that those which contain sulphur in excess may compensate for the deficiency of sulphur in the other ores, and sabmitting the ores so adjusted to successive roastings and lixiviations, whereby a solution of sulphate of copper is obtained, from which the copper may be precipitated in a refined metalic state, which is done in the following manner:-The copper ore is first reduced to powder, and the relative proportions of anlphur and copper which it contains are ascertained hy analyais; then if the sulphur bears a less proportion to the copper than one to two, iron pyrites or copper pyrites, also pulverized, are added, in sucb quantities as will bring it to that proportion. If two or more descriptions of copper ores are to be treated, they must be mixed together in such proportions as will make the sulphur of the mixture bear to the copper at least the proportion of one to two; irom pyrites or copper pyrites being added, where necessary, to ensure that proportion of sulphur. And there must always be a sufficient quantity of sulphur ores for the conversion of the copper into a soluble sulphate, and also to allow for the escape of part of the sulphur during tbe processes. The copper ore, prepared in this manner, is then submitted to such a degree of heat, in free contact with atmospheric air, as will oxidize the metals not already in a state of oxide, and convert the sulphur into sulphuric acid. For this purpose, a common reverberatory furnace is used, and the ore submitted to a dull red heat, in free contact with the air, until the mixture attains a state of seeming fluidity, and it is retained in that state until the evolution of sulphurous vapour nearly ceases: the whole of the mixture is not pot into the furnace at once; but it is divided into several portions, and one portion being put into the furnace, anotber is added when the first bat attained a dull red heat, and so on until the whole has been introduced;the mixture is frequently stirred during the procens. The evolution of sulphurous vapour having ceased, or nearly so, the mixture is removed from the furnace to a vat or pit, and water (or a weals sulphate liquor from a previous lixiviation) applied at about the boiling temperatare, and retained at that temperature for some time, by means of injected steam, to enaure the solution of the sulphate of copper. When the sulphate of copper liquar is drawn off from the residual mixture, the latter is mixed with as much iron pyrites or copper pyrites as will supply the requisite proportion of sulphor; the whole is then subjected to a second roasting, and to a second lixiviation: this process of adjusting the proportion of aulphur in the mixture, and roasting and lixiviating, is repeated until the whole of the copper is obtained from the ore. The next process is to precipitate the copper from ins sulphate solution; after which it is to be fused, and run into moulds, for asle as fine metallic copper. Various modes of precipitation may be adopted; but the patentee prefers to employ cast or wrought-iron platea, keeping the solution at a temperature of from 120° to 150° Fahr., and as nearly as may be of the same atrength, by means of a circulating stream of fresh sulphate solakion, which, entering at the top, and being conducted by a pipe downwards, tends, by its greater specific gravity, to displace the lighter solution; the latter, overflowing, is to be returned into the lixiviating vat, to be recharged with sulpbate of copper, and this again precipitated, until the refase liquid becomes a nearly saturated solution of sulphate of iron, when it is set aside to crystallize.
The claim in for mixing of the different ores of copper and iron pyrites ia such iproportion, according to the quantity of sulphur relatively witb the copper which they respectively contain, and adjnsting them in such manner as that ores which hold sulphar in excess may compensate others which are wholly or partially deficient in sulphar, and subjecting such mixture to a succession of roastings and lixiviations (the residuum, after each roasting, having the proportion of copper to sulphur adjusted as hefore), and thereby obtaining a solution of sulphate of copper, whence the copper in obtained, by precipitation, in a refined metallic state.

mTOYEA.

Cearleg Searle, of Bath, in the county of Someraet, doctor of medicine, for "improvements in atoves."-Granted Auguat 9, 1845; Earalled Pebruary 9, 1846.
The improvements consist, firetly, in the employment of a heat retaining mass in convection with the fire-chamber, for the beated gases to pass through on their way to the flue, instead of the vessela now in use at she connecting mediam between the fire-chamber and the flne. Secondly, in so constructing the fire-chamber or furnace as to obtain solidity of aubstance, and isolation frow surrounding conducting media as far as may be practicable, with confinement of space or closeness of the fire-chamber; the patenteo's ubject being to absorb and retain as long as possible the heat derived from the combustion of the fuel, to prevent its escape, and to concentrate its operation upon the fuel, in aid of its more perfoct combustion.

The annezed fgure shows a vertical section of a stove. a is the fire-chamber, of fire-bricks, about two inches thick, of a cylindrical shape (or either conical, square, or polygonal, if preferred), and the top is perforated with nu merous holes, from th to th of an inch in diameter, on the side, as shown at g, for the escape of the gases from the fire; at the bottom is an iron grating b, and beneath it an ash-pit or cbamber c. d is a packing of sand or ciay, between the fire-chamher and the outer cylindrical case of iron e, to prerent the radiation of heat at that part; and f is a door-way or opening for the introduction of fuel. The smoke and gasen, in their escape from the firechamber, having to pass through the apertures in the top or side (which in time becomes red-hot), are coasumed or intensely heated. The combustion is carried on in the lower part of the chamber; 'the upper part serving at a magacine or atore of fuel.

Besider these methods of constructing fire-chambers, they may be composed of two vessels of a cylindrical or other shape, one within the other; the gasea from the fire being allowed to escape between the two by openings in the aide of the inner one, which contains the fuel, and is closed at the top; or the current of gases may be made to descend through the body of the ignited fuel and grate, and then pass up between the two vessels, by admitting air above the fuel, inatead of from below.

The heat retainer of the stove, through which the gases have to pass in their course to the flue i is made of slabs or discs of burnt clay or brick, ftting closely within the casing or body of the stove; or the retaining mass may be composed of any namber of smaller parta, with intervening spaces for the passage of the gasea, instead of the perforations above-mentioned. Or slabe of soft stone or brick, of any shape, may be employed; the gases either passing through openings in the slabs, or circulating between them. Or the body of the atove may consist of a vessel of iron or other material, flled and packed with sand, clay, or other suitable substance, as represented at l, through which tubea of metal or pottery l, about an inch in diameter, extend; in this arrangemont, as well as when perforated alabs or disca are used, a solid mass, of yot less than two feet in sickness, is considered deairable. A series of hollow cones, or cylinders of pottery or brick, might alno be arranged one within the other, to act as a beat-retaining mass ; the gases pasaing betweeu them. Or a "tubulated cylinder," filled with tallow, oil, or other finid possessing a great capacity for caloric, might be employed for the same purpose.

The patentee does not confine his invention to stoves for heating apartments; but proposes to apply it also to apparatas for cooking.

MOTIVE POWER.

Mathew Feancois Isoard, of Paris, for "Improvements in obtaiaing metive power."-Granted August 28th, 1845 ; Enrolled February 28th, 1846.

This invention consists in the application of the reaction of steam for the parpose of producing rutary motion, and in the peculiar combination of parts forming a rotary engine. Fig. 1 shows a sectional elevation of an

Fig. 1.
engiae constructed according to this invention, in which a shows a portion of the frame work supporting the engine, which consists of a vessel of the form shown at $b b$, having an opening at c; this vessel is sapported upon - bollow azis d, so as to admit of the mame turning freely; ceare oce,
two, or more, ooils of piped, and are made in the form of a aingle or donble threaded screw, depending upon the number of pipes employed. Each of these pipes commanicate with the hollow aris d, by means of pipes $f f$, and are provided with outlet pipes 8 g , made to pass throngh

Fg. 2.
the sides of the vessel $b b$, see Fig. 2, which shows plan of two pipes coiled one within or between the other. h (Fig. 1) is a pipe leading from a force pump (worked by the engine), and is intended to supply the pipess ce with water. $k k$ represents the combustible matter of which the fire is composed, which is lighted within the vessel bb, and provided at the lower end with a number of openings, i i, for supplying the fire with air. The action of this engine is as follows: the pipes e e being filled with water, a fire is lighted within the vessel $b b$, and steans is generated within the pipes εe, which is allowed to escape through the outlet pipes $g \boldsymbol{g}$, the reaction of which against the air causes the vessel $b b$, together with the pipes e e and hollow axle d, to rotate. Upon the hollow axle d is keyed a wheel (not shown in the diagram) for the purpose of imparting such motion to the force pump, which supplies the pipes e e with water as steam is generated; from such wheel, motion may also be imparted to other machinery intended to be driven hy the aforesaid engine. Il is the abh-pit which receives the ashes as they fall from the openings m m.

IMPROVED CUPOLA FOR MELTING IRON.

Constructed by Messas. Framelin Townaend, \& Co., Albany, N. Y.

This cupola is of the ordinary construction, only being of enlarged dimensions, and made of cast iron. Its diameter at the tuyères, when lined with fire brick, is three feet; and its height, from the bearth to the charging door, eleven feet. When charged full, it will contain three tons of pig iron, and is capable of melting upwards of twelve tons at one blast. The air is admitted into the cupola by six tuydres, which are placed about fifteen inches above the hearth, and equidistant on the circumference of the cylinder. To avoid the number of pipes which would be necessary if the air were conducted into the cupola by the usual method, an air chamber is made to surround the cylinder and enclose all the tuyerres, and into this the main blast pipe is introduced. An opening is made through the outside of this air chamber, and directly opposite to each tojère, wibh, being protected by a plate of glass, allows the melter to observe the working of the furnace. This plate of glass is so attuched that it can be easily removed, and thus give free entrance to clear the tuyères whenever it may be necessasary.
The air is beated by being forced through a number of amall pipes, placed in such a manner in the interior of the stalk immediately above and directly over the cylinder of the cupola, tbat their outaide surfaces are exposed to the full action of the waste beat of the furasce. For reason of the difficulty caused by the expansion of the metal when heated, theae pipes are required to be of peculiar construction. By this arrangement, the air becomes heated during its passage from the blast reservoir to the tuyères, upwards of 400° Fabrenhoit's thermometer.

This cupola has been in operation during the past three months, melting ten tons of iron daily. The iron is charged in the shape of pig and scrap (sprues, gales, gc.) in about equal proportions, and is cast into stove-plates, which require that it should be very bot and liquid. The average consumption of coal (Lehigh) in melting this quantuty of iron, is 225 lb to the ton of iron, and the rate of melting is from two to three tons per hour. An ordinary cupola, operated with cold blast, consumes upwards of 500 lb . of coal to the ton of iron, and its rate of melting is from one to two toms per hour.

Not having the results of the operation of any hot blaat cupole in this country, the comparison of the working of this improved cupola with them cannot be given; but its evident superiority to those of England is shown by the following extracts from a report made by M. Dufresnoy, chief engineer of mines:-
"The cupola furnaces at the Tyne Iron Works are operated with heated air. The consumption of coke is 309 lb . to the ton of iron; rate of melting, one ton per hour.
${ }^{*}$ At Wednesbury, the cupolas are operated with hot blant, and conanme

287 lb of colce to the tere of iron. Before the adoption of the hot blath the congomption of coke was 441 Ib . to the hom of irom. The ane quevtity of irom is melted is ome-balf of the time that was ruquired before the adoption of this process."-Praminio Jourmal.

AUST PA8SAGE BRIDGE.

(With ane engraning, Plate V.)

The proposition to build a bridge scross the old passage of the Bristol Channel, at Chepstow, has arisen from the intended improved connection of Sonth Wales with England by means of railways, and whatever may be the objects of crossing the Bristol Channel elsewhere, the old passage is nnquestionably the point where the nearest junction of South Wales with Bristol, the Weat of Eugland, and London, can be effected.

In the session of 1845 I recommended, in my evidence upon the South Wales Railway, that this bridge should be constructed with a span of 1,000 feet from pier to pier, and height of 120 feet above high water mark of spring tides. Since thev, I have had a correct plan and sections made of the Channel, frow which I find th practicable to place the piers on rock foundations, accessible at low water, but at distances of 1,100 feet apart. The bridge will therefore require four spans of this length, and one at each and ω netriy 60 feet. In addition to which, another bridge chonld bo Writt acroan the W je, with ows apan of about 500 feet in length, and one st each end of abont 250 feet each. I expressed my opinion in the session of 1845, that the suspension principle adopted at Menai Bridge and eleowlere, woold not be sumiciently steady for the Aust Bridge witheat meterial improvements in it. I have accordingly, ia conjunction with Mr. Fracis Basbforth, Fellow of 8t. John's, Cambridge, deafgaed a bridge for the Anst Passage, which the accompanying engravisg represents (see plate V.) ; the calcalations for which are subjoined, for the scrotiny of scientific men, and I bave great pleamre in asociating my name with Mr. Bashforth's in this work.

Francis Giles.

Experience has shown that the instability of suspension bridges is their great defect, whilst they may be made of anfifient strenglh to bear any load that can ever be placed upon them. To guard against their liability to undniation an arrangement is proposed, so that every part may be always is its proper position to snpport any heavy weight placed on the roadway. The bars radiating from the tops of the piers are of variable thickness, so that each is capable of sustaining the same weight as wher placed at its extremity on the platform (supposed to be a rigid lever moveable aboat the ead). These radiating bars are kopt straight and connected together by transvorme rods, but the former alove are calculated to sustain the whole of the load, the latter 'being employed to keep them in their proper position and to ensure the assumed rigidity of the platform. The sopportiog bars are attached to the platform at equal diatances and are pased over the top of the pier (side by side or otherwise). On aecount of thetr number the space covered would be considerable, but this would be an advantage as the tendency would be to keep the platform ateady. In addition, the main chains are proposed to be connectedaby rods overhesd to within about 20 feet of the roadway. So as to form 20 immense trassed leam. Let t derote the vumber of toess that a bar of iron of 1 square inch

section wonld bear without injary. A. $B=h, B B=s, B C=C D=$ $D R=$ enc. $=8$. Let $A F$ be the r the bar from $A B$. Then $B P=r i$ T, the weight sepported by A F at F on the platform. $k=$ weight of a bar of iron 1 foot long and i square inch section. $n=$ number of bars between B and J.

$$
\text { The tension of } A F=\omega_{A}^{A} F=\omega_{h}^{A F}
$$

and giving to r successively the values $1,2,3 \rightarrow \ldots$ we get the neoessary
tright of each ber, and foor then their atan will be equal the weight of the supporting bass between the piors $=W$ reppoce

$$
\begin{aligned}
\therefore W & =4 \times \frac{\kappa \omega h}{t}\left\{n+\frac{8^{2}}{A^{2}}\left(1^{2}+2^{2}+3^{2}+\ldots . m^{2}\right)\right\} \\
& =n \omega h n\left\{1+\frac{m^{3}}{h^{2}}\left(\frac{1}{3}+\frac{1}{2 m}+\frac{1}{6 n^{2}}\right)\right\}
\end{aligned}
$$

Bat if W be the weighs to be supported on the platform whee meiformly distributed, $W=4$:ce and $8=\frac{9}{2}$

$$
\therefore W^{\prime}=\frac{W_{n}^{k}}{n^{k}}\left\{1+\frac{8^{2}}{4 k^{2}}\left(\frac{1}{3}+\frac{1}{2 n^{n}}+\frac{1}{6 n^{3}}\right)\right\}
$$

It is manifeat that W' cancot be made a minimam by the variation of m, but as incremses W decretses, and the least possible value is given by $m=a$ in which caso $W^{\prime}=\frac{W_{k} h}{t}\left\{1+\frac{S^{2}}{12 A^{2}}\right\}$. In this ence we should have the bars replaced by a very groat number of wiren, bet thare woald be no rigidity for preventing the pfatform betng raised in the middle. A bridge so constructed in Scotland was soon destroyed by the wind asd replaced by one of the common form. Hence the greatest number of bars mnst be made use of, consistent with the rigidity of the whole. W' in elso a function of h, the beight of the platform above the mondwey. Making $\frac{d W}{d h}=0$ we find $h=+\frac{S}{2} \sqrt{\frac{1}{3}+\frac{1}{2 \pi}+\frac{1}{6 \pi^{n}}} \quad$ The poeitive value of h makes $\frac{d^{2} W^{\prime}}{d A^{2}}$ a positive quantity and.${ }^{\circ}$. gives the piaimunan vale of \boldsymbol{W}.

But the expense of raising the piers to a'height neceanry to enease to minimum quantity ot iron being required moat be taken inte mecount. In H denote the height of the road way above the ground, and a the height of a course of atomes on the pier above the platform. Suppose now the ood of any conrse of atones varies as (height) s , where s is integral or fractional, end also that μ is the expense of a course at height unity from the groend, expressed in terms of a weight of iron of equivalent valae.

Expense of the pier above the plafform,

$$
=\int_{\mu}^{0}(H+x)^{s} d n=\frac{\mu}{S+1}\left\{\overline{H+h}^{S+1}-H^{S+1}\right\}
$$

Hence A must have such a valas as makes
$\frac{\mu}{S+1}\left\{(H+h)^{S+1}-H^{S+1}\right\}+\frac{F h}{t}\left\{1+\frac{S^{9}}{4 h^{2}}\left(\frac{1}{3}+\frac{1}{2 \pi}+\frac{1}{6 m^{2}}\right)=\right.$ min.
It must be remarked that the extremities of the radiating bars woudd remain in the same straight line for all variations of temperature, provided each bar expanded in proportion to its length. Thus the equation to a straight line is ρ cos $\theta=4$ (I) If we soppose ρ to receive az incretneat $\mu \rho$ proportional to its length, the radias vector thea beecneres $p+\mu \rho=p^{\prime}(2)$. (suppose) and eliminating p between (1) and (2) we get $\rho^{\prime} \cos \theta=$ a ($1+\mu$) ... (8), which is the equation to a straightiine, parallel to (1) and at a distance μa. For a span of 900 feet; $a=90$ feet suppose, and for ordinary changea of the atmospheric temperatore

$$
\mu=\frac{1}{1800} \cdot \cdot \mu a=\frac{90}{1800} \text { feet }=\frac{12}{20} \text { inches }=\cdot 6 \text { inches } .
$$

It has been objected that there would be a tendency in the network to "buckie;" this would be perfectly correct in the case of a girder bridge, but there would be no occasion to fear that defect if the proposed plan were properly carried ont. For it must be remarked that everything is made subordinate to the radiating bars. The atraight horizontal rods are intended to insure the rigidity of the platform. Wher a weight passed over the bridge, the tendency of the supporting bars woold be to rotate abont the top of the pier, but these straight burs acting directly by tension on one side and compression on the other, prevent this, and cannat buckle unless the rods stretch. The bars must be connected so as to admit of adjustments without iajury to the strength of the materiat.

The weight of the material required for the supporting bars on this plan would be from half to two-thirds of that required for the main cbains of a catenary of equal strengit, but on account of the numerous cross pieces, the saving effected by this plan wonld not be important, bat it is satisfactory to know that suspension bridges nay be made much firmer apd tree from undulation without increasing the cost and adding to the weight to be epported.

HesBarcies IN HYDRAULICS.

Sit-In Weale's "Quarterly Papers on Engineeriag" for Michaelmas last, there is an article, "Researches in Hydranlics," by a Mr. Peacocke, io which he attempts to prove the several formulas of Genieys, Dabuat, Piony, Eytelwein, Dr. Young, and Smeaton, for calculating the discharge of water from pipes, are incorrect, and joins his faith to that of Mr. Provis, whose formala, he thinks, might be carried out for a length of pipe of 1,50 feet (!) at least, without any considerable inaccaracy. I gaorant he mont be that mains are sometimes three or four miles long, and even more than that. It would be doing Mr. Peacocke and the profession a service, were you to review this in your usual clever style and expose its aburdity.

In 8menton's Reports, vol. 1, page 2s1, you vill see that by measorenat, owe of the mains of the Ediaburgh Wator Works is 4.5 in. diameter, and delivered 2197 cubic foet per minute. By calcahation with Eytelwein's formala be gives 4.49 in . for diametor and 12 feet discharge; and asin, wol 3, page 231 (1ot odition), the actual velooity from a main of tho Water Works was 1,815 feet per second, whilgt the calculated veleaity was 1,816 feet per ercond.

I remain, \&c.
Macriesfield, Mareh 14th 1846.
[A review of Mr. Peacocke's paper has already appeared in our Janeary mander.]

THE BEITISH MUBEUM FACABE.

Syn-The "Idea" shown in the last Number of your Journal would deot so decided an improvement in the façade of our national museum, that it is a thousand pities it did not originate with the architect bimself, its adoption being now altogether out of the question, ouless it could be made compulsory. Such an important public edifice is a very legitimate subject for public interference; it ought, therefore to be made a matter of consideration whether somsething of the kind at least ought not to be now doos. Be such the course or not, it is highly to the credit of your Journal to have shown what might be done to redeem the Musenm façade.

1 remain, Sir,
Losdon, March 11th, 1846.
a Conbtant Reader.

ROYAC INSTITUTE OF BRITISH ARCHITECTS.

Febrwary 23.-The successful competitors for the Prive Medals of the Iaditute, for the year 1845, were announced as follows :-
To Mr. T. Worthington, of Mancbester, the Medal of the Institate for the best Essay on the History and Manufacture of Bricks.
To Mr. 8. J. Nicholl, the Medal of Merit, for his Essay on the same subject.
To Mr. J. F. Wedwore, of Upper Clapton, the Medal of Merit, for a Design for a Royal Cbapel.

March 9.-J. B. Papworty, Esa., V.P. in the Ohair.

Mr. E. Woodthorpe was elected m Fellow. Amongst the doantions anacanced, Was a Medal struck by the Society for the Eacouragement of the Industrial Arts in Prussia, in honour of their President, the Chevalier Beath, presented by the Chevalier Hebeler, who likewise extibited Herr Teruite's work, "On the Frescoes at Herculanerin and Pompeii."

A portion of the Prize Easay, "On the History and Mamufactwre of Bricka," by Mr. Worthington, whes read, and comprised chielly an seconot of the earliest recorded instances of the application of brick, both in a crode and burnt state, in the walls and structares of Batoy. lon, Niaeveh, Echatana, and other citios of Assyria, in Chima, Egypt, Greece and Italy, tarolving frequent allusions to the Bacred Writinga, and lengthened quotasions from Herodotus, Pliny, and other well-known ancient mothors, ws woll as modern traveliers.

March 28.-W. Tire, Eqq., V.P., in the Chair.
Mr. Poyater, the Hodorary Secretary, read a highly intereatiag and valuable paper on the Slained Glass in Sainte Chapelle, at Paris. We zust defer this paper until next month, when we propose to give it fally, illustrated with several engravings.

A paper, by Dr. W. Bromet, (accompanied by a drawing, deseriptive of some moulded brickes, of varions forms, found in the walls of a church, at gamson-sur-Rille, in Normandy, taken down a fow years ago, was read. From the circumstance of these bricks being of ornamental form, and from their being found imbedded as metcriel in the wails of a building which in mentioned in a book of the year 1210, they are believed to bave been portions of the abbey formded at Sanson, in the sixth contury, by King Ctildebert, but destroyed daring one of the incursions of the Northmen, in the pinth century. From the pyramidal form of most of these bricks, and the stmilarity in shape of some to the stones io the Tour-Magne, at Nismen, it is thought probable that they were made after Roman models,

If aot in Romen timee. Ou the chancoh mells of Ainay, at Lyome, at Tourneas, on the Beone, and of Netre Dame du Port, at Clermontrall nearly of Carloviagian timea, there still exiat monlded bricks, geometrically erranged as ornaments; and Dr. Bromet thonght it probable, that during Saxon times many of our buildinga were adorned writh moulded bricks, such as those forming a band on the tower of Sompting Church, in Susmex, and which Rickman deemed to be Saxon, because never seen by him in Normandy or elsewhere. "In conclusion," says Dr. Bromet, "I will ventare to exprese an opinion, that, in 0 part of the Romanired world conld so useful an art as brick-making ever have been loit ; althougt Eginhard toile us to the contrary, and that bis mater, Charlemagne, re-introduced it from Italy into his Freveh and German dominions.

The Chairman drew attention to the expected arrival in Euglead from Boodroom of a raluable addition to the treasores of ancient sculptare which this oountry alresdy possesses. The marblen alloded to are generally supposed to have formed a part of the tomb erected by Queen Artemisia to the memory of ber husband, Mansolus, thongh the fact is questioned by Dr. Clarke. Mr. Tito took oecasion to expross bis setisfaction at the sucoess which had attended the efforts of the architoots of Eagland, in 1841, to interest the Government in the preservation of these valuable relion, at which time a reprementation was made by the Institute, to Lord Palmerston, of the importance of rescuing these antiquities from the degradation and destruction to which they were exposed. The suggestion had been received most courteously and acted upon in a way to effect this satisfactory result.

ROYAL SOOTTIBH GOCIBTY OF ARYS.

Felruary 23, 1846.-Sir Geonos S. Macenveis, Bart., F.R.B.E., Presidents in the Chair.
The following communications were made :-

1. Notice of as Inprevement in his Model of a Solfecting mathod of Throwing the Sluttle is the Common Hend Loow, dic. By Mr. Jamist Muchex, Watchmeker, Perth. In this modal an improvement in introdaced. ealculated, in Mr. Miller's opinion, to prevent the recoil of the shattle, vino., by interposing adriver, at in the common loom. He hat aleo made aimple arrangements by which the strongth of the driving springs may be tompered or increased at pleasure.
2. On the applicalility of the Electro-Magnetic Bell to the trial of ecperiments on the Conduction of Sound, eapecially by Gases. By Gromer Wuson, M.D., F.R.S.E. The apparatus was exhibited. The object of this paper, and his illustrative experimente, was to show that the BlectroMagnetic Bell is a better and cheaper means of ascertaining the capabilities of different gases to conduct sound then the method of a bell struck by clockwork, as hitherto commonly naed. The Biectro-Magaetic Bell is much more under command, and we are not troabled with the clock.work running down, and being obliged to remove the receiver of the uir-pamp to wind it ap again. It was exhibited to the Society, by means of the Electro-Magnetic Bell; the difference in the conduction of sound betwirt atmospheric air and bydrogen gas, showing that the latter has greatly leas capability to transmit sound. He experimented by placing the bell within the glasa receiver of a common air-pump, full of common air, and making the bammer atrike the bell by connecting the wire of the temporary magnet with the battery, when the sound of the bell was diatinctly heard; and then by exhausting the air from the receiver, and introducing hydrogen gat, and again making the hammer strike the bell, when the sound prodaced was so weak as to be scarcely audible.
3. Description and Dravings of an Improved Crank Plaming-Machine, and of its advantages over the Common Crank Plaming-Machine. Manufactured by Mesart. Tyomas Seaniss \& Co., Bngineers, Jobmaton, Renfrewshire. This is a very beautiful application of the ellipse to produce alternate quiok and slow motion. Two elliptic wheels are made to work into each other, the driver working round the one focus, and the follower working round the opposite focus of the ellipses, by which meass the two ellipaes roll npon each other, and always keep in contact. When the driver han its ahorter lever turned towards the longer lever of the follower (to which the crank is fired), a slow motion is prodnced, suitable for taking the cut: but when the driver is tarned round, and its longer lever becomes opposed to the shorter lever of the follower, a quick motion is produced, thwe sending beck the planing table very rapidly, so that little time is lost betwixt that and the next out of the tool.
4. Description of a Modificetion and Inoprovement of the Voltaic or Electro. Chemical Telegraph. Ievented by Mr. R. B. Smits, Lecturer on Chemistry, Blackford. This is an improvement of the Blectro-Cbemical Telegraph formerly communicated by Mr. Smith. In this telegrapb a ribband of cotton or paper, which has been made to past through a trough filled with a solution of ferrocyanide of potass, to which has been added a fow dropa of nitric acid,-is drawn by clork-work, or otherwise over a cylinder of lead, which is in communication with the negative wire of the battery; while there is in communication with the positive wire an impress iron wire, restingrimmediately on the cotton or paper ribband as it passes over the leaden cylinder. When the circuit is completed by pressing down a key with the finger, the electricity passes along to the impress wire, and a blue coloured mark is printed on the paper, or cloth, caused by the action of the electric fluid decomposing the ferro-cyanide of potass, and forming ferro-cyanide of
iron. If the cifcuit is closed and broken rapidly, a succesaion of marks or dote will be printed on the ribband; but if closed for a longer time, and then broken, the marks are longer; so that long spaces, and short spaces, dots, long and ahort lines, are formed at pleasure. An arrangement of these marke conatitutes the Telegraphic Alphabet.

Monday, March 9. John Adie. Esq., F.R.S.E., V.P., in the Chair.
The following communications were made :-

1. "Description of a Machine for drawing the perfect Egg Oval, and a Method of prodwcing Curvilineal Figures. Invented by D. R. Hax, Beq.; Bdinburgh.-A model of the machine was exbibited to the meeting ; it will draw correctly the egg form, or oval, as it differs from the ellipne; and also a mode of producing, upon the principle of harmonic ratio, and by a very simple process, a series of curvilineal figures, by which beanty and originality may be imparted to the ornamental works of the architect, and to those of the silveramith, potter, \&c., from the most expensive to the humblest product of their respective arts, such as vases, tureens, teapots, caps, \&c.; and proved, by specimens executed on large scale, in presence of the meeting, that, if the most approved works of this kind that have been handed down from the Greeks and Etrnscans, were not produced by the same means, his method could prodnce, with ease and certainty, equal beauty and elegance of design, in endless variety.
2. A specimen of ornamental Oak Carving, executed by Mr. John Strel, sen., Edinburgh, was exhibited. It was a very beautiful specimen of Scottish art, exhibiting a number of figures of dead game, sec., from the atag and the heron to the gronse. It was much undercut, some of the figures nearly relieved, and met with general admiration.
3. Some Specimens of the Native useful Arts of New Zealand, and a Specimen of the Flax Plant of that country, were exbibited by Mr. W. Weris. -The apecimens consisted in various articles of dress, of native manafacture, woven from the native flax, and ormamented in a curious manner with portions of the plant. They form very thick and comfortable outer garmonts. Some specimens of dyed stuff were also shown; and a specimen of the flax plant, together with the flax produced from it, which, when formed into cordage, was said to bear a considerable strain, provided the atrain be equal, but is very apt to snap if a sudden strain be applied; or if a knot be formed on the cord it is apt to break at the knot. It was stated that these bad qualities might result from the imperfect manner in which the fiax in prepared, and that they may possibly be removed by skilfal preparation of the tax.

SOCIETY OF ARTS, LONDON.

[Feb. 25.-W. H. Bonkin, Esq., M. P., V. P. in the Cbair.
The following papers was read "on a new form of Locomotive Steam Engiae," by Mr. T. R. Crampton. The object being to prevent rocking and vibratory motion, and to obtain the advantage of large driving wheels withont increasing the beight of the centre of gravity. The principal features of the invention are first, the driving wheels are placed at the fire-bor end of the boiler, so that the wheels may be made of any beight without raising the centre of gravity of the engine, thus a lower centre of gravity is obtained, and also greater stability than is the case in any of the usual forms.
v. It is also conceived that by placing the driving wheels beyond the extremity of the boiler greater ateadiness would be given from the absence of overhanging weight. With these ensential changes the remainder of the working parts of the ordinary engine may be maintained without any other alteration in their position.

On the Formation of Incrustations in Steam Boilers, and on the means of precenting it, by Dr. Ritterbrandt. The first part of the paper shows that incrustation is the cause of the majority of Steam Boiler explosions. Secondly, that it is incompatible with the economical use of fuel. Thirdly, that it rapidly destroys the boilers, and that the extra beat necessary to raise water to a given point greatly iocreasiog oxidation or scaling, and fourthly, that it is a sonrce of serious expenditure, by rendering labour necessary to remove it, and by the destruction of the boiler, to which this mechanical removal gives rise. In order to obriate these difficulties, Dr. Ritterbrandt proposes to use the salts of ammonia, it being known that if to a soluble salt of lime be added a solntion of carbonate of ammonia, precipitation tukes place, and the acid which held is solution the lime, uaites with the ammonia while the carbonic acid of the carbonate of ammonia combines and falls down with the lime, bot upon the water being heated, the precipitated carbooate of lime combines with the salt of ammonia, is re-dissolved and the carbooate of ammonia is formed, and escapes with the vapour of the boiling water. On feeling convinced that this peculiar reaction took place, viz: that carbonate of lime precipitated from a salt of lime by carbonate of ammonia would be again dissolved by the application of heat, it only remained to be proved how far this principle was applicable to decompose the carbonate of lime already oxisting in calcareond water, and the resulis exceeded the most sanguine expectations; however, highly charged with lime the watermay be, the process answers, and the solution is in all cases perfoct.

The rationale of the chomical reaction was explained by the following diagram:

March I1.-T. Winkworth, Esq., in the Chair.
The first commanication was by Mr. Waterhouse, "On his Machine for the Manvfacture of Hechlin Lace." It appears from the description of the machine and the specimens of the lace exhibited, to be one of great capabilities; the number of warp-threads in the width alone is 4,700 , and a corresponding number of bobbins or weft-threads, which represent the same number of bobbins, and are all kept in motion at the same time. In making pillow lace, it requires as many hands as there are bobbins, for on the cushion one hand must wait for the other, in order to obtain the requisite crossings of the threads. Some idea may, therefore, be formed of the intricacy of the machinery, and of the ingenuity displayed in its arrangement, as by it every motion given to the threads by the haod is exactly given by the machinery, bot with greater rapidity and preciaion. The process of the manufactore was described at length, and illustrated by diagrams and parts of the machinery itself; there were also specimens exhibited, 一one of which was twenty-six yards long and four yards wide, and had four patterns woven upon it. The number of motions or thrown that would be required to produce a similar piece of lace by hand would amount to not less than 2,111,616,000. The lace is said to be in no respect inferior to the foreign lace.

The next communication was, by Dr. Paltrineri, "On a New Steam Engine, Magnetic Engine, and other machines in which the moving power is applied simultaneously, by Action and Reaction, to the work to be performed, being illostrations of a system for obtaining all motive powers and maximum of effect." Dr. Paltrineri conceives that the maximum of effect is to be obtained by applying simultaneously the action and reaction of every motive power with equal velocities to the production of the usefol effect. He exhibited a donble turbine, in which the water, steam, or other moving flaid, is applied by means of two concentric wheels, through which the fuid passes successively, and by this means he showed that a residual effect, which is lost on the ordinary single wheel, would be converted to use by the double. He showed the sanue resolts in the case of his new magnetic engine, and he illustrated the fact by a machine in which the constant force of a spring is applied to raise a weight, frat by having one bend released and the other fixed, and next by releasing both bends simultaneously, and in which latter case the maximum of effect is utilized. The machines were simple in their construction.

ON THF MANUFACTURE OF GLASS.

Abstract of a paper read at the Royal Institution. By Mr. Peliatt

Though we have accounts of foreign glass having been used in this conntry during the 7th century, yet the manufacture of glass in England is comparatively of recent date; the firat manufactory having been established at Savoy Honse, in the Strand, in 1557, probably by French Protestant refngees, most of the technical terms in glass-making being from the French. In 1670, the second Doke of Buckingham advanced the manufacture by the introduction of Venitian workmen; and three gears afterwards the first plate of glass was produced at the works of that nobleman at Lambeth. In 1773 a royal charter was granted to the governor and company of British Plate Glass Makers; their works are at Ravenshead, Lancashire, and are the most capacious in Europe. Siace this period the manufacture of glass, notwithstanding the restrictions to which it has been subjected, but which are now removed, has continued to advance.

Crucibles and Fwrmaces.-Before coasidering the madufacture of glass, it is necessary to say a few words respecting the mode of preparing the crucibles and furnaces for melting the materials. Every glass-maker is his own potter and furnace-builder. The preparation of the cruciblen iovolves the greatest care, because upon the quality of them depends all the after processes and results. The material used is fire-clay. The clay best suited is that whicb contaios the most silica. The crucibles or pots are made by forming the clay into small rolls, which are spread, layer over layer, with cossiderable pressure: the whole is thus built up litue by little, allowing the clay to harden so that thefshape is preserved. During the building and afterwards, the pots are in a room in which the temperature is regulated at about $60^{〔}$, and all drafts excladed; five or six months are required in this temperature to dry them. The reason of so much care is to exclude as much air from the clay as possible; which, if it existed in quantity, would, upon the pot being brought into contact with the bigh temperature of the glass furnace, become so expanded as to burst ; and also to insure a capacity in the pot to withstand the sudden contraction and expansion to which it is exposed. Pots are of two different conatructions-closed and
opeo; the former are used only for ftint glass, the latter for all other descriptions in both shapes. The upper part is the most capacious: the reseon for this is, that the heet reverberates from the top of the crown of the farasce directly apon the top of the pots. The pots cannot, of course, be exposed coll to the heat of the furnace, bot have to undergo a gradual heating till they attain a white heat. and this is done in a furvace constructed for the purpoee, from which all air is carefully oxcluded; from thin furate they are ramoved upon iron carriages to the glass farnace. The heat required to melt glass, especially that made without lead, is very great; yet, on account of the danger to the crucibles from any sudden ?ush of air, it is impossible to make use of blast, or even fanners: the proper draft is secnred hy the construction of an air funnel, called a cave, and by having the glass-house so constructed that it can be closed from the entrance of external air above. Upon the arch of the cave the furnace loor or seige (from the French siege, seat of the pots) is constructed, formed of atrong heavy square bricks. The round furnuce is used for flint glass, the fames finding vent by flues passing through the pillars of the furnace, baving chimneys upon the outside for carrying off the smoke. Square furmaes, again, are eroployed for glasses without lead, a greater heat being required; which is obtained by the grate-room running the whole length of the seige. The proper construction of the furnace is of great importance to the operations of the glass-maker; iv fact, good glans cannot be made without a good furaace.
There are several distinct varieties of glass manufactured ; and so different are they, both in preparation and manipulation, that they may be considered separate manufactures. There are, however, only two methods by which fuid or sems fluid glass is formed to shape, viz. casting and blow. ing. Casting applies exclusively to plate glass, and is the emptying glass ont of the pot by casting it out opon a table, the casting of glass as metal is cast, being yet unpractised: blowing applies to all other descriptions of glass.

The tools used by the glass-maker are simple : the blowing-iron-simply a hollow tube; with this the semi-liquid glass is gathered from the pot and Blown out into shape; the punty, for attaching to the bottom of glass after blowing, so that the blowing-iron may be detached, and the glass, being heated up, may be cut with acissars, and afterwards formed. The shears or procellos, for shaping the glass whilat it is turned by the workman apon the arms of his chair, or working bench. These, with the addition of a pair of scissars and pincers, are the whole of the tools.

All glass requires annealing or cooling; the process is performed in a faraace called a lior, from the French lier,-figurative, perhaps, of the chage in state, as well as atomic arrangement, which takes place during the cooling. We know that a change does take place, from the fact that glass before cooling is of greater bulk und less specific gravity than when cold ; that it parts with a portion of colour during the process, probably by giving off oxygen; and that thoogh, whilst in a fluid atate, glass is a good cobductor of electricity, when cold it is a non-conductor. The object of annealing is, by a gradoal diminution of the temperature, to allow of that arrangement of particles necessary to the body at a low temperature, and which particular arrangement alone enables the glass to support sudden changes.

The base of all glass is silica: the most convenient form in which it is foand is in fine sand; upon the due proportion of this substance in glass depends its compactness of body, brilliance and capacity to withstand sudden changes. It often happens, either on account of want of sufficient heat in the furnace, or in order to save time in the melting or founding, that too small a proportion of silica is employed. Glass which has this fant may be known by its rapidly attracting moistare. The different descriptions of glass made are known by the names of plate glass, German sheet or British plate, crown or window glass, bottle glass, and flint glass; there are others, but they are merely modifications of these, and need not be noticed.

Plate Glass is composed of sand, carbonate of soda and chalk, with small quantities of arsenic and manganese; the proportions vary at differeut works, but the general proportion is - Lynn sand, 400 ; curbonate;of soda, 250 ; ground chaik, 35, by weight. The quality of the glass depends upon the quality of the alkali. Plate glass is melted in large open pots. The fornaces are square, containing sometimes 4, sometimes 6 pots each; when the glass is melted, which takes 22 hours, it is removed to another furnace, where the pots are smaller, of a cylindrical form. Here it is fined, which occapies 4 to 6 hours, and when free from air bubbles and impurity the pot with the glass is removed bodily from the furnace by means of a crane, and hoisted to the end of the casting table, upon which the glass is emptied; a large iron roller \mathbf{a} hich works inside the flanges of the casting table, is then mado to pass over the melted glass, in order to fatten it out; it is then removed upon a wooden table on wheels to the annealing arch, which is mow at a bigh temperature, and here it is excluded from the atmosphere until cold. The glass is rough and uneven, but is afterwards cut fiat by machinery, and then smoothed and polished; it is these processes which reador plate glass so cosily.

Crown, or zeindow glass is of mach the same composition as plate glass, except that a cheaper description of alkali is used; the ordinary mixture is, 500 cwi . Lyno sand, 2 of groand chalk, and 1 cwt . each of sulphate and carbonate of soda. The square furnace and the open pots are used, there being generally 6 pots on each furnace. It takes from 14 to 20 hours to melt this glase, and it then requires to stand 4 to 8 bours to allow it to become free from all air bubbles, and to cool sufficiently for working. Wiadow glass is formed by blowing: apon the blowing-iron is gathered at three sereral times (the fuidity of the glass never allowitg fewer) the

Weight of glass necessary to produce the table, and which weighs 11 lb ; this is then blown out, leaving a solid lump at the farthest extremity from the blowing-iron, for attaching the panty ; this is called the bullion. The punty being fixed to the bullion, the blowing-iron is relieved by merely touching the giass with a wet iron; being firmly attached to the ponty, it is removed to a small cylindrical furnace, called a flashing fornace, where a rotatory motion being given to it, increasing as the glass becomes softened by the heat, the centrifugal force, together with a little aleight of hand on the part of the workman, produces a fat circular plate or table, as it is thon called.

British plate, or German aheel-glass is of the same composition as plate glass, but the manipulation is different. The glass is blown into open cylinders, and, when cold, these are cut'open along the length with a diamond, and placed in a flatting furnace, which is at a sufficient heat to bring the glass into a semi fluid state, so that it falls quite flat. The sheets thas made are afterwards cut flat and polished. The size of the sbeet is restricted to wbat can be blown and worked by one man; it is cheaper than plate glass, because all waste is avoided, and less cutting is required.

Bottle glass is composed of the cheapest materials which can be pro. cored-ordinary pit sand, refuse alkaline waste from soap works, refnse lime from gas works, \&.c. The proportions of the materials vary according to quality. Botiles are blown in noulds: the glass having been blown in the moald, nothing remains but to form the mouth ; this is done, the boltom being attached to an iron punty, by holding the extreme edge of the neck to the heat for a short period, and, baving collected a small quantity of liquid glass opon the end of a small iron, called a ring iroo, a ring of glass is allowed to cover this extreme end, and this is afterwards worked into shape by a machine wbich forms the inside and outside of the mouth at the same time, merely by the workman turning the bottle on the iron upna his knee once or twice. The rapidity with which botlles are made is almost incredible; a workman, with the assistance of a gatherer and blower, will begin and finish 120 dozen of quart bottles in 10 hours, which averages nearly $2 t$ per ninute, and this is ordinarily done; and in some works the men are restricted to 2 per minute, to prevent the work being slighted. It may not be uninteresting to observe the low price at which this description of glass can be procored, now that the duty has been removed: quart bottles can be produced at the works at about 14s. per gross : each gross weighs 2 cwt ., which is equal to 7 s . per cwt ., or $\mathbf{2 7}$ per ton, for manufactured bottles; if from this we deduct for workmen and incidental expenses, $\mathbf{\ell 2}$ per ton, it would leave the price of bottle glass む'5 per ton.

Flizt f lass is thas designated from calcined fints having been formerly used in its composition ; this is now replaced by fine sand. The term fint glass is now applied to all glass into the mizture of which lead enters, and is used in the manufacture of table glass, \&c. In the manafacture of fint glass the circular furnace is osed, the pots surroonding the grate room; on either side of the pots are flue-holes, which pass through the pillars, the smoke being carried up by flues outside these. The heat thus reverberates from the crown of the furnace, and is drawn round the pots previous to passing through the flue-hole. The melting pots are covered in, to protect the glass froni dust, which would affect the colour. The materials used in fint glass are sand, red lead and litharge, carbonate and pitrate of potash, arsenic, and manganese ; and the greatest care is taken in the selection of them-the beauty of the glass depending mainly upon the quality of the materials. The best sand comes from Alum Bay, Isle of Wight; this is carefully washed and dried previous to using. Red lead, or litharge: this assists as a lux, and gives density, brilliancy, and ductility, 一the latter quality being particularly required in fint glass; it is, perhaps, owing to the superior quality of the oxides of lead prepared in England that we are in advance of other nations in the manufacture of fine tint glass. The carbonate and nitrate of potash are used wholly as fluxes; soda, though more active, is dever used where quality is required, as it affects the colour. For almost every porpose, the best gluss of every description is that which contains the greatest amount of silica. If the sand, lead, and alkali, even though the quality were never so pure. were melted, the glasi which would be produced would not be colourless, bat of a pale greea; and this, in all probability, is not so much the reanlt of impurity, as the deoxidating effect of the fusion. To obviate this, it is necesuary to ose oxide of manganese, which, by supplying oxygen, retains the different substances in that state of oxygenation necessary to a colourless glass; if $t 00$ much manganese be used the colour is slightly purple, designated by the glassmakers "bigh ; the green tint, again, is called "low :" in othor words, the glass is high when it contains more than sufficient oxygen, and low when too little. Minute quantities only are necessary ; from a quarter to half an ounce per cwt. is sufficient. Arsenious acid is sometimes used in fint glass, its use being to expel the carbonic acid gas present in the maferials; if too much is used it gives opacity.

Glass must be considered, unfortunately for science, an imperfect body. The priocipal imperfection, more especially of fint glass, arises from what are called cords, or strixe in the body of the glase, which give it the appearance of alcohol and water imperfectly mixed; through these strize the rays of light will not pass, but are diverged und broken. This detect is attributed to the difference in specilic gravity, or want of homogeneity of the particles: this, no doubt, is true; but the question is, to what cause is this attributable? I would suggest, that it may arise from the unequal distribution of beat to the materials during fusion and whilst in a
fared stme, and to the particolar sotion consequeat therempea. The amaber and varioty of articien manof fectared in fint glase are groat, and mpaire ensiderable practical experience on the part of the workmee. It is imponillle to deacribe the maner of operatiog, which appesrs even to thoee whe have often seen it almont megical, It is certainly surpritiog to soe an appareatly opaque and fuid body is a momeat become transparent and solid, and, whilet andergoing this rapid change, to see it take beanty of forta.

Caloured Glass,-The substanees used for producing coleared glass are the metallic oxides, the quantity beiog proportioned to the depth of coloar Fe desire to obtaie. For blue glass we use oxide of cobelt ; this predoces a rich colour : the material, however, being expensive, it is seldom used by the ghamaker alone, but generally with an equal quantity of mangageas; this malerially affects the richness of the colour. Green is obtnined fren the oxides of copper and iron, mixed, the protoxide of copper and the proxide of iron : equal quentitios may be used, the proportions being raried according to the tint desired to be obtained : the copper produces a blue-tinted green, and the iron the yellow tint. Purple is obtuined from the oxide of manganese; the purer thin substance is, the finer will be the colour. The pyrolucite already referred to, especially when used in amall pantitien, gives a beautiful and delicate apsethyst colour. Ordloary yeljow is gol froan carburate of iron and oxide of manganese, Ruby is obtaised from the oxide of gold, called the osesius precipitate; it is a colour which is neither obtained nor retained with any certaiaty-in fect, the modera glasmaker is quite at a lose for this colour. There can be no doubt the anoiants masufactured roby of a moch finer colour than any now Eade, from suboxide of copper; this art has been lost for centuries: the $1{ }^{1}$. oulty is, the preventing this substance from peroxidising. The oxiden of uraminns produce beautiful lists in yellow and green. Copper scalea sive asare blue; oxide of chrominm, emerald green. Opaque glass is producad by the addition of phosphate of lime, srsenic, and other substances. The addition of many of the metallic oxides readers glase less ductile; and in makiog use of these it is alweys well to employ an additional guan. tity of lead. We often hear of the superiority of the colour of ancient shent glase to the modern, and are bound to conclude, when we see, parcicularly in church windows, the diference, that there is good ground for the assertion. With the exception of ruby, the modern oolours are all faer than the antique. I speak of body colours-that is, glass made of oeloured mixtares, called pot metal; but this is seldom used, all our modown church windows being made of white glass stained with metallic celours; this saves trouble asd expense in the fitting. Glass of various colonrs in the same piece is obtained by casing one metal or glass with enother. A small quantity of ove colour having been gathered, it is blown into a amall ball, and dipped jnto a pot of a different colour; this being rolled on an iron slab, so that an equal thickness of the secund covers the frat, the ball is a trife enlarged by blowing, and may be dipped into a shird and fourth colour. Cure must be taken that the churacter of these diforoet glasses exactly agree, that the contraction in cooling may be alike.

RAILWAY PROCEEDINGS

Selections from the decisions of the Sub-Committees on Standing Orders. House of Commong-Session 1846.

Gazerte Noriots.-In the Committee on the Runcorn and Preatonbrook Railray, it was stated by the solicitor for the bill that the notices had ooly been twice published in the Gazelte. He had delirered the notices at the Gezette office on October 23, with inntructions for three insertions. Mr. Watts, the editor of the Gazette, said he found by an entry in his book thet the notice had been withdrawn. Has no aceans of knowing by whom it was withdrawn. Mr. Turner asid he had given no instrnctions for the withdrawal of the notice. Mr. Watts said it might have been a mistake, erising from the pressure of business at that time. The committee decided that is this instance the standing orders wore not complied with.

Poslic Roads,-In the Committee on the Wexford, Carlow, and Dablin Junction Railway, an allegation was made that a public presented connty road, in the townland of Killurin, was described to be in the ownership of the Earl of Arran, whereas in fact it was a public road onder the jurisdiction of the grand jury aod road surveyor of the county of Wexford. The allegation turned on the ownership of these roads, whether in fact the right owners had been entered in the book of reference. The chairnan observed, what is intended is, that the fee in the land is in certain other parties, but the pablic have a right of road. That comes to the state of English roads. There the property is not in the surveyors or trastges. A mine under the road does not belong to the trustees. The practice in Eagland is to treat the ownership of the surface as that which entitles the parties to he served. The question is, whether there is anything which entitled yon to take the Irish roads out of this condition. We cannot draw any distinction hetween the cases. If no, you ought to give notice to the persons in Ireland, who answer the same description there, as the surveyors of roads in England. As regards these allegations, we shall report that the standing orders have not been complied with, inasmuch as the grand jury of the county of Wexfurd have not been inserted in the book of reference as owners of certain roads particularly specified.

Ownersur of Lands.-In the Committee (No. 8) on the Eleqgow and Ayr Railway, the petitioner opposing the bill alloged that in soveral fer stances the promoters had inserted, in their book of refarence, the name of the reputed and subutantial ownor of the land, ial caces where there was a superior owner or fou lord, to whom a merely mominal payment, in respect of the lasd, was annually made. It wat mabmitted that the book of refer. once ought to have contained the anmes of ach foa lords. The chairaras remarked on that point, that the committee had always oomsidered the roputed owner, in sach ceses, as oufliciently the oweer for the parposes of the book of reference, and not the superior lord, who, in most cases, had only a peppercorn rest resarved to him.

Nomess.-In the Committee (No. 8) on the Midfand and Bradford Railway, the pelitioner opposing alleged that the Gesette zotices had beon giren for six lives of railway, and the bill was only for one. In the cases decided last sessions, the Direct Northern, the Wells and Derehmen, and Goole and Doncaster Railways, where they came to Parliament for a shorter line than they had gives notice of applyisg for, were held as not having complied with the etanding orders. The prometere contended that the cases quoted wore not analogous to the preseat. The motices given anoonnced the intention of the promoters to apply for powers to construct six railways, and this might be called the first of the series. In the case of the Direct Northern, who gave notice of makiag a ruilvay from London to York, and afterwards only came for powers to make a lime from Cambridge to York, a landowner on the line between Cambridge and York caight be williog to concur in the whote line, but might objoet to have his laod ont up by the shorter line. The committee were of opinion that there had been sufficient corspliance with the stending orders in this case apon that point.

Withdramal of Pemtion. - In the Committee on the Grand Uuion Railway an opposition was about to be enterod into by Mr. Thowas, whez Mr. Burke objected, as the petitioner had withdrawn his consent after the presentation of the petition. It was contended on the other aide that it was not competent to any person to withdraw a consent once given. The chalrman after conferring with the chairman of another committee stated, that the committee had given their best consideration to this case, and they regretted that the standing order No. 9 was not more clearly worded. If they abided strictly by its words they woald not decide according to the intention of the house, as there would be constantly raised questions to the manner in which consents had been obtained. Their decision therefore was, that it should be in future in the power of any petitioner to withdraw his consent to the petition. The petition was then withdrawn.

Levellina Books.-The Committee (No. 2,) sitting on the Edinbargin and Glasgow and Dumbartonshire Junction Railway, in a case of dispote as to the correctness of the levels, decided that the promoters of the Bill should produce the notes of the levels.

Parish Boundaries -In the same Committee, and on the same Bin, a petition alleged that in the plans deposited with the sheriff clerks of Dumbartonshire and Lanark, the parish boundaries of the parish of Dumbarton were not written in words, whereas the boundaries had been so written in the plans lodged at the Private Bill-office. This allegation was sagtained, as was also the secoud, which had reference to a discrepancy is the plans lodged with the sheriff-clerk of Dumbartonshire, and that deposited at the Private Bill-office, In regard to enother omission in the county plans of the words "parish boundary."

Cross Sections of Roads. - In the Committee (No. 7) on the Cornvall Railway, the opponents to the bill objected that the 42nd of the atanding orders had not been complied with in respect of a proposed alteration of a turnpike road not having been shown in figures nor on the cross sections.Mr. Brunel stated that any erveyor or engineer would understand the mection. The Chairman, having inquired whether there wasany case reported, in which, after argoment, it had been held that the standing orders liad been complied with, although such alteration or inclination had not been set down in figures, ordered the room to be cleared, and upon the doors being re-opened, stated, that the Committee were of opinion that the standing orders bad not been complied with in respect of any of these cross sections.

Petitioners.-The Committee (No. 4) on the Dublin and Enniakillou Railway decided that it was absolutely necessary, in order to comply with the standing order No. 9, that the petitioner, authorising an agent to appear for him, should be proved to have been cognizant of the actual allega. tions contained in the petition. In the absence of this proof the petition could not be entertained.

Withdrafal of a Portion of a Line after Notice.-In the Committee (No. 2) on the Northumberland and Lancashire Railway, two important allegations were made against the bill ; the effect of the firat was substantially this-that whereas the promoters of the bill gave notice in the newspapers, and to the petitioner, amongat others, of their intention to make a railoway, commencing at a point called A, and terminating at a point calied C, with divers branches therefrom; but their petition oaly asked for the authority of the House to bring in a bill for executing a portion of that work only, and that a very small portion. The promoters had, in fact, greatly modified their original project, and had abandoned a considerable portion of it, but had not given fresh notices to the landowners on the line or in the newspapers of such modification and abandonment. After the question had been argued at some length, the Chairman annonnced that the standing orders had been complied with. The second allegation was that a sum equal to one-tenth part of the amount subscribed in the subscription contract deed had not been deposited with the Court of

Crascery, imasesch as the sum actually mabscribed whe the sam of E1,285, S40, which would require a deponit of the ana of e198,834, whercest the amone which the promotor had deporited was ouly £03,063. The quection depended upon the conatruction of the standing orders 39 A and 29 A. The point appeared of some fmportance, and the Chairman retired, with the view of comanlting the Speaker upon it. After hearing the argumeats of the agents on each ride, the Chairman (Sir John Y. Baller, Bert), on his returs, atid the 8 peaker quite agreed with him that the intention of Parliameat was quite clear on the point, aad that threefincrits of the amoont of the entimate was all that was required by stand. ing order 29 A to be subscribed, and that one-tenth part of the amonnt sabacribed should be deposited with the Coort of Chancery by the order 30 A. In, this case the sum actoally subecribed was $£ 1,285,38$, bot, is cencequesce of the promoters abandoaing a considerable portion of the works, the som required for the undertaking was reduced to $\mathbf{£ 7 5 8 , 0 0 0}$, and they had deponited £93,066, a sum larger than they would be called epoon to depesit in respeet to $\mathbf{£ 7 5 8 , 0 0 0}$, the estimated cost of the work, eve. if the conatraction of the atandiog orders required, as was contended Ly the pelitioners' agent, ormeteath of the sea subtecribed to be deposited. He (the Speaker) thought the Hoose had no right to find fault with and pumbh parties for doing more than the requisitions of the House demand. ed. The Committee, therefore, thought that, on this poiot, the standing oters had beea complied with.

NOTES OF THE MONTH.

We are sore that many of our readers who were acquainted with the 1e Mr. Loodon, will foel grallfied to hear that a pension for life of eloo Fri ancrap, has been granted by her Majesty to Mrs. Loudon. Sir Robert Peel besjast commonicated to Mrs. Loudon this act of beneficence. To her it will be doubly grateful, as it is conferred in consideration of her deceased husband's labours and writiogs on subjects of science.

At the Marquis of Northampton's second soirte there was exhibited a cast of "Charity," moulded out of poonded marble combined by a cement, so as to imitate the original marble.

The Archnoological Institute, under the presidency of Earl Fitzwilliam, will bold their zext annual meeting at Yort, on Tuesday, 21 at of Joly next.
It is proposed to construct a glass saloon at the Botacic Gardens, Manchester, of suficient sise to receive the usual exhibition of 10 wers, plants, and freit, and all the promenades, and to be also available for lectures. It in to be 150 feet by 45 feet; asd 22 foet in beight to the ceatre of the dome, or 82 feet to the centre of the dome ventilator. The whole of the front is to be made of glas, and moveable, so that it may be removed in fine weather. The weat end of the building is to have a remicircular alcove or recens, for the reception of the band. The area of the boilding will be apal to 6,750 square feet, and will eccommodate nearly 2,000 persons. The whole apace of the interior is to be made available; no pillars or other obetructioas are to be introdeoed; bet the ribs of the frame-work are to to tied bementh the foor. Messra. Irwin and Chester, architects, of Manchenter, bave been eatrosted with the deaigas by the Conncil, for appeoval.
A vory intertestiof experimental trial of Nasmyth's atean bammer of 50 cwt , lately took place at the Chatham dockyard, where it hat been amestly erected. The trial commenced with breaking up old aad condemaed nochors, ander the superintendence of the patentee aud Captain W. HH. Sherrif, superiatendent of the gard. Anchors of various simes were broken up is leogthe with perfect ease-is some instances by one fall of the hampar; after which, a part of the ahank of an anchor, of about 30 ewt., was beated to a welding beat, and bealen out hy the hammer to a rod of about four inchen in diameter. Here proof was given of the perfect control ander whiel the inventor had the hammer in finishing off or reasdiag up. It was brought ont from under the hammer quite equal in faish as it world have beea by the smali forge bammer. In beating out irea for conversion, the blows are so powerfal and effective that it driven eat all spurions muterials from the iron, and perfectly consolidates the whole maes; in proof of which, the foor-iach rod was cut into various lengthe a od exhibyted a beautiful specimen of solid metal, whilst the part of the shapk, that had not boen under the hamsor, showed nearly every bar and rod with which it had been made, except within aboat an inch of the outer sarface. Mr. Nasmyth has orders to provide a patent steam bammer for earh of her Majesty's dockyards.

The Roman Amphitheatre af Dorcheater which by the timely interponition of the British Archeological Ansociation hat been preserved from destruc tion, is one of the most interesting of our national antiquities. The area in thout 218 feet by 163 feet; it is of an oval form, and is surrounded by a mound of considerable thickness, formed of blocks of chalk cut from the centre, which is consequently mach lower than the exteral surface. This wall is aboat 20 feet high. The amphitheatre at Silchester is of nearly the anme form and dimensions as that at Dorchester, but it is not in auch a perfent atate of preservation. The area of the Coliseum at Rome is a trife Mrger, being 263 feet by 165 feat. Mr. I. X. Branel, the engineer of the Weymouth Railway, which was planned to cut through the amphithestre, very readily and coarteously admitted the plea of the association for the preservation of this ancient monnmant, and took proper meanures to divert the line.

Architectaral metamorphoee has juat tranaformed the originally dowdy and mock mean-looking extarior of Bedford Chapel, Bloomsbury 8treth into not merely a sightuly, but a rather strikisg ebject, owe monoover that displays coasiderable novelty of desiga, in which some good as well as freab ideas are thrown out. At the gano time it is to be regrotted that it betraya great inequality of tusto. While there bas evidently been a gond deal of petty parsimony in some respects, monoy has been not only veer lesaly, bat rather mischievously expended on what are intooded for ome mapte, but in reality oyecorse,-we moen the trumpery obeliaks weck op at the sogies of the building, and producing at a little distanoe the efbot of pinnacles, congequently quite inconaintent with the atyle. Oa the ather band, something errtainly ought to have been doee to what was laft of tho old gable and the belfry lastern upon it, for the lattor fa mot at all in treeping with the new exterior, and the other shows most awkwardly es a were triangalar bit of wall, seen pokiag up behind the froat, but not at all belonging to or connected with it. Acother very great blemish marring the front- Which would else possess cousiderable merit-is occasioned by the two smaller doors next to the middle one, being out of the centre in regard to the intercolumas or areades, in which they come. This very disagreeable irregularity might easily onough be remedied oven now, by merely hanging additional unter doors before the two mentioned, 20 as to be fuct with the wall, and pripted or eonted over so as to be of tive same colour, in other words those should be what are called jib doors,- as is the case with the additional carriage eotrance la the front of Northamberland House.

Sir Robert Peel bas anmounced to the Hoase of Commons her Minjety's intention of appoiatiag a Royal Commlnsion for consideriag the varione projects for railway termini in the Metropolis.

In consequence of the valuable collection at the Museam of Ecomanis Geology having increased mo rapidly, it has been found aecessary to build a larger moseum, for which purpose a large plot of groasd has been alened of its buildings in Piecadilly, near St. Jemes's Church.

It is propesed on the projected rilway from Lyons to Vaise, to have tannel on that part of the line ander Croix Rousse, with shafts to commenicate with the commene above, through which the pascagers to to be raised and lowered, seated in elegent boxes or apartments.

Travelling by Steam on the river Thames between London and Wenn minster Bridges in reduced to the lov fare of one penny for ench pasenegr.

The Metropolitan Improvenente of New Oxford Street are fat approenh. ing completion, and it is expected thal the roadway will shortly be thrown open for the pasage of rehicles; the whole of the buildings having as architectoral frontage, presents a pleasing appearance.

It is stated that the laying down of wooden pavement aod subsequent removal for the old granite, cont the city of London 840,000 last year.

The new street from Farringdon-street to Clerkenwell is to be ealled Victoria Street.

The site for a new church has been eelected by the Metropolitin Church Commissioners in Old-atreet, City-roed, the frst stuse of whiah will the almost immediately laid.

The repairs and restoration of Chester Cathedral are nearly eocapleted, Fith the exception of the pulpit, for which orders have just been givee, it is to be constructed of Painawick stone, from a deaiga by Mr. Husey, of Birmingham, noder whose superinteadence the restoratiuns in the ahoir have been effected.

Tre Teranile War Stranez.-The Terribla war stemer is in commistran, med mely made a trial of mer upeed down the Trationes from Wootrich to ban, Hed hedy made thal of Mer epeed down the TDatoce from Woolwheh to
 Whth the keel; these are mounted on a alide, and will eroes tire with each other, and alve
 crote and erreep to the bromdaide on thelr pirot, to as to fire forward, actiog as chme gons II required. She bis two 68 -poundera on each broadoide, to carrs ahelle or colld ghot, whleh can be trained fore or abaf, according to circuanatances. Oa the dect below,
 gras, 11 feet long, in the bow ports, to tire in a int with the keel, and aso several de-

 with four gunt, f\&-poundere, on ber broedsties, for shells or selid strot. There are pers amaller gume on the upper deck, to be travered to any place or carried on thore fa her paddle-bor boata, If requirnd for une in landing troops, fue. Sha bue fere saparele betw orr, Independent of each other, which maybe consected mben required, forer fuerem, one to each boller; the two ster oart strite down, to as to allow a square malasail to be tet wheo salling, end still using the two foremoit boilers, thus working balf hor power, at
 an there ara four small funnels, laslead of one large one, which is a great adventeyt, as the abip will not be wholly dieabled by loalos one, imo, or even three funnela, like the one funmel ahy would be on berf bolng eartied awny; ber one funnel lopt, the has loat alt. The Tertible bet two magazines, and two obell.rooms, one of each before she engtaeroom, and one aban for the mefety of the veacel. to prevent any powder peotiog the eeglad room when firig the guas. she can store 409 tons of coals brlow the fower dectr, mad th

 sbe can berth 1,040 onen under cover on ber second gun-deck, independent of her ahifa company, thetr berth betng below forward, and the ofacers' cabias, gua-room, tac. abart; so that each gun-deck is entirely cleer and always ready for action, withouk remopiag e bultbead, and the dect being pertectly froe from the caplain' cabin abalt, to the bow of the vessel. Sbe in conatuctiod in the strongest and most subelanulal manomer, on Mr. Lang's improved metbod of uniting the frame timbern, maling ber peritecty waser-tight, to thint ohe would ewlm even if her externat heol and plank were of ber butiom. ithis method to alto gdopted in the Royal Albert, 120 gans , dow in her frame, and may be teem on the allp in Woolwich dockryard. The engine.room of the Terrible is most aplendid;
on deck，the whole length of the endne－room，are grating open and well rentiated by hatchrays，glviag light and air to the engineern，itokers，ac．It is an admirable plan， mach as bo steamer as yet has the edvantage of；and eseh boller has a aeparate hatehway， and meybe readily taken out for repalr，whont interfertag with the other bobers．This and may be readiy taicen out for repair，winout interfering with the other boiert．This method of Mr．Lang＇s invention prevents the necestity of ripping up the deck，which is the ease with other steamert when the bollers are required to be taken oul from thowe Feapela，and there $\mathbf{t 0 0}$ ，the deck covering the bolleri，the engineert and stokers have the Hght edmitted by the hatchwry orer the engroe only．The Terribie＇tengtats are mont majeatic；they are 800 －horse power，the production of Mandsing，sons，and Fied，and show to advantage in this large prar steamer．Her decira have hatchways in parious parta， scutcles，sky Hghts，\＆c．，for rentilating the shlp even to the lower parts of her hull；and there are many other conveniences too numerous to mention，contributiog to the enciency of the thyp and the comforts of the olncers and crew，so that ahe may be sald to be tha Iargest and mot perfect war suenmer ever bull．The rerrible is commanded by Captain Bamsay，itte of the Dee steam－Feamel，and she ia to have a compiement of 240 ，oncert， log，was 108 knots per hour；the engines maklog 14 to 144 strokes per minute．

IIST OF NEW PATEATHES

GZanted in gnoland trom figroazy 25 ，1846，to mazch 25,1846

Sis Mouth allowed for Emalment，ualess otherwise expressed．

John Semnel Templetun，of Susex－place，Kenalagton，artiet，for＂improvements in propelling carriages on raliways；and Improvements in propeling vearels．＂－Sealed Feb－ propy 27.
Peter Armand Lecomite de Pontainmorean，of New Broed－atreet，London，for＂a new mode of manufacturing and glazint cotton Faddtag，and it application to the makjeg of mattresees．＂（A comunication．）－February 28.
James 8outter，of Limehouse，engineer，for＂an improved pump，applicable to atean． engines，or other purposes．＂一Msrch 2.

John Foller，of Beacham－wrell，Norfolk，farmer，for＂improvemente in apparatus for sowing corn or other seed．＂－March 5 ．
Wilism Nicholson，of Manchester，Lancanter，Eagineer，and George Wardsworth，of Sutton flese－works，ia the same connty，manager，＂certain lmprovementm in the manu－ facture of glase and other vitreous products．＂－March \mathcal{B}
Robert Levis Joues，of Cheater，rallway agent，for＂improvemente in reducing char－ coal and other similar matters，to powder，and in treating the same when in a atate of powder，so as to render them antimble to be used in plaee of vegetabie blick．drop，bleck， powder，so as to render them anitimble to be
Robert Warrington，of Apothecaries＇－hall，London，chemist，for＂Improvementa in promerving anlmal and vegetable substances．＂一March 5 ．
WHilam Green，of Hyde，Cheshlre，baker，and Mark Walker，of the same place，grocer， for＂certaln improved opparalus for faclitiatos the puthng on of boots to the feet．＂－ March 11.

Godfrey Woone，of Kensington，Middlesex，gent．，for＂certaln improvemente in the art of engraving in rellef．＊－March 11 ．
Jean Joaeph Ernest Barruel，of No．172，Rue St．Jecques，Paris，chemist，for＂improve－ ments in wroring of certain aulphurets to tranaform them into metal or oxides，and to collect the latter；also to collect the oxides from oxydised ores，equivalent to these sul phurets．＂－March 11 ．
William Nalrne，of MlWhangh，Perth，North Britain，flax－ipinner，for＂anem mode，or new moden，of propelling carriage along rallways，－March II．
Parfait Grout，of Rouen，France，bat now reaiding at Leicenter－Itriet，Leicester－aquare， doctor of medteine，for＂improvements to the manufacture of plater－of－paris，lamp－ black，and coke．＂（A communlcation．）－Harch 11.
Predertck Crace Calvert，of Paris，for＂Improvements In the preparation of the article called＂Jute，＇rendering the same aultable for various useful purposes．＂－March 11.
Whliam Price 8truve，Swanees，clill engtneer，for＂tmprovements in reatilating mines．＂－March 11.
Erasmus B．Bigelow，Boston．Masachusets，for＂certain new and useful improve： menta in looms for weaving certain kinds of carpets，or other fabrics of like character．＂ March 11.
 ＂lmprovements in apparatus appliceble to the working of atmospheric and other rall． waya，canala，and mines，and in lmprovementa in trapailting gas for the parpose of Hghting railways and other places．＂－March 11 ．
Benjamin 8haw，Bradford，York，oreriooker，for＂Improvements in preparing for apin－ ning worsted end ouber farnis．＂一March 11 ．
Thoman Vaux，Fredertck－street，Graj＇e Ind－road，MIddenex，land－gurreyor，for＂ lm － provements in the manufecture of horse－bhoen，and horme－ahoe nalls．＂－March 11.
Cha＇lea Robert Robinson，Strines，Derby，calice－printer，and William Bowden，of the ame place，mechanlc，for certain improvements in machidery for washing and cleanaing cotton，Huen，or woollen fahica．＂－March 11 ．
John Benfield，Blrmingham，Warwick，organ－builder，for＂certin lmprovementa in making algnala and communicatlona on raliways，and betreen rallway－enginen，carrlagen， and trains，which are also applicable to other lochlidies．＂－March 11.
Henry Auatin．10，Walbrook，London，civil englneer，and Joseph Quick，Summer－ atrees，Southwark，Surrey，englacer，for＂improvements in the construction of rallway， rallwey－carrleges，sad conveyances．＂－March 11.
Thomat Fiencock，Stoke Newlagton，Middlesex，enquire，for＂Improvements in the manufacturing and treating of articles mede of enontchouc，elther alone，or in comblne－ monuractaring and treating of articles made of eaontchouc，either alone，or in combint－ March 18.
John Longbottom，of Edward．street，Leed，mechanint，for＂improvements in the John Longbotem，of Edward．street，Leedi，mechanint，for＂improvements in the
manuecture of oll－calce，and in the machinery and procesea for preasing and moulding the sames which machinery and procesaed are also applicable to the manufacturing of other articles from plastic materialo．＂－March 18.
Benmett Woodcroft，of Manchenter，printer，an extenslon of letters patent for the term of six yeurn from the 22nd dsy of March，1846，being the explration ot the first term of foarteen years for his invention of＂certaln improvemente in the construction and adap－ tation of a revolving apiral peddle tor propelling boate and other veatela on water．＂－ March 218
John Fankina Gandell and John Branton，of Birikenheai，Cheahtre，ciril engineers，for at en improvement in the cosstruction of，and In the mode of opening and eloalug of moveable bridgee or mechen for the purpose of carrying rallways，tramways，or other roads ecruns canals，locks，docka，or other open cuttings．＂－March 25 ；two months．

Charles Robert Robinsou，of Strinem，Derby，calico printer，for＂certala improvemente in mmehinery for tiering，in the printlug of callicoen and other fabrice．＂－March 20^{2} ．

Charlea Iles，of Bordetiey，Birmingham，machinist，for＂an improvement in the methed of cardtag certain dencriptions of drest fatening，and other articles，and to the fatorise employed for that purpose．＂一 March 25.

Thomas Howerd，of the Eligg and Queen Iron Works，Rotherhthe，engiveer，for＂Im－ provements in miteam．engiue condeners．＂March M．
Robert Warriogton，of South Lambeth，Surrey，gentleraan，for＂Improvements in the opers ton of tanging．＂－March 25.
Thoman John M＇Sweeny，of Killerney，gentlemen，for＂Improvements in teering ehlpa and other vessels．＂一March 25.
George Fergusion Witson，of Belmont，Vauxhall，George Gwrone，of Cherter Terrece， Regent＇s Paris，James Pllans Wileon，of Belmont，Aforetild，and John Jackeon，of South Ville，Wandeworth，gentlemen，for＂improvementa in producing Hight，and in materiah and mpparatus applicable thereto；and in treatiog fatiy and olly matters，＂－March 25 ．
Alexander Parkes，of Birmingham，artint，for＂improvements in the preparation of certaln vegetable and animal subatances，and in certain comblatilont of the rame and－ certances alone，or with othar mettern．＂March 24.
Thomas Pope of Kidbrooke，Kent，gentleman，for＂improvementa in apperatera for moviog rallway carriages on to raltwaya，and in machinery for liting and moving beeny bodies．＂（A communlcation．）－March 25.
Lonif Serbat，of Salnt Sonlve，in the department of the Nord，in France，chemist，for ＂a new method of conatructigg the roof of houbet，bulldings，sheds，and ill other erve－ tlons．＂－March 25.
Wiliam Unaworth，of Derby，直ilk manufactnrer，for＂certain fmprovemeats in loceres for weaving．＂March 25.
Charies 8 mith，of Newcantle－street，Strand，Middlesex，for＂improvements in cooldog and culfany vitends，and methods of heating and auspending，or fastening articles of domestle use，and similar purposes．＂ ＂March 25 ．

Joseph Needham Tayler，of Chelees，coptain in the navy，for＂certala Improvemente In propeling veaselis；and also certain fmprovementa in conatructing vessels，to as to be afed in combination with certaln machinery or apparatos for moving sand－banlos and ouber obstructions to natigaliou，part or parts of which machinery or apparatur sang be uted on rallway，or may be adepled and applied to carriage or common roade．＂－March 5 th ．
Edward Crump Dell，of Highgate，Middiesex，surgeon，for＂certaln improvements it apparatus for Hghting the magasines and other parts of ships；applicable atoo for the general purposes of lighting buildingt，rouds，or ways．＂－March 25 ．
Edwin Cottertll，of Birmingham，manufacturer，for＂certaln Improvements in articles appled to pindowt，doors，and shatter，part of which hat been communiceted to him by a certain foreigner resdilang abroad．＂－March 25.
William Carpenter，of Bridge－ntreet，Banbury，Oxford，watchmeker，for＂ceriain im－ provements in threming－machines．＂－March 25.

CORRESPONDENTS．

Messrs．Blair and Phillips have written to us denying that they have confoonded the laws of motion and equilibrium in their tract，reviewed in this Journal last month，and entitled＂An Essay on an Improved Method of Construction for Viaducts，Bridges，and Tonnels，beiog an Application of the Principle of Universal Gravitation，as illustrated in the Solar Syt－ tem．＂If they really have not made this mistake we cannot help saying that they have been particularly unfortunate in the choice of a title to their work．Their opinions have certainly the merit of novelty，bot as they are not supported by any proof except those which may be sopposed to be de－ rived from an inspection of their diagrams，it seems no more than fair that they should point oot where the standard writers on the theory of the arch－Moseley，Poncelet，Rondelet，\＆c．－have failed in their reasoning．
Christ Church，Plymouth．－In answer to our old contributor Caddidos， （see page 68），we would observe that we assumed it to be an essential principle of Pointed Architecture that the north and sonth walls of a church should have windows，simply becanse we find this to have been univerally the case，without one single exception，in the aacient examples of the art as practised by its ioventors．It is also as indiapensible princi－ ple of all good architecture that the light should be generally diffused，so that do part of a building may be rendered ioconvenient or useless by its darkness．In a church lighted by clerestories only，the noth and south aisles being deep recesses without windows，this defect must exist；and it will be ouly aggravated by bisecting the recesses by galleries－nnless indeed the light be of that convenient nature that it can shine round a corner．The extent of unbroken surface of the north and south walls is also a great objection．It is a characteristic distinction between Christian and Greek architecture that large continuous surfaces withont openiags are contrary to the spirit of the former．The case of the lanthern of Ely Cathedral is a atrong precedent－for onr view of the question，for at Ely it is a matter，not of opinion，but fact，that the intersection of the nave and traosepts is lighted not only by the lanthern but by the lower windows． The main principle for which we contended is that in Ecclesiastical archi－ tecture，the vertical lights are modified by the horizontal．

Amicus．－Simms on Levelling．
ERRATA．－Prge 106．In the article on＂Unfaithfulness in Architec－ ture，＂in the concluding sentence of the last paragraph but one，after the words，＂instead of sapportiog a building，it is supported by it，＂add＂are instances of architectoral unfaithfulness．＇

Page 108．＂Parsey＇s Air Engine．＂In the last paragraph but three， for $\frac{100}{x} d x$ ，read $\frac{1000}{x} d x$ ．
Page 102．＂Tubular Bridgo over the Menci．＂In the last paragraph of the section on the＂Practical limits to the length of the girder，＂for ＂independent of the arch of the cross sections，＂read＂independent of the area of the cross sections．＂

F

THE FITZWILLIAM MUSEUM.
 (With an Eagraring, Plate VI.)

Possessing some points of resemblance, the facade of the Fitzwilliam and that of the British Museum are the antitheses of each other in regard to architectural composition and taste. The Cambridge edifice was infiniteis more fortunate than the metropolitan one will have heen; and perhaps very mach better than it might have been had there been no compe-tition-no trial of skill, but had the building.trastees merely placed themselves in the hands of some "crack name" in the profession. And whatever may be said against the little dirty jobbing that is so rife in the paltry hole-and-corner competitions in which ten or twenty guineas are offered for the succesaful design,-the Fitzwilliam Museum is a proof of the beneficialness of Competitiun when conducted with good faith, and with the sincere intention of obtaining a good design, no matter by whom it might be. At that time hardly would the name of George Basevi have been any recommendation, for he had given no great promise of particularly good taste in any of his previons works,--to own the truth, we ourselves should bave felt more prejudiced against than prepossessed in favour of him However, when the opportanity for accomplishing something of note did present itself, he responded to it worthily, and produced what is by far the most elegant structure in the classic or modern style that Cambridge can show, -beyond all comparison superior to the affected would-be Grecian style, and miserable pedantic dulness of Downing College. Had not the latter been so decided a failure, it is probable that its architect would bave been engaged to make desigas for the Museam, yet we question whether he would bave produced anything so good by many degrees, for Willina was not at all gifted with imagination or invention: he had in him more of the archaologist than of the architect-that is, the artist;-he had 100 much of the mere rust of antiquity, and too little of the sterling metal of his art.
Pre-eminent among all the buildings at Cambridge with which it at all Admits of comparison, the Fitzwilliam Museum, at least its facade-is hardly rivalled by any other of its time in this country, in point of novelty and felicity of idea, and for equally captivating and striking eff.ct. Or if there he any other which has so much of picture, and of the poetry of the stgle in it, we shall be glad to learn where it is to be found, in order that we may honour it accordingly, and bive something we jet wot not of, upon which we can bestow our cordial admiration.
Were it little remarkable in any other respect, the façade we are speaking of, most strikingly exemplifies the possibility of obtaining decided novelty of composition, and consequent originality of character, in perfect accordance with the style fullowed. The idea here adopted is so exceed ingly aatural, that our chief wonder is at its having been missed so long ; and that it was, is to be accounted for only by that nolucky adherence to routine, which apparently prevents architects from seizing hold of fresh ideas, and new combinations. We do not say that all fresh jdeas are to be laid bold of indiscrininately and actually adopted; all we mean is that those which can be made something of, and be satisfactorily matured, ought to be brought furward wbenever opportunity offers. Nevertheless in regard to columnar composition architects seem to have voluntarily re. nonored all originality of design. Modern porticoes-and their name is " legion"-are almost one and all the most common-place affuirs imagin. able,-the work of the stove-mason rather than of the architect, consisting as they do only of so many columns in front-four, six, or eight, wrought after some prescribed standard example. Duluess seems to have set its mark upon almost every thing of the kind, for out of some hundreds of modern examples-or, we should say, instances-there are hardly half a score which exbibit aught of design, or even study. Indeed, the majority of them are no better than arrant "Bruminagem,"-a few columns beneath a pediment tacked on to a front which in many cases would be a degree leas intolerable, certainly less paltrily vulgar without them. Among the exceptions, the portico of the Fitzwilliam Museum deserves an honourable place: instead of being after some antique specimen, it has the better merit of being before almost all modern ones, in respect to beauty of arraogement, in which respect it can be but imperfectly appreciated from the elevation alone, much of the peculiar merit of the design arising from the plans, and not to be naderstood, except in the building itself, where it is plainly enoagh felt, wilhout a drawing of the latter kind. The Fitzwilliam Maseam has in consequence been taken in the article "Portico" in the Penny Cyclopædia, as an example of peculiar arrangement, and we might fairly call it one that at present constitutes a class by itself, or else the

No. 104.-Vol IX-Mar, 1816.
model for a olass that woold affurd scope for design. Confined as they now are to mere columniation in its simplest mode, particoes are made features stamped by most monotonous and wearisome sameness; yet anter all that can be done, there must ever be enough of characteristic resem. blance and conformity to the original type, the frontispiece or external elevation of the prostsle or portico division, invariably consisting of a line of columns benealh a pediment. In that respect there is but one stereotype idea to work upon, and all the variety that can be imparted to it amonots to no more than minor differences as regards matters of delail and execution. Still it is this mere stereotype frontispiece that chiefly obtuins notice, and if that be but secundum artem, and upon a tolerably imposing scale, the whole obtains credit for being a fine portico, let its other deficiencies and defects be what they may. Such is most assuredly the case with regard to the extravagantly cried -np portico of St. Martin's, which is so far from possessing any unity of design, that it rather exhitits two decidedly opposite styles brought into violent contrast with each other, the inner ele vation* forming the back ground to the external one or Coriathian hesastyle, being the very reverse of the latter in character and taste-positively barbarous in comparison with it. To say the truth, as unnally treated, a portico is little more than an arrant plagiarism, and as frequently as not betrays equal sterility of imagination and vulgarity of taste, there being nothing at all in common between such pretentious feature and the building to which it is applied, but to which it dues not seem at all to belong. Thanks, however, perhaps to the intense vulgarity and dulness together of many things of the kind, the portico-mania which prevailed some yeara ago, bas latterly subsided. Nothing could be more desperately dull and dowdy than the majority of the things of that kind which were then perpe. trated, when in order to provide for what after all looked no better than an excrescence, if not actually an encumbrance, all the rest was left quite bare or nearly so, instead of being decorated and finished up in accordance with the other. Thus instrad of encouraging architectural de sign, the application of ready-made porticoes became a substitute for it ; and instead of improving the appearance of the buildings themselves, they were uctually the cause of their beiug left more bare and poverty-stricken than they else might have been without at all greater cost being incurred.
A portico is so decidedly a feature of parade, and such a direct a avowal of pretension to classical dignity of manner that unless the latter can be fully maintained, it is what had better not be attempted; and in regard to convenience such architectural appendages are in general so exceedingly deficient in depth that so far from affurding adequate shelter at the entrance to a building, they rather express the want of it, by making it two evident that what seems to be thought requisite is not obtained. In order to be effective a portico demands depth and spaciousness of plan; yet it is very rarely indeed that they can be-at least, are affurded, which becomes an additional reason wherefure things of the kind should be reserved for suitable occasions -for those rare opportunities when they can be treated with gosto, and made to partake of the poetry of the art.
The façade of the Fitzwillian Aluseum unsweis truly to the latter character, nor is there aught of the ordinary and prosaic to disturb the inspression produced by the general composition. As the frunt or external line of the plan, it consists almost entirely of columniation, regularly dis. posed (all the intercolumns being equal throughout), yet so as to combine play and rariety with continuousness, in whicb respect we consider this de. sign to be an improvement upon Scbinkel's fuçade of the Berlin Museun, -we know not if Basevi took a hint from it,-which is too much of a mere colonoade (eighteen columns in antis), and would be rather tame and nonotonous were not some effect thrown into it by the disposition and decora. tion of its background and interior. In the Canibridge edifice the projecting octastyle and its pediment are now so well propurtioned to the rest, and maintain such superiority in the composition thut more probubly would have been lost than gained had the extent of front been greater, uulesp the whole could at the same tine have been on an enlurged scule, so as to ots. tain increase of height as well as of length. For allhough extent of façude is generally held to be a positive merit, it may be carried to excess; and when it exceeds a certain ratio as compared with height, instead of at all conducing to graudeur, is rather apt to induce littleness of matnor, as may be seen by the fuçade of tie unlucky National Gallery, where in order to give due importance to the portico as the main divisiun, the architect broke up the rest into insignificant parts ; besiles which, its length-or, speaking

[^20]of a fagade, the correct expressinu would be its width-canses that building to look lower than it otherwise would do.

The Fitzwilliam fagade, on the contrary, preseats itself to the eye as a whole, sufficiently consintent and compact, without too mach of mere repetition of parts; and the lateral extenvion of the portico, in immediate connection with the octastyle, prodnces a peculiar richness of colvmniation that instead of being increased, would rather have been impaired had those parts been carried on forther so as to be equal to or wider than the octastyle itself, because in such case the arrangement woold have resolved itelfinlo the somewhat hacknoyed one of a porlico between wing colonades. There is indeed one fanlt-or if it be not positively a fault, it is what might have beed managed grvatly for the better, as in our opinion it decidedly would have been, had ingulated square pillars been substituted for the two colomas behind the extrome ones of the prostyle, (which alteration together with the further one of pilasters, inatead of attached colvmat, wo bave made in the tinister half of the ground plan). A square instead of a eircular shaft at thoee re-entering angles wonld not oaly have prodnced the appearance of greater salidity, bat have conformed better with the junction of the eolablatures aniting at right angles. Another adrantage gaived Fould have been that of increased variety, and the other columas would have told all the more forcibly in consequence of the contrat so prodaced. Neither could it by any means have been called a caprice, or have been taid to have been done for the mere sake of novelty, the motive for it being ufficiently obvious and legitimate. Rather Fould there have been a decided expression of intention, inamuch as thoee two pillars or pilasterpiers would have plainly demarcated the three divisione of the general colonnade, wheres it now looks as if the architect had at frst intended to carry it in a single line the whole way, and afterwards thought of hreaking jt, by adrancing an octastyle crowned by a pediment. There would besides have been more of unity of design in one reapect, because each of the Iateral divisions would have been in antis, and the composition wonld theraby have gained in distinctaess of articuiation.*

It deserves to be remarked that though the shafte of the colnmas are plain, the pilasters are finted-quite contrary to Grecinn practice, in which a similar degree of contrast and distinction was produced by a precisely reverse mode of treatment; while in the Roman and modern atyles the principle of uniformity has generally been followed, and colomas and pilastors mado, elther plain or floted, alike. Each of the three modes hes something to recommend it, and it may therefore be left to circumatances to determine which is best suited to the particular design or occasion. In support of that here adopted, jt may be argued that the principle of contrast being assumed, there is very euficient reason for bestowing what constitutes it upon that which most requires it. Although left quite plain, the shafts of insulated columns alwaye express themselves to the eje with sufficent distinctness; whereas, the faces of pilasters opon a wall require somethlog to dietioguish them from the general surface, without which they show themselves very feebly, and chiely in their capitals aod bases, which thereby become spots. The requisite difference of sorface between that of the wall and the pilater faces, is hardiy to be oblajned except by one of two modes, thal of rasticating or abowing the joints d"appareil of the wall, or futing the pilenters, which thereby acquire richness as weil as distinction, and are made, io artistical phrase, to "buld colour." Diference of appication demends difference of trealment ; the Greeks employed pilasters merely es ante at an angle of a building; or at the ends of the side walls inclosing a portico is untis, where they oxhibit themselves not only plainly but forcibly; whereas, as decoration opon a wall, pilasters require to be relieved from It. In the building onder notice this is done by Guting them,t notwithstanding that the shafle of the columas are plain, wherefore it may be thought that, in comparison with the iatter, an undue

* In the portico of the Royal Intutution at Macheatep, Which we might have before observed is mavery similar in composition to that of the Fitiwillism Museum, that the Iden of the latter sperps to be derfved from It, Barry has boldly defined thr junction of the
 antap plisuters backing the extrome columns of the prostyle (an Ionic hexantyle) and anpirigg thoee of the loggas. That bulding may therofore be quoted as afrording an example of pletareaque combination, and a highly favourable ezcepiton to the equally inelpid and common-place tbinge constluting the mejority of the ciacs. We regret that having no phat of 16 , wer ant
intertor to the fitawilieto.
4 Barry, who has true artatic freling for efreet and Aniah of detall, bat futed-ond, no doabt, with resson to himuelr for what he was doing-the pilezteri to the windowa in both frobis cf the Travellers' Clab Hoose. Apr: poo to which we min obwerve that we divent from the opluion which hal paseed unqualibed condempatton on the practice of decoratiog windows with columnt, pilasters, and pedimenth. We cansot pretend to fatify the propriety of it here In a mole, therefore content ourselves whth remarking for We prasent, that If it be contrary to sound architectonic prisctple, we must thate our sdoilation of Gotbic, In which nearly all the minor feature and decorntlen in geveral ere made tap of forms borrowed from and repeating thow of the prinefpal members of the Hirucure.
degree of decoration is bestowed upon the pilasters; yet, indepeadently of the reasons already alleged for it, the greater richness conferred on the pileaters is no mure then what serves to equalize them in fomportance with the colnmay. Still it striket me that in this instance a very good though nansual effect might bare been produced by futing eame of the columns, vis., the eight in front beneath the pediment, whereby the octasyle woald have been dintinguished from the reat of the colonnading, and the colnmes in that division of it would have been decorated in accordunce with the pilasters at the extremities. Nay there is direct precedent for the comblnation of futed or plain colnmas, not only in the same design but almoet in juxta-position with each other, namely, in the beantiful loggia forming the norih-west angle of the Bank, -a composition distinguished by picturesque effect of the most striking and sterling kind.

The portico of the Fitewilliam Museum exhibits kindred taste-some of the beat quality of that work of Sonne's, without the tinctore of Soame anim. It is fuil of perspective effect, mainly produced by arrangement of plan, which, thongh apperently complex, is not at all tommante; on the contrary, exceedíngly simple, it belag in three divisions in both directions, i. e., upon both the longitudinal and transverne section, throngh the portico. The frat gives as the body of the portico and the two lateral colonaades; the other, the projecting octantyle, the lateral colonnades, prolonged to an avenue extending through the building paraliel to its froot, and the recessed portion correaponding with the projecting one. It is this beautiful combination of plan, in which regularity and variety, harmony and contrast, are all united, which constitntes the surpassing merit of this portico. Its extoroal desigo is the least part of its merit; and even in regard to plan, it would have been of a superior kind even had it been leas perfecr, completo, and symmetrical than it now is. Do away with either the projecting or reoessed portion of it, and it would lose half its peculiar charm; or had the colonnades terminated against the masses which form the ex. tremities of the elevation, or elee been continned by another open intercolumo instead of a closed one, while the fapade itself would have beea impaired, two most charming effects would have been entirely loet, vis., thoee of vista, whether sa seen from end to end on approaching by ooe of the side entrances, or on entering through the octastyle in front, when thet transept suddealy reveals in the moat captivating manoer. The promise mude by the exterior is found to be more than fultilled by the interior of the portico, which is, in fact, wreplete with effect es to be all piciure, and at overy step some fresh combination of perspective lines and of light and shade is produced : no sligle view, eren were it the very best that could be selected for giving some general idea of it, could do more than conves an imperfect because necessarily a very partial and limited one. However, we should have been glad of even something of the kiad in the "Memo. rials of Cambridge," where it would have formed a most interesting illustration; whereas only the fapade is shown; and that in such manner that the effect attending the interior is very poorly expressed. 8till in ooe respect the Fitzwilliam Museum has been more honoured in that work than any other atructure in the University, it being almoat the only one on which anything like satisfactory architectural description is there bestowed. Possibly this may have been in come measure owing to there being nothing bnt the buijding itself to speak of, -no ready-made history, or history at all, belonging to it ; and perhaps it was considered indecent to make the articlo a mere peg for hauging Earl Fitzwilliam upon it in effigy, alian in memoir.

If our remarks hare been comewhat in extenco-not, we hope, proningly proliz-we are not likely to be equally diffuse again in a horry on a similar subject. Vory few things indeed of the kind afford anght for either description or comment. Our modern Anglo-Grocian and Roman porticoes are, for the most part, the morest architectaral homdrom imagianble. We may fairly apply to them what Pope said of women, namely, that they "have no character at all ;" though book-makers and guide-books aro ready enough to extol overy "four-posted" prodnction as "a fine portico!"

In conclusion, we may express the hope that the gentleman to whom the completion of the Fitawillimm Museum bas been confided sloce its arebitect's death wili adhere to his intentious, for he ie not very likely, we eonceive, to improve upon them. Most assuredly, he hes never yet comcoived anything at all comparable to that fagade and portica.

STADED GLASS WINDOWS AT SAINTB CHAPELLE, PARIS.

(Paper roed at the Royal Imotitute of Britioh Arelitocta)

By 1. Porntren, Eeq-, Hon. Sec.

The excellent restoration now in progreas at the Sainte Chapelle, in the Palais do Juctice, at Paris, has caosed it to be lately mentioned in this room on several occtions, on one of which a with was expressed by some of the mecnbers present, for a more particular account of the mained sleas with which the windows are decorated, and which, notwithstanding some serione dilapidations, has remained, on the whole, wore perfeet perhaps than any similar work of the 13 th century. I fear the sabject will scarcely prove so intereating as may have been anticipated, owing to the want of the illuatrations necesary to do it justice ; the development of the detaila, to any great exteat, being obvioualy a work of time and labour. The Sainte Chapelle, it noed hardly be repeated, was bailt by St. Lonis in the 13th cen turg. Previounly to the restoration of the polychromatic decorations of the interior, the Sainte Chapelle attracted little attention from our travelling atadenta. The decorations had either dimappeared or were covered up behind the cases and pressee with which the chapel was flled, in order to fit it up for a depository of records connected with the Palais de Justice; and this ane to which it waf pat was a sentence of exclanion to atrangers from the interior, seldom remitted. I wat however fortanate enough, some yeart aso, to penetrate into this mynterion anoctonry, and at my leisure to make potes on the stained glase, (at that time the only object worthy of atudy which the chapel afforded, the resalts of which I am about to submit to 50 O.

The Chapel containe sirteen windowr-four on the north tide, four on the couth, and seven in the apais, which forms the eastern termination of the bailding. Thase are all the original windows; the sirteenth is a roance at the weat end, which has been reatored, both atone work and glans, in the ayle of the Gothique famboyant, probably not earlier than the middle of the $\mathbf{1 5 t h}$ century. The side windows are in four lighte each, with circles and tracery in the heads, and the windows of the aptis in two lights, the compartmenta being extremely lofty in proportion, as is nsual in the Preach Gothic. The iron work of thene window, forming the frames of the compartmenta in which the glast is arranged, is well worthy of attention for its beantiful and varied form of composition, producing, in the tall apeces which it occapies, an effect which in some measure aupplies the place of tracery. This is eapecially the case with the third window on the south side, which will be further noticed in its turn.
In the state in which the chapel was when my notes ware made,-and indeed st it may be still, for I believe the restoration has not get arrived at the sless,-many of the lower compartmente of the windowa, hidden behind the premes for the records, wore deatroyed. Some of the ghas was probably abotracted when the preses were fixed, and it wat unknown what had beeome of it; bat it it probable, from the confusion which exists in some of the windows, that a portion may have been taken to make good defect in those parts which remained visible, for in one or two places, which will be soticed in their tura, the glass has been much damaged, and badly patched up ; but these loses are amell in comparison with whet remaine in a high state of preservation, and which may be stated to amount to about 800 compartments, representing anhjects of scripture hiatory, and containing from two figures esch, up to as many as nine. The total number of figures may amount to between two and three thousand on the most moderate calculation. They exhibit nothing remarkable either in drawing or componition beyond the art of the period; on the coloaring there will be some observa. tions to make presently. The grounds and bordert of the lights are more worthy of attention. The fieur-de-lis and the arms of Cattle, in reference to Blanche of Castila, the queen of Louis VIII, and mother of the king by whom the odifice was founded, are compicnons throughont these details,

The firat wisdow on the north side (to take them erriatim) is one of those which has suffered most wrong from time and violence. Part of the more modern erection of the Palnis de Justice in built close againat it, so that the light is shat ont, and the glass is either entirely deatroyed, or so patched up where it hes been kept in its place ateven to render the aulijecto undistin. caishable. The fron work of thin window is arranged in circlea and semicireles. (Fig. 1.) No. 2, on the north side, contains eeventy-two compert. ments above the line to which the presses formerly reached-eifhteen in
ench of the four lights, beades those in the circalar compartmente of the beads; the compartments are diaposed in the form of lozenges and portions of quatrefoils on the iron frame thewn in tig. 2. The subjecte are all from

Fig. 1.

Fr 2.

Tig. 8

Pig.4.
the book of Exodus and in high preservation thronghout, except that, in some ropair, the drowning of the Egyptians has been turned the wrong way upward. The ground of this window is a sort of trellis, not very remarkable, with a border of the arm of Cantile.

In the third window filty-six compartment remain above the preas line, arranged in portions of quatrefoile, and in the vesica piacis form (fg. 3), each of the latter containing two suhjects; the eight lower compartmente reprosent coronations of the kinge of Prance, and more remained at the time these notes ware made, behind the presses, which are now brought to light. In the apper part is contained the history of Moses, who is intro. daced into mont of the groape. Among theme aubjecte the plague of fies is reprosented with the most amulng naivett, the fece of Pharoah and his court being covered with the iasocts after a fashion which renders the sabject quite unmistakeable. The ground of this window is magnificent, being entirely seme of fiears-de-lis, with medallions of Castile. It is to be regretted that it ahould be placed in the north aide of the chapel, from which circumstance, and from being pressed upon by the Palai do Justice, it bas not the benefit of a due thare of light. The border in not so remarkable. The whole of this window is also in high preservation.

No. 4 exhibits thirty-six compartments, very elongated quatrefuile, each divided into two sahjects, with quatrefoila of the ordiaary form between. (6g. 4.) The subjocts are principally from the book of Joshan, and for the mont part represent batties (certainly not of she crusades of St. Lonis, is a French artist has supposed), among which the fall of Jericho is conspicsous. Most of the compartmenta are in high proservation, and it is unneconary to say that the Ieraolitith werriort are clad and armed in the fanhion of the 13th century. There in nothing very remarkable either in the ground or border of this window, except that the aun and moon are introduced in the beads of the lights.

An these mindows conthin nine compartments in the heads-one in each, of the currea between the circlet, one in the aixfoil light of the middle circle, and one in each of the quatrefoils, which compose the tracery.

The first of the eeven windowa of the apsis is filled with plais rectangular iron work (fig. 5). This is one of the windows which bas auffered the must dilapldation, and only some of the luwer pancin remain entire. Agaong the surviving subjects it Sampan, Fith Dalilah cutting his hair. The had consisting, like all those in the apsis, of three trefuils, contains a cherub is the upper trefoil, and an angel in each of the others; these figuret are in
circlet inseribed within the trefoila, and the surrounding apmeen are alled with the arms of Prance and Castile.

The first light of the second mindow in the apais is in sirteen compart. ments-lozenges and half-quatrefoils (fig. 6). The subjects are generally obscure and do not appear to belong to each other; the ground, which is in figured circles crossed by a trellis, is very handsome; the border, plain red with small hlue rosettes.

The second light is unlike the first, and differs totally from anything else in the chapel; it fits its place too well to have come there hy accident, but the stgle plainly indicates its date to be the 14 th century. It is divided by plain iron work into rectangular compartmenta (fig. 7), of which twelve remain. Each of these is subdivided into three, and the same aubject, with variations, is repeated in eleven of them, viz., in the centre a throned figure, placed within the convolutions of a rich flowing arabesque, and a standing figure under a canopy on each side; the upper figure of the eleven is God the Son, the next below, the Virgin. It is evidently a portion of a Jesse window. In the centre of the upper compartment and in the head of the light the arabesque is betutifully developed, and the Dove appears among the scroll work. In the bead is God the Father and two angels, filled up with the arms of Castile. The whole of this light is in the highest degree brilliant and harmonious, and in the best preservation. It is impossible to believe it contemporaneona with the rest of the glass, though how it came to be thus interpolated where all the rest is uniform in style it would be difficult to conjecture.

No. 3 in the apsis contains twenty-two compartments, in the form of the vesica piscia (fig. 8), each divided into two anbjects, generally referring to the Nativity, but some do not eppear to belong to the rest; some of the damage and patchwork previously noticed is to be observed in thís window. In the top compartments and heads of the lights a building is represented, with figares incensing, probebly the holy house of Loretto. In the head of the window is an angel, the Virgin and child, and God the Son, with the arms of France and Castile. The ground of the window is plain trellis, with a border of feurons.

No. 4, thirty-eight compartments, in squares and quadrants, relating principally to the crucifixion and events connected with it, with groups of anints and angeis in the upper compartments. What is not actually deatroyed is moatly in high preservation, but three of the principal compartments are lost and the squares filled with patchwork, and two others are misplaced. The ground of this window is a rich and beautiful trellis, with medallions of the arms of Castile, and a border of fleurons, and in the centre of each division of the four quadranta a very rich quatrefoil.

The first light of No. 5 shows eleven compartmente, in lozenges, and a cort of quatrefoils (fig. 9), with a common trellia ground, and a border of very

Fig. 9.

Mig. 10.

Fig. 11.
graceful feurons. The second light is different,-regalar quatrefoils (0). 10), on a ground semé of Castile, and a sort of festoon border, rather abgraceful. The subjects are generally obscure, and apparently unconneeted. The circumcision and the heheading of St. John are the only two which are obvious in the first light, and Moses with the tables in the second. In the head are three saints with the arms of Castile misplaced. This window is not in very good preservation, and the glase itself is much corroded and perished.

In No. 6 there are twenty compartments in quatrefoils, The enbjects appear to be from the history of Noah, but they are for the most part obscare. This window is in rather better condition than the last; the gronnd and border the same an in the second light of the last window; seme of Catile with festoons.

No. 7, twenty compartments, in circles and half of the vesica piscis (fog. 11); the subjects obscare, but Tohit and his dog, and Daniel in the den, with a lion with a human face, are to be diatingaiahed; the ground is.a handsome trellis pattern, with a border of fieurons.

This completes the windows in the apsis.
The first window on the south side contains forty compartments, all in circles (fg.12); the ground a trellis, with a fleur-de-lis in every square formed by the intersections. The subjects in the two first lights are from the book of Job; of course the devil plays a conspicuous part in the history, and is represented with much liveliness of imagination; the barning of Job's honse is represented with edifying simplicity, his satanic majesty performing the incendiary in person. In the other two lighte the subjects are not so clear; in the four top compartments are angels incensing. The hend of the window in arranged as described on the north slde, but the quatrefoil compartmento represent buildings surrounded by arabesque work.

No. 2 on the south side is a window of extraordinary beanty; there are eighty compartments, quadrants, with a quatrefoil in the centre of eveiy four (ig. 13); in each quatrefoil in Castile, and between the quadranta is also a medallion of Cantile on ground of rich mosaic. The suhjecta are various and abound in royal personages-those from the book of Bather tre the mont obvious. The head of this window is similar to that of the lest. This window is particularly to be noticed for its rich, brilliant, and haranonious effect, aided no doubt by tis position to the sonth. The form of the compartments, which the iron work follows throughout, fall in well together, and leave no awkward or irregular shapen in the ground. From the number of thronen and tabernacles on red groands, there is more rich colour ohn
nrach, and thit, with the repetition of the arms of Cantile on a large acale, enocually balasees the general blue tone which pervaden this and the reat be windoms.

Sotwithatanding what has been acid of the lat window, No. 3 on this wide is perbape the finest of the whole; the iron work already referred to is remarkably elegant ; there are eighty compartmenta, the ceatre of every five being a very graceful compound form (6 g .14), and as they fill very nearly the whole spece without interatices, the colours, of which a great proportion is very rich, are spread without any inharmonious apots. King David Ggues as the prinepal personage in the history illostrated by this window. What little ground there is, is a mosaic, and it is remarkable that the border, which is in fearons, is the poorest of the whole set. This window is in good preservation generally, but not altogether so perfect at the last.
No. 4, the last of the series has all the appearance of having once been a brilliant window, bat it is in bad condition and patched to confusion. The form of the iron work and disposition of the compartments are the same at So. 4 , on the other side. There is a large building represented near the ceatre of the window, which judging from others of the suljects, the prieats carrying the Ark for instance, may be conjectured to be Solomon's temple. The ground of this window is particularly fine, diapered circles with the Aeur-de-lis in the censre, and Cestile in the spaces between.

It is to be feared that this description will have conveyed very litule ides in the absence of illustrations, of anytbing beyond the quantity of matter contained in this glass, and the pains with which it has been elaborated. It way be well to add a few words on the effect produced. Every one is familiar with the blue tone of the early style of stained glass, arising from that enlour being almost exclusively used in the back ground of the compartments. Sucb is the case with the glass of the Saint Chapelle, and at the harmony of the general effect is supported by the introduction of a preponderance of the ame colour in the general ground works of the lights, this tone prevails rery greally through the whole surface of the glass, reds, greens, and violets, with ouly a small proportion of yellow, fesh colour, and other light tones, forming the reliefo and contrasts. The glate therofore admite but little light, aad on the north side under the infuence of suashine on the oppoaite side, fails even is its effect of trasparency, a result which must hare been noticed by all who have had the opportunity of examining glast of this kind under differet sspects. It appean, however, from the restoration of the Polyehrometic decoration, of the authenticity of every part of which, 1 believe, no doabt can be entertained, that the architects of the Middle Ages were well snare of thi inconvenience, and took very good measures to counteract it, the stonewort of the windows being coloured of a sort of deep maroon; and
the effect of the glast set in aframework of this tone, is something very different from its appearance between jambs and wullions of dead white as it is most generally seen, and as it really was in this instence, when my notes were made. The confusion which resnlts from the collocation of auch an infinite nomber of small pieces of coloured glase at we find in the compositions of this style, has heen sometimes considered one of its beantiea, and we hear glase commended because it look like Turkey earpet. This is certainly the case with the glass of the Sainte Chapelle. The fint impression conveyt nothing to the eye or the mind, bat the unmenning rariety of the kaleidoscope-but let it be observed, that to produce this effect with diptinctnes is no small triumph of the art of the collocation of colourt. And here a remark may he made upon the general belief that there ia some extraordinary quality in the colour of the aucient glam. That it is so in many enses is unqueationale, since the fact hat been recognized by those who are practically acquainted with the manufacture of glasa ; but there are inutancen, and the Sainte Chapelle is one, where much of the red glana in far from being of a good quality; but this is by no means perceptible on a general view, and it proves that the brilliancy of the old red glam dependa no lesu upon its collocation and the effect of judicious contrats than upon the individual character of the colour. To retnrn to the glast in queation, if the forms are confased, the colours are not confounded; and when it is considered how easy it is by the injudicious disposition of amall surfaces of transparent blue and red, to fuse them into a general effect of purple, of all results the most diagreeable and inbarmonious, we must admit that their art was well understood by those who combined them, as they were combined by the glass painters of the 13 th century ; and it can hardly be doubted that the reault produced was that calculated upon by those artists, viz., the effect of a rich and harmonious coup d'ail at the firat view, heightened by the obscurity and mystery eaveloping the details which a more deliberate survey and examination brought to light. If this were really their purpose, their nuccess is undoubted. Whether this be the beat mode of treating stained glasa is another question altogether, and opinions may differ apon it. Stained glass was certainly very differently treated when it hecame combined with fine art, a quality to which the early glass can make no pratence. Perhaps the later Flemish and German glase diaplays the greatest perfection to which this art has heen brought, exhibiting a combination of the qualities of good drawing and composition, with those conditions which are indispensable in glass painting, and separate it altogether from the art of painting on canvass.

One of these conditions which was never neglected as long as glast painting was understood, and which will be found invariably attended to in every successful specimen of stained glass, whether ancient or modern, is the pro. fusion of detail. The earliest and the latest glass, however differing in every other respect, possess this in common. In the glass of the l3th century this quality is produced by the minuteness of the parts. In that of the 15 th when the large treatment of the suljects necessitated large masses of the same colour, it is obtained by the introduction of diapered grounds, or sometimes by the minute elaboration of the draperies. It is not enongh that this diaper work should be introduced when the eye can distinguish and appreciate it; in the old glass it is developed in situations, and on a scale, where it is inevitably thrown away, except in contributing to the general effect, which would as inevitably be marred by its absence. The roance at the west-end of the Saiute Chapelle to which reference was made at the beginning of tiais paper, is a stroug instance of the truith of these observations, 10 far at least as regards the practice of the Middle Ages. In this romace there are eighty-one principal compartments containing a series of subjects from the Apocalypse, of which about sixty-six remain entire. The style in which this glast is executed exhibits the atrongest posaihle contrast with that of the older aeries-there is very little colour of any kind-instead of atrong contrasts the effect is brought out by chiaro-acuro. In which colour there is the predominsting tone is yellow, but there are vigorous touches of red of great value to the effect. There is of course none of the depth and richness which characterize the original windows, but there is a transparency, and a aparkle, scarcely leas imposing in its effect, and when to this first impression succeeds the examination of the detail, a proficiency in drawing and composition is devaloped, united to a refinement and delicacy of execution which can be fully appreciated ouly by meana of an opera glass, and which might be thought thrown away, did experience not prove the elaboration of the detall, whether in one form or another, to be the one thing needfal to the fall effect of stained glams.
A few worda may be added in conclunion, on the phlyehromatic daration
already referred to, by which this gorgeons display of trausparent colour is harmonized and supported; every portion of the interior anrface of the Chapel is covered with the richest and mont positive colours, relieved by gold. The shafts of the columns, both principal and subordinate, exhibit the brighteat vermilion and green, the valting shafis, which prowent the largest surfaces, being broken up by gold Hoes, disposed in varions patterns; the lines themselves being embossed and minutely dispered, and the Intarvals tilled with the embossed arms of Prapce and Cantile. The removal of the presses has revealed a magniticent dado, resembling that in Westminster Abbey and other baildings of the period; the beck ground elaborately diapered and all the foliage gilt. In the apandrile of the arches are acolptared asgels on grounds of blue enamel, diapered with gold. As the dim religions light admitted into the building is too feeble to previl against the immense mas of colour, an ingenions and anccessful device is adopted to supply the place of light and ahade in the aculptured detaila, and to give them the sharpneas in which thoy would otherwise be deficient, by defining the edges of the foliage with a thin black line. Against the pillars are brackets deatined to recoive statuet, eome of which are reatored, but not get placed; they are all of that auperior class of scalpture at compared with contemporary works dewhere, which marks the Prench school of the Middle Ages, and are elaborately decorated with enamel and jewels. The ouly part of this aplendid interior not perfectly eatisfactory is the vaulting, of which the plain blue ground aeme of flewrade-dis is too simple for the rest, and from this obaervation mast be excepted the apain, where a border round each compartment affords the necessery relief. Under the Chapel is a crypt or unbChapel, partaking of the same style of docoration, but not get reatored.

CANDIDUS'S NOTE-BOOK.

FASCICULUS LXVIIL

> "I must have liberty
> Withal, as large a charter as the winds, To blow on whom I please."
I. Of all the ancient orders the Greclan. Dorio is by far the most is-tracticable-almont to impracticability, although it has been largely introdaced into practice \ln this country. By impreotioability is to be under. atood aot any dififonlty as to construction or execution, but the imposaibility of applying it conaiatently of aturally in boildings which are altogether differently constituted from those in which it was originaily employed. It is 20 obstinately atern and inflexible, and so strongly marked in character, shat it will suffer nothing eise to come in contuct with it. Nevertheless it has been patched up with, and patohed apon, everything, Gothic alone excopted. So long an the mere columas and entabiatures have been correct, that is, mechunically-produced fac-similes of sume ancient example, and 50 far, bearing nominal resemblunce to Parthenou or Pastom, the most excruciating violation of the style have been tolerated-why do I aty tolereted P -they have eveu been regarded with self-complacent wonder; and Because we have copied it piecomeal, we have,glvenourselves credit for ap. preciating and relishing the severe simplicity of that order. Though it has been repeated ad mameam, in bardly any one instance has the sentiment of the style been fairly expressed; and notwithstanding, too, the lackadaisical prating absout "proportions," very rarely is any kind of proportion at all observed between the order itself and the atructore to which it is applied. Instunces have occurred before now, where otherwise very plain ordinary buildings have, the in attempt togive them something of style, been croshed into insignificance by huge Doric columas of greater diameter than the breadth of the openings for windows; while, in others, the same order has occasionally been reduced to minikin dimensions, and applied as deeoration to subordinate parts of the general mass; which is surels a very great mintake, there being nothing whatever in the constitntion of the Grecian-Doric-an order rigidly expressive of architectonic purpose and notbing more, and possesaing no elements of cumbination and variety-to recommend it for purposes of embellishment. There would be sumeuhing rational in taking the order merely as a type to be modified acoording to the exigencies of the particular design, and if needs be, even enriched. But no; that must not be thought of, -that would be quite illegitimate, and would be reprobated as "tampering with the orders," whereas the abaning or
misusing them by preposterone mia-application in, it seems, perfectly m gitimate and menadum artem; thoogh, in my poor opinion, an architon may as well give un columns of his own inpention at oace, as mar the effect of an ancient order by joining it on, and mixing it up with, what does not at all agree with It. At the worst, ware the lavention bed, the whom work would be as likely as not to be of a piece throughout; at any rite the genvine and classical would not be degraded by being made to amociste with the rulgar and mean. Architects should learn to rely more opoo themselves for dotail, and less upon their barefaced and wholeale borrowings, whioh borrowiag syatem ban, if norbing else objectionable in it, this aulncky tendency-that it relares industrions atudy, and reodern architects prone to rely upon the merit of what is not their own, as excasing the bad that really belongs to them.
1I. It would seem that professional men, who may be sapposed to bave stodied the orders thoroughly, can do no more with them than those who are not architects. Inat as they find them ready prepared to their hands, so do they make use of them, without any more ceremonions procase of appropriation than that which is expresced by the euphuistic term "abstraction." Perhaps their study of them is not of the most fruetifying kind : to learn to talk learnedly abont dates and the histories of stylrah and to know to the fraction of an inch all the dimensions of the Par. thenon, is a very different matter from noderstanding arehitectural design; knowledge of the former kind constitutes for the architect only the malue risis for and aids to his proper artistic study. After all our so-called stody of Urecian architectore, what have we made of It? Have we acquired from it the power of producing anything in congenial tante! With copjv ing we began - which was excusable enough,-and with copying we ou on, and are likely to do $s 0$ to the end of the chapter, till we las it minie altogether, for wo do not care to take the first atep towards any advacoe beyond the mere copying point. Truly, we have moot singular notions of studying the antique, for we learn nothing more from it than what lies on the jmmediate surface, and mimick rather than imitate it; oor do we even avail ourselves, as we easlly might do, of the varieties of the Greek orders which the Greeks themselves have lef us. Have we as yet even 60 moch as attempted to torn to acoont the idea for a four-faced Greek-Ioaic capital, held out to us by that singular example in the cemple of Apoilo, at Bascoc, -an example, perhaps, all the more valoable because it in suggestive of further improvement! We neem to aearch out and acoumalation examples only in order to bury them again in musenme and in books. I here are a few charming epecimens of antique inventions for capitals in the Britioh Musenm, but for any use that is made of then they might about as well be at the bottom of the Thames at once. Has any servioe been rendered to architecture practically by the specimens lateiy discovered in Asia Minor by Texier, (who, oddly enongh, was sent out thither by the French government, for the French make do ase of the Greek and Avintie orders,)-has a single idea been adopted from them t
III. If it may be judged of in its present state, Cockerell's building for the new Bank at Manchester does not promise to be any great architectural achievewent. It may not unfairly be said to exhibit a sort of tracesti Greek style, a Doric order, borrowed from that of the temple of Nemesis as Ruamnus (the shafle of whose colnmos are fiuted only just at foot and top), being employed not for the entire elevation, but merely as decoration to the lower division or ground floor, in three-quarter, consequently, attached columos, and 80 wide apart (for there are five triglyphs over every intercolums) as to be totaliy contrary to Greek ideas of proportion for intercolumniation in that order. Greater conformity to charateristic proportion might have been expected from one who descants so tuently ex cathedremore finently, perhaps, than perspicnously-on the doctrine of propertione. However, such violation of strict architectural Dorism is not greater than that of filing in the three centre intercolumns with large arched triple or Anglo-Venetian windows. The upper part of the front will be a sort of heavy Attic, of which the merit may be that it is unborrowed. It coald be wished that the order had been equally nondescript, for then the whole would have been stamped by greator originality-at lotat, greater consistency; and whatever his invention for the purpose might have been, the Professor could hardly have been a degree more heterodoz than he ha been in the use which he has now made of Greek ortholoxy.
IV. One of the objections raised by way of answer to what I mid in regard to a church being lighted on its sides by clerestory windowis alooe, dues not apply either to Mr. Wightwiek's building, or the other mentioned by me, because that clrcumstance does not, in either instance, in the alight. est degree affect external character, no part of the exterior being visible except the front. Windows are so expressive in a Gothic charch, and

Arsiga depends po mainly upon them, that to ereet as insolated atructure © the kiod, without other wiadowa on tas aiden than thoee of the clerenmay, might be deemed improper and perfectly arbitrary; not that I myself choald despeir of something good as well as striking being prodinced withoot any wiodows below. But did I in what I said, go to the extent of recommeading the banishment of aide windown, except cleseatory onet, from chorehest I think not; at least, I did not intend to do so, and therefore, I suppose, expressed myself very muddy-headrdiy. But Whet Mr. Wightwick has done is-oh horribie!-not according to precedent. Now ten thousand maledletions apon that said "prece-dent'"-or rather the serviie doctrine founded upon a blindly apperfitions reverebee for it,-doctrine that entirely denies to art the power of further prodaction; or if it does chance at any time to throw out or beria to throw oal a fresh shoot, it mast bo extirpated at once. What is good requires no precedent to jastify it, and what is bad is not to be joetibed by a thoneand procedents in support of it, for if the latter be in themselves good, they rather convict the thing that sppeals to them of departing from thotr apirit. Yoor precedent-mongers do not even know Whether they onght to admire or censure what is shown them, until they refer to autborities. Tell them that such or suoh idea is quite new, and they will instantly begin to frown, although they may just before bave seemed diaposed to relish; or, on the contrary, they will, on bearing that there to valid authority for what appears to be quite a novelty, be inatantly propltiated is its favour, yea, even thoogh an energetic "Damoable !" were actually hovering upon their lipa. The present overweening reveresee for precedent in some quarters, is likely to prove the Dry-rot of Art.

PRESSURE ON RETAINING WALLS.

Sir-In your remarks, at Page 100 of the Civil Engineer and Architect's Jesrual, on a paper of mine on the pressure to which retaining walle mey be subjected, a mecessary preliminary investigation has, apparently, beed miataken for one on retaining walls. The subject was pressure, not retaiaing walls; and you may have meen from the conclasion of the paper, and other parts of it, that it was merely introdnctory.

It is beat to calculate the pressure free from all considerations of momeatuse at frst, becanse whon once this pressure is determined, it can be readily appiied to the determination of the strengit, \&c., required in a retaisiag wall, so as it may resist being overthrown, being moved forward, or being fractared, by the reaultant of its own weight and this pressare.

Mere formule without calcalations from them are, to the practical man, searly areleas. I have therefore given tables of presaure; but tables of momentum would, in my jadgment be vseless. Telford gives pressare, not monentum, very properly ; and gives separately the leverage, or the position of the centre of presenre; I have not done so, because it was not oecensery to do so in this part of my subject, and because, also, any ana. lyticnl determination of the position of the centre pressure mast depend a sood deal on an hypothenis, whictr may be considerably modified by the manner in which a wall is brought ap and the filling behind it. Friction a the beck of the wall belongs aleo, mont properly, to the noxt part of my sobject.

The formale $P x d x$ is a correct representation of the momentum, but to make it useful, take $p=v(h-x)$, a fraction of x, the height h, and a Enown quantity 0 : we find then, by integration, \&c., the momenium $m=\left(\frac{h r^{2}}{2}-\frac{x^{2}}{3}\right)=$ (when $\left.z=h\right) \frac{v^{2}}{2} \times \frac{h}{8}$ and, as it is easy to show that $\frac{-f^{2}}{2}$ Is the presenre, $\frac{f}{8}$ is the leverage ; but there are many circumataocen in practice which man alter the position of the centre of pressure, whilat the pormore itnelf remains unchanged.

With respect to the conclusion of your remarks, I believe you will fnd © a re-examinmtion, that I am mot mistaken here. I have benefitted a sood deal by the stody of Teiford's works, and if I have pointed out some a his mistakes-which every investigator is subject to-lt was for the parpose of warning those who, not being disposed to investigate for themmelven, may edopt them withort eontideration. The mistates of such men
as Telford are doubly dangerons, from the pooition which his works justly bold.

> May I request insertion for this in jonr next number.

I am Sir,
Dundalk, April 3rd, 1846.
Your obedient serpant,
[Mr. Neville baving stated his intention of completing his memoir in the particular to which we alluded, there now remains but slight difference of opinion between us. We still, bowever, are unable to assent to the expediency of considering the resistance and the moment of it separately. Mr. Neville says, "there are many circumstances in practice which may alter the position of the ceatre of pressure, whilst the pressure itself remains unchanged:" he could not have made an admission more in our favour, for this shows that the determination of the pressare by itself adds absolately nothing to our stock of knowledge.

In the case taken in the present letter-and, indeed, in all other cases, where the sum of the pressuree varies as h^{2} or the square of the distance from the top of the wall-it is easy enough to find the centre of pressure, becanse the pressares themselves follow a tnown hydrostatic law. But in some of the most important cases the pressure does not vary as h^{2} : for instance, the equation 8, page 4 of Mr. Neville's memoir, which refers to one of the very commonest cases, that of a wall sapporting a bank sloping upwards bebind it, gives an altogether different law. We do not at present see how it is possible to ascertain the centre of prensare in this instance. (The renult, by the way, is identical, mutatis mutandis, with equation 458 in Moseley's "Principles of Engineering," and Mr. Neville's investigation, though more general, bas the advantage of moch greater simplicity.)

Is there not an error in equation 29, page 11 of the memoir? Patting $8=0$ (that is, snpposing the upper sarface of the bank jaclined at the anglo of repose), the right hand side of the equation vanishes, and, conseqnently, on the left-hand side $c=\phi$; which leads to the strange conclusion that, when the upper surface is inclined at its natural slope, the plane of fracture is parallel to the plane of repose. At the top of the next page, Mr. Neville gives a definite value to the horizontal pressare when the wedge of carth is restiog on a plane of repose. But surely, by the principles of the itciined plane, when a body rests on a plane inclined at angle, of which the tangent is the co efficient of friction, the body will have no tendency to slip forward, and cannot, therefore, require an additional horizontal pressure to support lt.

We scarcely know what is meant by the allasion to Telford in the present letter, anless there be an accidental mistate of ble nane for that of Tredgold;-wo eaid, last month, that Mr. Neville had condemntd the latter from having misunderstood his meaning. On referring to Tredgold's original paper, wo find bis conclasion to be in etfect this,-that if the sloping bank be carried up so high that the plane of fractare meets the natural slope of the upper surface, all the pressure on the wall is caused by the wedge, incloded by the plane of fractare, the wall, and the apper sarface: in other words, however high the bank of earth may be, the additional beight, beyond the place where the plane of fracture meets the surface of the scarp, adds nothing to the pressare on the wall. Mr. Neville says this conclusion is erroneous! But a moment's reflection will show that all the earth behind and above the plave of fractore is in a state of rest by itself, and canoot possibly add to the pressure on the wall. Tredgold further says that lf we were to adopt the now exploded doctrines of Belidor and Rondelet, we should get a different and an absurd conclasion. This is all perfectly correct. Tredgold is not infallible, but he ought not to be blamed for arrors committed by others-be has plenty of his owa to answer for.]

Subsidence of the Peeston Viaduct.-This viaduct consists of 27 arches, and it crowses the turnplike rond from London to Brighton, naar the Brighton termhus. It has been andohed eeveral weeki, and the pripelpal portion of the wooden eentree anpporting the archee taken away, -Apri 11 , the men engaged in ballasting the Itre over the riaduct discovered symptoms of the middie arch, which crosses the tura-pike-romul, haring given wiy. Workmen were immediakely emplojed in plactng timber to support the arch. It was found to have aunk a foot or 18 lachem and whll heve to be taken down and rebullt. This arch was of wider opan than the others, and was the oniy elliptic areh in tha riadect. Some pernom foolishly ascribe ite aubeddesee to ite betog bullt in that form, but it is more probably owtag to the conllnued wet weether, as another of the arches has alnce been found to be cracked. They whll both have to be taken down and rebaitt. Thin line wis to have been opesed in May, but in consequegce of thin anotwerd event the opening muat be deforred.

SETTING OUT CUTTINGS AND EMBANKMENTS.

Sir-Permit me throagh your colnmas to sabmit the following simple formale, for the solation of a most important problem in feld engineering, vis., the correct determination of the balf widths of cuttings and embankments in sidelong groand. While the methods usoally adopted are fur the most part tedious, and all, I believe, merely approximative, the following will be fuund to possess oot only the great advantage of facility in practice, but the result is obtained by a very timple calculation which may be made in the feld.

I need hardly allude, more eapecially at the present time, to the practical importance of this problem, since upon a correct staking out of the half widths, not only the quantity of land required but the amount of the work to be executed is mainly dependent; an error, either in excess or the contrary, being equally ohjectionable-perbaps oven more so in the latter case, since an extra quantity of land would be required, uoder probably less favourable circumstaces, for purchase, and the additional increase to the slopes, subsequent to the first furmation, would be attended with an increased cost in the laboar.

If, in the accompanying diagram of the cross section of a cniting in sidelong groand, $B^{\prime} \mathbf{C} E$ represents the ground surface, H C the depth of the cuttiog at the centre point, corresponding to the same point on the lon-

gitudinal section, H F and H G the half-widthe at the formation level, it is obvious that the simple addition of each slope (calcolated to the depth at the centre) to the balf-widths at the bottom would, in the present case, be inapplicable-rince the widthe so obtained would be too tmall for the upper side and too much for the lower, and the contrary for embankments.

The method now proposed is simply this:-mensure off from the centre stake the half-widths, supposing the ground to be horizontal, and between the centre stake and each of the points so obtained, E and E^{\prime}, take the diference of levei, viz., DE and $D^{\prime} E^{\prime}$; then the distance $H C$, or the true position B of the side stake, indicating the superior edge of the slope
on the lower side, is equal to $\frac{C D^{2}}{C D+D E} \times$ r
where r represents the ratio of the slope, or of the horizontal to the vertical distance. In other words, it is equal to the square of the half width on lecel ground, divided by the sum of the same half-widib and the prodact of the difference of level before observed and the ratio of the slope.

The distance $\mathbf{C A} \mathbf{A}^{\prime}$, or the position \mathbf{B}^{\prime} of the stake on the upper side, is equal to $\frac{\mathbf{C}^{\prime} \mathbf{D}^{2}}{\mathbf{C D} \mathbf{D}^{\prime}-\boldsymbol{D}^{\prime} \mathbf{E}^{\prime}} \times r$
that is, equal to the square of the balf-width on level ground, divided by the differeace between the same half-width and the product of the difference of level, before determined, and the ratio of alope.
Thus, for example, in the diagram, if the depth of the cutting $\mathbf{H C}$ be 20 feet, the half-widits $H F, H G=15$ feet, and the ratio of the slopes $1 \frac{1}{2}$ to 1 , it is evident that the half-widthe $C D^{\prime}, C D$ on lerel ground would be 45 feet:-Let $\mathrm{D}^{\prime} \mathbf{E}^{\prime}, \mathrm{D} E$ (the difference of level between the above points and the contre) be reapectivels 8 feet and 40 feet. Then, by formula No. 1 , $C A$ the half width on the lower side $=\frac{C D 2}{C D+D E} \times r=19 \cdot 2$ feet. And
the half-width $\mathbf{C A}^{\prime}$ (hy formula No 2), the half-width on opper side $=$
$\frac{C D^{2}}{C^{\prime} D^{\prime}-D^{\prime} E^{\prime}} \times r=61.3$ ftet.

For embankments, the values for the upper and lower sides world be exchanged, which is evident by reversing the figure :-

Demonatration.-Draw A B, DE, $\mathrm{B}^{\prime} \mathrm{A}^{\prime}$, and $\mathrm{E}^{\prime} \mathrm{D}^{\prime}$, perpendicalar to the horizontal $A^{\prime} C D$.

Then let $A C$ or $A^{\prime} C=a$
$C D$ or $C D^{\prime}=a$
DE or $\mathrm{D}^{\prime} \mathrm{E}^{\prime}=d$
$A D$ and $A^{\prime} D^{\prime}=a-x$ and $x-a$
$A B$ and $A^{\prime} B^{\prime}=\frac{a-r}{r}$ and $\frac{r-a}{r}$
Where r represents the ratio of the slopes, Then by similar triangles -

$$
\text { AC:AB::CD:DE; or, } x: \frac{a-x}{r}:: a: d
$$

$$
\begin{equation*}
d x=\frac{a^{2}-a x}{r} \text { and } d r x+a x=a^{9} \cdot * x=\frac{a^{9}}{a+d r}=C A . \tag{1.}
\end{equation*}
$$

In the same manner fur the upper side-
$A A^{\prime} C^{\prime}: D E^{\prime}:: A^{\prime} B^{\prime}: D^{\prime} E^{\prime}$ or, $a: a:: \frac{x-a}{r}: d$

$$
\begin{equation*}
d x=\frac{a x-a^{2}}{r} \text { and } a x-d r x=a^{9} . \cdot x=\frac{a^{3}}{a-d r}=\mathrm{CA}^{\prime} . \tag{2.}
\end{equation*}
$$

Q. E. D.

It is scarcely necessary to mention that the above formulse presuppene that the points C, B, E, and $C B^{\prime} E^{\prime}$ fall on the sarface, and are reapectively redacible to one plane, which in fact, unless in very extreme caseh, may be assumed without leading to material error in the result-at all events, the correction woald be so slight that it might be made by the eye; taking the distances $\mathbf{C A}, \mathbf{C} A^{\prime}$ ratber in excess when the point B falls within the surface, and the contrary when it falls withoot.
G. Hawkist.

BROAD AND NARROW GAUGE.

Sir-I bave not a single share in a railway, broad or narrow, and, in a pecuniary point of view, care not one iote which way the Gauge Question may be setiled; but, for the lat sixteen years, I have watched, with the greatest interest, the progress of railway locomotion, and at every increase in the capabilities of the locomotive engine I have rejoiced, as every man ought to do who parels desires the advance of art and acience. Fros recent experiments and from daily experience it appears the eagioes oo the narrow gauge have attained their limit as regards power, while the broad gange engines are susceptible of an increase of power to any extent compatible with safe velocities. The engines on the Great Hestern Ihail. way bave not varied in their dimensions almost from the opeaing of the live,-having a boiler remarkably short in proportion to the other parts of the engine ; but there is now building, at Swindun, an engine, the boiker of which will be of a length corresponding to the long boilers on the narrow gauge lines; the driving wheels will be 8 feet in diameter, and the calculated average velocity with an ordinary train will be 70 miles a hour. We are told that narrow gauge engines are not eafe at velucitics exceeding 45 miles. What an exceedingly bumiliating refection that, probably, the whole of the kingdom will be tied down for ever to a velocity of 45 miles. What is to be done? Cannot our great engineers and acientific men rescue as from this unbappy fix 7 -There is but one bope left for the narrow gauge, and that is, the success of the atmospberic sjstem; but most provokingly, it so happens, that the opponents of the boad gauge are also the enemies of the atmospberic system, and Mr. Stepherson, instead of bolding bis post as driver of railway ecience, by the forse of circumstances fiads himself in the quenviable ponition of its breakeman. It is most devoutly to be wished, for the honour of the narrow gauge, that the engineers and scientific gentlemen who are most unmercifully athecing the anfurtunate atmospberic syatem month after moath in jour raluable journal, would cease their enmity, and, contrariwise, take the almost prostrate aystom, try what they can make of $i t$, and adopt it as a bantling of their own.

I remain, Sir,
Your obedient eerrant,
April 12th, 1846.
8. T.

ON THE MODIFICATION AND ADAPTATION OF THE ORDERS OF THE GREEKS BY THE

 ROMANS AND MODERNS.By H. Fulton, M.D.

"All pations in the mont adranced atate of exviliation have been unapimona in thelr dmintion of Grecien arehitectare."-The Earl of Abardeea.

The learned are agreed and we must agree with thom, that the Greeks derived their knowledge of architecture from Egypt, and its neighbouring nations. Wo find them possessing three orders, all of great beauty; and athough these ordert differ from each other in many respects, yet, in the opinion of all architects both ancient and modern, they may be resolved into one elementary order-the Doric, which, there is every reason to believe, was the original one. In the ruins of the temple of Amada, in Nabia, wo have a very near approach to the Groek example of the Doric colamns of the temple at Corinth, the earliest known example of the order in a Greek dress : indeed, it requires hut little addition to make the Nubian coloma an example of the Doric order, from which it does not differ so moch es the latter does from either the Ionic or Corinthian. Denon, in his delipentions of Egypt, gives a column composed meroly of a futed shaf uppporting a low architrave; this shaft is precisely similar to those at Pastom and Agrigentum. But this inquiry, however interesting in itself, striclly forms no part of our subject; we shall therefore diamiss it by adding, that what the Greeke did we may also accomplish, and find in the rich and almont unexplored feld of Egyptian architecture many examples of detail-particularly capitals-which are capable of being Grecianleed sod adopted into modern practice ; an example of which is given, under the name of the Victorine order, in the Civil Engincer and Architect'a Journal for the jear 1845, and is proposed as a substitute for the Roman Doric, which intention it seems calculated to folfil.
The Greeks then had only three orders, and the Romans in making the sdditioa of two others, effected it, as regards one, by stripping the Doric of all its embellighments, altering its proportions, and supplying a bese for the formation of what is called the Tuscan. And the Composite can ooly be cansidered as a variety of the Corinthian, or a combination of it and the Ionic, and is not entitled to be received as a distinct order; por ahould either the Tuscan or Composite be considered in our clementary works except as mere modifications of the other orders.
That the Romans felt the force and power of the Greek stylo is readily proved by its exteasive adoption throughoat their empire, but that they were pot able to foster the adopted child with the care and affection of its astoral parent, is manifest from the deterioration it suffered in their ha nds. The taste for, and knowledge of the fine arts amongat the Romans at the time of the conquest of Greece were at a low ebb; that warlike people came, and saw, and admired, but did not acquire a trae knowledge of the grad and leading principles of the art as practised by the Greeks, either in painting or sculpture, and still less in architecture. Wealth poured its tributary streams into the lap of all-conquering Rome; everything that riches could purchase was at their command ; and magnificent stractures were soon raised on the spot where formerly stood the rude hut of Romulus; and so great was the change effected, oven in the lifetime of an individual, that, as Suetonius relatea, Augnatus fonad the city built of brick, and lef it of marble. The most distant conquered provinces felt the gevial iofuence of the newly-acquired taste, as the many ruins atill existing in Africa and trans-alpine Gaulattest. Gold has a magnetic power to attract, though perbaps not to create, genius ; but the possession of wealth does not always improve the taste, and although we see in the roins of Posaidonia what Greek artists could do in a foreign land when left natrammelled, yet under the infuence of Roman patronage they were not altogether so successful. It may have been observed that ignorant persons, oa being shown sketches of the three orders, invariably prefer the most ornate; such a prefereace would aloo be given by a semi-barbarous people: but those who love all the three cunnot censure any for preferring Aglaia, to Thalia and Eupbrosyne-nay, we rather rejoice that they should be found to join with us in admiring even one of our beloved Graces, although wo may be persuaded that to love one well, we must love all three. But the Romans went farther than a mere preference, and rejected the cluims of the elder sister; for their modification of the Doric is eren wuree than a total rejection. Unable to appreciate the grand-the sublime effect prodoced by this order, when exhibited on the scale and constructed on the priaciples to which the Greeks trasted for prodncing effect, they appa-
rently cast this order aside; in the firat instance, leaving it for bomely practise perhaps ; then its new patrons finding it, when deprived of all embellishments, the least expensire, and, therefore, when magnificence was not requisite, the best adapted for their purpose, may have turned it into the order now called Tuscan, as spoken of by Vitravius; and althongh subsequently, in such erections as the temple of Hercules at Cort, we see that some vague idea of its former state may have been entertained, yet in Roman hande, neither ancient nor modern, has it up to the present day been treated as if its real beauty were either felt or anderstood; for the thing which the Romans have left us, and the modern reatorers of the Greek style bavo served up to as as the Doric, is no more like the noble order whose name it bears, than Alexander the copperamith was to Alexander the Great.

Nor did the other orders altogether escape modification, as for instance the capital of the Ionic, which, instead of prementing, as in the Greek, two faces and two sides, is made, by the angular arrangement of the volntes, to give four faces precisely similar. There is also a very striking difference between the flowing lines of the Greek and the spiral formation of the volutes of the Roman Iodic. Our knowledge of the Greek Corinthian is very scanty, but wo may, at least, hope its capital, in the best of the Roman examples, has in some measure eacaped unscathed, although in various other matters, such as the contour of the mouldings, the atylobate, and the cornice, axtensive alterations were made, both in the voluted and foliated ordors.

Some person has called the Tuscan the modified or emasculated Doric; this idea mast be grounded on the notion of Vitruvius, who likens the Doric to a man robust and well-proportioned, for take awty this character from him or it, and you take away the virility-that is, according to Johnson, the phyaical character-of a man. The etrength or character of an order depends on the proportion of its intercolamniation and beight of the shaft to the diameter of the colomn itself. Now the Tuscan, as given by Palladio, has an intercolumiation from centre to centre of five diameters and an elevation of seven, and, according to the same anthor, the Doric has an intercolumniation of nearly four and "an elovation of oight or soven and a half at least." Viola and Vignola give the same elovation, and Scamozzi eight and a half, and the same intercolumniation as Paliadio, whilst the Athenian Duric has an intercolumniation from axis to axis of litule more than two diameters, and an elevation of about firo and a half. The ancient harridan, in modern times, finding that the blush of early beauty bas deserted her cheek, and that time has bleached her scanty locks, seeks with pigments to give a colour to the one, and aupplies the place of the other with the stolen rloglets of youth : bet do such dire expedients as the application of paint or the rape of the lock deceive anj one eave herself? So it was also with Palladio and the reat when, with Vitruvius for their guide, they tovk the attennated Tuscan and proseeded to dress it up in the Doric garb, giving the shaft a kind of colour (as it were) by fluting, and hanging a profusion of ringlets, i. e., triglyphs on the brow, the frieve of the order.

It is, however, to the credit of the ancient Romans that this modified order, even when dressed in the manly garb, found litlle favour with them; consequently, we have but few remains of it-some amphitheatres, the theatre of Marcellus, and the temple at Cori, being the only ones handed down to us. Of the deterioration of the other orders, on which the Romans appear to have bestowed their patronage, our proofs are not ao strong: they were the orders which the Greeks, for the most part, used in chees were magaitude-so essential to the full derelopment of the Doric-was not required; hence examples of them were more likely to sufer from the hand of time, and to offer to barbarians and others mora jortable materiale for the erection of their own temples and domiciles; besides, in the age of darkness and ignorance, when Grecian art was as it were eclipsed, men woold naturally view the rast remains of former times (the use of which, as well as the means by which they were or could be erected, were totally unknown to them, as invested with something of a superatitious charactor -the works of genii or giants, who, although unseen, had still the power to avenge their overthrow ; to this may we not, in some measure, be indebted for those precious remains of the Doric order still existing in Greece and elsewhere, and to the absence of its protection ascribe the paucity of examples of the other urders in the same localities?

It has been stated by an accomplished writer on architecture, Mr. Hosking, that if two persons, acquainted with the Doric order, were desired each to give a design of a Greek temple of any specified class (the dimensions of a single column and the proportion the entablature should bear to it being given), the designe would be exactly similar in size, arrangemeut, featurea,
and zeneral propartions. Bach is the tringent nature of the Greek Dorie, In which respect it is anique. The triglyphe, when given, are the inder of this proportios, aod, exoept over the colamas at the angles, we find ooe over the axis of each : at the angles of the edifice the colomn is placed so mear to its proximete, that a line lot fall from the outer edge of the triglyph will touch the ciroumferential line of the column at its base, that giving iacressed atrength to the structure. Staart makes the measurement of the columes at the angles of the Parthenon $6^{\prime} 8^{\prime \prime} 5^{\prime \prime \prime}$, and thone between them 6' $\mathbf{1}^{\prime \prime} 8^{\prime \prime \prime}$, and the intercolmmaiations $5^{\prime} 8^{\prime \prime} 8^{\prime \prime \prime}$ and $7^{\prime} 11^{\prime \prime} 5^{\prime \prime \prime}$. But the restorers have modifed this oither by giving half a metope outside the triglyph at the angle, or by abowing a dinregard to any raic, as we see in the portico of the Univernity Clab, in Suffolk-Etreet, London. In auch cases as the last-montioned, would it not be in better tasto to omit the triglyphs altogether (as we find they are in the pronsos of the Greek examples), and substitute sculpture in their stead. Wo stated that it was the rule to have only one triglyph between those oper the axis of each colamn; there is, bowever, an axception of high autherity, as may be seen in the Propylea,-but it forms the exception, not the rale; and although this atractare is very beautifal in other respects, yet did we not know that it was erected in the age of Poricles, when art was in its senith, wo should, on acconnt of this deviation from the general role, have ascribed it to a period subsequent to the Roman conquest. It would appear that the resson of this wide intercolomniation between the centre columas of the Propylea was, that a larger apace might be left for the pasmage of equestrian procesasions to the Acropolis. If we were congtrained to assume the functions of the judgment-seat when the example was pleaded an a precedent, our decinion should, in legal phraseology, be, "Lice cave only like rule." But let us not forget that although we may pay the closest attention to all the minotise of the Greak modele, yet a repotition of the Doric in small cannot be effective, for magnitude is indispemsamle.

Although the Romans proved by conquest that they wore auperior to the Greaks in arms, yot they were inferior in arts, and for a time had recourse to the importation of Greek artists, and, in the reign of Domitian, columns were taken from an edifice in Greece for the purpose of rebuilding the Capitol ; but such was the taste of the Roman architects, that they were altered andar the pretence of being polished, and, as Plutarch, who sat thom previously in Greece, enys, "they gained not so much in the polish as they lost in proportion, for their beavty is injured by their appearing $t 00$ sleader for their height." In the old church of Aracell, on the Capitoline hill, which contains many antique columns, there are some, not difficult to imagine as being the identical ones alluded to by Plutarch. But the wholesome stimulus of good taste in the employer conld not be imported as early as the artists themsolves, and it is in the astare of the mind not to produce beyond what is required of it. Who will be at the pains of cultivating a flower that mast be

$$
\text { Mxd waste its awestrens on the desert alr } M
$$

It may be replied to this that the ancients, both Greeks and Romans, pot the highest degree of finish on parts thet never could come nuder observation as long as the buildings atood-but not so; for superatition invested their gods with the power of visiting their temples, and hence every part which might poasibly come under their acrutiny was made as perfect as poasible. Another cause for the modification of the tranaplanted archicecture was the scarcity of materials of sufficient magnitade to coastruct buildings with on the Greek modele: if, under such circumstances, Greek employers had been substituted for Roman, and Rome had become a Greek colony, then, indeed, there can be no doubt that all the modifications which materisls rendered necessary, would have been guided alone by those principles which had sustained the character of Grecian arahitecture as the first in the world-superior to the Egyptian in this reapect, that whilst, with less bulky matorials, it presorved the character of grandeur, magnificence, and simplicity of ontline, it imposed thereon an elegance and harmony of detail, which made it rise superior to its prototype. But no such fostering induence met it on the banks of the Tiber: the ancient Romans, like some moderns, had indeed a great desire-a longing after magnif. cence, withont being aware of what its constituents were;-possessing the euperiority of conquerors, they were too ignorant-too vain, to learn, or rather submit, to the taste of the vanquished, whose productions they condeacended to appropriate in order to grace a triumph and mark a conquest; and although we see in the earlier works of Italy many vestiges of the good tasto of thoir inatructors, yet a history of its progress under Roman patronage would be a narrative of its declive and fall, for other principles gaided them subsequenily, and they in vain sought to give their edifices
that grandenr, which the Greoks had been able to effect by a far difereot method. The art appears to have rus riot in Roman hadd, if we are to ascribe to them the orection of Baalbec and Palmyra, entire cities buik on a scale of magnificence and splendour whlob woald not be credited were the fact not attested by their exiating ruins;; yet these ruins, extondive as they are, possess no foature worthy of our imitation, axcept it be a fow details of mouldings which have been introdaced into the interiors of our domentic edifices.

The principles of the one school were anre and fixed, and incapable of beiog perverted, whilst those of the other were unctable, and led to every possible variety, antil they brought ruin on the art, and so early as the times of Diocletian, obliterated almost every vestige of its origin. In sowoeeding ages, which wo call dark, architecture lay buried under its own rains : but the most sanguine enthusiast could scarcely have anticipated thas out of this chaos a uow style should have been created, having claims on the admiration of posterity; and that, in the hands of men who have left no written or other record of their knowledge of science or art, the examples of the florid Gothic of the middle ages should have been brought to that state of perfection which we cannot surpass ; this, howover, forms no part of our present enquiry. Subsequent to this period, there arose in Italy another set of men, who did not aim, like the Freemasons, to creato a new style, but professed, by the aid of the works of Vitravias, to resuscitate the ancient one out of the incongruous materials by which they fonnd themselves surrounded. If, instead of doing this, they had coasigned Vitruvius to oblivion, and followed the axample of the Preemasons, they might have given us something good-at all events, they conld not have given us anything worse than the so-called revival. Greak models they did not reek for, bat oven if it had been otherwise in this respect, we bave no reason to suppose that the purer specimens would have found more favorr in their eyes, than the beat of, the Roman did. Serlio and Palladto drew and published almost all the Roman examplen existing in their day, yot, in their own desigas, show how little thoy studied the beat of them, except to copy a capital or a cornice.

The restorem who flourished principally in the fifteenth century are called for the aake of brevity, the Cinque-cento school; they were all of the same country ts the earlier debasers of Grecien art : eminently smocesaful in painting and sculpture, the Italians fell far ahort indeed In architecture. Unacquainted with the Greek models they yet set about the restoration of the atyle; their country naver possessed any example of the pointed Gothic worthy of attention, and indeed the very name Tredesers impinges harahly on an Italian ear, and the mere suspicion that Germania was the conntry of ite birth was sufficient to oreate a prejudice in the mind of an Italian patriot; so it was altogether passed over withodt notice, and our own Jones and Wren, not finding any mantion made of \& by any of the admired anthort of the Cinque-cento school, at onoe stigmetised it as barbarian; bat it is remarlcable that in proportion as the beaufy of the pure Grecian is known and felt, so is that of the Gothic appre ciated; and so it ever will be in art, a correat teate in ano braceb loading to the due eatimation of othert.

It is true that the cbange of habits and the difforence of climate may, in many respects, render what was once appropriate not fitting now, and in must also be admitted that all the examples of Greek architecture which we have, are either of the tomplar or monamental description, and therefose may not be aujted for domestic edifices. We know from the somewhat Greek town of Pompeli, that a great difference oxisted during the first century in the style of domentic edifices, and no attempt was made to render the former similar to the latter, bat, on the contrary, it was at one period ualewfal to make the attempt in Rome, and not customary in Greece; for Julius Camar obtained permisaion by a decree of the Bemato to make the front of his house like a templo, and Damosthenes, about a century after the death of Poriales, directed the thunder of his oloquence against the practise as an innovation. Colamne, both square and cylindrt cal, were however much used for internal decoration and constraction in Roman bouses, bat the exteriors were plain, and for the most part, devoid of all arcbiteotural ornament : according to Vitravius, the exteriors of the town honses were quite plain, all ornament boing reserved for the interior; just as we see at Pompeii, and as is the custom in the towns of China at the preeent day. However, in the so-called reviral of Greak architectase, any building, although its ontlice might be broken np by receding or advanoing wingy-although it might have a pediment in mockery only of a gable, or not extending the entire length of the façade-although it might havo its friese pulvinated, ite atylobate not graduated, its intercolumpiations exteaded, its columns (mome of them sinecare) of different anders-
attenuted, unfated, conpled, and monnted on atile: its antro futed, diminished, and capped, as cylindrlcal columns should be; ite cornice crowned with an attic, or perhaps a baluatrade; jts shallow porticon mere afterthought, adranced in front, and thos made the only prominent feature in the composition; instead (as the painters would say) of overy part being warked into each other, so as to produce one whole;-or, in short, although it might bave all the characteristics of the cinque-cento school, provided that in some respects it bure the resemblance of a caricature to the original, it whe desiguated as a Greek conposition.

In this so-called revival, abondant nse is made of columne, particularly as dressinga for windows and doors; and here there ls a marked departure from the principles as practised by the ancients and even as lald down by the reatorers themsplves, namely, that the intercolumniation should not exceed a certain width. Palladio, in the 13th chapter of his first book, says that "the intercolumniations of the ancients never exceeded three diameters except in the Tuscan." Now if only three dlaneters, or four from centre to centre, be given, the opening woold be too narrow either for a door or a window ; hence the ase of them in such situations in practice is contrary to the principles so peremptorily laid down in theory. The great object to be attained in the use of columns is the depth of shadow, which has been called the chiaro-scuro of architectural composition, but as window dressings are stilted on a lofty stylobato they degenerate into mere quasi ornaments, affording no shadow that can be seen. Tbe practice of wide intercolumniations in order to admit a wladow or door in defeaded on the groond of the columas beiog attached, and therefore not requiring to be limited In the interspaces ; but thia reems like doing a thing in the first iactance, and finding out an excuse for it afterwards ; and there appears to be no good reason for placing them in anch aituations, as they then convey no idea of atility, and a wide intorcolumniation and lofty situation prevent their being ornamental; besides, attached columas are only to be defended on the ground of their harmonising with those that are insulated, and this they do not when placed as door or window dressings ; but it cen scarcely be anid that when so placed they are atfached in the usual acceptation of the term, for the architrave, or whatever may supply the place of one, has nod the ald of any other sapport.
For the practice of coupling columns, an expedient by which the simplicity of the composition is marred, without any commensurate advantage being obtained, we are sald to be indebted to him who was juslly called the Prince of Palnters.
We must not omit mention of the practice of adapting single colamns for monumental purposes. The frat example we have of this is the Alexandine colomn, called Pompey's pillar; thea the colomn of Phocas at Rome; these are both of the Corinthian ordor. Of an earlier date than the latter, we have modifcations of the Doric in those of Trajan and Anroainas; and in our own times, a copy of Trajan's in the Napoleon at Paris. In England we have several of both orders, bat we are not aware al any in the Ionic. The legitimate practice of architecture rejects a codumn in the singular number, except as a fractional part of an edifice, and always requires, in the horizontal styles, that it should be surmounted by a anitable entablature, in order to give it that completeness which the eje seeks for from asociation-the architect's line of beanty, from which be is slow to admit of any deviation. Although, by their sculptored reliefh, the columas of Trajan, Antoninus, and Napoleon, are in a great measare taken out of the class of edificial culumns, yet they, as well as those not so circumstanced, are ansnited for the reception of figures on the anmmit; for if the figure bo badly designed and executed it should not have place anywhere, and if well deaigned and execnted it is lost to the eye by its exaggerated elevation. An Irish round tomer or an Egyptian obehak ofors a more appropriate model for a monument or landmark than any modiscaticn of the clasaical orders.*
In a Greek composition the columns may be sald to form the building itealf (sapporting ita entablatare, on which the roof is imposed); not ranged is broken lines, for the purpose of pictorial effect, but presenting 20 integrity of outlibe-giving the ides of completeness and unity of one whole, and sot several parts bedly onited in sise and form to be joined tegether; for, as an accomplished writer has aid, "chowever atarting it may be in geometry, it is true in taste that a great many little things do mot make a great ooe." It has been justly suid that all the parts of a Orat composition which are asefal or necescary are rendered pleaning, and what is beautifal eppears to be necesary. The aspect of a building of this description will be a bold aubroken outline; the ornmental parts

[^21]from a distance, will eppeur anbdued, so as not to interfore with the appearance of unity, and merely solicit a closer examination; and when, wo obtain this, the eye approaches, the most highly fioiabed detaile alone lay claim to inspection,-litnese, completeness, and harmony, will be the distingriahing characterlstics throughout the entire. Let us bring some of the edifices erected in the so-called revired style to this test, and the differ. ence in the effect produced shall at once be evident. If then our most elaborate and expensive compositions fail in this, should wo not inquire how the defect might be remedied? Perhaps it may be urged that gran. deur, magnificence, soblimity, and harmony, have all been attained in the forid Gothic ; but it must be comsidered that although in detail this atyle is trifing, weak, and often ridiculous, yet the parts in themselves are so minute, and the outline so bold, es rather to afford a proof of the contrary. There was a man who dared to work out the Greelz principle, and that man was Michael Angelo Buonarroti-a name that stands secoad to none either as paintor or seulptor, \rightarrow name which it is dificalt to decide as meriting more praise or censure as an archifect. In the noble cornice of the Farnese palace, and the daring dome of 8t. Peter's fane, we have the principle carried out on another model; the remainder of the Farnowe palace was designed by San Gallo, and cannot be laid to the charge of Michael Angelo.* But if, after seeing the dome of St. Peter's, we croes the Tiber, and look at the Capitol, we Ind it hard to believe that it ta the production of the same hand, and would willingly ascribe it to some other San Gallo did truth permit. The beanty of the dome almost covers all the architectural sias of the rest of the edifice, but the Capitol presents no such redeeming featare ; all is trilling and anworthy of the name and site, and fit only for the labitatiot of the feathered guardians of the mouat —whose effigies in bronse it containg, -but not to crown a Roman Fozom oven in ruins !

It must at the same timo be mentioned, to the credit of B nonarrot, that his plan was to make St. Poter's in the form of areek instead of a Latin cross: with the former fignre the dowe would have been more effective exterforiy, and on this acount it is to be lamented that a cectarinn feeling of prefereace for the abstract figure subsequently prevailed over the better taste of the architect. We participate with Sir Joshua Reynolds in the admiration he expressen for "thistruly great man," and gladly turn from his fanits to admiro his axcollencies, and see in the dome and coralcione the efforts of genies emancipaling itself from fhe trammels and false principles of a vicions school. He alno intended to have given a portice to St. Peter's on the plan of that of the Pantheon of Agrippa, instead of Carlo Maderno's miserable façade; ench a portico, with a colonnade of the same order, on the plan of the present one, but having its entablatare and stylobate on a level with those of the portico, would indeed have exhibited what the art was capable of effecting, and given a coup deril superior perhaps to anything in art the world has ever yet beheld. The genias and taste which designed such examples is the dome and cornicione are exaclly what we most require in modern times; not, iedeed, for the production of isolated features to redeem a composition from censure, but as parts only of works in which the same character thall be ourried throughout the entire.

Much has heen writtea by eccomplished anthors on the subject of taste, and rules have been laid down for the formation and direation of it. In an altogether artilcial art like architecture-a mere creation of the mindwe can glean bat litule from nature for our goidance, and are driven to refor to the best models of each particular styic to form our sules from what we there observe; and tt would be wise to take it for granted as a general rule, that thoee who had the genius to invent a atyle or aub-division of ose, were the fittert permose to give rales for the guidence of those who were to foilow them as copyists; therefore it would, in most cases, be more desirable to invent a dew styie foe oar parpose in preference to violating the rules observed in the old ones, or appiying their peculiar and striking details to other purposes than thoee for which we find thear invented. The architect who does so may indeed lay ciaim to a kind of invention, but it is of the lowest description, and is anything bat a proof of genius. Hud we known nothing of Groek arohitecture ave what we see in ita restora. tion, doubtless we should have thought these restorations very beautiful, and have been perfoctly satiafied to have formed onr tastes on such modela; bot a single glance at a Greek peripteral temple would awaken in os new sensations of pleasure, and leare an impreasion that woald nevor after. wards be obliterated from the mind. Seldom do oer climate and wants edroft of the ereotion of such a structare, but happy indeed must be the lot of the architect to whom anch an cecasion chall fall of offering that, ihe
sight of which is pre-eminently calculated to form the taste both of the public and the profersion.

It was unfortunate that architecture, at the period of the revival of the Greek etyle, was taken up as a profassion by painters, whose minds are too much imbued with a love of the picturesque ever to admit of their producing a good effect with such materials as wood and stone. The carpenter's plane and the mason's chisel completely remove all that gives picturesque effect to the tree and the rock ; and the painter seeks, by the arrangement of the principal parts of an architectural composition, to produce that a skilful architect will effect by the minor details, namely, a variation of light and shade-not as the principal feature of his picture, bot merely as a tinting; to obtain which he has not sacrificed either anity or simplicity. It matters not then to the painter-architect whether his colvmns be fiuted or not; all he cares for is to avoid what is not his line of beauty-a atraight one, which happens to be the very main-spring of beauly in Greek composition. The generality of mankind are better informed on the subject of painting and are better judges of it than of architecture; hence, so many side with the painters, and architects are driven to succumb to the ruling taste of the day, and to fashion their de sigas, not with reference to how they must appear in the solid, hut to how they do appear as pretty pictures on paper. It will not avail anything to argue this with the painters, for-

> "Condince a patater agalnat bis will,
> And he'll hold the ame opinion atllu."

Nor atill less can it avail to argue with those who are led by the opinions of the painters, and such are the great mass of those who compose what are called Committees of Selection, who must be treated as children-as babes in knowledge; and, instead of giving them a toy, which they would in a atate of innocence seize with avidity and soon after as capriciously throw aside, something that they would prefer and continue to estimate when their jodgments ahall be more matured and their tate improved should be given. It is generally admitted that the Propylea at the London terminos of the Birmingham Railway is one of the best examples in this country of the Greek style, and justly, one of the moat admired; yet we should tremble for its fate if its geometrical elevation were to be exhibited before a Committee of Selection in competition with one of the façade of the Goldsmith's Hall, the production of the same architect : in short, the latter would appear on paper, to the eye of a committiee-man, as much preferable to the former, as it does in stone to the eye of every one. An architect of genias will reject the opinions of such tribunals. Let committees say what they require, and provide the funds-that is their legitimate portion of the division of labour. Would any of the great painters (to whom their art is so much indebted for a trne revival) have submitted to the control of ignorant monks (who were their best patrons) in handling their works? Did Titian alter his atyle because these monks objected to his figures appearing to stand out from the canvas? And shall architects be leas froe from the intermeddling of ignorant pretenders? It is greatly to be feared that too many in the profession are fettered by the opinions and tasta of persons who neither know, nor even profess to know anything abont the art-a state of things which it is veither the interest of the pablic nor the profession should be maintained.

In reviewing the modifications which the atyle experienced in the hands of the Romans, one of the most important is to be fonnd in the arrangement of the portico, which, in all the edifices remaining in Greece, Magaa Grecia, and Sicily, with the exoeption of the two porches attached to the little octagonal tower of Andronicus Cyrrhestes, called the Temple of the Winds, forms an integral part of the design, from whioh it is impossible to consider it eeparately. The earliest example we have of the Roman modification is tbat of the Pantheon of Agrippa. This magnificent portico, raised on a graduated stylobale of nine steps, has eight columns in front, and, reckoning those at the angles, three and an antse at each side; if the colvons were fiuted, and the antse not, and these latter had anitable mouldings instead of foliated capitals, this portico would perhaps ponsess all the excellence that tate could require or fancy conceive. The necessity for an isolated portico in that instance is obvions both from the form and magnitude of the principal building, which, for the latler reason, at once forbids the attempt to make the cornice of the one correspond in live with that of the other. The unornamented state of the Great Rotunda aiso suggests that probably it either was, or was intended to be, concealed from obsorvation by surronnding buildings, learing only the stately portico itsolf in view; however this be, the idea of what may be either aalled an attached or a detached portico seems to have been seized with avidity in modern practice, where it is made not an ornamented part of the design,
but rather a mere ornament attached to it. In many instances the dim. culties arising from considerations of expense seem to be more ponerfal than good taste in infuencing the selection of a starved-looking portico of four columns only in front, instead of six or eight or more, which wouk have occupied the entire field; and for the same pecuniary reasoos, the rear ranks of columns, which, by the depth of shade they afford, are so essential to the beacty of a portico, too often aro dispensed with. In the instance of the nine colnme portico at Pastum, we see bow indispensable the Greeks considered it to be that the integrity and onity of outline should be preserved. In more modern practice, a building of this description would probably have been furnished with ooly four or six columas in front, leaving the angles of the exterior of the cella either naked or with a pilaster; thus making the cornice of the portico and that of the rest of the building on different ranges. One of the most beautiful, as well ts one of the most perfectly preserved examples of Aoman taste we have is the little pseudo-peripteral temple at Nismes, called the Maison Carrée! If, with a transposable model, we take away the fianking columns of the portico, or attempt any other arrangement of them, unless it be to make it peripteral, it will be seen how much it may be deteriorated in effect: bot it seems unnecessary to enter into a lengthened condemnation of a modifcation which no one attempts to defond on the acore of good taste, though many practice it on the plea of saving expense, as it must be their porerty and not their will which consents.

Another departure in most of the Roman examples, from the plan of the Greek portico is the larger space left between the two centre columns. In the Ionic and Corinthian orders if not carried to excess, this is scarcely perceptible, but in the Doric it necessarily requires an additional triglyph, and is highly offensive and painful to the eye, as the architrave is elongated, and of course apparently weakened at the place where it has to suskain the loniest and weightiest portion of the pediment ; for although in building (using the term in contradistinction to architecture), it may answer every purpose if the supporting parts be snfficiently strong to bear the itrposed bunden, yet in the higher branch which commends iteelf leas to the judgment than to the ege, that organ must be satisfied both from analogy and comparison: forinstance, the inclining tower at Pisa was erected, and acquired its present inclination of about twelve feet from the perpendicalar about 670 years ago, and although the spectator may be assured from the experionce of so many centuries that it may remain some years longer, pet after the first effects of astonishment subside, it is a painful object, between which and the eye it is impossible to effect a reconciliation.

It was the practice of the Greeks to make the base of the triangriar pediment correspond in length with the cornice on which it was imposed, just as we see a capital correspond in diameter with the neck of the shat which it crowns; but it is now the practice either from poverty of taste or of purse, or both, to place on the cornice a pediment with a shorter base; it wonld not be more at variance with good taste were we to suggest that for the sake of harmony the capital also should have a less diameter than the shaft ; and again, the pediment was the crowning feature of the composition, and had no wall, attic, or parapet either pierced or unpierced above it, but just as the capital was piaced on the summit of the shaf; modern practice in the management of pediments is frequently otherwix, and we might with propriety propose that when it is deemed advisable to^{0} surmonnt the pediment with a mass of bailding, the colomns also shoald have their elevation increased by the addition of a portion of shaft placed above the capital, but if any object to this suggestion, then we have only to reply that our proposal is as capable of defence as their practice, and we are willing to let both fall together. We are confident that Mr. Hay will agree with us on the justness of the hypothesis, and from bis adairable works on the harmony of colour, form, and proportion, we could not appeal to a more able judge.

The rage for pediments appears to have commenced in the reign of Diocletian ; not satisfied with one at the gable ends of each edifice, the exaggerated taste of that day required that they should be represented in small, and turned into dressings for doors and niches; the latter in some measure correaponding with our windows, thas making a kind of mochgable where no real one could posslbiy bave place. Such a description of window dressing, although more expensive than appropriate mouldings, is very fashionable in our own times, and was also much used by the cinquecento restorers.
The discovery, or as we should rather say, general introduction of wio-

[^22]
dow glass, eanes a great dificuliy in the arrangement of the Greek templar edifices. That the Romans were aware of this one of glass is evident from the discovery of it at Pompeii, as noticed in the second'series of Sir William Gell's work, but they appear to have availed themselves of it 80 seldom that for a long time it was thought they were not acquainted with it. The little use arade of it by them is to be accounted for, parly from the bad quality of their glase, and partly becanse their plans of buildings were antured before the invention was known; and their in-door worship did sot require that the light of day should be admitted into their temples. It is quite idle now to dilate on the disadvantages of introducing windows into Greek compositions; the necessity for them is paramount, and all that remains for us to do is to render them as little discordant as we can; nor are we without Greek and Roman modele to guide us, as may be seen in the temple of Erechthenm, at Athens, and that of the Sybil at Tiroli. In both instances they are of the size and form of ordinary windows, and merely ornamented with mouldings. The inside of the jambs of those in the Erechtheum are revealed, as if for the insertion of window frames, and They were most probably filled up with thin plates of semi-transparent marble, such as those spoken of by Pliny, and found in the Parthenon by Wheeler. The Chinese sometimes use thin laminse of the mother of pearl osster-shell, but more generally oiled silk for the same porpose.
In the palace of Diocletian we also find the pulvinated frieze which was taken into high favoar by the Restorers, and not jet entirely laid aside in modern practice, though otherwise left nadefended from the condemnacion it has met with from all authors who heve written on the subject: it looks in effect as if the frieze had been made of some sof material, and had given wey noder the pressure of the cornice, a semblance of weakneas which may barmonize with the works of the cinque-cento school, but is Lotally inconsiatent with Greek principles of constroction; indeed it is difbalt to conceive on wat ground it could be recommended, or to guess why, except from carelessness, any architect of ability should disgrace his composition by its introduction, as we see it in the facade of one of the mont admired Club-houses in London; but as this edifice, like the Farnese pelace, has also a redeeming cornice, may we not be indebled for its window pediments, puivinated friezes and balustrades to, the taste of some modero San Gallo? The pulvinated frieze was thought to be a proper accompaniment to the Roman Ionic capital, and it must be admitted that the capital is quite good enough for such a frieze.

Many and great as the modifications of the Romans were, they are chargeable with nothing so preposterous as turning the gracefnic column into a hideons pigmy, for such is the dwarf column or baluster of the Rectorers. Florence, the Athens of Italy, is sald to heve been the city of its birth in the first centory of the revival; that it ever could have entered into the head of an urchitect to invent such a thing, is somewhat difficult to believe, indeed as much so as to discover the reason of its preservation in modern practice in preference to various other forms of rails and piercinge. It may be described as an nohappy little column compressed into deformity by some process analogous to that by which gobbi (for which Italy also is criebrated), ere made; and it is ofen introduced into a composition into which colnmps of due proportion entor, doubdless in perfect consistency with some lews of harmony with which we are unacquainted.

A striking differedce in the practice of the Roman and Greek schools is to be found in the formation of corved mouldings; those of the former being parts of a circle may be formed with compasses, whilst those of the fatter being excentric can only be drawn by the hand, and are in fact the lipe of beanty of Hogarth, in whose time what are now known as Roman, were supposed on the authority of the Restorers to be Greek mouidings. For e careless architect, and an ignorant employer, the Romen forms may do well enough, but by those who have eyea to see them the Greek will be preferred.

Both schools (as far as our observations extend) appear to have agreed in all cases on the necessity for a atylobate, although they differed much a to its form ; in that respect modern practice is not similar-for we have mose many porticoes without any, though none so circnmstanced that would on have been improved by the addition. With the Greeks it was formed $2 a$ three receding courses, proportioned to the diameter of the column ; but with their imitatora no rule of any kind seems to have existed, except indeed, that the ancients, when it was formed in receding courses, thought it necessary that the number of the courses should be odd, in order that the tuaple might be entered with the right foot in advance. It might appear whibout due examination, that the triple arrangement of the atyiobute was in itself a matter of small importance, but those who have observed the Greet pleo particularly, in the Daric order, will not be of this opidion, or
admit that any other nomerical arrangement could prodace the same pleas. ing effect. The most searching ecrutiny into the practice of the Greeks, not only in this but in every particuiar relating to the art, must end in convincing the mind that they exaclly attained the point of beauty. It would appear from all the Greek examples, with the exception of the Choragic monument of Lysicrates, that columns when used exteroally, were intended to have the appearance of uffording facillty of entrance into the edifice, or to harmonize with those that did; which intention would be entirely defeated by a lofty stylobate, and in modern practice it has often too much the appearance of a penurious expedient in giving a small column instead of a large one, thus showing a starved design. Besides, when columns are placed so much above the point of sight, as they frequently are, they fail in producing the desired effect. In modern adaptation we see an unhappy expedient, if posaible more fatal than that of endeavouring to gain elevation by a lofty stylobate; we allade to the practice of piling columens upon columns. It cannot be denied that the entablatore onght to be in proportion to the height of the façade, and therefore the superior must have in śch cases a greater projection than the inferior ones. How can any harmony, any just proportion, any simplicity be attained in such composiLions?

In this adaptation, for which they are not adapted, the columas and their accessories, whether they be of the same order or not, or whatever the scholastic arrangement may be by which their order of succeasion is regu. lated, are debased, and the expedient refiects no credit on their compilers. The most remarkable instance in this conntry of the practice is the façade of St. Paul's. Sir C. Wren never sinw oither a Greek or Roman edifice, yet hls frat thought (and first thoughts are sometimes best), was to make it with only one range. The practice seems to have arisen with the Romans, in the construction of the amphitheatres, for the interior arrangement of some of the Greek temples can scarcely be considered as a precedent.

By far the moat important modification which awailed Grecian architecture on its reaching the banks of the Tiber, was the engrafting of the arch. That the Greeks wore acquainted with this valnable sddition to the saience of construction is not certain, for although many persons have inferred it, yet none have been able to prove the aftirmative. It is certain, however, from the corbelled dome of the treasury or tomb at Mycene, that they were at a very remote period acquainted at least with its form, thongh not its principle. To the Elomans has been given the credit of ita invention, and they may be entitled to it, but not excluaively; for the diacovery of Mr. Hoaktas the traveller, in Ehiopin, sets that point at reas. At Meroë, the ancient capital of Ethiopia, he found in the porch or entrenee to one of the pyramidal tombs, which he fairly supposea to be of graater antiquity than any similar structure now existing in Egypt, a regalarly constructed circular headed arch, with a key stone, supported by lateral pressure. This arch consigts of alternate conrses of four and five stoces, and when there are only the smaller number, there is no single keystone. The span of the arch is five feel. At Gebel el Birkel, near the fonrth calaract of the Nile, in the interior of another pyramid, he found a pointed arch supported in the same manner, having a joint at the apex, and apparently of a later date than the former; he also fonnd a brick arch forming the tomb of Amunolph Ist, at Thebea, and this arch wes constracted exactly like those of the present day, and had a span of eight feet six inches. As this king reigned 1650 years before our era, we can at once fix its dato as nearly 600 years anterior to the building of Rome." It has been atid that probably the bow which the Great Architect of the Universe has placed In the Heavens, fornished to the Romans the idea of the arch in construction, if so, they soon attempted to improve on the model, by the introduction of the dropping keystone, which destroys the similitude. Or it may have been that as mathematicians aseert, the circle to be the most perfect of all figuras, it was deaired to refute this and "' relieve the eje" from its monotony, by giving a figure with a broken oatline.
Bat, however the Homans may have arrived at the knowledge of the arch, it soon became general, and its introduction was fated to dentroy, for a time, the architecture of Greece, and raise out of its raine another style to compete with it for a share of the admiration of mankind. Long before we find any traces of the Greek orders in Bome, we see the arch in the Cloaca Maxima, which was constructed abuat the jear 819 , before our era; after this we have it at Pompeii, and in the triomphal arches and amphitheatres of the first and second centuries, when we see a striking and futal departure from the Grecian rale, as to the width of the intercolnmnia-

[^23]tion occasioned by the combination of columns and arches in those structares. When in this examination we pass on to the temple of Antoninus and Fanstina, we find that Palladio gives in the restoration of this edifice court in front (not now to be traced), part of which he says he saw removed, end in this restored court wo have an arcade nearly similar to what he gives es that of the Corinthian order; then at the palace of Diocletian at Spalatro, we find arches springing from columns, the germ as it were of what was efterwards to be perfected in the pointed style, and produce the clustered column and the lancet arch, which in the long drawn aisle and fretted vault exhibit the glories and trinmph of monastic architecture; for however that atyle may be indebted for some ideas to the Saracenic, imported at the time of the Crusades, yet at Spalatro we have incontrovertible proofs of its origin, even to the grotesque human heads and the zigzag ornament we erroneously call Saxon, and suppose to be peculiar to that style. Here we have also two legs of different arches springing from one column, both with and without imposts, the columns themselves raised on consols, these latter being ornamented with grotesque heads just as they are in the Gothic. When then we hold in one hand an elevation of the Parthenon, and in the other one of the Cathodral at Cologne, however utartling it may appear, the style of the latter is a modification of that of the former. Some architects have drawn rather too largely on the harmony relationship might be supposed to maintain between the two atyles, and have grouped them togother as we see in the Duomo at Milan, and some of the alterations at Weatminster Abbey.
It must be admitted that the Moorish architecture existing in Spain is very similar as regards the support of the arch to that at Spalatro, but when we consider that all the Mediterranean const of Africa was a Roman province, and see in it the remains of an earlier and purer state of art, we may reasonably infer that Africa was also indebted to the Romans for the introduotion of the method of raising their horse-shos arches on columns.

Of Grecian domestic edifices we absolntely know pothing, except through those of Roman taste, and we may fairiy conclude that those of the former differed as much from the latter as the public edifices of the two people did : however it is in vain to speculate on this point, and we must 1ake the Romans as we find them, in the disinterred oity of Pompeti. One thing very worthy of obeervation in the Interiors of the edifices of this place in which thoy differ so mach from thowe of more modern times, is that in almost every instance the hand of the architect is seen, and not the mere monotonous arrangement of a common bnilder. It is very true that difforeace of climate and habits prevent us from taking the Pompeiian houses as erodels for the construction of modern domestic edifices, yet much may bo learned from a atady of them, and the pleaning variety of charactor that may be given to interions by a jadicious architectural arrangement too often overlooked by as. An inspection of the house of the late sir John Sonne will show what can be done in this way oven in an edifice of ordinary alme and exterior, and in this point of view, independent of the modela and treasuree of art which it contains, the logecy of it to the nation is a bequest that can scarcely be too highly valued. It is curtoas to observe the similarity in the ground plans of the domestic edifices of the Chinese and thowe at Pompeii ; and also between the temples of the aame people and thone of Egypt, the details indeed have nothiot in common in oither case, bet the plase are mneh more similar than anything to be fonnd of a modern date ofther in Italy or Egypt, aro to the ancient buildings of those coontries.

Both the Elizabethan and the Itallan villa style are modifeations of the Greek; and it is remarkable that when once we leave the fountain head, the farther we go from the source the clearer the stream rons, i. e., when the modification ceases to bear that kind of resemblance that a caricature has to the original, it presents something original in itself, and ceases to bo offersive to the eje. Pertaps the great merit of these styles when used for domestic purposes consists in thoir plimency and freedom from strict rales. When well derigued they present pleasing compositions, but never can aim at anything bigher.

The Greek style has suffored much from its professed admirers and rostorers, and it has now to suatain an attack from its avowed enemies; for in our own times and conntry the senseless ory of no Pagen, no Heathen, is now raised against it; as if the style which the short-aighted bigots have selected to supply its plece were not equally obnoxious to the charge. Do these anti-Pagans not recollect that many of the sacred writings from which they profese to draw their religion, were written in a Pagan tongae; and that to soquire a knowledgo of it and enable them to tench their religlon to others, they store their minds with the history of all the aboming.
tions of Pageniam? Whether the Greek style be mone suitable than the one they have selected for the erection of thefr temples we do not protend to decide, but we do maintain "that things which are equal to the same an equal to one another"-and further, that the Christian dispensation wes not intended to overturn any of the practices, inventions, or inatifutione of mankind which were not repuganet to its own laws and precepte. Aecording to some the great temple of Jehovah at Jerusalem, was in the Egyptian atyle, and to others in the early Greek of Prestom: in either case the style must have been the same as that employed in the conatrus. tion of Pagan temples. The Rev. James Dallaway, in his Disooveses om Ascritecture, has fallen into an error in eaying that 4 the Basibice of St. Paul's, at Rome, erected by Constantine, had the earlient inctacoe of arches constructed on colomns instend of piers," and may have led bie reverend brethren (unintentionally, we believe), into the error of hense snpponing that form to be of Christlan invention; but they cannot cootinne to hold this opinion after examining Adam's View of Diocletime's palace at Spalatro.

With the exception of the form of the eross in the groand plen, the mullions of windows, the rose or wheel windown, and the spires, (impertant features no doubt, yet insufficient in themselves to conatitute a etyle), we know of no other characteristic that can be anid to be exclusively of Chrintian tlmes or coantries ; for all else we are more or less indebted to the Pagan or the Moslem.

It was admittod, in a former part of this essay, that difference of climete and habits may require different descriptions of edifices, both pablic and private, from those that were orected by the inventors of the Greek atyin; but it cannot be too strenuously urged, as before stated, that if it be deaired to preserve the character of a style in its purity, we must adhere atrietly to the principles that guided it inventors, although, from circumetroent, we may be constrained to modify the atyle in its application. A Greek composition is not a thing of ahreds and patches, with a portico atack oo its front; nor is it a receptecle for groups of mock pediments, a retreat sot a pigmy ordinance, nor yet an asylum for columns out of place. Simplicity of the most bewitching kind, an air of repowe and completenese, and the most perfect harmony, pervade every part. It would be impossible to lay the fager of criticism on any ornament and asy that it conld be dispensed with, or ite place more appropriately supplied by any other: such are the examples which the architects of the age of Pericles have lef for our ioatruction, and when weattempt to modify them to sait our present weam, the great difficulty is to preserve their ovanescent spirit; still it appeers to be within the range of possibility to do so, but only by those who ase thoroughly imbued with the idea that these models contain in thomselvea the elements of perfection anfficient for a now creation of the art if all ele were lost. On that feeling the success of our adaptation depends; withoos it, an edifice may bave a verbal resemblance to the model withont poseening its expression; may be ornate, but not ornamental; convenient, but not symmetrical; well constructed, but ill designed; the work of a skilfal builder who understands his trade, but not the prodiction of an tocom. plished architect who aims at the highest walk in bis profession; it may induce the groundlings to atare, but it may also force the jodicions to grieve.

With the sublime works of the ancient masters for our gaidance in the three orders we have aufficient materials to work upon, to modify, combine, and adapt for our present requirements, and the instruction of future ages. As soon as we shall have these oxamples, not only in distant lands and geometrical elevations, bat realised before our eyes in our own conntry, then they must effect an improvement in our taste, and then wo shall be better able to invent und make new combinations on the same anerring principles exhibited in our models; in short, wo mast first heve a pristion -not a cingue-but a novacento revival; and it would appeur that sach was the opinion of the Institute of British Architects in propocing the subject of the present essay. Let us commence then by discardiag, in tele, the emasculated Doric, and when we compose in the Doric itelf let ma recollect that our conceptions must be the works of giante, and not the effurte of pigmies ; and in the Ionic and Corinthian, that the uraste capitale require ornamented shafts, and that scalptare adds much to the beauty of the frieze in all the orders. We must also gaard against breaking up the entablatare, and in the treatment of porticoes bear in remembranoe that those which are wanting in depth must be deficient in beanty. Let we also remember that although windows be necessary evils, jot it is not neceseary to increase the ovil by incongruous ornamente; and that oar desigos munt have unity and be one whole, bot a collection of separato and distnot parts.

For oarselves, luhough in rarious coantries we bave ceen "cloudcepp'd towers, gorgeous palaces, and solemn temples," of christian, pagan, heathen, and monlem construction, jet we remain convinced that (as hes beea wall eald) "for all the higher effects which architecture is capable of prodocing, a Greak peripteral temple of the Dorio order is onervalled."

THE PRINCIPLES OF CHURCH RESTORATION.

Those who oan diatinguinh between the revival of the anciant principles of pointed architecture and a mechanical imitation of ancient forms, bave wo dificalty in recognising the propriety of restoring the numerous eceleaintical and civil edifices bequeathed to on by our mediseral ancestors. An important diatinction between the renewed appreciation of pointed architecture now, and the Renaissance of classio architeclure in the fifeonth ceotory-and one greally in favour of modern taste,-is that no effort is now made to reconcile styles which depend on opposite canses for their beanty. The moders rovival, on the contrary, is marked by an anxiety to porge our churches of the barbarisms of the Debased and psendoclasic revivals, and to render our national architectnce as free as posaible from foreige admizture.

If we defne the priaciple of charch restoration to be the removal from our chorches of overything that is absolately incongruona with their architecture, and if we apply this principle consistently, we shall have no diffealty in ascertaining what is to be retained, and what is to be rejected where several styles of architecture are oxhibited in the same edifice.
It is neceasary that this definition ahould be established, becanse restorers have frequently contented themselves with the object of ascertaining and carrying out the original idea of the bailding restored. Now, What we look upod as a fatal objection to thin principle is, that in the majortis of cases it is incapable of a practical application. We suppose that there is no one, really cealons for the advancement of pure architecture, who would not rejoice to see every one of our glorious cathedrals thoroughly and efticiently restored; and yet, if the task were to be set about with the view of realizing exclusively the intentions of the first fonnders of these vast piles, which are the growth of anccessive ages, the most onthnaiatic lover of mediseral art most oppose a work which tended rether to destruction than restoration.

Soppoaing, for instance, it were determined to perfectly restore Ely Cathedral, and suppose ampie funds exinted for this purpose, so that there were ebsolutely no restrictions whatever on the efforts of the archltect except those imposed by his own taste and judgment-would any one be insane enough to attempt to restore Ely Cachedral to one uniform style? Or, enpponing that one style only ought to be retained, by what rule shonld the eelection be directed? Shoald all the cathedral be deatroyed except thow parts which exhibit the Norman architecture of the Prior's Entruece torr, all except the Early English similar to that of the presbytery? - 0 , sll except the Decorated of the choir?-or, all except the Perpendicular of Hishop Alcock's Chapel t Is it not obvions that it would be impoasible to retain any one style exclusively?

By what priaciple then ought the restoration to be directed in the inatance sapposedt Obviously by this,-of removing all the additions and repairing all the mutilations by which the chnrch has been defaced aince the Reformation, and of retaining the whole of the genuine architecture. If the different atyles adopted by our ancestors had been so essentially discordant is to be absolutaly irreconcilable to the ame principles of benaty,-if it were impossible that forms successively developed in Chrisden architectore could be combined barmoniously,-if, in every caso where the same hailding exhibited more than one style, the variety appeared harsh and offensive to the eje, 一then, indeed, there might be some pretext for the advocates of uniformity. It is a matter of fact, however, cod ove that speaks loudiy for the merit of Cbristian architecture, that it in concistent wifk ifself, and that different forms of it may oxist together withoat producing a discordast effect. When, indeed, we come to the Debased period, we find contrasts repugnant to pure taste, because arising from the combination of pointed architecture with a style diametrically eppoed to it-the Classic. The effect of Grecion mouldings introduced is the moodwork (and sometimen, alas, as in Wentminster Abbey, in the manory) of an Eaglish cathedral, is monstrous and insufferable. But the ane is altogether dlfforent where Norman architecture is combined with Berly English or Decorated with Perpendicalar: for here, the very fact
that each style grew out of the preceding-that there was in each came a Transition atyle-proves that there cannot be incongralty or discontiauity in theso successive developements of medisaral art.
There is moreover a tacit homage paid to the priveiples of our ancestors by the very act of restoring their arcbitecture, which is inconsistent with the destruction of any part of it. Without adopting a rague admiration of old things simply for their antiquity, Independently of their excellence, we yet must concede thas much :-that, in deatroying the additions made to our churches after the Reformation, we, io fact, give onr adhesion to the architectural principles of those who preceded the Reformation. We bay, in fact, this, by our preservation of the existing monu. ments of Norman and Pointed architecture, that those ediftes exhibit merits totally overlooked or mis-apprehended by the classic innovators. Now is it not palpably absurd and inconsistent, when we have made thes profession, to destroy any portion of the genuine works of the mediseval architects? Must we not, to spenk plainly, condemn this destruction es sheer Vandalism- Vandalism, too, which is inconsistent with itself, and works all the more fatally becanse disguised by a profession of reverence for antiquity ?
The restoration of Bt. Sepulchre's Church, at Cambridge, was diagraced by this reckless and irremediable desecration. The ancient Perpendicular architecture of the fifteenth century was destrojed in the western part of the building by those who, by a singular perversity, erected at the east a chancel in the Perpendicular style of the mineteonth century ! And this destraction, under the name of restoration, was the work of thowe who tate to themselves kar efoxm the character of gaardians of English chnrch architecture. Well might M. Didron complain that the injury which modern restorers have, in their self-sufficiency, done to our ancient monuments is far more irreparable than the ravages of time and neglect.

In a recent number of the Ecclesiologist we find a complaint of the destruction of the old gatewey of the British Maseam. This complaint is founded, not on the consideration that the atructure has any merit in itself, -it is not attempted to be denied that it is a hideous specimen of bastard architecture,-butsimply on the ground that the architecture is "gemuien!" Senseless inconsistency! A vile mase of brickwork, decorated with some contemptible imintions of Grecian mouldings, is to be preserved, cimply because it is old; and yet these blind admirers of mere antiquity cannot consent to the preservation of that which is mach more ancient, and possesses noreover the merit of architectural beanty and the claim of reverence for sacred places.

It is well aigh time that some effectual means were laken to prevent injuries which once effected are irremediable. We apeak thue boldiy of them becanse there is a growing opirit for tampering with ancient architecture in Eugland and France which has already produced the most pernicious effects and tends to prodnce more. The injories that have been committed in the cathedral of St. Denis, near Paris, noder the proteneo of reatoration, onght to move the indignation of every lover of Hointed architecture. At Rouen, too, and Amiens (we believe) also, the same work of deatruction has been commenced, and under the same protext. One mealous and oncompromising denouncer of these innovations-M. Didros-han, indeed, been able, in many instances, by the respect attached to his profonnd antiquarian learaing, to restrain the progress of the mischief-and, in a country where the reparation of public monuments is in the haods of the government, his voice must have effect; but here we have no anch general supervision, and can oniy trust to the slow progreas of public opinion for the protection of our churches.*

If there must be a deatruction of ancient architecture it onght, at leact, to proceed on principles which are consisteat with themselves, but even this is pot the case. Before taking a step which cannot be retraced, the least exercise of prudence is to lay down a general plan of our fature progress ; and yet, in church-restoration this has been hitherto impossible.

[^24]The modern science of mediseral architectare is at present an immature science ; every day is adding to our stock of knowledge or correcting false impressjons. It is dot many years since Rickman introdnced the clasaification and nomenclatare of the different styles now in use. How is it posaible then that in so brief a period we can have learned all of the scieace that is worth knowing-ihat we have now learned so much that we may venture to correct the errors of our teachera, the medimaval architects? At least, there is no harm in waiting awhile till we be quile sure that our corrections are not the result of imperfect knowledge.

Of this there will be no debate, that no mischief can arise from confining our endeavoars, for the present, to careful reparation. The remoral of fiat plaster ceilings, of Grecian or Elizabethan acreens, of the defilements of stacco, paint and whitewash, and the other inventions of churchorardens and parish architects, are works that may be nodertaken without the chance of their propriets being hereafter disputed. Add to these, the repair of parts which have decayed by procese of time or been mutilated by violence, the reatifation of adornmente where clear traces of them remain, and the ecrupulows preseroation of every portion of the genaine medis. cal. crehitecture, and we buve done all that the present, or, probebly, any future, state of our knowledge can justify.

BLAST FURNACE.
Obervations on the more recent Researches concerning the Operations of the Blast Furnace in the nasuif acture of Iron.

By Dr. J. L. Smita.

[From Sillimen's Jomarnal for March, 1846.]

The great difference existing between metallargical operation of the present day, and those of a former period, in owing chiefly to the ameliorations produced by the application of the science of chemistry to the modus operandi of the variuus changen taking place during the operation, from their commeacement to their termination.

Copper and rome other metale are now made to asome forms in the chemist's laboratory, that formerly required great artistical akill for their pro-duction-the chemist simply making use of such agents and forces as are at his command, and over which he has, by close analytical atudy, acquired perfect control. Our object, at present, is only to advert to the chemical investigations more recently made on the manufacture of iron, sreating of those changen that occur in the ore, coal, and fux, that are thrown in at the mouth of the furnace, and in the air thrown in from below. Por mont that will be and on this sobject, we are principally indebted to the recent interesting reseurches of M. Bbelman.

The importance of a knowledge of the facts to be brought forward in this articie, will he apparent to every one in any way acquainted with tbe manu. of iron. It will be seen, that the time is not far distant when tbe economy in the article of fuel will amount in value to the present profit of many of the works. The consequence must be, that many of those Forks that are abandoned will be resumed, and others erected in localities formerly thought unfit.

It is well known that the blant furnace in the first into which the ore is introduced, for the purpose of converting it into malleable iron, and much therefore depends upon the state in which the pig metal passen from this furnace, whether sobsequent operntions will furnish in iron of the first quality or not.

In putting the blant furnace into operation, the firat step is to beat it for some time with coal only. After the furnace has arrived at a proper temperatare, ore, foel and finx, are thrown in alternately, in small quantities, to at to have the three iugredients properly mixed in their descent. In from 25 to 48 hours from the time when the ore is firt thrown in, the entire capacity of the forosce, from the toyer to the mouth, is occupied with the ore, fuel, and flux, in their various stages of tranaformation.

In order to explain clearly, and iu as short a space as possible, what these transformations are, and how they are brought about, we may conaider:-l. The changes that take place in the descending mass, composed of ore, fuel, and fux.-2. The changes that take place in the ascending mass, composer of air and its bygrometric moisture, thrown in at the tuyer.-3. The chemical action going on between the ascending and descending masues.-4. The composition of the gases in various parta of the furnace during its operation. -5. The causes that render necessary the great heat of the blast furnace.

1. Changes that take place in the descending mass, composed of ore, coal, and flus.-By coal is here meant charcoal ; when any other species of fuel is alluded to, it will be specified. In the upper half of the fire-room, the materiale are ubjected to a comparatively low temperature, and they lose only the moisture, volatile matter, bydrogen, and carbonic acid, that they may contain; this change taking phoe principally in the lower part of the upper half of the fire-room.
In the lower half of the fire-room, the ore is the only material that ondergoen a change, it being converted wholly or in part into iron or magaetic
oxide of iron-the coal is not altered, no consumption of it taking place from the mouth down to the commencement of the boshes.

From the commencement of the boshea down to the tuyer, the redaction of the ore is completed. Very little of the conl is consumed between the boabes and in the upper part of the hearth ; the principal conaumption of is taking place in the immediate neighbourhood of the tuyer.

The fasion of the iron and slag occurt at a short diatance abnve the tuyer, and it is in the hearth of the furnace that the iron combines with a portion of the coal to form the fusible carburet or pig-iron. It is also on the hearth that the fox combines with the siliceons and other impuritiet of the ore. This concludes the changen which the ore, conl, and flux undergo from the mouth of the furnace to the tuyer.

If the fael used he wood, or partly wood, it is during it pasage throogh the upper half of the fire-room that its volatile parts are lost, and it becomes converted into charcoal. M. Bbelman ascertained that wood, at the depth of ten feet, in a fire-room twenty-nix feet high, preserved its appearance after an exposare for 18 of an hour, and that the mineral mixed with it preserved ita moisture at this depth; but three and a half feet lower, an exposare of $3 t$ hours reduced the wood to perfect charcoal, and the ore to magaetia oxide. The teinperature of the upper half of the fire-r00m, when wood it used, is lower then in the case of charconl, from the great amonnt of heat mede latent by the vapour aniaing from the wood. In the case of bitaminons coal, Bunsen and Playfair find that it has to descend still lower before is is perfectly coked.

After the wood is completely charred, or the conl become coked, the subsequent changes are the same that happen in the charcoal furnacea.
2. Changes that take place in the ascending masp, which is componed of oir and hygrometric moisture.-The weight of the air thrown in at the tuyer in twenty-four hours is twice that of the ore, conl, and flux, thrown in at the mouth during the tame time.

The air, as soon as it enters the tuyer and reaches the first portion of coal, undergoes a change-its oxygen is converted into carbonic acid, and is mointure decomposed, furnishing bydrogen and carbonic oxide-ufter ascending a short distance (12 or 18 inches, the carbonic acid is converted into carbonic oxide-between this point and the npper part of the boshes it undergoes but very little change, having added to it a further amall amount of carbonic oxide. So the ascending column at the top of the bonben in composed of nitrogen, carbonic oride and hydrogen-from this point it beging to undergo a change; the carbonic oxide diminishen, carbonic acid appears, and goes on increasing for about half the way up the fire-room; efter which the carbonic acid, carbonic oxide, and nitrogen remain the asme, when the bydrogen increasen, and mointare begins to appear and augment up to the mouth. The ascending mass, as it passes out of the mouth, contains the rapour of water, carbonic acid, carbonic oxide, hydrogen, and nitrogen. The nitrogen undergoes no alteration in its passage through the furnace, and the same is true of the hydrogen formed at the tuyer.

If wood be used, the gases pasing out of the mouth are the same as those just mentioned, with an increased quantity of moisture, and the addition of those pyroligneous products arising from the dry distillation of wood.

In cese of the use of bituminous coal, the gases, first alladed to, have added to them ammonia, light carbaretted bydrogen, olefiant gat, carbaretted hydrogen of unknown composition, and uulphuretted hydrogen.
3. The chemical reaction occwrring between the arcending and desconding mases.-From the foregoing statements we can at a glence see what are the materials to be met with in the different parts of the farnace, and can therefore readily study their reections upon each other.

In the upper half of the fire-room little or no chemical action is taling place, the ore, fux, and coal, as already stated, simply losing their volatile parts. In the bottom of the upper half and the entire lower half of the fireroom a reaction is taking place between the ore and the carbonic oxide of the atending column ; iron or magnetic oxide of iron and carbonic acid being the resolt. It must be borne in mind that the coal has played no part in this reduction down to the commencement of the boshes. Between the boshes, and in the hearth, no reaction appears to take place between the ascending and descending masses, but the reduction of the ore is completed by the direct action of the conl upon the remaining portion of the ondecomposed ore; carbonic oxide being formed;-and here is the firat consumption of the coal in its passage downwards.

According to M. Ebelman, the ore loses in the fire-room ${ }^{\text {PA }}$ of its oryen by the reaction of the oxide of carbon, and the remaining in disappears in the boshes and hearth, in the manner already stated, at the expense of from Ifo to $\frac{18}{18}$ of the entire amount of charcoal used.

The ore being now completely reduced, unites with a portion of carbon in tbe hearth, melis at about 13 inchet from the tuyer, and deacends into the crucible; and here also the finx, comhining with the impurities of the ore, forms the slag, which melts.

The coal and the air ract upon each other most powerfolly, just in the neighbourhood of the tuger, where the most intense heat is produced; the oxygen becomes converted into carbonic acid, which acting upon a portion of the ignited conl, is almost at the same moment reduced to carbonic oxide; the mointure of air acting on the ignited charcoal undergoes the decomponition already mentioned, hydrogen aud carbonic oxide resalting therefrom.
When the ore is essy of reduction, the gas at the boshes is represented by 100 nitrogen and 52.5 carbonic oxide, phos the quantity of curbonic axide and bydrogen afforded by the moisture.

It musi be clearly understood, thint these ralen do not apply to every
variety of ore. They are eapecially epplicabla to the hemetites and soch ores as are either naturally porous or become so in their pasage through the fre-room of the furnace, thus increasing the surface of contact exposed to the action of the reducing agent (carbonic oxide), so that when it has reached the bosbes the reduction is nearly complete.

The apecalar, magnetic, and iliceots ores, are reduced with much more dificulty; most of the ore, in these caren, reaching the bothes but slightly altered, they being principally dependent upon the direct action of conl for cheir reduction. This circomstance largely increases the consurnption of coal when any of these ores are employed; and the amount of caloric made latent, in consequence of the reduction requiring the direct action of the conal, is very great; whereas in the reduction of the ore by carbonic oxide no beat becomes latent, for the heat rendered latent by the oxygen of the ore becoming gateous, is compensated by the sentible heat produced by the comhination of the carbonic oxide with the oxygen. Where the reduction is produced by the carbon, with the formation of carbonic oxide, 1598 unities of heat are made sensible, while 6216 are rendered latent, giving a difference of absolute lose of 4618.
It should be the ohject of the metallurgist to rednce as much of the iron as poasible by the oxide of carhon. Magnetic, silicenas, and other hard ores, should be reduced to maller fragments than those softer and more easily managed. Were it possible to reduce them to powder without.the danger of choting the farnace, it would be all the better, as the great object in to have a large extent of surface exposed to the carhonic oxide. The different capacity of different orea for reduction shows the necessity of having furases of different dimensions for them respectively.

The matter which covers the melted metal in the crucible, and that which adheres to the interior of the hearth, contains silicate of iron and charcoal in a pasty state, and there is consequently a constant reduction of the oxide of iron, which gives rise to carbonic oxide; this gas hubbles through the alag, which, if drawn off at this time, will, when cold, present a porous urueture, - aure indication that the furnace is not working well, and that the slar itself enntains mach of the ore in the form of a silicate.
4. Composition of the gat in various parts of the furnace during its opera-tion-The analyses lately made by Ebelman are the most accurate and leat desailed that we are in possession of. What follows has reference to a furnace worked with charcoal.

Gas taken from the mouth of the furnace and dried:-

Carbonic actil	-		-	1288
Carbonic oxide	.	..		2 Sal
Hydroged	-	.	.	$5 \cdot 83$
Nitrogen	\cdots	-		67.70

The vapour of water in \ddot{a} hundrer volumes of thin gas, variea from nine to foorteen rolumes. Bxaminations made at different times show the proportion of hirdrogen and nitrogen to be nearly uniform, and that the sum of the volumes of carbonic acid and carbonic oxide is constant, but that there is a variation in their respective proportions.

Gas taken from the interior of the fire-room at 5 to 10, and 13 to 17 feet from the mouth (fire room 36 feet). Prom five to ten feet the proportion of moisture diminishes, the otber ingredients remaining about the same. Prom 13 to 17 feet the proportion of carbonic oxide inereases, while the carhonic acid and hydrogen diminiah.

Gas from the bottom of the fire.room and top of the boshes:-This in remarkable for the constancy of itn conposition, and for the a'ssence of carbonic acid and watery vapour. Composition :-

The two last statements would appear to contradict the rales previnasly lad dowin, at regulating the operation of the hlast furnace; for, according to them, the proportinu of carhonic oxide, at the top of the boshes, should be a little greater than in the hearth, whereas the reverse would appear to be the case by the analyses here given. Besiden, from a glance at the composition of the three last gases alluded to, it would appear that the giseoun producta, as they ascended the furnace, lost cumpletely a portion of the carbonic oxide, rithout a replacement by carhonic acid or other compound; in other Fords, a portion of it rould appear to be completely annililated, which of course is an imposibility. This apparent anomaly is easily accounted for, when it is itated how the gas was collected.
In order to obtain the gas troni different portions of the furnace, holes were boted into the side, and a tube inserted, by which it was drawn off. Alluion has already been made to the fact that a pasty mass adheres to the aides of the hearth, containing silicate of iron and charcoal, in which there is a constant reduction of the iron, with the formation of carbonic oxide. Now it is evident that the gas drawn off by a hole bored into the side of the bearab, will be largely mixed with this carhonic oxide forming ln the imnediate neighboarhood of the opening, and that it cannot serve as an index to the character of gas passing through the centre of the hearth. M. Ei,eluan was aware of this fact, but he was not able to overcome the difficulties in the way of obtaining the gat under the proper circuastances.

Gar taken at the twyer.-Here it is little elice than atmosphere mixed with a fow per cent. of carbonic acid.

Prom thene resulta it will not be diffecult to admit, that the orygen of the air is converted immediately into carbonic ecid, which is rapidly changed into carbonic oxide, under the influedce of an excess of carbus and the high temperature developed near the tuyer.
5. The causes that render mecessary the great heat of the blast furnace.The weight of the ore, flux, and combustible, which enters the faraace, being only one-balf that of the ascending columa, and as the specific heat of these three materiala is very much below that of the gas of the ascending mast. it is not the beating of them that explains the neceasity of the very great heat of the blast furnace. But the principal cooling canses are,-

1. The drying of the ore, fax, and cosl, and the expalaion of carbonie acid from the flux, \&e., rendering much of the heat latent; for what was solid is now transformed to the gaseons state.
2. The reduction of the ore, or in other words, the transformation of the solid oxpgen of the ore into gaseona nxygen. If the ore has been deprived of its osygen by the action of carbonic oxide, with the formation of carbonie acid, the beat rendered latent by the oxygen, is compensated for hy the heat developed by the reaction between the oxygen and carbonic oxide; which is the character of the operation that principally takes place in the lower part of the fire-room. If the ore has been deprived of its oxygen by the direct action of the coal, the amount of heat rendered lateat in.enormons, as already stated ; for carbonic oxide is the result of this reaction, and the smount of heat developed by it fall far short of that rendered latent hy the oxygen that has entered into its formation, assuming the gaveous condition,-this is the character of the reduction taking place in the boabea and bearth.
3. The conversion of the carbonic acid near the tuyer into carbonic oxide has a powerful influence in cooling the upper part of the hearth; for of the 6260 units of heat formed by the first action of the air upon the coal, 4662 are rendered latent by the conversion of this carbonic acid into carbonic oxide.

This terminates what it was proposed to treat of ; it is little else than a sketeh of the chemistry of the blast furnace, sufficient to sbow its im. portance.

In a foture article, some remarks will be made upon the amount of combuatible lost in the operation of this furnace, the recent metbods employed to prevent this losi in the complete combustion of coal, the action of the hot blast, theory of the refiniog furuace, charring of wood, and other points of intereat.

STEPHENSON'S TUBULAR BRIDGE.

Mr. Fairbairn's Report.

Abstract or short Summary of Results from Experiments relatite to the proposed Bridge across the Menai Straits, addressed to Robert Stepbensun, Esq. By. W. Fairbairn.
After a series of ex periments onderfaken at your request, for ascertaining the strongest form of a Sheet Iron Tubular Bridge across the Meoai Straits, I have been jaduced, in order to meet the requiremeuts for anch a structure, mad to ensure safety in the conatruction, to cull in the aid and assistance of my friend Mr. Hodgkinsun.

The texible natnre of the unaterial, and the difficulties which presented themselves in retaining the lighter description of tubes in sbape gave exceedingly anomalous results; and laving no formula on which dependenve could be placed for the reduction of the experiments, I deemed it atceusary, in a subject of such impurtance, to secure the co-operation of the firmt authority, in order to give confidence to the Chester and Holybead Hailway Company, with whom sou are connected. and the public penerally.
It will be observed, thut the tirat class of experiments is upou cytindrical tubes;-the second upon those of the ellipticul form ; \rightarrow and the last upon the rectangular kind. Tubes of each sort have beed carefully tested, and the reaults recorded in the order in which they were made; and mureover, each apecimen had dirert reference to the iatended Bridge, both as regards the length and thickness, as aimo the depth and width.

In the frat clans of experiments, which are those of the cylindrical form, the results are as follow:

CYLINDRICAL TUBFS.

No. of Experiments.	Distance betwean the empports.	Dhardeter In Incties.	Th!cknesm of Piate In inches.	Uhimate beflection in luchen.	Breaklug weight to 10.	Nemaris.
1	$\begin{array}{ll}\text { n. } \\ 17 & \\ \\ \text { In }\end{array}$	12.18	-0408	-89	3,040	Crushed top.
2	170	12.00	-0870	- 56	2,764	Ditto.
8	1671	12*40	-1810	$1 \cdot 29$	11.440	Torn asunder at the bottom.
4	238	$18 \cdot 26$	0508	. 96	6,400	1.tto.
5	235	17.68	-0681	$\cdot 74$	A. 400	$\mathrm{D}_{\text {ition }}$
6	236	1818	-1190	$2 \cdot 19$	$14 \times 41)$	Disce.
7	3184	$24 \cdot 60$	Cob 4	-68	4.700	bilito.
8	81 ni	24.311	-18501	-4 4	$1+240$	Dita.
9	3131	24:20	-6) 4	$\cdot 74$	10,8is0	Distu.

With the exception of the first two, nearly the whole of the tubes wore roptured by tearing asunder at the bottom through the line of the rivets.

Finding the cylindrical form comparatively weak, the next experiments were apon tubes of the rectangular shape, which gave much better resulte. For the present it may, however, be more convenient to take the elliptical kind, as being the nearest approyimation, as regards both form and strength, to the cylindera recorded above.

ELLIPTICAL TUBES.

No. of Experimeata	Distance between the supports.	Dismetern, transverse and conjugate in inches.	Thickneqa of Platen In inches.	Clitmate Deflection In inches.	Breaking weight in lb.	Remarki.
19	$\begin{array}{cc} \text { f. } & \text { In. } \\ 17 & 0 \end{array}$	$\left\{\begin{array}{l}1462 \\ 9.25\end{array}\right.$	0416	62	2,100	Crushed on top.
30	240	$\left\{\begin{array}{l}2168 \\ 13.50\end{array}\right.$	1-1820	1.86	17,078	Broka by extenaion.
21	240	$\left\{\begin{array}{l}21.25 \\ 14.12\end{array}\right.$.0698	. 45	7,270	By compreasion.
28	186	$\left\{\begin{array}{rrr}12 & 000 \\ 7 & .00\end{array}\right.$	- 6775	. 9	6,867	$\left\{\begin{array}{l} \text { By compreasion. } \\ \text { This tube had } \\ \text { An on the top } \\ \text { inde. } \end{array}\right.$
24	176	$\left\{\begin{array}{l}15.00 \\ 9.75\end{array}\right.$	$\cdot 1450$	1.39	16,000	$\left\{\begin{array}{c}\text { Both sidee } \\ \text { raptured. }\end{array}\right.$

It will be observed that the whole of these experiments indicated weakness on the top side of the tube, which, in almost every case, was greatly distorted by the force of compression acting in that direction. It is probable that those of the cylindrical form would have yielded in like manner, had the rivetting at the jolnts been equally perfect on the lower side of the tube. This was not, however, the case, and hence arise the canses of ruptere at that part.

The next experiments, and probably the more important, were those of the rectangular kind; they indicato a considerably increased strength when compared with the cylindrical and elliptical forms: and, considering the many advantages which thes possess over every otber yet experimented upon, I am inclined to think them not only the strungest but the beat adapted (either as regards lightness or security) for the proposed Bridge.
bectangular tubes.

No. of Expert ments.	Distance between Supports	$\left\lvert\, \begin{array}{c\|c} \text { Depth } \\ \text { In } \\ \text { Inehes } \end{array}\right.$	$\begin{aligned} & \text { Width } \\ & \text { in } \\ & \text { inches. } \end{aligned}$	Thic ia in	cknese nches.	Uldmate Deflection tn tuches.	$\begin{aligned} & \text { Break- } \\ & \text { ng } \\ & \text { Weight } \\ & \text { in } 16 . \end{aligned}$	Remarks.
16	${ }_{17} \mathrm{~T}_{17} \mathrm{in}$.	96	$9 \cdot 9$	top.	$\begin{aligned} & \text { bot } \\ & \text { tom. } \\ & \text { - } 075 \end{aligned}$	$1 \cdot 10$	8,738	Broke by Compresion.
14		9.6	$9 \cdot 6$	-272	. 075	1.13	8.273	(Reversed.) Extens.
15		$9 \cdot 6$	9.6	-075	-142	0.94	3,78	Compreasion.
16	176	$9 \cdot 6$	$9 \cdot 6$	-142	-0:8	$1 \cdot 88$	7.148	Extension.
16		18.25	9.25	-059	-149	0.83	6.812	Compresslon.
16	176	18.25	9.25		-059	1.78	12.188	bitto.
17	$\begin{array}{ll}24 & 0 \\ 18 & 0\end{array}$	15.00 1825	2.25 7.50	- 1610	-160	2.86 1.71	17,600 18,600	Ditto. Ditto.
18	$\begin{array}{ll}18 & 0 \\ 18 & 6\end{array}$	1825 13.00	7.50 8.00	-142	-142	1.71 1.19	18,680 8,812	$\left\{\begin{array}{l} \text { Ditto. } \\ \text { Comprezalon. CIr. } \\ \text { cular bottom, } \\ \text { fun tot top. } \end{array}\right.$
23	190	$15 \cdot 40$	$7 \cdot 75$	$\cdot 250$	-180	1.59	22,469	$\left\{\begin{array}{l}\text { Sidee dittorten. } \\ \text { Corrugated top. }\end{array}\right.$

On consulting the above table, it will be found that the results as respects strength are of a bigher order than those obtained from the cylindrical and elliptical tubes; and particularly those constructed with stronger plates on the top side, which, in almost every experiment where the thin side was uppermost, gave aigns of weakness in that part. Some curious and interesting phenomena presented themselves in these experiments,-many of them are anomalous to our preconceived notions of the strength of materials, -and totally different to any thing yef exhibited in any previous research. It has invariably beed observed, that in almost every experiment the tubes gave evidence of weakness in their powers of resistance on the top side, to the forces tending to crush them. This was strongly exemplified in experiments 14, 15, 16, \&c., marked on the drawings and the table. With tubes of a rectangular shape, baving the top side about double the thickness of the bottom, and the sides only half the thickness of the bottom, or one-fourth the thickness of the top, nearly double the strength was obthined. In experiment 14 , (marked in the margin of the above table.) a tube of the rectangular form, $9 \frac{1}{8}$ inches square, with top and bottom plates of equal thickness, the breaking weight was $3,738 \mathrm{lb}$.
Rivetting a stronger plate on the top side,
the strangth was increased to .. 8,878 lb .
The difference being $4,535 \mathrm{lb} .,-$ considerably more than double the strength sustained by the tube when the lop and bottom sides were equal.
The experiments given in No. 15 are of the same character, where the top plate is as near as possible double the thickness of the bottom. In these experiments, the tube was first crippled by doubling up the thin plate on the top side, which was done with a weight of .. 3,788 lb .

It was then reversed with the thick side upwards, and by this change the breaking weight was iacromeed to

7,148
Making a difference of $3,360 \mathrm{lb}$. or an increase of wearly double the strength, by the simple operation of reversing the tabe, and turaing it upside down.

The same degree of importance is attached to a similar form, when the depth in the middle is double the width of the tabe. Frum the experiments in No. 16, we deduce the same results in a tube where the depth is 184, and the breadth $9 f$ iaches. Loading this tube with $6,812 \mathrm{lb}$. (the thin plate being oppermost), it follows precisely the same law as before, and becomes wriukled, with a hummoc rising on the top side so as to render it no longer safe to sustain the load. Take, however, the same tube, and reverse it with the thick plate opwards, and you not only straighten the part previously injured, but you increase the resisting powers from 6,8121b. to $12,188 \mathrm{lb}$. Let us now examine the tube in the 29th experiment, where the top is composed of corrugated iron, as per sketch, forming two tubular cavities extending lungitudinally along its upper side. This, it will be observed, presents the best furm fur resisting the "puckering," or crushing force, which, on almost every occasion, was present in the previous experiments. Having loaded the tube with increasing weights, it ultimately gave way by tearing the sides from the top and bottom plates, at nearly one and the same instant after che lust weight, $22,469 \mathrm{lb}$., was laid on. The greatly increased strength indicated by this form of tube, is highly satisfactory,
 and provided these facts be duly appreciated in the construction of the bridge, they will, I have no doubt, lead to the balance of the two resisting forces of tension and compression.

The results here obtained are so essential to this onquiry, and to onr knowledge of the strength of materials in general, that I have deemed it easential, in this abridged statement, to direct attention to facts of immence value in the proper and judicious application, as well as distribution, of the material in the proposed structure. Strength and lightness are denidorata of great importance,-and the circumstances above stated are well worthy the attention of the mathematician and engineer.

For the present we shall have to consider not only the due and perfect proportion of the top and bottom sides of the tube; bat also the atiffening of the sides with those parts, in order to effect the required rigidity for retaining the whole in shape. These are considerations which require attention: and till further experiments are made, ad probably some of them upon a larger acale, it would be hazardous to pronounce anything definite as to the proportion of the parts, and the equalization of the forcee teading to the derangement of the structure.

So far as our knowledge ?extends, -and judging from the experiments already completed,--I would venture to state that a tubular bridge can be constructed, of such powers and dimensions as will meet, with perfect security, the requirements of railway traffic across the Straits. The utmost care must, however, be observed in the construction, and probably a much greater quantity of material may be required, than was originally contemplated before the structure can be cousidered safe.

In this opiaion Mr. Hodgkinson and myself seens to agree: and although suspension chains may be useful in the construction in the first instance, they would nevertheless be bighly improper to depend upon as the principal support of the bridge. Under every circumstance, I am of upinion that the tubes should be made sufficiently strong to sustain not only their own weight, but in addition to that load, 2,000 tons equally diatributed over the surface of the platform, a load ten times greater than they will ever be called upon to support. In fact, it should be a bage sheet iron hollow girder, of sufficient strength and stiffness to sustain those weights ; and, provided the parts are well proportioned, and the platea properly rivetted, you may strip off the chains, und leave it as asefal monument of the enterprise and energy of the age in which it was constructed.

In the parsuit of the experiments on the rectangular as well as other deacription of tabes, I have been most ably assisted by my excellent friend Mr. Hodgkinson; his scientific and mathematical attainments render him well qualifed for such researches; and 1 feel myself indebted to him for the kind advice and valuable assistance which he bas rendered in these and other investigations. I am also deeply indebted to yourself and the Directors for the confidence you have placed in my efforts, and for the encouragement I have uniformly received during the progressive development of this enquiry.

But, in fact, the subject is of such importance, and the responsibilities attached to it are so great, as to demand every effurt to demoastrate, catculate, and advise what in this case is best to be done. Both of us have therefore laboured incessantly at the task, and I am indebted to my friend for the reduction of the experiments which I would not attempt to weaken by a aingle observation.

Wm. Fairbairt.
Mr. Hodgeinson's Report.
Summary of Results affered, in comjunction roith one by William Fairbairn, Esq., M. Inst.C. E., to Rubt. Steplienson, Esq, M. Inst. C.E., \&c., \&c., for the Directors of the Chester and Holyhead Railway, on the subject of a proposed Bridge across the Memai, neer to Bangor.-By Eaton Hodc. EINSON, F.R.S.

Having in the month of Anguat last year been requested to render asistance，principally in a scientific point of view，with respect to the experiments to aecertain the practicability of erecting a Tubular Bridge across the Menai Straits，of sufficient strength for railway trains to pass through it with safety，I attended twice in London for that purpose ：and as the experiments made there were on tubes of varions forms of section， includlag several elliptical and circular ones，I investigated formula for reducing the strength of the leading ones．It appeared ovident to me however，that any conclusions deduced from received principles，with respect to the strength of thin tubes，could only be approximations；for these tubes usaally give way by the top or compressed side becoming wrinkled，and unable to offer resistance，long before the parts subjected to tansion are strained to the utmost they would bear．To ascertain how far this defect，which had not been contemplated in the theory，would affect the trath of computations on the strength of the tubes proposed to be used in the bridge，－and also to show whether the principles geuerally received could be applied with certainty in reasoning as to the strength of the bridge from that of models comparatively very small，－for these two pur－ poses I urged the necessity of a number of fundamental experiments， which，besides supplying the wants above mentioned，might enable me to obtain additional information to that from Mr．Fairbairn sexperiments， with respect to the proportions that the different parts of the section of such a bridge ought to have，as well as what form it ahould be of，in order to bear the taost．

Feeling that there might be objections against allowing me to follow the coarses I proposed，however necessary it might appear to myself，I sug． gested a much more limited series of experiments than now appear to me to be aecessary；and，as the time consumed in getting the plates rolled and the tubes prepared，cansed the experiments to be delayed till the beginning of the year，the time given me has beeen too limited to obtain all the facts Whicb the few experiments proposed would have affurded．

I will now give the results，so far as they have beeu obtained and seem worthy of reliance，subject to correction from future experiments；begin－ ning with the redaction of Mr．Fairbairn＇s experiments on the strength of tubes of wroaght iron made of plates rivetted together．

Cylindrical Tubes．－Tbe strength of a cylindrical tnbe，supported at the ends，and loaded in the middle，is expressed by the foraula

$$
w=\frac{\pi f}{a b}\left(a^{4}-a^{4}\right)
$$

Where l is the distance between the sapports；a, a^{\prime} the external and internal radii；w the breaking weight ；f the strain upon a unity of sec－ tion，as a square inch，at the top aud bottom of the tube，in consequence of the weight w；$\pi=3 \cdot 14159$ ．
From this formule we obtain

$$
f=\frac{b l a}{\pi\left(a^{4}-a^{\prime 4}\right)} .
$$

As it will be convenient to know the strain f per square inch，which the metal at the top and bottom of the tube is bearing when rupture taket place，this value will be obtained from each of Mr．Fairbairn＇s experi－ ments ：the value weing made to include，besides the weight laid on at the time of fracture，the pressure from the weight of the tube between the sopports，this last being equal to balf that weight．Computing the results we have，from

Experiment 1，$f=33456$

$$
\left.\begin{array}{rlr}
\text { " } & 2, & f=33426 \\
" & 3, & f=35462 \\
" & 4, & f=32415 \\
" & 5, & f=30078 \\
" & 6, & f=33869 \\
" & 7, & f=22528 \\
" & 8, & f=22655 \\
" & 9, & f=25095
\end{array}\right\} \text { Mean } 29887 \mathrm{lb} .=13 \cdot 34 \text { tons. }
$$

Fracture iu all cases took place either by the tube failing at the top，or tearing across at the rivet holes；this happened on the average，as appears from above，when the metal was strained $13 \frac{1}{j}$ tons per square inch，or litule more than half its full tensile atrength．
Eliptical Tubes．－The vulue of f in an elliptical tube broken as before， （ihe trunsverse axia being vertical），is expressed by the formula

$$
f=\frac{v l a}{\pi\left(b a^{3}-b^{\prime} a^{\prime 3}\right)}
$$

Where a, a^{\prime} aro the semitransverse external and internal diameters； b, b^{\prime} the semi－conjugate external and internal diameters ；and the reat as before，wincluding in all cases the preasure from the weight of the beam．
Compating the results from Mr．fairbairn＇s experinuents we bave from Bxperiment 20，$f=36938 \mathrm{lb}$ ．

Rectangular Tabes－If in a rectangnlar tube，employed as a beam，the thickness of the top and bottom be equal，and the aldes are of any thick－ eese at pleasure，then we have

$$
f=\frac{3 w l d}{2\left(b d^{y}-b^{\prime} d^{\prime 2}\right)} .
$$

in which d, d^{\prime} are the external and internal depths reapectively；b, b^{\prime} the exteraal and internal breadths；and the rest as before．

Mr．Fairbaira＇s experiment No． 14 gives by redaction

This is，however，much below the value which some of my own experi－ ments give，as will be seen further on．

The value of f ，which represents the strain upon the top or bottow of the tabe when it given way，is the quantity per square inch which the material will bear either before it becomes crushed at the top side or torn asunder at the bottom．But it has been mentioned before，that thin sheets of iron take a corrugated form with a moch less preasare than would be required to tear them asuader；and therefore the value of f ，as obtained from the preceding experiments，is geaerally the resistance of the material to cruahing，and would have been so in every instance if the plates on the bottom side（subjected to tension）had not been rendered neaker by rivet－ ling．

The experiments made by myself were directed priacipally to two objects：－
I．－To ascertain how far this value of f would be affected by changing the thickness of the metal，the other dimensions of the tube being the same．

II．－To obtain the strength of tabes，precisely similar to other tubes fired on，－but proportionately less than the former in all their dimensions， as length，breadth，depth，and thickness，－in order to enable us to reason as to strength from one size to another，with more certainty than hitherto， as mentioued before．A nother object not far pursued，was to seck for the proper proportion of metal in the top and botiom of the lube．Mach more is required in this direction．

In the three series of experiments made，the tobes were rectangular， and the dimensions and other values are given below．

Length．	苞	妾 㐌	Distance between oupports	Wefight．	Thack－ neas of Pincen．	Lest ob－ served Defac． Loa．	Corres． pouding Weight．	$\begin{gathered} \text { Breal. } \\ \text { tag } \\ \text { Wely } \end{gathered}$	$\left\{\begin{array}{l} \text { Value of of } \\ \text { f,tor thing } \\ \text { suraiu. } \end{array}\right.$
n．In．	$1{ }^{1}$.	In．	f． 1 l ．	4． ar ．	Inch．	Inet．	Tons．	Tous．	Tons．
${ }^{81} 86$	24	16	80	$4{ }^{4} 8$	${ }^{3} 525$	3．03	86.8	17.6	$1{ }^{14} 17$
316	24	16	50	4	－273	1.35	2 NJ	22.75	14.4
816	24	16	300	101	－124	$1 \cdot 20$	5.04	b． 53	7.74
				16．${ }_{\text {78，}}$			${ }_{9,418}{ }^{\text {l }}$	${ }_{9}{ }^{16} 9$	
${ }_{8}^{8} 2$	${ }^{6}$	4	78	7813	－182	．88	9，416	9，976	23.17
d	6	4	78	811	． 60	d	2，6\％	3，150	16.31
－ 2	6	4	78	－	．	－•			－
4 2k	8	2	3	1012	－081	－485	2，484	2，484	24.36
43	8	2		415	＊3	－15	56 V	672	13.42

The tube placed first in each series，is intended to be proportional in every leading dimension，us distance between supports，breudth，depth， and thickness of metal，－und uny variations are alluwed for in the com－ putation．Thus the three tirst tabes of each series are inteaded to be sinilar；and in the same manner of the other tubes，\＆xc．

Looking at the breaking weights of the tubes varying only in thickness， we fond a great falling otf in the sirength of the tunuer unes；and the values of j sbow that in these－the thickness of the plates being 525 ， $\cdot 272$ ， 124 inch－the resistance，per square inch，will be $19 \cdot 17,14 \cdot 47$ ，and $\mathbf{7} 74$ tons respectively．The breaking weights here employed，du not include the pressure from the weight of the bemm．
The value of f is usually constant in questions on the streagth of bodies of the same nature，and represents the tensile streugh of the materiai，but it appears from these experments that it is variuble in tubes，and repre－ sents their power to resist crippling．It depends upon the thickness of the matter iu the tubes，when the depth or dimmeter is the same；or upon the thickness divided by the depth when that varies．T＇ue determinanan of the value of f ，which can only be obtmined Ly experimeut，forms the chief obstacle to obtaining a formula for the atrength of tubes of every form．When f is knowu the rest appears to depend upon received prin－ ciples，and the computation of the alrengit may be made as th the Appli－ cation de Ia Múcanique of Navier，Mart 1st，Article IV．；or an in Pupers of $m y$ own in the Memoirs of the Literary and Hhatosophical society of Manchester，vols 4 and 5 ，second serics．I have，however，mude for the present purpose，further investigations on this wobject，but defer giving them till additional information is oblained ou the disterent puints aluded to in this report；and this may account for other umisaluns．

In the last table of experiments the tubes were devised to leasen or to avoid the anomalies which riveting introduces，in order to reader the pro－ perties sought for more obvious．Hence，the results are sumen but higher than those which would be obiajned by rivelliuy as geuerully mpplied．

The tabe 81 feet 6 inches loug， 24 cwt ． 1 gr．weight，wud 272 inch in thickness of plates，was broken by crusbing at the top wath 22.75 tuns． This tube was afterwards rendered struight，and had its weak top replaced by one of a given thickness，which 1 had obtasued from computatiou；und the reanlt was，that by a small addition of metal，applied in its pruper proportion to the weakest part，the tube was iucreabed in streugth from $22 \cdot 75$ tons to $32 \cdot 63$ tons；and the top and the butwm gave way wigether．

If it be determised to erect a bridge of tubes，I would beg to recom－ mend that suspenvion chains be employed as an ausiliary，ulucrwise great thickness of metal would be required to produce adequale stilluess and streggth．

Eatun Hodgkinson．

tidal harbours.

Sxcond Repont of the Commissionkes.
A more extended inquiry hat fully confirmed the views which the limited examination of last rear led u a to submit to your majpaty. Not anly is there a general want of cuntrol over the management and revenue of the porta, bot there is not a siogle exception among the numerous cases which have come before us in which such a control might not have heen the means of saving onnecesaary outlay; of preventing encroachmente that can now scarcely be remedied; of of atnpping works that must be removed in order to secure the objects to which the attention of the commission is directed.

The recessity of such supervision has also become more apparent since the pablication of the returns to the orders of the llouse of Commons of Angust last, from which we learn that the income of the various ports of the United Kingdom considerably exceeds the aum of $\mathbf{£ 8 0 0 , 0 0 0}$ a year-the whole levied by charters and acts of Parliament, or otherwise, from dues on shipping, and on goods horne by thipping, hut over the expenditure of which Perliament has not at present the slightest control.

Tbat mach of this mnney has been and is misapplied will excite no sur prise, when we ind that several harbours aro governed by numerous self elected, irresponsible Commistioners, (in aome places exceeding even 100 in mumber), often conducting their proceedings in private, auditing their own aceornts, publiahiag no statement of income or expenditure, and lajing nut lage sums of money without the adrice of an engineer; and that these commiasioners are freqnently landed proprietors, sometimes non-resident, and occasionally a shipowner, but rarely a ailor among them. Such, however, is the conatitation of many of the harbour bourds of this country actiog ander authority conferred by Parliament.

Since the date of our fint report we have, in compliance with that clause of her Majesty's Commiasion which directa us to visit and personally inspect all the harhours and shores of the United Kingdom, examined the chief ports on the east coast of England, from the river Thames to the Tyne, thus Ioclading Yarmoath, Hull, and the principal coal ports of Durharn and Northumberland, which, owing to the extraordinary increase in iteam navisation, are dally riaing into sreater importance.

On the west coast we have pernonally inapected the rivert Lune, Wyre, Blhble, and Dee; and the ports of the Iale ot Man, which, although of aroall ertent as harboura, become of consequence from their position in the centre of the Irish Channel, and as the head-quarters of anextenaive and increasing fiablas trade.

In Ireland wa have been easbled to visit most of the ports and fishingpiers around the coast, and have been strongly impressed by a sense of the great value of its natural harboura, their depth and capacity, and the extent and capabillty for impruvement of its fisheries, which, even in their present state, and whth the fishery-piers often in ruins from neglect, afford employment in 10,880 vesselo and bonts, and 93,000 hardy fishermex.

Hut theee natural adveatages are very far from having been tarned to the best account.

The harbour of Dublin and the river Liffey offer an inatructive example of tho onrreatneas of this atatement. Within the last 30 years many improvementa have taken place. The depth of water over the bar and up to the cliy quays has bean increased several feet, hy dredging, and by the bold meanure of running out the great north wall. The trafic and consequent revenus of the port hare more than doubled, and the latter has risen to 834,000 a year. Yet the evidence ahows that the foundation of the quay is generally so imperfoct that they will not, in their present atate, admit of the rivor belng further deepened; that the south quay, the resort of threefourthe of the ahlpplng of the port, is encuunbered at its foot hy heaps of mud; that the entrance into the grand canal dock it all but blocked up by sand-banke ; that there is a great want of graving docks; that there is but one public crane; that the port charges are very high; and that the ballast, of whleh, hy Act of Parliament, the ballast-office has a monopoly, and for Whinh it chargea about double the market price, is in many casea bad.

The lale of Man occuplen an important position in the Irish Cbannel, directly In the track of commulcation between Liverpool, Giasgow, and Belfapt, and of the coal trade from Whitehaven and Maryport to the whole of the eant eonat of lreland. It hat been aptly termed the "Beacon of the Irish sea," and as such overything that care and skill can auggest, as to Jighta, hescons, and improvement of ite harbours, would be well bestowed, and tend to prevent that recurrence of the nomerous wrecks that liave taken place around ite thorea. Yet such ts far from being now the case; on the contrary (wlth the exception of the coast lights maintained by the Board in Ucotland), marked neglect prevalls throughout ; and here the evils of irreoponaible, self-elected authorlty are hut too manifent, the commistioners meeting only once a year to go through the form of auditing their own accounts, keepling no regular minutes of their proceedings, and practically leavins the whole power and authority in the hands of a single permon.

On the north-west coast of England, the river Lune and the port of Laneaster are capahle of much improvement.

The rlver Riblile and port of Preston offer a proof also of the value of atiffal engineering, an applied to navigable rivers. Only five yeare since, spring tides rose but aix feet, and neap tides not at all, at Preston quay, so What vessela were ohliged to unloud their cargoes at Lytham, near the mouth of the river, and aend them up to Preaton in lighters or fiate drawing but six feet of water; whereas now, by means of atraightening the channel, and
deepering its bed, spring tides rise ten feet, and vessels of 200 toms, drawing eleven feet of water, come up to the quay.
lt appears from the Parliamentary returns that the aggregate debt of the eeveral ports of the United Kingdom, excluaive of docks in the port of London, exceeds $\mathbf{\$ 4 , 0 0 0 , 0 0 0}$ sterling ; one-fourth part, therefore, of the whole harbour income of $£ 800,000$ a year muat be anowally appropriated to pay the interest of this debt, whicb will consequently materially cripple the meana for future improvements. This lurge am, although borrowed with the sanction of the Iegialature, has been jaid ont entirely by the sereral local boanda, without tha slightent control being exercised over it either hy Parliament, or by any other power apecially charged to watch over the interest of the pahlic.
Among the numeroas cases of the misapplication of the harbour funds, to which we bave already had occasion to refer, the sum of more thas $\mathbf{£ 2 8 , 0 0 0}$ expended last year in Parliamentary and legal expenses connected with bills for the improvernent of harhours, seems to your commisaion to be a most impolitic unnecessary outlay, and one which might be entirely prevented by the establishment of a Harbour Conservancy Hoard, such as we bave humbly ventured to subuit for your Majeaty's consideration.

From the competition already commenced between railroads and the cousting shipping, we fear that unless immediate measures be taken to improve the harbours and navigable rivers of this kiagdom, and, where practicable, so lessen the dues, a large portion of the goods which these vessels now carry will soon be conveyed by the railooads rapidly extending to almout every part of the coast. We mould, therefore, atrongly urge such assistanct, not only on economical but on political grounds of the highent importanee to the maritime intereati of the kingdom, as the comatiug trado has ever been the beat nursery for the hardy race of acamen who have 30 ably maintained the honour and power of the country.

We alladed in our firat report to the obstructions and shoals Fhich mo seriously impede and endanger the aavigation of the Thamea, betreen Gravesend and London-bridge; all the additional information and evidence we have received aince that report was presented, fully convince as of the correctness of the opinions wo then expressed, and wo feel conflent that, if the various and frequently conflicting authorities to whose guardianship the conservancy of this noble river it entrasted, could be indaced to co-operale cordially in its improvement, and to carry on their operations juintly on one sound and uniform syatem, the impediments which now discredit the local administrations and endangered the commerce of the metropolis, might be speedily and cheaply removed. And in atrong corroboration of our own view of this suhject, we subjoin the following extract from the report of a seleet cominittee of the House of Commons in the year 1836, specially appointed to inquire into the state of the port of Lnadon:-
"That thit committee are of opinion that the various conticting jorisdie. tiona and claims of the Admiralty, the Trinity House, and the Corporation of the City of London over the river Thames below the hridges, have had a most injurious effect upon the interests of navigation; that it in desirable they should be consolidated and veated in some one responsihle body, and that means should be found to provide for the removal of shoals and obatructions in the bed of the river."

All these facts and considerations induce na most earnestly to repeat the recommendation, whicb we ventured dutifully to submit to your Majenty in our former report, that all the tidal harbours in the United Kingdom be placed under the special care of a board of conservanct, to be formed under the authority and provisions of an act of Parliament, being fully convinced that any lest atringent and decisive measures will be found wholly inadequase for the accomplishment of the great national ohject which your Majesty las been graciously pleased to direct as to consider and examine.

All which we humbly certify to your Majenty,
W. Bowles, Rear-Admiral, M.P., Chairman.
J. J. Gordon Bremer, Captain R.N.

Joseph Hnme, M.P.
Aaron Chapinan, M.P.
Bdward R. Rice, M.P.
Tbonas Baring, M.P.
P. Beaufort, Hydrographer
G. B. Airy, Astronomer Royal.

John Washington, Captain R.N.
Bichard Godson, Q.C. and M.P., Comnsel to the Admiralty.
London, Mareh 20, 1846.

The Value of $\mathbf{S m o z e}_{\text {ma }}$-A atriking instance of economic talent came to our knowledge in the distict of Aliton Moor. From the emelting earthe of one "bonse," an arched tmanal condacta the amoke to an outlet at a distance from the worka, in a waste apot, where no ove can complain of ft. The gathering matter of "famen resultime from the pasage of the amoke is ennaully suhaitted to a proerme, by which at that time it yielded enough to pay for the conalruction of a chalmoey. A atmitar tuanet cbimaney three miles in tength was esecting at Allenciale. Its fume will yheld thousands of poonds
 - Britiah Quarterly Refiem.'

fainting on glass.

There are three kinds of paintings,on glass : paintings with the different coloury un separate pieces of glass, painting on uncoloured glass, and pointing on crystal. The first two methods are frequeutly combined so as to constitute a fourth kind of painting on glass. The first kind of painting is incualestabiy the most ancient. Glase is prepared in sheets, blae, violet, sellow, green, and red, and after being divided into pieces of the proper size and shape, the separate portions are put together by glaziers' lead.
The preparation of porple glass has fallen into such disuse, that till very recently, the art was considered to be eatirely lost, but this is not the case, for there still exiat printed receipts which describe all the details of the uperation. Baptiste Porta, who was burn in the year 1540, has given one of the receipts in his Magie Nuturclle, and be has laken cure at the same time to warn us of the difficulty of obtaining a successful result. Other receipla are found in the compilations of Néri, Merret, and Konckel, and have been transferred to the encyclopaedia. No information, however is given respecting red glass. It is not prepared with the purple of gold, for this substánce pives neither a scarlet red nar the red, of clear wine: lnstend of uxyde of iron, the protoxyde of copper is used. But as this last produces an exceedingly deep colour which deprives the glass of its transparency, the usual plan is to cover white glass with a thin layer of red glass, 80 as to furm a kind of plated glass. The process is as follownthere are placed in the furnace two crucibles, of which one contains common glass, the other glass of the same comprosition, but coloured with protoxyde of copper. to which is added protoxyde of tin. Tbis lapt body tends to preveut the oxydation of the prutoxyde of copper which would have the effect of colouring the giass green. A small addition of protoxyde of iron gives a scarlot red or fiame colour. If the glass take a areenish liat a little bi-turtarate of potash will renew the colours by restoring the bi-oxyde of copper to the state of a prowxyde. The workmau commences by laking on bis "blowing-iron" a small quantity of red glass; be then plunges the tube into the white glass, of which he iskes a much lirgerquanity, and he then blows it out accorling to the ordiuary method of making "tables" of crown alass. This method was emplosed for the ancient gluss of church windows; at the prement day this glass is manufuctured at Hutinungsthal, in Silesia, by the Tyoe Company in England, by Boutemps in trance, and at Besangon.
The glass, as has been said, is cot up into colonred plates. The tints and half tints are applied by means of coloured enamels on one face or the other of the glasa, which is exposed to heat, and the different pieces are joised by glaciers' lead accordiug to the pattern or draign. If the painings be suall, and designed to be viewed cluse, plated glass, and not glass coloured throughout its thickness, is employed. Purts of the colvured luser are removed at the requisite places, und on the white glass thus laid bare, the colours required for the paintiny are applied. In this way designa are obtained of which the coluurs differ altogether from the grounctonlonr. Instead of removing the coloured layer by mechanical meuns, it may be destrosed by tuoric acid.
The effect of the weather insensibly alters the colours of ancient painlinga on glass.
Puinting on glass properly so called, that is to say, the application of coloured eaumels to uncoloured slieets of glass was little known to the an. cient artists, and it is only in our oun day that the progress of chemistry has advanced this art to any degree of perfection.
Paining on uncoloured glass was executed in 1800 by Dihl; it consists in tracing the same design on two sheeta of plain hlass, which are submitted to the action of bre, and then the faces on which the designs are drawo are laid one upon the other.
To fix by beat the colours on glass without altering its form, or fusiug it, it is necessary to add vitreous matters, which ore readily fuable, Huxes, which vary according to the auture of the colours.
Silicate of leatl is employed with or without borax, minium and very fine and are fused together, and different proportions of calcibed silex and quarts. For instance, take

The quantity of fiax required for each colour, so that it may have the required fusibility and clearnesa is very variable, the necessury propurtion is in general three or four parts. All colours are not adnpted for the same lux; the purple of gold, the blue of cobalt, require an ulkuline fux; the maiom injures shese subatances, while othre deep colours are not injured by luxre iuto which lead enters.
. Sume subslauces require to be vitrifed with the fux proper to them, before they can be employed in painting, as the feeble heat to which they nre subsequently subject is not sufficient to develop the colvur properly. The deaturyde of cupper, and the sellows, blues and violets, are anoug these aubstunces. Wuth purple of gold aud oxyde of iron on the coutrary, great Wrecaulions aro necessary to preveut the injury of the coluur by tuo great hrat. The culoured enamely when prepared are reduced to powder, and preserved frum the action of nooisture.
All kinds of glass are not suitable for painting. Fxccss of alkali is dentructive ; preference is therefore girrut to the hardest glass, whinch cunthins ingreet deal of silex, and which dues not attract moisture, at the Bo-

Before applying the colours with the brush, they are mixed on a palette witb turpentive. When the painting is finiabed the colours are fixed by heat, an operation which requirea great care and experience. Hots of fireclay closed by a cover of the same substance are placed in a support of iron, $s 0$ that they can be enveloped on all sides by the dames; the method adopted in France for cooling the glass is to put it in separate furnaces heated by charcos. The plates of gluss aro laid ode opon another on'clay slaba, supported on props of the same muterial. The heat is judged of by trial-pieces, which are introduced with the rest of the glass into the furnace, and are withdrawn with a spatula. When the coloars are well viriGed, the plates are put in the aonealing oven and gradually cooled. It is necessury that this last operation should be conducted very gradually, to ensure the permanence of the colours.

The colour communicated to glass by the protoxyde of copper is, as bas been observed, too intense to be employed alone, for it causea the "metal" to appear opaque of a deep brown. It is necessury for procuring a transparent red that the glass ahould be extremely thin. Consequently, the only means of getting red glass of a proper thickness is by covering plaiu glass by a thin lager of red. The plated glass has the advantage of allowing the partial removal of the red layer in order to oblain white figures or udd other colours. The glass of the Middle Ages shows that this method was adopted by the ancients.

In order that, when the red and white glass are blown together, they may be well united and do not separate doring cooling (as happened in some of Engelhardi's first experiments), the "metal" of both must be the sanie, or at least analogous. It is best to make the red a little weaker than the white; the latter must not cuntain any oxydising substance, which would injure the red colour.

Great care ia required to avoid air bubbles in the glass. The red and White must be ready at the same time, in order to work together well. The beauty of the glass depeads also nuterially on the skill of the workman, for it is easy to understand that the coloured glass is always thicker near tbe orifice of the blowing.iron than at a distance. It is on this account that the glase is seldom of a uniform colour, except in the middle of the plate: at the extremity of it the red laser is sometimes so thin that all trace of colour is lost. Dr. Engelhardt has preserved several ancient specimens, in which this gradation from a deep colur to a light one, has been made use of in a very happy manoer to produce striking effects. After a certuin degree of practice, the workman is able to obtain a tolerably uniform colour, and Dr. Engelhardt expecta to effect this object completely in a glasa manufactory where he has directed uttention to this particular branch of the art.

It is sumetimes necessary, when the glass has once been painted and the colours lixed by baking, to add a second cont of painting; aud us it is then necessary that the gluss should be again subjected to beat, the colouring matter must be rendered so tusible by an additional proportion of dux as to avoid all risk of fusing the colours first painted.-Translated from the Rerme Scientifque et Industriclle.

CLERESTORIES IN MODERN CHURCHES.

Christ Church, Plymouth.

Sir,-I am really most reloctant to introde myself again npon your pages; the more so, as "Candidus" las so kindly and (of cuurse, as I thiuk) so ably defended the priuciples on which I bave acted. The answer, however, which you have made to "Candidus" seems to require from me a word or two in explanation. In the first place, Christ Church, Plymouth, is not lighted by "clerestories only." There are windows at the east ends of the aisles on the gallery fivor, besides the two great eust and west windows, which literally do make the main body of the interior as "cheerful as the day;" and in the darkest seats beneath the galleries, on a gloomy day, you can see perfectly well. There is no part "uselens" or evell "incouvenient," "by its durkness." The body of the church is so wide, and the gallery recesses so comparatively shallow, that the "defect" which you say "mast exist" does not exist. Though a positive sun-beam canoot " shine rouud a corner," it is equally certain that where there is a great central reaervoir (if I may use the expression) of daylight, it will expand its illunination even into corners which the sun's immediate rays can oever reach. Again, "the extent of unbroken surface of the north and south walls" is not so great as you seem to imaginp. There are recesses for seats where, under other circumstances, there would have been windows ; and these (had our means allowed it) might have been rendered highly uraate. At all events, here are admirable localities for mural mounments.

You are, likewise, under a misconcepliou as to the reference made by "Cuadidus" to the octagon of Ely Calisedral. The "fower windows," us sou term them, are ouly "luwer"than the luntern. They ure the clereltory
windows of the octagen, above the arches openiag into the aisles, and ranging with the clerestory of the navo.

In assuming it to be an "essential principle of Pointed archlteotare that the north and south walls of a church should have windows, because you find this to hare been uairersally the case in ancient examples of the art practised by its inventors," you, in fact, deny the applicability of Pointed architecture to any church that is not insulated; or, in other words, you declare that no circumstances can warrant the consiruction of a charch in immediate contact with other baildings on either hand. This may, or may not be. All I desire of my critics is a fair consideration of the conditions under which my charch has been built. They were imperatively these :the Gothic style, and no north or south windows; the latter resalting from the economy which required a maximum building on a minimam space, and therefore precluded any north or south area. The question was, whether a certain number of Christians ahould remain withont church sittingroom, or whether a church without north or sonth windows (in the Gothic style) should be built?

I shronk not from the attempt to reconcile the demands of my employ. ers with the limits of my means; and considered, that no "essential principle" of architecture (be it "Pointed" or otherwise) would be compromised by the modification of ancient example to modern purposes. I did as I conceived the old architects would have done under the different necessities of protestant worsbip and other peculiar circumstances of means and situation; and I am not aware that any, who have seen the result of my endeavoura, have pronounced them unsuccessful.

I am, Sir,
Yours truly,
Georer Wightwick.
[The difference between Mr. Wightwick's opinion and our own respecting the subject of the letter which he annecessarily apologises for sending, in, probably, less than he himself imagines. Where the question arises, as he has stated it, " whether a certain uumber of Christians should remain without church sitting room, or whether a church without north or south windows (in the Gotbic style) should be built," we must answer at once that the attainment of the main purpose of the building ${ }^{\text {s }}$ should be preferred to all considerations of architectaral beanty.

It is conceded, however, by the phrase "modiacation of ancient example," that the mode of construction suggested is modern. The only question between Mr. Wightwick and ourselves is, whether the ancient architects could have been induced to adopt this mode. We think not, and will give the reasons of our opinion consecutivels.
I. Ancient precedent in universally in favour of this opinion. In all ancient charches, without one single exception, the alsle or nave windows are an essential part of the edifice. We do not mean to strain the argument of precedent begond its proper limit, or to advocate the imitation of the practice of our forefathers withuut examining the correctness of their principles. But the plea of precedent is at least valuable thus far-that the univerality of it indicates something more than the uniformity of mere rontine. It seems obvious that if the mediapul architects, under whatever different circumstances they constructed churches, whether isolated in villages, or among the crowded buildings of large towns, of within the walls of fortresses, colleges, or abbeys,-whether the site were on a plain or on the precipitous declivities of a feudal fastness,-noder conditions the most varied and frequently the most dificult, adhered to the principle of build. ing nave windows, we have at least a presumptive proof that the inventors of Pointed architecture, who may be supposed best acquainted with its sssential nature, considered this principle of paramount importance.

It is to be remembered that the ancient architects frequently built churches under the same difficulties, arising fron the contiguity of secular buildinge, which embarrass modern architects. In the old cities of Normandy and Flanders the carefal observer will notice cases of churches to which large additions had been made after the site was closely hemmed in by other edifices; and it is frequently very instructive to observe the skilful means adopted to procure access of light to the lower part of the added portions of the building.
II. The light of the clerestories was always subordinate to that of the aisles until Pointed architecture began to decline. In Early English and Decorated architecture, clerestories are not nearly so large as in Perpendicular buildings. In the former styles the clerestory is in by fur the greatost number of examples omitted altogether; and where it exists, the windows are always small, and the light from them greatly subdued. In
churchen these windows are trefoils or quatrefoils or other single-light apertares : clerestory windows of more than one light are confined to cathedrals or very large charches. In the Perpendicular architecture, bow. ever, especially in the latter and worst part of it, the fatal principle of enlarging the clerestories was first introduced, and became a powerfal cause of the debasement of Christian architectare. To the very leat, however, the constroction of nave windows was universally retained, even when the art exhibited that sure and certain mark of decay-the subatite. tion of elaborate details for simplicity and excellence of design.

The preced log arguments are of the nature of historical consideration. We wish, bowever, to guard ourselves againat the snpposition that we over-estimate the value of precedent. We trust that we shall gever be accused of irreverence for antiquity; but, at the same time, it is mere pedantry to affect ancient rules which have no intrinsic merit to recommend them. Precedent always furnishes preamptice evjdence, bot there are three causes from which it may become valueless. First,-an ancieat practice may have originated in prejudice or accident and not in fired principles. Secondly,-the fixed principles which infuenced the ancients may be proved, by subsequent knowledge, to be erroneous or ingnficient. And lastly,-principles which were perfectly sufficient when first acted upon, may, by time and change of cironmatances, become obsolete. It is therefore necessary, fur the completeness of our argument, to show that none of these causes operate in the present case to destroy the value of the precedent. We proceed, therefore, to the arguments derived froe general considerations of the nature of Pointed architecture.
111. The clerestory admits light in that part of the church weich appears most beautiful by a subdued light. The solemnity then of the appearance of a chnrch is derived in a great measure from the comparative obscurity of its roofs. The dark shadowy roofs of Pointed architecture have been favorite subjects of admiration with those who are excellent judges of general architectural effects-the poets. In questions like these, one example is worth a folio of dissertation, and if those who are really anxious to get at the trath in this matter will take the trouble to observe the difference between the mode of lighting the interior of the anct of Westminster Abbey and Henry VIIth's Chapel, they will have no dim. culty in arriving at a conclusion. In the former case, the great body of light (notwithstanding that much of it is unhappily obstructed by preposteroes monuments) comes from the aisles, and produces the most beantiful effect by the shadows of the piers and arches. The light of the clerestory is comparatively small, and must have been still less when the wisdow: were flled with stained glass. Let the reader, when he has curefully ebserved the effect of the light in the nave, especially at the western end of it, proceed to Heary the Seventh's Chapel-a building belonging to the very last period of which the Pointed architecture coutinues to claim our respect. In this chapel be will find enormous clerestory windows, admitting a flood of light near the roof. The lower windows give but litule lught, and that litfe is almost entirely obstructed by the stalls. Here, cherefore, the observer has one of the best instances which ancient churches afford of the effect of light admitted by clerestories. We have never beard any difference of opinion amoug unprejudiced persons as to the coleasaity of this effect. It is not solemn-it is scenic-theatrical-the glare thrown from the upper part of a stage when the fool-lights are lowered. Compared with the effect of the nave of the Abbey, there cannot be a doubt which exhibits the "dim religious light" of a Christian edifict. The gorgeous multiplication of oroaments which profusely decorate Hepry the Seventh's Chapel dazzles the eye, but produces nothing like a alona impression, and the judicions observer goes away salisfied that the design and general arrangement of this strncture is incapable of that utateig grandeur which imposes a feeling of awe and revereace. Westeninster Abbey is by no means the most favourable instance which we could have selected, but it was the most familiar. But imagine some of the mont magnificent cathedrals of the continent lighted by the clerestories aloweAntwerp, or that of Cologne, or Rouen! Suppose, if it be poesible, the dim obscure roofs of these glorions edifices suddenly illuminated by a Bood of light ;-Where would be the solemnity of the "long-drawn aiales" then ! Suppose the windows of these aisles darkened and every ahadow reversed, -will it be denied that the effect would be absolutely hideous f Or if is be objected that the question in dispute refers to a church and not to a cathedral, we will cite the well-known inatance of Great 8t. Mary's Church, at Cambridge, where the dazaling light of the clerestory is bot only deatructive of all solemn effect, but actually painful to the ese by ita violent contrast with the comparative darkness of the ainles.
IV. By the undue ealargement of the clerentory, the piers and wrebis
become subordinate parts of the structure. This result is prodaced not 80 moch by the actual dimiaution of the size of these members as by the prominence given to the clereatory by the light proceeding from it. Now the consequence of this is, a violation of the rules of "apparent construction," for the greateat weight to be anpported being that of the nave-roof, the arches and piers should be treated as of primary importance: the architectaral effect of them is destroyed directly they become subordinate, and ceondingly in the best chorches the piers of the nave hava great strength, aod the weight of the roof appears directly imposed upon them. Where, bowever, the wall above the arches is perforated by numerous windowa (sometimes so numerous as to give this part the appearance of a huge hothorn), the roof never seems adequately supported: there is an appearence of iastability produced, which is directly opposed to the canons of architecture. And this instability is not always merely apparent. It is freqsently a matter of observation that the walls of the clerestory, where they bave been weakened by the size of the perforations, are thrust outwards by the pressure of the roof. This deviation from the perpendicular is especially obsorvable in cases where a Perpendicular clerestory is a subsequent addition to a Decorated or earlier church.
V. A charch is not a mere facade. That word facade is Italian in its origin, aod both the word and thing signified belong exclusively to Italian architecture. The Cbristian architects viewed their churches not as mere surfaces or fronts, bot as possessing the dimensions of length, breadth, and height. The superficial style of architecture is a modern invention, donbtleas derived from that habit of making mp elevations on the Italian principle which characterized the last centory.

Of the reversal of the shadows where the light is obtained from a cleres. tory erclurively, it is nol necessary to speak at large, because we have else-- There spoken of it. We may observe, however, that in the mouldings of oave-arches and the deep undercut capitals of pillars the shadows nust be exacily reversed when the light is obtained from a clerestory, instead of the aisles: in the one case these shadows are thrown downwards-in the other apwards. Consequently the architect, if he have a due sense of constructive propriely, will never dream of using ancient mouldings in cburches built on the new plan-he must devise new mouldings suited to the novel disposition of the light. This point is not one of speculation bnt observation, as any one familiar with ancient mediaval mouldings may sutisfy himself by examining the result of introducing them into some of the dew London churches, wiodowless aisles.

The breaking the continnous sarface of the north and south wall by reeases instead of windown, is an expedient which by no means removes the objections here assigned. We have, in a previous number, guarded ournelves agaiast the conclusion that churches are necessarily to be isolated. There are many cuses where chapter-houses, cloisters, \&c, abnt on churches without marring their architecture. If however we be asked whether a church built in the line of a street, between adjacent honses, and only distinguished from them by having its gable instead of its parapet turned towards the street, aod by the display of a few stock-in-trade Gothic ornamenth, satisfies the essential principles of medimal architecture, we answer emphatically and unhesitatiogly-No. By no meang-if the laws of style are to be interproted by the apirit instead of the letter-by the general utistic effect of a design, and not by minute resemblances of detail.
We know that architects have much to contend with in the injudicious wishes and erroneons taste of those who employ them; but we are also convinced that they may frequently get over these difficulties by firmness, asd by explaining the reasons which fortify their own opinions.

Of course when an architect is told to build a maximum church on a given area, or a church of given cubic contents on a minimum area, the question becomes one of simple geometry-all idea of architectural propriety must be given up. In less hopeless cases, bowever, we would venture to recommend the architect to leave a little space, if only of two or three feet, between the walls of the church and those of the adjacent bonses,-to provide at least enough apace for the construction of buttresses. It will require some additional expense to render the north and south walls vaiform in architecture with the rest of the church, and the architect will have to practise some self denial, aince he will not have so much money to espend on the more cosspicaons western end. But this self denial will be well rewarded, for though there wili not be so much to attract the eyes of mere lovers of show, the homage paid to the principles of pure taste will claim the admiration of the jadicious observer, "the censure of which one mesh, io your allowance, outweigh a whole theatre of others."

Of conrme this advice is given on the most anfarourable sopposition, amely, that there are not fanda to parchase the adjacent buiddinge. In
this case it may be well left to the munificesce and good-feeling of future beoefactors to contribate the means of removing these obstructions, and displaying in all its dimensions, the odifice which then, and not till then, will exhibit the character of a Christian Church.]

THEORY OF THE ARCH.

Sir-In onr last letter we endeavoured to ahow that your review of onr pamphlet was written under a mizconception of the principles therein advanced, and hence the wholesale condemnation with which you were courteous enough to favonr us.

Yon have challenged us to show where the atandard writers on the theory of the arch have failed in their reasoning. We should consider it presumptuous to entertain any doubt of the accuracy of the atatements of Professor Moseley, neither does hia theory of the arch, and the method by which he arrives at the line of resistance and the line of pressure, militate against the observations which we have rentured to bring forward.

We maintain that the voussoirs of an arch, of any form, have only to support that portion of the superstructure where the corbelling ceases to

exist (represented by the shaded lines in the accompanying diagram). Now, if the "two-centred pointed arch"-not the plate bond, which you have erroneously put forward as our proposition,-shown at \mathbf{A}, \mathbf{A}, is substitoted for the semicirculap, segmental, or elliptical, is it not manifest that there is greater strength obtained, with less amonnt of material? The beds of the voussoirs being nearly parallel, and the key stone of the arch being the only portion at all affected (in a downward direction) by the superincumbent weight, it appears to us to possess advantages co equal with the " merit of novelty."

We do not consider it worth while to oecupy your pages with any remarks respecting the title of our tract; if we have demonstrated that a stronger arch at less cost is obtained by our method of construction, we shall consider our labours amply repaid.

We are, Sir,
Your obedient servants, Blaif and Phillips.

ARCHITECTURAL COMPETITION.

Sia - The recent award of premiums of competitors for the Leeds In. dustrial Schools, affords another sonrce of encouragement to young architects, and is too good an example of what professional men have to contend with, to pase qunoticed.

The Committee was composed of one respectable innkeeper, fourthrato manufacturer, a maltster, a drng dealer, a house painter, a leather dealer, a grocer, and an apothecary. The Plans were hung up for the private inspection of the committee and friends by a joiner, who gave the names of the competitors to the parties, but to appear decent, they called in a reputable arcbitect, from a neighbonring town, to decide apon the merits of the designs, and on his decision tbis Committee professed to ach.

Among the competitors were some four or five architects (one of whom took cere, with all due northera foresight, to describe by letter bis pertickler plans to his friends on the Committee, lest they perchance might favour those of older and better rirals); another competitor was a joiner, preacher,
and coarenticle builder; another, a potbonse keeper, who began his career as a joiner, and perfected himself as a toll clark of a market house.

The Judge made a just award, opon which the committee did not act, bot. contrars to all reasonable expectution, they gave the first premiun to their friend whose brandy-and-uater and pewnyworthe of tobucco bad of regaled the majority aftor closing their shops.

Much more might be said, but this suffices to show the sinte of art in this great manufucturing place, and how hopeless is the chance of any young or old architect to erect a pablic building here, onless expressly commissioned by some of the few men of education and taste who remain to us of the ancion regime.

I remain, Sir,
Leeds, April 18, 1846.
Your obedient servant,
Viator.

REGISTER OF NEW PATENTS.

If additioral information be required reapectug any patent, it may be obtalned at the afice of thle Joural.

MOTIVE POWER.

David Wileingon, of Potters Bury, near Stoney Stratford, Gent., for "improdements in obtaining motive powor."-Granted October 10, 1845 ; Eorolled April 9, 1846.

This invention consista in a mode of combining heated air with steam, instead of using air or steam sepsrately. In carrying out this invention the patentee proposes to apply an air pump of about half the cubic contents of the cylinder, by mesns of which air is to be forced through tubes or uther auitable apparatus, anch apparatns being heated exteroally, so that the air may become highly heated, which is afterwarda admitted into the steam boilers or generatort, that the beated air may combine with the steam and go together into the working cylinder of the engine. This invention is more particularly intended for high pressure engines, notwithstanding, the patentee states the same is equally applicable to low pressure or condensing engines.
The claim is for forcing air through pipes or other suitable heated surfaces and then mixing the amm with steam, and working the steam and meated air conjointly.

BLIDE VALVES OF LOCOMOTITE ENOINES.

Robert Bewice Longridge, of the Bedlingtom Iron Works, near Mor petb, Northumberland, for "an improved locomotive engine."-Granted Jan. uary 13 ; Enrolled March 13, 1846.

This invention for improvements in locomotive engines relates to the alide valres and mode of working the asme. The accompanying figure shews a

Fig. 1.
transverae aection of the alides and steam ports leading to the cylinder. $a a$ are the induction ports lesding to the cylinder; b is the eduction port; $c c$ is a slide valve for opening and cloning the ports in tbe cylinder, and is warked by an arrangement of levers and excentric, which latter is capable of being moved upon the shaft say 30 degrees on each side the centre of the crank, for backward and forward movement of the engine. The induction ports of the valve pass tbrough to the back thereof, at which place there is a spond slide c^{\prime} for cotting off the steam at any required part of the stroke. 'Ihis latter valve or slide is worked by an excentric, keyed fast on the shaft,

and an arrangement of lever shown at fig. 2. dis the ezeentric rod, the outer end of which is connected to a lever keyed on the weigh shatt e; upon this ohaft is keyed a alotted lever f, which receives a und attached to the end of a link g; the opposite end of the link g is attached to the valse rod λ, so that by raising or depresaing the stad in the alotted lever f, the amount of motion imparted to the valve rod h and valve or alide $e f$ can be varied at placanre. The end of the link g is raised or depressed in the slat by means of a rod i, attached to the end of a bell-cranked lever k; to the opposite end is attached a rod b, actuated by a lever placed near the enginedriver. Another improvement consiats in heating the water aupplied by the feed pumps previous to entering the boiler. Por this purpose the inveptor proposes that the water, after leaving the feed pumpa and before entering the boiler, shall pass through a chamber or series of pipes exposed to the action of heated rapours, which pass through the tubes into the amoke bax, $s o$ that the water may become highly heated before entering the boiler.

hocomotive Eneines.

Henry Samuzl Raynez, of Ripley, Derby, Gedt., for "cerlain improrementa in locomotive enginea."-Granted September 4, 1845 ; Enrolled Maret 4, 1846.
The ohject of the inventor is to constract a locomotive engine, which is to be propelled by the pressare of the atmosphere acting upon the exterior surface of a veastl or vessels exbauted of air. The annezed diagrem shows a aide clevation of Mr. Rayner's locomotive, which may be termed a perpetual locomotive, being of that class of machinee when ouce started will continue its course so long as the parts of the apparatua will hold together ! a represebts a rectangular or oblong vessel of a wedge-whape.form mounted upea

the carriage framing; above this vessel is fixed another (marked b) of the same construction, but in a reverse position; the ohject of reversing the two vessels being for the backward and forward movement of the apparatns. Esch of these vessels are made holluw and perfectly air-tight, and are connected, by means of a pipe, with an air-pump c, also fixed upon the framing of the carriage. Now, in order to start the locomotive, Mr. Rayner gravely proposes to exhaust one of the two vestels a or b, when the locomntive will be propelled either backward or forward as may he required. Por the inventor states, if the vessel b be exhaunted of air, a certain anount of prassure wili be exerted on the whole of its exterior surface; that is to say, thero would be a verticai pressure on the upper or inclined surface, which the ingenious Mr. Ruyner supposes would propel the locomotive in order therefore to counteract this propelling power, he proposes to bave the "wheels, raih, and arles" at an angle, so that the locomotive under such circumatances mould remain motionless. He then states that the sidea of the reasela being equal to one another, the pressure wnuld be equal; that is to aly, the pressure on one side of the ves.el would lie counteracted hy that of the other. Now, the prassure on the under surface, the inventor states, is counteracted hy the gravity of the carriage (this would not have beeu a bad idea for Hanson's mertai machine). Again, the presnure on the ende of the vesel is also the same per square iuch as the other parte of the vessel; but one of the ends is double the ares of the other, consequently, there will be doubte the pressure on the larger end of the vessel b when exhausted, tending to propel the carriage in the direction of the arrow; and in order to reverse the motion of the locomotive, it will only be neceasary to exhaust, by means of the air-pump c, the vessel a in place of the vessel b. In conclusion, it would perhaps not be out of place to recommend the inventor to pay a little more attention to the atudy of pnenmatica before be attempta to bring his insention before the public.

PROPELLING POFIR.

John Laze, of Apaley, in the county of Herts, civil engineer, for "arr tain improvementa ta propelling." - Granted October 9, 1845; Enrolled April 9, 1846.

This invention consitt in a peculiar mode of propeiling carringes on rail. ways and common roads, and also barges or buata on riveri and canals. la carrying out this invention it is proposed to lay between the rails a continuous pipe, haring a lougitadinal slit or opening aimilar to those ex. ployed on atniospheric railways, as will be seen on referring to fig. 1 , which repreaents a longitudial section of portion of a tabe showing the other arrangementa necemary for propelling a traid of carriages upon a line of railway, between the raila of which is placed the tule a, and continued throughout the wholc length of the line. Within this tube there are twe pistous $b b$, connected together by means of pipe c with a stop-cock d;
this pipe is firmly attached to a vertical arm that pases through the longitudinal opening and attached to the leading or driving carriage of the

B
Fig. 1.
trin, a portion of which is marked with the letter f. Fig. 2 represents a transerse section of the apparatus taken through the line A B of fig. 1 , in which is shown the mode of closing the longitudinal opening by mesas of a valve g sliding edgeways into a groove or recess formed in the upper part of the tabe. The operation is as follows:-At certain intervals along the line

are to be erected steam boilers; and in order to propel the carriages, ateam is to be admitted into the tube a a throughout the whole lougth, for the purpose of varming the tube and driving out the air. The ends of the tube and longitadinal opening being closed, a commanication is to be formed with the tube and a condenser, similar to those employed in steam engines, for the purpose of condenaing the steam, lasving the pipe empty or nearly 00 ; when this is done the piston $d d$ is brought near to the opening leading from the boiler, when a fresh supply of steam is admitted, which will have the effeet of propeling the piston and train of carriages along the line. The specification staten that the condenser may be dispensed with by opening the cock d, 60 as to let the steam first introduced into the pipe pass up the fannel λ for the purpose of driving out the air. ii is an arrangement of levers for opening the valve d. In place of having stationary boilers, the inveator propones to hava an ordinary locomotive boiler, and inatead of the stem working the ongines as beretofore, such steam is allowed to pass through the pipe $c \mathrm{c}$ into the main, either from behind or in front, depending apon the direction in which the carriage or train is to be propelled. In descendiag iaclines, the ioventor proposen to fll the tube with steam, which will have the effect of a break, the motion of the carriage being regulated by opening the ralve d so as to allow the steam to escape from the main a a through the funnel into the atmouphere. $k \&$ (6g. 2) represents a covering for the pipe, composed of folt, straw, awdust, or other bad conductor of beat.

White Gravel.-Upwards of 7,000 tons of white gravel have been shipped from this city 10 Loudon since the 15 th of September last. It is taken from the beach at Long Island, and used to beautify the parks and gardens of London.-New York paper.

A NEW GONIOMETER AND CRYSTALLONOME.

At a recent meeting of the Chemical Society, Dr. Lexbon read a paper "On crystallography, with a description of a goniometer und crystallonome or instrument for studying crystals, in reference to their gubernutorial axes." The anthor commenced by observing that discriminative chemical researches have not received that assistance from crystallography which might reasonably be expected from the natural distinction of form pecaliar to various different substances.

The particular design of the author's present paper was to introduce greater facility and simplicity in the classification and determination of crystalline forms, both by improved methods of observation, and also by a syatem of classification founded on the three gubernatorial axes, for the happy discovery of which we are indebted to Weiss, by whom, however, as well as by others who have succeeded him, systems have been proposed by no means realising that simplicity and perfection of which the fundamental principle is believed to be susceptible. To prove that the nomenclatare and classification of the different anthors were both confused and complicated, various tables were referred to, showing the systems reapectively adopted by them. By referring to which it was apparent that different authors used the same terms for totally different fondamental forms; and also that by many of them terms were employed which, having reference simply to the number of planes bounding a given aystem, were, in fact, as subsequently demonstrated, applicable to every class and order, and therefore not discriminatire of any one in particalar. Any one who may have carefully examined the first crystals depositing from solutions of different substances, will be struck by the general prevalence of the prismatic or hexahedral form, or of some modification thereof; at the same time, be will observe great variety in the number of planes bounding many of the crystals. Under the microscope he will not only be strack by the general prevaleace of parallelograms, or sections of the prismatic forms, as well as hexagons, triangles, and other sections, resulting from bemibedral modifications, but also by the primú facie similarity of the sectional forms preseated by totally different substances. It is in the discrimination of these forms that the principles of classification now about to be proposed, and the goniometer subsequently described, are peculiarly applicable.

Before deacribing the system itself, the author requested to explain an iostroment which he exhibited, and stated he had contrived some years ago, for the purpose of studying the relative character of crystals derived from different positions and lengths of the three gubernatorial ares, and for which ingtrument he requested to be allowed to propose the name crystallonome. The author showed, with that instrument, that whatever be the length and relative position or inclination of the three axes, a prism or hexuhedron must necessarily result from a set of planes termiuating the extremities of the respective axes, such planes terminating one axis, and being parallel to the other two axcs. These planes were represented by a contrivance for attaching pieces of stiff paper or card-board to the extremities of the axes. The author then showed that un octahedron must necessarily resnlt in every case from a set of planes cutting all three axes, and which octahedron might easily be built up and represented by threads connecting the extremities of all the axes. The construction of other forms was also demonstrated.

The crystallonome, although constructed with only three zones placed at right angles to each other, is nevertheless capable of showing the position of the axes in every class, even where all the axen are oblique; this was illustrated by the instrument itself. It was also shown, that whatever be the class and order of a crystal, there are alwaya two zones in which all three axes will be found. It having been already stated, that the three gubernatorial axes form the basis of the proposed system, it will be evident that the discriminative principles of the system must be dependent on the position and length of the respective axes. Since the relative position of the axes occasions the greatest difference in the appearance and charactor of a crystal, it soems natural to take that as determining the clasa; and we shall fod that as regarda this distinctive character, there are but three classes to which the variation of position can give origin, viz. :-l, where all the axes are situated at right angles to each otber; 2, in which one axis is at right angles to the other two, which are obliquely placed as regards each other, one rectangular axis and two oblique, being, in fact, the same as though we represented it as two rectangalar axes and one oblique; 3 , it which all the axes are oblique to each other.

We have thus three clasees, which we term respectively:-1, rectangalar; 2, right oblique; 3, oblique; and these we again aubdivide into three orders, dependent on the relative length of the axes, viz,:-L, all the axea equal; 2, two axes only equal, the third being longer or shorter than the other two; 3, all the axes of different lengths. These orders we term-1, eqniaxial; 2, binequiaxial; 3, inequiaxial.

With these three classes and three orders we obtain nine distinct cryatalline bases, which, the author trusts, will be found easy to remember and simple to distioguish. Generally speaking, few aubstances will be found to crystallise in forms belonging to distinct classes or ordera. Without, however, passing any opinion on the subject of dimorphimen, the author showed, by reforence to the native crystals of sulphur, and also those obtained by fusion, that, according to the system Dow proposed, sulphur canoot be considered as dimorphoun, the native crystals being, in fact, modificalions of the octahedrons, or the rectangular inequiaxial system; whilst those of fution are prisms or herahedrons belonging to the amme system. Both were exbibited to the meetiog, and the goniometer, subaequently described, applied to the measuroment of the
angies of the exyetry of fucian. Whild anomion anbromee vsually coritallines in forms pertnining to the same class and order, it may nevertheless, as has bees already shown, ssaume a great variety of forman if reference be had ouly to the number of boonding planes; ant thene forms congtitute what may be termed the geaera of the anthor's aystera, which were shown hy reference to diagrames, as also the symbotic notation recommended by the anthor.

The anthor concluded by exhibiting his goniometer, consintiag of a donble refracting prism, placed in a vernier revolving ronad a gractasted checle, and applicable oither to the microscope or to cryatala placed on any convenient atand. He stated, that in most cases of crystallisation, particnlaty under the microscope, some crystals will be observed presenting the prismatic or hoxahedral form; and knowing that the gubernatorial axes of any prism muat terminate in the contre of the sider of that prian, we are at ance directed to the position and length of the axes in any given crystal whilst, by examining the angles formed by the sides of the parallelogran constitnting the section of the prism with the goniometar, we may deter mine the inclination of the several exes. In all natural octahedrons formed by inaxial plages, the axes will be found, as shown by the orystationome, by taking the points where four planes meet. Although octabedrons may be mathematically forned by biaxial planer-that is, by bendiag in the sides of the prism-it is believed that such octahedrons do not occur in nature, as it would contradict the general laws of symmetry, inasmuch as that, whilst the perpendicular axis terminated at the meeting of four planes, the middle and transerse axis vrould be situated in the centre of an edge bounding two planes-a state of things that could not certaialy ooour in the regular syatem; the general condition of natural symmetry boing, that whatever disposition takes place at any one extremity of an axis of equal longth, the same will take place at its otber extremity, and also at the extrenitios of every orher axis of equal length.

RHVDENT

Parisn Cavecser, being Porspective Vievs of English Ecclesicetical Strwetwren, apommanied by Plase, drawn to a maiform scule, and letterprese dincriptions. By R. asd J. A. Beandon, Architects. Ball, Fleat-street, 1846. No. 1, 8ro., pp. 18 ; fourteen lithographio platee.

Meams. Brandon are aiready favourably known to our readers as anthors of the Analysit of Gothick Architecture, reviewed in this Journal for Angust 194. The pabliontion now before us is the firt of a aerien inteodod to illustrate " such Churches as from their boanty of deaiga, and peculiar fitness for the sacred purpose for which they were reared, seem worthy of being adopted as models by those engaged in Church bnilding." The principal distinction between the present work and the "Analyais," is, that while the latter wee exclusively confined to the exemplificution of arohitectural details, the new series gives views of entire buildings only.

Oar old Eaglish Churches are so beautiful, and contain such treasures of architectural scionce, that we naturally comanence the examination of any work, which profeases to contribute to our knowledge of them, with a favomable proposeasion. Wo oannot suggest a work which we should atody with greater personal gratification than ose which gave a comprohansive, aystematic, and minete record of all that is valuable in our pational church architecture. Such a work, however, to be satisfactory, muat be conducted with liberal and extended views; it should be a very cyclopsed.a in which nothing is left ont that denarves a place in it. The chief value, of to speak more traly, alanent the only value of auch a publication would be its completencse. Of conrse we do not mean that the work should be a confused mass of facts-a collection of knowledge so ill assorted and 50 crammed and crowded together, as to become, like certain modern oyalopedias, that we wot of, absolutely uninteligible. But we repeat a doliberately formed ooaviction that the most valuable contribertios to architectural literature which could now be made, would be a digested and complete pandect of church architecture-not coucocted hastily as a pubishar's speculation to meat a transitory mania for ald churches, but arranged, slowly and carefully, from a mase of information collected by peins-taking and unwearied research.

The work before us certainly does not reach this mark. The plan of it, as far as wre oan see, doen not make any pretensions to aystem, and is by no means comprehensive enough. Each number of the series is to cantais elght perspeotive views of churches, selected at random from different connties and in difiereat styles, and the work will be completed in twolve parts: 50 that, altogether, we shall have ninety-six chnrches delineated. But what are thea among 20 mans? If Meagre. Braodon would multiply the proponed anmber by tan or twenty, thoir andertaking might auame an inportance commenmarnte will the ohject in viow. Not, indeed, but that io wort in in many respects a valuabie contribution; and if we mpeat of

If in tema of qualified praing it is on tha score of aing of qupfoniong at
 are numerous drawing-books, pablished as first lessons in pencil drawing Which frequently contain sketchea which are quite as good. The letterpreas descriptions, again, are not nearly copions enongh, and this defeet might be remedied the more easily as the anthors atate that they inlend to visit personally every church illustrated. In the number before ns, the description of each church is comprised, an the average, in thirty lines.

One other point to which we must almode is important. The authocs state their fntention of selecting churches which seem "' worthy of being adopted as models." We hope they will give up this part of their plan. Nobijing can be more fatal to the progress of anchitectare than the modern idea of model churches. Let us study' the principles and the forms devised by our ancestors, and their modes of combining them with the eeal and reverence of learaers ; but let as not grow mere copyiats of ancient churches. This contentment with mere reproduction marks the loweat abb of artiatic feeling-the very last atage of architectural degemen racy. The vilest modern plaster-gothic travestie is better than absolat copying; these abortions, bideous as they are, mark at least a desire to refin manthing of the glorions art lost among us during the Reformationi but mere mecbanical imitation argues absolute hopelessness-the indalence of despair-that we have given ap all eadeavour to reoover the ancient excelleuce of our national architecture, because satiofied by experionce of the absolnte fotility of the attempt.

Basides, even supposing the copy to be fairly made, and to be a faibhfil, trenscript of the original, there are ten chances to oma, thet some local airocemplarce, an irregatarity is the site, the prosimity of secniar baidioges or even local customs and requirements, may render it inconvenient or anfit for its parpose. Our ancestors did not design churches and stick them down anywhere : on the contrary, they examined the site of the new building, the nature of the soil, the particular wants intended to be erpplied, the character of the arrownding acenery, and a thonsend accidental local circumstances, before projecting the form to be adopted. A churel built on a bill top would, according to their exquisite foeling of propriety, require different treatment to a church on a bill side or in a valley. A chnrch hemmed in by woodlend scenery would of necessity be difereat from one bailt on a wide open plain. Modern practice does not recognise these subtle distinctions. We get up a dozen or acore of designs for naw churchea, send them to a picture exhibition to be duly admired by fashionable visitors, and duly bo-paragraphed in the newspapers, and are fally prepared to execute our plans (any or all of them, in any given spot of this island, or if need be, in the most distant quarter of the globe. They aro building now, in Calcutta, a cathedral with roofs as sloping and wiadow as numerous and large as those suited for a similar edifice in latitude 51°.

Even if we conceded the principle of adopting architectural models, we certainly ought not to take those selected by Messrs. Brandon. A model church ought, at least, to luave a uniformity of plan-a consiatency of design in it. The eramples before us show, on the contrary, such a remert: able diversity of style, that wo anight almost suppose them selected for that very peculiarity. The first church delineated, Little Casiertom, BufLandehire, is Early Engligh, with Norman piers and archen, Perpendicolar clerestory, and a Decorated pisoina; the seaend, Aptom Church, in the same county, is Perpendicular externally, with the axcepticn of acme Docorated windows; in the interior, the arches on the noth side of the mave are circular. Duddington, Northamptonahire, the third specimen, is in the transition from Norman to Early English, with a north aisle Norman, and a Perpendicular eleyestory. Herme Chereh, Kent, is apparently the moet anmixed in style, being almoat entirely oarly Deoertind, with, howerer, some Perpendicular details. Branotom Chwah, Nerthereptanative, the last example, has an Early Eugtioh chancel and a Perpendicular nave; the churcb, by the by, has (on paper at least) somewhat too much of the prian pert look of modern Gothic.

We hope that as the work proceeds, the plan of it will be extended, and that all idea of furnichisg models will be abandosed. It certainls moold be preponterous to re-construot buildiags whioh, like thoee here peartrayed, are the growth of anccessive ages. The authors of the proeend work are fully capable of contributing largely to the acience of medimel architectare, and we trant will greatly extend the limits which they have assigned to thoir undortakiog.

Reply to "Obervationes" of the Great Weatere Railuad Company on the Repert of the Gave Commiviemers. Veaher, Perliempantatreat. 18 en, 8ve; ; Pp. 75.

This rather long "reply" is in the form of a pamphlet, which, if we riv-

 whict $\mathbf{2 r r}$. Herciug's aiscertations ou the gauge controvetry have been characterised. Without iavolviag ounselves in the discassion, we cannot halp expreasing an opinion that those who bave read the "Observations" of the Grast Wederr Railway Company ongtt cortuinly to examine the provert prophlot, Wisct meest etoh argament consooatively, and treath the genernal question with great perspicuity. We wish, however, more had bees sald aboat the Iatermediate Gauge. There are many competont pernose-Mesars, Bury, Viguoles, und Cabitt, Col. Landmann, and Generil Paciey are annong the number-who think the broad gange too broad, and the swow gange too natrow. In the present parmphlet this opioion is dismiseed in twelvelines; in the Commiasioners' Report scarcely more space is occupied with it, and the viow there taken is supported by very iandequate and isconclusive arguments.

Tublee and Rules for facilitating the Caleulation of Earthwork, fo., of
 the power reguired apom inclized planes. By 5. B. Hunfinaron, C.E. Weale, Holborn, 1846. 12mo. pp. 286.
The objeot of this werk in some measure rosembles that of a smalier ase by Mr. Hughes, retiewed ia the March aumber of this Joarnach. The proseat treatize, however, embraces several butbects in additioa to the calcalation of earthworks. Tables are given for the calcnlation of the areas of alepes, the offects and radii of curves, sce. The first 170 pages are -cocupied by the tables for the crobic contents of cuttinge and embankments. Nest follows a tetocmatration of the prisnoidel formala and illustrations of the accuracy of the caicalation by this method compared with that geserally used by costractors. After explaining the method of using the foregoing tables, the author gives a dascription of a graduated scale for mencaring emthworka, without the necessity of referring to tablea. A mondent, reopreventiog one of these scales amede by Elliot, accompanios the following description :-
"I now proceed to give an explanation of a scale for meararing earthwork, which I have succosfolly med on the Restern Counties Railway. The vertical and horizontal scalea, and also the base and slope, mast be proviomaly determined for each scale, and then a net can be formed embracing the required slopes of the ruifws. My scales were made four in manber, for bace 34 ; alopes $1,1 t, 1\}$, and 2 to 1 ; and on the back of each wal propery described she siope, bme, and vortion mod horizontel scales to which they were applicable. All the dimensiona were taken in yards lineal, superficial, or cubical, an required ; the application being precinely the same as the ase of the tables, and the roles being the same to ftind the area, wing 2min co-eficient insteed of 6 . Owing to the frimeses of the gredations, 1 moild not advise, to inaure securracy, that the vertionl soele be made lea them 40 feet to 1 inch, anth, gezeraly, tho iurger the better. 80 foet to 1 ivolt waltial a good working socile. The lengthe cat be made to enit convenhance. There is no nooessity to memure the heights or leagths previousty, and the name form meat be soed mes before deacribed.
To Mormure a Cuttiong by the Seale. -Apply the zero of the scale of $200-$ tiotal arem vertionily to the gradiont or formation lire, and read of where the surfice line intersects; put this in solumn 1 or 2, as the case requires: them, at the remaller cond of the priscocid, upon the ncale of vertical yarde, With swe on the surthec line, obbocre where the gradient intursecta, then phece the same point of intarnction on the grudient a the other wod, and mond of ubove the zero on the sonle of differential areas, where the surfece lipe insersects; put thin in colamn 4, and then, having menvered all the lengthe by the ceale of borizontal yerda, proceed an in the use of the teblen. To urve thene, it it doutreble to take a pair of dividers, mod mart off at each divnion the difference of the heigtst in mpocemion, and then the difforential cale sbowe rero roal only be epplise.
Thas trathoil of compuring cabic contents of cattinga and embankments in very expeditions with a listite practice, and is quite as accarator and generulty more mo, than the calculating by feet and the tables; becanae, in a Woiting section, the pertats of interseotion of the scale and surfece line con be wifintied readlyy by the ege; bot, in oring an ordivery scote of equal

The ebove ortract is tollowed by tables of areas requined oa a milunity for cationge and embankments of varions heights and slopes; tables for estimatiag the saperficien of slopes; for finding the radius of a curve of which the chotreland the mogie eontainod between the tangente to the two whene poind of the are are keown, 8 co.
The peat of the wote which refers to messaration is followed by esmena on the resistances to locomotives, and the relation of the power of tha egives to those resifthoces. These escays, bowever, are pot attogether matisfactory; for instance, the resistances in question are stated to be theso thengethe fiction of the oarriagan, dec, the resiotance of alr, and the re-
salved part of the weight on an incline ; the author bas, bowerer, meglectiod the recistance doe to the blact-pipe, which frequently at high velocittes caines a proserre of 8 or 9 hb, per equare inch on the piston. The follow ing peasage is altogethor erromeona-che antior ts culenleting "powor" necessary for drawing a given lond; \mathbf{D} is the diameter of the driving wheel, e the area of the piston, l the length of the atroke :-
"Let p represent the pressure (60 lb . on the frech), and let the previous notation be used, then the general expreation of the power is peli-D for one cylinder only. The ratio between the froetent effect of one crank, and the mean effect of two acting simultaneoualy at right anglen to each other, ir nearly an 10 to 16 ; and adopting this proportion, we have $1.6 \times p a-\div \cdot \mathrm{D}=$ power of two cylinders."

This short extract contatas three errors, either of which woold be fatal to the conclusion arrived at. First, the pressare in the cylinder is sapponed to be the asme as that in the boiler, whereas the relation of those tro pressures to each other depends on the velocity or number of atrokes per minate; for the more frequeatly the cylinders have to be filled ta a minute, the more will the stemm be dilated in passing frow the boftor. Next, the "general expression of the power" pal+D is erroneons, for the relation of the pressure on the piston to that exerted by the driving wheel deponds on the proportion of the distance traversied by the piatom, to that truvereed by a point in the circamforesee of the driving wheel; comeoquently, aupposing the above formula correct in all othor reapects, wo mut sabstitute the length of the circwaference for that of \mathbf{D} the diameter. Lastly, the ratio $10: 16$ could not have been arrived at except by a statical process, that is, by supposirg the engine not in motion; for when th is moving, the ratio will depend on oxcontirely complionted relationa between the velocity, the load, \&c.; moreover, the application of this rela. tion here is hopelesuly erroneons, for (inter alia) it is in direct opponition to the law that in machines force is moither gained nor lost by transmision, oxcepting to minch of it as is absorbed by friction of the meohenional orglas.

It is dre, howover, to the autbor to state, that the theoretical essays are not considered as integral portions of the work, and that in the part which refers to mensuration everything has been done to faclitate calculation and to render the tables convenient for referesce.

Ancient and Modern Arckilecture; consioting of views, pleas, \&c. Edited by M. Gailhabaud. Parts 43, 44, and 45 ; quarto. Didot. 1846. The conclading parts of the second volume of this serfes, which has been before favourably noticed in thls Journal, are now before os. Thes contain views, sections, and details of the Treesury of Atreas, at Mycens, a monument of Polasgian architootore, and five platen, illuacrating the Ohuroh of At. Francis, at Ascimi, in Itody, bailt in the Poiated wylo of the thirteenth century. We have little to add to oar former notices, execpt the necessity of making the plates architectural instend of pictorial seems to have been more carefully regarded in the latter parts of the werk than in the commencement of it. The following extrect from the desoription of the chorch at Ascisi may suggest some rofections to thowe who mivoonte the aniversal adoption of higb roofs in Pointed arefitecture :-
"The lofty gable which aurmounta the front does not attein the objeot airned at by the architecte of the North in the pointed forms of their Gothic fronts. The climate of northern conntries required the roof to have a very high pitch; the architectural decorationa were conceived so tal to harmonise with this neceasity. In Ituly it had always been uan to cover buildiong with low roofs; and architects even in the Middle Agen should have conformed to this iong establised practice. This high and unaleas gable, formoing an isolated wall of a very unpleasing effect, and exposed to all the winds of heaven, is an anomaly that would seem to indicate the northern origin of the architect of the church of Asini.

In the upper nave, the trefoil arches, the tall openwork gables, the capitala with vegetable ornaments, all to common then in the North, are too boldiy employed to he attribnted to Italians, who were then novices in this Northerm atyle. Let us add, that the mallions of the windowa have the shape and outline of those execoted at the same date in Prance and Germany ; and that this edifioe is the only one beyond the Alpe thet contalins a series of painted windows to complete and 20 atrictiy in keaping with the geperil character of the building. The Pointed axyle was atill a novelty in Italy at the beginaing of the thirteenth century, whan the church of Assini wes built ; it wha called tedeaco, or German, end only a for eserers hed been mede. At this epoch, what Itelien artist could bave conceived so perfect, so well-proportioned a whole, in a style then quite new to him? The inolated greble, whioh serves mo unoful parpees in the climate of Italy, thoogh wo approposiate In the North, ceems to prove the merthere origin of the meobitect, who conld not allow himeelf to dinfigure the poistod formas to which he wem econdoment, by reducing thea to the low plicts of Inlien rooferem modificetion oftich Niocoln Pisare introducod in Gothic archithectare, when be beikt the ethersh
of Saint Antony, at Padua; as Simon Andreozzi did in the side elevations of the Ara-Coli, at Rome; and as many other Italian artints contemporary with the Pointed-arch period have dove, but in general very imperfectly, in numerous edificen scattered about Italy, from Vonice to the kingdom of Naples."
The last number contajus the title-page and index of the volume. The third volume will be published in December.

NEW LAW OF COMPOUND MOTION.

At the last soirće of the Marquis of Northampton there was exhibited an instrument by Mr. Perigal for developing a peculiar law of com. pound circalar motion ; the following description we extract from the Literary Garette. It is an instrument for "generating retrogressive or recurrent curves, by which the moving body, when it has reached the extreme points of the curve, retrogrades or returns back in exactly the same line along which it advanced; constantly moving forward and backward from ove extremity to the other; and always tracing and retracing the same line as it alternately advanccs and recedes."

These curves were produced by a complicated system of wheel-work, which Mr. Perigal stated to be capable of generating numberless varietios of curves dependent upon the ratio of the velocities of the movements; but the instrament was, on this occasion, adjusted for the production of para. bolas or hyperbolas, and a sort of figure of 8 curve, resembling a lemnis. cate, which he showed to be different forms of one and the same curve, just as circles and right lines are (limits or) varieties of ellipses. When the tracing- point passed through the centre, the curve was at one of its extremes or limits; and the two ovals of the figure of 8 were opened to their fullest extent of roundness; but alterations in the angular adjustment of the morements caused these ovals to become more and more flattened, till they ultimately converged or collapsed, and became in appearance a single line, terminating in points, with the form of a parabola or hyperbola ; and the tracing-point travelled forward and backward from one oxtremity of the curve to the other repeatedly, without in the least degree thickening the line in one part more than in apother; evidencing that it advanced and receded in exactly the very same path! In fact, the live of return might be considered as superposed upon the line of advance; as Mr. Perigal remarked, in reply to a very eminent mathematician, who objected that the figure of 8 carve was a lino of the fourth order, inasmuch as it could be cut by a straight line in four places, while the parabola was a line of the second order, because it conld be so cnt only in two places; bnt the suggestion of its being a double line superposed reems to remove the dificulty.

Mr. Perigal informed us that one of his objects was to exhibit the parabola in the novel character of a retrogressite or recurrent curve of definite range; whence he inferred, that $i \sqrt{a}$ comet mored in that curce (as most of them are said to do) it might return after it had performed its allotted joorney, and continue to visit ue periodically, as several do, which are therefore supposed to travel in very elongated ellipses, although their apparent path more resensbles a parabola.

We do not take upon ourselves to decide that this "retrogresaice" curve of Mr. Perigal is or is not identical with the parabola of Apollonius; but we can bear testimony to its striking resemblance to the conic section; and affording at least prima.facic evidence of its relationship, however much its newly discovered property of "periodicity" may shoak the prejudices of those who have hitherto thought themselves learned in such matters. Besides, it is well known that reciprocating straight lines can be produced by combinations of circular motions; and, therefore, we cannot see why it should have been deemed impossible so to produce para. bolas and hyperbolas, which, being curved lines, would even appear the less unlikely. Of the importance of the discovery in reference to the cometary theory, our scientific readers can judge for themselves; and such of them as are mathematicians can, for their own satisfaction, pat the question to the proof by submitting the problem to analytical investigation.

POWER TO OVERCOME INERTIA OF RAILWAT TRAINS.
Paper read at the Royal Society, on the Investigation of the Power consumed in Overcoming the Inertia of Railway Trains, and of the Resistunce of the Air to the Motion of Railway Trains at high relocities, by P. W. Barlow, Esq.-The object of the author in this enquiry is to obtain a more correct knowledge than has hitherto been possessed of the resistance which the air opposes to the motion of locomotive engines at high velocities, and of the loss of force arising from increased back pressure, and the imperfect action of steam. For this purpose he institutes a comparison between the velocities actually acquired by railway trains with those which the theory of accelerated motion would have assigned; and hisex. periments are made not only on trains propelled by a locomotive engine, but also on those moving on the atmospheric railway, which latter afford valuable results, inasmuch as the tractive force is not subject to the losses at high velocilies necessarily incident to locomotive engines, A table is
given of the theoretical velocities resulting from culculations fornded on the dynamical law of constant accelerating forces, in the case of traing of various weights, impelled by different tractive forces, moving from a state of rest, and is followed by another table of the observed velocilies in Mr. Stephenson's experiments on the Dalkey line ; the result of the comparison being that, in a distance of a mile and a quarter, the loss of velocity is about one-half of the observed velocity. A series of experimente on locomotive lines is aext related; bat the comparison is leas satisfactory than in the former case, becanse the tractive force candot be an accurately estis mated; it is, however, sufficiently so to establish the fact, that the power lost by the loconotive engine below the speed of thirty miles per hour, is so small as to be scarcely appreciable; and that the time and power which are absorbed in putting a railway train in motion are almost entirely required to overcome the inertia of the train, and do not arise from any loss or imperfection of the engine. It appears from these experiments that above ove-6ith of the whole power exerted is consumed in putting the train in motion at the obeerved velocity. In the atmospheric railway the anthor finds that the tractive force of a fifteen-inch-pipe is 80 amall (being less than half that of a locomotive engine) that the time of orercoming the inertia must limit the amount of trafic on a single line, especially with numerous stations. When a great velocity is obtained, the tractive force of the locomotive is much reduced, and, therefore, a much greater velocity can be attained on an atmospheric railway. The inquiries of the anthor into the amount of resistance exerted by the air on railway trains, lead him to the conclusion that on the atmospheric railway the loss of the tractive power of the piston from friction, \&c., is very inconsidermble, and that the resistance of the air is less than had been hitherto entimated, not exceeding, on an average, ten pounds per ton on the average weight of trains. A tabular statement is then given of the results of the experiments made by the British Association for the parpose of comparison with those obtained by the author. The general coaclusion which he arrives at is, that the resistance of the air in a quiescent state is less than had been previoushy eatimated, and that the ordiuary atmospheric resistance in railway progression arises from the air being generally itself in motion, and, as the direction of the corrent is not always oblique, from its producing increased friction in the carriages. This kind of resistance will not increase as the square of the velocity; and as it is the principal one, it follows that the resistance to railway traing increases in a ratio not mach higher than the velocity, and that the practical limit to the speed of raimay travelling is a question, not of force, but of safety.

PBOCEEDINCR OF BOIFDTRITC BOCIELEES

ROYAL SCOTTISH SOCIETY OF ARTS.

March 23.-John Clege Maxwell, Esq., F.R.S.E., in the Chair.
The following communications were made :-

1. Description of a Water-wheel with Vertical Arle, on the plan of the Turbine of Fourneyron, erected at Balgonic Mills, Fifeshire. By Josepr Gozdon Stuart, Esq. The paper gave an interesting description of a Wheel on this principle recently erected by him at his dax-spinning works at Balgonie, in Fife, and a summary of ity general adrantages. The Turbine is, in general appearance, like an overahot wheel, laid on ita side, and wrought at the bottom of the fall. The water entern it from the inner circumference of the crown, and quits it at the outer circumference, impinging on every backet of the one, and flowing from every part of the other, at the same instant of time. The water is supplied from reservoir rising above the wheel, in which it stands to the full height of the fall, and in discharged from the bottom of this reservoir through a cylindrical sluice, to ats to be delivered not only on every bucket or curve of the wheel at the tame time, but alsn with the full velocity due to its head. The problem sought to be solved in the construction of the curves is, that the water, which hat entered without shock, should quit without velocity. On the nicety of this conatruction will depend the economy of power, bat in general the neeful effect ohtained will be equal to that of the beat conatructed overshot wheel. The turbine has the advantage of the overahot wheel in being adaptuble to any height of fall (such wheela are working on the continent on falle from 332 feet to 13 inches), in being generally cheaper in construction, and alvaye much cheaper in maintenance,-in being little disturbed in it economical arrangement eitheir by changes in the quantity of water supplied, or by being thrown in back water-and in going at such speed at greatly to 000 nomise the necessary connecting gearing for factory work. Mr. Stanet's paper, with the illustrative drawinga and model, was remitted to a committeo of the Society that they may report fully on the merits of that (in this country) norel mode of economising water power. When that committee have made their report it may be expected tbat the result will be laid more fully before the public, especially if it be such af to juatify the expectations entertained by Mr. Stuart, of this being a most valuable improvement upon any water wheel hitherto in use.
2. Notice of a Double Bell-Jar,-or Receiver,-for the Air Pump. By James Tod, Esq., W.S., Sec. On a late occarion, in treating of his experiments on the relative capabilities of different gates to convey soundr, Dr. Wilson having stated that he had constructed the plate on which the bell-jat
of the air pump reste of thick plate glasp, but that on exhausting the belljur, the preanure of the atmosphere had shivered the plate glass into pieces, Mr. Tod, in this papar, suggeated a plan by which the necessary strength might be obtained, while, at the same time, all parts of the interior would be as visible as when the plate glass disc was used. Mr. Tod suggented that, by taking two semi-elliptical bell-jars, the one of which should be perforated at the bottom, and fixed in a hrase or other collar attached to the pamp, and the other made to fit upon its ground lip, there would then be a double bell-jar formed of great strength, able to resist the atmonpheric presere equally from abovan from below; and that the galvanic wires collar at the bottom and properly insulated.
3. A Communication from duatralia on a new arrangement of the ScrewPropeller. By Mr. James Paterson, engineer. Melbourne, Port-Philip, Anstralia. In this new arrangemeat of the screw propeller, the screw is made to traverse in an angle of 30 deg., by means of a Hook's joint, and is thas intended to serve the purpose not only of a propeller but of the rudder. It is not fixed, an uanal, in the dead wood, but at the outside of the stern post, junt where the ordinary rudder is placed.
April 13.-Sir G. S. Mackenzie, Bart., F.R.S.E., President, in the Chair. The following communications were made:
4. Verbal observations on the use of the Fibres of Plants, and particularly on the use of the Plantain Fibre: illustrated by Drawings and Specimens. By Professor Bal.four, F.R.S.E.-Dr. Balfour made some general observations on the plants which faraish fibre for the purposes of manufacture. He noticed the difference in the tenacity of the woody 6 bre of various species of plants, such as fax and hemp, and illustrated by drawings of the form and nature of the fibre, as contrasted with the other tissues, and its distribution in the stems of herbaceons plants. Fibres, from rarious plants belonging to the nettle and mallow tribe, from screw pines, pine apple leaves, and palms; also New Zealand lax, Pita flax, African or Bowstring hemp, Bengal hemp, Coir, Sic., were brought under coasideration. Dr. Balfour then alluded to various trees, the bark of which furaished cordage, and such as the lime or linden tree, the lace-bark tree, and the East Indian sack tree or chandul (a species of Antiaris), which grows in the deop ravines of Kandalla, and in the jungle near Coorg. He then proceeded to notice various species of plants belonging to the hanana and plantain tribe, as Musa textulis, paradisaica, sapientum, and ravacea, from which fibres have been prepared, the mode of preparaLion, the quantity gielded, and the nature of the fibre. Specimens of plantain fibres, in various states, were exhibited. In some of the specimeas not folly prepred, the microscope showed, in addition to woody fibres, spiral and dotted ressels, which are by no means so tenacious as ligneous tissue. The fibres, although they bear a considerable weight, are not well fitted for the ordinary purposes of manufacture: they break easily when a knot is made on them. The communication was illustrated by fresh specimens of the leaves of many of the plants, from the Botanic Garden, and by a large drawing of the plantain.
5. Description and Drawing of a Cabinet Lack and Key of a new construction. By Paul S. Samuells, M.D. There are three plates in this lock, a back, a front, and a centre plate. A square hole is formed in each, but it is only tbe middle one which can be moved by the key; so that unleas the key go down to the proper depth and no farther, the bolt cannot be shifted. There is also a back spring behind the bolt, on which two pins or studs are fixed, the one of which enters a hole in the boll, which prevents it shifting until the spring be depressed by the key. The other pin or stad enters the pipe of the key; so that unless it exactly fits the length of that pipe, the key will not depress it far enough to relieve the bolt, or if too long, the key will not get into its place, but be canght by the outer square. Another advantage of this lock is, that on withdrawing the key, the bolt is gecessarily locked.
6. Description, with Diagrans, of a Hydro-Pneymatic Ruihoay. By Mr. Grorge Clark, Edinburgh. The weight of water is made use of to compress the air, which is forced into the tube laid betwixt the two sets of rails. He then contrives an apparatus for opening the continuous valves of the tube, and for conveying the compressed air from it to the boiler of the locomotive, from which it is admitted to the pistons of the cylinders, as the steam is used, in the common method.
7. Description of a Model of an improved method of Hanging Windous, whereby, at mall expense, windows in conmon use can be so altered, that the Saskes can be taken out and cleaned, painted, or glazed, from the interior of the room. By Mr. John Steven, Edinburgh. This simple method can be applied to all windows as now constructed at a very tribing expense, probably under five shillings for each window. The sashes ran be taken wat with ease and in about two minutes. There is nothing liable to get out of repair; and it possesses other advantages, such as allowing the opper sash to come down to the very bottom, the steps covering the pocket boles being removed to the inside frume. As a separate improvement, Mr. Steven recommends that in new windows the sashes should be made with aslight taper, so as to fit closely when shut, but to move freely when pulled ap or down.
8. Gn a Machine for Beating Carpets, Wringing and Drying Clothes, Ge. By Mr. John Baillie, Edinburgh. This consiats of a broad wheel with four arms, on each of which leather is stretched-and on being turned round by a handle, these leaves strike on the carpet, while the broad lea-
ther fan drives away the dust. The wheel is then reversed, which beats the under side of the carpet, which is brought in successive parts under the beaters. By having a hook attached to the axle of the wheel, heavy clothes, such as blaikets, may be easily wrung ; and the wind of the fans speedily dries them when suspended within its influence.

SOCIETY OP ARTS, LONDON.

March 25. -G. Moure, Esq., V.P., in the Chair.
The first paper read was, by the Rev. Dr. Thompson, "On the Earthquakes of Peru and Chili." The paper also described the peculiarities of the mountains of North and South America, and concluded with an account of the most celebrated earthquakes that have occurred in America.

The second communication was, "On an Improved Safety Lamp for Miners." By Dr. Clanny. The improvement consista in preventing carrents of air coming in contact with the flame; a glass, or other transparent substance, being substituted for the wire gauze at the lower part of the lamp. It is also less liable to be blown out than the Davy lamp.

April 8.-W. F. Cooke, Esq., V.P., in the Chair.
Ths following communications were made by Dr. Green, "On a New Porlable Stand for Telescopes woith an Equatorial Movement, but without a Polar Axis." The subject of the improvement was introduced with an account of the telesiope from the time of its discovery, and the improvements which have been made upon it up to the present time. Henext alluded to the stand ordinarily used, and pointed out the peculiarities of the Herschelian, achromatic, and other stands, and the objections to them, arising either from their unsteadiness, onportability, or other canses; he then proceeded to point out the improvements which he had effected, by deacribing his own stand. The true principle upon which every stand ought to be constructed (observed Dr. Green) is to have the heaviest end of the telescope supported on a solid foundation, and the moving power should be placed as far as possible from the centre of motion. To effect both these conversions has been my aim in the stand which I now submit. As a triangular support is fonnd to be the most steady, it has been adopted in this case, and pervades almost every part of the stand. The object-end of the tube containing the great mirror rests upon a circular disc, baving a diameter about one-half larger than that of the tubs. It is supported by three feet, which are not more than three-quarters of an inch high, so that it may be said to rest solidly on the earth. To admit of easy rotation, second disc of the same diameter rests on the surface of the one dencribed, and moves on three friction wheels round a pivot passed through the centre of each. Near the periphery of this upper circular disc, upon the opposite sides of it, are fised, vertically, two flat pieces of brass, about half the diameter of the tube in height; upon these the telescope rests by means of two horizontal arms projecting from the sides. The object is to form a universal joint, and prevent the telescope rotating on its own asis. The upper end of the tube rests upon a pair of shears a little inclined towards the tube, thus the entire fabric is one large triangle, possessing the greatest steadiness. The shears are attached at their lower end to a horizontal bar, which slides in a groove. The bar is worked by means of a universal joint and rack and pinion, and by which the slow motion in azimuth is given. The shears are so constructed as to admit of being lengthened or shortened. The fine movement in altitude for finding a star is provided by a slide on the outside of the auder part of the tube, to which slide the shears are attached. The slide is moved by a rack and pinion. The equalorial movement is the link of connerion between the head of the shears and the slide for the one altitude morement, and is thaseffected :tbe two legs forming the shears are hinged together at the top by a circolar joint, in the centre of which is inserted a piece of brass, which carries the equatorial movement slide, and is worked by a toothed-wheel and pinion. The equatorial slides are attached to the altitude slide by a universal joint. By placing the lower end with the discs it rests upon, on a tripod, this frame may be made to suit the Newtonian telescope for viewing terrestrial objects.
2. "On a Process for the Preserration of Animal and Vegelable Substances with their forms and colours unimpaired." By Dr. J. Silvestri.A number of specimens of preserved auimal and other substances were exhibited.
3. "Specimens of a new process of dulling the surface of electrotypes." By Mr. Colchester, and also specimens of a mea method of bronzing, by Mr. Loope, were also exhibited.

April 15.-T. Webrter, Esq., V.P., in the Chair.
The first communication was on "Mr. Rand's intentions for the Manufactare of Flexible Melal Vessels for preserving paint and other matters." By W. Carpmael. Mr. Carpmael stated that Mr. Rand, who is an artist, had, from the inconvenience and waste of colour which takes place when it is put up in the bladders ordinarily used, been led to endeavour to find a sobstitute, and the use of metallic vessels suggested itself. After experiments he succeeded in forming them of so tbin a body of metal that they are capable of being collapsed so as to shot out all air. The tubes are made of block tin the 150 th part of an inch in thickness, and have at their upper eud a nozzle and screw cap, and are closed at the bottom by being folded over once or twice with a pair of pincers so as to exclude all air. As the colour or other matter which they contain is pressed out, the tubes are collapsed and thus the upper part of the tube always remains full. Each tube has to go through the following process of manofacture.

A small piece of block tin is pat into a die npon Whick a pernot Forkod by a fly-preas descends and forees the metal op, of the required tindmests, between the surfaces of the die and the prarch; thas by a siaglo blow the body of the tobe is formed. It is then removed to a ceeond proes, by which the screw on the neck of the tube is formed, and by a second blow, in the same press, the maker's name is stamped upon it. The cap is formed in a similar manner by a thind machine. The tube when struck is placed on a lathe and cut the reqwired leogth. Thus an afr-tight botle is formed with out seam in a few seconds.

The second commenicetion was by Mr. Banke, on the Cotton produced in Heodnras and Yncatan, and the practicability of introducing freo-labour cotton from Africa aod other countries into the British market. The objoot of the commaniontion was to point out the importance of our cotton mannfactures-the successful competition of white and grey fabrics with thoee of Britain in foreign markets-the great production of raw materials by slave labour in the Stateg-the geaeral inforiority of the cotton imported from India-the practicability of obtaining larger sapplies by free labour, from other quarters within our reach-the improvement of the staple, and consequently of the fabric, and the opentorg of a new market with Africa and ehewhere.

> April 28.-R. Twinime, Esq., V.P., in the Chair.

The first cotemurication was by Mr. Banks, who resumed his paper on cotton produced in Hondoras and Yucatan, \&c. He proceeded to show why the Amerionn white and erroy fabrics maintained a higher price and so anocesfully oompetod with the British mannfactures in fortign markets. He mext described the peculiarities of the kinds of cotton; and means resorted to by the Americans for alening or freeing the cotton from the seed, -amely, the Baw Gia. The amonnt of cotton exported to England from Amorios he stated to be $1,000,000$ bales per annom; while that from Iadia asd other coontries amonnted to ooly 500,000 bales. He next proceeded to show that the cen-coast of Africe presents a large territory which is capable of beiog made to prodace cotton in larger quantities, and of a quality eqeal, if not superior, to the Americab. From inquiries which had heen made of the Wetleytn and Baptist Micdonary Societies, he had aseertained that the misaionarios of both those Societies have instructions to promote suah objects as the celtivation of cotton among the natives at their pereral stations, which exteond all alcog the coast of Westorn Africa-and be stroagly nrged the necessity of their introducing the saw gin, in lieu of the rotter gin and hand laboor, to free the cotton from the seed, and the erew-press for packing it into bales.

The seoond communication was by Mr. Keyee, on an apparatus for prearring life by mpporting persons when in the coater. It consists of a covering for the arms, which are made of mackintosh cloth, and are capable of being inflated, of a pair of wobbed glores, and also a pair of cork cloga, with concave bottoms. The apparatus is stated to give an edditional lmoyancy of 85 pounds to the body.

ROYAL INSTITUTE OF BEITISH ARCHITBCTS.
Extract from the Minutet of the Ordinary Meeting, held on Monday, March 23, 1846

Rewolved,-That the Medula of the Institute be awarded next year to the Authore of the best Emays on the following eobjects:-

1. On the Adaptation and Modification of the Orders of the Greek: by the Romens and Moderns.
2. On the bent ryitem to be adopted with regard to the srrangements for the thorough Drinage of a Town Honse, and of a Nobleman's Mansion and Offical in the Country, reapectively. Comprising the general arrange ment for carrying off the Water and Sewage, the sizes and most convenient forme for the Drain or Conduits, the requinite fall, the dewoription of meterial to be employed, and the several precantione for the prevention of damp, smell, and pasage of vermin;-to be accompanied by block Plans and Details.
N.B. Eech Bensy to be written in a clear and distinct hand, on alteraste pages, end to be dintinguinhed by a Mark, or Motse, without any natre attached thereto.

Rewolved,-That the Sompe Medallion be awurded to the best design for un Rdifice, suttmble to the Congregnionat Worship of the Charch of Bngland, and capable of accommodatiog One Thourand Persons, withouk Galleries.

The desiga to be Roman or Italian, expressive of its parpose both intern. ally and externally, presenting as little obstruction to sight as possible. The Chancel to be properly marked in Plan and decoration, with reference to ith Protentant uses. All the Windows to be charged with stained glase.

There mast be a conspicuous Belfry, but the body of the Church in not to be surmounted by a Dome.

The Drawings of the Elevations and Two Sections, to be to a scale of ore-quarter of an inch to a foot,--the Plans and Perspective View to oneeighth of an joch to a foot, and tinted with lndia ink or sepia only.

The competition is not confined to Members of the Inatitute.
Dnegtion fon Carbibayte.
Bach Baniy and set of Drwwing is to be aceompanied by a alval letter, tomatrining the pame of the witter within, and on the outaide the name motto an thit attached to the Dany or Drawings ; thin th to be baclowed'm a sembed
 the decisim of the 3 naltate, and dineoted-

 Enay for Meidel (or) Drawing for Molil R(ovio).The Paokek, $t 0$ propared and directed, is to be delivered at the Roenn of the Inatituto, on or belore the 3let of December, 1846, by Twelve e'dect at noos.

The Conncil will nat considar themeelves called apon to adjedge a Pre miam, uniens the Banay or Drawiagt be of gofficient merit to deverve that distinetion; ead, if the beat Brawings ahould be by a candidabe who ba been anccessful on a former occanions, the Institute reserve to thermelves the power of edjadging such other adequate reward as they may think it, and of awrarding the medals offered to the second in merf. The grats and Drawings, to which Premiums are awarded, become the property of nis Itatitute, to be publisted by them if thought ft. In case of the pepers tuot being poblinhed within eighteen moxths after receiving the Medala, the authors will be at liber's to publiah them.

The object of the Inatitate in not meroly to draw the atteatton of the Studenta, and younger members of the Profeation, to the importont teperotical and praoticul nibjects which are andurity browgt formand as merieat matter for the Prize Easays,-they have a atill higher aitn ;-they would wish to enlist the exparience, the judgment, and the taste of those proforuils scquainted with the several departmonth of the Art, whetser wersbers of the Institute or not; in the hope of collecting it series of authortive getays upon every branch of Architecture, considered both as a Fine Art at Science, to as ultimately to form an important body of informetion on Ar. chitecture, both decorative and constructive.

The Institute truat that this appeal to profestional men win net te fan vin, and whon they consider the honoured names of Palladio, Cmambers, Beb. delat, Smeston, Tredgold, Nicholson, Kraft, and others who hare doat to muoh, and deservedly gained 80 mach honor in like investigations, fithey that not but confidently hope that many other men of erucition, alte, no science, will be isdnced to add in like manaer to the atoren of Architederal knowledge.

Apil 20.-Earl de Grey, Prowident, in the Chin

A paper was read by the Rev. Richard Burgess, ot a The Amcint Tricmphal Arches." The paper commenced by explaining the purpenes for which those monuments were erected; that fey were propetiy diviled into two clamees, arches of triamph and howorary arches. Iteoformot placed nowhere but across triumphal roads, like the Fis Appha, Vit Flaminia, and other great approaches: the Via Sacra, by whot toe vocession mored to the Capitol, was distingoished by several. The homotry arches were placed where the acts they conmenortiod had onten pheme, as the Arch of Trajan at Ancona, where that Emporor had Brilt a pert, the Arch of Angustus at Susa, al the foot of Mount Oenfr, Where Aggues passed in journeging to or from the transalpine provinces. Mr. Burget having established this dintinction, then enumerated all the arakes moner isting or known to have existed in Rome or Italy, the chronologtol orter. Before proceeding to the description of the privcipal mating erelues, he described a triumphal procession, especially taking Vopiscua's acoente an Aarelian's triumph. After disponing of the proviboitl honotary acches, and some gexeral remarks on swoh as might be terned mere gwewny, whe paper coothined an historical mecourt of the arohes of Drusue, TMus, 80ptimius 8everas, and Constantive in order, aed to the himorical acount wore added various architectonic observations, and ilfustratioes of the oenaments which etill exist upon thooe arotes. Mr. Bargors potated out the deoline of Art in the arch of Septinios Severrs, and the perfection of it in that of Constantine, which he showed to have been tea gexd belorghes to the best age of sculpture, and was adopted bet aot erected by Ganmarime. In the conrse of the ciscertation Mr. Burges paid a tritute of reapet to the memory of the late Mr. Basevi, and mentioned the Fitewilimen Moeete, at Cambridge, as a fine example of genids soaring above the lixtie arpecitent of loading with ormment that which was deficient in andeltootomis rouis. Mr. Burgeas took occasion to compare the pageantry of the Boman trynubs with the modest deportment of our commanders, and drew ecome peryitel between the Indian viotories and those of the Romens it Ashe, end the paper wastooncladed with a reforence to the isifreace of Onimetianty in moderating the proceedings of modern wimfare.
The President announced that the Acmderio ployale des scieroes, des Lettres et des Beaux Arts de Belgiqwe had expresed a dontre to pine the
 Olimpica, of Vicenze, had miknowledged the reoelpt of the repent 4 Mesurs. Poyuter and Domaldson, the bonorary secrotaries, on the onifition of drawing by Palladio, in the powestion of the Dake of Boronilite, and as a mark of their sense of the couptery of the lingtamte on are oove. sion, had elected Mesers. Poynter and Dopaldeon, Morobers of thet Acmdemy.

The Fonorary Medal, voted on the 17ch of Noveriter 10t, to the Oto valier Beath, as a testimorial of the sense entertudped by the met.ente of the Ingitate of the beneft conferred by him on the art daptag the guid be held the imporiant ofilioe under the Proamian Government, Irom whime te has retired, was provented, with an eppropitue whires, to the Grovelier Hebeler, who had beet requested by the Cheraliter Bethe to troeive item his bobatf.

The Pris Modds amanted on the Istd of Pobroary, weje grvencol ty

Ean de Gres i-60 Mr. Worthington i to Mr. S. J. Nicholl i and to Mr. J. F. Wadiporen

Ito Preaident a monaced that the Queem had beea graciomely plameed to beatow a further mark of furour apon the Institute, by giviog annally a cold modal for the promotion of the uneful purposes of the Sooiety, and that the regelations comeoted with this gratifying instance of Her Minjontyt cominaed finowr, would be forthwith delermieed and communicated at the earlinet opportunity.

DECORATIVE ART SOCIETY.

Mr. E. Cooper exhibited a process for producing a voluta by means of a matural form. He had selected a sholl, the Buccinum spiratum, or Syrgceas mitolk and affixed it to a board; a striog with crayons attached was then worred along the apiral ballow of the shell, and this, is the conree of it: convolutione, delineated what he assamed to bo the Greek voluto. He compared the rescle, satiafactorijy, with engravings, by Nicholson, from the Ionio capitals to the Tomple on the llisans and the Tomple of Baechos at Tees, and be also had deteoted an oxact correspondence in sice in Inwood's Erechtheiona plate 21, from the Temple of Victary on the Acropolis. Mr. Cooper then explaimed that, in en examination of an Ionic capital in tho British Maseam, he observed that the eje had bees fitted with a stone gindtar to the other parts; aed, further, that in another instance the ege had been lost ont. The orifice thus exposed, he conjectured, bad been neoscasily made to receive an instrament for guiding the tools nsed in working mouldings on the faco of the volute. Its diametor agreed very nearly with that of the lower part of his sholl, and he presumed that a modified cast in motal from the shell would sapply an instrument suited to such a purpose, and which, at any rate, offered an inexpensive and ready mode of atriking scrolls for hand-rtibs tee. Mr. Tasting tated the volute described by Mr. Cooper by a notation of eight radial intersections, and be contended that the scale of expansion was different from that of the Greek volute. His remarks were nferwards sustained by a comparative experiment apoo a rubbing which Mr. Cooper had in his poasession. It was also said, that the engravings referred to by Mr. Cooper were incorrect.

NOTES OF THE MONTH.

One of the eatire floors of the new Honses of Parlinment of the buildingficing the river, is to be completed forthwith for the numerous oommittuen that are likely to bo called into action by railway proceedings in the Homses of Parlinment.

Mr. Ambrowe Poynter, the indefatigable Hon. Sec. of the Royal Institute of Britinh Architeots and the architect of nomenous eccleaiastion baildings, and Mr. Jahn Shans architeot, of Chriat's Hospital, have been appointed, noder the new act, official referees in place of Mr. Higgins, who eome time nioee zaifged the appointrent. We feel assured theot appointments will give great satisfaction to the profession.

We regret to annonnce the demine of Mr. Le.keax, jugtly celebrated for the eccaracy and neatness of his ongravings connected with architacture.

Lard Mahea has been appointed President of the Soajety of Antiqnascing It ia time that this Sociery commenced a revolution in its proveedinge ; it ought to embrace all the intentions of the two rival Societies-the Archmologional Institute and Ascociation.

The Royal Academy bas annonnced for its architectural prize, to be amarded on the 10th December next, a silver medal for the mont aconcraly finished drawinge of St. Peter's, Cormhill; the plan, elevation, and mection to be drawn frows acteal meastromost.
ITe progress of the wew Honses of Parlinment have been greatly dolayed on account of Dr. Reid's system of warming and ventlintion; serious dheprtes have arisen with Mr. Barry, the architect, who was obliged to trke hls stand against the enormous inconvenience Dr. Reid's works occasioned to the progress of the boilding. At length Government has takes tha dispots is hand; in the Honse of Lords, Viscount Ganaing annonnced that three gentleman had been soloctod to enquire finto the whole subject ceamected with both the waraing and ventilation, and to advise Government thereon. The gentlemen to whom instructions have been addraned are Mr. Hardwick, so well known as the architect of the new dhaing ball and library at Lincoln's-inn; Profeamor Graham, the Profemer of Chemistry at the Úaiveraity of London; and Mr. George Staphenson, the ergimet, sentlarman who, apart from his genaral saientific reputation, Les fiven mach athention to the subject of ventilation.

TYe asoient tomple of the Kaights of Malta, at Laon, has boen com. pletals reatored onder the anspioes of Government.

A statue of Sophocles is on its wey from Athens to Parin, to be placed in the Lomven It is aid to be one of the moet rerarkeble anlique works of art.

At Now Yook, the new Trinity Church, said to be one of the bote examples of Gothic architecture in that city, is nearly phished. It has a tower and croolseted spire 800 foet high; and the windows are filled in vith ateiaed glame
M. Blouet, architact to the Arc de l'Etoile (rives in the Jourmal, val. IL, 1839), hes been elected of ancceed the Balterd profesmor at the Bchool of Fine Arts, in Paris.

The remoration of the worka at the Chatean of Blois, by M. Drban, is making grout progreas,

An eltctrophonic telegraph, the invention of Chevalier Laskott, has been presented by Profossor Jacob to the Imperial Academy of Potersburgh. It is compesed of a clavia of ten keys, ten belle of different sizes, and tem conducting wires, by which the latters of the alphabet, and words which they form, are expressed by sounds and harmonics.

On the Dublin and Kingstown Railway the consamption of coke per train per mile is 26 alb ., and the total cott of power and malntenance of way $10-7$ pence.
Mr. Bidder, in his report on the recent gange experiments (detailed in the Journal for February last, p. 49), pises the following resalts:-

The friction of air throngh tubes, Mr. Bidder observes, is tolerably woll ascertained ; it appears that, with a pressare of 04 lb . per inch, the velocity of the air through the long tabes of the A engine qued in the aarrav gavge experiments was 18 miles per hour; and through the shorter tubes of the Ixion 18 miles per hour.

ARTESIAN WELLS IN CEINA.

It is about twenty years since the report of Artosian weilis in that country has reached Europe, through the medium of the French minaionarien According to theec statementr, one single district of the Celeetial Empire, equal in size to one of the provinces of France, contains more than 10,000 (?) Artesian wells, eome of which attain the astonishing depth of 8 to 900 metres. These extreordinary soundinge of the earth's surfice art, it is said, made by very simple means, and for varions purposes, of which one, certainly, is moat extraordinary, and eltogether peculiar to the Chimese. Some of them discharge a water greatly impreganted with common salt, others bring to the aurface a bitumimoas oil, othere in flat, seemingly by passing through coal measares in the state of ignition, exhate conatantly combustible (hydrogen) ges. These are the so-called fire-wells of the missionarios, with whioh the Chinese procars the gas which they use for the evaporation of the salt brine of the adjacent wells.
The importance of these statements is easidy conceived, not only in a seientific bat also a practical point of viow, as wo might bo able thereby to fnrnish our cities, at a nominal rate, with that rast quantity of gas wo now consume, but the jealousy hitherto of the Chinese anthorities prevents travellers pushing to that quarter. The Ereach Academy of Sciences has, therefore, of late inspeoted with great intarest the peccimens of bitumen and brine which the director of the Freach missions in China has addressed to them. The only fact of importance elicited by the chemical analyais which these subetances have been sabmitted to is the complete abseace of iodine in the brine. M. Bonssinganlt acted as reporter in this lmportant transaction.

$$
\text { J. I_ } \mathrm{Y}_{0}
$$

THE AURIFEROUS SAND OF THE RHINE.

Some observations on the wilining the hitherto hidden riches of this river have been laid before the French Institute, by M. Daabree, Engineer of Mines at Strasburg. It bas been calculated that the amount of gold contained in the sand of the above river amounts to 85,916 kilogrampers, of the value of 114 millions of franos. M. D. has made many experiments to determine how the particles of gold detached from the Alpine rocks are distribated in the allavion (atterisacments) of the banks of the Rhine.

The pebbles moek meually searohed atier for gold are thoee whinh the river deposits at a short distance from the anatam, sabjected to the abrasion of the wraters,. It is on the apper part of banks thas formed, in the midet of large pebblas, to a depth of pot more than 15 centimetres, that gold is to be met with. Oat of the acfual bed of the river, gold is also to be met with in the ancient deponits of the river, which form a band of 4 to 6 kilometres broed. In the fice sand withont pebbles, such as is depositod is the bollowe of the bed, no gold is to be fonnd, any mose than in the atisvial soil (sllme), wioh, neverthelens, is of Alpive origin. The and Fhich is unally searched after for gold contains generally from 18 to 16
hundred millionth parts; it is rare that this richness passes 7 ten millionths, The revolutions, therefore, which the Rbine occasions, at times, in the contents of its bed changes the amonat of gold from 1 to 70 . The particles of gold are always very small, 17 to 22 making only a kilogramme. Compared with the sand of rivers worked in Siberia and Chili for gold, the former are 5 times, the latter 10 times richer than those of the Rhine. The sold of the Rhine sand seems to be derived from the tertiary formation, and; in the first instance, from the schistous crystalline rocks of the Alps, as is the case with most olher rivers which descend from these mountains.
J. $\mathbf{L}-\mathrm{Y}_{0}$

3HBAE DAVIGATYON.

Three steam vessels of war, the Sidon, the Odin, and the Termagent, in course of conatraction at Deptford Dockyard, are on the eve of belog lanached. The shdon : team frigate is constructed on a plan of Sir Charles Napler's. and appeara a very Gne louking vessel very strongly put ogether. Althongh only two feet longer, and two Avet broader than the Odin stenso veatel bullding in the same yard, the sidion lis lutended to carry 400 tona more ccals than that versel. She was placed on blocke on the 24th of Jane, 1845 , and in exactly 10 monthe will be ready to enter her future element. All the parts of her macbinery above water mark are to be constructed of malleatie iron, and of great power to remetinjury durlap actual warfare; and every beam acroas her decka has been secured with strong iron kneedbolts to the powrerfil timbers of her aldea-The Odin atenem frigate was deaigned by Mr. Fincham, master-ablpwifbt at Portamouth Dockrand, and the whole of her frame is put together, and the wlil sonn be ready for Launching. 8he whs plaeed on the blocks on the 19th of February, 1845. -The Termagunt stomos-ingate, conatructing from a dealgn by Mr. White, builder at Cowes, is a ret eel of the same length as the Odin, dengned by Mr. Mincham; but 3 feet 6 inches greater dhonasions in her extreme breadeh, and wall have englact of 600 horse powet. The following are the dimensions of the three rescels:-
Length between perpendiculars
Ditto of keel for tonnage
Breadth extreme
Ditto for tonnage
Ditto moulded
Depth in hold
Berden in ton
Horte power
The
210
185
37
$\$ 6$
35
27
1,329

The Odin.	
$208 \mathrm{fl}, 0$ in.	
183	88
37	0
36	6
35	10
24	2

The Termagant.
208 ft .3 L
181
40
40
30
39
28
1,540
10
Ladnoh of Two Iron Stram Shipg, at Livbrpool.-The DiamondThin veasel was launched from the yard of Mesers. P. Cato and Co., south end of the
 Emerald," (and from the seme moulds). She ts to be propelled (ln addition to salls) by the serew, with engines on the direct action principle. The model (as of the Emeruld) the screw, with engines on the direct action principle. ine model at of the Emerad considerable stowage and rapldity of propulioion. The veasel is lap. jolnted, or "clincherbullt," ln her apper-works, as well as below the water-lline, a plan which, in veacela of her comparauvely small burthen, is more expensire than the funh jolnt, hut is not only tronger, but quite as pleasing to the eye, if the workmanabip be equal to that in ques. tronger, but quite as pleasing to the eye, fathe workmanabip be equal the anat in quen. eredit to the opirited ownery in the outhy, and to Mr. Cato and thoee under blm. -The Antelope- her model, by Mr. Graotham, in fine, and, thongh sbarp at the extremities, of auch rotundity and avell in the body, without "a lump" in any part, that she promises to carry and to sall well. She fs the property of Mesars. MrTear and Co., who have Epared no expense in ber construction, and the builders, Mearr. Hodgnon and son, have done ample justice to her in every respect. This rasel wrill have, in addition to salls, auxllary propelling ateam-power by two engines of 50 -home each, turning a screw of 12 feet diameler, on the direct action principle, patented by Mr. Grantham. The engine are by Meairs. Fawcett, Preaton, and Co. She le the first of an sitended line of 8 reasels of the sume clati, to run between this fort and Bio de Jurielro, and more intimately to connect tbis rountry and the Brisils in bonds of amity and commerce, the present pasagge, by aliling versela alone, belog generally long and tedious. The Antelope has a foely dealgned bilethead and appropriate decoraitons, executed by Mr. Robertaon. The trailboards, gilded on a white ground, represent, in rellef, the antelope parsued by the tiger, and the follated ornamenta around are fich and chate, giving the veacei a peenliarly light and " go-ahead" appearance. The quarter-galleries are of a corresponding deaign, and enriched with quivers, bows, and other errblemes of the chase; and the atern carving also amedmilatep-the whole haring a peculiarly new and elegant appearance. We learm that In place of drawing so much water as was expected, she drew two Inches less than wha tions of the two vessels:-

Teleoraphic Commonication between Franoe and England.Amldat the many wonderfal inventiovs of modern day, wbereln the facuilues of man have overcome diffculties apparentiy Insurmountable, and made the very elements themselven cobservient to his power and use, there are none more wonderful than that now abont to be conried out by the eftabliohment of anb-marine telegraphs, by which an instantanecoua communication will he effected between the comats of England and France. The Brash Government, by the Lords Commlealonera of the Admiralty, and the Prench Government by the alalater of the Interfor, bave granted perminalon to two gendemen, the projectori of the anb-marine telegragh, to lay it down from cosit to coant. The alte celected is from Cape Grisnez, or from Cape Blancies, on the French side, to the South Foreland, on the
 fathoms near the ehore on efther alde, to a marimum of 87 fathomat in mid-chanpel. The Lords of the Admiralty have also grauted permiamion to the came genulemen to lay down a sub-mantie telegriph between Dublin and Holyhead. which in to be cartied on from the a sub-marine telicgreph between Dabinand Holpbead, whichis to be carried on from the Charnell will, howrever, be the one frit ladd down; the materfala for this are already un dergoing the procens of invalation, and are in that state of formardnesa which will enable she profectort to have them complited and placed In ponltion, so that in telegrophic com-
mualcation can be tranamitted scross the Channel about the frat wask in Juse. When this is completed, an electric telegraph will be extablished fram the conat to Parls, and thence to Marmelles. This telegraph througbout France whll be immodiately under the direction of the French Government, as, eccording to the liw of 1837, all telegraphic communicationa through tbat country are under the aboolute control and superintendence of the Miniater of the Interior. Upon the completion of the submarine telegraph acroes the English Chanuel, It le atated that a almilar one, on 8 mont gigantic scale, will be attempted to be formed, under the Immediate tanction and patronge of the French Adminfatration; this if no lese than that of conaectiog the shores of Africe with those of Europe by the same intrumentality, thas opening a direct and lightning like communication between Marsellies and Algeria. It has been doubted by meveral seleptific men whetber this is practicable, and, indeed, whether even the project between the coasts of France and Eogland can be accomplished; but it has been proved by expertments, the mont satiafactory in their reaults, that not only can it be effected, but effected without any conaiderable difficulty,-' Globe
The "Lunar Corrector."-Invented by Captain Andrew Thompson, rousite of an instrument, the pripelple of which depends upon the minnte variation of small spherical triangies. It is formed by the third part of a circle of braa, havipg ap index amiler to it sextant, on which is set the appareat distance. The index oar and ber "Laying of " the apparent alititudes ; one of thei silides being graduated also to macale proportioned to the radiua of the instrument, thow at the point of intersection, a number proportioned to the radiua of tbe instrament, inows at the point of intersection, a number brief table, or by working a rule-of three sum, the true diatance is at once obtalned. The brief table, or by working a rule-of-three sum, the true diatance is at once obianed. The great advantage of this instrument is its stmpitcity, sind the intive tomo-which, by the ceede that required to fork the letitnde by ansintan alutude of the tun. At Meste. Spencert, in the Minories, the invention may be seen.

BRICKs.-Return of the dutjes paid opon bricks in the several excise collections in England from 1839 to 1845 laclusive. The total amount collected in 1839 was 459,664 . 3 and in $1845,658,4151$. The amount in 1839 , in the London diatrict, what $25,9111 . ;$ In the Manchester diatrict, $84,79 \mathrm{H}$.; and in the Rocbeater dietrict, 24,1784. In 1843, In the London diatrict, 31,2871 , the Mancheater diatriet, 44,2906, and In the Bo chester district, 4,644 . Including the metropolis there are 36 apparate collections; in five of whlch, during the last year, the mouni recelved was less than 50α.

LIET OF DEW PATESTRS.

(From Mesers. Robertson's List.).
granted in england from mazce 31, 1846, to april $25,1846$.

Six Months allowed for Enrolment, unless otherwise espreseed

Willam Henry Moggridge, of 13, Old Burlington-street, Middlesex, dentist, for ${ }^{4}$ certaln improvements in the plates or pleces for the roof and gume of the mouth, for attacbing thereto artificial teeth."-Senled March 91.
John Alnille, of Alperton, Middleser, brick and tile mannfacturer, for "certsin improvements in the arangements for the manufacture of bricks, thes, and other admila articles from ciay and other plastic snbstancet, and In the machinery or apparatus for th manuflactime of brieks."-march 31 .
Whlinm Spiby, of Carrington, Nottiughm, engloeer, for "improvements In the com. struction of furmacee uned for heating water and other fluids."-April 1.
Harold Potter, of Darwen, Lancaster, paper manafacturer and stalner, for " Improvements in printing or thalning paper."-April 1 .
Henry Crosiley, of King William-street, London, engineer, for "certain Improvements In the manufacture of sugar, and in the machloery and apparatus employed therein." April 3.
Perdinand Cherles Warlick, of Deptford, Kent, gent.; for " improvemente in the manufacture of Nel."-Aprll 7 .
Wliliam Thomson, of Kilmamock, North Britain, manafacturer and fur merchant, for "improvements in machinery for operating upon wool and otber fibrous meterial, Intend ed to oe wrought intw felted fabrica."-Aprli 7.
George Lewrls, of High Croan-ctreet, Lelceater, lockemith, for "improvemedts in the construction of ahutters and blinds for windows and doors, and in the congtruction of doors."-April 7.
James Allingham, of Dublin, gent.. and James William M'Ganley, clerk, of Dublin. aforeald, for "certaln lmprovements in stoam engloes."-April 7.
Joseph Hunt, of Brixton, Surrey, chemist, for "improvements in the manufacture of sodn."-April 9.
Joseph Bunnett, of Deptford, englneer, for "certain improvements in water-closete part of which Improvements is applicable to other niefol purpowes."-April 15.

Peter Armand le Comte de Fontalnemoreal, of New Broad-itreet, London, for "an an and improved mode of constructing certain parts of the harness of horten and other beate of burden." A communicetlon.-Aprll is.
Bimeon Hyde, of the Strand, merchant, for "Improvements Ir refligirators."-April 15
William Tutin Haycraf, of Greenwleh, doctor of medicine, for "impropmente in steam engines."-April 15 .
Charies May, of Ipawich, Suffolk, elfil engineer, for "improverment in machlnery for punching, rivetiog, and abeuring metal platea."-April 15.

Fenry Manderlle Meade, of New York, America, sent, for "improvements in preparing food for andmals when Indian com is used;" A communcaion.-April 15
Elijah Gallowiy, of Bncinggham-itreet, Strand, eagineer, for "improvements in locomotive engines."-April 18.
Joseph Clinton Robertson, of Meet-at reet, civl engineer, fer "certain Improvements in the manafacture of pins.; A communiction.-April 18.
John Gillett, of Bralles, of the firm of Ward, Colbourne, and Onlett, of Btratiford on Avon, and Brailen, dear Shlpaton on Stonr, Warwick, egrlcultural implement makers, for "an lmproved machlne or machinet, for cutting, slicing, and olherwise dividing hay, straw, turnlpi, and other regetable substances."-April 18.

Peter Btshop, of Birminghem, manufacturer, for "a eertaln Improvement, or improvemente, In the mandfacture of beyonets. "-April 21.
William Hew ard Bell, of Sdmondeley, near Chester le Street, Durbmen, for 'fmprove mente in worling coal in coal mines."-April 21.
Arthur Phillp Ferceval, of East Eoraley, Snrrey, clerk, for " improvements in commanlcacing betwreen places eeparated by water."-April 28.
Whllam Ashby, of Croyden, 8 urrey, millwight, for " certal a improrements in the mangfacture of tour."
George Philcax, of High-street, Soulhwerk, wistch-maler, for "improvements in the constraction of ehronometers and other time-lieepers."-April 25.

OBagster. del?

Church at sacrow nrar potsdam.

(Wilh Two Eagraeinge, Plates VII, and VIII.)

Of considerable merit in itsolf, the subject of our engravings this morth soquires additional interest from its beling, betides the represontation of an setual briiding-one moreover of very recent date-a work of Persiun's, the present king of Promia's architect, who died lest summer. Relative to the individan himself we are anable to add any particularn to our notice of hin death at page 348 of our lent volome; for betides that he is distingwished by Nagler by being omitted in bis tremendoualy comprehensive ' Kunater- Lexi-con'-comprehending everybody who is of no note at all,-be is not given in the 'Conversations-Lexicon der Gegenwart,' notwithstanding that several German architects of the present day are there spoken of. Still we now know momething positively both as to what he executed and what be merely designed; and sketchea showing examplea by him of both kinds have rather exceeded than fallen at all short of our expectationa, for, to say the trath, some remarks whlch we had met with led us to apprebend that his works partook too much of fimoy showiness, of fantatic spielerei-an it was terned-and of hurried sketchiness, without due consideration as to detail and finish;-a not ancommon fault among those who atudy composition and general effecta, whlle, on the other hand, those who are meritoriously attentive to beanties of detail and execution are apt to be either very indifferent to, or else negligent of, original composition and the character derivod from it.
The Charch at Sacrow,-one of the numerous atructares with which Persias embellished the eavirons at Potedam, is both picturesque in itself, and placed most picturesquely-even romantically, immediately on the Havel, where that river expands into a lake, and just over against Prince Carl's Park. We have before ua a general "situations-plan," exbibiting the whole environs of Sacrow, an far an the Heiliger See, the Marble Palace, and Potsdam in one direction (Weat), and the Pfauen-insel, and Griebnitz See, in the other (Bast); which, map as it in, is also a picture, calling up images of leadecape scenery laterspersed with innous lakea, and enlivened by architec-ture-palatial residences, villas, caninos, bridges, belvederes, and what tantalizes ns by its name of the Maurische Tempel. To confine ournelves to the Church of Sacrow itself,-it is charmingly placed-put just as a painter would have it, and perhapa juat as a pedantic precedent-monger would not, for the latter prafern the prosaic in architecture, and leaves all tnuches of poetry in it to artist-architects. Taken merely by itself, the Church would be more than ordinarily atriking, not on account of situation and parition, alone, bat for regalarity and conaistency of detign, kept ap throughout, since $s 0$ far from consiating chiefly of a show front, or making most show just at that ead, it captivates from every point of view, by ite aingular completeness, and also by its originality, the external arcade being a happy innovation upon the basilica character, from which clas of ancient ecelesiastical buildinga, the style has been borrowed,-bat also freely treated, with artintlike feeling, and with many tasteful modifications-albeit the precedent gentry here may shake their beade at them. The Charch, however, is only one fenture in an architectural group, even the campanile only one of its acceasaries; and that lower, a graceful ohject in itself, contributes to variety in a very unnauai degree, inasmuch as by utanding detacbed, it comes differently into combination with the main building, according to the direction in which they are riewed wogether. Architectural ensemble is greatly promoted by the encloned area is front, a paved fore-court surrounded by a low parapet wall, partly forming a terrace, above river. Independently of its effect in otber respects, this enclonure, simple as it is in character, is of great value, because it plainly eonpecte the campanile and church togetber. In our opinion, too, such well expressed demarcation of aito is a propriety which, notwitbatanding our precise and affected scrupalousuess in some matters of ecelesiastical architecture, in frequently most strangely overlooked by ns, for the bave churches in coun. try ae well an towna, that seem to have fallen downfrom heaven, alighting by road-side or streeh-aide juat as chance might direct, without any sort of interval or intermediate space between the secular and the ecclesimatical. Both this fore-court and the external ambulatory around the church may look to us like innovations; yet the one and the other hold out hinta to us well morth adoptiog ; and the one and the other afford excelient aitaations for monamenta,-tbe walls of the church, for inatance, within the arcade, might in time be quite iscrasted with marhle in monumental tableta, --but unlens they were allowed only nadar proper reatictions-anch an would ensure gemernl aymmetry an to arrangement and size, and farther, preserve some keeping as to style, therefore nothing at all like the fiagrant poet mertem ad. vertisemente of quacke and charlatase which diggrace the Reonal Grees Ceme-
try, and render it at once dieguating, and ridiculons,-embelishmeat of the kind would be only disfigarement.
The charch at Sacrow, began in 1842, and completed in all but its interior decorations the following year, is of very economic materials, nearly the whole of the extarior, excepting the columns of the arcade, which are of atone, being only of brick, nevertheleas very ornamental, every four courses of the general brickwork being relieved by two others of coloured bricks (au shown in fg. 4), and similar ones, with a fagred pattern apon them, form a sort of frieze or atring-courre just beneath the principal cornice. The parement within the arcade is alno of bricks of varions sizes, so akilfully though simply diaposed as to produce conniderable richneus of effect. All the other detaila, including those of the two cornices (that of the body of the charch, and that over the arcade), are carefally atudied, and manifent moch clever inventlon at well as good taste. These minatie and peculiarities are, however, lost in drawings on the acale of those berewith given; wherefore it becomes necessary to ohserve that the capitals (6 g .3 , plate VIII.) of the columns are also of novel design-partaking of Grecianjsm in taste, though quite dissimilar from Grecian examplen,-withont the name of a new order being therefore arrogated, even thought of, for them.

The interior of the church is sparingly, bat tastefully, decorated: the walla are wainscoted for about the height of sereu feet, and above that, are conted in imitation of paie green marble, whereby, at the amme time, that offensive raw blankness of surface is avoided, the fresco-paisting in the large altar or chancel tribune (designed by Piofeswor Begas, and representing Chriat and the four Brangelista,) is made to tell more effectively. The ceiling shows the timbers of the roof, which are partly relieved by coloura, while the intermediate spaces are filled in with stars on a cobalt blee ground. The pavement forms a sort of mosaic work of three colonis (dark green, dark red, and bleck) on a general ground of a pale reddish bue. The metalwork for the glazing of the windowa is of oramental pattern, the effect of which is heightened by some intermistare of coloured and groand glase; and it should bei remarked, that if they do not exactly conatitnte what we ahould call a clerestory, there is only one tier of windowa in the upper part of the walls.
Taken altogether, the church at Sacrow will, we think, recommend Perwiut at one who thought for himself, and could seize apon and turn to account such points an opportnnity and subject afforded him. Por our own part, we like it very mueb bettor than some of Schinkel's designs for cburches or about the same scale, which, to ay the truth, are in a somewhat cramped and affected style, owing, perhapa, in great measure, to his deviating too far from, and yet keeping too alose to, Greek orthodory. The aketeh of another church hy Persian, tince erectod at Sans Souci, showi a nomewhat similar deaign, exciunive of the external arcade; yet, though the charch itrelf is so far plainer that that at Sacrow, it forman only a portion of a widely.extended arcbitectural asemblage of various brildinge (some of them erected), all so happily brought together as to form quite a Poussin-like acene. His talent for combination, and his predilection for extending architectaral accescories for mome distance around the main building, so as to blend nataral and artificial objects jnto one captivating tablean, are forcibly manifested in a design by bim for altering a villa residence, which he has distribated in the most piquant mases, prominent among which is a noble belvedere tower (circular in plan), co plaoed as to form not only an adjanct to, bat an object from, the mansion. This design, it appears, was intended for some place in the neighbourhood of San-Sonci; whether it has been carried into execution we know not; bat if the environs of San-Souch an Potadam have been embellished in other inatancea by Percias, in a manner and taste at all aimilar, they mast present some very charming architectural pictares, and we heartily wish that tome such artist as Allom would visit -with quantum oat of drawing paper-Berlin and Potadam-or, we night s2y, discover and explore them, for they seem to be utterly uuknown to Eing. lish artigts.

We regret that we sre unable to specify with tolerable certainty any other of the various buildings on which Persiua was employed for sone years pree vious to his death, and which, whatever their faults may be, no doulh display considerable power of fancy and warmoth of imagiantion. It Lao, indeed, been anid of him that he sacrificed too liberally to picturesque effect, yet, in an artistic point of view, that ought hardly to be made a reproach, provided the effect aimed at was really secured. Here, we frequently savirifice a great deal in the shape of coat, without gettiog any return at all fur it in the shape of art.

Before wo lay down our pen, we may an well mention that wa have now meertained the ascet date of Perifres's death, rif, July 1,2th, 1845.

ON TḢE GMPLOYMPNT OF COLUMNS AND PEDIMENTS AS WINDOW MOULDINGS.

$$
\begin{aligned}
& \text { " Why, 'dle a coekle or a walant ahell, } \\
& \text { A knack, a toy, a trick, a baby'a cap; } \\
& \text { A wray with it lome, let me have a biger." }
\end{aligned}
$$

Tamiang the Shrew.

In puraaing the consistent development of the subserviency of decoration to utility in classic architecture, we come to a division of our subject, conceraing which it is almont impossible to obtain information from authentic examples. Respecting the forms of windows adopted by the founders of classic architecture, we have little to guide us except mere surmise, for of the domentic architecture of the Greeks we are entirely ignorant, and their temples, as far as we know, were lighted exclusively by the doorways or from the roof.
The modern forme of window-architraves are derived principally from the architecture of the period of Revival, as it is called, in the fifteenth century. And notwithstanding the multiplicity of forms of window-decorations whicb this atyle exhibits, we may observe one general characteristic which distingoishes them from those of Pointed architecture. In Pointed architecture the sides of the window-opening, in the thickness of the wall, are splayed-that in, the jambs, the lintel, and the aill are not at right angles to the face of the mall, but inclined obliquely. In the splay are sunk mouldings, frequently of the most elaborate description, which constitute the principal, and commonly the only, decoration of the window. The decorations on the face of the external wall are comparatively anpretend-ing-generally no more than a simple label or hood-moulding. It is true that as the art advanced, and especially in the last period of it, the squareheaded windowa were decorated with elaborate spandrela, \&c. But still, as a general rule snfficiently accurate for our purpose, we may state that Pointed windows are cbaracterized by the decoration of their splayed surfaces.* In buildings of Classic architecture, on the contrary, the decorations of the windows are almost universally in the plane of the exterior wall, and the jambe and lintel are seldom moulded or cot obliquely in the thickness of the wall.

Among the commonest ornaments of Italian windows are miniatne pediments atack apon the exterior wall, and apparently sapported by consoles or by miniature pillars. There are several reasons for conclading that this use of pedimente and pillars is contrary to the principles of pnre taste. The most obvions reasons are that these members, when so applied, are factitions appendages, that they onavoidably have the appearance of being atuck om, and that they are dwarf imitations of members which al waye are, or ought to ba, used constroctively.

But it may be answered, that all oraments of windows are eubject to this latter objection, that they are not nsed constructively; that this objection necesarily applies to all decorations on the surface of external walle -to the hood-mouldings, for inntance, of Pointed windows. This consideration certainly lessens the weight of the original objection when applied to pillars and pedimenta ; so that it is impossible to consider the use of small pillars for the decoration of windows quite so tagrant an offence againat good taste as the hoisting of foll-sized columas to the upper story of buildinga. But still, the minor fanlt is not excused by the existence of a greater one. To window colnmas is attached that sense of the ludicrons which is inseparable from diminutive resemblances of things noble and dignified in themselves. A dwarf mat be extremely well formed, but no one can attribnte to him the idea of dignify. A little colomn may be a symmetrical objett, but it can never be a dignified one, simply because of its resem. blance to architectural members, which, in all pure architectore, are made of great strength and size in order that they may perform their natnral office.

A huge isolated colomn ased to support a monnmental atatue, and a pigmy column used to decorate a window, are the opposite extremes of ahaurdity. The one bas the hideons coarseness and exagserated fentures of a giant, the other the ludicrous littleness of a mannikin: they should be transported to the kingdoms of Brobdignag and Lilliput respectirely.

The real objection to window-columns is-not so mach that they are not used constructively (for in that respect they resemble all other window decorations) as that they are copies of members which are used constructively. Simple mouidings like those of the lowerr range of windows in the Reform Club House may be extremels gracefal and appropriate to their porpose, but window-column have too much the appearance of

[^25]caricatarel : the resemblance to their prototypes is, to ase the mildent term, extremely anfortmate. If Wiadow-dregsings bo-and they mand be -merely decorative, it is at least unnecesaary that their forms abould romind us of what are by far the principal members of claesic architectare - The gable-end of the roof and the columns which sontain its weight

Imagine for a moment the same anomaly existing in Pointed arebiteor tare. Let as conceive the offect of diminative battresmes or miniatare splres stuck againat the sides of the windows 1 Can anything more lodicrous bo imagioed? And yet it is very difficult to ase why this degredmtion of the most majestic architectural forms to buse nees should be zere absurd is one style than in another.

It may here possibly be replied, that in Pointed archilectare, door-ways, and arches of entrance (whioh, in many rospecta, fall under the amme rales es windowi), are deoorated with series of shafts or sleoder colomas. Bet this objection is entirely obviated by the consideration that in these cases the columas are not meroly decorative-that they have an office to perform, and perform it; boing, In fact, the imposia of arche which anstrin the superincumbent masoury.

But even supposing the above considerations ingufficiont, what we look upon as a fatal objection to window-columns and window-pediments ia the utter barrennens of invention which they display. By the adoption of them, we seem to say to the first great fonaders of Clasic architectare, "You have given us full and explicit information on every point of joer syatem bot one-the treatment of windows. It in the only point on which you bave left os to our invention; but we are unable to invent or think fer ourselves, and therefore we copy over again some of your forms, and apply them in absolute indifference of their original porpose." Now this bumiliatiag confession is all the more unnecensary, because the possihility of designing window-mouldinge which are pot only intrinsically beantifal bat perfectly appropriate has been proved by actual example. The palaces of Italy exhibit a great number of these deaigns, and we have already instanced the exceedingly graceful forms of the windows of the groand floor of the Reform Club Honse.

We said that it was difficalt to see why the application of architecteral members to ignominious purposes should be more ludicrons in Clasaic than in Pointed architecture. And yet, perhaps, it may be easy to find a reason for this inconsintency. It is that in the one case wo are reconciled by long custom to absurdities, which in the other, either never existed or have long been loat sight of. We bave, in our own conntry, pure and geanipe apecimens of the skill of the Medieval architects; consequeatly, we art able to stady these great masters in their own language, so to speak, withont the intervention of translations. With respect to the Griek architects, however, we have not these advantages ; we take our notions at secoodhand from the Romans, or at third-hand from the Italians, and, couseqnently, frequently make gross blunders from mistaking the meaping of our teachers. Medisval architecture hes now, happily, begun to be ctadied philosophically-that is, we are not now content with mechateally copying the formes adopted by the Christian architecta; we stady the principles which produced those forms. Why should it not be eo with Clasoic architecture also? Why should the most monstrous absurdisies be perpetrated daily, becense we will not leave the beeten pach of mert imitation, and think for ourselves?

Sydney Smith defines wit to be the discovery of a real and acenrate relso tian between subjects, which to ordinary understandings, do not eppeer connected. All the great omotions of the mind and the Iden of utility art inimical to wit. "There are many mechanical contrivances," asy be (Collected works, Vol. I.), "which excite sensations similar to wit, bot the attention is absorbed by their utility." The converse of this iden it aleo true; for when thinge to which the idee of utility is atteched are, by accidental circumstance, rondered nselens, they seldom fail to excite lodicrous emotions. It is for this resson that a man who is $s 0$ fat that we is incapacitated from active exertion is usually an object of ridicale, and that a man confined in the otocks gete more laughter than phy. An ez. tremely amall model of a steam-eagine frequentily elicits from the obwerver a smile, which if he were to analyse his own feelingr, is caused by mantal comparison of the obvions inutility of the model with the gigantie powtr of a large engive. Again, there is a story of some one, who in apeakitr of the repid advance of the mechanical arts in modera times, soggeated (perhaps rather irreverently) that we shoold soon have "onat-iroe pances." The abaurdity of the notion evidently arises from the comsideration that howover mach the machine might resemble the minister in outward torm, there would be no hope of rendering it capable of performing the mototiterinl functions. Meny other instances might be adduoed is mhich the ie-
capacity of thinge for the purpones whioh their formenergent readers them abourd; the application of this theory to the subject of the proseas paper will act be very dificult.

Whaterer is opposed to the priociples of common sense mate be opposed to the prisciplea of good tante; and If architeots have determised thet they will mot recogaise this axiom, they will fied out sooser or later that the peopit, at least, have done 20 . We have eadearoared or a former cocalion to show why Polnted architecture is gradually subverting the Crasic. Every day adds to the atrength of our conviotion that this tendeney can only be resisted by studying Grecian architectore in the same epirit es Pointed architecture-that is, by investigatiog its genios and epirit. The greateat lajury which it has received hea been inficted by injodicious admirors, for they have ondeavoured to incorporate with it forms and ideas which can never amalgamate with it, becanse repognant to its very ature. If it be not parged of these inconsistencies wre may be quite certinin that it will 800 n altogether fall into disase. The taste of the people will prononnce for mediaval arohitectare, not on the groand of ite abstract cuperiority, but beoanse it is more philosophically stadied and prectised,and anless architects will lead the popalar taste, they will certainly be coorpelled to folliow it.
Not that we vish to advocate tho exclusive adoption of pure Clasic archiectore-this pure classicality is geverally pothing bettor than insipid imistion-but what wo contend againgt is, the affectation of clacelcality where there is no chance of its being succesefully realised. Sureig it is better to ereet a bnilding withont colamas at all, then to stick columns on the ratinces of the walls, here, there, and everywhere, and to jomble together columas of all sises (and belonging to three or fonr different sifyles) in the anme edifice. To look at some modern edifices, one would think that the architect had ordered his columns at monnch a dosen, and that it was quite an after-thought where he should put them.
This indiecriainate predilection for coloman and pediments (and the pigmy resemblances of them) is in the vilest thate. Is it quite impossible that a building ann be beantifal withont these appendages O (the contrary, we are not certain whether colomns and pediments might not be entirely baoished from domentic architecture with advantage. If stuck on to the front of a house, they are mere carioatures; if used according to their original and proper parpose, they generally abecure the light of the buildiag and diminiah its convenience.
With respect, however, to the more immediate subject of this paperthe form of windows-there are one or two things besides the bits of columns and pediments, which might conveniently be suffered to go ont of fuhion. There is, for justance, a poor contrivance for breaking the continuity of surfaces by bevilling the edges of the atone; it it, at the best, a wretched expedient. The architect has not skill onough to group his shadows in masees, and, therefore, to render the flatnese of the nabroken surfuces somewhat less intolerable, he gives the masonry the appearance of beiog badly jointed. Cognate to this fimsy artifice is that of scoring in the surfaces of the stone deep irregular channels which give it the appearasce of being worm-eaten. This kind of masonry receives the gentle appellation of " rustic mesonry,"-wre abould have thought "tattooed ma. uoary" a more appropriate term. Pacoy the Parthenon thas gashed and cicatrised!

Another practice in the construction of windows is the placing them so that the architraves intrude upon the friesa of an order, the contionity of which is broken to make way for the intraders. This practice ia 20 evideaty indefonsible that it is not necessary to waste argument opon it. The faalt is happily not very prevaleat, but if the reader require an instance, wo wili refer him to the cathedral churoh of St. Paol.
The lat solecism we have here to notice, is the constraction of aham. wiodows (and also of sham-doors, for most of the rales respecting windows are applicable to doors). These, like other shams and pretences, geoerally reveal their own dishonesty. The architect who makes ase of these expediente refiects far more severely on himself than the strictest critic coneld, for he confesses that he has managed his desigo so badiy that, for the akke of uniformity and symmetry, he ought to make more window than the parpose of the building requires, and that he has ao better way of getting over the difficulty than by bnilding sham windowe in plecen where it is either annecessary or absolutely imponsibie to construct real ores.

With reapect to these and all other artifices and mako-beliefs, we have one safe and certain rule to guide ng-architecture is not a system of entifoes. Its claim to elevated rank among the fine arts rests on much highat and nobler principles than those of trick and show. But there is
pow, unhappity, in all the fine arts a fachion fop imitation, which is dimmetrically opposed to true artiatic feeling. In painting, wo have minute resemblances of leaves, fruit, or the pattern of silk and embroidery. In sculpture, soblimity of general expression is thought less important than accuracy in chiselling each particalar hair, vein, or wrinkle of the akin. In music, we have clattering railway overtures, crashes in the base to reprosent thander, and rans in the treble to imitate the nightingale. And in architectare, we mast have stone look like lace, and Iron like stone; we consider it imperatively necessary that every material which we ase should look like something else than what it really in-above all we prefer the foppery of aticking on a few bits of finery here and there to the harmony of componition, the dae disposition of light and shadow, the adaptation of every member to its appropriate office, and that general dignity which resalts rather from the conscious possesuion of beanty than the ostentations display of it.

A NEW TEEORY OF THE STRENGTH AND STRESS OF MATERIALS.

By Oliver Byane, Professor of Mathematica.
I do not intend to occupy mach space or time in dileting on the importance of my subject, or in giving a history of its rise and progreas, or in making apologies when I differ from my predeceneors, however instructive, ontertaining, or judicious an opposite procedore may be; bat when I do differ, I will give my reasons for doing 10 without a circumlocutory apo$\log y$.

Theory telle us that if a miform bar-mo matter what the figure of the cross section may be, or what substance it may be composed of-be sus. pended by one extremity, and loaded at the other till it is on the point of being torn asunder, the weight and the corresponding transverse sectional area are proportional. The bars or rods compared requiring oaly nuiform. ity and equality of texture, we may lay down a general law, the lateral repistances (in the direction of a perpendicular to the transverse sections) are in proportion to the areas of these tramsverse sections. This Law is very evident, for if a bar or rod were conceived to be longitudinally divided into any anmber of equal strips, no reason conld be asaigned why one of these stripa shonld snpport a greater portion of the woight than any of the others, so that each would support an equal part of the weight, in the anme manner as an asomblage of equal parallel ropes divide the woight of an appended body equally among them. Experiments on lateral strains prove these deductions to be correct, and it affords an instance in which theory and prectice may be aaid to coincide. The contrary is the case when the beam or bar is supported in a hociroatal position, for then, the law of resistance, opposing fracture by anincumbent woight or force, is more difil. cult to establinh, beoanse we do not so readily see how the resiating forces. oxert themselves. Unlike lateral strains, the discrepancy existing between the resulte given by theory and by experiments is very great indeed; 20 much so, that very little can be relied on the theoretical reacalts that ane beyond the rage of experimente. Indeed, with experiments of a rage anfficiently extensive, no very great mintake can be made, however louse and ancertain the theory may be; bat when we require a step far beyond our axperimants, such as the determination of the best form and dimensions for a tubular bridge like that proposed by Mr. Stephenson, then the want of a theory, supported by experiment is a very great reqniremeat.

Galileo whe of opinion that if a beam mere sapported at ite extremities, es in fig. 1, and loaded by a weight at the middle, that all the fibres or flaments would exert equal resistances to prevent fracture, and that when these were overcome the whole would tend to turn about that boundary A. B, in contect with the weight.

As this view of the sabject supposes all the fibres to erert equal resistancen, and in the direction of their leagths, these resigtancea will bo to
sany equal and parallel forces and may be considered as acting together in the centre of gravity of the section, so that denoting the resistance of a single tibre by f, and supposing the seotion to be a rectangle of breadth b, and height h, theo will $f \delta h$ express the som of the resistances, and as thie acts at the contre of gravity of the section, which is at the distance of $\boldsymbol{1} \boldsymbol{k}$ from the line $A B$, its moment to tarn aboat ΔB will be $f b h \times \frac{h}{2}=\frac{f b h^{2}}{2}$.
Leibnitz gare another hypothesis, which agreed with that of Galileo with respect to the position of the axis about which the segments would tern. But Leibaitz supposed the filaments or fibres to exert forces proportional to their distances from the axis; so that the middle fibre, according to the theory of Loihnitz, exertod but half the force of the extreme fibre. Calling the force of the extreme sbre f, the sum of the forces would be $\frac{f b h}{2}$; and siace the centre of such a system of parallel forces is at the distance of $\frac{2 h}{8}$ from the axis about which the whole is supposed to tura, hence the noment to turn will be expressed by $\frac{f b h}{2} \times \frac{9 h}{3}=\frac{f b h^{2}}{8}$. It is easily ceen, that, as far as regards the comparalive strength of rectangular beams of the same material, or of similar beams whose traneverse sections are rectangular, it is mo matter which of these hypotheses be adopted, for both point out the law of resistance to be as the breadth multiplied by the equare of the beight; we shall in future use the term beight or depth for the dimension in the direction of the pressure.

Galileo and Leibsitz supposed that the segments of a beam X Y, fractered by a weight W, turned abont the line $\mathbf{A} \mathbf{B}$ where the fracture terminates. But James Bernoulti, Mariotte, and others, were of opinion that the segments had a tondeney to tura about a line, as am, entirely within the section; the fibres on that side of the line where the frecture begins are extended, and those on the other side oompressed. If the beam $\mathbf{X} \mathbf{Y}$, reting on two prope at X and Y, be fractared by the wrolght W and $m n$, the line inside of the section ABab, about which the segments of the beam have a tendency to turn, then the fibres or flaments in the space $n m 6 a$ are supposed to be extended, and those in the space BAmncompreseed. The imaginary line $m n$, which divides the seotion A Babinto two parts-the area of compremsion and the area of tension-is called the neutral axis. Mr. P. Barlow labpared much to fiod out the true position of this neutral axis in different serts of timber. The result of his labours and experiments may be sommed op in the following words, the trath of which is very questionable:-" The centre of tension and the centre of compression each coincide with the contre of gravity of its respective aren (!) and the nentral line which divides the two is so situated, that the area of teasion iato the distance of its centre of gravity from the nentral asis is to the area of compression into the distance of its centre of gravity from the eame line, in a constant ratio for each distinct species of mood, bot approximating in all towards the ratio of to 1 ." (?) It would take up too mucb space to dwell on the absurd conclasions of Mr. Barlow; there are one or two thioge which require but little consideration to detect, first, the neutral fibres do not arrage themselves in a right line in all forms of beams, indeed, if such a line did oxist, it would be a curve governed by the exterpal form of the beem and the force applied. In the second place, the ceatre of gravity cannot agree in all cases with the centres of the forces of the filaments of the compresced ead extended areas, and any man at finat sight might suppose that the areas of compression and tension would bear a constant retio to each other ia each dietinct apecies of wood. In the thind place, I defy experiment aither to coaffm or contradict these concluaions of Mr. Beriow, for they have nothing whatever to do with the plreagth of beams. Hemerely eay, find wheto my has is by experiment,
and I will give you sonolhiag like the resolt of esperiment from a line se datermined. Let x Y Z be a portion of a beam in the locality of freture, caused by the forces F F acting in the directions of the arrowe. The aame prooest of reasoning which points out a neutral asis in the whole $\triangle H D C$, will point out a neatral axis in any portion of the body fabxt a , no matter where it be situeted; in fact, every fibre may be aeid to be compreseed on one side and extended at the other, while the whole or each is bent round a common centre, as S, entirely outaide the body. Then S Y i_{s} the radius of curvature of the arc CPD at the point p.

Now let us take gedxtyqZ, any portion of the beam, it is evident that the filaments in the upper part near to dt q are expanded, and those near to $x Y Z$ are compressed; according to this reasoning there is a set of fibres between $d t q$ and $x \mathbf{Y} Z$ which are neither compressed nor expanded; hence each portion of the beam is ontitled to a nentral axis, which is relatively correct, but each neutral axis is itself hent round a centre in $\mathbf{r} \mathbf{8}$.

It is etated by Tredgold ("Practical Essay on the Sirength of Cast Iron," page 63),-"When a rectangular beam is snpported at the ends, and loaded in any manner between the supports, it may be observed that the side against which the force acts is always compressed, and that the opposite side is always extended; while at the middle of the depth there is a part which is neither extended nor compressed ; or, in other words, it is not strained at all.
"Any one who chooses to make experiments may satisfy himself that this is a correct statement of the fact, in any material whatever, whether it be hard and brittle, as cast iron, zinc, or glass ; or tough and dactile, as wrought Iron and soft stoel ; or flexible, as wood and caoutchouc; or soft and ductile, as lead and tiv. In very flexible bodies it may be observed by drawing fine parallel lines across the side of the bar before the force is applied; when the piece is strained, the lines become inclined, retaining their original distance apart only at the nentral axis." Now this fallacions statement (frst made by M. Mariotte, which Mr. Barlow aud a host of otbers dowa to Mr. Mosely have endeavoured to support by experiments, conjectores, and assertions,) may be exposed in the following descriptive manner, and afterwards by a mathematical investigation. Suppose XY, VW, and ZT to

Fig. 4.

be the aame bean uader difieront circumatances. If a beam $Z \mathrm{~T}$ be strased, with parallel lises drawn as above directed, at $m^{\prime \prime} q^{\prime \prime} p^{\prime \prime} q^{\prime \prime}$, the wry fect, that the lue b s being beot, shows that its perticles are not in a rate of quiescence, althongh it may be the same leagth as m' m^{\prime}, or that ose of the subdivisions of $b s$ is equal to one of those in $n m^{\prime} n$ ', the position of the bean before it is bent; as $\mathbf{Z} \mathbf{T}$ becomes more and more bent, the divicioes will open in the opper regions sear $\boldsymbol{m}^{\prime \prime} \boldsymbol{m}^{\prime \prime}$, and more contracted mwands the lower near $q^{\prime \prime} p^{\prime \prime}$, so that the position of the meutral axis mast dift lowards the lower part of the beam from the top, valese the carres $\mathbf{m}^{\prime \prime} \mathbf{n}^{\prime \prime}$ and $7^{\prime \prime} q^{\prime \prime}$ be ares of concentric circles, thed the arc $a 0$ in the centre will always be equal to m'n'. But it is not evident that the particles in the are a_{0} or $b s$ are not atrained at ail, becanse either of them happen to be of the same length as $n n, m^{\prime} n^{\prime}$, or $m^{\prime \prime} n^{\prime \prime}$, which wore all equal before the forces wero applied
The conclusion we come to here is, that the whole turns round an axis, sometimes ontaide of the body and sometimes inside, according to the position of the ceatre of the circle of curvature of the curve where the greatest atraín is applied. Let c^{\prime} be the centre of the circle of curvature Whe point in the centre of the arc $q^{\prime \prime} p^{\prime \prime}$, then that arc is supposed to be strised roavd c^{\prime} as an axis. Let $c^{\prime \prime}, c^{\prime \prime \prime}$, and \mathbf{C} be reapectively the centres of the circles of corvature for the points in the middles of the ares $b s, c t, m^{\prime \prime} n^{\prime \prime}$; then the arc $m^{\prime \prime} n^{\prime \prime}$ is supposed to be bent round the centre $C ; c_{0}$ roond $c^{\prime \prime \prime}$; and b a ronod $c^{\prime \prime}$. When the filaments that are the moet expanded—that is, those near $m^{\prime \prime} n^{\prime \prime}$ in $\mathbf{Z} T$, and near, $\boldsymbol{q} p$ in $\mathbf{X} \mathbf{Y},-$ become flatted at the centre, between $m^{\prime \prime}, n^{n}$, or between $Y p$, which is geserally the case before fracture ensnes, then the centres of the circles of corvature at these centre points, after changing from \mathbf{C} to $c^{\prime \prime \prime}$ to $c^{\prime \prime}$, \&c., as the beam Z T becomes more bent, now returns in a contrary direction, $火, c^{\prime \prime}, c^{\prime \prime \prime}$, \&c. ; and whed the fibres in $m^{\prime \prime} n^{\prime \prime}$ become straight, the radias of corratnre becomes infinite, as in the anse of the beam V W at rest, in which the purticles or fibres at $m^{\prime \prime} m^{\prime \prime}$ are supposed to be atralght.
We chall next conslder the natare of the forces exerted by the filaments If diferent points of the cross section, in the region where fracture would earre, when the strain exceeds the elastic limit of the body.
The beams or bars, the nature of the cross sections of which we are inratigatiog, are supposed to be supported at the ends and loaded in the middle. In small beams, the change in the particles that we are about to describe is not perceptible; yet it will be found very considerable in large girders, suct as the tubular bridge about to be constructed by Mr. Stephenson, or in amall girders of a fioxible nature.

The figure vaed in elucidating this matter is distorted, in order that the chage uoder consideration, near the centre of the beam, may be more apmest. A very simple mode of illustrating what we shall describe relative to the molecular ection of the particles in a crose mection, near the contre of the beam, may be obtained by taking a rectangular piece of waetchooc, whoes crowe section would be represented by $a b q P$; but, it is to be anderstood, that in point of structure we do not compare canontchouc - india rabber with fron, brase, or wood;-but, merely to show the manmein which the particles in the crose sections of bodien, under the circramances wo have just described, endeavonr to exert themselves. Let ECDP be the goaition of a beam before the weight W is applied, HGABIL its position after; the crost eections in the two positions will be represented by the figures abgpand $c d \boldsymbol{d}$ w. The action of the weisht or force W compels the point a to move to t, and the point r to move tof, and hes a cendency to lengthen the whole beam; while af the same Cus, the flamoats in the upper part of the beam, near the middle, become comprend in the diroction of the length $A B$, and extended in the dree.
tion of the breadth \mathbb{a}; that i, the breadth $a b$, is one poaition, is represented by $c d$ in the other. But the fibres in the lower part near r, in changing from r to g, become expended in the direction of the length $A B$, and contracted in the direction of the breadth $p \boldsymbol{q}$, so that $p q$ in the cross section becomes m. n. From the sigidity of materials, this change may not have place, or may not be perceptible; but, in all cases, a force ecting in the direction of the arrow will have the teadency to change the crows sec. tion $a b q P$ into one like $c d m n$, which if it be not able altimately to effect, fracture must easue.
As we havo before obeerved, what we have just deacribed will become clear by bendlag a rectangular piece of indla-rubber. If the section of the rod or beam be circular, as \mathbb{Z}, the change will differ materially from the one already described, for the circle will become, or endeavour to become, a figure like an oval. The change in the molecular particles in the cross section will arrange themselves differenuly, according to the external forms of the beams and the positions in which they are placed: comething like the change of form in triangular beams are given in the figures X and Y. When the strain is aboat to exceed the limit of the

ebstic power of the material, the files which are in a state of quiencence, compared with those in the extreme upper and lower regions of the beam, will arrange themselves in a curve remembling $n t$ in the fgares X, Y, and Z, the equation to which will be given hereafter. The behaviour of the force and filaments here stated are in themselves auficiently simple and explicit, but, is order that none of onr readers may enter npon the mathematical investigation of this important anbject with incorrect notions respecting the different cironmatances ander which the beam may be placed, we hare thought it expedient to add the following expositions and illustrations: -
F. 11.

Let $\mathrm{E}: \mathrm{F}$ be the upper or lower sarface of the beam before the weight W is applied; $H t \mathrm{~L}$ will represent the upper, and $\mathbf{G}_{\mathbf{g}} \mathrm{K}$ the lower, after its application. The same parts are marked with the same letters as the figure preceding, for these sarfaces are sup. posed to have reference to that figure. If the particles at $a s b$ in the bending process were auch that they would merely become mora dense, then the hreadth at as b wonld not be changed; but it is not the case, for the harder parts of the material merely obtrude themselves into the sofler, and partly become compressed and partly swell the breadth of the beam near these parts, as at $c t d$ in the upper section $H t L$. But in the lower surface $\mathbf{G}_{8} \mathrm{~K}$, or near it , the pariicles at $\boldsymbol{m} \mathrm{g} \boldsymbol{m}$ become acparated, and the breadth becomes contracted from $a b$, which is equal to $p q$ to men.

We ahall in the next place proceed to the mathemetical investigation. Let W be the weight in pounds that would be borne by a beam of wood, iron, or any other material, whose cross section is an inch square, when the straid is as great as it will bear withoul destroying the elastic force of the body, and the direction of the force coincident with the length or axis of the bar; and let W ' be any other weight to be supported nuder the same circumstances. Suppose the crose section of the piece to anpport it to be a rectangle, whoso breadth $=x$ and thickness $=y$ inches.

$$
\text { Then } W: W^{\prime}:: 1: x y ; \text { or, } \frac{W^{\prime}}{W}=x y
$$

Berictly epeaking, the longths must be the mame, or W and W^{\prime} must inclade the weights of their respective beams. This proportion has piace from the well-known prisciplo-abundanly proved by experimentethat α the strength of a bar or rod to resist a given strain, when drawn ia the direotion of its longth, is direety proportional to the area of ite crose mection; while its clastic power remains parfect, and the direction of the force coineldes with the axia."

Lot d be the quantity a bar of iron, or other materinal, an inch square, and a foot in length, represented bs $a b$, would be extended by the foree of the weight W in pounds, which, es in the lest, is supposed to be the greatost, it would boar without destrosing its elactic foree; and let L be the leagth of any other portion of the same rod in foet.
Then $1: \mathbf{L}:: d: \mathbf{L} d=$ the extension of the rod, whose length is \mathbf{L}. This is evident, for if we suppose the weight W to be attachod at a and to stretch $a b \in$ quantity d it will strotch $a c, 2 d ; a d, 8 d ;$ sco., beonuse W, after stretching $a b$, will apply the same force to $b e$, and, strictly speaking, a little more, for it will have an additional weight in the lengit a b, a foot of the matorial; the same reasoning will hold with reapect to any other foot, as e \mathbf{A} for the waight W, and the woight of 4 foet of the materinl may be supposed to be applied at c, and act in expounding eA, but the weight of the rod is so small, that it may be neglected in moderate lengthe. Strictly speaking, then W, the ultimate force mast involve the weight of the bar to which it is applied. The weight W would altimately be reduced to zero, for the bar woald only be able to support its own weight withont destroying its elastic force--Example: cast iron will bear, without permanent alteration, $15,500 \mathrm{lb}$. upon a square inch; consequently, the length of a rod of cast iron that would be just able to support itself without pormaneut alteration would be 4,896 feet ; a oubic foot of cust iron weighs 450 lb ., no matter what the crose sectional ares may be. Again, muppose W^{\prime} to be any other woight less thaa W,-
$W: W^{\prime}:: d: \frac{W^{\prime} d}{W}=$ the extension produced by the weight W^{\prime}, sup. posing the length to be one foot, and the croses rection an inch equare ; and also that the extension of a bar or rod by a force acting in the direotion of its length, is proportional to the straining force; the aree of the cross soction remaining the same, and the atrain not to exceod the olastic power of the beam, bar, or rod.
The oxtension for any length $L_{\text {, }}$ by the weight $W^{\prime},=\frac{L W^{\prime} d}{W}$; for, $1: L:: \frac{W^{\prime} d}{W} \cdot \because \frac{L W^{\prime} d}{W}$.
W^{\prime} is sopposed to involve the weight of the bar, as well es W.
Let it be required to the elongation \mathbf{E} of a bar suspended vertically, and sustaining a given atrain or weight W, in the direction of its length equal L feet, the influence of its own weight being taken into acconut, the sectional area A square inches. Without destroying the elasticity, or surpassing the elastic limit, suppose e to be the length that n pounds will elongato a bar weighing p pounds, one foot long and one aquare inch sectional ares.

Suppose the last foot of a bar L feet long to be suspended to the second last, the effect of the last to elongate the necond last will be found by the following proportion:-s:p:: \& $: \frac{p:}{20}=$ the eloagation of the second foot.
Suppose these two feot to bo attached to the third foot, we have w: 2p: : : : $: \frac{2 p:}{w}=$ elongation of the third foot; w: $3 p:: \subset: \frac{3 p:}{w}=$ elongation of the fourth foot; therefore the som of the following eeries will give the whole elongation, the leagth of the bar L representing the number of terms, we have $\frac{p}{w}\{1+2+3+4+\ldots . L-1\} \times \frac{L}{2}=\frac{L^{2} p}{2 w}$. Or the elongation may be determined thus :-Let x be the leagth in feet meaunced from the lower extremity, then $w: p x:: \subset: \frac{c p x}{w}=$ the elongation of a foot in length from the strain of the weight $p x$. And let $d x$, As writers on the Calculde say, be the length whice ib next to nothing. $\cdot, \frac{\text { foot }}{1}: \frac{\text { feet }}{d x}:: \frac{e p x}{w}: \frac{c p}{w v} x d x=$ the elongation of the length which was supposed to be next to nothing. Integrating between the Jimits $x=0$ and $x=\mathrm{L}$; that is, $\int_{0}^{L} \frac{\underline{p}}{w} x d x=2 w \frac{p}{w} L_{1}$. So that a bar 1 inch square and L feet long will be elongated by its own weight $\frac{p}{2 w} \times L^{2} \varepsilon$; indeed, let the sectional area be what it may, the bar will be elongated by its own weight the same leugth, because the body is uniform, and each inch of sectional area is circumstanced in the ame manner.

The number of pounds on each square inch of cross section $=\frac{W}{A}$, together with the weight of the bar ap to that rection. Then just at the point where the beam is suspended, there will be $\frac{\mathbf{W}}{\mathbf{A}}+p \mathrm{~L}$ pounds on the square inch, which mast not exceed w, the elastic limit in poands for eact square inch of section. w: $\frac{\mathbf{W}}{\mathbf{A}}:: \subset: \frac{\mathbf{W}}{\mathbf{A} w}=$ the elongation of each foot in lougth by the woight $\frac{\mathbf{W}}{\mathbf{A}}$ on the equare inch ; but as each square inch is strained by the same weight, each foot of the bar will be increased by the same length. $\cdots \frac{W}{A w} L=$ the olongation of the length L, by the weight W. And hence, $\frac{W}{A w} L+\frac{p_{e}}{2 w} L=L \frac{\bullet}{\omega}\left\{\frac{W}{A}+\frac{p}{2} L\right\}=E$, the elongation by the weight W and $L A p$ the weight of the ber.
Wo shall next explain certain nambers introduced by writers on this subject, and called by them moduli. Thore is the modulue of olasticity, the modulus of resilience, the modulus of fragility, and the modulue of rupture.

The modulus of elasticity in the strain in pounds which would be required to extend a bar, one foot long and one square inch sectional area, to donble ite length withoat altering its soctional ares; or it is the trust in pousds that would comprese the same unit har into balf its length, that is, till the foot becomes 6 inches, the rectional area remaining, as before, one aquare inch. We never could see the real ase of introdncing these imaginary numbers, unless for the purpose of mystifying the subject or to make it assume a very scientific appearance.
It would be a atretch of the imagination to suppose a brick to be polled till it would beoome the leagth of two bricks. He must be a very clever man indeed who determlned the modulus of elasticity of pipeclay. Mere book-makers like Hall and Moseley, of King's College, cannot be offeoded; but mon like Barlow and Hodgkinson, who have lost their time experimenting to tad them, may be a little indiganat to find their favourite anmberts spoken so lightly of.
Let us auppose, for argament sake, that Tredgold is right with respect to the modulas of malleable iron; he found the modulas of elasticity to be $\mathbf{2 4 , 9 2 0 , 0 0 0 \mathrm { lb } \text { ., or } 7 , 5 5 0 , 0 0 0 \text { feet of the same matter ; sectional area one }}$ equare inch. Those who have made experiments will give but little credit to one who finds him wrong. Tredgold foand that $17,800 \mathrm{lb}$. ou a equare inch of good English iron would cause do permanent alteration, and would extend a foot or any other leagth, not taking into account the weight of the bar, the itho part of ita length. Iho in this case would be e, $17800=x$, and $p=47$, for a cubic foot of malleable iron weighs 475 lb . nearly. Now it is erident, if the elestic Ilmit of malleable iron were such as to allow it, and that the elongation was in direct proportion to its strain, that it would require 1400 times $17,800 \mathrm{lb}$. to extend this foot of iron till it becomes two foet long, or, which is the same thing, till it becomes a fool elongatod. Now 1,400 times $17,800=24,920,000 \mathrm{lb} .$, or, $17,800 \div \mathrm{nk}=24,920,000=\frac{\mathbf{N}}{\circ}$; this, to make the matter ascume a learned appearance, or rather, a more college appearance, we shall represent by M_{e}; the modulus of elasticity and its reciprocal $\frac{1}{w 0}$ by $\frac{1}{M_{e}} ;$ so that $E=L \frac{e}{20}\left\{\frac{W}{A^{*}}+\frac{p}{2} L\right\}$ may be written $\mathbf{E}=\frac{\mathbf{L}}{\mathbf{M}_{e}}\left\{\frac{\mathbf{W}}{\mathbf{A}}+\frac{p}{2} \mathbf{L}\right\}$. A bar of malleable iron, one square inch of sectional area and 7,550,000 feet-nearly 1,430 miles long $=24,980,000 \mathrm{lb}$; from which circumbtance $7,550,000$ feet is called the moduluas in feet; $24,920,000 \div\left\{\begin{array}{ll} & =7,550,000\end{array}\right.$. That is, $\frac{w}{6} \div p=\frac{w}{p:}=M_{e} \div p$; in this modulas Hodgkiacon differs $\mathbf{4 0 0}$ miles of iron from Tredgold, anat Barlow about $\mathbf{2 5 0}$ miles of iron from Hodgkinson. So mach for the moo dulus of elasticity.
The elongation of a bar suspended vertically, and suataining a atraia of Wlb.-the infaence of its own weight not being taken into acwornt-whe found to be $\frac{\square}{20} \cdot \frac{W \mathrm{~L}}{\mathrm{~A}}$, which we shall call l :-
$. \cdot l=\frac{W \mathrm{~L}}{\mathrm{M}_{e} \mathrm{~A}}$ by substituting for $\frac{\bullet}{w^{w}}$ ita value $\frac{1}{\mathrm{M}_{e}}$. Before we explain What is meant by the modulus of resilience or fragility, it is necenary to way what is meant by a unit or wosk. A pound woight raised vertically
oue foot in a unit of work done. A apring that lifts 1000 pounds itos part of a foot doen a unit of wrork. It is evident, that to clongate a bar an additional length l, the weight necessary to keep it elongated needs not be applied from the commencement of the procese of elongating; for half l woald be produced by half the weight, and one-third of i by one-third the weight, and so on. It is evident that $W I$ would be too much, for the weight W would not be actually omployed in the business of elongation is moving from 0 to l.
Let L be the length of the bar before the weight W is applied; A, the ares of its cross section; as before, $l=$ elongetion consequent on W. And let x be any elongation between o and L. The weight neceasary to keep L stretched to $L+x$ will be $\frac{x}{l} \times W$; this woight may be said to be fully employed while it passes through $d x$ at the very oxtremity of $L+x$. $\cdot \cdot \frac{W}{l} x d x$ expresses the work done; $\cdot \cdot \frac{W}{l} \int_{0}^{l} x d x=\frac{W l^{2}}{2 l}=\frac{W l}{2}$, the whole units of work.
We have shown that $l=\frac{W L}{M_{e} A} \cdots M_{e} A=W L$

$$
\because W=\frac{M_{e} A l}{L} \cdot \cdot \frac{W l}{y}=\frac{M_{e} A l z}{2 L}=\text { the uaite of work. }
$$

Also, the work done, or the resistance overcome, expressed in units of work, $=M_{e} \frac{A^{\prime}}{2 L}=1 M_{e}\left(\frac{l}{L}\right)^{2} L A_{i}$ bence it is ovident that the amonnt of work to be done to elongate different bars of the eame material, any fractional part of its leagth expressed by $\frac{l}{L}$, which must not exceed the elactic limit, will vary as $L_{1} \mathbf{A}$; for in every case $i \mathbf{M}{ }_{e}\left(\frac{l}{L}\right)$ romains constant. The work done in elongating a ber to its olestic limit,

> (To be continued.)

FITZWILLIAM MUSEUM.

The following particulars respecting the site and purpose of this noble building may be interesting to those readers who are not acquainted with the topography of Cambridge.
The sitaation of the Museam is one of the most farourable which an architect could desire. It is near the entrance of the town from the Londoo road, in a broad open part of the main atreet. When first erected the building was temmed in by several mean and decayed tenements which beve since been removed. The edifice is now perfectly isolated : on three sides are broad spaces of lawn, on the fourth or principal side is the open thoroughfare, So that the architect hes bad the advantage of placing his boilding where it may be readily seen, and where it is the conspicuous object of a place of public resort, without the architecture being marred or concealed by the adjacent houses.
The material of the masonry, pure white Portland atone, contributes mooh to the architectural effect-and especinily in summer by the contrast of the dazaling colour of the bailding with the dark foliege of the trees in Peterhonse gardena. The whiteness of the stone is really oztreordinary, and generally gives to strangers the impression that the building is conatroeted of pare marble. Those who are meroly socustomed to sec PortLeod stone of the colour which it asames in the smoke of London, can eracely imaglue the almost starlling effect produced by the brilliant appearase of the Museum at Cambridge, when seen for the first time: there are fow atrangers who on entering Cambridge aro not impreased with afeeling akin to amazement when they suddenly come in sight of this sorgeons monument of classic architecture. The effect by night, eapecidly, when the moon is shining, is very striking. The columns show in the mooolight an white as snow, and there is something almost magical in the manser in which they contrast with the dark shadows of the surrooding trees.
It mast not be supposed, howrever, that the whole of the effect is to be attribated to the accidents of situation and colour : these serve only to exMibit fully the excollence of the architecture. It hes been Mr. Basevi's good fortase to place his mesterpiece where it will be seen and appreciated by men of anto and edacation; and it has successfully undergone the
ondeal of their criticism. Thin ordeal is the more severe, becanse, as most of the readers of the Journal are aware, there is in Cambridge a strong and energetic party of ameleur architects whose exclusive tenets would lend. them to regard with Ittle favour such a building es the Fitzwilliam Mu. seum. Even from the hands of these, however, its architectural character has escaped safoly. The most zealous of the Camdenists will generally allow (in moments of candour and liberality) that the Museum is en the whole an exception to the asual hideonsness of Pagan architecture; and some of them bave gone so far as to say that the building exbibits positive merits, and that they look apon the lofty columns and the sculptured pedimeut not only without disgust, but with a feoling very like absolute satisfaction.

But the Fitrwilliam Museam has andergone a test evon surer than the jndgment of the members of the Camden Socioty. The test is this- that the architecture appears more beautiful as the eye becomes more familiar with its character. There are many buildings which appear well at first sight, which cease to please on a second inapection; but this is by no means the case in the present inatance. If on his first visit to the Museam, the stranger be gratified by the boldness and richness of its architecture, his pleasure will be only increased in subsequent examinations, when he begins to criticiee the architecture in detail. Perhaps no oue feels a greater admiration of it than the old Cambridge man after having been familiar with the building during the whole time of his residence, examines it afresb after the interval of several years.

That the architeoture is not perfect it is aseless to deny. The square mass or hump which rises above in the rear of the pediment sadly injures its effect, and this injury appears far greater on actual inspection of the building than conld possibly be supposed from an examination of a view of the elovation. The recean of the injory prodaced probably ocenrs to fow, though all are able to prononnce es to the reality of it. There can be no doubt that this reason is to be found in the fact that the rules of ${ }^{4} \mathrm{ep}$ parent construction" are violsted. The pedlment, instead of being, an all pediments should be, the guble ead of a roof, assumes the appearance of a factitions appondage-it looks stuck on and not an integral and essential portion of the structure. This effect is certainly produced by the " bump; in question, which destroye all idea of the continuity of the roof. To the same cause must be assigned the disfigurement produced by the laterai wing flaoking the portico. This criticism rests not merely upon an individual opinion-the defects to which it refers are universally coudemoed by thoee who are familiar with the buildiug. The superstructure above the apez of the pediment, and the wings to the right and left of the portico are equally destructive to its cbaracter-and from the same cause :-they show that the portico is not treated constructively, but is merely an ornament -an appendage.

There is a phrase among aculptors for a group of which the several parts are not sufficieat separated-they say of such senlpture that " it does not show enough day-light," and the cutting away the marble so that limbe appear distinct and the light sbines through in different parts of the group is called "letting in day-iight." To apply this phraseology to a portico which like that of the Fitswilliam Mueeum is taaked by wings-it ex. cludes too much light. In pure architecture such es that of the Parthebon, the Temple of Thesens, or that of Neptune, at Paentam, a mest beautiful effect is produced by the light shining in between the extreme columas of the portico and the angles of the cella.* The relief thus given by the comer colemns atanding out distinctly against the sky or backgroued is necessarily lost in the Fitewilliam Musenm.

It may also be fairly objected that the character of the atreet frunt of this edifice is not maintained in the other sides of it. Not indeed that we aecuse the architect of masking it with a " show front :"-that utter violation of the rules of architectoro-that hopeless valgarity of taste, wes reserved for our two national repositories of works of art, the British Meseum and the National Gallery. Of these buildings the leas conspicuous sides have about as much architectural protension as a factory or uniouworkhoose, being in fact built of the plainest brickwork, so that the show sides, even if they were tenfold better that they really are, mant be pros. moanced abeolutoly devoid of artictic value. It is bowevor bot fraitlem labour to criticise these monuments of perverted taste; they display that entire want of all troe architectural foeling which readers animadversion obviously useless, and we merely notice them to institute a contrast in faront'

[^26]of asother mucoum of art, which though sitoatod in a provincial town, and built aeither by the national wealth nor under the auspices of the government, is the ouly one of the three worthy of the high parpose for which is wes deaigned.

Of the architecture of the other parts of the building, besides those oxhibited in oar drawings, it mast be allowed that though sot absolataly bad in themselves, they by no means correspond to the elaborate magnificence of the portico. This is the more to be regretted, becanse from the nature of the site the sides of the Museum are quilte as conspicaons as ite front, and the observer can never approach it without being made aware of the disagreeable contrast. The elevation next Peterhonse Gardens has the most architectaral pretension, and it, as well as the sides, are of the same beantiful stone as the front; bot still the surfaces appear comparatively Hat and unbroken; and what is perhaps even of more consequence, the few ornamenta displayed by no means correspond in parity of taste to the character of the portico.

The interior of the bailding is stlll in a very unfnished state; the completion of it is ansigned to Mr. Cockerell, and it is earnestly to be boped that the decorations will be as real as possible, and that there will be no altempta to make plaster look like stone or cast fron, and deal boards look like oak. The building when completed will hold the statues, pictores, cameos aod engravinge bequeathed to the University by the Earl of Fitswilliam, and almo another very valaable coliection of picturen at preseat in the Pitt Presu.

ARCHITECTURAL RECOLLECTIONS OF ITALY. By Frederict Lush.

From some oraments taken in Italy I select the accompanying sketches for your Journal, on account of their beantiful forms, and becanse they might garre as a model for our English knockern, or at least suggent a pore graceful and pleasing feature than that which is gererally placed Ms. 1

oa our doors. Figures 1 and 2 are from Venice, but most probably of Florentine workmanship, and fig. 3 is from Verona.

Whoover has seen these small though magnificeat objects abroad, must have felt how much they ennobled the eatrances of the old palaces, and how delightfol it was to liager on the threshold and admire them. It is strange that in Eagland, where within the lest few years n moch has been done to improve every kind of decoration, these things have been noglected as though they were considered beneath the notice of the artist. The names of such men as Ghiberti, John of Bologna, Beavenato Cellini, and others, who have left as their benotiful works, along with larger ones, coald not suffer asch an opinion for a monent to be ontertained; but it is well known, as ip the examples before $n \mathrm{~s}$, the beants and picturesque effect which is infored into the amallest th iogs when genius has laboured upon them. In the deaign of these knockers, as well as in everytbing
7. 2.

elee which passed through the hands of these cuoning goldemithe and in. dastrious aculptors, there is an elaborate fiaish, of which they are quite worthy, and which for the most part challenges the closest inspective.

Fis. ${ }^{2}$

Lenf, lower, bird, or figure, were executed with co much feeling, and auch truth to nature, that even the simplest articles of common use or ornameats in dress were real works of art; nor could a censer, salver, goblet, or a cracifix, that was fashioned by the same hand as that which wrought the Perseus, be otherwise than a gem in the collection of a prince or in tha cabinet of the virtuoso.

The high opinion conceived by the Italian artists of the hamblest department of art; the intense care and industry bestowed on small things as well as great; and their associatiog topether in one common brotherhood, where none was exciuded from the rest, were circomatanges which acted most happily towards the development of taste and the perfection of the arts, and of which Lanzi apeaks in his bistory of the Italiea painters. The reault of these idear and the strength aequired by this union is epecially evinced in Italy. Common objects, which in Britain seldom receive any attention, there reveal mome strikidg artistic manty. It is aumeient in addition to what has been already reforrad to, to meation
the famons lampholder in the Strozzi palace, Florence; the dolphias and sea-horses aculptared on the top of the tall mooring-posts in Veaice; the lanterns on her canals; the ornaments of the Ca^{\prime} d'oro; the pedestals to the Grecian staodards in the Piazse di San Marco; or the bronse cisterns in the quadrangle of the Ducal palace.

ROYAL ACADEMY EXHIBITION : ARCHITECTURE.

We will oot distarb the opinion which attributes improvement to the preweat Exhibition es far as the painters are concerned,-althnugh for our part we do not perceive the slightest general adrance at all,-but malters have nost asuredly not mended this season with regard to architecture. How. aver, we are tired of repeating the same complaints year after year, and that to no purpose. The Academician architects take pattern by Sir Robert amirke, and their quality brethren take pattern by them, therefore from those who, it is to be presumed, could show us most, we get least; nor have we much from other quarters to inform us what is going on in vurious parta of the country. Liverpool, Manchester, and many other important places are wholly unrepresented in the present annual parliament of art in Traflgar 8quare. Where are all the things whose fussy "first-stune-laying" ceremonies are recorded with such "wink o' the ege" admiration by newspapers? Where, all those drawings which bave borne off five and teo ponad preminms from liberal and self-ealightened competition committees? Wo see them not here: but to speak of what we do not see would be a much longer tale than to eaumerate what we do fiad, that either deeerves commendation or is worth mention. In an exhibition of architectural drawinge we have a right to look for interest of some kind-either that attending designs adopted or proposed for particular buildings, be the taleat shown in them, what it may; or else that which is produced by the intrinsic merit of the subjects themselves, though they may be merely imagiaary ones. This jear there is an unusual dearth of ioterest of either kind. There are besides a number of drawlags, which though put into the arohitectural room hardly belong to it at all, more than the unlucky oil paintings which are atuck up there in order to be out of harm's way, till their owners send for them again. We allude to mere views and delinealions of buildings, whose execution gives them no pretensions whatever as productions of the pencil, while the subjects they represent are either so exceedingly hackneyed, that their tilles in the catalogue operate as a warniog to pass them over; or so trivial, that we tura away from them as soon as beheld. Not a little provoking is it to find that few of those who do bring home any architectural sketches and studies from abroad, care ever to hant out any thing fresher than such wonderful rarities as the Atheaian Acropolis and Parthenon; and the Roman Coliseum and Fornm. Does the actual capital of King Otho afford nothing whatever at all worth reprementing upon paper? Is his "Modern Athens" so deplorably insipid as not to bave a aingle marked featore, or even any general physiognomy ? It would seem that even our architectural draftsmen and sketchers are so infected with the "precedent-mania" that they dare not show us any building anless there is precedent for so doing by its having been represeated times innumermble before. Whether it be abroad or at home that they go in quest of subjects, oar architectural likeness-takers, seem terribly arerse to novelty, or else they must funcy they have no right to take subjects from buildings which are so recent, that the office of showing them neems to belong exclusively to those who designed and erected them. The Latter, bowever, do not al ways consider it worth their while to do so: certain at least it is that we do not find at the Royal Academy's exhibitions many of the thinga wbich are best of all suited for pictorial representation. The Colosseam 10 the Regent's Park, for Instance, might have supplied more than one nusually striking subject, since, besides its beautiful Glyplotheca-perfectly noique as an interior-it offers many acenic architectural bits in other parts of the place, which would show still better in pictare than they do in themselves, because in picture they would look like realitiet, whereas as seen in reality they are most ondisgnisedly only clerer imitations and fiction. There might, again, have been one or two drewinge of nome of the epartments in the new building at Lincola's Ina, ad among them, both a general view and a partial one of the Library Tes, conethow or other,-rand it may. perhaps be as woll not to inquire too mindy fato the roason, -arohitects are apt to be of most stepmotherly dis-
position towards their own productions, begradging what it would eost to let is behold them in pictorial efficy. Few of them tate any generoua interest in their art, as a fine art, and for its own akze; therefore they cannot with any sort of fairness complinio of or express eurprize at the indiffereace of the uniaitiated, and the apathy of the general publio; and the latter seem to consider the architectaral drawiogs little botter than a dead weight on the Exhibition. Not a little mortifying is it to witneas the hurried, listless glance bestowed on architectural stubjects. If there be ever any thing of the kiad among the oil paintiogs, it ls never estimated except accordiog to its execution as a picture. Even one of Scarlett Davis's glorious achievements of pictorial and architectural art, 一one of Scandrett's fascinatingly exquisite groops of detail, or scenic views, has been known to engage attention far less than such horribly trivial aubjects as swill-devouring pigs, turnip-munching boys, and strapping conntry wenches washing their not over and above delicate feet! How refined and poetic we English art in our ideas 1

What sort of relish there is among the public for any thing relating to architecture is most disagreeably apparent from the circomstance of architecture being passed over altogether by the daily critics who profess to enlighten us in matters of art. The "big Times" has spoken of the present Exblbition without bestowing even 50 much as a syllable upon the architectaral drawings. So that nnless the "Times" bo very much behind the times we actually live in, its silence as to our art is significant and expressive enough.-And what, all the while, is the Institute about P has it done, is it doing, can it do, or does it care to do any thing, to give the requisite impulse, and bring architecture forward -and not only briag it forward, but force it upon the attention of the public? Leaving it to answer the question as best it can.

Of about two buadred and thirty subjects pleoed in the catalogne nuder the head "Architecture," barely one-half belougs to it, the rest consisting of graphic odds and ends-the very "tag-rag and bobtail" of the pictures; nevertheless the half constitute more subjects than can be properly seen, and the deficiency to be complained of is not 50 much that of quantity as of quality and intereat. There certainly is very little of architectural interest in the solitary production contributad this season, after a couple of years' abseace, by Profesaor Cockerell, for he makes his appearance rather as a truant from his own art, and ambitious of signalizing himself in another. This is all the more singular, because St. George's Hall, Lirerpool, for the sculpture of whose pediment he here exbibits a design in No. 1251, (showing only the pediment and upper part of the columas, on a large scale), is the work of a different architect. Leaving more competent judges to determine the technical merits of the composition as one intended for sculpture, we can only say it. strikes us as being so very Greek and classicul as to forfeit churacter for originality; and at any rate there is nothing peculiar in the mode of its combination with the architecture, usless a retwrn to the Greek system of placing entire statues within a pediment, can pass for an artistic conception; whereas by venturing to depart from ancient authority-as he has oft-times done in architecture-the Professor might have "initiated" a still more effective as well as perfectly new mode-produced by omitting the tympanum, and leaving the pediment quite open, except as filled in by the statues, (so fixed as to support the raking cornices); which would then tell all the more vigorously seen against the racant space behind. Once adopted, this idea might be made to lead to other quite novel yet adequately maturel effects, which we cannot now stop to point out, wherefore leaving this hint to auffice ad interim, we shall perhaps explain ourselves more fully at fitting opportunity. In taking leave of the Professor, we express the hope that we shall see him again next geason somewhat more in propria persond, and in his character of architect.

With the above exception-St. Georges Hall-Grecian and Roman architecture does not appear to be in great request for any baildings of im portance actually projected. The principal object of that kind which we here meet with is No. 1248, "Elevation of the new Theatre to be bailt on the east-side of Leicester-equare," F. C. J. Parkinson; whlch, though it hes been spoken of diaparagingis by a contemporary, who calls it "an indifferen! transcript of the Haymarket Theatre," uppears to us a pleasing and tasteful composition, with mome clover tonches of original detall, and not only ornate but consistently 80 ; and further, possessing mere strongly marked and appropriate chametor than any of the exinting theatres. If any rememblance can be traced between thin fraçade and that of the Mmy.
market, it most assuredly does not amonnt to that of " transcript" or copy, much less to that of an "indifferent" one, since the "Haymarket," with its common-place straddling portico stuck up before a parcel of ordinary doors and windows, is in barbaronaly vile and volgar taste. The drawing we are speakiog of is not treated very happily as to colonr, and we think it must be exceedingly incorrect in one respoct, for according to the size of the figures, the columas must be forty feet or more in height, which is not very likely, the portico not being the centre beight of the edifice. In all drawiags of the kind, the only nse of figares is to serve as a scale, therefore, unless they are strictly according to scale, they are noither more nor less than falsifications-sometimes oven ludicrons ones, as, for instance, in the riew of Sir R. Peel's new Picture Gallery, last year, where the figures in the room were orly balf the size of those representing the portraits on the walls ; therefore, either the former were dwarfs, or the latter were colossal.
Critics differ; and it is, perhaps, bat right that they should do so, since one opinion frequently helps to correct another, and where with dissent on some points there happens also to be conformity on some one other, the judgment passed in regard to the latter becomes tolerably well confirmed. Differ we do from the critic-one apparently very eager to get through his task with all possible dispatch-who, besides detecting in the preceding sobject an unlucky resemblance to the Haymarket Theatre, regards with complacency sach e production as No. 1174, "one of the desigas submitted to the grand jury of the county of Clare for the Enais Courts," as posseasing claims on the score of originality of treatment. If not remarkably original, the treatment may be allowed to be unosual, yet hardly appropriate; peither the particular apecies of "Italian" adopted, nor the jrregularity of the composition, befitting a public building in a town, especially one that ought to command attention by an expression of sober digaity, without playiog at the pictareeque. Let us hope that the desiga aotaally ohoson is some degrees better than this "submitted" one. The two subjects just mentioned are almost the ouly designs this your for what can be called pablic baildingb-that is, secular ones, and in other style than Gothic. Wo have, indeed, in No. 1214, what rather innocently calls itrelf a "Gothic design" for a town-hall and public assombly-room in the Went of Eugland, but as to its exact "whereabouts" we are left lo most comfortable nucertainty, aince it wonld be anything but comfort to be assured that there was any likelihood of so preposterous an affair being porpetrated anywhere. In this scarcity of desigas for pablic buildiagsexcept those which are evidently merely visionary ones-we may refer to No. 1217, -"The Lord Warden's hotel, sce., now erecting at Dover," (J. Beazley)-as a quasi-public structure, and what will certainly be a suffeiently conspicuous one-more so than it merits to be by the taste displaged in it. The main iden must, however, be a very favcurite one with Mr. B., it being a repetition of what he showed ny last year in what was then calied a design for the Carlton Club House. What may be the differences between the two designs we are onable to say, but the principal portion is the aame in both, and consists of a large Corinthian order above the ground floor, in conpled columns, with arches apriaging from their entablatures. (See our last Vol., p. 214.) It might bave been thought that revision of the first detign would have led to the adoption, for an arcade of the kind, to the more compact and legitimate combiuation of arches spriaging immediately from the capilal of aingle columns.* The display affected by this columnar-arcade in, besides, far too protensious for the building itself, which is so decidedly-don't print it "deacedly"-poor and unstudied in etyle, that the ostentatious decoration affected for it strikes as rulgar, tawdry, in bontiquier taste. When will architects learn to give more atteation to what Cockerell calls "earythym of quantities," aard to consistency of expression, be it that of richness or plainness, or of any intermediato degree between the one and the other?

What conld induce either Hopper or Railton to thrast forward into notice this year, their respective designs for the Nolson Monument, (No's. 1171 and 1213) wo cannot imagine. Hardly can it have been any particular admiration which the former obtained at the time of the competition, that encquraged its anthor to bring it into aotioe again ; yet, whether the drawing itself attracts notice or not, he has taken care that the subject sball not be orerlooked in the catalogne, where it is spoken of more lengthily

[^27]then intelligibly, it being imposeible to make out how the little tea-garden esque temple which constitutes the design, can possibly form part of a group of buildings for picture-galleries and exhibition-rooms. By singalar coincidence, Railton's "Nelson Colamn"-too well known to require eny renserks from us here-makes a gallant show in the catalogue, bat is absolutely a nonencity ia the Eshibition in comparison with his "Beau Manor Park," last season, of which mansion we should very thankfolly have recelved an additional view thls gear. As to hid "Riseloolme Hall, adapted and enlarged for the Bishop of Lincolo" (No. 1194), it possemses no great architectural interest, though it certainly looks like a very enviable residence, and shows that bishops have no disrelish for the comforts and luxuries of this world. No. 1306, "The garden-front of Clifoa Hall, Notta," (L. N. Cottingham), did not impress us at all favoarably. In fact, while as to composition it is almost enullity, 一the house being a mere lumpish muss,--as to the style affected for it, it shows the worst extreme of the latest Elizabethan, when our renaissance had become prematarely oxhausted and worn out, and had fallen into all the forced conceits and drivelling of blaw imagination. Whatever it bas recommended itelf by on this occasion, it can hardly be by its economy, since ite crinkom-crankum ugliness must be of a rather expensive kind. Noither is it any advantage to this garden front that instead of being raised upon a terrace, it has a terrace rising op immediately before it. Howover, the paintor bas dove all he conld to command admiration by a bravely showy diaplay of flowers and peacocks.-Infinitely more to our taste is No. 1326, "Lambourn Place, Berks, the seat of H. Hippesley, Esq., (C. L. Donaldson). If not very striking, this subject is a very agreeable and satisfactory one, both for its execution as a pictorial draking, and for its unaffected yet suffciently marked character as a design in the more sober style of the Eliza. bethan Tudor period. To say the trath, the style of house is rather that of a former period than of what any one might be likely to baild at the present day, there being more of ancient gentility aboat it than of modera refinement,-As the immediately preceding No. is by the same architect, (almost the oaly member of the Institute who exhibita) we will speak of it here although it belongs to a different class of subjecta. It is entitled the "Elevation of a design for an Inaurance Office, being an attempt to adapt the cinque-cento style to the street arcbitectare of the metropolis: "in. stead of "to adapt," the more suitable expression would have been "to introduce," becanse, as it seems to us, there is very litte that indicates adaptation of the style to modern town-architecture in general, too much of what beara an antiquated and exotio look in it, being retained, for instance, in the form of the windows. There might have been more freedom, and less timidits and dryaess of treatment; por would it have been amiss had the drawing iteelf, which is now merely slightly shaded in India ink, been such as to ensure attention to the subject. Still it must be confessed that its ntter want of pictorial attraction of any kind serves to distingaish it rather markedly from the subjects around it.

To relarn to mansions-Capernwray Hall, near Lancaster, shown ia Nos. 1263 and 1350 (Sharpe and Paley), is one of the most ambitions, and shows careful attention to detail and individual parts, yet for a modorn residence it looks but a gloomy sort of pile, with too much of the castle in its character. Of manaions or villas in the regular Palladian style there are none, but No. 1187, "Alleaheads, now erecting on the property of T. J. Beaumont, Esq., in the county of Northumberland" (E. B. Lamb), is at application of what may be called the rural Isalian villa style, that shows very great talent of a peculiar kind-the talent of accomplishing much with exceedingly limited means, for though the structure itself is simple even to plainness, it is rich in pictaresque effect, and in well expressed character of an excellent kind, without artifices and affectations.-Tbere are four designs for villas by Mocatta, small and rather showily colonred drawings, so unfavonrably placed, however, that wo did not give thema mach attention.-Of saburban villas and mansions similar to the "Kensington Garden" ones in last year's exhibition, there are none this reasoo, although one since erected at Konsington would have farnished a sabject. With respect to town and atreet architecture, designa for it are almost invariably confined to thone for public buildings ; we, however, get comething so denominated in No. 1275 (W. H. Leeds), a denign for a hoosofront, ounsnally ornate, thongh far from being violeatly ahowy, waill it is what we must not hope to find the least favour with thome altra-orthodox and rigidiy paritanical critica who tarn up their noses at the Travellers' and Reform Clabhousea, and who look opon Barry at beiog soarcely a
degtee belter than Borromini. By this remark it is oot to be understood that the design we are speakiog of is indebted to either of the two buildinge juy named for any of ita foatures ; on the contrary, it differs altogether from Barry's mode of composition, the middle window of the principal soor being oot only distinguished from the others, bot distinguished in a very eminent degree, for although the window opening is of the same size, its decoration furms a larger and loftier central compartment. There is ange novelty also in introducing a bas-relief as a frieve between the principal foor and the one over it, where figures of the kind would be more distinctly seen than higher up:-We meet with subjects of street architectare for projected metropolitan improvements in Nos. 1175 and 1185 by W. J. Donthorn, and 1319 by Allom, the two former being designs for a wer street in a direct line from Buckingham Palace to Weatminster Abbey, and for a new Square adjoining the Abbey; and the other for improving the North bank of the Thames between London and Blackfriars Bridges. This last is a very able drawing, but the architectare is rendered quite aubordinate, being treated as little more than background to the splendid and animated river view, which, as pictare, would have been just as good had the present houses been represented. Perhaps it would be unfair to consider the buildings here put in as intended to do more than convey a general ldee of the proposed line, for they are made up of just the same wort of showy froats as are now in ragne for new trading streets. Were the sepa. rate elevations drawn out as usual and lef to speak for themselves as deaigas, sorse of them, we fancy, would cut but a sorry figare. The same remark may eerve for Mr. Donthorn's prajét : as a street it woold be a very great improvement, but as street architecture no great improvement if any, upon the samples we have got.
The transition from streets and the outsides of hoases to the insides of the latter is so patnral that "Interinrs" seem to claim our attention next, amost as matter of conrse, but we must reserve our remarks apon them aed the remaining drawings, for a second notice.

NEW METROPOLTTAN CHURCHES.

St. John's, Charlotte-street, Fitzroy -aquare. -This church is now nearly completed. The atgle adopted in the more conspicoons parts of the building is Norman, or rather the modern mongrel between Norman and Roarnesque. The west front exbibits two towers divided into atages; of these towers, that at the north-west angle is surmonated by a slate-covered spire. The rest of the façade consists of a gable, containisg a triplet of roned-headed windows, with a wheel-window above, and the weat door below them. The surface of the west front is broken by amall arches and columas of decoration, string courses, and a corbel-table. Theee members and the dressings are of Bath stone, the rest is faced with Kentish rag. As might be anticipated in a London church built in the line of a street and crammed in between the neighbouring houses, nelther the inferior nor the exterior of this edifice bas the slighteat pretencions to the apiris of Norman architecture, notwithstanding the imitation of some of the forms peculiar to that atyle. The cumbrous massive grandeur prodeed by the colossal proportions of the Norman era are here missed allogetber. Instead of vast towers, valls of enormons thickness, and colompe no more than three or four diametors in height, we bave all the grincipal parts of a Norman cathedral comprised in the narrow space of a sureet elevation. The pigmy dimensions which the architect has consequently been compelled to adopt, give the idea that the building is meant rather as a sort of illustration or reduced model of a Norman charch, than a a real attempt to build such an ediffce in all the amplitude of its dimentions.
The charch bas neither transepts nor a central tower-almost universal festares of ancient Norman charches. The dimensions of the interior are folly as diminative as those of the exterior: the nave and aisles are divided by pillars and arches with wretched mooldings; the roofs are of open wood-worls; the aisles are bisected by galleries, and the light is obtained from couplets of circalar headed windows in the clereatory ; con. equently the north and south walla are blenk, and the light is vory unequally distribated.

The back of the church (we regret to have to apply the word "back" to a charch, but the east ond cannot in the present case be distinguished by a more hoorable torm, is in a mews-yard, and it is needless to say
that the architecture here exactly accords with that of the neighbouring stacles and coach-houses, being of the commonest brickwork. The designer seems to havo been content with making a show, such as it is, in the main street.
French Protestant Church, Bolborn -The plan of this chorch, which has recently been consecrated, is pectangle. The eastern end is in Bloomsbury-atreet, and the western in George street: the north and south sides are in the course of being blocked up by honses. The oastern elovation consists of a gable, without towers, and contains a large centre window with two lateral wlndows; undernenth are doors, the entrance being-not at the western-but the eastern end (for the sake of facility of access, as the Ecclesiologist anggests, from " the more genteel atreet.") The greet east window has five lights; hut the floriation does not show much invention, being aimply a number of trefoils conlained within a pointed areh. The leteral windows in the same front are almost close to the central window, and in their proportions display a ludicrons contrast to it, being very narrow compared with their length, whereas the centre window is disproportiooately broad. The group possesses neither the in. dividual beauty oor the family likeness which would remind the observer of the three Graces.

The west front displays two long windows with a triangular wiadow above, and beneath a string course, three lancets. This and the east sides of the church aro faced with rag; the north and sonth are plain brick work without any चlodows or mouldinge. There has not been any absolute necessity for this nakedness, as on one side, a large open space of ground at present intervenes between the chorch and the neighbouring houses, and on the other side the architect himself has bullt a school abutting on the charch. The interior of the charch has of course the advantage of north and south walls perfectly blank.

At the end of the same street is another church which has recently been "done up." The style is one of which there are happily so fow specimens that it has sot yet received a name ; we are therefore relieved from the necessity of a detailed criticism. Wo have oniy to notice, on account of their profanity, some extremely offensive ornaments with which the upper part of the exterior walls are decorated. On three sides of the building, which is bedizened in all the glories of plaster, in which il rivals most of the gin. palaces in the neighbourhood, are stncco ornaments bearing respectively the remblances of an equilateral triangle, a lamb bearing a flag, and a dove. It is needless to state what is typified by these figures, which are repeated several times in the ordor mentioned, so as to form a kind of frieze to three sides of the building. We trust that the incumbent clergyman will use bis influence to get these profane and hideons symbols removed : as works of art they are on a par with the plaster images sold at fairs as toys for children.

Catholic Church, Farm-street, Berkeley-aquare.-This church is a very gratifying example of the rapid advances which have been made in the science of mediaval architecture during the last few years. While ia Classic architecture the most barbarous perversions and absurdities-pedlments surmonnted by spires-columns supporting nothing-stilted baseashafts broken by dies, \&c.,-are still tolerated, our national architecture is cullivated with a purer and more philosophical taste, which is fast eman. cipating it from the hideous deformitien of the last age. Mr. Scoles' design for the Catholic church near Berkeley-square is a satisfactory proof that our self-complacency is not without foandation.
The situation of the building is by no means advantageons; it is, indeed, almost impossible to get a good view of the exterior. From one corner of Gronvenor-square a glimpse may be obtained of the east gable, the beantifal Decorated tracery of the great east window, and the bell-torret; and another view from beside the ogly plastered church in Mount-street displays somewhat more of the new bailding. Brt still it is so hemmed in among the houses, that it can scarcely aoywhere be viewed as a whole. The difficulties to be contended with in obtaining a suitable site may be jodged of by the fact that the weat entrance is in a mewn- jurd. The architecture of this part of the huilding will not however be made inforiot to the rest because comparatively littio seen: on the contrary, if there be one thing more to be admired than another in the design, it is that it dis. plays perfect faithfulness and uniformity, and betraya no anxiety for what is colloqually termed "showing off"
The plan of the interior is nearly a rectangle (about 150 feet loog) with aisles extending about half the leagth of the church from the east-end. These aisles are separated from the chancel and mavo by plers'and arches. There will be three altarz-the high altar at the end of the chancel, aod oue at the east-ond of each aisle. The -ide altary will be dedicated to the

Virgin and the secrament respectively. In the south aisle aro three confessionals and the sacristy, and above the conth arches in the chancel is the tribune. Tha light will be obteined from the east and west windows and from clerestories in the north and sonth walls. It is worthy of notice that the tracery of no two windows is alike, though the patterns of all of them are extremely rich : the design of the east wiodow especially may be aafoly compared with some of the noblest examples of ancient Decorated architecture. With respect, however, to the absence of north and sonth windows below those of the clerestory, we have already given a general and distinct opinion. Our views on this subject have been so recentIy detailed that we need not now any more than that the examination of the church which we are describing suggested nothing which would modify our opinion. On the contrary, we can state positively that the effect of the light thrown down from above by no means harmonises with the character of the chareh, and that the large sarfaces of blank anbroken walls are great defects. We say thia the more freely because the excellence of the general design is sufficiently great to afford some drawbacks, and because the architect may jostly plead the dificultiea of the site as an ercuse.

Parts of the interior walls will be plastered and painted with frescoes. This use of plaster is perfectly legitimate, for there is not the slightest pretension of making it look like masonry ; it reveals itself honestly in its true character-that of a ground surface for the pninting. No deceptive materials whatever are employed in the church. The external masonry is of Kentish rag; the monldlugs, window-mullions, piers, \&c., of Bath stone.

Tbere is a temporary brick wall at the west-end: this is about to be remored for the purpose of compieting the west gable, which will display three windows, with a door brlow the central window, and a trilateral window near the vertox of the gable. There will also be a bell-tarret at this end of the charch in addition to that now existing over the chancel arch. The roofs incline to the horizontal at an angle of about $\mathbf{6 0}$; on the aorth and couth sides of them are rich perforated parapets.

We hope to be ablo bereafter to give a more complete account of the ohureh, and to accompany the description by illustrations.

2. Ory ox Encrincomana, V.
 MENAI TUBULAR BRIDGE.

Sinee the former paper (see ante p. 100), on the application of the theory of the streagth of beams to the case of the Tubular bridge was published, a report has appeared of experiments by Messrs. Hodgkioson and Fairbalrn, with reference to this particular subject. As far as analogy can be drawn betwreen the method of those experiments and the investigation of which the present paper is a continuation, the results agree exactly. It will be observed however that the experiments had refereace solely to the vltimate strength of the girders experimented apon-that is, to the extreme weight which they would bear before breaking, the present investigation however relates sot so much to the strength of the girders as to the atrain which they must have to bear; and as the results bere arrived at are obtained from the fundamental laws of statics, and not from any as. umptions respecting the onture of the bodies operated upon, the points of resemblance between this theoretical examination and the reported experimonts are fow. It has seemed sufficient in the present paper to point out the precise oature and amoant of the forces which the metal will have to resist; leaving it to the engineer to contrive the proper means of fulfiling the requirements here pointed out.

Wo now proceed with the subject from the point where we left it in the former paper.

5. Form of the Girder of miform sirength.

When the girder is of uniform atrength throughont, the strain on it is greatest at the centre for two reasons. First, from the weight of the girder itnelf indepondently of the load: for when a vertical section is made througt the centre, it is seen that the molecnlar forcea of the metal have to recist a creater.momest of external forcas, than when the section is suppoeed to be made elsowhers. Becondly, the load is a moveable one, and hat the greateat moment when its centre of gravity is over the centre of the bridre. It is poasible to vary the dimensions of the bridge so that the Arain an ach equart bat shell be uniform throagboat almont the whole
length of the bridge. There are three ways of effecting this object-either by increasing the thicknesa of the plates towards the centre of the bridge, or by increasing the depth of the bridge towards the centre, or by combiting both these methods. The second method is however the prefermble ose, because it does not require any considerable addition to the quantity of metal.

On narrow gange railways the proportion of the loading of the goods trains to the length of the wegons is such that about 4 tons of load extend over about 9 feet of railway; consequently on the Menai girders (the length of which is 450 feet) we may take the extreme load to be 200 tons noiformly distributed over the length. We have now to find the iam of the variation of the depth of the girder, so that its own weight, and the load together sliall produce a oniform strain on the metal.

Let $2 l$ be the length of the bridge, and m the weight of load and bridge together for a noit of length, and $2 l \mathrm{~m}$ will be total weight supported. Consequently the pressure on each abotment will be 1 m .

Let a vertical section $C^{\prime} D^{\prime}$ be supposed to be made at a distance x (=A D^{\prime}) from the end of the bridge. Then replacing the molecnlar actions by a vertical force along $C^{\prime} D^{\prime}$, and equal horizontal forces at C^{\prime} and D^{\prime}; these new forces inay be equated with the external forces, which are-first, the vertical pressure at the end A, which, as has beea
 which may be supposed to act balf way between A and D^{\prime}. And as we

shall hereafter find that the curvature of $\mathrm{B}^{\prime} \mathbf{C}^{\prime}$ is very small, it will be seen that the error arising form this sopposition is quite inappreciable. Taking moments about D^{\prime} and calling the depth $C^{\prime} D^{\prime}, y$, we have-

$$
\mathrm{M} y=m l x-m x \cdot \frac{1}{l} x
$$

Now y is supposed to vary so that M remains constant. Consoqueaty,
the equation to the carve $B C^{\prime}$ will be the equation to the carve $B C^{\prime}$ will be

$$
y=\frac{m}{M}\left(l x-\frac{1}{1} x^{2}\right) \text { a parabola }
$$

It will be observed that by this equation $y=0$ when $x=0$ or 24 , that is, the depth is zero at the two extremities of the beam. It is impossible, however, that this condition could be satisfied, since room must be left for the passage of the train. The height of common railuray bridges usaally allowed for this purpose is 15 feet, which gives a sufficiently clear space above the fanuel of the engine; y, therefore, in the above equation, after it has attained the limit of 16 feet, must remain constant. The only effect of this will be that the hridge will be etronger than theory requires it to be, since, of course, if the depth towards the eads be greater than requisite, the result is an increased strength in those parts.

To determine the numerical value of w; the weight of a square foot of iron one inch thick is about 40 lb . : and since the Menai Bridge is to be 15 feet wide, the weight of one foot of the upper and lower plates together will be 1200 lb . The weight of the traln we have supposed 4 tons to 9 feet, or about 1000 lb . to a foot. Consequently $=2900$; wo will, for convenience of calculation put $m=2240$ or 1 ton
M is to be fonad by determining its value at the centre of the bridge. Here $y=80$ foet and $x=295$ feet. Substitating these values in the
equation to the carre, equation to the carre, we find $M=844$ tons; and since $l=225$ and $m=1$, the equation beoomes-

$$
y=\operatorname{dat}\left(226-\frac{1}{3} x\right) x
$$

The following are some of the values of y, correapooding to gives values of $5 \mathrm{~s}:-$
$x=20$ feet $y=2908$ feet
-

Wheo s is between 70 and 60 feet, y will be redaced to 15 feet, and mat pot be farther lessened. By adopting then the form here indicated, the teasion will be for 100 feet on each side of the ceutro aniformly equal to $B 4 t$ tons, and for the 65 feet near either extremity will be less. Taking it bowerer at 841 tous, we observe that, since the plates are 15 feet wide and 1 inch thick, apd the cross section consequeally contains 180 square ischea, the strain per square inch on the metal plates is abont 4 tond. lrom will bear a strain of 29 tons jer square inch without breaking, and - con withont permanent injory; bat the diminished strain here assigned to it is not too great an excess on the side of safety, when the dimiartion of strength at the places where the several pieces composing the upper and lower plates are wolded or rivetted together is taked into conidertion.

6. Necessary strength of the pertical ribs.

The beam of greatest strength for a given goantity of material is that in which the material is collected in two wide horizontal fanges, separated by a thin vertical rib. It has been asual to consider that no more streagth is requisite in this rib than will suffice to keep the flanges apart; and the coosideration seems to have been hitherto neglected in all philosophical invertigations of the subject, that the longitudinal strains which the fanges areft apoo the rib, render it necessary that the latter should have much more atrength than what is required for the mere separation of the fianges. A very simple methud may, however, be given for determining the exact moont of strength actually required in the rib by its connection with the wher parts of the beam. As the sobject appears to be an entirely new ene, oo apology is necessary for diacussing it folly.

The most coovenient method of determining the atrains upon the vertical web or webs is to consider the vertical strains and the horizontal strains quite separately. This plan of keeping the two kind of forces perfectly dietinet has been observed thronghoat these papers, and is by far the best for getting clear and precise notions of the aubject.

We will first consider the longitudinal strains which the fiagges exert apon the rib. Now it is to be remembered that the upper fiange is in a state of more or less compression throughout lts length ; and the lower lange in a state of more or less tension. We know, however, that a string atretched by two forces only, one at each end, is in a state of uniform tension throughont its length; but if forces be applied to the atring at interardiate points along it, the teasion will vary in various parts. For instance, suppose that a string, $A_{2} B$, is fastened at B to a ataple firmly fixed in a wn, and at A_{1} pasea over a pulley, and is stretched by a woight P_{2}, it is ctoar that if 00 weight but this act on the atring, it will have a naiform

temion $=P_{2} .8$ appose, however, that at the points $\mathbf{A}_{9}, A_{s}, A_{4}$, other weights are hooked on to the string and made to act apon it horizontally by means of pulleys, it is obvious that the tension of the string will now vary in verious parts; betwreen A_{4} and B all the wejghts are acting on the etring, and consequently the tenaion of this part $=P_{2}+P_{s}+P_{s}+P_{s}$; betweed A_{s} and A_{4} the tension $=P_{1}+P_{2}+P_{s} ;$ between A_{2} and A_{s} be tension $=P_{1}+P_{z} ;$ between \mathbf{A}_{1} and $\mathbf{A}_{\mathbf{1}}$ the tension $=\mathbf{P}_{\mathbf{1}}$.

Now, to apply this consideration to the lower flange of our girder-we oberve that the tension of it varies in every part; this variation, therefore, wises from the action of horizontal forces at every point throughont its length, and it is certain that these horizontal forces have been commnnicated by no other means than by the vertical ribs.

In order to estimate the amonnt of the strains communicated by the botton Aange to the ribs, wo must find out the lav by which the tension of the

former varies. Let as first for simplicity suppose the depth of the girder. uaiform throughont and $=a$. Alno let the whole length be aniformly loaded, and let one foot of the length of the girder with the load upon it $=m$; then if $2 l$ be the leogth of the girder, $2 \mathrm{~m} l \mathrm{will}$ be its weight, and the reaction on the abutment $A=m b$. Also, if a section be made at any part CD and AD $=x$ the weight of the part $\triangle B C D=m x$. Let the tension at $\mathbf{D}=\mathbf{M}$. Then takiog moments about \mathbf{C}

$$
\begin{gathered}
M a=m l x-m x \cdot \frac{l}{l} x \\
=m\left(l x-\frac{1}{2} x^{2}\right) .
\end{gathered}
$$

Similary, if wo had sopposed a mection made in the girder at a distance \boldsymbol{a}^{0} from the end, and that the corresponding tension was M^{\prime}, we ahoald have the equation

$$
M^{\prime} a=\min \left(l x^{\prime}-\frac{1}{1} x^{\prime}\right) .
$$

Consequently

$$
\left(M-M^{\prime}\right) a=m\left\{1\left(x-x^{\prime}\right)-\frac{1}{1}\left(x^{2}-x^{2}\right\}\right.
$$

This last equation gives the law of the variation of the teasion.
We have now to see how this variation is produced by the verticul ribs. Let as first of all sappose that the connection between the upper and lower flanges is maintained-not by continnons plates-but by a lattice consisting of vertical and horizontal bars crossing each other. Now the opper horizontal bars will exert thrusta, and the lower, tensions. In the following figare, let A B represent m portion of the lower fange resting on the

abntment at A. Above A B are represented some of the horizontal bars of the lattice, bat those only which exert temston; those which exert thrust as well as the upper.fange being omitted ln the fignre. Now by this arrangement the tension of the portion of the bottom flange, between any two vertical bars is constant. For instance, the tension of tbut part of A B which lies between a and b is aniform, and of the part between b and c the tension is also uniform, only it is greater in amount than the tension between a and b. Call the tension between a and b, M_{g} and between b and c, M_{1}, then it is clear that the vertical rod $b b^{\prime}$ is solicited at the point b by two different horieontal forces, M_{2}, at the left of b tending to pall it toccards the abutment, M_{4} to the right of b tending to pall it further from the abutment. But M_{2} is the greatest: therefore on the whole the rod $b b^{\prime}$ is acted on by a forco $M_{1}-M_{g}$ tending to pall it towards the right. For the equilibrinm of this rod therefore we must have equal forces tending to poll it towards the abotment. These forces are aupplien by the tession of the horisontal bars above ab. Hence this conclusion-the aggregate tention of the horitontal bars above $\boldsymbol{\epsilon} \boldsymbol{b}=\mathrm{M}, \mathrm{M}_{\mathbf{g}}$.

Now if we suppose B the middle point of the beam, we know that the tension is equal and opposite on both sides of that point; that is, the tension of $\boldsymbol{C} B$ is equal to the tension to the right of B. Consequently the vertical bar at B will stand of iteelf without any tension of the horizontal bars above c B. The teosion of these bars is therefore sero. The bars however above b care in a state of actual tension, the amonat of which equals the difference between the tension of the portion $\mathbf{B} \boldsymbol{c}$ of the flange and of the portion $b c$.

Let the successive differences of the successive portions of the fiange be represented by $P_{2}, P_{2}, P_{8} \ldots \ldots . \mathbf{P}_{n}$, then the bars above $b c$ are atretched by a force P_{2} at c; the bars above $a b$ are atretched by a force P_{1} at c and a force P_{2} at b; the bars next to the left are stretched by a force P_{2} at c, P_{2} at b, al d P_{a} at a, and so on. Consequently the tensions of the horizontal bars are, to the left of the first apright rod, P_{1}; to the left of the second, $P_{1}+P_{g}$; of the third, $P_{2}+P_{2}+P_{2}$ and 10 on. The tenslon to the left of the rth vertical rod $=P_{1}+P_{2}+P_{2}+\ldots \ldots+P_{r}$.
Bnt the forces $P_{1}, P_{2} \ldots P_{\mathbf{P}}$ are respectivels equivalent to $M-M_{\mathbf{2}}$; $M_{1}-M_{2} \ldots \ldots . . M_{n-1}-M_{m}$ Hence $P_{s}+P_{2}+P_{q}+\ldots .+P_{m}=$ $\mathrm{M}_{2} \mathrm{M}_{2}+\mathrm{M}_{2}-\mathrm{M}_{2}+\ldots \ldots+\mathrm{M}_{r} \mathrm{~N}_{2}-\mathrm{M}_{\mathbf{r}}=\mathrm{M}^{2}-\mathrm{M}_{r}$,
or the aggregato teacion of the horicontal bart at any point is equal to the
difierence between the tenaion of the flange at that poist and its teasion at the contre.
Bot we have just shown that the tension of the flange at a distance x from the abutment

$$
=\frac{3}{a}\left(l x-\frac{1}{1} x^{2}\right)
$$

Putting in this equation $s=l$, we have for the fension of the flange at the centre

$$
\frac{m}{a}\left(l^{2}-\frac{1}{2} l^{2}\right) \text { or } \frac{1}{1} l^{\frac{m}{a}} .
$$

Hence Anally we get the tension of the horizontal rode at a distance s from the end by subtracting the first expression from the seoond. This gives

$$
\frac{2 m}{a}\left\{\frac{1}{2} l^{9}-\left(l x-\frac{1}{1} x^{2}\right)\right\} \text { or } \frac{1}{2} \frac{3}{a}(l-s)^{2} .
$$

We will apply this very simple formula hereafter to show the necessary thickness of the rertical and horizontal bars, supposing the upper and lower fanges to be connected by a lattice work. For the present it is sufficient to point out that the same mode of investigation applies where the vertical ribs are not lattice work, but contionous plates. For though we have supposed the points of application of the forces which the lange exerts on the ribs to be separated by determinate intervale, it is clear from the foregoing reasoning that the resalt is the same whether those intervals be great or small. So that if the intervals be indefnitely diminished, that is if the rib and fiango be joined at every point throughout their length, the expression for the strain which the one exerts on the other will be the sume in both ceses.
H. C.

RHVETVES.

The Place of Egypt in the History of the World. By Chevalier de Bunsen, (Ezyptens Stelle in der Welt-Geshichte.) Hamburgh, 1845. 3 vols. 8vo. Plates.

The object of Dr. Bansen is to prolong the incipient portion of man's history for about 2000 years, and to show, that where bitherto only an unconnected list of obscure dames and dates was to be met, real history and chronotogy may be elucidated by our increased knowledge of aocient records, and the monaments of the land of the Nile. If the work before us were one relating to a country un-monumental, it bardly woald fall within the scope of our Journal; but being one of Egyptian antiquity, we may give a brief account of its contenta.
Looking over the numerous dates and ammes, and lists and tables of the three volumes before us, one bardly can imagine that one man's labour would suffice to construct such an array of chronolugical formulx, as it were, from out of the few given data of such remote antiquity. But considering that we are now in 1846, and that Dr. Bunsen says that his research on Egypt began in 1819, the thing becomes plausible. Besides, there is no Egyptian scholar of the age with whom the author had not been intimately connected; and his work is a reaume of all what the great French expedition had began, and auch men as Belzoni, Salt, Champollion, Rosselini, Wilkinson, Col. Vyse, Perring, and last but not leant, Lepsius, had brought to a pretty satiofactory close.
"To restore," says Dr. Bunsen, "the chronology of the oldest monumental nation of the world, from Menes to Alexander the Great, for an extent of at least 8000 years, would have been impossible without the perfect elucidation of those monaments and partly docaments, which Manetho and Eratonthenes had before them. As geologists have endeavoured to and a progress in the formation of the strata of the globe, and therefrom deduce the epochs of our earth, we may accomplish a similar lask, if, as is the case, the monaments of high antiquity of one of the most important worlda-nations be not wanting. To sift the chronology of these ancient times will be most feasible by the ald of monwmenta. Those monuments do not only date from much earlier times than the public in general (with exception of the Egyptiologis(s) are accustomed to expect; but they are of far greater import than even these have hitherto thought, becanse the chief inonumenta of the old reigos are the kingi' sepulchres, and these sepulchres are the pyramids; and amongat them the world-famed three are, certainly, not the oldeat. It is very remarkable, that we find on the feld of the Pyramids (Piramidenfelde) almostailkinge of theMemphisdyaasty, bat noname s-shield (Namenschild) which can appertain to the thinite kings. Those, however, may jet be discoverod in the ruins of Abydos-that primeval metropolis
of ancient Egypt which, notwithstanding the report of Strabo aad the great import of the kings' table (Koizigatufal), has been entirely neglected by travellers. It is also remarkable that the building of Thebes is meitber ascribed to the second thimite dynasty, nor to the firat memphitic, whict, as we asid before, lays (according to all reports, traditions, and evea bistorical traces) beyond the times historical. A builder of Memphis, however, is mentioned by Diodorus, according to a fragment of a popular tradition. According to this author, the eighth succemsor of Basirith 11. brith Memphis-then proceeds tradition: bis duughter Memphis had conceived, from father Nile, a son Egyptos, a mild and just king, bis saccesor. Busiria II. furms the concluding link of the ante-historical Thebaic traditions : be is the builder of Thebes. After him succeeded another dynasty, and the last king was the eighth of the successorn of Busiris II., coactoding therefore a dyuasty of nive kings. His same was Memphit; be fonnded Memphis, and bailt a royal palace, not surpassed in after timetstill, not approaching the oider royal pulace of Theben." (p. 105, vol.2.)
It was on this very spot-"that originated with Herodotus chat part of bis wonderful descriptiou of Eyypt which treaty of the Pyramid-epoct. Before him, the older Hecatreus had been in Egypt. What had beeome nearly clear by the discoveries of Belzoni, is now completely ascertaised by the labours of Vyse and Perring, viz., that the regular entrances to the Pyramids were, (at the close of the original consiruction and the interment of the builder), shut from imwards by granite trap-doors, and labe of rock ; that, from that tinu, to their forcible opening, none had ever viewtd their interior. A tablet sunk in the granite blocks of the dressing seess to have contained the bieroglyphic inscription, with the name of the barled and other particulars. The assertion of Niebuhr and Wiakinson, thas the dressing was simply formed by the exterior slabs being subsequerty (beginning from above) cut off at the angle of the slope, seens to be contirmed by Perring, and he adds that the surface was moreover carefully polished. The history of the destruction of these wonders of art shows, that cariosity and thirst after concealed treasures enticed the ancient caliphs, moost probably, first, the son of Harun al Rashid, Memmun, to track an entraber ; subsequently, especially under Saladin, the Pyramids, especially their dressing, were regularly used as quarries; in tine, the recklessiness and destructiveness of the Mameiukes completod the sacrilege." (p. 149, vol. 2.)
The historical details of the building of the thlrty Pyramids of Esyph pat forth by M. Bunsen, are numberiess, but cannot be brought within the compass of this Journal. The biographical notice of the builders of the t two largest pyramids will, however, interest our readers. "Wibh the extinction of the two Menes lines, the southern and northern, after the deach of Anchara-Bicheris the ninth kiag of the first Momphis dynasty, -another family, probably a memphitic one, related to the former, ascended the throos of Egypt. The first two rulers were the brother-kings Chafu. The elder built the second greatest Pyramid, and made a commencement of the atopendous stone wall; the largeat also was probably begua daring his reigo. The younger brother, arected (according to Manetho) the largest, as a sepulchre for himself, wishing to surpass his brother by its size, as well as by the splendour and solidity of constraction. He, howe ver, disdained the dressing of the lower part with the reddish granite of Sjede, which distingaishes the secoad largest Pyramid."
A great part of the second volume of our author in taken up with a hisiorical disquisition on the Mceris Lake-the most stupendous, hydranlic work which has been constructed in any age. Situated at the confines of the Lybian Desert, it escaped the notice of travellers, antil M. Linant, chiel eugineer of roads and bridges to the Pacha of Egypt, made a considerable step towardy exploring it." "Egyptian irrigation," says Dr. Buasen, " roquires two things-canals and dykes. The syatem of the former, in the district alluded to, may bo traced out so far, that the maln canal had to serve the purpose of retaining the water on the apper slope of the land, and then to distribute it to the right and left, as well as weatward to the accond slope. The canal leading on the right side to the lake, caused an immediate convection of the Buhr Jusef with the Lake, and woald at least serve for the irrigation of those lands it paseed through, if the waters were dammed up in it. The secund system is that of dykes, for the parpose of retaining the flood-water at the height to which it had been previously raised, antil the Nile slime has been deposited and fertilized the leod. The irrigution of the lower paris is effected by the piercing of the dykes; and a similar system (instend of artificial sluices) we may imagine to hare been resorted to during the period of Egyptian antiquity. Bat these were ulso artificial dyke gates for the same purpone." (p. 217, vol. 2.)

* "Memoir on the Lake Mraris ; read before the Egptlan Society, Jul7 S, 18at." Ma-

What the ancients thonght of this artiflofal sea may be gathered from Strabo, who seys, "Thin nomos (Fajmin) is the most remarkable of all, as weil for its antnral fertility and beanty as for the art exbibited in its conctraction. It comprises also the so-called Mcerls Lake, almont as Jarge es an inland sea, and of the sea-colour ; the banks, alno, have the appearance of see shores. It is capable by its size and depth, of containing, at the time of the flooding of the Nlle, its abondant waters, without over. Gowing the inhabited and fertile land; at the receding of the river, the superabandant waters retorn by the same channel, by one of the two ensboachares; while so mach as is required for irrigation, both in the lake and chavoel still remains." Herodotns states its circomference to be upwards of 2000 tadia, equivalent therefore to the whole extent of the Egyptian coast on the Mediterranean, an assertion which Chevaller Bunsen considers to be correct.

In this interesting locality, the tombs of Mceris and his wife, in the Pajam, north of Crocodilopolis, are yet to be adverted to. At present, only two pyramidal structures are to be seen; bat the German traveller, Wealeb, had seen (1661), on these very pedestals, the fragnent of a coloenal stalne of a king, in a sitting position. Willinson recognized, in these rwo rains, the Pyramids seen by Herodotus ; and Perring, thongh ignorant of the researches of Wansleb, had gressed, with great tact, the whole arrangement. He assomes the rain to be the fonadation of a trancated Pyranid. According to Pococke. the rain with the destroyed king's statue was called by the natives Har'm, the Pyramid; according to Jomard, rigl Farame, the feet of Pharaoh. Mr. Perring, on the other hand, told Dr. Bunsen orally, that other people still called the two pediments Semem, the statnes; or in Arabic, Musthanel, the " hathed ones ;" whence the former architect supposes that the pedestals, and even the lower parts of the statuen, were once bathed by the foods of that fortilizing irrigation, which the great king had secured for his land and people. Onr author concludes his notice of this stupendous antificial lake in the foliowing terms;
" Thus Mceris's statue uurveyed the land which, from bog and desert, he had changed into blooming tiflds, and converted (for thousands of years to conve) Into the garden of Egypt. A work lay before and around him, the equal of wbich for magnitude and utility the world does not know. Wall and dyke remain even now, like a work of natnre, after ages of neglect; even nature seems to have been surpassed, for the Nile found, throngh the Lake Moeris, an effux from his stream-bed and no longer flowed into the sen-thos supply and atilization were both calculated. This structure, mearly fire thonsand years' old, would alone prove the art, skill, and science of the old Pharaoh dynasty to remotest posterity, if there were no annals to teatify of it."
"Bach, therefore, was Klng Mceris's work and sepulchre. When the soods of the Nile, angenented by those of the lake, covered the land, his and his queen's statues appeared above the writers, and seemed to the bebolders like the tutelary deities of the spot."

Railwars. Their Use, Progrese, and Constuction. By Robert Bitchie, Lesociate of the Institution of Civil Engineers. Longman, 1846. 16 mo . pp. 444. Woodeats.

The object of this book is to give a general historical account of the improrements which have gradually taken place in the construction of rail. ways, and the application of the motive power wpon them from the time of cheir Irst introduction. The work is divided into three principal partothe constraction of the railway-the motive power-and the carses of railwray accidents. Under the Arst of these heads the writer shows how the Grst idea of wheel tracks of stone and iron tramways, became gradually matared and improved, till it led to the construction of railways an the oniversal means of land transit. This account is followed by some general views of the rigidity of iron rails, their forms and weight on differeat railways, and the different modes of fixing them by transverse sleopers, loogitodinal sleepers, and atone blocks aet at intervals; with a comparison of the merits of each system. The author geserally statea the arguments on each side of a controverted opinion with remarkable fairness, but in the present instance, though he has given very folly the argnments in favour of longitudinal bearers, he has not devoted quite enough space to the considertion which the advocates of transvorse sleepers urge in reply.
The various shapes of the wheel flanges, the methods of passing croseinge by means of points or awitchea, the construction of turn-tables, \&c., tre enct detailed. Under the heads of retaining walls and viaducts, accounte are given of the size and constraction of some of the principal of lhees norts hilherto executed.

Uader the head of motive power of rallways, we have the history of the different improvements of locomotive engines, from the time of the oxperiments on the opening of the Liverpool and Manchester Bailway. In considering the advantages and disadvantages of the atmospheric railways, the author is carefal to state facts ooly and the oplnions of others, without coming to any determinate opinion as to either the locomotive or atmospheric system, except that in'which every impartial and competent person will concur, namely, that " it must be left to time to test their comparative advantages, for at the present time the ecconnts of the latter are conflicting and coatradictory."

To give a better idea of the book than can be obtained from mere description, we have selected the following extract, making however a few omissions. The subject is the varions forms and dimensions of iron rails:-
" Mr. Berlow came to the conclation, that the strength of a bar ahould be double that of the mean strain or lond. In his first report, he thonght from 10 to 20 per cent. would be sufficient; that is, for a 12 -ton engine, the the weight is at present distributed, a strength of 7 tons would be smple provision; and with greater accuracy of construction, a less atrength would suffice; or rather, allowing the same strength, an engine of 14 or 16 tons might be passed over with greater confidence. Thas, for 12 tons' weight, with a velocity of about 35 miles per hour, 7 tons would allow a surplas atrength of 16 per cent. beyond double the mean strain. The deductions from his experiments led him to recommend that the section of an iron rail for a 5 feet bearing, with strength 7 tons, should not exceed 5 inches in depth; that the head ought not to be leas than $2-25 \mathrm{lb}$. per yard, and be 1 inch in depth; that the whole weight at the sections should be $67 \cdot 4 \mathrm{lb}$. per yard; the thickness of the middle rib, 85 inch; depth of bottom web, $1 \cdot 66$ inch; and breadth of ditto, 1 f inch; that the deflection of such a rail, with 3 tons, would be 064 inch.
"Por bearinge of less width, he did not reduce the preight or aize of the head, but kept it at the same section, decreating the whole weight and depth of the rail : thus for a strength 7 tons, with a 3 -feet bearing, the whole weight was $51 \cdot 4 \mathrm{lb}$., whole depth 41 inches, depth of bottom web 1 inch, breadth 1.25 inch, thickneat of middle rib 6 inch, deflection with 3 tons was 024 inch.
"Notwitbstanding that Professor Barlow expressed a atrong opinion in favour of the aingle-fanched rail over the double,-that he could see no advantage the latter possessed to compensate for its actual and obvious defecta, that he considered it inferior in streagth and convenience in fixing, and that the advantage it was supposed to possess, asmely, that it might be turned when the upper table was worn down, was impracticabie, and that he amw no advantage in the broad bearing, atill the double-headed rail, in practice, has almost entirely soperseded the single one: whether the adoption of the double one arises from affording greater convenience to the rail layer, and facilities for keying it, and the advantage of having the power of reversing it, and selecting the beat side, or from the manifest advantage of a broad bearing to the rail,-this form is now generally preferred.
"The Liverpool and Manchester Railway Company hat of recont years adopted a double parallel rail of a pecaliar section; not admitting, however, of the power of turning it. The object to be attained in adopting this shape, is stated to be, that by having the part of the rail upon which the fanch of the wheel acts, of the same outline as the fanch itself, greater strength is given to the rail, while the other edge of the rail is lightened. These rails have been laid down at 60 and 75 lb . per yard.
"The more common and useful form of a double parallel rail, is when the segmental outline is the same at top and bottom : for although it cennot be denied that the weight of the bottom tanch daea not add proportionably to the strength of the rail, nor even that the power of turning it is at all timel practicable,-yet there cannot be any doubt that this form, for railways constructed on separate blocks and slecpers, presents many advantages ; and besides, ss the cost is nearly the ame for a rail with the top and bottom flanches alike, with that where the bottom web is somewhat lighter, no beaitation can exist in preferring the former, however much theoretical deductions may mystify the subject.
"A double parallel rail, weighing 75 lb . per yerd, has been laid down on the London and Birmingham, Eastern Connties, South Eastern, Edinburgh and Glasgow, and many other railways. The whole depth is 5 iucbes, the top and base are the same sections, $2 \cdot 5$ inchess, the thickneas of middle rib is about it of an inch, or leas.
"A double parallel rail has been used upon the Grand Junction and other railways, weighing 62 lb . per yard; whole depth, 4.5 inches.
"A double parallel rail, about 65 lb . per yard, of which the whole depth is about $4 \frac{1}{2}$ inches, has been laid down on some parta of the London'and Birmingham railway.
"A 75 lb . rail was lad down on the Edinbargh and Glagow railway. The inner side of the chair being curved, admite of ample space for the key to wedge the rail firmly.
"The rail and chair which are now laying down on the North British railway are about 70 lb . per yard, in 12 and 16 feet lengths. The top and base are different sections, probably adopted with a view of saving in the weight, bat presenting no corresponding adrantages. The teys or wedges are made of oak, and are small in size.
"It seems generally agreed, that the bearing surface for the wheels to run upon, without being too heary, or so narrow as in an additional degree to wrear the wheele, should be about 21 inches; and hence thia size of a head is generally adopted for public railwayi. Although, both theoretically and prectically, it has been assomed, by Mesars. N. Wood, Barlow, and E. Wood, that the atroageat form of rail is that of which, with sufficient depth for rigidity, the base does not contain too great a quantity of material, -and though Mr. Barlow bas given a formula for calculating the section of great est atrength,-still the great ohject that the public are intereated in, is she best form of rail for asfety; and of which, while it hes sufficient strength to bear upon it heavy loads in motion, the bearers should not be too far apart, to increase in the least degree the amount of either vertical or lateral deflec. tion. When a rail posseses these adrantages, its exact shape on mathema. sical principlea is of less importance than its convenience of being easily fired, and quickly shifted. Hence, while the single parallel rail is decreasing in practical application, the double one, from its convenience, is progress. ively extending. A knowledge of these facts is easentially necemary for every one engaged or connected with raiiwaya, whether be be a director or shareholder, whether an engineer or manager. With ali tbe knowledge yet acquired, there is ample +vidence of the uncertainty which still hanga around the subject; and the great expense it has already cost some of the older companies in making alterations, shows that experience to them has been dearly bought. For example, it hat heen ahown that the Liverpool and Mancheater Raiiway Company has had several times to alter the raila on that line ; to increase the weight from 35 lb ., the weight of the original rail, to $50 \mathrm{lb} ., 65 \mathrm{lh}$., and 75 lb . per yard, successively ; while the London and Birmingham Railway Company, notwithstanding the advantages derived from Mr. Barlow's ahle report, was obliged to reduce the widtb of the bearings or supports from 5 feet to 3 feet 9 inches, and to increase the weight of the rails from 64 lh , to 75 lb . On other railways equally expensive alterations have been made. There is every prohability, therefore, that, so long an that plan of railway construction continues, whatever may be the first cost to railway companies, a atill greater weight must be given to the rails, and a still farther reduction of tbe width of the bearers most take place, in order to adapt the stability to increased rapidity of traction.
"It may be ohserved that the rails have gradually been increased in strengtb since steam power was introduced; the bara are osoally made in 12, 15 , and 16 feet lengths, with square or butt ends, and are luid end to end, the earlier complex contrivences to secure the joints being all dispensed with, and the balf-lap joints now rarely used. About $1 \frac{1}{8}$ of an inch, at least, should be left between the ends for expanaion; for it has been ascertained that a bar of 15 feet in leggth will espand about $\frac{1}{12}$ of an inch at $75^{\circ} \mathrm{P}$. Some have, indeed, proposed to place a small piece of wood hetween the ends of rails, at the different expanding properttes of wood and iron woold fill the space, the wood expanding as the iron contracts: but such a plan is liable to objection from the wood heing likely to be shaken out, and the space being left vacant. There is no part of railway construction that requires more accuracy of fitting than the joints: the aquareness of the ends, and the space allowed for expanaiou, cannot be too carefully regulated. In stead of that, how often are seen spaces at the joints of different widths, and the ends of the bars in juxtaposition, without pasallelism and uniformity of level; thas incresaing the amount of friction, adding to the jolting and rocking motion, and to the risk of the wheels of carriages being thrown off the rails."

This little work contains a large quantity of information in a very small compass. The information is not perhaps quite profound or minule enough to be of great value to the experienced engineer, but the student who is commencing the subject will find bere a general and compendious view of it, which will form a usefnl and certainly a very interesting infroduction to more recondite regearches.

Railuay Map of England and Wales,-Messrs. Arrowsmith and Basire have recently published the large railway map of England and Wales engraved by them for the Board of Trade from plans deposited there in November list. Huving only prinled a few copies for the Committres of the Honses of Lords and Commons, the publishers purchased the plates from the Government, considering them interesting to the public, as giving an authentic account of all railways up to the commencement of the present time, showing those in operation-in progress-prajected-these that failed at the Private Bill Oftice the end of December-and those for which pett. tions were not presented to the House afterwards.

A similar map of Scolland, and one of Ireland, are soon to appear. Of the map before us we can give no better encotoiom than by saying, that its magnificent size and the style of erecution reader it fully worthy of the !epaialion of the publishers, and of the occasion for which it was origin. flly engrared. The size is 4 feet 9 inches by 6 feet,

OBSERVATIONS ON CAPILLARITY.

By Prof. Henry.

In 1830, the anthor presented the resalts of some experiments on the permeability of lead to mercury; and subsequent observations had led him to believe that the aame property was possessed by other metals in reference to each other. His tirst attempt to verify this conjecture was made with the assistance of Dr. Patterson, at the United States Mint. For this purpose, a small globule of gold was placed on a plate of sheet iron, aod submitted to tbe heat of an assaying furnace; but the experiment was un. successful; for, although the gold was beated much above its melting. point, it exlibited no sigas of sinking into the pores of the iron. The idea afterwards suggested itself, that a different result would bave been ob tained bad the two netals been made to adhere previous to beating, w that no oxide conid have been formed between the surfaces. In accordance with this view, Prof. Heary inquired of Mr. Cornelius, of Philadelphia, if, in the course of experience in working silver-plated copper, in bis extensive manufactory of lamps, be had ever observed the silver to disappear from the copper when the metal was heated. The answer was, that the gilver always disnppears when the plate is heated aluove a certain temperature, leaving a surface of copper exposed; and that it was generally believed by the workinen, that the silver evaporates at this temperature

Frofessor Henry suggested that the silver, instead of evaporating, merply sunk intu tbe pores of the copper, and that by carefully renioving the surface of the latter by the action of an acid, the silver would reappen. To verify this by experiment, Mr. Cornelins heated one end of a piece of thick plated copper to nearly the melting-point of the metal; the silver at tha end disappeared. and when the metal was cleaned by a solution of dilois sulphuric acid, the end which had been heated presented a uniform anrfree of copper, whilst the other end exbibited its proper coating of silver. The ubsilvered end of the plate was next placed, for a few miootes, in a solution of muriate of zinc, by which the exterior surface of copper was removed, and the surface of silver was again exposed. This method of recovering the silver before the process of plating silver by galvanism came iuto ase, would have been of much value to manufacturers of plated ware, since it often happened that articles were spoiled, in the process of solder. ing, by beating them to the degree at which silver disappeara.

It is well kuown to the jeweller, that articles of copper, plated with gold, lose their brilliancy after a time, and that this can be restored by boiling them in ammonia; this effect is probably produced by the ammonia actiog on the copper, and dissolving off its surface, so as to expose the gold, which, by diffusion has entered into the copper.

A slow diffusion of one metal through anolher probably takes place in cases of alloys. Silver coins, after having lain long in the earth, bave been found covered with a salt of copper. This muy be explained by supposing that the alloy of copper, at the surface of the coin, enters into condbination with the carbunio acid of the soll, and being thas removed, its place is supplied by a diffusion from within; and in this way it is not im. probable that a conaiderable portion of the alloy may be exbausted in the process of time, and the purity of the coin be considerably iucreased.

Perhaps, also, the plienomenon of wbat is called segregation, or the formation of nodules of fint in masses of carbonated lime, nind of indurated marl in beds of clay, may be explained on the amme principle. In breahing up these masses, it is almost always observed, that a piece of shell or some extrancous matter occupies the middle, and probubly formed the nucleus, around which the matter was accumulated by attraction. Tbe difficulty consists in explaining how the attraction of cohesion, which becomes insensible at sensible distances, should produce this effect. To esplain this, let us suppose two substances uniformly diffused through each other by a slight nutual altraction, as in the cuse of a lump of suyar dirsolved in a large quantity of water, every particle of the water will atract to itself its propurtion of the sugar, and the whole will be in a state of equilibrium. If the diffusion at its conmencement had been assisted by heat, and this cause of the separation of the homogedeous particies do longer existed, the diffusion might be one of unstable equilibriun ; and the shightest extratieuus force, buch as the attraction of a miuute piece of shell, might serve to disturb the quiescence, and draw to itself the ditfused pat: ticles which were immediately contiguous to it. This would leave a ir. cuum of the atoms arouod the attructing mass: for example, as in the case of the sugar, there would be a portion of the water arouuid the nocleaa deprived of the sugar; this portion of the water would atiract its portion of sugar from the lager without, and into tbis layer the sugar from the layer next without would be diffused, and so on until, through all the water, the remaining sugar would be uniformly diffused. The process would coo. tiaue to be repeated, by the nucleus again attracting a partion of the sugas from the water immediately around it, and so on until a considerable as. cumulation would be formed around the foreign substance.

We can in this way conceive of the manner by which the molecala action, which is insensible at perceptible distances, may produce reatle which would appear to be the effect of attraction acting at a diatapes.From the Proce of the A mericas Philosophical Sociely.

KENTISH RAGSTONE.

To Mr. Whichcord we are indebled for the following prectionl Information regarding Eentish Ragslone, used by our forefathers rather largely in many of our Gothic edifices, and at the present period it it egain introdaced with considerable advantage; it affords, combined with dresoing of Caen stone or Bath stone, an economical and, at the same time, a darable material for the construction of the walling of our ecclesiastical edifices, for which purpose it bids fair to supersede facings of white, med, and yellow bricks, and when it is judiciously introduced is very little, if any, more expensive. There is not equeation as to its saperior advan. tages in an architectural point of view.
Mr. Whichoord is an architect of oxtensive practice in Kent, and has had an opportunity of watching the working of Kentish ragatone, both in the quarry and in the building; he is, therefore, fully qualifiod to give us an opinion of its morita, which he has done in a pamphiat joat poblished,* contrining the whole of bis paper, read ut the Inatitute of British Archilecte, acticed in the Journal for January last, page 27, where wo gave as acoosent of the geological charecter of the stone, and which we now propome to follow ap by adding some information regarding its practical anes.
"The larger blocks of Kentish Rag Stone of soperior quality, are looally known noder the name of anblar, which comprises all work that is bedded or jointed; in fine, the stone when applied to ang of the ases for which Portand or Yort are generally available. Stone of this description is mold by the eubic foot, and fetches a much highor price in proportion than the maller kind.
The stone, when quarried, first has its rough projections knocked away, and for ecosomy in transport (as the blocks cannot be sawn) is usually re. duced an nearly as possible to its required dimensions. This process is technically calied "gkiffing," (termed "knobbling" in the neighbourbood of London, and also in the west of Eagland.) and is performed with a heary, double pointed hammer, such as is used in working granite. The necesaity for this practice would canse great waste upon the stone, if the fragments of the better description were not available for burning into lime. The beat lime, however, is usually burat from the best stone.
Ragatone ashlar is ususilly dressed with the hammer, either roughly o: with more care, in which state it is said to be "roughly picked" or "close picked." In the better kiods of wurk it is usunl to run a tooled druft roond the arris of the stooe, which gives to the blocks a very neat appearance; sometimes the whole face is tooled, a process which greatly increaset the labour withont adding to the beauty of the stone; even the best kinds are full of small liassocky spots, which show themselves upon a smooth tace, turn rasty opon exposure to wewther, and facilitate the decay of the stone. A boilding faced with tooled ashlar, even when newly erected, exhibits the appearance of bad Purtland when going rapidly to decay : an evil that is not lessened by the frequency of the jointe, necessarily cansed by the small size of the stones, and a defect which is not so observabte when the face of the work is picked. Sunk work and mouldlog upor ragatone should, as much as possible, he avoided, both from the great cost of executing them in so hard a material, and the rapid decey that to morb wrought surface causes in this stone. The medieval builders were well aware of this fact, and while they used ragatone extensively in the more subatantial parta of their structures, preferred Caen or even fire or sandstope for the decorated portions. Caen stone is more peculiarly uppropriate to be used with ragstone, on account of the amall diforence of the two materials in colour, a distinction entirels obliterated by time.

Io astag "ragefone ashlar" great caro should be taken to have the stone hid apos its natural bed, as any other proceeding will almont certainty be followed by rapid decey; oot but that I believe the stove in its soundest form to be almont begond the influence of time or the olements, but that from the thinoest of the strata, blocks of a large sice can seldom be ontirely freed frow hascock; and oven what eppears to the oye as blue stone, does, for a coasiderable distance inward, retain the perishable nature of its enrelopian crust. A block of ragstons (if the face be worked) will preseot, in damp weather, an appearance precisely simalar to the heart and map of cimber.
When it is necemary (as in cese of copings, \&c.) that one bed ahould be erpowed, care shonld be taken in skiffing the stone to reduce its dimenwioss an moch as possible from the upper side, so as to expose only the consdest portion of the slone to the action of the atmosphere. In ame situations, sach as mullions, and door and wiudow jambs, an unsighty sppearnce would be produced by too exact an utteation to the berls of the Hloee, as the sehlar is geacrally too small to range with more than one conrme of headers. In these cases the old masons seem to have departed from their usual role, and to have set the blocks on end so as to embrace two or three conrses; bat at the depth of the hiock required to work an ordianry jamb or mollion is not very great, it is not a difficult thing to get the whole thickness required out of the heart of stone, and where this has been doae, the work will be found prelty free from decay.
Btone of the smaller layings is generally worked into headers, and aned for the facing of walls, or for paving. In dressigg headers for building parposes, it is common to work nee side of the stone to a rough face with parallel sides, without paying much attention to the beds and joints,

[^28]which often recede at an aonte angle with the face, 80 as to briog the stones, when laid, to a closer joint. Attention, bowever, should be paid in brilding to have the stones properiy pinced in behind, and carefully bonded with the work at back. Headers are generally knocked out to six, seven, eight or nine incb gange for the height; the length and tail being determined by the size of the stone. Moat headers, however, on face do not vary a great deal from the square form. No attention is paid to settiag beaders on their natural bed, as the appearance of the worts ia not co much injured by anj superficial decay. It is not vaunaal, howover, to find stones in an old wall entirely gone from this cause.
"Coursed header work."-There are several modes of building with ragstone, either nuw in use or practised by our ancestors. That most frequently adnpted in the better kind of modern buildings is the coursed header work, in which headers of an eqnal height and parallel joints are laid round in a similar manoer to brickwork. There is always something stifi and formal about this kind of work, from the large size of the joints marking out each stone in distinct individunlity. To make the matier worse, the work is generally fnished with a raised or a sunk joint, and the mortar colonred of a deep blue colour; sometimes we see the work eren tack-pointed, at though it were desipned to set ench stone in a franse. Coursed header work is particularly inapplicable to the free forms of pointed architecture. If used at all, the atones shoold be laid in ragstone lime mortar, not chalk lime, and the joints simply struck. As far as appearadoe goes, it would be almont better that they were left rongh. Chalk lime should be especially eschowed as both asthotically and practically bad. It will not adhere to the ragatone, and the difference of colonr is more offersive than when blue moriar is used.
"Rundom coursed work" seems to hare been an improved mode of building, viz., the carrying up all the walls as cearly as pussible together; this led to the practice of levelling out the work in a rough manner at every foot, or sisteen juches in beight, carrying up each portion with stones of various sizes, roughly headed (as facing them is termed), and without much attention to jointing. It consequently occurred that one stone would sometimes occupy the height of two or three, while the rough aldes caused continnal irregularitien in the joints. Great care is, however, frequently shown in fitiog smaller stones to the irregularities of the larger ones, and the result of the whole is a more aubstantial mode of boildiag, and greater unifursity of surface; the joints, from not occuring in straight lines, being much less observable than in header work. The boad, too, is much more complete, and an inspection of our county churches, of which moat have the towers executed in this style, will convince any one of i:s durubility.
"Random header work."-There is, bowever, now in use a kind of approsimation to "randoin-coursed work," that is even more objectionable than header, or rubhe work; I mesn "random header work." This, though ooly applied in loferior situations, is nearly as expensive as coarsed header wort, which it is in fact, only done in a more slovenly manoer. It is executed with headers of the ondinary description, but of unequal sizes, as though attempted to be carried up in courses. The joints of tbe mortar are generally left rough; this lessans the bad effeet that would otherwise be produced by the arrangement, or ruber mo arrangement, of the headors; but when the whole is done, the courses are only crouked, when, to all appearance, they were intended to be straight.
"Random work" is a style now much used in ornamental buildings, such as ludgen, cottages, almabuses, dairies, \&cc. \&c. It is commonly executed with uasquared stone, with the joints carefully fitted together and pinned in with smaller stones. When this description of work is well done, tbe juints never run in continuous, borizuntal, or vertical lines, and every stome ougbt to break joint. The appearance is very good, but cousiderable time and much akill and nicety are required for its perforanauce. Of courae, from the mode of building in this style, it is scarcely applicable to large works, both becanse there is a certain littieness of appearance about it, and that it is wanting in the requisite stability.
"Rough random work" may be pluced in the same class as that just described, but executed in an inferior manner. In this description of work it is nut customary to give the stones any droming at all, but merely lay them together with as mucis compactuess as their irregular forms will allow; Glling in between the larger stones with smaller pieces. When thls klad of work is well done, it will be found very durable, aud it is aot an uncommon practice, where ragatone abounds, to build iaciosure walla in this manner, but without using mortar or any cemeatiog subsiance; and walls thus constructed will Lust for a consideruble lengit of tiose. It is the cheapest kiod of building, as there is less waste in the sloue, and the oxpense of heading is saved, brsides that a goud workman will do more of it than of header work in the same time. Foundatious are unally laid in rough madona work, and it is applied to inclosure walls and inferior buildings.

Galleting.-It is castomary in many parts of the connty to "gallef" the joints of ragstone work; that is, ω stick small "stome pinners" at thickly as poesible in the pointing mortar. Galletinge la applied indiferently to every deacription of work, and it has the good effect of securing the juints in a great degree from the action of frost, (?) and in some situations it improves the appearance of the work.

Mention has already been roade of the use of hassock as an inside lining to walls built with ragstone It is usually ruughly squared, an operation that should never be neglected, as the crumbling aulure of the stwne
*The masone call the pleces of atome chlpped of by the stroke of the chisel "ca.lea," prubibiy from " galetio" (Yrench) \& amall cake.
would eadanger the security, if the work is exposed to the uaequal pressure that would result from the uge of irregularly shaped stones. Care should be taken not to place hassock in sitantious where it is exposed to very great preseure. For Jnmbs, arches, \&cc., sound bricks are best to be used with it. When the work is of a superior description, and the masonry infended to show inside, as is sometimes the case, the hassock is capable of being workrd to a very good surface with close joints; and as it can be procured in blocks of a considerable size, hassock is very appli. cable at an internal facing.
Ragstome Paring. - In Kent, ragstone is much used for paving. In most of the tuwas of this district the streets are laid with ragstone headers, in the sume wanner as aranite is used in London; atubles and yards also are pared with headers, which are generally preferred for these purposes to any other paving material. It is better, bowever, in public thoroughfares where exposed to beavy draughts, to make the kirb stones of granite.

The durability of buildings erected with ragstone depends mainly upon the qualities of the lime from which the mortar is made; it can only be deproded opon when executed with mortar made with lime burat fron the ragstone itself; this montar becomes in the lapse of time so very hard as to form almost one and the same hody with the atone. Many buildings nay be seen that have been erected a number of years that retuin the original pointing in the joints, fair as when first finished, and so hard as to resist the bluw of a chisel.
Rugstone lime is usually bornt in inverted conical kiles from seven to ten teft diameter at the top, such as are ordinarily used in this neighbourhood in common for burning either chalk, or ragatone lime. The process is the same in either case, bot the ragstone requires more fuel for ite conversion into lime. A kilu of the ordinary size will burn from one and a bulf to two loads per day, each load averaging 26 bushels. A load of lime requires for its production abont four chords of stone, and one third of a ton of coals.

Although ragsione lime may be said to be of a very strong nature, it will not take so great a quantity of sand as most other limes; two parts of sand by neasure to one lime, is the proportion generally ured. If an excess of aand be employed, the mortar becomes short, and drops from the trowel. Nortar made from ragstone lime never exhibits those properties common with the chalk limes, and technically known as "fatty."

A concrete of ragstone ("Beton"), and ragatone lime, ia moch used in this purt of the county ; the stone is broken small, no piece larger than a hen's erg, with half its bulk of sand added, a quantity about sufficient to bill up the interstices of the stone. The usual proportions may be stated at six parts of stone, two of sand, and one part of lime. It is needless to say that the lime should be well burat, ground, and дsed hot. A very good practice is to dispose the broken stones and sand in layers, alternately, with lime, in the proper proportions of each, then to be picked, and twice turned over, and a sufficient quantity of waler added to reduce the mags 10 a proper consistency. In other respects the uss of ragstone concrete is subject to the same regulations aa concrete made from ballast.

Prices.-Subjoined is an average list of prices of stone of varions kinds in the quarry, and the rate at which it can be supplied in London alongside the wharf, tugether with some prices paid for labour upon the stone: -

Rough ras, per ton	\cdots		6		5	d.
Headers, per ton	8	0			6
Rag for breaking, per chord	.	1	c		5	0
Rag for lime, per chord	\cdots	2	-		6	0
Hessoct, roughly mquared, per chord	.	8	0			6
Beseock, beat, per chord	4	0			6
Ashlar, scapled out, per foos euble	.	2	0			9
Ashlar, large scantlinga ..	-	3	6			8
Ume, per lond or 36 bushels		10	0	1		0

It wonld, in moat casea, be cheaper and otberwise preferable to burn the lime ia London.

Prices ef labour on ragotone in Maidatone.

For ragatone concrete, the quantities may be stated at eleven chords broken rag, one huodred of lime, and four bushels of sand, for ten yards of concrete. Breaking the rag may be reckoned at one ahilling the chord.

FICTILE MANUFACTURES-POTTERY AND PORCELAIN.

At a meetiog of the Archseological Iastitute, May 1, a very intarealing paper, by Mr. Birch, was read, on "Fictile Manyfacturea, inchuding Pollery and Porcalain of all complries and all periods." The subject exciled greas intereat, and caused the table to be covered with namerous and raluable es. amples of the art, from the earliest to the mont recent period. Specioens of Babylonian, Greek, Bomen, Medinaval, Italian, and German pottery were grouped according to date; and, to continue the series to our owe time, a large case presented specimens from the collection of the late Booch Wood, and the manufactory of the Mesara. Minton, illuttrative of the progrese of the Staffordshire manufactories, from the time of Queen Blizabeth to the present day. Among the contributort to the exhibition were the Marquis of Northampton, Barl Spencer, Viscount Strangford, Sir Pbilip Rgerion, Bart., Mr. Talbot, Mr. Jekyll, Mr. Bidwell, Lady Brancker, Mr. Strutt, M.P., Mr. J. W. Burgon, Mr. Dilke, Mr. Whincopp, Mr. Colo, Mr. Mayer, of Liverpool, the Rev. H. Addington, Mr. Gowen, Dr. Bromet, and Mr. Bugleheart.
Mr. Brace commenced by giving a brief, but comprohensive hiotory of ancient Fictile Art. He observed shat she mont sacient pottery axtant wa, probahly, that found at Bahylon and Nineveh; some of this was of a ape red clay, and at the latter place varnished and enamelled ware, prohably of the tlme of Sardanapalus, bad been found in the recent excevations of M. Botta. It was, perhaps, from Babylon that Fictile Art was tranamitted to the Egyptians, who appear to have exercised it at the earliest known period of their history. Veses are found in the tombs in the vicinity of the Pyremids, of a date probably 2000 b.c., of baked clay, some glazed and of nirb ous colonra. The ornaments of Bgyptian pottery consist chiefy of thomen; with occasionally a fow hurman and animal forma traced in black outline, bus the designs are coarse, and show little taste or invention.

Mr. Birch proceeded to deacribe the Fictile Art of Greece and Italy. The vases of the archaic period are, 1. the Atbenian, of a light and fine elay; the ornamente are on a fawn-coloured ground, and consist of bands and Meander bordert. Animal forme occur but seldom in these desigas-the haman form never. 2. The black ware, ornamented with figures in relief, found throughout Btraria; and which we must colsider the work of the Btruscan people, from about 660 s.c. to 416 s.c., when their power began to decline. The suhjects of these vases are the most early Greek myth; some of the figares exhibiting monstrous combinations, borrowed from the oriental religions, and to be met with on the Babylonian cylinders and ia the art of Persepolin. The material of this ware is black throughout. Besides this class of vases, the indigenous product of Etruria, wo find in that country apecimens of the Fictile Art, imported by the Greek settlens, and reacmbling the rases found at Corinth by the traveller Dodwell. These are known by the name of Nolan-Egyptian or Phonician. The groond of this ware is a pale straw colonr, with animala painted in maroon; the detaila and inoer markings being given with the point of the graver, and some acceasories picked out with crimson. The date of these vases is probably from 600 s.c. to 540 or 520 s.c.,-corresponding with the mythic arriral of the Greek potters, Bucheir and Eugrammos, asid to have been brougbt to Btruris by Demaratus, from Corinth. To these oarlier specimens, succeed the raes with black figures laid on a light ground. These are made of red clay, tinted with an orange-colonred varnith : the design was drawo in alight dark outline, or traced with a point, and the whole internal part of we Ggure filled up with bleck. The light inner markiogs of the figare were then incised on the black pigment with a graver, which cut down to the yellow ground of the vase itself; the accessories heing picked ont with parple and white, at in the class last described. Thene rases are often acoanpanied by inscriptions recording the name of the artist, the maker, that of the perton to whom dedicated, and of the personages represented,-which are particularly valoable as evidence of the early forms of the letters.
The subjects of these vasea ware ell taken from the most ancient Greek legends,-the Caprisca, the Iliad and Odyssey, the Hymos of Hower, and the works of Alceus and other early Greek poeta. The figures on them art atill drawn in the archaic atyle, and resemble sbose on the carly coins of Sybarie, Caulonis, Tarentum, and other places in Magna Gracia. This clum of vases is found asociated with Btrnsean art and inscriptions in the tombe of the Etrarian Lucumos. They also occur in Greece Proper, -bibnt with certain differences of fabric which forhid the anpponition that they were all manufactured tbere, and imported thence to Btroria. It is more probable that, while those fonod in Greece itself are the indigenous product of that country, the Italian vases were she work of the Greeks who settied in the Btrascan cities.

Second Period.-After the sbove archaic period, succeed the vases of the best time of Greek Art, from the epoeh of Phidias and Polygmotue, m.c. 470 , to the archonship of Euclides, B.c. 404. These vases have red figores on a black ground. The material, like that of the earlier vases, is a fine red elay. The artist, having traced out the design, tben filled up the whole of the hackground with the black pigment. following the contoura of the group. The inner markinge of the figures, which in the former style bad beem iacised with the graver, were stetched in with a brush dipped in the black pigment which formed the ground. This change in tbe technical prucess gave scope to the freer and more refined treatment to which the Art of the period bad atteined.

The subjects of these vase are apparently angsented by the works of the
great painters of the day. They chiety represent myths ; historical subjecte are rare, and celdom of later data than the time of Cyrus. Reprementations of Crossus on the funeral pile, Musena, Anacreon, and the Athenian Codrus, have been found. In the inscriptions of these vaset, the use of the E and O , inateed of the H and Ω, affords a atrong preaumption that their date is carlier then the archonship of Euclides, s.c. 404,-the recorded epoch of the introduction of the donble lettert into the Greek alphabet. The fineat apecimens of this style are from Campania, Canino and Vulci. Of the A thenian achool of pottery contemporary with these vates we have examples in the lecythi buried with the dead, and the alabastra, or phials for unguente, so called from the material of which they mere originally made. They are of a tine red clay, covered with a white pigment, on which deaigos were traced in black, sienna, brown, or scarlet. The subjects of the lecythi are, pritecipaily, the meeting of Electra and Oreates at the tomb of Agamemnon, and other scenet from the Oresteid of the three tragedians. On the alabastre are represeated the meetings of Athenian ladies and their lovert. Besldes these kiads of pottery, the veses with red figares on black grounds are also found at Athens,-but are not 10 peculiarly the product of the Attic chool.

The thind period of Greek Fictils Art may be considered to range from the close of the Peloponnetian wat, b.c. 404, to the time of Atexander the Great, m.c. 333. To this time belong the fine vases of Apalia, - particularly those of Rnvo, the ancient Rabastini. Among the most beantiful examples may be mentioned the vase of the potter Meidias, in the British Museum, With the sobject of Cistor and Pollax carrying of the daughters of Lencippus, -the vase with the subject of the Toilet of Aphrodite, belonging to Mr. Rogers, -and that with the myth of Dionysos and the Camel, the property of the Dake of Hamilton. The design, in these vases, is characterized by greater freedom and technical akill in drawing, and more complexity of grouping ; the lines of the composition are more flowing and luxuriant.-This ferility of invention and dexterity of execution immediately preceded the complete decedence of vase painting. In that part of Italy now called the Basilicala, a coarse atyle arose after the time of Alezander the Great;-the extant specimens of which enahle us distinctly to trace the progressive decliue of the art. Clumsy, full forms, like those of the Flemish school of painting, were cubstituted for the graceful proportions of the earlier Greek style; the ornaments are crowded and ill designed, and the subjects almost limited to the Dionysiac rites,-then very prevalent in Italy. The taking of Syracuse, by Marcellas, 212 b.c., may be considered the final epoch of the art of Greek race painting ; after which time it is probable that the manufacture of them cessed.
From a arrey of the history of Greek Fictile art, it appears that, in each soccesaive period, the subjects represented on the vases were supplied from the myths commernorated in the popular poetry of the day. It is remarkable, that the epoch when the art of vase painting ceased is distinguished in the history of the Greek mind by the extinction of poetic invention, the corrapuion of taste, and the decay of ancient faith and regard for national tradition. It would seem that Fictile Art obeyed the general law of national decedences; and that when the subjecte of the vase painter ceased to be of popelar interest, his art was no longer needed.

Mr. Birch illastrated bis remarks by the fine collection of Greek vaces on the table before bim; and, after describing the painted vases, called the altentinn of the meeting to three fine examples of the black Greek ware of the lateat period from Benghazi, the ancient Berenice, near Tunis,-one of which hed an inseription of palsographic interest. These rare specimens were exbibited hy Mr. Bidwell.

Mr. Biroh then proceeded to give an account of come varieties of Roman ware found In this country. lst. The so-called Samian or red ware, appa. renthy imitated from the fabric of the early Etruscan black ware. It it ornamented with reliefs, the whole vase being eithor cast in a mould, or portions of embusted work laid on the plain surface. The clay is red, and apparently an artificial compound; it is generally glazed. The reliefs are comtonly hunting anbjects, but are sometimes mythological. This ware is found in great abundance in ltaly and throaghout the Roman provinces. It Is called by the Roman writers Aretine ware, from Aretiom. or Arezzo, where a eelebrated manufacturer of it continued probably till the 8th censary, A.d. - This ware is generally stamped with the name of the potter, who appeara to have been of rervile condition, and occasionally of a barbarous rece. The recurrence of the same potter's name in the apeciment found in Bogland, Holland, and other parts of the Roman Empire, would lead rather to the inference that it wat all issued from one or more great central manufactories in Itsly; though it has been strongly maintained that the specimeas found in Britain and other provinces were the product of native potceriem Specimens of this ware were exbibited by Sir Philip Egerton, Bart., frow Northwich, in Cheahire,-where a Roman puttery is oupposed to have existed,-ad alto by Mr. Talbot.-Mr. Birch proceeded to point out and compare a variety of apecimens of the coarse jellow, dark blue, unglazed red, black, and light red terra-cotte Homan ware,-chielly from the collection of the Marquis of Northampton.

Some intereating examples of Cello-Roman ware, recently diwcovered at Harpenden, Herts, were exhihited by the Rev H. Addingtun. Mr. Birch pointed out the distinction, in fabric and material, between these works of the Romanized Britous and the genuine British ware of ruder and coarser cbaracter, found in barrows. Excellent types of the latter were exhibited by B. Strutt, Esq., M.P., and hy Sir Philip Egerton, Bart.

Among the apecimens illutrative of medicual pillory may be noticed a
remarkable fragment from the collection of Mr. Whincopp. It appeared to have formed part of a vessel ornanented with a Gothic architectural design, in high relief, and hore a very brilliant green glaze.

The specimens of Maiolica, or Faenza ware, contributed by Mr. Maver, of Liverpool, and Mr. Gowen, were numerous and good. The Secretary, in alluding to them observed, that Dr. Klemm, of Dresden, was of opinion that this ware was first made subaequently to the introduction of Chinese porce. lajn into Europe, by the Portuguese, in 1518. The earliest manufacture was at Faenza; but Urbino and Sienna became afterwards celebrated for it. It hae heen supposed that many of the deaigne are from the hand of Raffaeile himself; but although a letter from the great painter to the Duchept d'Urbino has been cited, stating that the drawings ordered by that princess for porcelain were in progress, it is probsble that most of these subjects rere furnimbed by engravings after the great masters. Mr. Mayer also exhibited some curious landscapes in terra cotta, which he purchased in Calabria, Where they were made; but he had not been able to ascertain where the manufacture was aituated, except that it was in the "interior." Mr. Octavius Morgan, M.P., with reference to these specimens, made a fer remark: on the terra-cotta decorations of the Füratenhof at Wismar, in Mecklenburg, -which he considered to be of Italian workmanship.

The discussion was closed by Mr. Cole ; who observed upon the examples illuatrating the progress of the Siaffordshire pottery, ancient and modern, procured by Mr. H. Cole from an extenaive collection made by Mr. Enoch Wood, a cotemporiry of Wedgewood-and from the works of Messrs. Minton. Among the modern specimens were a cony of the Portland Vane, moulded the size of the original, and reduced by firing; a Sleeping Figure, after Dreaden China, with lace introduced; Encaustic Tilea (of the revived manufacture of Measrs. Minton) of three colours, similar to those making for the new Housea of Parliament;-and other inlaresting specimens of this branch of our native manofactures.

Sir Philip de Grey Egerton communicated an acconnt of the discovery of a sopulcAral wor in a tumulup on Delcmere Foreat; it is of earthenware, apparently slightig haked or sun-dried. The marke of the lathe are visible in the interior; but, for want of support while the material was soft, the form of the veasel is not symmetrical. Ita largent circumference is 2 ft .11 in .; diameter of the foot, 5 inches; height, 1 ft .1 in . It is rudely ornamented on the upper part with parallel lines drawn diagonally in varions directions. -Mr. Willement sent for inspaction a planter catt from part of the ironwork which formerly inclosed the monument of Queen Eleanor, in Westminater Abbey. Although rough, it was sufficient to show the great beauty of the original. A general aketch of the whole acreen is given in "Carter's Ancient Architecture," Vol. 2, pl. vii., -in which the jarta-position of the several rarietien of patterns is shown. Mr. Willement considered this work to be quite equal in design and execution to the more celebrated iron-work on the doors of Notre Dame, at Paris; and expressed a hope that, at the recommendation of the lastitate, the Dean and Chapter of Weatminster might be induced to reatore this beantiful work of Mediseval Art to its original situation.

THE GAUGE COMMISSION.
Analyals of Endence given before the Royal Commisaloners appotated to fovestignte the subject of the diveriaty of Rallway Gaugen.
Robert Stbphenson, Ewq.: Witnesn's father, Mr. Genrge Stephenson, was chief engineer of the Manchester and Liverpool Railway, completed in 1880. The gruge of 4 feet 8 inches was adopted by his father, as it was the original gange of the raitways about Newcastle. The Manchester and Liverpool was the first hine in this coontry worked bs locomotive eagines. After the Liverpool and Mancheuter had heen established, it was considered ionperative that all the lines in that neighourbood should be of the same geuge.

It is difficult to say where a break of gauge in the northern lines could have been mude with the least inconvenience, as it involves the question where is the line of minimum traffic. - When travelling on the Manchester and Liverpool Railway, before laying the gauge of the London and Birusingham, it appeared to witness, as au engine-builder, when called upon to construct engines of greater power, that an increase of three or fuur inches in the gauge mould have assisted him materially, but since, the improvements in the wechacism of the eugiaes have rendered that increase quite anneceasary; they have auple space and to spare. In the arrangement of the mactivery, which is the maid question, baving reference to the width, the working gear has been much simplitied, and the communjcations in the most recent rapises botween the eccentric and the slide valve have been made direct cumanuicutions; whereas formerly it was made through the interrention of a series of levers which occupled the width. With reference to the iucrease of power, the size of the boiler is in point of fact the only limit to the power, and they have been increased io length on the narrow gange; the pawer is increased by increatsing their length both in the fire-box and in the tubes; in fact the power of the engine, suppoving the power to be ubsorbed, may be taken to be diructily as the area of the fire-grate or the quantity of fuel contajoed in the bire-box, No inconvenience results from leng theuing the engines to their present exteut, aud their ateadineas is increased; they are at present 12 feet betwren the iront and hind axles. The increase of leagth between the uxter readera
the engines lees liable to get off the rails; the short engines on four wheele were liable to violent oecillation when meeting any jnequality, the front wheels heing sometimes actually lifted of the rail ; believes the accidents on the Brightoa line and on the Brentwoud incliped plane were atiributable to this pilching motion. The thickness of the crank of the original engine on the Manchester and Liverpool was si inches. There were varions plans of reversing the eagine at that time. Every eagioeer, in fact, at that time, bad bis own plan; some were extremely complicaled, requiring time for the reversing to be effected; they moved in fact, the eccentric. For a long time they moved the eccentric, which shipped upon an axis, and thereby moved the eccentric from one side of the arle to the otber, and consequently reversed the engine; bat it required a lateral motion of comething like 81 lnches; and there being two eceentrics, of conrse, the mere ect of changing the gear ocoupied 6 or 7 inebes of the axle, independent of the more bulky construstion of the apparates. ftself. The long engines, if kept within 18 feot, are not more IIkely to get of the rails at carres than short ones.

The resiatasce in pasoing roond corres is materially affected by the width of the gange. In the collieries about Newcastic, where the 1 feet 8 ! gauge prevails, wherever they eome to any mining operations where the power to be used is that of a borse or man, they immediately redoce their gauge, because thry want to go oat and in amongat the mines with very eharp curves, and the wide gage would be quite impracticabio amongat those. In faet, the enoll carriages that are ased in the mining operations are upon a gauge of abont 20 inches, and they go round curres under ground of about 10 or 18 feet radius; and they could only work such mines by surb a gaage. It is quite obvious that the width of gange must limit the curre. In the case of every geuge at a sharp curve, the outaide and the inside rail are quite brigtened by the aliding motion, because the one set of wheels has to slide formard to keep pace with the other, and the others have to slide back ward. In fact, whes going roued a curre, both operations have to take place,-the sliding beckward of the one set and the slidiag forward of the other. Of courne, as yon increase the width of the gauge, the difference between the two becanes angmented.

Is chief engineer of the Northern and Eastern Railway, and was at itn eonstruction. Adopted the 5 -feet gange in consequence of its boing broughs into onnnection with the Eastera Cousties line, which had been laid down with that gauge by Mr. Braithwaite, and with the same view he laid down the 5 -feet gauge nn the Bhackwall, is case there should be connection between them hereufter. The gauge of the Northern and Eastern and Eastern Connties lines has recesily been altered ander his direotion; when the extension of the Northern and Eastern was coasiderod, and that junction with the narrow lines in the Midiands would take place, a change wes thought absolntely neceatiry, and the same change was also decided on for the Eastern Counties, from the inconvenience of blending two gauges at the Shoreditch station; the expense of a separate carring eatablishment would have been greater than the cost of alteration, which was £52.000. Of course it involved the necessity of working upon a single line of rails; the entablishment was divided into two parts, one of which was retained as available for the 5-feet gauge, whilst the othor half was altered to be ready to work apon the other line, which had been converted into the 4 -feet 81 in. gange, therefore the alteration from one gange to the other was to take place in one night, is fact, between the two trains, the last at night and the first in the morning. The whole distance was 88 miles. The operation occupied about six weeks altogether, but preparations were made beforehand. The alteration was made entirely mader his superintendence, and the rails being on transverse sleepers facilitated it materially. No new rails were required, and the boilers being of the same size ss thowe on the 4 feat $6 \frac{1}{2} \mathrm{in}$. gange, the engines could be oeaverted.
Considers it would be advisable to run the same carriages from Eustonsquare to Edinburgh and Glaagow, were a railway complete. There are men at different stations to mee that nothing is wrong, and the carriages, bolh for passengers and goods, are now so subatantial, that they may ren msny thoutand miles withont anything bot greasing. Goode wagons go at less velocity, and would probahly atand it better. The carriage is now mach more judicioasly constructed than formeriy. The strength of oarriages conduces very much to safety in case of accident, and the plan of making the under frames of carriages of wrought iron instead of wood, will be carried out to prevent the harm at present done by splinters. Is projector of the Chester nod Holyhead Railway, and will use the 4 feet 8 inch gauge, that carriages may rnn from Euston-square to Holyhead; any rhange would interfere with communication to Ireland. His father and he were consulted as to the linen from Aatwerp to Brussels, and from Liege to Ostend, and he was connected with the Leghorn and Pisa, and recommended the 4 feet 8 inch gauge, as it had been found in this country to answor every purpose. An inch or two, more or less, would have invoived a different construction of engines, and he saw no reason for altering that which had been ratahlished by oxperience. Was consolted on the Belgian Railways and on the Leghorn and Pisa. When giving his opinion as to the Belgian lines, the Great Western was not opened, bnt in reference to tbe Italian line he had seen both gauges in operation.

Is not aware of any advantage the Great Western possessen, and it has several disadvantages; the additional expense of construction, as in embankmente, catlings, tunnels, bridges, and viadacta, and also in carriages, engines, teaders, workshops, and stations, everything being on an inereased acale. The sliding-frame systom has to be introdaced instead of turn
tables, so that the managament of the ptation is more expensire. Thins the tear and wear of the carriages on the Great Westera is as meth an ou the narrow liven, and the resistance of the wide carriages is greater ; there is more friction of the wheels on the rall to be orercome. The tacreased erpeose of the carriage department on the wide genge would not bo in the haulage per mile, but in the fired eatablishment of enginen. Eren the iscreased boiler (4 feet 0 inchen) of the Great Weatern woold as aeariy as possible go into the varrow gange. While be thlaks the Great Wemwa has no adrantages by the wide gauge, its introduction has involved the country in great incoovenience; if a meeting of ganger taken plece in the midst of great trafic, canals would have a decided advantage over milways; the syalem of boxes and loone-bodied wagons for the transfer of coals has been tried and falled. The loose-box syatem involves the pecesp gity of increasing the nuonber of carriages on the railway vory materially. At Erewash the coal-owners could oot avail themsalves of the ruilway, and seat the coals by cenal. Coal-owners would prefor tranaferring their coals from railway to canal, to moving them from one railway to apoliet, on the loove-box system, as by the latter they would lose control over their boxes; they would prefer the transfer by hand, from onc railway to asother, to loose boxes. The American railways are univermaly of the 4 feet 81 inch gange. There is railway from Basle to Strasborrs of 6 feet 3 inch gange, but parties there deeply regrat the alteration, at they look forward to a transfer at each end. There is a line laid down by Deridder, from Ghent to A.atwerp, of 8 feet 9 inch gagge; travelled with him on part of that line from Bruasels. Has seen at the Paddington terminas the modes proposed to supersede the necessity of removiag goods and passengers at the jucuction of difereat gauges, and believes it would answer the purpose as far as machinery could, but secing one or two transferred does not convey the amount of inconvenience incident to transferring 100 coal wagons. The olher mode of transferring by ranaing tho train on another set of tracks, would increase the dead weight to be drawn, eo as to be bighly objectionable, and the increased beight would prevent some classes of goods from getting through the bridges and tunoels. The London and Birmingham goods-wagon, properly laden and placed on the Great Westers truck, could not pass under their bridgen. The expedient at the Great Western terminus for dlmiaishing and widening their gage of wheels may be safe, but being complicated, he thinks it would not keep in good order; it would also be an expensive arrangement. A modifica. tion of the sliding axle was tried on the Newcastle and Carlisle, and noos abandoned. Has not been able to think of any expedient to aroid a transfer; he has seen various ones contrived; the ove by Mr. Harding, of the Bristol and Gloucester, is as good a mechanical expedient as aby, bot that would be so objectionable as to lead to the actoal transference of goods in preference. An arrangement at the Birmingham termini for liniog goods wagons from one level to another is the simplest operation, bot if they had to be put on differept wagons, the evil would be very much ag. gravated; even with regard to Birmingham, the inconvenience of the lif is 20 great, that it is to be absadoned, and an inclined plane substitated.

Is still a locomotive engine-maker, and is of opinion that the 4 feet $8 t$ lach genge gives ample space to get the ntmot power necessary for worting ordinary trains; at present there are, be believes, more powerfol engines working on the narrow than on the broad-gauge lines. The cylindors of thoee engines are 16 inches in diameter, the leagth of stroke is 84 inches, and the wheeis vary from 4 feet 6 to 4 feet 9 to din. meter. They are all six coupled; and those engines are as heavy an the present rails will bear. They weigh from 82 to 98 tons; I believe the same weight us the Great Western engines. There is now as great s weight apon six wheela upon the narrow gauge as oaght to be pat apon 6 wheels; and that will be hereafter the limit of power, not the width of garge; eugines may be built upon the wide gauge, no doubt, heavier and larger in dimensions, and more powerful, but then you must make a road to support it on purpose. The weight of the rails is 75 pounds to the yard; 65 have been used. The widih between the bearings raries from if to $\boldsymbol{I} f \mathrm{f} 9$. Thinks the narrow-gauge lines best calculated for carrying weight withont injury to the rond, and the transverse-sleeper system is better for keeping the rails in order than the longitudinal bearings. The expansion and contraction of the iron tead to disturb the action of the sleepers. Instance on the Peterboroninh line, where the rails bad been laid too close, and actod on by the heas of the sun, raised the sleepers three feet into the air. Locomotives can be manufactured for the narrow gauge capable of ataining as high velocitios as those on the broad; they are now running apFrards of 50 miles an hour, with engines not made for masimum speed. No difficnlty in making a narrow-gauge engine to take 40 tona at 60 mile an hour, or more; the engines on the Great Weatern were made for greater speed, bat the avarage on it was the same, or a little under the Northern and Eastern. -The average speed of the Great Weatern is greater than on the London and Birmingham, except for mail traias, which art precisely alike.-Has worked the express trains on the narrow lines with as much eoonomy of coal \&ci, at on the Great Western. The express engines on the Birmiugham are smaller than others, weighing oaly 12 or 18 tons, and costing about $£ 1300,-$ Should recommend those weighing 17 or 18 tons, and costing about £1650. Thinks the public safety would be eadangered by having the bodies of the passenger carriages moverble at a cbange of gauge; any slight collision, not otherwise dupgerous, woold throw them off, besides the risk of porters neglectiog the fastenings of each. - Would never incor the responsibility of bavisg the hodies separate from the onder frames, as, besides other objections, the under frames would be more liable to derangement.-The complexity
of the broad and narrow gerges in the same station would be great ; the turti-fable, a most lavaluable machine, most be abaodoned.-Combining two ganges, by lagiog the rails of one centrally withia the other, woald fet rid of some of the diffeulties, but not at stations. Turn-tables conld be used, bat already in the wide-gauge systom they are beyond the pale of tura-tables, from the distance between the fore and aft axles of wagons.

It changing from a narrow to a broad-gauge line, belleves the least ovil is to transfer everything, changing the carriages and moving the goods by hand; with reference to general merchandize, has heard Mr. Bronel express the same opioion. Thinks it would be better to have two raile for the narrow laid within thoee of the broad gauge, than to have only one, and to use one of the broad gange rails; as in the latter way, the two trins could not accomplay each other, the centre of gravity not being on one line. If the engine were at the bead of the trains, ft would be of leas coneequence than if they were propelled from bebind. A doable system woald be required to drive each earriage from the contre, and this is a matter of serions expense. Witness would lay down the narrow within the broad grage, on the transverso aleepers, and the cost would be abont t0002 a mile, or more, in addition; Mr. Brunel estimates a ainglo line additional at 25001., beeides the extra cost of station. This is on the supposition that the broad gauge ls frat laid down on traasverse sleepers, but the expense woold not be materially difiorent in oither case. The rails would not be packed well with longitndinal sleepors, on both systems. In adding a pair of rails within the broad-gage, wituess would lay down the transerne eleepert independenily; for with other loagitudinal sloepers, there would not be room for another balk like the present, and the ballast of the weight would not be in the centre. Could not mix the systems of steepers, on account of the length of the tranaverse, which wonld almost cut the longitudinal in two. It would be impracticabie to lay down the broed on the anerow gange, withont sacrificing ove line in tannelo, which woald, from danger, amount to a prohibition. On the narrow gange 24 feet are required for tanaels, and on the Great Westera 4 feet to 6 feet more. Four feet is the minimum apace between the two, jost room for a man to stand, and the seme spaces at each side of the fonnel, and any diminution would be fatal. Recesses might be made at intervals, to meet a diminution, but a man might not be near a recess when the train came. Recesses could be mado after the tunnel is formed, but in many cases the brick-work would thereby be much injured. Imposible to place the broad gauge on the London and Birmingbam, without enlarging the tunnels and closing the line for two or three years. Would rather make a new one than enlarge the present Kileby tunnel. A cutting conld not be kopt open there, and it would be a gigantic work. With reference to the present and future meeting of the broad and narrow-gange lines, does not apprehend moch interruption to the express and other passenger trains at the points of juoction, if they are made al the proper places; thinks Bristol and Oxford two places where the two ganges onght to meet, as at these two points he believes there is the least quantity of cross traffic; this ex. plaited by witness.

The priocipal Midland Conoties trafic, from Rugby to the Great Western, supposing the donble line were constructed from Oxford, would be coals going towards Onford, and corn coming back. Looking to Southampton as the port, it would only require, supponing the narrow gange carried down to Oxford, a line from Oxford to the South Western to complete the narrow gange aystom over the kingdom, as far as Soothampton is concerned; the Great Westero Company bave a line from Reading to Basingatoke, and if that were laid on the narrow gange, and the donble system from Reading to Oxford, there would be oo break in the country at all ; commercially, Southampton, London, Bristol, and Liverpool, would interchange with each other, and with the manufacturing districts, by the rame carriages. No extension of the wide gauge towards the London and Birmingham would relieve Lancashire or Yorkshire from e change of gauge, but en extension of the narrow from Oxford to Basingstoke would relieve the whole question of embarrasament. The Great Western Company can be compelled to lay down the double gange from Rugby to Oxford, and on the greater portion from Wolverhamptoa to Oxford, and to Worcester, as they agreed to do that. The loss of time in traneferring a passenger train at Rugby to go to Oxford on the broad gauge, would depead on the amount of passenger traffic; it is a point of small pessenger iratic: it may he a large one of coals and corn; the extension of the wide gauge isto that district must multiply the pointe of joaction of the two ganges, and the chances of interroption : passenger trains conid zot be changed in less than half an hour. Has oxperienced the inconreaience of changing carriages, and scrambling for laggage on the Belgian railways, at Mulines. Was detuined the last time about half an hoor. If the change of gauge took place at Rugby, a new station would bo reguired.

With regand to agricultural trafic, at any point of change, the beants woald require to be graced before removing them from one carriage to asother, and is afraid the loose bodies would be required for pigs; they conld not be managed otherwise; they must be lifted en mase. The wagons themselves opon the narrow gaoge vary from 2 tons 10 cwt to 3 rons; some recent large ones run as far as 8 tons 10 cwt , and they will carry 6 and 6 tons of goods. Ithink the latter is as near two to one as possible; chat is, that if the dead weight is one, the aseful weight is two. The differeoce is here against the broad gauge; the trucks for intermediate trafic seldom average more than a ton each, so that all the intermediate crafic on the Great Western is carried on with tracks of five tons, with
owe ton of goods in them. As rallways exiond Into every oorser of the country, the advantages of the narrow seuge would be mont apparent, and asthe wide is more expengive than the marrow, the former womd limit the ramificutions of railways. The narrow gage wagone are infinitely mepofor for minoral trafic, particularly coml; if the mixed gange sytem bo allowed to extond in thin country, the charge on coal will amoont in ranay caces to a prohibltion. Thinks the broad gagge has a disadvaplage as to horse-bozes; their motion is mometimes fearful; they want length with reforence to their width, while on the narrow gange a carriage of the same length zinght be very steady. Prefers the narrow gange paseonger carr riages, carrying three in width, to thowe of the wide, cerrjing four; the latter are cold in winter, and want rentilation in sumpar. There has not been so much attention paid to the construction of the narrow gauge parsemgers earrigge as so the broad, bat the narow coold be made 6 feet high, so that a pernon might stand up is them. The lowest longitodinal distasee between the axles of 4 aod b-wheeled engives on the narrow gange, is 10 foot, eod the highest 12 foet 9 inches; the lant are too long; witaers adopts a maximen of 12, and a minimen of 10 foet; relatively the centro of gravity is the rame beight in both gruges. Thongh there would be great difforence as to the coet of constracting the broad and narrow limes, cannot say there is any difforesce to the copt of working. Whether the trefoc be much or little, it is merely a question of erpeaditare of power, and though the most powerful engine is cheapent to work with a proportionate load, each may have engisos of the same power.
The wide gange engines are not more powerfal, but are hoavier in proportion to their power; everything in the width gives the engine no power at all, but is an ononmbrases. Neither commercially por meehanically has the wide gage any manantage over the marrow, bat racher the eontrary. The driving wheels of the brond gauge engines are not genorally of greater diameter than the garrow; 6 and 7 feet engine wheels are used on the Great Weatern. The greater diameter of the driving wheels bas a tondenoy to reduce the axle friction; but compariag 6 and 7 feet, the amount of this is not worth measuriag, bat if by increasing the genge, the axle has to be increased in sime for strength, what is galned on the one hand is loet on the other. The friotion of the fange of the wheels againat the rilvay bas a retarding effeot on ourvet, but not mooh on atraight lines. Any lateral friction arisea from the angle of the wheel against the line, and must be greater on the wide than the aarrow gange; round curves the siliding motion must be directly as the width of the gauge.

The evaporating power of a passenger ongine, on the Northern and Eastern, is about 180 cublo feet as hour; he has some evaporativg 160 feet. The moit powerfal engines are constructed with either outside or inside cylinders ; the iargent are inside. Certainly, nome ongines that bave been recently made with outalde cylinders have too much of that motion than I like. It is exceedingly difficult to may how the motion is prodnced; if you consider the action of the cylinder, it is perfoctly rigid metal-engine and aylinder altogether. Now, when the steam presses upon the piston, it is at the same time pressing against the lid of the cylinder; the action and roaction must be equal. Therefore, that it is not the stean that canses the irregular action, but the mere weight of the pistons themselves, and therefore if we could contrive to balance the pintons by the weight upon the wheel, we should get rid of that very much; but in the most recent dosigns of engines of that kind, he has bronght the oylinder much nearer to the driving wheel, and nearer to the centre of the engine; at present they hang over the wheeis a good deal; now he has bronght them within the wheels.

It is now an indispensable part of the broad-gange system to use the longitudial bearings; it is a question of expenee. As you increase the width of the gage, of course, on the longitudinal system, it leaves the expense the same; whereas, if yon adbere to the transverse system, yon increase the sire, and, of conrse, you increase the expense more rapidly; therefore the transverse aystem with a very wide gange would be very objectionable on account of its expense, but I think the principle of construction would be better. With reference to the maintenance of the way, imagines that the way is kept in better order opon the transverse system than apon the longitadical at the same expense; has never seen any portion of longitadinal bearing railway in perfect order. It is more difficult to pack, and there is always more friction in a longitudinal railway than in a sleeper railway. The Hull and Selby is part of it longitodinal and part of it transverse. The engines, where they were heavily laden, opon the longitudinal bearinge wonld just creep along; the moment they got to the transverse bearings they went 5 ur 6 miles an hour more directly, from the yielding in one system, which gives a little leas noise and a little softer motion which the Great Weatern has. Does not think that in that particular case it resulted from the longitudinal bearings being of insufficient dimensions and slighter than the Great Western, thinks they were the name sime ; \rightarrow Memel balks, 18 or 14 inches square, cut up; and the Great Weatern are 14 joch balks. In the longitudinal system there is m litule less noise, eod there is a little mofter motion than opon the transverse system, bat there is a great deal more motion; there is far more actual motion upon every longjtudinal railway than apon the transverse sleeper system.
If the Loadon and Birmingham had originally been made on the broad gauge, estimates that it would have cost about 3000 . a mile more, without including the additional cost of the central station at Wolverton, which must have beed mach larger. As to altering the existing gauge on the London and Birmingham, thinke as it would stop the line for at least two years, that it is practically impossible, It wonld cost about 15l. a.yard
for tannelling, taking good ground and bad. To make the Kilsby tuanel as large us the Great Western tunnels, it would have cont great deal more than that. On the other hand, in increasing the size of the tunnel ln gond ground, such at chalk, the additional cost would not have been 80 much. States the results of experimenta, showing the consumption of fuel and Wator, by an engine with different load. Found that the consnmption of fuel for drawing the eagine wlíhont a load, was eqnal to about the consumption of fall to overcome a lond of 15 carriages at 80 miles an hour; that is, it took as muoh to more the engine and tender as it did additional to move 15 carriagen. There have been many reasonings apod that withont consideriag the precise appllcation of it. A large proportion of the fael in moving the engine alone is consumed in overcoming the resistance of the atmosphere to the pistons; it will not require more than three or four pounds to overcome the friction of the angine and tender proper, but it requires 15 pounds in addition to that to overcome the engine and tender, taking into acconnt the atmospheric resistance to the piston; so that there is always 15 pounds of pressare of steam in all high-pressure engines absolutely lost ; it is not the friction of the engine; certaioly it is a defect in the engine from its being a high-pressure engine, but on $\mathbf{n o}$ other account. It is not a peonliar lose applionble to locomotive engines aloae, but to all high-pressare eagises; and therefore in astimating the consumption of fuel and dividing the proportion of expenses, it became important to ascertain what was the relative expense of coavering 8 carriages, and of conveying 15, becanse all the trains of the Croydon Company were small, and all the trains of the Dover Company were comparatively large; and from this experiment it appears that as to the cost of coke, whether to convey 8 carriages or 15, there is a very small difference. Therefore, if yon proportion jour expenses by the losd, jou give the small load very greatly the advantage, beanase you charge them only half the fuel, say as 8 is to 16 , whereas jou ought to charge them as 8 plos the engine is to 16 plus the engine, which will make a very great difference.

Belioves the gagge of the Dutch railwaye, constructed in 1812, to be 6 feet 51 . The Amsterdam and Haarlem Railway is essentially level, and laid on longitudinal timbers, which are kest suited to the ansound ground of Holland. The line laid over Chatmoss is laid on transverse sleepers, but the mose there has much more tenacity than the substratum of peat in the low part of Holland. Mr. Conrad constructed or projected the line in Holland; he examined ruilways in this conntry, but does notknow whether he was assisted by any English eagineers.

Jossph Locke, Esq, Is the engineer who completed the Grand Junce tion Railway. This line was oponed to the pablic in 1837. When witness assumed the office of engiveer on this line, the rails and sleepers had been contracted for, the bridges designod, and some portion of the work commenced for the narrow gauge. Alteration of gauge at this time would have been attended with considerable expense ; narrow gauge selected for this line becanse surrounded on all sides with lines of similar gange, and it was desirable to preserve uniformity of gange in the district. Great Western Railway not commenced at this time. Narrow gauge rails may be laid down on a broad gauge railroad, 80 as to carry on the narrow gauge traffic continuously; this process is very expensive, and in reference to the stations, very inconvenient. Where two gauges meet, the station by this plan mast not only be made larger, but aleo of a different constraction than if made for one gauge ooly. If called npon to project a series of railroads in a new conntry, would prefer an intermodiato gauge, between 4 feet 81 inches and 7 feet; wide gange not necessary for machinery; carriages on narrow gange lines can be made lunger and loftier tban at present, giving as much space to each passenger, three on a side, as in broad, as four or five on a side.

Height of carriages on narrow gauge lines lately increased 6 or 8 inches. At higb speeds higher wheels are necessary; the centre of gravity would consequently be raised, rendering wider gauge than 4 feet $8 \frac{1}{2}$ inches desirable; at the same time, witness is of opinion, that looking to the construction of the road, the speed now attained is as great as is consistent with safoty, and would neither increase the gauge, speed, nor size of wheels without more experience in the construction of engines and strength of materials ; inequalities of road from change of temperature and weather imposible to be overcome; some engines on South Westorn Railway with wheels 6 feet 6 inches diameter, where the boilers are not higher than on engines with wheels of 6 feet 6 inches; this done by placing the cylinder ontaide the boiler, and bringing the boiler nearly on to the axle; the contre of grevity as low with the large wheels as the amall ones by this arrangement. No disadvantage caused from this change; application of power outside the wheel does not produce a rocking motion. Great changes have been made on engines on narrow gauge lines, with a view to obtain $10-$ creased power; engines of enormous power have recently been conatructed oa North Midjand Railway to carry heavy trains of minerals. Limited apace between wheels and boiler in engines on narrow gauge lines caused some inconvenience in the attempts to obtain increased power. Turned bis attention to improving the engine and altering the arrangement of machinery; and now geta all necessary power on narrow gauge lines. Length of boilers on Grand Junction and South Western lines increased from 8 feet 6 to 9 feet 6 .

Canoot tell the velocity attained opon the Great Weatern; express trains on Sonth Western line travel 40 miles, and could no doubt ran 50 miles an hour, Does not think 50 miles an hour can be done with safety on any line that witaess bas been on; is mach opposed 10 such excessive speed. Curves more dificult to traverse with broad than narrow gauge. Facility for turning carres in inverse rutio to the widith of gange.

Broad gange gives greater facility for conveyance of heary traias, by giving larger space to pat the power in, but witness considers that as much and even more power than is aecessery can be obtained on the narrow gage; disapproves of tbrowing a large force npon ove engine. Has heard of trains of 60 and 70 , and in one instance of 77 wagons in one trais; would altogether prohibit such trains; would divide thom, and not allow more than 40 wagons, each weigbing 5 or 6 tons, th oee time; more than that number strains the wagons, the frames are thrown ont of square, the chains are broken, and cause delsy and inconvenience on the road. Woold not have greater power than sufficieat to drag 60 wagong; the engines on North Midland, with large boilers, cylinders, and fire-bozes, can drag 100 Wapons; they generate more steam than they consume.

Wide gauge more expensive than narrow; it required longer sloepers, grazter apace for embankments, cuttinga, \&ce.; Mr. Brunel of a contrury opinion; his calculations were founded apon using smaller timbers and lighter rails than be is now using. The South Western rail is 75 lb . to the yard; both the Gruad Juaction and London and Birmiagham were origibally 65 lb ; have been receutly increased to 76 lb . Increased exponse of broad gauge would be in bridges, tunnels, outtings, and embanknents. Ontside rail of Great Weatern nearer the alope or ditch than upon other lines; if engines get off the lines, more liable to fall over; witaess profert a wide embankment, and where possible, alwags gives additional width. Estimates that a broad gange tranverse sleeper would cost 50 per cent. more than a similar sleeper on tbe narrow gauge. Ordinary width of enbankmente 30 feet, giving 7 feet on each side batween edge and outor rail. In such roads, if engine got off one rail, it would remain on embankment ; if off both reils, it would go over. Cannot say how far the extra width ia Great Western engines rould present them gettiog over the embankmeat. Would give a space of 7 feet beyond the rails in wide as well as narrow gauge lines.
Rails laid upon longitudinal bearings give greater elanticity to the work, and tend to throw the engines and curriages off the line; tried with longitadinal bearings two viaducts, Dutton viaduct and Birmingham viaduct, and could never keep them in order; cunsiders the principle bad; prefers transverse sleepers. This opinion the rasult of actual observation. Rail. ways laid with transverse aleepera more easily repaired then a longitudinal road.

Has not seen the contrivances nsed at Paddington for transferring traffie from one gange to another. Believes the transfer can eanily be made. The machine itself very simple; the practical difficulty is in use of cerriages carrying loose-box bodies to be tranferred; a machine was formerly nsed on Liverpool and Manchestor for lifting loose coal-bores; machine excelleut, and saved much labour, but the boses were so much broken and injured in lifting, that the contrivance was abandoned; carriages with loose bodies not so strong as others; in event of cullision passengers would be in more danger in such carriages. On certain French lines the diligences are put on loose wherls, placed under the frame, und with a little hoist lifted up on the body of the carriage, and put upun the truck of the railWay, jnst in the same way as a genileman' carriage, und taken off in the same manner, and dropped on to a frame of four wheels at the end of the joaraey. The contrivance is very simple and very facile; but not very safe. They take the truck as it stands when the diligence is loaded; there is first of all a truck made for the diligence. It is not a truck with a simple bottom to it, but has sides to it, and it is then like an ordipary truck; and I believe that when the diligence is upoo the truck, it is certainly not so strung as if it were part of the same carriage, but it is very beavy, and they carry a weipht upon the Paris and Ronen line of eight or nine lons where the diligence is loaded; and if it were not for the change, you might have a weight of only about five or six tons, so that in every carriage yon are carrying a great denl of dead weight in order to avoid the necessity of changing the carriages. There was a cullision on the Orleans Railway by some sudden stoppage; one of those very diligences Whas thrown off its position.

Engines un darrow-gauge lines are not all made with onteide cylinders; on Grand Junction line, about one half are so made, and others, as they are repaired, are altered upon the new system; but even with cranked axles, the arrangements of machinery are so simplified and compressed, that vo inconvenience is felt from want of space. No difference in construction of horse boxes on broad and narrow-gauge lines. Greater speed on Great Western attributed to their having better gradienta, fewer stoppages, and larger enginea than on narrow-gange. Has travelled on an engine with 6 feet 6 inch wheel (the largent wheel on narrow gauge) 50 miles an hour with ease; that engine rapable of taking six or eight curriages 60 muss an hour ; one of the new engines on Grand Janction, with only a 6-feet wheel, and expansive gear, recently truselled 57 miles an hour.

Believes that wberevor a break of gauge occurs hereafter, either an eatirely new line must be Jaid down, or a narrow gange line laid upon broed gauge road. In the latter case, continuing the narrow gauge, and bavieg the double gauge upon the shortest possible lengtb, is the fesser evil of the two, and in all probubility will be universally adopted. Break of gauge should take place where there is little tratic. An alteration of all the bruad gauge lives to $\$$ feet $8 \frac{1}{2}$ inch gauge would be the cheapest mode of obviatiog the evil of different gauges. Believes the Great Western Company will find the inconvenience of break of gauge so great, that they will be compelled to lay down the narrow gange from Oxford to London. Is not preparrd to say at once that a change of broad to parrow genge throughout would bead to the greatest economy, and greatest commercial advantage, because the officers of the Great Western Railway betieve that

Che inconveniences attending a change of gange are less than sup posed by witseas; could dof; therefore, as a zoverament officer, supponing all the railmays now made the property of goverament, adviee a change of bromd to marrow gauge without greater experience.

Reason of engineer of Great Wentern Railway adopting wide gange, - ftes the Bill had passed through Parliament, supposed to be a desire to athain greater speed, a better road, and greater economy of construction ; ove great item of expense in locomotive engines supposed to be the rapid reciprocation of the piston : and to diminish this was thought very desir. able; but the expence of working locomotives on narrow gauge has diminished from 2s. 6d. to 98., 1s. 4d. down to lud. per mile run; it is very doablful whether the axpense is not jnst as great on Great Westorn as on the aurrow aquge; Mr. Branel at firat intended using wheels of much larger diametrr than are used at present; whecls on Great Weatern formeriy 10 feet in diameter; those now used only 7 feet; only 6 inches larger than those at precent working on South Westera Railway; the adoption of the broad gange it wes supposed would tend to dimiaish the working expenses; this resnlt, howevor, has not jet been proved. Considera that a far higher speed can be obtained on narrow gauge lines than is compatible with safoty. If dosirable to change gange of South Western to broed gauge, shonld take certain length, and nse a single line; this is the practice when any subatantial repair is in progreas, when a mile or cile and a half of rail is taken up, using a single line, and keeping a policoman at each eod. The tunoels on South Weatern line not large enough for broad gaoge, and mbile enlarging these, the trafic must be topped; the bridges and viadncts wonld also require alteratlon.

Has bestowed considerable attention to the construction of locomotives, particularly at the time the difficulty was first experienced in obtaining greater speed on narrow gauge lines. The first engines used on Grand Junction line of very inferior constraction; the difficulty of obtaining greater speed on this line frat induced witness to torn his attention to improvements in the construction of locomotive engines. Outaide cylinders introduced on Kingstown and Dublin line without outside frames; by this plan the cylinders overtang the frame too much On Grand Junction jive outside frames were used, bat the outside bearings were attached to the front and hind wheels only; the cylinder by being attached to the driving whetls, without the interveation of the outside frame, kept the engibe more compact. By this arrangement the width of engine was diminished several incbes. Inside cylinder has necessarily a crank axlo, and more liable to break; on Grand Junction line, accidents from this canse formerly a sonrce not only of expense but of danger, as the crank troke when the train was in motion, and ofen threw it off the line. Has not had a single accident from brealiage since the introduction of outside eylioders. Engines getting off the line not of frequent occurrence; more $\omega 0$ aow than formerly, in consequence of the increased speed.

Teaders on Great Western line of greater cepacity to contain water than on other linen, and ran longer distances without changing. Tenders could be made for narrow gauge lines larger than thoee on Great Western if considered necesary; tenders upon Great Western line all upon six wheels; on other lines upon fonr wheels only. The 10 -feet driving wheels oo Great Western abmadoned from the diffculty of getting engines large esough to wove the trains at any ordinary speed, and the further difficulty of slopping them when once started. Wheels of these dimensions not suitable on a line with sovere gradients. By increasing the size of the wheol there will be a danger of the springing of the wheel itself on ite motion, from the axle not being sufficieutly rigid. In going through points or erossings with a very large wheel, a very litle force applied to the flange will fpring the wheel unless it is made proportionately strong, and if you du that jou will have a wide bosa ; the boeses are 8 or 10 inches, the apokes are 4 ur 6 inches, tapering up to 8 inches at the rim; if jou inerease it from 6 or 7 feet to 10 feet you must increase the width of your boak, and you will have a very heavy weight and very wide boss. Weight of largent engine on Southampton line, about 17 or 18 tons. No evil will resalt to the rond by increasing the weight of the passenger engines.

Wagons on either gange can be made to contain 5 tons; in the north of Eagind, where 0 much more is carried than in the south, smail wagons are still adhered to. Wagons upon both lines made to carry 10 tons of coals. Narrow gauge most convenirnt for side lines runaing to the pits. Helative cost of working trains at 16 miles and at 40 miles an hour about ase-third more. Some engines on Grand Junction line burn 16 lb . of coke per mile. Probable consumption of express trains about 4 or 5 lb . per mile $\begin{gathered}\text { ere ; on Great Western the consumption is conoiderably more than }\end{gathered}$ this; they bave larger and hesvier engines ; on South Western line, the guastity of cute consumed per mile is considerably less than on Great Wantera.

There woold be increased difficulty in the ordinary working as regards the maintenance of way, packing the rails, Scc., if the narrow and broad gange were combined. The easiest mode of maintaining the road wonld be, where you have the broad gange, by transverse sleepers, and then putties a eingle rail apon one aingie sleeper; that is the best mode of keeping the read in repair: but it is not a good mode of laying the road for two carrieges, por is it coavenient for working, becuuse the centre of gravity is not in the asme line. If jou take two rails between the longitudinal bearinge of the wide gauge, you have not space enough to put longitudinal bearings, quless you put them close togelher: and you cannot ram them; tf jou ram down one side you will runa risk of elevating the other rail ; and in ramming down the inoer rail you would run a rist of lifting it up
ont of the level on the opposite side; in fact, the want of the facility of getting to both sides of the baulk would be fonnd a very serious inconvenience. Would propose, ander those circumstances, to ley both raile upon transverse sleepers; and if railways were to bo made in that manner, should certainly lay a large sleeper, long enougt to take both genges.

A considerable number of the transverse sleepers npon the Great Western Railway have been changed ; thelr doration is very rariable; thowe not woll saturated decay sooner then others; their daration also affected by the nature of the soil. Construction of passenger carriages on Grand Janction llae much jonproved; they aro now made atronger and more substantial. They are now made colid instead of being carved out. This change is adopted partly from economy and partly to obtain greater strength. Liverpool and Manchester Company begao with very light carriages, comsidering that the lighter the carriages the les the draught; on the alightent collision they got out of the aquare; they have been gradually increased in strength op to the present time; they now weigh about 8 or 84 tone, bnt have not yet adopted the solid frame ; cont more from the quantity of iron-work used in their constraction. Reasons for the adoption of the solid frame were these:-In the bolt-holes in all these small scantlings of timber not more than 4 inches square, or 4 by 3 , on taking a carriage to pieces, you foand a little decay; that one corner of the bolt-bole gets a little larger, and there in a little play; concequently it has to be renewed far sooner than if it had been a colid and sabstantial pioce of timber, for the least decay in a small pieco of timber renders it unfit for its work, and it mast be renewed. Upon seeing thls at the Grand Junction workshop at Crewe, witness advised the direotors to abandon entirely the construction of the carriages on that plan, and to adopt the solid frame; and they now have capriages with solid frames. Considers the poblir safety much increased by the alteration. Many engineers entertain a diferent opinion, and consider that very bigh velocities may be obtained with much lighter carriages than those now nsed; Mr. Brunel and Mr. Cubitt are both of opinion, that by the atmospheric syatem, they will be able to teep the road in better order, use lighter carringes, and go at greater speed than has hitherto been attajined on any of the locomotive lines. Witness altogether disapproves of light carriages, and considers that with them accidents are more frequent, and when occurring, more dangerous than with the stronger carriages. 8afely of train depends greatly upon weight of engine which draws it. If the engine were a light eagine, at the apeed at which it sometimes travels, it woold leave the rail ; bot, as it is beavy, it givee security to the train bebind it. Recent accident on Great Western line, where all the light carriages were more or leas damaged, while the strong one, in the same line, was scarcely strained. Sleopers can be renewed on transverse sjatem at much less expense than on continuous bearings. Estimated expense of one mile of permanent way, $\mathbf{£ 4 , 8 3 8 , -}$

The prices of Rails, Chairs, and Ballast are variable.

(To be continned)

AMERICAN PATENTS.

Granted in March 1845, reported in the American Franklin Journal.

marble polishing maching.

A mechine for "poliching gat plates or tables of marble." Jacob Ziegler, Philadelphia, Peangyivania.
The plates of marble, dec., to be polished, are placed, face upwards, on the top of a carringe which carries them slowiy under the rabber, which is a flat plate of wood or other material, covered with the polishing substance. This rubber receives a movement from two cranks or cog wheels, attached to the lower onds of parallel vertical shafts, geared together and driven by an intermediate cog wheel on the driving shaft. These shafts are hung in a aliding cross head suspended by lerers, \&c., to regulate the pressure of the rubber.

BRICE•MAEING PRESE.
For an "improeement in the brict prest." John Waite, Leicester, Massachusetts.

The improvement is for arranging and operating on the brick machine, so that while one brick is being comprossed in one compartment of the mould by the compressing pistons, the discharging piston thall be performing its oftice of expelling from the mould the brick which bad next previously been formed; the moald being progressively meved forward at regular intervals of time, so as to present that compartment of it in which the briok lus been compressed to the action of the discharging pisten,

Where the compreming phatom noxt enter the precediot apart ant, to effoct the formation of a briak therotin.

THNING PIPES.

For "timprownents in mechinery for malcing and timang lead pipes." Robert W. Lowber, Rochester, N. York.

This is for tinaing lead pipes, (whioh are formed in a die and aronnd a mandrol) by introducing the melted tin through the meodrel, or coro, which Is hollow and provided with apertares for the disoharge of the tin ingide the pipe.

Olimiances What we chaim bervic as our invoation and desive to seoure by letters patent, is the method berein described of tianing the inaide of lead pipes in the conrse of manufacture, by pascing the melted tin dowe into the mandrel and out at the side thereof, as above made known, whether applied to this machine or any othor subetantially as described."

ventilating atopes.

An "ingrevement in otoves for marming pariowry, and for other purymes." Joha Morrison, Newark, New Jersey.

The nature of this improvement 4 consiste in taking the air from near the ceiling of rooms, for mapplying nir to the fire, and thas incideatally ventilating the apartment. For this purpose there is a plpe whioh oxtonde op from the ash pan to within a short dimtanoe of the coiliog, where it is made boll monthed for the free admiscion of air. This plpe is surronnded by an orter jacket, which commonicates with the ohimney, the fire chanber, and with the case aurrounding the tire ohamber of the stove, by ceparate pipen governed by dampers for regalating the drangt, heet, seo.

aydeatlic palff.

An " inpprovel made of making hydraulic poiat." Thomas G. Warret, Troy, New York.
The pationtee say,-× This paint is compored of 'hydraulio cement,' (sometimes called 'wrater lime') made fino by grioding, and 'lisseed oil' to be mized in such proportions as to make paint of ordinary thiokmens. The use to which this paint oan be applied is general. It can be epplied to houses of either briok or wood, aad aleo to cloth roofs for hoesees, or other purposes. I have a cloth roof to my house painted with this new paint, and it is perfoctly tight. The cost of such a roof is considerably lese than that of ordinary roofs. The same materials, but with a less proportion of the oil, make an excellent water-tight putty."

PAIMTINE PREARES

"Improvements in preses." Joseph Saxton, Washington, District of Colembia.
The patonter sayt,-"My invention and improvemente consist, firntly, in the nee of a fiezible or olastic platen, instoad of a rigid or inflezible plate of metal as a platen. Secondly, in the application of preseure to such flexible or elastic platen by means of a liquid, or aeriferons fuid; and thirdly, in the arrangement of machinery in printing presses, copying presces, and lithographic, and zincographic presces, for the purpose of applying such pressare to such fexible or elastic platen. The object and offect of using a fiezible or elastic platen with the pressure by means of a liquid or acriforous fluid is, that the platen is equally pressed or acted upon over ite whole sarface, and which may therefore be employed in any position, to press upwands, downwards, or sideways. The olatic platen is to be of the necessary sime for the press in which it is to be nsed, as in the case of the ordinary platen, and is to be a thin plate of brass or other enitable metal, varying in thickness from that of a aheet of foolacap paper to abort bulf en inch, according to the dimensione of the platen, and of the vacant spaces betwoen the columas or pages of types or figures, teohnically in printing called the white."

BAPETY 7ALTES.

For " inprowements in the safety palve for preventing steam bollers from burating or collapoing," Abraham Pettorson, Rush, Pennsglvania.
The olaim is for the employment of the apparatus termed the working ceitumn, in combination with the uplifting vaive and float, as described, whereby the pressare of steam on the working column is added to the pressure on the safoty or aplifting valve, for the purpose of opening it when the water desceads below a given point, and which, at the proper height of the water, permits the free action of the uplifing valve. a chaim is also made for the employment of a perdulum, so situated, or so enspended, that by the rocking, tilting, or cereening of the boiler or boat upon which sach pondulum shall be employed, the said pendulum shall 30 attech itself to, or so suspend iteolf upon atacklo, lover, or pivot, at thereby to apply its woight as a moving power to the opening of a safely valve or valves for stean boilers, as described.
mallioad favers.
For an " hngrosoment in reilreal trmoles" Powlar M. Rey, New York.
The patentee says the pature of his invention coosists in erbatituting a singie croes beam of timber, having end bearers of metal for the coenectIng bars of the arles, furaished with a single apring, and having a pedental connecting the bearer, apring, and cross beam together at anch side of the truck in such a mander as to give to the whole frame work or auperstreeture of the truck a yielding capacity, instead of the vesual method of a atif frame work, and short vayielding epriaga, two at each side, as herotofore moot commonly constructed. By which yielding quality eeveral desirable objocts are effected.-1st, The capability of elevating etther of the wheels of the truck to a considerable height without affecting the position of the remaining wheels opon the track, and by which obstructions are passed with greater safety. 2ad, It gives to each axle, independent of the other, a facility to vibrate laterally without changing their parellel position to esech other, mod by whioh, short corves are made eary. Ind, Its yieldiag aod elastic quality, readering vertical and Interal oonenseions leas eevere then in the ordiaary (rigid frame) truck.

IRON DOATS.

For "improvements the the mannfacture of boats and other vescols of aloet metal. Joeeph Francis, New York.
The inveation consicts in forming the sheets of metal with mouldinge or beade in suitable pleces to take up the surplus motal, when the sand plaves are preseod into form, by means of projections on the die and correspondiag depresaions on the matrix, or concave mould, which gather up the metal and provent wriakles around batween the upper and lower paris of the boul, $s 0$ as to present a smooth surface, and also in forming a recess or bed for the gonwale, which holds it in place and provents its getuing knooked down. A fanch around the atem and stern posts, and along the line of keel, is also added, which talkes ap the eurplum metal there, and forms the keel, and stem and stern pouts.

REGISTER OF NEW PATENTS.

If addutional information be required respecting any patent, it mey be oblained at the office of this Joarnal.

moLLING LRON EARS.

Thomas Howard, of the King and Queem Iron Works, Rotherbithe, iron manufacturer, for "Inyprovenants in rolliag tron bart for mapenaion bridgen and of her purposes."-Granted October 6, 1845 ; Earolled April 6, 1846.
F. 1.

Fg. 2.
The improvementa consict in a method of rolling wrought-ima bert with beads, or increased breadthe thereon, in one ontire pioce, so as to avoid the uncertain and insecure process of welding such heads on to the barn, particularly when aubjected to great strain or temaion, sa in sampention-bridges, and other worke requiring similar bers. To effeot this, the alab fagsor or shingle from which the bar is to be produced, is heated is a formate and pased througt grooved or otber rollers in the ordingry way, to form an clongeted slab. This slab is then carfed to what are termed heeding rollers, having enlarged parte or collars apon them, between which the siab is pasad edge firt, or breadth waya, at often mis neceasery, and which proidvoes the form required on the slab a, fis. 1, wblle the intermediate part of the shab remaine incompremed by the rollen, which are of len diametor where this latter part pases between tbem. The alab is then elongated by pinin or finishing rollers of ordinary construction to the finished bar or loongth and thicknes required, as shown at 6 , fis. 2. When the heads are inteended to be of the same thicknen at the other part of the bar, they shoald ovet from the heading rollers enficiently thick to receive some preseare by the fininhing rollors, due allownace being made for the elongation, particulariy when the bars are to be employed in anspension-bridges, in order to prodece the grain or fibre of the iron in enoen direction around the holee made ia such heads, when completed by eny ordinary means. A view of the beading rollers preferred is shown in tig. 3, sud when the bars are large, it is reoned mended that these rollera have given to them a to and fro or reverniog motion, by means of known mechinery for moh parposes, in order to expodit the rolling out of the headr in conjunction with the other operations, asd to reader a second heatlag of the alib unnecentary.

mabinat marra

 October 6, 1845 ; Brolled April 6, 1846.

The in rantion comsiats in so conatructing rail for railways, that the wheels of the locomotive engines may ran on wood, and the wheels of the railway carriages may ren on metal, as shown in the annexed Agure: 's is a rail of wood armed with iron b, on the inner edge, c the wheel of a locomotive, and d the wheel of a carriage. The wheels of the locomotive engine being thus removed from ofr the metal rail will not be so limble to slip, particutarly in damp weather, as has been heretofore the ceac, when the locomotive engines and railway carriages of the train all run on the same metal rails.

TEERME APPABATES.

Romert Crane, ship's painter, and Aneyardez Pranzs, ship's smith, beth of Newburgh, Eifeshire, for "Improwamante Atouring veashe."Granted October 2, 1845; Enrolled April 2, 1846.

The improveruente relote to en epperatue arranged asbown in the anmosed engravings. Fig. I is a side view, and fig. 2 a plan. a is the steering

Whad fired on one end of an anin $b_{\text {, }}$ on the otber ond in a chain when of Which by moans of a chrin tranofers the aotion to another amall obait whed d_{1} fixed on an axis e, with an endlesn cerem f; that tales into the mo. tive If fxed on the head of the rodder. The axis a taras oa beariget, which an formed with cort or of her dinatic subatance placed at the carls, to that any sedden movement of the exin endwie woeid be eomateracted by the dettic packing. For the porpote of hooping the chain at all timat tight.

OAS APPA MTESG

Himect Fanrcis, of Wardour-street, London, civil engineer, for * Immememale the manuecture of Gai"-Granted Oct 5,1845; Burolled Apil $2,1846$.

2ta mparatus consiota of en ondinay retort, maperted ol a perforated tila flaell over a fureace; the opening in the tile allow the boat to pasi Suely to the retort, and at the meter tione forn a completo mpport. Thit

 olined surfaces on the rim, and is gronnd to the mouth piece, 10 that when the door is preseed close by means of a key that turns it slightly round ender fred lags, it will be ges tight. The ges, me it is made in the retort, asconds by a pipe th the front, and eater into a bydranic main or vensel placed Within a lerger veasel fixed on the top of the brick.work over the retort ; the larger or outer vesuel receives the tar and ammoniacal liquor as it fows over from the inner compertment, and at the same time forms the tank for those materials. It is the combination of this apparatus in one vesual thet congtitater the third improvemant clamed. The gas pases from this inner remel or bydralic main by a pipe to a condenser, consiating of a coil of pipe or worm placed in the tank of the gusometer; by these means, only ove veasel of water is med instead of two apparatus, as heretofore, for the condenser and gasometer; this constitutes the fourth claim. After the gat hed pased through the womm condenser, it then pates into the purifying apparatua, consinting of a vessel divided into two compartmenti, and to arTraged that wet and dry lime parifying cen be adopted in the same veasel ; Shis combination forms the ifth chaim. From this vessel the gat passes back sinte the gesompter, and thenae to the formars. Io prevent finp prume of

Gred to the inside of the tep of the papmener, and at the other ead of the chain there is an inverted cep, which elowes the orifice of a pipe atanding ap in tha lower part of the gasometer; the upper pert of the pipe jast exures above the water, so that when the cap in down it enters the water and come a water valve; when the gasometer rimes beyond a certain poiat, the onp in
 intance. This velur formes the airth dhim.

cationgy motm

 Novenber 2, 1845 ; Enrelied May 2, 1846.

The following is very nearly word for word of the apecification of this invention, which is anid to "consist in constructing chimney pots in anch manner that each pot consinta of a donble tabe, one portion stiding gana the other, and capable of being fixed to any deslied beight by the aid of thomb screws and nats, or other convenient means." The pota may bo eometrected of zinc or other suitabie material. The advantages aring from the eppliestion of these improved chimney pots are stated to be very greet, inpmerh as it gives the power of increasing the dranght of the chinaney hy finemaint the height. The inventor claims the conatracting of chimeney pote to slide one opon another in the manner described.

sHip muildina.

James Boydell, Jun., of Oak Farm Forts, mear Dedley, inean mater, for "improvements in building shipt and other oweh." -Granted November 17, 1845; Enrolled May 17, 1846 .
The firnt part of this invention rolaten to a mode of bailitng shipe and other veasols with iron and wood, and secondty, to brilding vemels with iron. Pig. 1 show \& sectional plan of portion of the side of a veesel come structed according to the first part of this invention, in which a a repreatent the iren ribe of the vemel en the inser odges of which is straly fred, 1
 the vemel which in aftervinds coverod with oopper in the ording gamene

Fis. 1.

Fis. 2.
the speot between the plaring $e c$, and platen of irch $b b_{\text {, }}$ in silled wint timber marked with the letiers id the grain of amch pieces of timber at planks being in a direction fore and aft of the veasel. Fig. 2 ohows aneotional plan of portion of the side of a veasel constructed according to the second part of this invention, is which a repruents plates forming the sides of the preel, fove of the ribe of the vesul having a groove throaghontits entire lengh. The edgon or osde α the plates are beot of right angien 28 m to epter the greove, and are seented therein by means of a wrodge-formed ber go the wholo being firaly hold together by mans of keys 4, whict pets through boles in the rib, edges of the plate, and bar or wedge, at anown in dotted linen.

ATMOSPEEEIC ENORNES.

Josepa Ricuand Atra, of Walton, near Wakefield, of Torishire, eaphneer, for "inprovementa is afmophleric engimes."-Granted November 4.f 1845; Farolled May 4, 1846.

Thin inomtion concint in the epplication of wied power, at the first moves h the following mamacr. Four or move ain ase to be attachod to athafty which shaft is intended to grve motina to two farce punpt for the pmipose of oencprescias atmocepherio air inte a large vomel or vessels, denorimeted rocelvorn, which gay be providod minh a mefety valve for provesting eceident. From thin venal thene in to be a fine leeding to a minor receiver lixed upor Ute omrtinge of a lepormotion, the pire to be capeble of boing conmected and
 fores whan reacina the compremed ir in to be dimitted lato the working

 into eltoet.

COMBLNTNG ETETE AND MON.

Cearles Sandzemon, of Weat-itreet, Sheffeld, ateel manufacturer, for ${ }^{4}$ hanppovements in combining steel and iron inco bars for tyree for wheek, and for other purposes."-Granted Nov. 4, 1845; Enrolled May 4, 1845.

In carrying out this invention it in proposed to take iron which has been manafactured iuto a bloom in the usual way and of ang required form, and pass the same through rollert suitably formed for making a cavity in the iron, which is afterwards to be filled op with liquid ateel in the following manoer. The bloom when in a hot state is to be passed between rollers or hammers, so as to form an indentation or hollow sufficiently large to contain the liquid steel intended to be incorporated with the iron as shown at fig. 1, in which a representa the bloom, having an hollow formed in one of its sides, which is to be covered over by a thin plate of iron, 6 , welded to the two edges of the bloom, so as to form a sort of tube, into which is to be poured the melted steel; the bloom is then worked ap into the form required by the naual process of rolling or compressing, when the steel will be funad to be anited with the iron in the place required. In mannfactaring roll. ers, piston-rods, mandrels, sce., the inventor takes a thin wrought-iron case or cylinder of about $\frac{1}{18}$ of an inch thick, the internal diameter being equal to the diameter of steel intend-

ed to be manofectured; within this cylinder is placed a rod of iron so at to form a sort of core, beving an annalar space between the iron and internal diameter of the ease, equal to the thickness of steel intended to be cast or incorporated with the iron. The bar of iron being placed within the tabe, and the same fixed in vertical potition, with the lower end closed; the melted steel is poared into the annaler space, to as to surround the bar of iron which forms a sort of core. The whole is then manufactured in the uaual way.

For the purpose of melting the steel economically, the inventor describes and claims as his invention a pecaliar form of furnace (fig. 2), which shows a sectional elevation, fig. 3 being a plan; a represents the body of the fursece, luilt of fire brick; b are three crucibles for containing the steel to be melted; c is a blast pipe, provided with a stop-cock, and is made to enter the lower port of the furnace; f are doors which can be opened for the purpose of clearing out the furnace; g is the flue for carrying off the products of comhuation, and is provided with a valve at h. The air from the blast pipe centers a chamber, from which it paseen throngh holes, i, into the fornace.

The inventor claims the mode of manafactaring steel as described, and also the application of a thin coating of iron, which protecta the ateel from Fiojury during the subsequent procese of manufacture.

pROPELLING VEBSELS.

Steprese R. Panegurat, of Liverpool, machinist, for "a method of spopeliting vesele."—Granted Nov. 4, 1845 ; Rnrolled May 4, 1846.

This invention consiats simply in the application of seven, more or leas, npright propellers on each wide of the vestol. Fig. 1 shows one aide of the

Feacel, with an end viaw of one of the propellers, and the ponition of the
 remainder, which are enclosed in an iron case haring circular recesces somewhat larger in diameter than the diameter of the propeller, one of which is shown in elevation at fig. 2 . In fge 1 it will be seen that the blade or fioats of the propellers are made to project a little beyond the case on each side of the vesuel, and in order to protect them from lajury by coming in contect with other vessels, a strong wroden beam, ahown in dotted lines, is affied to the casing to as to project a little beyond the Inats of the propellers, whicb are to be driven by atrapa or other conveniant means by the engines on board.

mailwat caginages.

Roeemt Miller Beandling, of Low Conforth, Northumberlead, Eege for "Improtements in raihoay and reihocy carriages for the securily and convenience of the pubbic."-Granted October 31, 1845 ; Bprolled April 30, 1846.

This invention is said in the first place to consist in a mode of keeping the wheels of the carriages opon the rails hy the application of counteracting pressares, and by means that do not cause any shocks. Secondly, in constructing the machinery by means of which the railway trains are firmily attached to or released from the rope which draws them. Thirdly, in eanaing the trains to pasa apon the sarface without any obatruction to the nanal traffic along the highways; and fourthly, in conveying the machine and rope below the surface, and also in a new mode of connecting the tractive power to the ropes used in railways. The firat part of this invention consiats in the application of an additional ruil on each side of the line of rails, as shown in the accompanying oketch, in which a a represent the additional railh, having projecting ribs at right angles to the raile, on the underside of these rails there is fixed the eegment or portion of a rail; $\mathbf{\$} \boldsymbol{b}$ is a piece of timber

firmly atteched to the framing of the carriage, the ends of which are made to pass underneath the projecting parts of the rails a a, preventing the carriage from getting of the line, "without producing any thock," Which we very mach question. The remaining portion of this invention appears to be a pack of nonsence, the drawinga and description of which are very imperfoct, indeed so much to that it in next to impossible to understand them.

arresting railway camilages.

Drleympla Crawford, of Birmingham, for "eertain improwemente in the meons of, or machinery for arresting the progress of railway carriages and trains."-Granted October 31, 1845 ; Enrolled April 31, 1846.

The firat part of this invention relatea to a mode of working tbe breaks, and consiats in the application of a cylinder fixed in a horizontal position on the top of one of the carriages. This cylinder is provided with a piston and piston rod passing through astuffing box in the osual manner at each end of the cylinder there is a stop-cock. To the piston rod is attached a chain, the opposite end of which pases round a palley, fixed npon a short vertical shaft this thaft gives motion by means of two spur wheels to a vertical shaft, the lower end of which extends to the nuderside of the carriage framing, which by a pecoliar arrangement of mechanism causes the breaks of the several carriages to be brought into action in the following manner. Soppose the piston to be at the bottom or farther end of the cylinder, the atop-cock at that end is closed, and the cock at the opposite end, opened the piston, is there drawn by means of the chain and handle to the opposite end of the cylinder the consequence is that a vacunm will be formed in the cylinder, and a pressure oxerted on the piston in proportion to its area, botb cocks are then closed, and the mechanism for withdrawing the piston is pat in gear with the vertical shaft which gives motion to the breaks. It will therefore be seen that when it is required to pat the breaks into action it it only uecessary to open the stop-cock at the near end of the cylinder, when air will be admitted to the egliader, the pressure of which apon the piston will be transmitted in the manner describrd to the breaks. For the purpose of opening the stopcock a chain or rope is attached to the lever, and orteada the whole leagth, of the train, on as to be under the control of the engine driver, or any of the guards upon the train. Another mode of working the breaks is shown in the annexed diagram. The top of the earriage there in a bant lover a, mov-

ing upon a fired centre at a, b in a henvy woight mounted upon wheels ad enpported by the lover en', c in a chnin extending along the carringe of the
trife to any convenient part, and is worked by means of a winch or handle, 20 that by drawing the weight along the lever $a a^{\prime}$ to the opposite end to that where the woight is nhown, the end a of the lever a a^{\prime} wonld be preased down when the breaks $d d$ will be brought into action by the arrangement of levers shown in the diagram which will be anderstood withont further deacription. Another part of this invention consists in facing that part of the break which comes in contact with the wheel, with a cating or covering of wood, having a number of conical holes which are to be filled with chalk or a mixture of asand gravel, asphalt, or other attritive material. The inventor also proposes to attach to the back of the break a vessel contairing a liquid for the parpose of keoping the break moist, and carrying off the heat.

JUNCTION OF THE BROAD AND NARROW GAUGES

The following is a description of a plan patented by Messra. Anslin and Quick, for obviating the difficulties of diversity of gauges. It consists merely in the application of additional sets of wheels to each r.xle of the emriages, so that the same carriages may travel with equal facility both on the broad and narrow gauges, and pass from one to the other without stoppage or inconvenience of may kind. Fig. 1 is a section of a wagon,

Mr. 2.
 and fg . 8 of a carriage provided with the double sets of wheels. The locomotives of course would not require the proposed alleralion, as each line would possess its own establishment of engines which would be changed at the break of gauge. On lines of uniform gauges a similar chenge of engines usnally takes place every forty or fifty miles, without the least inconvenience to the passengers.

The carriages employed for the purpose would be of narrow gauge dimensions, the axles being lengthened sufficiently to receive the additional wheels. The axle bearings would be most conveniently situated between the wheela on either side, the grease or labricating box being so placed as to be readily accessible between the spokes of the outer wheels. As the steps of the garrow gange carriages now project invariably beyond the broad gauge dimensions; the additional
Theels would involve no alteration whatever of bridges, tunnels, or even the station platforms of the narrow gange lines. The only alteration required, throughout the works, for the uninterrupted passage of these carriages, would be an addition to the rails, at the crossings, to sidings, to allow the fanges of the wheels that are not travelling on the rails to pass through. It would be necessary at crossings to make two openings instead of one in each rail which is crossed, so that both sets of wheels might. At the junction of the grages nothing more is requisite than that the sets of rails should overlap for a few feet. Fig. 8 represents the means of passing from gange to the other.

The inventors calculate that the 1 teration of the crossings would at the utmost not exceed 25l. each, so that the cost on this bead for a long line of railway would not amount to 10001 . In the case of a wheel breaking or a train getting off the rails, additional security would result from the extra wheels, as tending to preserve the car riages from uptetting and preventing their ranning entirely off the railvay The proposed invention has certainly the merit of simplicity, and it is to be regretted that the Gange Commisaioners had not the opportunity of examiaing it. It is certainly much superior to the plan of shifting carriages from frames with narrow genge wheels to frames with broad gauge wheels; an operation which must always produce delay besides lessening the seearity of the carriages. The telescopic axles are also liable to the objectioa of insecurity. The only danger from the new plan would arise from the accidental obstruction of the additional set of wheels by obstacles which did not lie across the rails. The additional dead weight would also be an objection of some importance. We can acarcely regard the invention as anything but a temporary expedient, but we are inclined to consider it much superior to those wbich have been hitherto proposed. The double wheels would only be required for those carriages which were intended for through trafic.

The Nelson Monument is once more in progress lowards completion, the bricklagers are at work forming the foundations for the fights of steps and stoce bases.

DAMPNESS IN BUILDINGS.

(Translated from the Magazin Pittoresque) ${ }^{2}$
Dampness penetrates into the lowest floor of baildings either from the soil itself or by means of the foundation walls; it frequently arises also from rain beating on the surface of the exterior walls.
The influence of the different censes of dampness varies according to the nature of the soil or climate, the aspect in which the houses are built, the malerials employed in their construction, and the different modes of construction. To get rid of homidity in the lowest story, it is ordiasrily supposed, that all that is required is to elevate the foundations withia the building above the level of the external soil; but if no other precautions were employed, this super-elevation would not diminish the dampaess which rises from the earth itself, and that from the walls would be very imperfectly remedied, supposing the buildings constracted without cellars:

Among the numerous bad consequences of dampness we most reckon as the principal its unhealthiness, and its destructive effect on almost every thing snbjected to its action; it canses plaster to fall, ceilings and floors to decry, paint to peel off, paper to become rotten : furniture, pictures and books are rapidly injured by it, and even the materials of the walle themselves andergo a gradual alteration which diminishes their solidity.

A constant moisture is not however necessarily destructive to buildings bailt of stone : stones laid in the ground although coustantly immersed in water, will remain uninjured; althongh this will not be the case where the stone is exposed by turns to dryness, moisture and frost.

It is a common expression that damp always rises : and it might thence be supposed that moisture, in order to affect a hygrometrio body, mast come from below it, whereas in reality moistare is also diffused downwards, horizontally, and in every other direction. Now the materials ordinarily employed in building, wood, brick, rubble, and stone of overy kind, inoluding even marble and granite, are more or less hygrometric; that is to say, if carefully weighed after having been immersed in wetef, are fonnd to be heavier than they were when completely dry.? It is there* fore clear that the opposition which the nature of the materials offers to the progress of moisture is much less than is commonly supposed.

Inefficacy of the ordinary remedies.

Till lately attention has been confined to the means of remedying dampness in buildings after they have been constructed; precautions have seldom been taken to prevent it in the first instance. Recoarse is geaerally had to cements, plasters, and paint, applied to the interior surfaces of the walls so as to substitute by means of a body supposed to be imperneable, in dry surface for one more or less humid. Without desiring to analyse the qualities of the plasters usually employed, we do not hesitate to tay that these various compositions, not only do not prevent, bat do not evet diminish, the real cause of the evil. The moisture which has peootrated through the walls is an agent of which the operation is continuong, and cannot bo stopped. Its action cannot be diminished except by the action of air. The pretended hydrofuge cements merely diaguise the evil for a certain period; they are even liable in many cases to the grave objection of diminishing the chances of absorption, and instead of helping to dry the building, tend to retain its moisture.

It is then the firat cause of the evil which must be attacked. The only nseful means are those which prevent the moisture from penetrating into the walls of the building, for when once it has eutered them it is aimost impossible to remove it.

Means of preventing dampuess in the construction of buildings.

With respect to the dampoess arising from the soil, the best means of preventing it is by interposing at a certain height some impermeable substance which will prevent the moistore passing beyond it. The ouly substances of this kind are lead, bituminons or resinous cements, and certain kiads of mortar. ${ }^{\text {a }}$
The interposition of a plate of lead or a layer of some bituminous sabstance in the thickness of the wall has been already tried with succesa, and is found to stop the progress of the moisture absorbed by the lower

[^29]portion of the wall. Ihis pieto or lyyer cheald te a litule above the internal hovel of the foundatioas.

This method, however, though effomoious in resiotiog the damppess arising from the ground, does not prevent the effect which the humidity of the atmphere prodnces on the exterior surface of the wrlle in their lower part. In ordinary boildings wo may point out as an excellent preservative against atmospheric moisture, a revetement of fag stones placed against the extornal face of the wall, and reaching to about a yard above the ground. If tie forndations of the walls be of good limestone or grit-stone, this revetement will not be necessary. It is well known that in the lower parts of malls to a cortain height above the ground, the mortar of hydranlic lime shonid alone be ased, and that when there are means of resting the foundafions on an impermeable concrete, the best effecte may be anticipated.
The precantions, then, to be taken against homidity in the walls are theme-a fonndation on hydranlic cement, the emplosment of hydralic mortar in the lower parts of the building, the use of calcareous stonet or revetement built against the walle, and the interposition of an impermeable mbetance through the whole thickness of the walls between the exterior and iaterior levels of the soil.

ATMOSPHERIC RAIEWAY.

Sik-l think your correspondent S. T. is labonring under a mistake when he apeaks of monthly attacks on the atmospheric syatem. The comgaricon of theory and experiment shows that the development of the latent heat of air, during its andden compression in the pump, canses a small and mimpartant loss when the degree of rarefaction does not exceed the limits anigned by the patentecs.
The loas by leakage depends on the degree of perfection in the machinery, and remains to be determined by experiment.
The regularity with which the Dalkey lise has acted during the past sear, as well as the high velucities attained on the Croydon line, are very satisfuctory. The failioge of the engines and pumpe in the latter ease heve been frequent, but few will be inclined to doubt the possibility of surmount. ing this difficulty. After examining all the tables and writiogs that I can角d respecting the practical working of a very defective example, I can see no good reason to donbt the capabilities of the system. One fair trial of the conatancy of the systom will be of more value than volumes written on the arbject. In the mean time it is very desirable that the opponents of the aystem, should patiently await the resolt of the experiment that is now bang made, for they may rest assured that the case will be decided on its ann marits, and quite irrespectively of their assertions. In the mean time it will be remembered that the losses inherent in the system are very trifing.

4 fow yats ago it was belioved that the adhesion of the driving wheels - a lopometive to the rail was insuficiant to eneble it to draw its load and maneroms valking machives wore patented. A simple trial would hare enoed mond time and money. It will be better to teat the constancy of the trocepharic aystem rather than trast to doubts and surmises.

It has lately been asserted that the power of the locomolive is searly anble of the Croydoa atmopheric. However, if the greatest evaporating pewer of any leconotive onginc bitherto constracted be combined with any ogheder and driving wheels, in actuel wee, I think it will be found that at velocities of 60 to 70 miles per hour, the efficient power of locomotives falle camidarably bolow that of the Croydon Atmospheric.

I remain, Sir
Your obedient servant,
F. Baskporth.

Somper has been chosen arohiteot of the new Pictwre Gallery at Dree. den. At Berlin, the king has ordered the ereetion of a vast cathedral; the apines are to be 300 feet high. The new Campo Santo, which will be cmaneted with the cathedral and palace by a collonade, will be a large egen square, of which the sides will be 180 feet loag. There whl be a comerel areade or ambulatory all roond the square; and the inner walls - this arcade with be covered with fresooes from the deages of Cornalias.

ROYAL INSTINUTE OF BRITISR AROHITECIS.

May 11.-Mn Tits, V.P. in"the Chair.

Mr. Scoles, honorary seerotary, rond a lettor from Mr. Myen, detal Iarn, contradietiog the reports which were current a short time ago, the 10 dome of St. Peter's was in dagger. Seme repairs had been zade het nata mer, one or two of the string courtee had beap reatored, and thin had pive bably given rise to the assertion. A contradiction of the report appeared immedintely after the statement wes made. With reference to the fact the there had long been numerous cracks in the dome, the chairman reminded the meeting of an anecdote, respecting some fgures orected in the cathedral. the architect, on being asked his opinion of them, asid there was too moch fintter in the drapery. "That $;$ " replied the sealptor, "ia caneed by the wind through the cracke you have made in the dome:"

A paper by M. De Lasseux, on a preparation of plaster of Puris, propesed to be used in England as an improvement on that now sold. In Frenes, plaster is employed extenaively for external work, and endures well ; wherees that in England will not stend the weather. The huildinge in the Chares Elyaces, erected on lease for forty years, are mainly constructed of piater. The Circus there, model in it way, is chiefly of iron and plaster. Tte Eaglinh plater-atone might be called a sulphate of lime; and he conaidarad it was the prosence of a mall quantity of sulphuric acid in the plaster which prevented its endarance. The plaster, for which he had establiahed a depat in Engiand, might be usod externally, a in France; and, moreover, was very moderate in cost, being 30s. per ton. As a guide, the paper stated, twenty-aix pounds of the plaster, conting 41d., would cover one yard of wall: and thirty-two pounds, the cost of which would be 51 d ., a yard of cellicg-

Mr. Bellamy observed that the price at which it was stated in the foregoing paper that the plester could be supplied, was most materially lower than that of Buglish plaster. He wished, however, to know whether the price mentioned included the import duty. The present cost of plaster in England was 32. 10s. per ton for the cosres, and 4i. St. for the fine; so thet the differenco between this and the plaster introduced by M. de Lassaur wes very great.
M. Dr Lassadx replied, in French, that there wis no duty on plaster imported into Rngland. He alluded also to the valuable property of this plaster when used as a coating to iron, of preventing oxidation. The plaster was thoronghly dried in eight daje

Mr. Trrz remarked on the very oxtensive use of plater for external decoration in Paris, which was a principal canse of the difference between the appearance of the streets of that city and those of London. A great ar. culty in introducing cement into general use here was its shrinking the thas drying, and this difficulty was especially felt when the material was employed for "pointing," or filling crevices. Almost every kind of cement, ezot, plater of Paris, diminished in bulk in setting, and consequently was apt to fall out when used in pointing. Plester of Paris, however, oxpanded in ze ting : it probably contained a portion of cerbonate of iron as well ats sulphat of iron. A remarkable illuatration of this property of expansion we acoril ed by the method in which party-wall were usually bnilt in Paris. They were never connected with the external walls, as in this country, but were separated from them by a contiderable interval. The reston of this weth that the party.walls being built of rabble, it was neceacary to make concin.ahle allowance for their expansion in drying. Whea used for external monldiags, it was uanal in Paris to protect the upper surface of the pinter. which was most exposed to the weather, with thin plates of rinc.

Mr. Poxntra thought that the great difference between the climates of Londen and Paris mant have a great effect on the durability of theee mealdings when used externally. Wooden blinds which, when exposed to the eir woald not late more then a few years in Lomdon, would in Paris remin cound almont as long as the homes themelves. Canvas blinde, in Rogiand, generally perished in two or three jears. He considered that this angh decay was owing not to much to the actual quantity of rain which fall bes year, at to the general humidity of the stmosphere. This was pertienindy obsorvable in the vise, a plant which, it was well known, endarad a deype of cold far more intense than it was ever cobjected to in Rogised, sed yot bever fourished in this climate on account of its constant moineme.

Mr. Bellay remarked that b had obeerved, in Nottinghamehire, two instances of honses being throwi down from apmon mot haviat butil left ine the expansion of the party-walla when brilt with plater.

Mr. TIIE did not think the barsidity of the air bero was a nalicent ame for the explanation of the rapid decay of planter. The climetes of ceare parts of Switzerland and Bavaria were fully, an banid as ewr own, and yot these effect were not observable there. At Freiburg, for imeteme, Mht tin was very much nsed ezternally without decaying or becoming tarnished. The angles of the spires of charches were frequently covered with sheets of tin, which, when the san shone on it, looked as bright as silrer. In the same way, tin was used for the beads of water pipes and other parpoese with equally good effect. In Canada, alco, the same thing wai obearnablo. and it could hardiy be disputed tbat the climate of mony parts beth of On nada and Switzerland was quite as damp as that of London. He thonght there muat be another agent at work to produce the destructive effect alluded to ; he wat, however, unable to indieate the true canse. It was well known

 Ant it wae ditcutt to dotect is by chemicul analyain. He had enquired of Herle aeld in the etmowhere tad upon baiding matorials.

Mr. Golvia clluded to the moemity of meelng that work of every kind whe perfeetly dry before the cement was laid on. He had recently had oocmion to rio Jardan's cement, and had, a he thonght, mad sufficient precutalon in waitiag till the work was dry. Owing, however, to the alight pasatity of mointore whieh it rulatied, the plater all fell off.

Mr. Trfil observed, that all cemeats of this clan, begianing with matie, were, chemically spealdig, nothing more than very coarme paints, mised up with oil or grease. The disadvantagea attonding this class of eompositions mas that the sun and wind dimipated the fatty metter or ofl with which they were combined, and the cements soon decsyed. The Portisnd-atone cement, which way, in fact, the hydraulic cement of the Freach, wat an excellont material, and was in almont crivernal use in France. It wat absolately neceseary that this material should be mixed with a certain proportion of clay; it wha also of the grentent importapee that after it had once been "gaged," it shonid never be disturbed or touched till it wes thoroughly hardened. Unless this precantion were strietly observed, the permanence of the work coald never be enanred. It wha also a good raie that were patent cemeats were need, the patentees ahould be required to use it with their own workwen, and not with strangers, who were ignorant of its ature.

Mr. Pormrize referred to the ase which Mr. Nash had made of the oily cemanta in his own house in Hegent-atreet, at a proof of the dieadrastagea to which those comporitions were Vable. It might be supposed that the cement being applied to the arehitect's own house, the work would be dowe is the best manner poasible. It was foand, however, that the oll soon fried ont, and the surface became discoloured with the well-known stains resembling the lines in maps.

Mr. Thris remarked that the Porthand-atone cement was, in fact, an artificial initation of the nodules of lime, from which Roman cement it prepared. The nodules are found in great abandance on the coast near Harwich. They fill from the cliff, in which they are imbedded, on to the beach, and are there picked up. They are compact masses of carbonate of lime containing small quantity of iron, to which latter subatance they owe their dart brown colour. The chaxs hychanalliwe was precieely the same subsuace, withont the colour derived from the iron. He thooght, however, that the iron added materially to the straggth of the coment when hardesed, and that for this reasen the Roman cement would never be equalled in streagth by any artifictal comporition. Attinson's cement mat made of nodulat in which the iron what present ; the advantage of this and the bydranlic lime was, that they naturally ponsenced a goed colour and did not require paintiog.

SOCIETY OF ABTS, LONDON.

April 29.-W. F. Coors, Baq., V.P., in the Chair.

The trat commnnication was "On Mr. Godeen's Patent Furnace for conning ambe and ecomomining fuel" By W. Spence, Biq. The general Anderes of the furnace and the parts of which it is composed way be tous deacribed - A box with a moveable bottom, or feed-plate for the fuel, and itting ite internal surfece, is substituted for the ordinary bars in the middle of the farmeen, and it capable of being raised or lowered within the box or chamber, and which is made to occupy a position in the ash-pit below the furnese. The foel is fed on the plate while in its lowered position; and Ehen raised it is introduced into the centre of the fire, by which means the abie evolved from the freah fuel is conammed. In order, however, to rendee noha a mode of anpplying fual available for ite purpose, it is necescary that the time when the foed-plate in the centre of the furnace is to be lowned to recolva ite charge, the portion of burning fuel reating thereon should be apported: for thim purpose two plates of metal are made to enter the furnee, one on each cide, and meet in the centre. Again, it is requisite for the dae promotion of the draft into the furnece, that inasmuch as the ceatre appost of the foel consists of a dead plate, that plate should be kept a fitio below the fire bers, and that a sories of oblique bars should be fermed, and extend from the ordinary fire bare to the plate. A model and hagrase of the invention were exhibited, and a lengthened disenesion took place atorito teritu.

The recond commaniention was "On a Machine to Regioter the Velocily of Reimary Traim when in motion," by M. Ricasod, Bsq. The machide comenta of two parta: ose recaives motion from the carriage, the other by woek work. They aro arranged in the following manner:-an excentric is pleed an the axle of the carriage, and gives motion, by means of a con. mentiog rod, to a lever attsehed to the machine, which lever acto upon a rachot wheal, and is so arrauged that each revolution of the wheel of the curtiage suances the ratchet one tooth. An endless ecrow is turned on the eppadie of the ratehet wheel, and gives motion to amall toothed-wheel velow, and on the spindle of which is fixed what may be termed a lateral excentrid (us one part projects more than the other on the side of the wheel). Aguint this the short end of a horinotal laver is pressed, by means of a yring. Ae the excentric revolvea from the projectiag to the lower part, it more ine lever, and with it a pemcil fred at ite otber end, in one direction, is A raches the lowet point; when, by a apring preming opon it, it take
the opponite direction, till it reacher the highent point, when it returne again. The wheel are so arragsed, that the exceptric makes one revolution in each mile that a train travale. The doct-work fin esed to tarn a drum, rpon which a ruled paper to wround Whan the train is stoping at a otation, the pescil it stitionary, and nerks only a strolght line; but whem in motion, diagonal linee are drawn by the action of the lever ate deaction. The extreme dintene between the two points of the diagonal lines detremines the velocity at which the trin bas been travelling. Thos, the train in made, by thin apparatan, to keep a parfees register of the work dome, whinh would at all thes indicate the neglect of either the emgineer of coadreters
May 6.-Tuonas Webotex, Esq., M.A., V.P., in the Cheir.

The following commanications were read :-

1. On an Improeed Poppet Head for Twinert, by W. Evenary, Beq, The first attempt at improving the poppet head (obeerves Mr. Brerett) what to take off the point and insert a acrew earryiag a spiadle and wheel attod ap as a drill, to be driven by the overhead motion, and this he foand to ammice very well when the hole to be drilied could be brought in a lise with the drill. Haviog done this he still anticipated that he could make this partot the lathe more useful, in fact a substitute in a great measure for the mede reat. The following motion have therefore been given to the point. Itt. An upward and downwand motion to that it can be applied to all lathee. Ed. A circular motion which enablea it to be applied at any required angle ; and 3 rd , motion directly acrost the mandrl, and there is no motion but what is atrictly mechanical, as each has a scale to guide the workman in ite Several gentlemen present examined the inatrument and its arrargement and contidered it likely to prove a valuable addition to the ordinary lathe.
2. On the Ventibtion of Buildinge. By Mr. A. J. Gneen.-The paper commenced with an account of the varions plans which the author adopted for the purpose of ventilating the sick ward and other rooms of the Sudbury Union Workbouse, and it then procoeded to point out the way in which he would propose that all large buildings aboot to be erected should be built. Where a double chimaey is to be erected, he proposes that two air duet should be carried op in the atack at mear the centre as they can be got. If the chimneys are not in the centre of the side or eod of the room, the fines shork be carried to ate bring them at nearly into that ponition at ponaiblo. The linet need not be more than 14 isches by 6 or 7 inches, or 9 inches hy 9 inches, and aboald be commenced from the first floor and contianed throngh every suceesive story to the top of the chimney, in the same way at the faen for the smoke. Ope tue of the above sire would be sufficient to ventilate four or five theries, if each room required is-ralres woold recpire to be fired in the wall or ociling is conmotion with the fine. This sytam of ventilation, he considert, would be very applicable to smokisg roomen, thp rooms, eating honses, or any buildings where a large anmber of permas assembile.
3. On the Concentrated Graty of Meut. By Mr. Wamrinminm-Mhis aticle is manofactured at Sydney, New South Wales, from the carcases of outen and sheep, which are bred there for the anke of their tallow, wool, hides and boses. The value of oxen in Australis is from 15 s .1020 s ., and of sheap 15. $6 d$. to 2s. 6 d , each. During the last year the leg bones of upwaris of $\mathbf{1 0 9 , 0 0 0}$ axen were sent over to this country, the greater part of the teath of the anmas atiog ween arown away. 'lhe object of the preaent manafecture is to zender down the lean of the curcuse into a solid portable moup, ty stewing it down in its own gravy, without water, in double pans; by tedacing it in this way the water in the lower pan preventt the fre pasing through, and giving to the soup the burnt flavour wbich it has alway hitherto had. When manufactured it is sold in cakes of verious sizes, at the rate of 20. per lb . One pound of the soup is aid to be equal to 24 lb . of the beat gravy beef.

CHEMICAL SOCIETY.

April 20.-A paper was read by Messrs. Jomle and Playfair, "On the maximum deasity of water." In this the authors contended that the point of macimen density is the proper stadard at which water abould be taken as unity for the purpose of comparing specific gravilies. There are two methods for determiaing the poini of maximum density of water ; one of these being the comparison of water in its expansion with that of some other subelance the expansion of which had been already determined; the other virtually comicte in weighing watar in water, and wat pursued by Hope io his original researches on this point. The authors adopted the latter method as the one most likely to yield correct results, but altered the method of experimenting, and the nature of the apparatus employed. Their apparatus consisted of two vessels connected at the bottom by a pipe with a cock, above by an open canal. One of these veasels was made to contain water at a cemperature decidediy below that of the meximam densily, the other being above that temperalure. On opening the stopcock, a current took place from the colder vessel to the hotter, until a certain time, when the current became reverued. The rapidity and direction of the curreat was determined by hollow glass beads. The experiment was tried under varying conditions; and, as a mean of meveral series of experimente, the authors fixed $\mathbf{s 9 \cdot 1 0 1 ^ { \circ }}$ Fabr. as the point of meximum deasity, stuting that they believed this to be within theth of a degree of the trath; at all events, that it could not be dith of a degree in error.

AUST SUBPEN8ION BRIDGE.

Bre-I oberve in your namber of last month a letter signed "Francis Ciles," relating to the Anst Suspeasion Bridge, to which is appeaded a dilagram and some calcohtions respecting it. On these latter it is not my inteation at present to offer any remarks, beyond expresaing my satisfac. tion that Mr. Giles thos publicly makes known an opinion, which I before Koew he entertained, of the perfect practicability of erecting a bridge opon the suspenaion principle, suitable for railway parposes across the river Severn, between Beachley and the Anat Cliff. It is the general inference from Mr. Giles's letter to which I wish to direct attention: as I feel, though it may not be designedly intended, it is calculated to incline those who may peruse it to the impression, that the iden of erecting a bridge at this locality originated with him.

It will be found upon reference to the evidence given bofore the same Committee upon the South Wales Bill in the Session of 1805 , to which Mr. Giles refern, that I had previounly oxpressed a decided opinion upon this important subject; and that prior to this, James Walker, Esq., had made the following mention of my views in his Report to the Londe Comminaioners of the Admiralty as to the crossing the River Severn as proposed by the South Wales Railway Company, vir., "Mr. Folljames, connty surveyor of Gloncester, considers that a Suspension Bridge, 120 foet above high water maris, at the Old Ferry, or Anst Pasage, is practicable. He thinks the piers might bo placed on rocks which are bare at low water; but being particularly dangerous at some states of the tides, would have their situations defined by the piers." These viows were based upon the results of observations and sonndings taken by me at the Old Pasage lo the year 1888. Whilst ongaged upon this, I fonnd that in the year 1825, Mr. Telford, the late celebrated eugineer, wes consulted npon the improvement of the communication ecross the River Severn at the Old or Anst Passage, and the New Passage three miles to the sonthward; and though his attention at that time mas specially directed to ascertaining and reporting upon the best situations and mode of constructing landing piers for the convenience of the steam boats, the peculiar inducements and natural facilitien for the erection of a suspension bridge at the Old Passage did not escape his acote and comprebeasive observation; and thongh foreign to the subject on which he was called apon to report, so strong was his conviction of its desirableness, that he gave a most decided opinion in favour of a suspension bridge at the Anst; particularly adverting (as the rensons for so doing) to the great height of the bauks at the Old Pasage, to the fact of the bed of the river consisting wholly of solid rock, and to the circumatance that uitable materials for the work could be procured within a reasomable distance.

During the summer of last year I have been profeasionally employed by the Bristol and Liverpool Junction Railway Company to report upon this site, and the kind of bridge beat adapted for it, both as regards their proposed railway and the navigation of the river, end under their directions have prepared designs for this hridge, on one of which, the opinion expresed by James Walker, Esq. (to whom it was referred by the Admiraliy foreport as regarded the interests of the navigation), has induced the Iords Commissiuners of that Board to consent to the principle of the bridge proposed. The reports and plans have been poblished, together with the design approved by the Admiralty; of these I enclose yon copies, by which you will perceive that Mr. Gilee is not the only party whose atsention has been directed to this trols national and most important subject. I beg to remain,

Yours obediently,
Gloucester, May $25 \mathrm{th}, 1846$.
Thomas Fulljames.

Recent Prizes propused by the French Inatitute (acceasible to all gations). -Prize of Mechanics, fonnded by M. Montyon, gold medal of $\mathbf{0 0 0}$ france, for the discovery or perfecting of instraments useful in the mechanical erts, sciences, or agriculture : term of competition, April 1, 1847.-Prize of Hygicue, for the discovery of a remedy for making any art or trade less Inselubrious : term, the same. The Prite of Mechanics of last year, as Fell as the great one of 6000 francs on the application of Steam, has been adjonrned, and that on the inealabrions arts decreed to M. Chaosserat.

Espulsion of Foul Air from Mincs.-An engineer (M. Haland) has forwarded to the Academy of Sciences at Paris, a very interestiog memoir on the expulsion of fonl air from mides, pits, cellars, and similar places. It consists in the pumping of stean into places thus contaminated, which, if the foul air consists of hydrogen gas, acts merely as a forcible expeller; but if it be carbonic acid gas, the steam will also absorb that substance. As most piaces where deep excavations are now made, are near steam ensines, the pumping of steam into mines, \&cc., becomes the easier. It is to be done through elastic tubes covered with india-rubber. The inventor states, that in a deep pit, where the work had been suspended by necessity for several days, the emission of steam purified it to that extent, that the workmen were able to go down as usual.

Pablic Works in France.-A report of M. Oger has lately been distributed at the Chamber of the Freach Deputios, to be laid before the
commision appointed to examloe the bill for the onepletion of eevert public cdifices. The first of these strudures is the Pulace of the Arohiris of the reajm. The commiasion, in lamenting the mistakes and diseppointo ments to which the erection of this edifice has hitherto given rise, propoes a grant of 006,000 fraces, on condition that the atoccoes, gildiag, pod paiato inge of the origioal project shoald be replaced by cases more adapled to a depot of archives. It further alludes to the dangers of the steam engine of the Royal printing offioes being so near this invalnable collection of national records.-The Conservatory of Arta and Trades (C. dea arlat métiert) Gigares for a sum of $1,441,000$ france, which is to employed in the restoration of such portions of the edifice, which have been completed, in angmenting the number of ita halls of exhibition, and opening a pringipal entrance in the Rue Saint Martin by the purchase and demolition of two houses. - 250,000 francs is to be expended on works of the Royal Veterinary School, at Alfort; 680,000 francs at that of Lyons ; 89,000 francs at the School of Arts and Trades of Cbtlons*; 180,000 at the baild. ing of the Royal Observatory of Paris.- 180,000 francs are proposed for the Palace of the Chamber of Deputiea. The ancient chapel, says the report, is in the vorst possible state, and although used but very rarely, its restoration is desirable as a matter of publio decormen. The ofices of the secretary of atate for agricaltare and commerce require a som of 48,000 francs ; and, finally, 45,000 francs are to be expended in the demoJition of the belfry of the north tower of the charch of St . Denic, which menaces ruin.

Archeological Society of Rome.-At the anniversary lately held, Dr. Braun stated the present prospects of the great publication undertaken by the Association-the Monumenti inediti. Cavaliere Canina spole of the discovery of the eleventh mile-stone of the Via Laurentina, which has thrown much light on the position of the laorentine villa of Pliny and the city of Lanrentiom. The elacidation of some ancient inscriptions of Cora was also alluded to.

Arunich.-Independent of the great progress which ineentire art is constantly making here, the multiplying of objects of art is equally advanciag. The great engraving of Professor Amsler, after the picture of Orerbeck"Triumph of Religion in Arts,"-which wes begun foar years ago, is near its completion. Kaulbach's great picture of the destruction of Jernsslem, has also been begun by M. Charles Wasgen.

The Architectural Drawings in the late Art Exhibition of the Lodureare not much praised, as they consist mostiy of restorations, of good ap-pearance-at least on paper-of ancient, xedioval, and reaabance stractures. The only specimen of interest bearing on a practical subject is the plan for uniting the Lonvre and Tuilleries by M. Badenier, of which, the artist had already exhibited some studies in 1844 and 1845. It is, however, not probable that amidst the many plans of a really grectival nature, the French governrient will embark an immense sum in a plea, afler all, but ornamental.

French Architectural Esploration of the Island of Cyprus.-M. Mes Latrie, commissioned by the Secretary of Public Instruction fir the shove uadertaking, has addressed the following remarks to His Excellency:"Everywhere in this island I have found traces of the former awny of France. There is scarcely a town or village which does nol contain eitber a chnreb, or abbey, or castle of the Freach occupants in the Middie Ages. I have made careful tracings of the slabs best preserved of the sepuichral monuments of her once great families'; the Ibelins, Bronswick, Acc. The Golhic edifices constructed by the French in Cyprus caa be divided into two classes-military, and religious. I have especially studied io each of those the modifications which ogival architecture has andergose in Cyprus, compared with the Gothic in France at the sume period. I have ascertained the position of the principal casties and moonsleries, and laid down by the compans masy polots and locallties jmportant to medieval geography. I have also somowhat swerved into the domains of Clasia antiquity, end have discovered several inedited Greek inscriptions, asd, by the means of excavalions made at Dali, brought to light several frasments of atatuary, \&c. I have ascertained the real position of ancieat Larnaca and Citiom, the birthplace of Zeno the Stoic. In excaratiag a place near the high city of Larmaca, we have found a basalt slab of 7 feel high, $2 \frac{1}{3}$ feet broad, and 1 foot thick. It is covered with cuniform isscriptions, and the figure of a king or priest, bearing the garment of thote figures diecovered by Mr. Botta io Mesopotamia. I think this to bo t tomb, and one of the rarest monuments of the dominion of the Asayrias in Cyprus." M. Mas Latrie proposes, in fine, that some of the spechmens should be deposited in the Museum of National Antiquity at Cluns.
Model Railway in France.-It seems that Arles, the place where Romin structures 1800 years old exist in sucb perfect preservation, is proaptiag French engineers to similar exertions. The following is a short ortrated the projects for the present buildings.-Tbe viadnct of the railway of whe Durance River, will have a length of 493 metres between the abutweds, besides 20 mètres of abutment at each side, which will give it as aboolstio extension of 583 metres. Its height is to be 980 mètres, compated frow low-water mark to the level of the rails; its breadth 8 metres betwees the parapets. It is to be supported by swenty piers of 8,50 metres thick aex, combined together by iventy-one elliplic arches of 20 metres opetias. The elegnace of the piers, the gracious opening of the arcbes, and the it posing tnass of the Viaduct, will make it one of the finext structuret of
 mosey.
the whole line. After this immense st-atracture, the thing next worthy cf edmiralion is the cutting of tho rock of la Roque-an Immense mass of stone, which was to be cut through from top to boltom to the ezteot of 188 meture by 25, which jielded a mass of 42,000 cube metres of debria of rock. Especially also is to be noticed the nicety of the nineteen cottacee of the guards of the line, between Arles and the Durance. To each I little gardeu has been angexed, to employ proflably the leisure of the aran and families. Follows then, the monomenlal viaduct of the Rhone, which will connect, by the was of Tarrascon, the Avignon line with that of Bordeanx to Cette. This gigantic structure is already beguv. It is only $\mathbf{3 7 0}$ metres from the suspeosion bridge of Beaucaire; thes two of the finest and hugest modern structures will be erected at a short distance from each other. The activity on the railways in the sonth of France is now so great, that in the arrondissement of Aix alone, 1390 workmen are employed.

New Heapilal at Comstantinople.-The Rast, which, during the crusaden first established those-unknown to the ancients-institations of pablic benevolence, is it neems, reverting again to that praiseworthy praccice. A new boapital is to be erected, by the voluatary subscription of the Protestant inbabitants of the Turkish metropolis.

New Erearefions in Δ seyria.-From the head quarters of M. Laynard at Nimrud, at the embouchure of the Zab in the Tigris, the following is reported. The mound at which M. L. is digging is an artificial one, like that of Chorabad, and the rains are covered by soil; but the stratum at Niarud is lese than that of Chorsabad, so much so, that many of the besco-relievos are broken off at the upper part. The vestments of the Sgures are differen from those discovered by Butte; bat there is no doubt that the ruins are also of Assyrian origin. There are more basso-relievos of a mythological character at Nimrad, but the structare of both the palaces is the same. Here also are door-ways of colossal wiaged bulls, lioos with human heads and arms, in which they carry fowers, \&c. The nomber of inscriptions is very considerable.

Campe Santo of Berlin.-The celebrated painter, Baron Cornelius, is expected shortly in the Prussian capital, on his retorn from Rome, where bo went to compose the cartouns of the Frescocs, which have to adorn the walls of the great cemetery, which is to be erected in the neighbourhood of Berlin, similar to those of Munich and Pisa.

Safety Harbowrs in France.-The Lower House of the French Legislation has, of late, received the Report of M. Felly Réal on the above sub. ject. The Comroission, convioced that every fucility afforded to commerce will react on all other branches of public atility, has sanctioner this Report, witb rescinding only the execution of the maritime canal between the harbours of Bouc and the étang de Berne. The Commission has moreover recommended that Guvernment should employ some professional persons to study the means, by which the mouth of rivers can be made accesaible to ships during low water tide.

Directorahip of the Dresden Picture Gallery.-M. Julins Schoorr Carolsfeld, of Munich. has obtained the above situation, with which also that of a professor at the Academy of Paiding is combined. The King of Buraria has given, but reluctaully, his conseat ; the more so, as a number of Munich artists had addressed bis majesty for the sake of retaining this great artist amoggst them. As M. Schoorr has yet to paint several frescoes of the Niobelungen Song in the new roynd palace, he will not leave the Bavarian capital until the end of sumner, and will return every season vall thee great mural pictures are completed, which will occupy bim meay yearn to come.

The Iren Trade in Anstria and the Zolleerein.-All the iron to be nsed for the railroede of Austria minnt be of home conoumption, fureign metal being excloded by a heavy duty. This has advanced their forges and furseces to a great extent. But it is to be seen, whether this exclusive and pretectioniat principie will work well in the long ron.

The Bronze Slatme of Charles John, King of Sweden-has just been cant at the foundry of Monich. According to all appearance, it will be a superior work of art, and ready for being conveged in a few monthe to its destination at Norköping, in Sweden.

The Monmmealal Fountain of the Place of St. Sulpice, at Pario-will be completed this season. Fur months past, the square has been encumbered by immease blucks of stone, which have been cut for forming the immense bain of this monument.

- M. Jules de Suly, architect of the Chamber of Commons of Paris, has beea elected honarory and free member of the Imperial Academy of Fine Arta at St. Petersburg.

Mamment to the Duke of Belluno.-An enormous block of white marHe, from the quarries of Laveline (Voeges), of the weight of 10,000 kilopiames, has been of late conveged to Epinal. It is to form the beement \& the tatue of the duke, which is to be erected to bis memory at Lamarche, the litule vllage where this distinguished warrior frst maw the fictat.

Trging of Railuray Bridges.-It appears that theae atructures are not made se of for public trafic in France, until their solidity hus been tried, Dy oficial persons. Thus the elegant bridge over the Seine, at Cooroelles, bear Paris, on the Rouen line, has nadergone that ordeal, and been found completely safo.

Orgeairation of Public Worke in Algerian-The Freagh Government
has created an especial direction of Public moolle for Africh, and a nember of the Conacil of State is placed af its head. Even the name of the supreme office of pablic works is to be changed, which will henceforth be called Direction of the Iaterior and of Colonization. Chief Eagineers have been nominated for each proviace. The hydranac works of the harbour of A. giers and the service of mines in thut province, are ander the charge of especial governmont engineers.

Railroad through the Conlinent of South America.-Means have been discussed at Rio de Janciro, to connect, in the first instance, Liverpool and Para by the means of stetmboats, from which latter place miaor crafts have to ascend the Amezon river so far as Bolivia. A railroed has to treverse the Iatter conntry and to extend as far as Arica, on the shores of the South Sea. The government of Bolivis has already given its assent, to that plan, and a similar atep is expected to be taken by that of the Bra. zils.

Naw Structures at Berlin, Mach scope to the industrial exertions of the inhabitants of that capital will be afforded shortly by the constraction of the new aavigation.canal, and the boildings over tbat large area now called Köpenicker Fields. The latest news from Berlin, state that an especial commission fol carrying these plans into execution has bees appointed by the king. The plans proposed exbibit a thorough ornamental, spacious, and sterling enaemble; and amongst the pablic bulldings, new parochial churches, both Protestant and Catholic, occupy the first place. It is generally hoped that they will approech the grandeur of the new row: ligjous structores at Manicb.)

NOTES OF THE MONTH.

The first stone of a new wing of the University College, in Goweratreet, has been laid. The ceremony was performed by Lord Brougham, the president of the council.

A new story bas recently been added to the Treasury and adjacent Government offices, under the superintendence of Mr. Barry. The show sides fronting Downing-street and Parliament-street are nearly completed; the colomns are hoisted to their former position on the first floor.

An equestrian atatue of the Duke of Wellington is about to be put an the top of the triumphal arch in Piccadilly. A huge arch sopporting nothing is bad enough; but the proposed addition makes it absolutely too ridiculous. Even menbers of Parliment have been able to dedect the absurdity, and have complained of it in the Hovse of Commons. The viow of the statue will be the eract reverse of a bird's eye view : an admiriog public will have excellent opportunities of contemplatiog the horse's belly and girth, and the solem of the bero's sboes.

The evidence before the Royal Gauge Commisajoners and their report have been referred to the Board of Trade.

The Archocological Congress of France will commence on the 1st of Jone. The proceedings of the British Association for the advancement of science will commence at Southampton on the 10th of September.

Masses of iron and nickel, having all the appearance of aeorolites or falling meteoric stones, have been discovered in Siberia, at a depth of 10 metres below the arface of the earth. From the fact, bowever, that \mathbf{n} meteoric stones are found in the secondary and tertiary formations, it would seem to foliow that the phenomena of falling stones never took place till the earth assumed its present form.

The reatoration of the western part of Ely Cathedral progresses. Fearn are, however, expressed as to the atability of the octagon tower. The lanthern is of Perpendicular architecture, and a subsequent addition to the octagon, which is of much earlier date, and does not seem to have been buill of sufficient strength for sustaining the load now resting on it.

The Cathedral of Spires is to be adornad with frescoes at the cost of the King of Beraria.

A great black stove has been placed in the choir of Bristol cathedral, vith a black chimney moonting gtraight op to the vaolted roof, which is pierced to make a passage for the smoke.

LIET OF DREW RATENTED.

(From Mearrs. Roberison': List.)
GMaNTED in ENGLAND YROM APEIL 28, 1846, To may $26,1846$.

Sis Monthe allowed for Burolment, malose otherwiee espresech.

 In clocks or time Keepers." (Belng a commantetion.)-8enied April 28.
Benuel Pick ford, of Etockport. fians dealer, tor "certaln Improved apparaters appltet ble to culy or reapil for premerring ale and other fermented llquors, and aleo tor raiding or forcing the same for draught. ${ }^{m}-4$ pil 28.
Isace Henry Robert Mots, of 76, Strand, for "certain Improraments In musieal inntrylase Henr liobert wherebs they are repdered much more dormble, mach more cmpable of redaleg the injurfous and destructive effect of the tomophere, (especially of extreme eftimater)
 longer perlod."-дprit 73.

 2yin
 perotone and belldiags．＂（Belnis a commantention．）－April 23 ．
Willim Matber，of Salford，pear Maxchester，and Colln Mither，of the aame piace，

 of virit
Joeph Droglas，of Newcistienpon．Tyue，rope－makes，for＂Improvements in the

 $-\operatorname{Aprl} 30$ ．
 ＂Yyprorements th the production of magnetic electricty．＂（Being a communlention：）－ 4 eqH 20.
Thomas Itambert，of New Cut，Biccitilars，bram foupder，and Chates Fullaca Rowley
 dative

 zit，eotion，and linen，and other fivites ${ }^{n}$－Mny 2.
Oeorye Pellisor，of Finsbury－place，for ${ }^{\text {w }}$ troprovements in the constraction of outaide

Whliam Longahaw，of Manchester，far＂certaln Improvemeate fa machinery or appa－ ratus for spinniag aod donbllog cotton and other fibrous substances，＂一May 5 ，

Peter Carmichat，manager for Baxter Brothers and Co．，Dundee，for＂Improvemeata In heckllag or dreaing fiex，hemp，and other Ebroas mbatances，and improvementh in mechinery for rubblag atretehing，and equalising the breadth of cloth made from sax， herop，jote，and other fibruas mabences．＂－Mey 5 ．
 tablen．＂－May 5.

Afred Vincent Newton，of Chancery－lape，mechanical dreugthomen，for wcepteln Is－
 Willian 6arch，of Birmingham，for＂certaln Improvementis in machiver，to be ared If panfing candluctcly pans，and various otber articies which are orualif produced wholly
 prposes．＂－Mey 5.
Whilam Fiddiof，of Wigmore－itreet，geacleman，for＂an Improved procens for pros wing the invour of coilee and cocot，of of any preparations thereof，from the enecte of

 ＂vithaln Inpperemente in ithean oplinee，marine，statlonary，and locomotive；and to mpachlopry and apparatas connected therewith，parte of which are aloo applleabie to regu lathg the fow of fuids generally．＂－Mry 7.
Edertird Shepard，of Trafflgar－tquare，Entiewan，for＂certaln Improvemerion in gatuen doore，shatters，and olher articies of the hise comptraction，and in factenions to be atiach al thertolon－May 7.
Mark Rollingon，of Brieriy－hll，near Dodidy，engigeer，for＂certinin Improvementa in texm－engines．＂－May 7
 H
 May 18.

 ployed when transmitting and dreming beer and ale．＂－May 18.
Charle Hancock，of Grosvenor－plece，gent．，for＂certalo Improvemente in the menu－ factere of gitta perchen，and Its applicition deat，and fa comblnation with other sab gmaces．＂－Mey 15 ．

 Julius Jerrma，of Norfolk－creacent，Byde－pari，sent．，for＂Improvement in item－ englue bofleri and famaces，and improrements in propelling vesteh．＂一May 16.
 in anchors．＂一Mey 18.
Onomp Dancta，engineer，Ddinbargh，for＂an improved method of manding comitt confectionary，losenget，and all description of pan－soods，the mechspery and epparatus
 machinery may be made applicable．＂一Mey 18．
Btephen Perry，of Woodiand－place，St．John＇s－wood，gent．，for＂certain Improvamente In the manufacture of ringa，strapa，bands and bandapen，corda and string，and in thetr epplication to clockwork，to loctere ead ether factegioge，to presses，to books，to peper holders，to candie lamps，to wiodow－anthes，to doors，to whodow．blinds，to seate and mur． theen for lying and recilning upon．＂－Mayis．
 thems，used for medical and argieal parpoen．＂\＆communletion．－May 20.
Zachardab Major Parke，of Peclrhan，torveyor，for＂Improvencnit in the manufacture

Charlea Thomas Lata yche，of Blrminghan，gold and alfer chaln maher，for＂Improve－

 perpowet． F －

 pellan－bollorm and tath

 pquidm－May 8.
＂Blasco Garay＂Orean Sinip．－The engines of thin aew vestal are remarkable for being by far the largent yet constructed on the owcillatios principle．They are 380 horses＇power；the engineors are inemars．MI ler and Ravenhill．An experimental excurtion was made on the 14tiof May，and proved perfectly satisfactory．The regolarity and smoothones with whlch the enormues oylinders ouclliated on their tracaioes was reaty starprisiag．The priacipal peauliarity of oonstraetion to be eoted is that the valves and ports are placed over the innor tronnions，and accillate the same direction as the cylinders：the aivantage of this method L_{s} thet the necessity of having large balanoe welghts is avoided．The oqualatity of the motion of every part of the engine is a most gratifying proof of abe extraordisary perfection to which English workmansbip has attioned． Mescrs．Wigrain and Son are the Builders．Bhe is intanded for the Epenin Government．
The following are the principal dimencions：－
Length between the pempendionlars．．．． 187

Breadth between the paddic－boxes

Depth of hold．
Mems depth with meohinery on board
Diameter of cylinders
Leagth of stroke

187	
990	
ft．	in
81	11
90	
10	6
0	$c 8$

Measrs．Miller and Co．have nadertaken to construct for the Oritatel Stenm Company three pairs of oscillating engines，on the same plan，bet of still larger dimensions．The cylinders are to be of 76 inches lienter． and the length of stroke 7 feet．

OOM

＂4 Working Meobanic＂（Neweastle on Tyno）－We are oot cortaic that we correctly understand the coastruction of the proposed merearial air－pamp．Without the mercory be allowed to run out at the bottor of the conical tabe，the mere turning of a screw will not make it desceal In any case，the mercury in the conical tube will descend no lower then the point where the difference of the heights in the conicul and the uprigit tubes balances the difference between the pressure of air in the receiver and the external air．
＂Messrs．Blair and Phillips＂have sent us a very pleasiog deatsoter railway bridge．It is not our custom to pablish desigas for streetures ent actually erected or about to be erected，but the laspection of the dramise which we have had the pleanure of receiving refects credt on the teme of the designers，and indncen an to think that we should agree botter with them on arcbitectural than on mechanical subjects．
＂J．Huntingdon＂（Wanstead，Essex）．－When an engive tananion With uniform velocity，the pressure on the piston depends not oa the proe－ sure on the boiler，but on the boad linumb．If the site of the train to ath at to produce a reaistance of \mathbf{A} Ib．perinch to the piston，the preanare ot the piston must aleo be $A \mathrm{ib}$ ．per inch．If it be more，the spend in te accellerated；if loes，dimisised．If，thetefore，at is alwhys the enen， the boiler pressure excoed $\mathbf{A} \mathrm{lb}$ ．，the steam mast be dilated in panings the oyliader．The wholo theory is correctly Laid down in De Panbene． The ratio 10：16 must have been arrived at by a stutical procen：to problen is a dynamical one．The only correct way of deternining di－ rectly the relation of the force of the driving－wheel to that of the piates， is by equeting the impressed and effective forces by D＇Alembert＇s prisei－ ple．A much more simple method is however to compare the respeetive distances traversed by the piston and s point in the circumfereace of the driving－wheel in equal times．For instance，enppose the leageth of the stroke 18 inches and the circamference of the driving．Wheel It feet ：whe the piston makes a double atroke（8 feet），the engine，if there to sexp plog，travels a distance equal to the circomfersace， 17 feet．Coannaudty， the ratio of the average force of the driving wheel to that of the fianen 1 （oeglectiog the fiction and inertis of the erank） 17 ：3．If 1 bo the ing； of the stroke，and D the diameter of the wheel，the rolation of the furo
 tington wakes it $D: 8 \cdot 8$ ，which is too large by mort than ane－finth of the real value．
＂Mr．R．H．Sharp．＂－Recaived with thanks and will appear ant month．

[^30]
*

ENGINES OFHER MAJESTY'S STEAM FRICATE-

the engines of h. M. steam frigate, "GLADIATOR."

(With Two Engruvings, Plated IX. and X.)

The gradual improvement of direct action engines, and the general adoption of them in the place of beam engines in ateam navigation are subjeets of the greatest importance to the mechanical engineer. On the first introduction of direct action engines it way imagined that they could never be made to work so stendily as those of the original form, and that consequeatly the application of the principle must be extramely limited in exteat. It was confidently predicted thut in large eagines, the great mass of metal pot in motion must cause such a vibration, if the bemm were dispeased with, as would speedily cause the pistons, slides, \&cc., to work untruly.
It has been found, howerer, by metual experience, that the evil in question may be entirely removed by accuracy of workmanship, and by akill in the arrengement of the working parts. And on the other hand the disnisution of the weight of the engines and of the space occupied by it, are adrantages of s great importance in navigation, that they far outweigh the supposed diasdvantage of removing the beam.
The Gladiator, one of the vessels forming the "Squadroo of Evolution," is a beantiful example of the perfection of workmanabip exbibited in the coostruction of British marine engines.

Before, however, describing those peculiarities in the engines of the Gladiatur, which are illustrated in the accompanying plates, we wish to remark with respect to the observations which bare been made on the performances of the steam vessels of the Squadron of Evolution, that those remarks apply exclusively to the powers of the steam vessels as sailers whed drprived of the assistance of their engines. To compare the powers of a steam vessel as a sailer with those of a ship built to be propelled by ite sails exclusively. seems to us as absard as to compare the speed of two animals possessing aliogether different organs of locomotion. It can be no matter of wonder that a vessel containing the enormous weight of mariae eogines, and built of a form suitable for containing them, should not asil so fast as one which dues not contain this load, and is built of the form best adapted for sailing. Between steam-ships and sail-ships no correct comparison can be drawn." Not only are their means of propulsion entirely different, but the oircumstances ander which each acts most usefully, aro allogether disaimilar, so that for the purposes of war each in its turn would be iovaluable, where the other would be inefficient. The most rational method therefuro seems to be to keep the individual characteristice of the tiro classes of vessels perfectly distiuct,-to render each as perfect as possible in those qualities which coaslitute its peculiar advantages-in other wards, to upeak to those whom we have the most interest in addressing, to reoder the wur-stenwer as perfect as possible as a steamer, and not to injure ber powers by injudiciuas attempts of combining with them the peculiar qualities of sailing vensels.
The engiues of the Gladiator were constructed by the well-hnown firm of Miller, Ravrohill, and Co., of Blackwall. The principal feature uf thrse engines is their compactaess, the cranks, and consequently the cylinders being brought close to ench other, to give deck room for moving the canoons fore and aft. The air pumps are constructed on a principle patented by Mr. Miller, being inclined towarids each other, and worked by a crank common to buth, on the same shaft with the cylinder cranks.
The following are the references, Plates IX and X.
A A, Cylloders 7 of inchen to diameter, b feet 9 inch stroke.
B B, Piston rods.
C C, Concecting rods.
D D, Cranke ou working amart.
E, Upright steath-pipe. At its lower end are bracketa C e, cast on the allde-ralre candog, to support the steam-pipe.
P, Expanaion valve bux.
G. Bean worting the refigerator purnp of Howard'a paterit condenaing apparatus. The beam, of which the bearinga are supported by the upright otean-plpe, forms part of the parsilet motion.
H, side velve cadng. i h $h, 0$ pentage from the ateran-pipes on which the expanalon Tilea work.
11, Crom-bar, and X X, Eccentric rods, for working the ellide ralven.
Is Opening between alide vulve cmaing and condenser.
M M, Condensurs.
N N, Air-pampn. n n, Dellvering vilve opealagt.
o. Crank for moiking alr purapea.

P P, Hot water cleterns. Q Q. Yeed pumps. R R, Bilee pumpa.
The anoexed diagram reprosents a section of one of the air-pampa and condeaser of the Gladiator.

A, Air-pump.-B, Part of condender.-C, Poot.valve.-D, Dellvering valve.-E, Hot water cistern.- F, Brecket for supporilag tuide-rode for air-pump crose-ber.

The following extract from the specification of a Patent, granted March 22, 1842, to Mr. Joseph Millea, will further explain the construction of the air-pumps and condenser.

The engraving 6g. 2, thow a vertical section of the condensers B B, and air-pumps C C, dispused within the condensers, and between the stean cylinders, in a different manuer to that hereinbefore described, one pump being before the other, instead of the two punps being side by side. The puanpu C C are inclided from the vertical, in cuntrary directions, so that the direction of the centre line of each puup will point to the centre of the rotative axis G, and both pamps are worked by the samecrank h, on that axis, by means of two crauk rods $k k$, of which only the centre lines are shown dotted. and the upper ends whereof may be applied side by aide on the pin of that crank h, one of those crank-rods k being for working one punsp C, and the other of those crank-rods k for working the other pump C. In case of the two crauk rods being so applied, side by side, oo the saill pin of the crank, then the two uir pumps (when viewed from the front) cannol stand exactly in the same vertical plane one with the other, but the ceutro line of one pump will bu as much at one side of the cantre lise of the other pump as is requisite to suit the crask-rods $k k$, in case they are one at the side of the other, in order that they may both work upon the same crank-pin h, as already mentioned; or one of the crank, rods $k k$ may be made forked at the upper end, when it is applied upon the craok-pin, with two joiuts on thut pin, side by side, and including the joint of the olber crank-rod between them, wad in such case the centre lines of both air puinps may be io the sque vertical plane. In such an armagement of the air-pumps, the steam cylinders will stand nearer together, and the middle portion G of the rotutive axis will be very short, and there will be only one crauk h on that middle portion. The condenaers will be narrower in the direction between the cylinders, but lunger in the opposito direction. The vertical purtition b, by which the condepser is divided into two compartments or distinct condensers, may stand in the direction from the centie of one stem cylinder to the centre of the other, provided that, by means of another parlition or a branch of one partition suitably disposed withio the cundenser, one of the eduction passages G of one of the cylinders cut only one of those passages, is prolonged and cootinued withinside the condenser beyond ur through the partition b, so as in communicale very freely from that sald cylinder to that condencer or compartweut of the soodenser which is most remote from the slidind valves and the eduction passuges G. The manaer of σ alng the air-pume C C into a pertures through partitions m and r, and the mander of placing the footvalves 00 , is much the same as alrondy described, except that instead of the
said partitions being horziontal, they are as moch inclined as will suit the inclining position of the sir-purpps C C. The discharge valves p p may be applied at the top of the cover L of each air-pomp to discharge the water into the apace above the upper partition n, which spuce constitotes the bot well M, and may be common to both pamps. The condensers will have the same kind of fiages, with vertical aurfaces of contact and onion, with the corresponding surfaces of the two steam cylinders, as already described, except that those surfaces will not be quite at the angles of the condeasers when the same are made as shown, but the mode of uniting the two atenm cylinders to the condensers by such surfaces, with bults through the flanges thereof, will be the same as hereinbefore described, and need not be repented. And note, it is not necessary that the inclined air-pnmps should be put within the condenser, as is there represented, for each promp may be joined to the coodenser at bottom, bencath the lower partition m, by means of a branch projecting laterally from the bottom of the pomp, or elae projecting laterally from the condenser, and by another branch projecting from the top of the pump it may be connected with the upper part of the condenser above the upper partition n. Those branchen

being united to the condenser at the lower and at the upper parts thereof, in a similar mander to that whereby the air-pump of marine steam engive, of the kind heretofore made by Messrs. Bouiton and Watt, with sidelevers, is most commonly connected to the condenser and hot.well of such an engine, except that the pumps will be inclined instead of being vertical, and the pumps may, in that last-mentioned case, be somewhat more inclived than they are represented, if that is requisite, in order to give as mach more apace of condenser between the two pumps as will give the required capacity of condenser. The lower branch by which each air. pomp is joined to the lower part of the condenser (whether that branch is formed as part of the pump, or as part of the condenser,) will join to the condenser below the lower partition an, and the foot-valre o may be within the interior of the condeaser, or it may be within the lower branch thereof, to which the sir-pump is joined. If the said lower branch is formed in the same casting or piece of metal with the condenser, it may project ont from the lower part of the condenser, and the air-pump may join thereto, with a botion fange sround the lower end of the pump, or if the branch is formed with the air-pomp, it may join laterally to the front side of the condenser, at the lower part of that side. The branch at the upper part of the air-puinp will have the discharge-valve or valves applied to it, those valves being within the hot well, which bot well may either be a spact M within the condenser at the upper part thereof, above the upper partition, or inslde of the condenser, or the diecharge valres may be in a hot woll, which is formed bs a vemsel dintinct from the condenser. Although
two diatinct condensers and two diatinct air-pumps have been described (that being preferable in most cuses), never:heless, that is not essential to my improved arrangement and combination; but the same is equally applicable if the condenser is made without the partition b so as to be oaly one condenser, and with ouly one large air-pump, equivaleat in its capacity to the two air-pumpe represented in the drawing."

NEW METROPOLITAN CHURCHES.

Weatbourne Terrace, Hyde Park.-The plan of this church is nearly a rectangle, and comprises a nave with low pitched roofs, north and sooth aisles, with lean to roofs, a chancel, an octagonal veatry at the north-east angle of the church, and a tower and spire at the west end of the bare. The spire is very lofty, and rises to a height of 212 feet. The length of the church from east to west is 150 feet.

In the interior of the church the nave is divided from the aisles by piers which are intersected at mid-height by gulleries, which of course partially ohstruct the north and south windows. There is also an organ gallery which communicates with the staircases by doors having atraight jambs and lintels like the doors of an ordinary dwelling house.
The walls of the church, the piers, the groined roofs, the walle of the porches, shairceses, \&c. are all conted with stucco, on which are drawn lines to mimic the jointing of masonry; the bood mouldings of the windows are run in vile patent cement, the bosses of the roof, the capitals and hases of the colomas are sll of the same material-moulded first and stack on afterwards. You see lying about the church the halves of hases, black dingy things, not yet whitened by drying, that resenble delached kenfa rather than real architectural members-these are to be fitted into their places directly they are dry, and if coated with a delicate layer of colour will defy detection.-Boz describes one of his humble heroines who had small means of gratifying her love of dress and consoled herself with the reflection that "a brave show may be made with ribbunds for sixpence."
The ceilings of the church are quite dazzling with white wash. The connoisseur in imitations will not fail to admire also the atained deal panelling, and probably will not object to the indentations in the plastor which soggest sham windows.
The architecture of the exterior perfectly corresponds to that of the interior. To those who bave famiiimized themselves with the arebitecture of our Eaglish conatry churches, the tracery of the windows of the vew churcis anight appear of somewhat "formal cut," bot then it in very showy for the money, and an approved specimen of paltirn Gothic. Beneath the parapet, which is panelled, is aw of grotesque masks; for the architect, determlaed to have at least some point of resemblance to ancient Cbristian art, has selected for initation the least admirable feature of itthom barberons and ridiculous imitations of the human form which were excusable in an age, when a familiar connection of solemn and lodicrous subjects was tolerated, but which wonld now be pronounced impious or indecent. But here the disciple has out-done his masters; in bis reverence for antiquity he has produced forms more monstrous than ever disfigured ancient freemasonry-Bacchanalian visages with buge tongues hanging below their chins, or with fists forced into their distended cheeks, and similer distortions which might make the fortune of the clown in a penoy theatre but seem rather out of place in a religious edifice. To compensate however for these barbarities we have over each porch an angel, who ferveatiy clasps a shield to his breast, and by his beaming countenance exhibits a perfect ecatasy of pious bealitude.

The general character of the architecture is ostentation in the forms and unreality in the materials-two things, by the by, which always accompany each other ; for where fictitions and dishonest materials are employed, the fatal facility which they afford for introducing ornament is usually too strong a temptation for vulgar display to be easily resisted. Of this truth the multitade of terraces and crescents which are springing up in the viciaity of the new charch are lamentable examples. They luok uncommonly, showy and fine in the lithographic riews which are got up for the purpose of letting the houses, but we trust that the time is not distant when by the force of unirersal public detestation this common-place architecture will be abolished for ever.

South Heckncy,-A now church is being erected here from the desige of Mr. E.C. Hakewill, and although the bailding is not in a very advaocid
state, the progress mede is sufficient to lead as to hope that this mew church when completed will be an additional proof of the advance made in the ksowledge of Chriatiac architocture during the lat few years.

Sowh Hackney New Churek.

The plan of the building shows a nave, transepts and chancel, and a weatern tower. The archway of the entrance in the tower is seren fret in depth,- gratifying contrast to the miserably shallow doorways of some of otr recent cburches. The following will be the principal dimensions of this Charch when completed :-

Length from east to west laternally		169 feet	
Width of nave and aisles		61	
Lergth from north to south in the transep		92	
Width of the transepts		31	
Height inturally to the top of the walls		37	
Height to apex of the roof		65	
Height of tower and spire		200	

Ualike the churches which we bad occasion to notice last month, this edifice will have north and south windows in the aisles, and will not be lighted by a clerestory exclusively. We should however like to bave seen more light admitted from the luwer, and less from the upper, windows. It is wet necessary to repeat what we bave already insisted upon, that to let in a food of light near the roof is to admit it to the grea est disadvantage as regards picturesque effect. The roofs ought to appear dim, shadowy and abseare-especially in a chnorch of the early stylo here chosen; it was not matil the decline of art in the Perpendicular period that the upper parts of charches were brilliantly illaminated.
No criticism is complete without it detect some faults, we must therefore eadeavour to find some, though we confess that our feeling in favoar of the geoeral merits of Mr. Hakewill's design readers the task somewhat difficult. The tower is pertaps too much cut up into parts by string courses, \&c. ; some of these might be omitted with advaptage, for a tower shoald have the character of massiveness and strength, and consequently the parts should be large and well defued. Neither do we much admire the position of the statues at the base of the spire: there is always an idea © awkwardness and insecurity attached to a atatue perched upon a point, or in any way overhanging its base. In the drawing which Mr. Hakewill hes been kind enough to send ns, the form of the flying buttremes seemed rather formal, and the manaer in which the apper parts of the buttresees m the angles of the tramept met the wall appeared abrupt.
However, thene tre mattors of detail which the archicet will be able to
alter, if he see 6t, during the progress of the work: ; the general character of the church, the massiveness and boldness of the featores, and the consequent depth of the shadows contrast very advantageously with the fiatmess and showiness which modern charches too frequently exbibit. The materials are Kentish ragstone, with Bath-stone dressings; the good taste of the architect will, we are contident, lead him to reject fictitious or jmitative materials.
Our acknowledgemente are due to several architecte, to whom we have applied, for tho readineas with which they have afforded informution of churches in the course of erection under their superintendence. We shall feel obliged by receiving notices of new churches in or near London: these nutices should be accompanied by a list of pribcipal dimensions, and mut not contain any remarks of a critical character. We shall also be glad to publish views of churches of which the general composition is good, or illustrations of intereating detaild; in the latter the jointing of the masonry should always be distinctly showa.

ROYAL ACADEMY EXHIBITION : ARCHITECTURE.

 sECOND MOTICR.It might be imagined that of Interiors there would be an abondance rather then a deficiency, because each siogle building contains a great many divisions within, and although only two or three of the principal parts or apartments may be of any architectaral importance, sabjects of that kind would still greatly out number the buildinge themselves. Nevertheless, such drawings - whether desigas or views-are raritien and exceptions, notwithetandigg thal desiges for rooms and their decorations would be somewhat leas chimerical than those for cathedrals and other buildings on " monster" scale. Ualess the private mansions and other edidces, of which we meet with drawings at the exhibitions, be totally devoid of architectaral interest within, there must be a great deal that is withbeld from us; which is the more to be regretted; because it is through drawings alone that the public can become acquainted with what lies on the other side of the threshold of a private residence. We should therefore have been thant. ful had we been favoured by the sight of a drawing or two-nay, even of a single one, in evidence of the tate displayed by the noble President of the Institute of British architeets, in his newly fitted-ap manaion, Wreat House. Either it has been fulsomely fiattered by newspaper paragraphs, and the "sumptuousnoss" which, it seems, characterises it, is after all, little better than extravegantly costly commonplace, or there must be something in it well worth seeing; whereal now we buve weilher verbal nor graphic description to give un any idea of what it really is. Earlde Grey, however, chooses to conceal his light under a bushel,-at least, from eneh as ourselves, and by sodoing be shows one thing-that be is oblivious of or else indifferent to, his cannection with architecture as the President of the lastitule; -whose members, by the by, require to be spurred on to support the Academy's exhibitions.

After these very grumbling remarks, it may be some relief when we aay that the present season is not more barren of Interiors than usund, for which we have chiefly to thank Mr. Sang, who exhibits four subjects of the kind, Nos. 1262, 1336, 1337, and 1358, the first of them a sectional view of the ambulatory of the merchente' area in the Royal Exchange, and the other three, views of the Grand Staircase, Lower Hall, and Upper Hall of the Conservative Club-house. These last are especially welcome, because the Club-bouse is not open to every one, at the Excbange is, and even those who like ourselves bave had the opporitunity of going over the building, cannot have such favour renewed at pleasure. Yet, for seeing any drawings of it at all we are perhaps entirely indehted to Mr. Sang's share in tbe work, which, we hardly need aly, is confined to the encaustic polschromic decorations of the architecture. Excrpt that they are in perspective, the drawings themselves make very litile more pretension to pictorial expression than coloured sections would do, artist-lize treatment and effect of light and shade being renounced in theur for the purpose of showing with all possible distinctness the actual colours and ornamental patterns. Hence they are to be locked upon uot as pictures, but merely as graphic descriptions and explanations of those parts of the jaterior which they represent. As respects the decoration, we think it is rather tou minute and showy to be altogether in character for the places where it is introduced, the mont effect of all in the building being thrown into what requires to be rather sabdaed than exagerated, and aot allowed to
overpower all that follows. What strikes us as a fault in the general de-sign-one, however, for which Mr. Sang is not answerable-is the want of stained glass of some kind in the glazed akylight dome of the upper hall, which is now rather too moch of a blank, and which most, we think, have not ouly a blank, but even a black and therefore dismal look by night, when it must show as a dark yawning void overhead. Such, indeed, would still have been the case bad it been filled in with painted or enubossed glass, ualess it could also bave been lighted of an evening from the outside; wherefore it would perhaps buve been better to close the opening of the dume by a cove and plafond or horizontal ceiling, with travspareat panels of painted glass, letting the present dome be an exteraal skylight, and within the intermediato space there might buve been gus-burners to shed light through the punels of the ceiling by night.

But our pen is running away from us, and we are running away from our proper subject. So let us return to the Exhibition.-No. 1160, "A Librury," (W. W. Deane) possesses mach merit in its idea, and a very ullusual degree of sceaic effect is produced by the semicircular recess lighted from above and separated from the room by a screet of Coriuthian columus (forming five open intercolumas); which order Is continued by antae on the other walls, those on the window side being plared not as pilasters against the piers, but at their angles, with the draperies hung within the embrasures or wiadow recesses, so that, instead of at all concealing, those curtains serve to relieve and set off the architectural forms. So far, this design seems to un to falfl sven better than No. 1270 does ibe title given to the latter, viz., "A design to illustrate an architectural arrangement of draperies in a drawing-room," (J. Dwyer). Though drawings of the kind are so few that as much show as possible should be made with them, Mr Dwyer's is so placed as to frustrate examination, bot were it not for the intimation lo the catalogne we shonld never have saspected it to be inteaded as a stndy of "arrangement of draperies," there being nothing at all novel -as far as we can perceive-in that respect, except it be that what is either an open doorway or mirror at she end of the room, bas a drapery corresponding with those of the windowe.-Nos. 1279 and 1355 show as the "Staircase and Mnsic Hall of Mr. Hullah's Singing School." (W. Westmacott); but where the building ls, or is to be, is not said. The atyle partakes of Tador, modernised and enfeebled in character; bowever, we have not a right to expect much in what we suppose is only the epeculation of a private individual. Less indulgently are we dinpowed towards the very next No., viz. 1356, "The hall and staircase of a geatleman's resideace executing from the deaigns and noder the superintendence of G. Mair." In its general idea it is rather the reverse of what would be thought of as suitahle in a reaidence at the present day, it being opon the old astem of hall and staircase thrown together, 80 as $t 0$ form a lofly space that seems to occupy too anoch of the house, unless it be a very large one. Neither is space bere made to contribate to display; while as to charweter and detail, there is more of what is fandty, objectionable, and inconvenient is the Elizabethan style, than of what is meritorions in it, and applicable in modern houses; in short, it is rather what one would preserve, had it previonshy existed, than now produce.-No. 1318, "1 Interior of the Upper Chapel, Ban Benedetto, Sabiaco" (D. Wyath), is the finest picture drawing in the room-otherr equal to it we uay occasionally have seed-certainly soms that we shoold prefer in point of subject; for instance, the Loggia of the Villa Madama, by G. Moore,-but for power and mastery of execotion, we cannot call to recollection anything superior. With the force of oil it has a clearness which we seldom find in the very best architectural pietures in oil, althongh there seems to be nothing to tinder the highest finish and most deceptive degree of imitation being ob. tained in them, jost as well as in still.life subjects-seldom worth the skil! and iabour bestowed upon them. Thia production of Mr. D. Wyatt'rwhom we can bardly suppose to be a young hand, allhough we never met with hjs name before-is a perfect stady. for its execution, all the details and different materials being most admirably expressed; yet the whole is in perfect keeping.-No. 1342, "Milan Cathedral," (F.W. Stent) is another interior not a little remarkable, but more 80 for the singalarity than the excelience of Its execntion, force being here exaggerated into caricature, fur the tone of the whole is so exceedingly dark, and the lights which fadl upera few prominent parts, so onnaturally brilliant, that the latter look like so many pieces of mother-of-pearl inlaid on a ground of ebony.No. 1258, "Interior of the Churoh of the Aposties, Rome," (J. P. Crew", is a drawiog marted by the directly contrary fanlt of want of depth aod solidity, not bowever to such a degree us to be therefore faulty in itself, and we ooly wish the artist had employed his pencil upon a better sobject, the bollding being in poer and tawdry male:-however, rather this than

30 rery stale a subjeet as that of Mr. Crev's olber drawing, (No. 1248, A Vlew of the Colisenm from the Arch of Titus). Sadly at a loss for sub. jects for interiors must arobitecturnl draftsmen be, when they give us purd a ode an No. 1176, than which one more dentitute of nerit or intereat op any kind conld hardly have been fouad in all Loudon. Had the author of that production walked into Moses' shop, he might have found a rather striking subject, at all events something quite fresh, but that any one should thick it worth while now to show us the "Interior of the Chapel of the Foundling Hospital," is to us perfectly unaccountable. We ahould have been very suspicious of its being merely a copy from a print.

There are still one or two druwings of interiors, which we have not yet mentioned, because they belong rather to the class of designs for churches; -of which it will be expected that we should suy something, get it is bot little that we have to say, there being few of then at all distinguished by any thing particularly goud in them, or the contrary, except it happen to be by the sort of merits and defects that are extolled or vituperated by the "Ecclesiologist." What strikes us as rather singular, is, that among them there are wearcely any drawings of Churchey or Chapela in ur near the metropolis. St. Joho's, Charlatte-street, Fitzroy-square ; St. Michael's, Pimlico; St. Andrew's, Well't-street ; the Cathulic Church, Farm-atreet; Bedford Chapel, the newily erected campanile of the Caibolic Chapel in Spanish-place, Manchester-square-not one of these are in the Exhibition. Those which are, are exclusively in the Gothic or mediaral atyle, there being not a single drawing for church or chapel in any other, although Grecian or rather Greco-Italian seems fitter for buiddings of the kind in towns, und so far from being prejudiced against such style, by the wretched and insipid productions in it twenty years ago, they might now be serviceable to us as warnings, and might convince us that should we resnme the style at all, we ought to treat it very differently from what it then was. As to Gothic, it is nadoubtedly very much better andertiond and practised than it was a quarter of a centory ago or even much les*, still it seems now to be got into a sort of respectable mannerison and method. Instead of design being left to be moulded by circumstances, every part of a church most beshaped according to ceriain arbitrary regulations; there must be this thing or that, though so far from its beiog at all required, inconvenience should be locarred by adopting it. Lucky is it for Ewu Cullege Cbapel that it is not a modern structare, since it falls short of the preseat orthodor standard, in having neither aisles nor chancel, nor spire, nor even tower; neither has it more than a single range of wivdows, and those at a considerable beight from the floor; yet it is mot oaly a very fine specimen of architectare both internally and externally-but also exceedingly well snited for the Protestant worship. Nor is it without reason that wo bere mention it, there boing three designs (1288, 1290, and 1256) by J. M. Derick, and J. Shaw, for restoring the interior.-No. 1260, described ooly as "View of a Cburch, designed by G. Alexander," witbout the name of its locality; -and Nos. 1295 and 1307, exterior and interior of " 8t. James, Seacroft, near Leeds, Yorkshire," (T. Hellyer, ure among the best productions of this clas. But none displays more forcibly the enviable talent of being able to infuge a strong degree of cheracter and originality into what in most hands would prove a very insignificant sab-ject,-than No. 1320, "Healy Church, now erecting in the parish of Masham, Yorkshire," (E. B. Lamb). Small as it is in dimensions, and simple as it is in atyle, this little edifice is so foll of piquant expression that it might pass for the ideal of an English rifloge charch. There ia a great deal of effect with scarcely any thing to account for it,-it being that of a felicitous aggregate, and artist-like combination of parts. A design of this kind is a very severe reproach upon the coullese and idealeas componads of vulgar tawdry calling theaselves desigas for cathedrais and townhall, which however we will pass by, in mercy, without pointing to them by their numbers or names.-The show of modela this season is even poorer than usual, and thinge of the sort are always so budly shown at the Academy, 80 hoddied up and jumbled together, that we almoat woeder any should be cent at all.

SUPPRESSION OF SMORE.

A report has been recenuly addreesed to the Govorment by Cir Heery De ia Beche and Dr. Lyon Mlayfair, respecting the means and efiects of preventiog the amoke of furmaces. The following axtrecta will suffiesty explain the conciuaions arrived at.
"The geveral principles upon which the combantion, of rether the prevention of anoke, mas be effected are now well known, and atoittod to be
applicable in practiee. Smokn consints of vapours produced by the partial combustion or distillation of coal, carrying op small particles of the fuel in mechanical suspension, and depositiog, by the combustion of one of their consttruenta, carbonaceous matter in a fine state of division. The mode of preveptian this smoke is to admit a sufficient quantity of air to effect the combustion of the carbonaceous matter, when the vapuars are of a sufficiently elevated temperalure to unite entirely with the oxygen of the air. If the temperature be not sufficienuly elevated, the bydrogen of the vapours wons is consumed, and the carbun is separated in the fine state of division referred to. The grses produced by the complete combustion of fuel are culonrless and invisible, and therefore do not cume under the definition of the term smoke.

* As the prevention of amoke implien the complete conbnation of fuel, the resalt, as an abatract statement, always is, that more heat is genernted, aed a saving of fuel effected, when it is so consumed as to prevent the emission of smoke ; but nithough this theoreticul conclusion is uadoubledly correct, the practical results are not alwajs cunsonant with this atatement.
"In roosuming smoke in the usual way a quantity of cold air is introduced into the fire, and as this must be beated up to the temperatore of the surrounding farl, the loss of the latter may be equal to, or even greater than, the guving of the fuel from the combustion of the prodacts of distillaLion. This often resalts iu the careless use of furnaces constructed on the principle of smuke prevention, and thus leads to the contradictory statemeats aiven by those who have used such farances. - But in ull carefully coeducted experinents the saving of fuel has been considrrable, and the reason of this will be ut once perceived, when it is considered that in addi. tion to the combustion of the products of distillation there is a large amount of fuel sared by the combustion of a gas called carbonlc oxide, formed by the proper product of combustion, carbonic acid, taking up in ite passage tbrough the incundescent fuel, anuther portion of carbon, which escupes useless as regards the production of beat, unleus burned by the air introduced at the bridge of the furnace, for the purpose of consuming the products of distiliation.
${ }^{4}$ From these considerations, and from experiments conducted under our inspeotion, with a view to determine this point to our satisfnction, we arrive et the conclusion, that 'although from carelese mauagement of fires there is ofton oo saving, and that indued there is frequently a loss of heal in the prevention of smoke, still that with careful management the proventioa of amoke is io many cases atteoded with, and may iu most cuses be mude to produce, an economy of fuel.
"It mas be unnecessary to remind your lordship that the cause of tho emission of smoke in manufactories may be classed under three difforent beads, the relative importance of which involves very different conaiderations in any attempt to leginlute for its prevention. These aro-1. The want of proper construction and adjustment between the fire-places and the boilers, and the disproportionate size of the latter to the amount of work which they are expected to perform ;-2. The deficiency of draught, und improper construction of the tues leading to a chimney of inadequate height or capacity;-3. The carelesaness of stoking and management by those entrusted with the oharge of the fire-places and boilern."
It cannot for a moment be questioned, that the cuntinued emission of swoke is an unnecessary consequence of the combustion of fuel, and that, as an abstract statement, it can be dispensed with. But your lordship will perceive that there are grave difficulies connected with a general lap to the eflect that it shall be unlawful for chimnies, after a certain dute, to emit smoko. With regard to steamengines, the processes for the preventon of smoke have beea matured, and in very many instances successfilly empluyed. In this case, therefore, a law to that effect could be most easily and promply carried out. In other cases mentioned in Lord Lincoln's lelter, such as distilleries, dye-works, \&c., the legislature has already granted powers in the Manchester Local Act; and as there are certain instances in which processes for the prevention of smoke have with them proved succesafuh, it may bo anticipated that the nuisance arisiog from these sources may be much abated, if they be subjected to the general law with that forbearunce and caution which, under certain cases, is so advisa. ble. There are certain processes In glags-works, iron-furnaces, and pot-. teries, in which it is neither possible nor desirable to apply a general law for the prevention of amoke; although the ouisance may be partially mitigated, by causing the steam-engines employed in them to be so constructed as oot to emit anoke.

It is useless to expect, in the present state of onr knowledge, that any law can be practically applied to the fire-places of common housea, which, in a large town like London, contribute very materially to the pollution of the atmosphere; bat it may confideatly be expected, that by a wise administration of a legislative enactmeat, carefolly framed, a great progressive diminution of the smoke of large manufactoring wwns will be effected, and that the most happy results will thus fow from this improvement, in the increased health and moral feeling of their population, the intimate connection of which with facilities for cleanliness has been so often pointed out.

PLATE-GLASS MAKING IN ENGLANDIN 1846, CONTRASTED WITH WHAT IT WAS IN 1827.

(Compiled from authealic dala by Hengy Howard, Blackwall, wad 4, Railway-Place, Fenchurch-street.-l646.

In 1827
Coals in Lomdon wrere about 31 s . $6 d$. per chaldron in the Pool, which, with lighterage, wharfage, and cartage to the works, readered them about 403. per chaldron, or 30 d . per too.

A annealing kila contained 200 feet.
A casting furnace produced, say 1,200 feet per werk.
Houded or covered pots were used for melting the glass, containing about 4 cmt . each.

Pearlashes were at a high price, and heavy duty on alkali made therefrom. Hrarlashes were in 18s6, fiss per two.

The castug-uble was heuted on the top by charcoal, at an expense of $\mathbf{5} 500$ per anuum.

An engine of 82 horse power ground and polished (12 bours to the day) frum 800 to 1,000 feet per wrek.

A gribdiay beuch gruand 200 to 250 feet per week.
A polishing-beach polished, 200 to $\mathbf{2 5 0}$ feet per week.

A plate-glasswork in London manufactured about 60,000 feet per annum

The price of rough and moulded plate varied from 8s. to 6s. per foot.
Wages were comparatively low.
Large plate were made with great difficalty, and the cost on the average is estumated at about 10s. per foot.

The manufactures kept a very large stock on hand.

In 1848.
Couls are landed at works newr Loudun at about 13s. per ton.

An annealing kiln contains 400 feet.
A casting furnace produces 4,000 foet per week.
Open pots are used, requiring less facl, and containing abont 20 cmt . cach.

Pearlahes are abont $\mathbf{£ 2 8}$ per ton.
The cantiog-table is heated underneath by cylioders, at ecurcely any expense.
An eogine of 00-horse power will grind and polish at least $\mathbf{3 , 0 0 0}$ feet per week.

A griading bench at ——Works griads about 500 feet per week.
A grioding.beach may be constructed to griod 600 feet per week.
A polishing beach at --Works polishes about 500 feet per week.
A polishing-benob can be constructed to polish better and cheaper, nearly 1,000 feet per week.
A. company near Londou is making 8,000 feot per week, or more than 400,000 feet per andium.
And that is insufficient, but they can make no more, having no room to extead.
The price of rough plate (t and 妾 of an inch thick) is ls. 6 d. to 2s. per foot ; (cost 10d, to 1 s . per foet.)

Aad une compary hus an order for $\mathbf{4 , 0 0 0}$ feot!
Wages are high, but liey do mot amount to so much per fool as in 1827.
The largeat platos are made wlth perfect facility, at less than 3s. per foot.

Aad this amonnt may be still further reduced to about 9s. 6d. per foot.
None of the housea can keep stock, but cae only supply their customers from hand to aunth, and that very inadequataly.

Bammary-Average.-In 1887 Plate Glase sold for about 12s. per foot, to the extent of abont 5,000 feet per week.
In 1830 Plate Ginse sold for from 8s. to 9s. per foot, to the extent of about 7,000 feet per woek.
In 1844 Pjate Glass sold fur from 6n. to 7s. per foot, to the extent of about 83,000 feet per weet.
In 1846 Plate Glase sella for 6s. to 6s. per fuot, to the extent of abont 40,000 feet per veek.
May 80. -Now nearly $\mathbf{4 5 , 0 0 0}$ feet per week-(Exclusive of foreign glass.)
Looking at the extruordisery increase that has taken piace, notwithatanding the coverity of exclae restrictions, and seeing that the domand now pro-

TRIAL OF MAIL STEAMERS.

The Londs Commisnioners of the Admiralty, having ordered a comparative trial to be made, to ascertaia the apeed of three new boats, recently built for service as mail pockets, on the Dover station, the trial was made, and the following is given from impartial persons who were present during the whole time:-
"Dover, May 31.
"A most extraordinary trial of speed took place yesterday, between three of Her Majesty's steam-packets-Garland, Ooyx, and Violet-the former being of wond, and designed by Mr. O. W. Lang, jun., assistant to the Master-shipwright at Chatham Dockyard (son of Mr. Lang, Mastershipwright at Woolwich Dockyard), and built by Mesars. Fletcher and Soas, of Limehouse; and the two latter well-known iron-boats, the fastest ever built, by Mesars. Ditchburn and Mare, of Blackwall; the dimensions of the vessels being the same, and the engines also of equal power, by Messrs. Penn and Co., of Greenwich.
"The Garland, under the able commend of Captain Sanithett, and the Onyx, Lieutenant-Commander Mudge, left Dover ht 7 o'rlock, a,m, the latter having the mail and passengers for Oatend, Captain Mercer, R.N., Superintendent of Her Majesty's packets on this station, being ordored by the Admiralty for this purpose on board the Garland.
"Off Dankirk these two vessels were met by the Violet, Captain Sherlock, who came out of Ostend to meet them and to return with the others. At this time, about 10 n'clock, the Gurland had gone by and distanced the Onyx abont a mile and a half.
"The great trial of strength then was to beat the Violet, and althongh there was a decided superiority in this vessel over the Onyr, the Garland in less than three-quarters of an hour was far enough ahead of the Violet to be able to cross her bowes. After this a second trial was made, the Violet altered her trim, but in this the Gariand showed a still greater superiority; and in a third trial it was conclusive that the Gariand could beat Violet about one-third of a mile an hour, and Onys half a mile an hour, which has established the fact that the "Wondes Walln of Ola England' are not to be beaten by uny other material or power, and we ought to congratulate ourselves and the country on the fact.
"The Garland returaed from Ostend to Dover this day in 3 honrs 55 minutes, which is by far the quickest ever known, and bas established her reputation as being the fastest gtenmer in England.
"The Gariand alsn fell in with the Queen of the Belgians, the fastest of the South-Eastern Ramsgate steamers, and wont round her in less than a quarter of an hour."

THE NEW LOCOMOTIVE ENGINE "THE GREAT WESTERN."

On June 13th an experimental trip was made on the Great Western, from London to Bristol and back, for the purpose of trying the tractive powera of the new monster engine "The Great Western." The train weighed 100 tons, and consisted of ten first-class carriages, seven of which were ballasted with iron, the other three being occupied by the directors and those interested in the experiment.
The traiu started from Paddington at 11 hour 47 min .52 sec . It passed the lyt mile-post at II hour 51 min. $1 \mathrm{sec} .$, and came abreast of the 52 nd mile (immediately ufter which the breaks were put on for the stoppage at Didcot), at 12 hour 45 min .24 sec, , runding, therefore, the 51 miles, with a rise of 1 Is feet, in a few seconds over 54 minutes, or at an average speed of upwards of 56 miles per hour.

At Didcot a stuppage of 5 min .15 sec . took place, The mile-post beyond Didcot, viz. the 54th, was passed at 12 hour 54 min. 27 sec., and the 76th mile post (just after passing which the breaks were put on for the stoppage at S windon) was reached at 1 hour $18 \mathrm{~min} .6 \mathrm{sec} .$, the distance of 21 miles having been passed over in 23 min. 39 sec ., or at the average rate of upwards of 54 miles an hour.

At Swindun there was a stoppage of 4 min .27 sec . The 78th mile-post was passed at 1 hour 20 min, 30 sec., and the 081 h mile-post, which is a short distunce on the Paddington side of the Bux Tunnel, was reached at 1 hour 40 min. 26 sec., the 20 miles baving therefore been accomplished in 19 min .56 sec. or at upwards of a mile per minute. The train came abreast of the 117 th mile-post at 2 hour 12 min .3 sec . This gives the time occupied in runaing the distance between the 78th and 117 th as 42 min .33 sec . for the 34 miles, or something like 63 miles per hour.

The maximum speed on the down journey was ubtained brtween the 88 rd and 02 mile-posta. From the 80 th to the 84 th mile there is a falling gradient of 8 feet per mile, and from the 851 th to about the 80 th mile there is a falling gradient of about 1 in 100, and a fall of 8 feet per mile then reaches to about the 901 mile-post; a rising gradient of 8 feet per mile then succeeds, and extends beyond the 22 nd mile-post. The train cance abreast of the 88rd mile-post ut I hour 34 min. 66 sec., and passed the 92 ad mile-post at 1 hour 43 min .8 sec , perforning the 10 miles in 9 min. and 8 sec., or at an averuge speed of nearly 60 miles per hour. The 87 th and 8 enth miles, on a falling aradient of 8 feet per mile, were ran over at the rate of aisty-mine miles per hour.

The train arrived at Bristol about 15 min . past 2, thereby making the time occupied in starting from a state of reat to coming to a slate of rest, or, in other words, from platform to platform, 2 honra 26 min., including ioppages, which averages a rate of 50 miles per hour.

At Bristol, a collation arraited the Iovited greats, Mr. C. Rescell, M.P., in the chair. In the course of his speech took occasion to remart that a greater speed might have been altained, had not one of the purapefer supplying the boiler with water given way shortly after passiog Sloagh, to remedy which they were uader the necesiity of reducing the presane in the boilers. The trainafterwards returned to London. Mr. Brosel drow the engine both ways.

The principal dimensions of this great locomotive are-Cylinders, 18 in. diam. and $\% \mathrm{ft}$. stroke; driving wheels, 8 f . diam.; supportiog wheef, 4 ft .6 in . diaun, has six wheels and uncoupled; 278 tuber, 9 f. Loag aped 2 in. diam.; fire-box ontside, 5 ft. 6 ia. by 6 f. ; inside. 4 fl. 10 to. by 5 fl .4 in ., with a partition through the middle, giving 160 f . of healing surface, and 20 fts for area of fire-grate; total beating surface, $1,750 \mathrm{n}$; from level of rail to top of cylindrical part of boiler, 9 ft .6 in .; and from level of rail to top of chimney, 14 ft .8 in .; supportiog wheefs 16 f . apart, with the driving wheels in the centre; total leugth of ewrise, 24 th ; tender on six wheels; weight of engine, 30 tons; teurler, 15 toos.

The following stutement of the time kept between London and Bristed taken from the Times slightly differs from the preceding stacicment, whict is given on the authority of the Railuagy Chronicle.

Paddingten lat mille	
2nd	!
8 rd	\%
4 th	"
5 th	"
6th	"
7th	"
8 ch	3
9 cb	*
10th	"
11 lh	"
18th	-
13th	H
14.4.	*
15th	"
10th	*
17th	*
18th	*
10h	*
20th	8
$210 t$	0
28nd	
Mudenhead	
Twyford	
82nd m	
3 rrd	"
34th	"
Headio	
Jth	0
8th	n
87 ch	"
88th	*
39th	\%

 8.
85
3
10
15
21
3
34
40
43
65
4
10
25
10
13
40
48
4
9
15
21
28
38
34
45
55
0
7
16
16
21
27
312
88

** The results of this experiment are deemed by the adrocates of the broad gauge to settle the contruversy in their favour, or, as Mr. Masarll, M.P., chairman of the company, expressed it with more emphaxis thas elegance, "to put an end to the "humbug' of the narrow gaugr." With great deference, Lowever, it may be submitted that this is nos quite correct. The observation, that the engine would have gons faster of ooe of the punps had not broken, seems a rather innocent one; for thet "aif" contains the whole giat of the aratter. Tbey never grt up) any matonishiog performances on the Great Western Railway without one of these casen. ties occurriag. We are constantly told of the wonderful feuts of the express trains, but those who are accustomed to truvel by this railway are always on the look out for some accident especially, which, if it do mot involve loss of life and limb, causes a detention. There is always na acre luose sonewhere," or if it be not luose at slarting; it works loose duriag the journes.

Now what is wanted in an important commercial agent such as the Girtet Western or the Birmingham Ruilway, is not a few showy results now and then, but constant uniformity and punctuality-uot an excessive apeed, but une which may be thoroughly depended upon. Until, il.erefore, the Great Western Company can work theır engines at these high velocities for monthe together, and pass over the puinls aud crossings nt the intermediate stations, without accident, they will not have proved their point.

We offer no opinion here as to the superiority of either gauge; it eeeas to us that too many opinions bave been uffered already. As far as we can judge, the best railway gauge, if we had to begia de noro, would be one of intermediate width,but whether excess or deficiency of width be the greatest evil we cannot decide; of neither gauge liave the powers̀ beeo yec sufficently developed to render it possible to prunounce an authoritutuve opision. However, this is certain, that the diversity of gauge has at leate ooe beneficial result; it stimalates the rival engineers to ezert themeelres to the ntmost.

ROMAN REMAINS AT COLCHESTER.

The Afth anmber of the Jonral of the Britiah Archreological Association contains a dencription of some remarkable specimens of Roman art, discovered at Colchester. Armong them wat a sphynx, scalptured in stone, found in the garden of the General Hoapital, about teo paces from the weat wall, and about fifty-five paces from the London Road, at two feet from the aurface of the soil : close to it was dog upa fragment of the tibie of a homan leg, bonet of oxen, deer, pigs, and fowla, with Roman pottery; and between twenty and thirty pacea from the aame spot, part of a sepulnobral inacription to the me. mary of one or more legiunary soldiers. Within the boonds of the hospital were dag ap at the aame time a large quantity of boilding materials, red and white tiles, coarse and unhewn atones, used prohably in foundations, and a great many well-hewn fragments of a atone called awanage, from a place in the Lule of Purbeck, where it is chiefly dag; the fragment of the inscription above alluded to is of the same material. The atone in which the sphynx is coulptared is freestone, brought probably from Portland. Very recently, Mr. Taylor, the resident aurgeon, has noticed, in the amme locality, a Roman wall, from four to tive feet wide, and from ten to twenty feet in length, as far as it was excavated. A bronze statrette of a aphynx, about an inch and a half bigh, was foond in 1820, within a few gards of the stone figore. At a work of art, the sculptured aphynx exbibits a good taste and executive skill of no meat order. The fabled monster of Thebes, combining the five-fold attributes of a virgin, a lion, a bird, a dog, and a serpent, is correctly exhihited is accordance with the ancient myths in which it figures so conspicuously. The head, breasts, and arms, are those of a beantifal virgin; the fore-paws re of a lion; the body and fecund daga indicate a bitch; the hinder part tukes the lion': form ; and the tail, doubled upon itself in short foldinga, is the serpent in repose. The mangled remains of a human being lie beneath the fgure, and protrude on both sides. The head of the victim it extremely wall executed ; the eyelids are closed; the mouth is drawo down at the corners; muscles are strained and sel, and the conotenance, sunk in death, conrejs an expresuion of exhanation and agony. Altogether, the composition is good and hermonious, and is probably of early date. On the base is cat a large S, dogitiren a mark of the quarrier or of the aculptor.

In the collection of Mra. Mills, of Lexden Park, is a bronze figure of Capid riding on a sea.griffin, discovered some years since in excavating for laying the foundations of Colchester bant, but which has been hitherto un. poblished. The god of love is often represented riding on tbe back of a lion, or on dolphins and tea-monaters, emblematical of his omnipotence, which is well symbolised in tbe triform grima, a combination of bird, beast, and fish, obedient and tractable under the gentle away of the youthinl divinity.

AUST PASSAGE BRIDGE.

Sra-With rempect to Mr. Fulljames's letter on the anbject of the Aust Pasage Bridge, I beg to atate that in the paper publiahed with the oames of Mr. Giles and myself in yonr April number, there was no ciajm to originality in the proposition to build a bridge across the Old Passage of tho Bristol Cbannel at Chepstow, the idea having been originally soggested by Mr. Telford many years since. A mere reference to the map will at coce point out the Aust Passage as the narrowest part of the channel in that neighbourhood. The occurrence of rocks, visible at low water and suitable for the foundation of piers, is a still further recommendation of that locality for a suspension bridge.
The span of the bridge at Freiburg is 820 feet, and Telford proposed ove of 1,000 feet at Runcorn. There is no doubt that this could be constructed so far as the mere strength of the main chains is concerned, but the lintrility to uadalation is a very serious obstacle. I see no reason to alter the opinion already expressed that the plan which I have been anx. ious to lay befure the public, would completely remedy that defect, which has proved very injurious to the most celebrated of our suspension bridges in exposed situations. I believe that a bridge with radial bars would, if properly coostructed, be quite capable of allowing the passage of railway traian, and that opinion is confirmed by considering the strengtb which lattice bringes have by actual experience been fonnd to possess.
The form of the suspension bridge proposed by mo was first published in Weale's Qaarterly Papers for Lady-day, 1845, and I there gave an outline of the design, which was afterwards described in a more complete form in your Journal, for a bridge over the Aust Passage.
Ar. Fulljames, uppears to intimate come intention of commenting opoo my calewlatuons. I shall feel very moch obliged to him for pointing out all the errors which he is able to detect.

I am, Sir, Your obedient servant.
Francil Babhrozth.

RHणnswe

Stodirs of Ancient Domestic Architecturz, wilh obsercetions on the Application of Ancient Architectare to the Pieterial Composition of Moders Edifices. By Edward Buckton Lamb, architect. Twenty Plates, 4to. Loodon, Weale. 1846.

A book that comes with a quotation from Candidus for the motto on its title-page, briogs with it, as may be supposed, a letter of recommeodation to us, nor has the prepossession in its favour, $t 0$ censed, been at all deceived. Mr. Lamb-whose name has repeatedly been mentioned by us for praise in our notices of the architectaral drawinge in the Rojal Aca. derny's exhibitions-has here produced an exceedingly clever work, replete with original remark and sonad instruction. In the generality of architectural pablications in which engravings constitute the leading and foremost feature, the letter-press is either of very subordinate qualitylittle better thad mere filling-up stuff, or anything but architectural-sometimes evidently the compilation of some book-maker, who besides pillaging not only his matter, but entire paragraphs verbatim from others, does not seem to have even so much as looked at the plates to which he was writiog. Such is not the case here, for, thongh all the subjects represent actual ex. amples of ancient-that is, Old English-domestic architecture, instead of cramming his pages with gossip history about the honses themselves and the people (all their kindred included) hy whom they have been occupied, Mr. Lamb leaves those readers who have a taste for such "juformation" to seek it in professedly topographical works, contenting bimself with, speaking of the respectire subjects, " exclusively with reference to artistic criticism elucidated by direct example." Criticism of that kind-especially so good of its kind as what we here oblain-is rather a scarce article; at least, it is very rarely served op to the general pablic, who are kept opon a water-gruel diet of discussion about "styles" alone; as if people needed to have such incipient information to be diuned into them on every occasion, and needed no other instraction at all. A very great deal more, it may be suspected, is requisite for enabling them to muke use of such " first-step" knowledge, when we find that even those wbo can show off very duently, so long as they stick to styles and dates, either become quite mute in regard to anything further, or else betray that their knowoledge is. all got by rote, and does not reach beyond what just enables them to discriminate between one style and another, but leaves them incapabie of judging of individaal productions of the art, except as they bappen to con* form to or deviato from precedent. So strongly, indeed, is a blind and servile regard to Precedont now insisted upon, thet nothing seems to be left for us to do in architecture but to copy literally what has been done; besides which, it might be thooght that those who lived in former ages had so completoly foresoen and anticipated all the wants of the present one and of our ectual social condition, as to reader any further modification of the atyies we borrow from them wholly unnecessary-and not only unnecessary, but dangerous. If Precedent is to be so followed-not as a guide merely going before us on the road, but one on whose footmarks we must plant our own feet at every step, -we may as well renounce at once, both for ourselves and for architecture, the power of doing anything that bas not been done before. Those who cautionsly follow Precedent step by step generally hobble along though they may not atumble; yet better is it that some should stumble-perhaps, break their necks-than that a whole. generation should go bobbling along, and perhapa, at last, get angry and shove Precedent aside, and fairly take their leave of him altogether.

We are not losing sight of Mr. Lamb all this while, for we are glad to find that he has not at all more respect for that same bugbear Precedent than ourselves. He too considers Precedent-that is, that "slavish adherence to it which parmlyses all iovention"-to be the "very rust of art'一the canker that feeds upon its vitality." After all, too scrupulous a regard to precedeet affords not the slightest defence against bad taste in architecture and decoration, for, as is here observed, "the worat conceits of the Pompeian, the tawdriest criakum-crankums of the Lonis Quatorse etyte, are facrimilized by our decorators, an if the taste displayed in them were so pure and perfect, that to deviate from it would be profanity."-But let os begin at the beginaing, mon ami Belier, and, certes, the opening paragraph of the volume is well penoed, and serves as a very approprite ves-tibule-to express ourselves architecturally-to what follows.
"At the time of its being re-introduced and adopted into modern practice, 20 very ill was our medizval architecture nnderstood, 20 great was the ignorance that prevailed even as to its very nature, constitution, and physiognomy, and so completely was even that ordinary cort of good taste whicb is founded apon good sense disregarded, that notwithatending its evident and almost cotal unfitanas for the porpose, the ecclesiasucal ityle
of former times was taken-or, to spenk more correctly, mlataken-as obe for imitation is modern residences, while our ancient Domestic architecture" (Mr. L. rejects the orthodor final k of the Camdeniats in "Domestick") "-ezamples of which are, or were then at least, sufficiently numerous and varied, both \ln towns and in the country, -wus overloaked altogether. Church windows - or something like chorch windowsspruced op and divested of all characteristic finish and detail, entitled a modern house to be called a Gothic mansion. In like manner, a line of battements, and perhaps a turret or two besides. were deemed quite sufficient to constitute a very pasablo "castellated style.' Then again, we had Golhic cottages-perhaps the race is not jet qulte extinct-spruce little things, whose Cothiciam lay in their baving pointed-arch apertures for windows. In short, had it been inteaded to parody and burlesque oar former styles of architecture, for the parpose of bringing them into contempt, hardly any better mode could have been devised."

This is most true; and not the least siogular part of the matter is, that the mont egregious parody and burlesque of all should have been perpetrated by one who not only set up for but actually was, and by some still is, looked upon as an accomplished antiquary and a profound authority in matters of taste; for in both the one character and the other, most com. pletely does Strawberry Hill damu the credit of Horace Wulpole. The Strawberry Hill humbug, however, is over; and, as Mr. Lamb says, "We can now laggh at such things as supremely ridiculous, althongh the laggh will not be joined in oordially by every one,-not by those who have had such fiagrantly absard taste entulled upon them by their immediate predecessors, and perhaps at an enormous expense. Even yol, however," he continues, "Ancient Domestio architecture is not sufficiently uuderderstood. In regard to certaio individual features that serve as diatinctive marks of buildings of that class, It may be allowed to be tolerably well understood at the present day ; yet hardly is it so in its natare as a style -us one capable of expressing itself distinctly, decidedly, and without any affectation, even on ordinary occasions. In like manner, as there may be a great deal of aim at character by means of certain pretenaions features, yel, after all, little of it in general composition, and just as little of artistic effect.-somay g very strong degree of character be kept up or produced where there is apparently scarceiv anything io acconnt for it. In art-and I would wish to assert such title for architecture-it is ooly what would be called a few triting touches that frequeully contribute all the difference between the masterly und the trivial. Unfortuately for architectore, it bas not been considered necessary to teach more than elementary forma, without regard to their value and effect in conbination; in other words, withont regard to composition and character. It is true, the reaily artiatical lies beyond the limits of the teachable, yet for that very reason ought students to be impressed with the aecessity for striving to advance beyond mere rulea-with the necessity for self thinking."

Now, confound the book! we go on transcriblag and transcribing without knowing where to stop; and feel ourselves shrank from a reviewer into a mere copyist. And, as if on purpose to vez us, what is said is so much to the purpose and to well expressed, that we canoot attempt to condense it without injuring it. We must, therefore, skip over a very great deal, and content onrselves with producing some of the pasaages which have most arrested our attention, or which are sufficieutly intelligible in the separate form of extracts. The following is one of them:-
"The reproduction of ancient furms cun never be the means of continuing the urt as it wus practised by those whom we affect to imitate by merely duing exactly si they did under widely diffureut circumstancrs. The adoption of the inprovenients necessarily resulturg from advanciug refinenent has ever infuenced architecture. The whole histury of the art, in our owu country in particular, attests this. Almost every succrasive century produced sobie marked change-some one of those diatinct unodes which we desigame atyles, though ull belonging to one graeral style. Be it especially observed, too, that anch buccessive changes were alwaya gra. dual und uvifuruly progrexsive: there was iu those dags uo anch thiug as the re-cssumption of any formire style. Wherefore there is reason to believe, that had not an entirely new dir-ction been giveu to architecture in the sixteenth century, the very latest Gothic or best Tudor might have been carried on auch longer, and wuld have acquired frash spirit and energy. We of the present day are, un thie conirary, at ouce exceediagly strict, and exceedingly lax, -must bixotted in sonue respects, and most latitholinarian in others; for although shocked at the inlea of prexunsiug to trrat any one style with artistic frecdon, our taste is so pliant that it nccommodates itself to aearly all styles alike, just as whim or fabbion briugs them by turis into vogue. For all the styles we posserss we are ealirely judebted to those who have gone before us, uot even attempting to make any uddition of our uwn to the general stock; whereas, by continuing the same spirit which marled the works of preceding ages, we should in a short time work out a style acconmodated to our actual requirements, and at the same time warked by asthetic quality."

Very different is this from-we need not say how much more rational and how much more cheering than-thut ductrine which would couvert art into mere mechanical routioe, and which tacitly prociaims - (mark the bull!)dishelief in the ability of architecture to do tuore than copy and repeat its former deeds an I doings. It would seem that, though its hand may be as
atrong as ever, its intellects are im paired-its imagination completely gove, so that it has become not ooly prosaic, bat a twaddler and proser at once boastful and deaponding, and for ever and anon exclaiming "Oh! the days when 1 was young!" Not content with its keeping to one route, pedments and sticklers for precedent insist upon architecture being handcuffed and macacled also. If it presames to put forth a finger or anke a single movement of any kind that is not in conformity with their instructions, they stand aghast at its temerity and audacity. Yet aurely there is nothing onreasonable in demanding that we should be allowed to contime any style which we have taken up, by modifying and udupting it to existing oceasions and purposes. The right of such continuation-procest has been claimed in Germany, where its gond effects have shown themselves in several instances. That it has been uniformly atteoded with success we do not say; but for what stgle, we would ask,-let it be adhered to ever so slavishly,-can uniform auccess be insured? Some have gone astray, quite abtray perhaps; well, what then ?-are we to have no more wine because some people get beastly druak with it ?-or "are wo to have 0 more cakes and ale becanse Sir Robert is virtuous ?" Let it also be carefully borne in mind that the ultimate cfficacy of a continualion process is not to be prejudged from its beginnings. It must have time to operate. A tree does not bear the desired fruit the very day after it has been engrafted. At any rate, those who do not care to venture upon any fresh ideas themselves, ought not to discourage others by "poob-pouhing" and sneeriag. To say the truth, their doing so betrays what they would most atadiously of all conceal, namely, their apprehension not of failure for others, but of their success,-apprebension lest those who are more enterprising and possess more artistic stnmian than themselves should get forward by leaping over the fence that bounds the beaten puthway.

It is easy enough, it will perhaps be objected, for any one to say thal we ought to modify those styles belonging to former periods which we now make use of ; the difficulty lies in the doing it. True: and to be reproached for not doing it might seem tov much like an inconsiderate if oot insolent taunt on the part of a mere writer on architecture, wolally anpractised in design. Such a one speaks ander the comfortable assurance that his own ability will never be put to the test; but the author of the present volume has ahown that he is capable of acting up to his own doctrine, and that while treating a style freely, he can be truer to the opirit of it than many one who pique themselves upon copying from it literully, and can produce "certificate" for each separate part iu their designs. There are brildiags which cut a very braro figure in deacription, yet a very sorry one when beheld; for we then oftimes find that the great something in words, turns out to be a nuthing in reality, or at the best, somethiug very feeble and poor. Nor is it in the treatmeut of atgle alune that Mr. Larob shows forte, for he is geverally exceedingly happy in composition; aad on the subject of composition-certainly a very important one-be gives on some excelleat remarka in this volume, and they are all the more welcome because acarcely anything of the kind is to be found in books that are otberwise professedly for architectural instruction. In continuation of the general remarks on composition, are others more specific, and in detail furmiox a connected commentary on the subjects shown in the plater, and whicb are thereby readered studies in a duuble sense. In fact, the work altogether abounds with instructive lessons, and is one that deservos to be studied with attentive reflection as well as read; and that it will be read by all those who, if they can't buy, can steal or borrow it-(vis., ateal by burrowing, the latter being the epproved fushion of book-tcealing)-we may venture to prophecy, unless we are altogether miataken by attribeting to the architecturul public far greater relish for art than they feel. Although we cannot even pretend to prophecy as much, we would fain hope that this is only the precursor of other publications from the seme qaarter, for Mr. Lamb has opened a path for himself and eatered upon a wide as well as an ungleaned field. At present;'he has shown us only actual iastances of Old Ruglish aransions and conotry-houses, but though they bold oat excellent hints, and possess character and physiognomy, wo mow require to see some of those or elve similar examples accommodaled to modere Ideas of comfort, and to modern refinements and modes of living. At aey rate, he hat renderud himself debtor to the public for a comespoediog volume on the other division of Domeatio Architecture, vis., that which relates to interoal arrangement and deaign, furaiture, perhaps, incladed,a branch of his profession to which Mr. L. has directed his attention is a more than anual degree, as is attested by various contribations of his at the subject, in "Loudon's Enoyclopsedia of Cotuge and Villa Archisec. ture.

Homeontal Watel Wherls, eapecially Tuabines; their history, conatruction, and theory. By Moritz Ruhlman. Edited by Sir R. Kane. Dablin: Hodges and Smith, 1846; small quarto; pp. 76. Sis lithographic plates.

Notices of the cunstraction and power of the turbines, or horizontal water-wheels, have appeared in this Jouraal in the rolume for 1842, p. 265, and in the volume for 1814, p. 85 and p. 325. The publication of the Fork before as eaubles us to give some further information reapecting the practical reaclis obtained from these machines.

The prement treatice is translated by the editor from the German, with the addition of some notes and an introduction. The translation was undertaken on acconat of numerous inquiries from millwrights and engineers, addressed to Sir Robert Kane, in consequence of his having directed attention to the turbine in his work on the "Industrial Resonrcen of Ireland." He has selected for translation the prosent treatise by Professor Rühlman, at the most suitable for his parpose: at the same time he gives accoants of several other treatises on the same subject. From one of these, that by M. Morin, we take what we consider a very important extract, because it exbibits the general practical effects of turbinee as determined, not from a doubtful theory, but from actual experience, and because these conclasions are confirmed by the authority of a commission consisting of MM. Arago, Prony, Gambey, and Savary, appointed by the Academie des Sciences to report on the subject. The following are the general results of the investi-gation:-

1. That the Fheeli are applicable equally to great and to small falls of witer.
2. That they transmit a useful effect, equal to from 70 to 78 per cent. of the absolute total moving force.*
3. That they may work at very different velocitien, above or below that corresponding to the maximum effect, withont the useful effect varying materially from that maximum.
4. That they may work from one to two jards deep under water, without the proportion which the usefal effect bears to the total force being sensibly diminisbed.
5. In cousequence of the last preceding property, they utilize at all timet the greateat possible proportion of power, is they may be placed below the lowest levels to which the water surface sinks.
6. That they may receive very variable quantities of water without the relation of the useful effect to the force expended being materially less. ened.
Bühlman's treatise is divided into three parts-I., a history and deacriplion of the turbiae; II., rales of construction; III., the mathematical theory. We shall confine our atteation chiety to the first of theee sections, for the "roles" in the second section are derived from the "theory" in the third, which theory, whatever may be its value as a speculative inquiry, does not seem sufficiently well established to satisfy the wants of the practical mechmoician. M. Rüblman's calculation of the aseful effects of the turbiee is foonded on the principle of the Conservation of Vis Viva, and would perhaps be perfectiy satisfactory if that priacipie held for fluids in motion. But it does not : the theoretical effect calculated from this prinsiple is much greater than the effect really produced in practice; for it is foond by actual experience that a large portion of the force of water in motion is absorbed by the mutual action of the molecules of water on each other, and by various resistances far too complicated for calcalation. It is true that the results obteined theoretically may be modified by the introduction of "practice-coefficieals :" but these coefficients, obtained from experiments on one kind of water machines, are not necessarily accurato When applied to another kind. Indeed, Bir R. Kane himself observes in his introduction, that "the action of the turbine, considered as a problem of hydrodyaamics, involves conditions to the discussion of which science in its present state scercely reaches." The value of the theoretical rales is therefore very doubtful. The most pradent course in this, as all other ases of practical mechanics where the theory is not fully settled, is to trast principally to experience, not neglecting, however, the general sugfretions obtained from theory.
To proceed, however, to that portion of the present treatise which is of more direet interest, we observe that the general result of experiouce and of all that has been written on the subject teads to ahow that, of all the forms of the turbine hitherto invented, that by Fonraegron is by far the

[^31]most aseful, and to thiy, therefore, we may confine our attention. The following is a plan of a quadrant of a horizontal wheel erected on Foureayron's principle in a cotton factory, at 8t. Blasion. The plan is drawn to a quarter the actual size.

In order to naderstand the action of the wheel, the reader must iangins the circles, of Which the quartor only is drawn, completed. The machine will then be seen to consist of two parts-n inner wheel fixed, and an outer or larger wheel recolcing. The water comes from the centre, proceeds along the guide curves F, F, which cause it to impinge directly upoa the curred paddles \mathbf{D}, \mathbf{D}, attached to the outer wheel, which consequently revolves in the opposite direction to the impolse of the water.

The shaded parts $5, x$, are stops attached to a drum $J J$: the object of these stops is to shat off when requisite, the commonioation between the inner fixed wheel and the revolving ooe. $J J$ is capable of being raised or lowered by exteran machinery, and consequently x, x, descendiag between the guide curvea regulate the suppl; of water or shut it off altoEether.

The next cut is a vertical section of the whole turbine, and shows the method in which the water is applied to the revolving wheel.

The water comet first from the supply-pipe H, jnto the cylinder $\mathbf{G} \mathbf{G}$, descends E E, and falle on the fised gaide-curves F.F; from these it rashes in borizontal streams agninst the paddles in the revolving-wheel D D, and finally escapes at the circumference D D.

The revolviag wheel is connected by C C with a shaft B B, which turos ona pivot at its lower extremity. B B carries a main axle A A, which goes op through the water cylinder, and is applied to torn the machinery of the cotton factory.
$\mathbf{J} \mathbf{J}$, as has been explained, is the sluice which regulates the supply of water. The manner in which $J \mathbf{J}$ may be raised or lowered is easily meen from the diagram. The arms 0.0 contain matrices, in which the screws P. P work: these screws are at the ends of long rods Q, Q, turned by winches not shown in the dingram. It ia clear that by turning Q, Q one way or the other, the slaice will be either raised or lowered.
L, K, M, show the means of packing $J J$ to keep it water-light.
U is a little conduit by which oil is condocted from a small reservoir to keep the pivot \mathbf{R} constantly lubricated.

The main shaft and pivot are of steel, the wheel of wronght-lron, and all the other parts of cast iron. Though the wheel is oaly $12 ⿻$ inches in diameter, it drives 8,000 water spindles, the roving frames, carding engines, aed all the acceswory marbinery. The onmber of revolations, with \ddagger of an inch sluice opening, are 2,300 per minute. The available full of water it 350 feet.

The following ls Riablmas's account of his first impressions on examinlog this machine :-

The second turbine erected by the inventor at St. Blasien, with a fall of 117 yards, has become more important shan any other. I can best describe this turbive by detailing what I myself anm and learned opon the spot during the jouroey already referred to. Already, half an hour before arriving at the remarkable locality of St. Blasien, sitnated in one of the most beautiful, but also of the wildeat and lonrliest parts of the Schwartzwald of Baden, a curious noise annonaces the ancommon spectacle, which becomen more extraordinary as you approacb.

On entering into the wheel-room one learas there that what had been heard at a distance ahout this place was not merely myatification, but reality.

One then feels seized with astonishment, and wonders, more than in any other place, at the greatness of human ingenuity, which knowa bow to render subject to it the moat fearful porers of Nature.

At every moment the powerful pressure appears likely to burat in piecea the little wheel, and the spiral masses of water issuing from it threaten to deatroy the surrounding walls and huildings. Often when I went out of the wheel-room, and looked at the enormous height from which the condacting tuhes bring down the water to the wheel, the idea forced itself apon me, "that it was imponable," but that idea pased away when I went back into the little room.

Pouroeyron has here, for the first time, solved a problem, which will for ever render his name bistorical in the technical and acientific world, a pro. blem in which he had to overcome not only the greatest ohstacles of Nature, bat also disfavour and prejodices in a thousand forms. Who could find any other meana of utilizing this esiating water power? Perhaps a water-pressure engine might be applied? Certainly not ; since even without proving, by calculation, how little that kind of machine is suited for rotatory motion, it is only necersary to consider the very difficult and very power-destroying convertion of a vertical reciprocsting motion isto an uniform rotatory motion, in order to anficiently appreciate the difficulties.
The conclusions arrived at respecting the general merits of the invention seem well worthy of attention, for they are expressed by an impartial witseas, who has taken great pains to get at the trith.

It is certainly nof true that turbines are capable of totally displacing vertical water-wheels, as was at first asserted. The greatest obatacles to the erection, construction, and working of tarbines, at least in Germany, arise from the fact that many gears must elapse before our millwrights will have acquired the necessary theoretical knowledge and practical experience. With these mechines everything must be really calculated. It will not do to construct one wheel after the patters of another, or to trust to what is celled the practical shape. But also the conatruction of tbese wheels, in the workshop of the machine-maker, requires the greatest care, observation, and prudence, otherwise, no matter how it may be calculated, a good wheel a an it be produced.

It is now also fully admitted hat Fourneyron deceived himself in mpposing that these wheela economized 80 per cent. and more of the total available Inrce: But the latest and fullest experience has showa that they economize certainly from 60 to $\mathbf{7 0}$ per cent., when those precautions are taken which should be attended to in their formation.

Finally, as to the choice between vertical wheels and turbines, in any particular case, it is decidedly to be considered that in overy case where an overshot wheal, or $:$ wheel with tolerably high breast, and what are termed overfall shaices, can be erected, such is to be preferred to the turbine; since the former, when carefully conatructed, easily economizea more than 70 per cest, of the power. Yet in ceses, as in cornmills, where the horisontal motion of the turbine mey be imsediately made use of, or where there is much
bsek water to contend againat, this assertion may require to be monified, nince, an mentioned already, the turbine may be sunt to a conaiderable depth in the hack water, without losing any material proportion of its power.

In every case of a fall, either higher or lower than that suilable for an overshot wherl, the turhine denerves decidedly the preference, and thrir not being erected in all such lncalities can only arise from want of kaowledge, the apprehension of their heing bally made, or of their cost being greater than that of the vertical wheel, which it should not really be.

The share which Sir Rubert Kane has in this work ay translator is by no means an unimportant one. He has reduced all the German and French measures to the Baglish standard, and bas interspersed the text with usefut notes. His introduction is also valauble, for it directs the inquiries of those who require more information than that given in the present trepise, and his undertaking is, on the whole, a very valuable contribution to the literature of engineering.
The principal practical objection to the ase of the turbine is, we beliere, the difficulty of preventing the smaller parts of the machine from being stopped ap by impurities th the water. The velocity with which the water is required to be discharged from the wheel reuders it difficult to strain or filter the water sufficiently without impeding the current.

It may be useful to observe that in order that the full effect of the water may be obtained, it ought, when issuing from the circumference of the wheel, to be moving with the same linear velocity as the point from which it isgues. For this is clear, that if the water be moving with greater velocity than the extremity of the channel hetween the paddles from which it issnes, then, had the leagth of the channel beengreater, the water would have contioued to impinge on the paddles, and woold bave done more work. Again, if the water be moving at less velocity than its point of exit, it is obvious that, for some distance before the exit, the channel has been urging the water forward, instead of the water impelling the chaunel. But in the case whrre the velocities of the water and its point of exit are equal, neither acts on the other : the water no longer impels the chmnnel, which shows that all the work is got out of it; and the channel does not urge the water, which shows that the motion is not impeded. This is the reason why turbines are oade to revolve with so greut velocity as that stated above.

Very aimilar reasoning will show that the end of the channel ought to be a tangent to the nircumference of the wheel; for in that case neither does the water act on the wheel nor the wheel on the water at the point of exit; whereas, had the channel been more or less oblique, either the water must have been pressing on the paddles, or the paddles on the water, at the moment of issoing.

It may be useful to some of our readers to know that there is a model of Fourneyron's turbloe in the model-room of the Museum of Economic Geolugy, in Crig's-court, Charing-cruas- museum little visited, be. cause, we suppose, it is one of the most interesting in London, and is perfectly open to the public.

Weale's Quarterly Papers on Enoinetrima, for Christmas, 1845; part X., published Jane 1st, 1846. Weale, pp. 204, 18 Plutes.

The present part contaiva four papers: the first, contiauation of the "History of the Machinery and Manufuctures of Great Britain," ocenpies 187 pagea; the "Menoir on the Tbames Tunnel," 29 pages; "an account of the Constraction and Statistics of the liailway from Frankfort to Wisbaden," 97 pages with 15 plates; "a deacription of the propased Wet Dock on the Wear at Sunderland," 11 pages, with one plate.

The first paper is devoted to the manufactures and improvements in machinery during the seventeenth century, and displays considerable antiquarian research. It contains, among other subjects of intereat, an account of the efforts of Parlimment to remedy the abuses arising frum the royal privilege of granting patents. That wise and revered monarch, king Jamea I., seems, to nae a comnon phrase, to have made a good thing of his power of protecting inventors, for he frequently managed to share the profita, without bearing any part in the risk of the speculation. For example, in 1612 was granted "a patent to Simon Sturtevant for divers mechanic arts and myateries of his own invention, whereby all kinds of metal workes.. now made after the ordinarie course with woodfuel and charcoal, may bee as well made and wroughte with set coake, pit coale, carth coale, and brush fawel." The agreement was this-" the profits were to be divided into thirty.three parts, tes of which were to go to the King, five to Prince Heary, two to the Duke of York, and ose to Viscount Rochester : the remaining flteen shares were to be the property of the pateotee, who mas to find all the money and ran the whale riak." Fortanalo Biman Sturtevant! The paper contains also a copy of the Mar-
quis of Woreester's celebrated "Centarie of Inventionn." The marquis must have been an extraordinury man, for, by his own account, he effected several physical impossibilities.
Tbe continuation of the memoir of the Thames Tannel follows. The aecount of the repeated diacouraying failures to which Sir I. Brunel was subjected in the progress of his great work, and the courage with which be perevered, is very interesting. There are not, however, in the present sumber any of those admirable platea, represeating the mechanioal con= trivance employed by Brunel in the Thames Tunnel, which rendered the former portions of this menoir of specific value to the engineer.

The letter-press description of the Frankfirt and Wisbadon railway does not puasess an interest commensurate with the excellence of the engravings by which it is illustrated, fur the grouod traversed by the railway is so level that there are few, if any, engineering works worthy of detailed description. We can speak from perzonal knowledge of the excellent regulations by which this railway is managed, and the convenience of dividing the passengers into four classes, all of whum travel much more cheaply than they would in England, and are seated in comfortable carriages defended from the weather and the smuke and hot cinders of the engine. In Germany, the comforts of the poor are less lalked about than in England, but we are not certain that they are less attended to.

The new dock at Sunderland is designed by Mr Stepheason and Mr. Murray, and is to be 27 acres in extent. The following extract from the report of Mr. Walker, who was comaissioned by the Lords of the Admiralty to examine the plan proposed, will explaid the priacipal nuvelty in the design:-
"The lift of a spring tide being only 14 feet 6 inches, the dock is to be 6 feel under low water, giving 20 feet 6 inches water in the dock on a spring, and 17 feet on a neap tide. The shove deptha can be maintained in the dock, hat the depih at the har at the harbour mouth is two feet less, so that with the "scud" of sea during a north-east gaie a ven el drawing roore than 14 feet cannot venture over the bar with safety. Tu have the dock so mach deeper than the approach so it would be of litte use, and yet, from the great draught of shipe from foreign ports, it would be very advisable to have not leas than 17 feet at neap and 20 at apring tides. The engineers propose to accomplish this by sending jaden vessels chiefly out at the south end through a tidal hasin of 4 acres, with two openings, one baving gates of 60 feet, and the other of 43 feet, between the dock and it and other similar gated between the hasin and the outer entrance. The outer entrance or rather estif points south, south-east nearly, ${ }^{*}$ and is to he formed by means of rough breakwatert, one on the east ride, nearly parallel with the entrance, and the other on the west side, nearly square with it. This southern pasage is proposed to be as deep as the dock, and to kept to that level by dredging and scouring. The very important feature of the plan (the southern passage), is, so far as I remenber, wew; and if it can be effected at proposed, will be agreat convenience, by giving laden thips two to four feet more water than can at present be depended on; starting them in the right direction for the south, When the wind is fair, aluo leaving the Wear or harbour entrance clear for the present harbour, and the entrance of lighi ships into the docke."

On Staking out Raihoay Cwroes. By Geonaz Heald. Carlisle, 1846. pp. 7.
This is a amall lithographed pamphlet of seven pages, of which the extract given below will give a sufficiently correct idea. The muthor'\& plans of setling out curves seems correct; bowever the investigation does not require nny wonderfal amonnt of geometrical ingenuity, and we hope that the tine is not far distunt when every engineer and surveyor will know enough mathematics to solve so siaple a problem for himself, without having recourse to books. This reasark is however made without disparagement of the treatiso before us.

The curve described in the following extract is strictly speaking a para-bole-the cnrvature of a paraboin near its vertex resenbles that of a circle with sufficient accuracy for the purpose here proposed, if the offsets be small, and the radius of curvature very large.
"Having by the practice and examination of several methods of staking ont railway curves urrived at the condlusion that it is best effected by employing the theodulite; and several friends having requested a detail of the aysem that I have pursued fur that purpose. I have bad the following anmmary of the principles lithographed for the in'ormation of those who may the desirous of becoming acquainted with the system. Suffice it to say as its recominendation that the system insures the curves being truly circalar, and greally economises the labour that is often requisite to drive the curve thruagh a distant given poiut from which litte or no variation can be allowed; which is a cuse of frequent occurrence, and upon some sysrems oue whuse practical execution is very tedious.

- The bearinga are all by compach.

" The first principle is, that in circles of the magnitude of those used for railmay curvex, if a langent he drawn to them, the offsets from the tangent to the curve incromes according to the squaren of Heir diatances from the point of contact.

Thus let the junction of a curre and tangent be at 0 ; then, if equal distances be aet off from 0 at the points $1,2,3,4,5$, and 6 , which may represent chains, the offset from the langent to the curve at the 2 nd, 8rd, 4 th, 5th, and 6th will be respectively $4,9,16,25$, and 36 (or 29, $3^{4}, 4^{9}, 5^{9}$, and 88) tiwes the offset at the lat chain.
" I'his is o0e of thuse close approximations which, though not rigidly correct as an abatract mathematical prupusition, is much too vear the truth to permit any discrepancy to appear mfter the most critical examination; it being naderstood that wben the radius is as suall as twenty chains, the length of the tangent is restricted to three chains, and when it is three miles rudius it is restricted 10 eight chains, it is between these limite that reilway curves are supposed to range.
"In the practicul staking out of curves the ofsets from the tangent to the circle at each chain leugth, expressed in inches, or feet and inches, are made use of, and from the preceding paragraph it will be seen that having the offsel from the tangeat fur one cbaiu leugth given, the succeeding chains will be deduced frum it by multiplying by $4,9,16,25$, sca.
"It perhups will not be aniss at this stage to point uut a rule for finding these offeta, which is pariculariy cuavenient when the radius in some aliquot part of a mile, like the principle enuaciated in section 2. to which it is so ctusely allied, it is practicully correct, but not mathematically true. Its somewhat singulur phraseology runs thas-from the square of the tangeat iu chains subtract its rfoth part; divide the remainder by the diameter of the circle in miles, aud ten times the quotient is the required offiet in inchey.

A Treatise on the Steam Engine. By the Artizan Club. Parts XXIV. add XXV. Longama: 1846.

As these are the concluding parts of the treatice, we may as well say a few words respecting ite generul character, notwithatanding that the work has already been frequently noticed in these pages.

Excepting an excellent fulio plate giving views of 14 of the most celebrated varieties of direct action marine eogines, the present numbers contain litte that posseases independent intereat, for they are chiefly occupied by the index. We have however the introduction, by the editor, Mr. Bourne, and the character which be gives his own performance in on the whole $s 0$ nearly correct, that we are content that it should be taken as an expression of uur judgment on the work.
"The circumstance of having been published in monthly numbers farDishes, of itself, an explanation of many imperfections; for it can hardly be expecied that works produced under the exigencies of periodical publicution should be distinguished by the perfections which beloug to literary leisure mud fustidious elaboration. I have been obliged to coufide the greater purtivo of the theorelical part of the present work to some mathemutical ussistants, whose algebra has, I fear sumetimes risen to a needless Juxurinnce, and in whose superfiue speculations the engineer may perimps discren the band of a tyro. In spile, however, of its imperfections I be lieve that the prosent Treatise on the Stean Eugiue la likely to prove the nost useful yet published; and it is the ouly one, I believe, which can be regarded as of a reuily practical charaoter. Although falling far short of ny couceptious of what such a work should be, I believe that it substantially fuifils the promise treld out in the prospectus; and having now collected the rough nusterials, I trust to be able, should aoother edition be called for, to clear tben of the drojs by which they are now ditigured, and preseut them in a form that will in some measure justify the public approbalion.
6. The preliminary and practical portions of the work have, for the most part, be'en executed by me, the disquisitions upon the slide valve and parallel motion are taken frum the 'Artizau,' and other purtions of the wuris are by various menibers of the Artizan fraternity. In the practical part of the work I havo been able to ubtaiu but little ussistauce from pre vious authors, and mayy of the subjects discussed are now brought for the first tune before the public. Mr. Farey's work, though of great merit, gives but litle infurmatuou of any kind touchang moderu engines; and 'Tredguld's work is chnelly made up of matbematical sublimitues, which have but little relation to practice."

The arknowledgement of the theoretical errors is made in a manner which disarms criticism. As far as we could judge the errors arose from an attempt to combine the theory of De Pambour with that of Tredgoldthat is, the true with the false. We bave no besitation in alying that

Tredgold's theory of the steam engine bears the same relation to the truth which the speculations of the ofd Greek philosophers respeeting planetary motion bore. The evaporative power of the boiler as an ingredient of numerical calcalation is entirely neglected in Tredgold's theory, and the groes errors of principle with which bis wort is flled are made ten times worse by Mr. Woolbouse's profession of haviag corrected them. It is really too late, now that De Pambour's masterly investigations have been for six or seven years before the world, to endeavour to revive Tredgold's exploded viows, and we regret that the treatise before us should have been injured by this injodicions attempt. However the reader is, we are very glad to find, pnt upon his guard in the preface, and it is therefore his own fanlt if he be deceived.

The great merit of the present work is the rast quantity of information which it affords as to details of construction. In this respect it seems unrivalled. The only thing to be complaised of under this head is that a large amount of matter is frequently compressed into so small compass that the reader will often have a difficulty in finding the information for which he is in search. Tho book is not sufficiently digested-not systematic eaongh. It contains a vast store of invaluable facts, but these, like other warehoused commodities, are frequeaty so crowded together that it is dif. ficult to get at them. Mr. Bourne talks of having a new edition; we hope that he may be eacouraged to do 20 , and that he will adopt in it a simple and exact arrangement by which the reader may find " every thing in its place, and a place for every thing."

Fand Book of Mapping and Engineering Drawing. By B. P. Wilme. London: Weale, 1846, quarto. Part 6. Page 69.

This is the concludlog part of a practical treatise on engineering draw. ing, which has been already favourably noticed by un. The presunt part contains a comparison of the different methods of copying maps, n description of drawing instruments, methods of representing geologicel strata, \&c. Thereare some useful soggestions respecting the execution of Parliamentary Plans, which will be of interest to mome of onr readors, and may be quoted as a fair apecimen of the character of the book.
u By the standing orders of the House of Commons, engineers and marveyors are required to plot their railway plans at a scale of not less than 20 chains to an inch. The width of railway surveys varies from 5 to 20 chains, at the option of the engincer. One vers essential point to be atteaded to is to carefully survey, plot, and number all houses, fields, \&c., wlihin the limits of deviation. The limits of deciation are cortain lines which mark the space beyond which it is not proposed to take power to deriate the line of railway. The limits of deviation are shown by a strong dotted line,-the proposed railway lino is represented by a strong line.
"When railway plass are drawn at a scale of 80 chajos to an inch. it is asual (compulsorily) to give enlarged plans of those subdivisions of land into very small allotments, as gardens, houses, \&xc., subrivisions being often reodered indistinct, from the smalloess of the scale. The principal object of these calarged plans is to enable the draughtsman to sufficiently develop the houses, \&c., both by drawing and numbering; a separate number being reguired for each garden and house, as well at for all fields, roada, rivers, \&c. The names of the diferent pariahee through which the line is proposed to be carried mant be written, and of late days the conaty mame is placed at the top of each sheet. The sheets are numbered $1,2,3$, \&cc., and the name of the line of railway is sometimes writien over the number of the street, as Elverton, No. 1. The enlarged plan should be placed in each case directly over or under that portion of the small plan to which it refers. By taking care to get the portion of the railway line on each enlarged plan exactly parallel to the corresponding pertion of railway line on the small plan, a very pleasing and convenient arrangement will be effected, and we are thus enabled in using the plan to find at once the enlarged portions. I have been induced to say so much for the gaidance of the young surveyor, from heving frequently noticed the slovenly manner in which some survejors are in the habit of misplacing the enlarged plans. They are sometimes so jombled together that it is quite a labourto wado through them. The radii of the curves is miles and furlongs is required to be writton in each case where curves occur. When the plan is drawn at a scale of 20 chains to an ioch, the eularged plans are usually plotiod at a scale of five chains to an inch.
The scale of six chains to an inch is one frequently adopted for Parliamentary railway plans ; but they are soldom drawn to a larger acalo than tive chains to the inch. The relative meriss of the large and amall scales may be fairly taken as follows: viz., when the swrvey has been carefully taken, the scale cannot be too large; but if it be carelessly done, as is too frequently the case, it becomes necessary (as it is technically denominated) to fudge it, and in such cases it is frequently plotted or reduced to a 90 chain scale. This is done with a view to ebecore, as much as poesible, the iosccuracies of the eurvey. The merits of the large and small scales may aleo be taken in another light, vis., when there is a sufficiency of time to admit of plans boing drawn at a large scale. it is desirable to nse it, but if the time be shert, the work will be eooner dope at a small scale.
"Again, for the duplicate pians; this becomes a coasideration. Lithographers charge a less sum for lithographing and printing pinns at amall acale, than at a large one. Lithography has of jate years become a very favourite medium with engineers nod varveyors, for the production of doplicato plans fur parliamentary deposit. It certainly bas much to recommend it, and in proper hands, it would be a most iovaluable medum. It is to be regretted that this art, (as applied to the purpoee above named), almost essential to the surveyor, has fallen into the hands of an ignorant class of permons, vis., the picture-copiers and lithographic printers. It were impossible to detuil the mischief annually done by persons being introsted with this class of bosiness, who are totally ig norant of the construction or use of maps. The oumerous railway achrmes brouglit before Par. liament during the lant two sessions have compelled engineers and otber persons intrusted with the getting up of plans and eections to employ a miscellaneous collection of persons, who had dever before been sinuilarly engaged. A proportionate mount of mischief has been the consequence. It is paioful to see even the profensed picture-copiers or lithographic artists attempt to cops plang. The most ridiculous blunders are made, as might be expected; but of this no more. The remedy is simple; at least the evil may, to a great extent, be lesseded, if not altogether removed. Let surveyora lithograph their own plans, or employ their draughtsmen upon them; moch time and expense would thus be saved. The picture-copiers and lithographic artists would no longer have their brains addled with pursaits above their capacity; and the lithographic peinters would have the plans put into their hands in a perfect state, instead of being obliged to aend them back to the lithographic ignoramus for every alteration of his bluaders required to be made by the engineer, on examining proofs. In fact, by the method recommended above, the necesaity of proving may be in a great measure dispensed with.
"The principal point to be attended to in getting up such drawings is to draw them accurately. There is seldom time for pains-taking with embelliahment and the plainest style of erecution is quite as useful as the most elaborately finished production."

The work is illustrated by excellent plates, and seems to convey detailed information on every point connected with the execution of architectoral and engineering drawings.

THEORY OF THE STRENGTH OF MATERIALS.

In our last number we pabliahed a paper on this subject, by onr old correspondent Mr. Byrne, and as some of the argaments on which bin views are fourded, seem insufficient, we do not hesitate, notwithstarding our reapect for Mr. Byrae's scientific attainments, to state where bis opinioa differs from our own.

The new theory proposed seems to be founded on the idea that there does not exist in defiected benms what is termed a neutral line. Now it appears to ns that the existence of this line is capable of being proved by meveral methods which possess the atrictness of mathematical demonatra. tion. Before howerer, detailing these proofs, it may be as well to define what is meant by a neutral line, and to reply to the argument brought to disprove its existeace.
The originutors p the torm "neatral line" stated that when a borimontal beam supports a transverse weight, the upper part of the beam exerts a thrust and the luwer part a tension, and sioce these two portions of the beam exert opposite kinds of action, there must be in the benm some intermediate part which marks the tranaition from one state to the otherwhere, therefore, there is neither thrust nor tonaion. They asseried moreover that the actnal position of this nenural line, or rathor neatral bonadary, depended on the dimensions of the beam, the degree of defection and the weight sapported; and their theory has hitherto been considered incontrovertible. Mr. Byroe however brings forward this argument against lshe says chat if a beam be defected and a slice be taken in the upper part of it (fig. s, p. 164), this alice has the same form as the whole beam, and consequently there is as much reasom for assigaing a neutral line to the slice as to the whole beam. The consequent inference would be that the beam has an infinito number of neutral lines, bnt this absordity is to be deduced, not from the original theory, but merely from Mr. Byrue's method of statiog it. For when he says that the form of the thin upper alice is an argument for the existence of a neutral line in it, be makes the neutral lime depend merely on the form of the beam and not on ita mechanical action and the connection of its parts. If the slice were actaally cut off asd separated from the remainder A, so as to bave no connection with it, thea when beat it would no doubt have a neutral line of its own. A ad if beat, as represented in the figure, while lying upon \mathbf{A}, the lower side of a would not be so much extended as the epper side of A, but there would be some such difference as that in the diagram.

But in an andivided beam owing to the connection between its parts the portion a could nof assume the form here represented. Its lower surface

anst coincide with and be of the same leagth as the opper side of A, and be much more extended than when separated from it. Consequently no argument taken from the consideration of the slice a, in its separated state, will apply to it whet considered as an integral portion of the beam.

We proceed now to the direct argoments establiabing the actual exiatence of the beairal boundary.

Whatever may be the degree of deflection of a beam, and however great the lond which it bears, it is clear inat while the system is in a state of equilibrions, the internal forces of this beam and the external pressures apoa it are aubject to the ordinary principles of statics. Let ABCD bo

ose-half of a uniform beam resting on an abutment at A. Then if we sup pose for simpticity that the beam is loaded aniformly throughout, the centre of grevity of the system in hulf way between the two abalmeats; that is, the pressares on each abotment are equal. Hence the pressare on A is the weight of A BCD, and the load on it. Or if \mathbf{R} be the reaction at \mathbf{A}, and W the weight of the beam and load together, $R=1 W$.

Now if we suppoee the beam actually cut in half at CD, it is certain that the equilibriom of A BCD will not be altered if we consider the moleca. lar forcee which the supplied by the connection with the other half of the beam to be external forces acting at C D. And whatever these forces may be, they are capabie of being resolved parallel to three co-ordinate axes, and the excultante mey be eqjated with the remaining forces of the aystem. Let the axis of s be parallel to the length of the beam and horivontal, let the axia of y be vertical, and that of z perpendicular to the two former. Them if $\mathbf{Z}(\mathbf{X}), \mathbf{Z}(\mathbf{Y}), \mathbf{Z}(Z)$ be the sums of the corresponding molecular fercee we bave equating all the forces of the syatem,

$$
\Sigma(X)=0, X(Y)+R-\frac{1}{1} W=0, X(Z)=0
$$

With respect to the recood of these equations we have since $\mathbf{R}-\mathbf{W}=0$, $X(Y)=0$, and aiace these forces represented by $\mathbf{I}(\mathbf{Y})$ are all parallel and lie in one plave, they have a single resultant, and this resultant is sero, consequently there is no vertical force at CD. 8imilar reasoning applies to the forces represented by $\mathbf{Z}(Z)$.
With respect however to the longitndiual forces $\mathbf{\Sigma}(\mathbf{X})$ the case is different ; for these though parallel to each other do not lie all in one plane. Consequentiy they do not necessarily hare a single renultant. The equation $\Sigma(X)=0$ may be iaterpreted by supposing it to represent a couple \mathbf{M}, M; and if we take moments about A we shall see that this is the cocreet laterpretation, for the momeat of \boldsymbol{i} W about \mathbf{A} must be balanced by moere oqual and opposite momeat, and this can only be sopplied by the forces M, -M .
The fanal concionion in therefore that the reanitants of all the molecular forces at $C D$ are two equal and opposite forces $M,-M$, such that if the dibasee of the centre of gravity of A BCD from A be called a, and the distace between the points of application of M and - M at $C D$ be called b,

$$
M b=1 W a
$$

It is oertata aleo from the direction in which M acts that it arises from the compression or tendeacy to compress the upper part of CD, and in the man way - M arises from the extension or tendency to extend the lower pert of CD.
We have therefore the apper and lower parts of C D in opponite atates of action, and these two portions mont be perfectly distinct from each other. It is quite imponsible to conceive that the comproseed and extended parts
can eltermate, that as we oxamine successive portion of C D, we shell have frat an extended part, then a compreseed part, thea agaia an extended part, and 50 on. The portion of the beam oxerting throst cannot contain aly part in a atate of tension, and the portion exertiag teasion cannot contain any part oxerting a thrust. Neither can these two portions owerlie oach other, for then we must have some part of the beam exerting both tension and thrust, which is as abaned as to soppose a man can pull and push a thing at one and the same time.

It is clear then that the two parts of the beam in opposite states of action are perfectly distinot from each other, and there mast therefore be some boundary which marks the transition from the one state to the other, some place where the one kind of force censes and the other begint. This place is called the neutral boundary.

It will be obserred that this conclusion is deduced from foundamental priaciples of statics and not from hypotheses respecting the molecular structnres of the beam which, however ingenions, are seldom trustworthy. It is a necessary conseqnence of the existence of a nentral line that the compresaion of the upper side and the teasion of the lower shonld vary in degree, and gradually Jiminish towards the neutral boundary, 00 that there should be no abrupt trapsition from one state of action to apother. It is impossible to imagine that the molecular action can auddenly charge in any part : from the connection between each two anccestive lamiane, it is clear that the extension or compression of the one must be affected by the oxtension or compression of the other. We are therefore perfectly safe ln supposing that there is some general law by which these rariations of action may be represented, this is, that the amount of molecular forceat any point of either side of the beam is a continuous function of the distance from some fixed point. Now this function changes its sign in passing through the noulral boundary, for on the upper side of the beam it represents forces contrary in direction to those on the lower side, and therefore, since no continuous function can chaoge its sige withont passing through eero or infinity, and since in the present case it is obvious that it caonot pass through inflaity, it mant pass through eero, and consequentiy there is no longitadinal action whatover at the neutral bonudary.

It is usaal to represent the molecular forces as a function of their distances from the neutral boundary. This is perfectly arbitrary and merely corresponds to a convenient choice of co-ordinates, for by properly altering the form of the function we might make the molecular forced depend on their distances from any other point of refereace.

The determination of the ectnal position of the neutral bonadary may frequently be dificult, but the fact of its existence does not depend on the laboor of calculating its place. It fortnnately happens bowever that for the cases which most commonly occor in practice-those in which the dofection of the beam is small -the place of the neutral boupdary can be ascertained with quite sufficient accnracy to anawer all aseful purposen.

It may be as well to point out to those not familiar with the subject that this neutral boundary ia not a mere matter of curious apeculation, but one of direct practical importance. Every thing depends upon it. Without we know its position, we cannot tell how much of the beam is in a state of compression, and bow much in a state of tension-in other words, we cas know nothing about the atreugth of the beam.

We have wished to confine attention here to those things only which may be strictly deduced from the fundemental priaciples of mechanics, an which cannot be controverted without attacking those principles. We therefore do not enter into the consideration of the form of the function above alluded to. The assumption asually made accords perfectly well with the results of practice, and there does not seem the least reason for jisputing its accuracy. At the same time we must remember that its corractness depends on experiment, and not on independent reasons. When, indeed the beam is perfectly homogeneous, there are good theoreticinl reas sone in farour of the nsual assumption, and of this at least wo ase certain, from both theory and experiment, that the truelaw must be 60 near the asaumed one, that any error introduced into the calcnlation by this assumption will be inappreciable in the general result when the deflection of the beam is small.

We have atated our objections fally and freely, becanse if any miataken conclasion be here set forth, Mr. Byrne will be able to correct them. If In error, we shall be sincerely obliged to him for setting us right, for we have no other object but the advancement of the truth; bat till he does this, we aball confide little on a theory of the atreagth of beams founded on a deniai of the existence of a nentral boundary.

MAGNETIC EXPERIMENTS ON METALS, ALLOYS, AND MBTALLIC SALTS.

A paper on this surjoct was lately read hy Mr. Willism Sturgeon, at the Mancheder Literary and Philowophical Socirly. After having taken a retrospective view of the latmours of wher experimentalists in this department of magnetics, the author proceeded to describe a novel apparatns hy means of which his own experiments had been made. It consists principally of a powerful magnet and a light wooden lever, delicately suspended liy a few ailken flures, the whole being enclosed in a glass case. By means of this apparatus, Mr. S. han found that gold, ailver, copper, platinum, antimony, bisunuth, lead, tin, and some other metals, when pure, are peifectly neutral to the action of the magnet, but that when some of them are combined they become magnetic in an eminent degrre. Snme of his earlieat experiments, especially those on hrass, many specimens of which he found to be magnetic led him to suppose that their magnetic actinns were due to small portions of iron which thry enntained; for in onme of the metals of commerce on which he experimented, iron wat aholutely present. In a mass of himmoth, for instance, iron was found in consideralile proportions. Mr. S. has discovered that all our silver coinape is magnetic, but in diffrent degrees, according to the dares of its production. Dumeatic articles of silver, as spoons, \&c., are still more magnetic than silver coins. Gold coins are also magnetic, hut not to highly as ailver ones. The gold of articles of jewellery is more magnetic then gold coins. Mr. S. Wes still of opinion that these alloys night possibly contain iron, and their magnetism be therefore dependent un that metal, although he bad met with some facts which be could nut reconcile to that view. Having found much more magnetism in an old half-crown piece of William and Mary than in any other toin, and the histotical report being that the silver cuinage of that perind was in a very base atate, he supposed it positite that the high magnetic action of the old half-crown might be due 10 the extra propirtion of copper, which led him to form an alluv of pare silver and pure copper, in which the latter metal formed about one-siath part of the whule; and what is very remarkable, this alloy wat nore highly magne. tic than any silver atticle he had previnusly examined. The copjer and ailver of this alloy had previnusly bren ascertained to ne non-magnetic; they were melted in an earthen crucible, and no iron entered the alloy. This fact, and some others which he suhsequently discovered, shook the opinion Mr. Sturgeon had first formed respecting the pre ence of iron in bracs, and the other alloys which showed magnetic action. Cavallo had discovered the magnetism of brass, and showed that hammered hrass was never more magnetic than when unhammeren, which facts corresponded to Mr. Sturgeon's own observations. But the moot capital discnvery had yet to be made. Mr. S. formed an alloy of iron and zinc in equal parta, and, to his surprise, found that this alloy was almost neutral to th. magnet ; so much so, that it would not move a magnetic needle at balf an inch from the pole. In another allny of those metala, the iron heing about one-eighth of the zinc, magnetiam wat quite extinct. These novel facts naturally led to the inference, that as zinc in an essential conatituent of brass, the magnetism of that allov could not be owing to its containing irnn; and subsequent experiments, both magnetic and chenical, have shown that this is the fact. Antimnny has long beea known to deteriorate the magnetism of iron, but Mr. S. hat ascertained that fte neutralising powers are much inferior to thuse of zinc. An alloy of antimony and iron, in which the latter metal was less than a t wentieth part, still showed magnetic action, though in a slight degree. Mr. S. had also discovered that aickel loses all its magnetic powers when alloyed with about ten times its weight of zinc. Aotimony also counteracte the magnetism of pickel, but not so powerfully as zinc. German silver, which contains a large proportion of nickel, is alightly mapnetic; but in the inferior kiods of this alloy, where nichel is less abundant, no magnetism is perceptible. The nean tralising metal in these casea is zinc.

The salls of iron which have been examined are mostly magnetic; but what is remarkahle, their magnetism liears no proportion to the proportiona of iron they contain. In conforming his theoretical views to the facts thus developed, Mr. S. now considers all bodies to be more or less magnetic, and classes thein into two grand divisions-those that are palpably magnetic, and those that are but oliscurely magnetic. The former class be calls saphomagmetice, and the latter asapho magnetics.

Sapho magnetics are sgain dirided into mono-magnetics and suno-magnetics, accordingly at they consiat of individual or compound bodies respectively. Those bodies which counteract the magnetism of others. Mr. S. calls katalomagnetics, because many of then, if not all, have the power of completely meatralising even the higheat powers of mono-magnetic bodies.

The momo magnetics at present known are iron and nickel, and perhaps cobalt. In the class suno magnetics, Mr. S. places alloys of silver and copper, gold and copper, and zinc and copper, under the expectation that many more will soon be added to their nomber. The katalo-magnelics are very mameroug, being all those that deteriorate the magnetimm of other bodiea. Amongat the metallic katalo-magretics, Mr. S. has found zinc, antimony, tin, and lead. Other katato magnetice are sulphur, oxygen, chlorine, cyanogen, and the generality of those bodies which combine with metals.

RAILWAY Statistics.

The anoual retura of the Board of Trade, recenily published, ceataios some very valuable information on the subject of railwas alulatics. The fullowing information is taken in a condensed form from that relurn:-

The lofmi number of passengers, as givel in the returus for the year ending 30 H June, 1844 , and for the year ending $\$ 0 \mathrm{H}$ June, $1845-$

The rate of increase of truvelling in euch cluse is-

The amount received for each class in as fullows:-

$18 t$ class		$\begin{gathered} 18+3 \cdot 4 . \\ . £ 1,43 \% .688 \end{gathered}$	$\begin{gathered} 18445 \\ \mathbf{4 1 , 6 1 6 , 0 4 5} \end{gathered}$
2nd clase	.	- 1,375.679	1,698, 115
Srd claas	-	483,069	(5),403
Mized		147 \$568	269,518
Total		. $\mathbf{E 3 , 4 3 4 , 2 9 4}$	83,470,341

The increase of returas on the year 1844.5 was , therefure, upwards of half a million on 1 asouger trafic aluc. On gruas receipts from all sources it stood thus:-

The rate of fares on the lines included ia the above returus, aud the reductions in the two yeara, stand thus at the end of the year 1846 :-

Callie, Sheep, ofc.-The total nnmber of cathle conveyed in the year 1844-5 is demrly two millinus. The grow amoults received range met-lows:-

0		
Gieat Hestern		17,000
Midlaud, and Bristol and B	ingham	0.000
Easteru Cundies		6,30u
South Hestern		4,000
Mauchester aud Leeds		4,000
York and Nurth Mhaland		3,200
Gircut Aurth of Eagland	- ${ }^{\text {- }}$	3,200
s.-The number conveyed is as follows :-		
Bristol and Birmingham	. .	2,879
Chester and Birkeuliead		664
Easteru Counties		2,160
Northero and Eistern .		9.786
Grand Junction		4,267
Manchrater aud Birmingbam		285
Grat North of England		2,709
Great Westera		10,504
Luadun aud Birmingham		10,749
Loution and South Westera		6,370
Lonsion and Suuth Ematern	- *	2,714
Lamion and Briglaton		4.303
Munchester and leeds		1,409

Coal Traffic. The following shows the gross tonaage and amounts roceived on the undermentioned lines in the year beginoing lat July, 1854, and emding 30th June, 1815 :-

	Tons.	\boldsymbol{x}
Arbrosth and Forfar	12,000	1.700
Ardrossnn	42,144	2106
Ballochney	282,622	8,206
Bristol and Rirmingham -	70,0:0	3,708
Canlerbury and Whilatabie	13,000	1,188
Clarence	300.000	20.010
Dunfermline	28,477	S,142
Durham and Sundelland	372,714	22,712
Edinburgh and Dalkeith	118,310	4.800
Glaggow and Ayr	120,000	8,000
Glasgow and Garnkirk	1,701 000	7,600
Grear North of Engiand	181,012	13.079
Harilepool	790,486	32,627
Hesle	20000	2,400
Leicester and Smannington	178,506	15,827
Liverpool and Mancheater	133,396	9,414
Leanelly and Llandilo	92,381	6,06T
London and Croydon	6,000	600
Londor and South Eautern	22,519	
Loodon and Brighton	30.000	2,400
London and South Western	4.000	
Macchester and Bury	40.826	3,332
Mary port and Carlislo	119,375	7,244
Midimad.	313.854	42,000
Newcastle and Carlisle	205,500	19,476
Newreastle and Darlington	400,000	
Newcastle and North Shielda	26,936	1,193
North Union	321,923	
Pontop add South Shields	662,829	49,691
Preaton and Wyre	21,539	4.289
St. Heleos nad Rancora Gap	229.775	9,762
Sbefifild aod Manchester	58,668	2,447
8beffield and Hotherham	16,000	977
Stockion and Darlington	900,000	80.000
Taff Vale	125,886	19,039
Ulster	807	130
Whitby and Pickering	1.708	241
Wishaw and Coltness	390,240	9,969
York and North Midland	47,529	2,419

Rate per mile for toll only, and for total charges:-

The above are not in all cases the averafe charges, but the maximum Chargen : as on rnmy linel, a higher rate is charged for going up bill than fer gater dowa hill.

VIbration of trains in tunnels.

Report on the vibration produced by trnise in passing through the twanel of Krmeul Green, To R. Stophenson, Eag.
Sir-I have the honour to submit to you the results of the seried of experiments performed at Kensal Green, with the view of ascertaining to what distance the vibration produced by a train in passing through the tunael may be sensible.

In these experiments. I employed a basin of quicksilver, which was placed on the ground and fixed as firmly as possible. A leas carrying a sot of cross wirfs wan attached, in such manner that the imaxe of the wires could be refected in the nercury, and therefore any vibration of the mercury could be easily detecied by the oscillation of the reflected image. A piece of glass eft-ctually protected the mercury from currents of wind, and the experimenta were thereby rendered very satisfactory. In observing the rellected wires, 1 did not employ a telescopr, as a previous trial had convinced me that oo material advantage would arise from the une of a telescupe, since the seusibility of the eyp in detecting the least vibration of the mercury was far greater than 1 cuuld have expected, and more than sofficiently drlicate for the purpose io view.
The situation selected was a field belonging to Mr. Sullon, on the north side of the tuanel. Thr distances were measured with a land chain from the northero side, as dearly as its posituod could be ascertuined.

April 16ih. -The day oloudy, bat without rain, a moderate breeze blowing from the enstward.
Distance 60 feet. Down train very great vibration, the reflected image of wires wus quite invisible from agitation as the train approached the centre of the lunael; the vibration commenced immediately the traia entered the tunnel, and ceased the moment that it left.

Distance 138 feet. Down train-the vibration began abont two seconde after the train entered, and ceased about the same tione before it was ont of the tunnel; though the amount of oxcillution was much less than at 60 feet, it was still considerable.

Distance $30 n$ feet. Duwn train-the vibration began immediately the train was in the tunnel, and continued about ten secunds after it had left; the train was in the tunnel twenty seconds.
Distance 472 feet. A heavy down train-thiry-two seconds in passing through the tuauel. The vibration was seen about seven seconds after if wus in the tunnel, and ceased four secunds befure it left. The amulat was rather cousiderable.

Distance 572 feet. Up train-twenty seconds in tunnel. The oscillation of the mercury was sensible five seconds after the train eotered, and censed ten seconds before it emerged from the tunael. Another up train produced the same effect.
Distance 644 fect. A down train-twenty seconds in the tennel-produced not the slightest effect. The observation very autisfactory.

Distance 609 feet. A down train-iwenty-seven seconds in the tunacl. The vibration so excessively small as to be visible ooly by transient glimpses when the traiu was tairly in the tunnel. I consider this to be the distunce where the ribration becomes sensible, and beyond it the traine will have no perceptible effect in this loculity.

The following extimated values for the amownt of vibration, though mecessarily very rude appresjmutioas, may still be interestivg:-

Distance 60 feet. Amount of vibration 100

On April 11 th, some observations were attempted in a field adjoising that beloaging to Mr. Sullon, at a distance from the tuanel of 100 fteh but the perpeudicular drawing from the place of ubservation to the tannel, -would fall not more than 60 fret from the entrance, and this circumatance, in addition to most unfavourable wewther, probably prevented my seeing any vibration. An ubjectiou being raised on this day againat the performance of the experiments on Mr. Sullon's property, I was unable to proceed antil the 15 h , when that geatlemun was kind enough to allow me the we of the field on the north side of the tunnel, most favourable locality for the purpose.

Oa April 15th, I made some experiments to ascertain whether aboricontal wire of a transit telescope placed at different distances from the tunael to bisect a distant object would thow the vibration at thoee distances to be sensibte. I very soon fonod that this method was oot sofficiently delicate, as no vibration could be detected even at 60 feet distanoe from the side of the tunael. The experiments with mercury on the follow. ing day were made under very favourable circumstances, and the results are, 1 believe, worthy of great confidence.

> Mr. Bishç's Obeervelory, Regent'a Park, J. R. Himv. April 17, I\&4a

EXTRACTION OF COPPER FROM ITS ORES BY ELECTRICITY.

The admirable researches of Becquerel upon${ }^{\circ}$ the chemical actions effected ander the infuence of weak electrical currents, have opened a path destined to lead metallargy to results of which we are even aow anable to appreciate the fall importance.

Having for their object the application of these actions to the extraction of copper from its ores, M. M. Dechave and Goaltier De Clanbry have long been engaged in researches which they now consider sufficiently matured to command attention, being destined to effect a complete tranforma. tion of the existing processes. The following is a brief acconnt of their results, reduced to the simplest form.

The extraction of copper from pyritous ores is divided into two series of operations entirely distinct, the roasting the ore, and the precipitation of the copper.

The Roasting. -This is effected in a reverberatory furaace, either by the direct convervion of the sulphoret into sulphate by the sole action of the air, or elae by another reaction of useful application which consists in the transformation of the oxide of copper into sulphate by calcining it with aniphate of iron, at a dull red heat in a current of air, the iron beiag loft in the state of peroside.

Snitable washiog extracts the sulphate of copper, which contains nefther arsenle nor antimouy, so that the most impare minerala, as the fahters, will afford copper equally pure with the carbonates or oxides of copper which contain no other metal.

The Precipitation.-The precipitation of copper from its solation roquires, in the galvano plastic processes, batteries of which the cont is far $t 00$ great to be euployed in metallorgy. It has therefore been attempted to obtain the same effect withont the ase of exterior batteries. The principle upon which the apparatns depends are these.

If we place, one over the other, two solutions, one of sulphate of copper, very dease, and the other of sulphate of iron, less dense, and in the first we place a plate of metal forming the cathode, and in the sulphate of iran a fragment of cast iron, and then unite these two metals by a conductor, the precipitation of copper commences at once, and is completed in a longer or shorter time ascording to the temperature, the concentration of the liquids, and the extent of the metallic surfaces. But as M. Becquerel has ohserved, the physical atate of the copper undergoes great change as the liquid becomes weaker. We ohviate this great dificulty hy turaing to profit the ohservation that after some minutes' action there exists four strata in the liquids; at the botwm we fod the dense zolution of sulph. copper, then a less dense solution of the asme salt which has been deprived of its copper by precipitation; vext 'is sulphate of iron become more dense by the solution of the castiron; and last, on the surface, the same salt in its original strength.

If, therefore, at the level of each of these atrata we arrauge suitable apertures for the addition or removal of the liquids in proportion as the chemical action goes on, we can easily preverve these liqnids at ualform states of density, and thua the copper is always pure and in the same physical condition.

In the application of this process to metallurgy, the extent of aurface of land required to precipitate a large quantity becomes an important con. aideration ; it is, however, eany to modify the form of apparatos, though preserving the same principle, so as to avoid this objection.
With this object we arrange the liquids in vertical instead of horizontal layers; thes are now to be separated by a dinphragm very permeable to eloctricity but not to liquids. Paste-board asswers perfectly for this purpose ; it lasts for months without undergoing any alteration, and the quan. tity of salphate of iron whict penetrates into the aulphate of copper is still too small to effect the operation. The apparutas is therefore arranged in the following manner:-

A chest of wood, lined with lead or some suitable mastic, contains the solution of aulphate of iron; through an opening near the top, we add the liquid until the proper degree of denaity is attained, while throngh a lower opening the saturated solution is allowed to escape.

Into this chest we plunge a number of cases, made of a frame having ite ends and bottom formed of iron plate coated with lead; the sides are made of a aheet of paste-board. The strong solution of sulphate of copper enters through a pipe near the bottom, and escapes in its weak slate ehrough an opening at the top. In each case is placed a sheet of leaded iron ; between each case, and outside the end ones, are platea of cast iron. Separate rods connect each plate with the common conductor which is eapported above the apparatus. Two large reservoirs, of constant levels, receive the solations and furnish them continuously. We adjust once for all the deasities of the liquids, and then the apparatns works on for whole monthe without requiring any kind of attention. The must convenient strength of the solution of cppper which escapes from the apparatus is from one-fourth to one-half of a saturated solution. The copper is precipitated on both sides of the sheet of metal forming the cathode.

As the paste-board prevents the immediale contact of the two liquids, wo effect this by making small boles through its apper edge, taking care that they are some distance above the bigheat part of abeets of metal forming the cathode; the sulphate of iron cun thas hoal ahove the solution of suiph. copper, and the vertical apparatus now fultis all the conditions of the bortsontal oue.

At a tempera!are of 20 Cent, 68 F. one aquare metre (1077 2q. 2 .) of
surface will recoive as much as 1 kilogramme (15444 grs.) of copper in twenty foar bourn.
The precipitated copper is pare and is alwaya in the same physical cos. dition; the sheets obtained are fit for immediate working under the ham. mer, or to pasa through the rolling mill; foar or five passings through this gives the metal a density of 8.95 ; we therefore avoid all the operatioas required in the common process to reduce it from the form of bars to that of shoets. The manufacture presenta no difficulties, requires no refining. and gives no scoria. In a regular manufacture as mach as 78 per cent. of the copper has been obtained in the form of sheets, the remainder being precipitated, partly in pure fragments, avd partly in powder of cementation. The anthors consider, as a metallurgical result, at the lowest, $\mathbf{5 0}$ per cent. of the copper in sheets, 25 per cent. in fragments which only require fusion to be reduced into bars or platea; and 25 per cent. In powder requiriag subsequent refoing.

The question as to the applicability of galvanic action to the extraction of cupper, appears to be reduced to the simplest possible form. It is bardly necessary to remark that electrotypes on the largest scale can be thas ob-thined.-Journal of Pranklin Institute.

THE LBANING TOWBR OP PISA.

"The moon was shining when we spproached Pisa; and for a long time wo could see, behind the wall, the leaning Tower, all awry in the uncertaia light,-the shadowy original of the old pictares in school-books, settiag forth ' The Wondert of the World.' Like mont thinga convected in their firt atsociations with sehool-books and school-times, it wat too small. I felt it keenly. It was nothing like $t 0$ high above the wall as I had hoped. It was another of the many deceptions practised by Mr. Harris, bookeller, at the corner of St. Paul'a Churchyard, London. His Tower was a fiction, but thin was reality-and, hy comparison, a short reality. Still, it looked very well, and very atrange; and was quite as much ont of the perpendicular as Harris, had represented it to be. The quiet air of Pisa too; the big guardhouse a the gate, with only two little soldiers in it; the streets, with scarcely any show of people in them; and the Arno, Gowing quaintly through the ceatre of the town; were ercellent. So, 1 bore no malice in my heart against Mr. Harris (remembering his good intentions), but forgave bim, before dinner; and went ont, fall of coufidence, to see the Tower, next morning. I might have known better; but, somehow, I had expected to see it castiog its loog shadow on a public atreet where people came and went all day. It was s surprise to me to find it in a grave retired place, apart froun the general re. sort, and carpeted with amooth green turf. But, the group of buildings clustered on and about this verdent carpet-comprising the Tower, the Beptistery, the Cathedral, and the Clsurch of the Campo Santo-is perbaps ase most resarkable and beantiful in the whole world; and from being elustered there, together, away from the ordinary tranactions and details of the town, they bave a singularly venerable and jmpreasive character. It ia the arehitectural easence of a rich old city, with all ite common life and common habitations pressed out, and Cltered away. Siamondi compares the Tower to the usual pictorial representations, in children's books, of the Tower of Babel. It is a happy simile, and convegs a better idea of the building than chaptern of laboured deacription, Nothing can exceed the grace and lightpess of the atructure; nothing can be more remarkable than ita genersl appearance. Ia the course of the ascent to the top (which is by an easy ataircase,) the in. clination is not very apparent; but, at the summit, it becomes so; and gives one the sensation of being in a ship that has heeled over, throngh the sction of an ebb-tide. The effect upon the tow side, 30 to speak-looking over from the gallery, and eeeing the abaft recede from ita base-is very atarting; and I saw a nervous traveller bold on to the Tower involunterily, after gtaociog down, at if he had some idea of propping it up. The view within, from the ground-looking up, as through a alanted tube-is aloo very carious. It certainly inclines as mach as the most anguine toarist could desire. The natural impulse of ninety-nine people out of a hondred, who were abont to recline apon the grati below it, to reat, and contemplate the adjacent buildinga, woold probably be not to take up their potition onder the leaning side, -it is so very mach aslant."-Dichens' Pictures from Italy.

Steam Factomy in Amerioa.-The oentral part of the Portmoneth steam factory, wheb it 204 feet loats, 5000 two-thirde up. Tbe ceatre part th to be dr storien high, the wlags five alories. Beight of the lower atory 18 teet, of the etber the. rima 12 feeh . The leagth of the front will be sof feet, or about a tenth of a mille. There will be aboat four acres of Iooring in the factory. Namber of spindies 60,000, anaber of operatives, 1,200 to 1,500 . In the rear, two parallel baldingt, two atorice high, नill be extended 100 fret back from the function of the mata bullding with the wisfin a at between thowe boildinge, 60 foot from the madia structare, the bofler-boase it to be erevted. The fruadation of the chimery, which is to be 140 feet bigh, is laid, and is in progrien of erection. A geniletana who has been trivelling the that gear In parsalt of theormation reapecting manafoctarting ealabluhments, and who han trifted more than a thomand the

 تrth it for ater.-" American Paper."

RESTORATION OP ST. SAVIOUR'S CHURCH, TORX. (IFith an Engraving, Plate XI.)

The ruinous condition of this church having excited very serious apprehensions, a subscription was rised in 1843 under the patronage of the Arch bishop of York, for the restoration of the decayed portions of the edifice. The work was asaigued to Mr. Sharp, architect, who generoanly offered to maperintend the retoration gratuitouly. The church now affords accommodation for 1000 persons, of whom 423 have seats in the galleries. The report of the subscription committee expreasea a regret that the funda raised did not suffice for the restoration of the tower and east wall of the chancel. A well-denerved compliment is alco paid to Mr. Sharp for his liberal exertioas, and the ability with which he hat drawn up the report, which appeara below.
The phan and section of the chorch here given are taken from drawinga

seat by Mr. Sharp. We avail ourselves of his permiacion to print those portioas of the letter sent with the drawinga, which are of a public nature.
"Sia-Having received much gratification from able papers in your later numbere on Church Architecture, I am tempted to send you a "slip" of nome observations I had occanion to offer to the Restoration Committee of one of our old churches in York, not so much from the importance of the work done, as that the opinions contained in the notes seem to harmonize with those of your talented correapondents
My only object in these communications is to answer the call that has been several times made on arehitects to supply notices of their works, and if I may be allowed to do so, to hint that letterpress of late unurps the place which we should all like to see filled with drawings.
After forty years study and practice of the profestion of architecture, praise and censure are alike indiferent to me.
l sead at the same time a carefully reduced plan and section of St. Sanour's church, the one side showing the former condition, and the other the present atate. 1 am , Sir, with great reapect,

Your obedient humble servant,
Ricgard Hey Smarp, Architect."
The sotal receipts and disbursemente for the restoration amounted to £ 1300 . At a meeting of subscrihers recently held, it was agreed that a committee should be formed for considering the best method of presenting a tentimonial to Mr. Sharp, in acknomledgment of his servicet.

The Anchitict's Report.
It would appear that the edifice lately restored was erected about the year 1420, at a time when the perpendicular atyle of Gothic architecture had anperseded the decorsted or fowery style. Traces, bowever, of this last remained in a beantiful four-light window, at the eas end of the north aisle, which retained its painted glass. This circumstance prompted the retention of the flowery or undalatory atyle of tracery in the pretent eastern windows. Whatever merits the perpendicular atyle had over the earlier one, it is anquentionable that it wat inferior in the adornment of the windows. A much ceslier edifice, probably of the twelfth centory, existed on the spot, the materials of which, including several graventonet, had been very unceremoniounly employed in the walls of the later building. It is not nareasonable to suppoee that the extreme badness of the foundation (the church is atyled St. Sovionr's in the Marsh) cansed the premature rain of the earlier bailding. Pren in the later one, the south-weat angle had monk very conaiderably. On difging down to obtain a more secure foundation, the cause of the failore ma phin emongh. After paming through what appeared to be Boman rab-
bish, at the depth of 14 feet below the foor of the church, several rade cofins were found, which mas not unreatonably be referred to a British sere : they were made of slabs of oak, 21 inchea thick, fastened by wooden pins or dowells, and contained skeletons in a very perfect state, but perfectly blact from the infiltration of water from the bog in which they were laid. One of these coffins was directly across the angular buttres, so that there is no wonder that it should have aunk. The coffins were too much decajed to admit of removal, and the bones were laid In some of the vaulte which the excavation had laid open. The uanal methods of rabble foundation, now called concrete, were resorted to, and the comer is now perhaps more secure than the rest of the fabric. The eastern end of the church, as far as the clancel extended, had declined about eight inches, and it becane a metter of argent consideration with the arehitect, whether to take up the whole of this wall, and to refound it in the same manner; but as the settlement was of ancient occurrence, and did not appear to have increased of late, it was thought that the old foundation might be trusted to, and the more so at the new weight to be borne would not materially exceed the old one, which had been supported for so long a time without increase. The event has justified the opinion of the architect, as no settlement has become visible. As a measure of precantion, however, this half of the south wall was bound together by an lron tie-bar, ending in a atout anchor, which may be seen at the east end. A similar one is placed in the north wall, but the anchor is concealed within the battreas. These bars are connected with the large stones forming the window sills in what is thought to be a novel manner. What may be termed double lewises are inserted into the middle jointe of the stone sills, and run with lead so as to connect them firmly together, the chain bara before mentioned are then secured by single or ordinary lewises. In this manner a powerful and permanent bond or connection is obteined. This detail is entered into, as the method may be useful in similar cases. or in new works.

A satisfactory foundation having been obtained, the main walls were car. ried up in a solid manner, and the windows inserted. This part of the work, and one of the most important, is executed in a very satisfactory manner, and is highly creditable to the contractor. The settlement before mentioned had extended to the arcades separating the aisles, which, when the plastering was removed, exposed cracks of an alarming character. Belying on the foregoing consideration, it was thought aufficient to wedge them up with solid oak, we believe from the Minster, and the reault has been equally satiafactory. The paramount consideration of economy doubtless pressed on the architect's mind throughout all the operations. The nest main point wes the roof. It appears probuble that the church had originally three roofa as at present, but at the time of important repairs, in the time of Charles lat, the roof, whatever may have been ite priatine form, was reduced to an uniform plane from the ridge to the eaves. In order to obtain this plane anrface, the depth or thickneas of the timbert was from 18 inches to 2 feet about half way up, the outer roof being separated from the lower and original one. The existence of several churchea in York, All Sainta, North-street, St. Sampson, and others, corroboraten the notion of the triplicate roof. Indeed, so long as side galleries are demanded of the architect, this is perbaps the best form that can be given to a church, at it affords the requisite height to the side walls. It is to be hoped, however, that these abominable contrivancea will either be abandoned, or that the Gotnic atyle of building with which they are wholly irreconcileable, will be relinquished for the churchea of Queen Anne, with which they are in perfeet harmony.

Sufficient sound oak timber was oblained to frame the new roofs in a anb. stantial manner; the old tiles were re-employed as more in character than alating, and sa in lapse of time the defective tiles have perished, the remainder, although not very sightly, promise to endure for a very considerable period. An opportunity offered of procuring some excellent alates from the Minster, which were nsed in the inside roofs.

The main conatructive points being obtained, the roof wat kined with thin wood, the ribs intended to strengthen the roof added to the beema, which the safety of the church did not allow us to remove, and some ornamental work added.

In ancovering the old pew, which had been anfered to remain all this while, by reason of the uncertainty of obtuining the funds neceasary for the repewing, a discovery of the original pews was made, and to the great gratifcation of the architect they were found to be almost identical with his deaign for the new ones, and for which the contract was made. It is not pretended that these fitlingt were the furniture of the charch of 1400 , or 1420 . No doubt that edifice was prepared for the Roman Catholic service in a very different manner. Screens, or parclocen, donbtleas then separated nearly one half the church from the people. The alter of the Saviour would occnpy the eastern end of the nave, that of the Virgin Mary the end of the north, an of St. John Baptist of the sonth ciale. Near the second pillar from the east end acreena, or reredos, would be placed acroas the aisles, againat which atond altars belonging to the chantriea, founded in the church hy individuals. A piscina still remaining in the south walls confirms this opinion. Another, much defaced, existed in the north wall, and there were traces of others near the castern walls. The particulars of these chantriea are added below, but the hasinens of the architect is pot with them. The seven chantry prieste presided over by the rector, would form a choir suffiently numerous to occupy the middle chancel, and it would be for their use that the stalls, of which two have been preserved, were doubties provided. Gach of these priests had an equal ondowment with the rector, and if theesemolumento, properly reformed, had been continued to the eharch throwghont the land, bow dificrent might the present atate of thing heve been.

All these decorations had probably disappeared when, in the time of Charlen 1., the church was thoronghly repaired and fitted for the Protestant service. Many churches in York felt the beneft of similar, and as it often happens, cimultaneons efforts. In St. Cuthbert's we have the date 1636 on pewi of a character precisely aimilar, and others might be named. At that period York was often the residence of the Court, and would partake in the adrantages of it. The architect decided that it was fruitleas, with the extremely limited means at his dispoanl, to attempt any decorations of the fifteenth century. and tbat it was in better taste to adhere to the Protestant model of the first Charies. The lectern or reading desk now placed by the font is of this time. The font is of the time of the reatoration, when the clergy exerted themaelves, it has been anid, with more zeal than taste to repair the rarages of the Puritans. The altar pieces of Belfry's, of St. Martin's, Coneystreet, and St. Martin's, Micklegate, are of this epoch, and, although out of piace, are very handsome in themselves. The style, however, of the time preceding the rebellion retains enough of the Gothic character as not to shock the eye, and may therefore, it is conceived, be employed where circumstasces forbid recourse to an infinitely more elaborate ornament. Of the fittinge ap of the Norman and early English styles we have in this country at least very scenty remaina : the fifteenth centary seems to bere been the time of a general refurnishing, so to apeak, of sacred edifices, in a manner more suitable to the greatly increased luxury and wealth of the age. In the more important edifices this change was not confined to the wood work; in Gloucester Cathedral the vaulting and pannelling are "apread like a network of embroidery over the old Norman work'"

Before fixing the pews, precautiona were taken to ensare dryness, and to prevent the ascent of noxions gases from the gronad beneath. Means have since been employed to give sufficient warmth to the church.

It now only remains to the architect to acknowledge very thankfully the obligatious he feele under to the restoration committee in general, and to the charch-wardens in particular, for the great confidence they have been pleased to have in him during the progress of this tedious, and somewhat difficult work, without the saccour of which trust his efforts would have been unequal to cope with the discouragements inseparable from such andertakings, where the funds are necessarily precarious.

It should have been noticed that considerable expense hae been incurred in rebuilding the charch-yard walls. The public spirit of the Improvement Commissioners came to the aid of the committee to carry out the very desirable object of insulating the church, and at the same time affording a double width to Hungate. A substantial wall and railing have been carried along St. Sariourgate and west end of the church, and although it is difficult in auch matters to reconcile nld ideas with modern ones, yet recourse has been had to Lincoln Minster for the pattern of the iron work. The external drainage of the church has been thorougbly completed. When it is remembered that the earth on three sides reached op to the place where the new works begins, ahout three feet above the floor, it is no roader that damp and rottenness should bave prevailed within.

To complete the perfect restoration of the church there remains only the tower, some parta of which are in a state of rapid decay. To remove the unsightly roof, to repair the mouldering atone work, to renew the dilapidated windowe would be a most desirable thing, and after what has been dpne, it is surely. worth an effort to accomplish it. Another work, hardly less desirable, is to remore the hideons vestry to stituation on the north side of the church, insulated from the church, bat connected by a pasage, where its being constructed in a plain manner would be of less importance; to renew the very beautiful eastern window, and so restore to this eleration its very handsome former appearance which has not, it is hoped, been injured by the elevation of the aide aisles. Without having entered into a minute estimate, it is thought that $£ 300$ would suffice to carry out all these objects, and it is worthy of conaideration by the benevolent perions who have already done so much to the reatoration of an intereating and highly natul structure.

Miceard Het Searp, Architect, York.
There were formeny no less than seven chantries belonging to this church, all of them of considerable value. The firt was a very ancient cbantry, fonnded at the altar of St. Mary, in this church, for the soul of Robert Verdeaell, whose tomb-stone is noder the present floor in the north aisle of the chancel. There was another chantry founded in this charch, at the altar of St. John the Rvangelist, for the souls of John de Hathelsey and Emma his wifo. In 1468, this chantry was united to another chantry in the same chorch, foanded for the souls of William Burton and Iretta his wife, at the altar of St. James the Apostle and St. Lewrence. William Burton, of York, fonnded another chantry in this church, at the altar of St. Anne, for his soul and the soul of Ivette his wife. There was another chantry founded in thia charch, at the altar of St. Thomas the martyr, for the sonl of Adsm de Spiriden; also one founded by Richard Wattern, of great value; a chantry founded by William Frost, alderman, atd Isabella his wife, in I399; a chan. try founded by William Gilliot. Betiden these chantries there was alao a gild or fraternity of St. Mertis in this church, which was founded by letters patenta from Heary VI.

DECISION OF THE BOARD OF TRADE ON THE GAUGE QUESTION.
The Minute of the Board of Trade, contsining their lordshipa' deliverance on the Report of the Gauge Commisuioners, is dated the 6th of June, 1846. It commences by stating that-
" My lords fully and entirely concur in the general conclusions at which the commissioners have arrived with respect to the advantagen of uniformity of gauge for the convegance of the internal traffic of the conotry. They are of opininn that the facts set forth in the report, and the evidence by which they ara supported, incontestably eatablish the conclusion, that a ' break of gauge in a very serious evil,' and they see no reason to doubt the soundness of the opinion the commissioners have expressed, that none of the mechanical contrivances, or other methods proposed for mitigatiog the evil, 'are calculated to remedy, in any important degree, the inconrenieaces attending a break of gauge.' ${ }^{\prime \prime}$

The Minnte then quotes at length the conclusions and recommendation of the commissioners. The recommendations are in substance:-lat. That equitable means should be found of producing cntire uniformity of gauge, by reducing the broad gauge lines to the narrow gauge. 2nd. Thst all public railways now under construction, or hereafter to be constructed in Great Britain, shall be formed on the narrow gange. With respect to these proposals, the Minute remarks:-
"After long and anxious deliberation, my lorda are nuable altogetiver to concur with the commistioners in the full extent of these recomncariations. "Adverting to the vast expense which must be involved in an entire alteration of the broad gauge. and having regard to the circumstancea andep which the companiea employing this gauge were eatalished, and to the interests they have acquired, my lords cannot feel themselves jastifed in recommendiag that it should be proposed to parlament to compel the entire reduction of the 7 feet gauge. They feel, with the commissioners, that they cannot recommend the legislature to sanction such an expence from the pablic moneys, dor do they think that the companies to wbich the broad geuge railwaya belong can be called upon to incur auch an expence themselvea (baring made all their works with the athority of parliament). nor eveu the more limited expeuse of laying down intermediate rails for narrow gaye traffic.
"Still less can they feel themselves justified in proposing that the expense of such alteration should be defrayed by a contribntion levied, as has sometimes been auggested, on the rest of the railway companies in Great Britain and they are unable to suggest sny other equitable or practicable means by which the desired aniformity of gauge could be obtained.
"The conclusion to which my lords have come respecting the reduction of the bruad gauge on existing lines necessarily affects their opinion with regard to the foture gauge lines now in course of constraction."

The Minute goes on to atate that all that seems now posaible is to preveat the further extension of the evils arising froin different gauges, and reduce the inconvenience inflicted on goods and passenger trafio within the narrowest possible limits. To this end it is recummended that
"The lines for which acts have been obtained. but which have not yes been cumpleted to the south of the line from London to Bristol, should be permitted to be constructed on the broad gange. as originally intended. They have had some difficulty in coming to a conclusive opinion on the case of the South Wales line. They are aware that strong arguments may be adduced in favour of requiring this line 10 be constructed on the narrow gauge; but, adverting to the great puhlic importance of a continnous line of communication with the south of Ircland, and of a second line of reilray communication from Lonon to Ireland generally; and lazing regard to the value of a continuous line to Milford Haven. \&c., for the furtherance of the public service; they are of opinion that, on the whole, it would be adrisable that the South Wales line, together with its branch to Monmouth and Hereford, should, as originally sanctioned, be formed on the broad gauge."
The diatricts to which the Buard of Trade has directed most of ita attention are those which are to be supplied with railway accommodatlon by the Rugby and Oxford, and by the Oxford, Worceater, and Wolvertampton lines.

1. Rugby and Oxfond lines.

"In the last seation of parliament an act was obtained for forming a line of railway from Rugby to Oxford. The act contalned the followidg clause:-
" Cap. 188, sec. 35. That as a commission has been appointed for isquiring whether provision ought to he made for securing a uniform gange in the conatruction of reilways, and for other purposes in reference to the mode of obviating impedimenti to the internal traffic of the country; if, in cosformity with the report of the said commistion, it shall appear to the Board of Trade expedient that rails of the same gauge as the rails of the London and Birmingham Railwey should be laid down on the line hereby authorised between Oxford and Lugly, it shall be lawful for the said hoard to order and require that anch railway upon the said gauge shall be loid down and maintained, and that the company hereby iacorpora.ed shall thereupon proceed with reasonable despatch to execute the same to the satisfaction of the Inapector-General of Railways for the time being. Provided always, that nothing berein contained shall prevent the said company from laying down and maintaining, on the whole or any portion of the said line, raila of the same gauge as those now laid on the line of the Great Western Railway.'
"It is their lordships" intentlon, in the exerclse of the powers granced to
them by this cianse, to require that the narrow gange raila shall be laid dowa from Rughy to Oxford forthwith. They wouid, therefore, anbmit that it is sot necessary to interfere with the construction of the line on the broad gage, at anthorised by the ect. In order to complete the general chaiu of narrow gage communication from the north of England to the southera coast, they beg to repeat with a slight variation the anggestion of the commisoioners, that any suitable measure shonld be promoted to form a narrow groge line from Oxford to Basingstoke, or by any shorter ronte connectiug the proposed Oxford and Ragby line with the South. Weatern Railway. With the same riew they beg to suagent that any suitable measure thould be promoted for forming a narrow gauge link from Gloucester to Bristol, and so completing the general chais of narrow gauge communication between the manufacturing districts, the eentre and north of England, and the port of Bristol."

2. Oxford, Farcester, and Folverhamplon line.

"In the act by which the company was incorporated in lant session the following clause was interted:-
" That the aaid company herehy incorporated shall, and they are hereby required to lay down and maintain upon the whole extent of the railway liereby authorised, between the point of junction therfof with the said Birmingbam and Gloucester Railway at Abhotswood, and the point of junction thernof with the said Grand Junction Railway near Welverhampton, as well as on the said branch railways hy this act authorised to Kingswinford asd Stoke Prior aforesaid, such additional rails, adapted 10 the gauge or the aid Birwingham and Gloucester and Grand Junction Railways respectively, as may be requisite for allowing the free and uninterrapted passage, at aforeasid, of carriages, wagons, and trucks passing to or from the said Birmiugham and Gioncester, and the said Grand Junction Railwrys renpectively, or from she last-mentioned railway to the said Birmingham and Gloucester Railmay, or passing from one portion of the anid Birmingham and Gloucester Railway to another portion thereof, or to or from any intermediste place between the two said railways to the one or the other of them; and such additional rails aball be laid down, and maintained and nsed, to the satisfaction and approval of the Board of Trade, and all necessary facilities and accomodations ahall be afforded by the company hereby incorporated, or their lessees, for the convenient use thereof; and it shall be lawful for the said board at any time, on complaint made by any company or person interested in the question that such additioual rails have not been laid, or that auch facilities or areommodations are not afforded, to order and direct the anid company bereby incorporated, or their lessees as aforesaid, to adopt auch regulations as they may see fit to require with reference to the laying down of such adidional rails, or to the use of the anid additional rails and otner conveniences as aforesaid, and for the porpose of securing such free and oninterrupted pasage thereon as aforesaid.'
${ }^{4}$ It is their lordshipg' intention to exercise the power given to them in this instance, as in the case of the Oxford and Rugby line; and on the same grounds they would sobmit that it is not necessary to interfere with the conarraction of this portion of the line on the broad gauge in the manner authorized by the act. And, since they regard the break of gage as a mont serious evil, more especially in the conveyance of goods, they conceive that a continuous and a second line of commonication between London and the district of Staffordalire, \&c, must be regarded as of great value and importance. They accord.ngly submit that the line from Worcester to Oxford should be made m proposed on the broad gauge. They regret that the provision for the formation of a secnad line of raila was not inserted in the act affecting the portion of the line between Oxford and Worceater, in the terms of the elaase regulating the portion lying between the Birmingham and Glouceater line and Wolverhsmpton; end they would recommend, that if it should bereafter appear that there is a traffic requiring accommodation on the narrow gauge between the Staffordshire districte and the southern coaste, any suitable meanure should be promoted hy Parliament to form a narrow gange link from the Birmingham and Glouceater line to Oxford, on the amme grounds and in the same manner as the commissioners have recommended that it should be formed hetween Oxford and the South Weatern Railwsy."

The Board of Trade declines to give an opinion on the merity of the 4 feet 8) inches gange. They do not think that its adoptlon by the legialature as a ational gauge-recommended by the commissioners-ought to be positive and final. They would leave an opening to adopt what may be recommended by the experience of Ireland or foreign countries.

With this explanation, my lords beg to recommend, that no line shall bereafter be formed on any other than the 4 feet $8 \frac{1}{2}$ inches gauge, excepting lines to the south of the existing line from London to Briatol, and excepting small branch lines of a few miles in extent, joining the Great Western Railvay, and conveying to it the trafic of places in its immediate vicinity; and they forther recommend, that no bill for any such line as above exrepted han be paseed by parlisment, onless a special report shall have been made by the committee on the bill, setting forth the partlcular reacon which have led the committee to adrise that auch line should be formed on any other shan the 4 feet 81 inches gange. They concur, also with the commissionera in recommending that, unlesi by the consent of the legialature, it shall not be permitted to the directors of any rilway company to alter the gange of such railvay."
The angreations of the board, recapitalated in a condensed form at the sose of the minute, are an follow:
"1. That no line shall hereafter be formed on any other than the 4 feet

81 inchen gauge, excepting lines to the sonth of the exiting live from London to Bristol, and excepting amall branchet of a few miles in length, in immediate connection with the Grest Western Railway; hut that no such line, as above excepted, shall be annctioned by Parliament unless a apecial report shall hare been made by the committee on the bill, setting forth the reasons which have lead the committee to advise toat such line should be formed on any other than the 4 feet $8 \frac{1}{1}$ inches genge.
"" 2. That, unless by the consent of the legislature, it shall not be permitted to the directors of any railway company to alter the gange of anch rail. wiy.
"3. That, in order to complete the general chain of narrow' gange communication from the north of England to the routhern conate, and to the port of Bristol, any suitable measures ehould be promoted to form a narrow gange link from Gloncester to Bristol, and also from Oxford to Basingatoke, or by any shorter ronte connecting the proposed Rugoy and Oxford line with the South. Weatern Railway.
" 4. That the South Wales line, and its branchet to Monmonth and Hereford, should be permitted to be formed on the broad gauge, as sanctioned by their act.
*3. That the Rugby and Oxford line, and the Oxford, Worcester, and Wolverhampton line, should be permitted to be formed on the broad gauge, as sanctioned by their acta; that the Lords of the Committee of Privy Council for Trade shall exercise the powers conferred upon them thy the aercral acts, and shall require that additional narrow gauge raile shall forthwith be laid down from Rughy to Oxford, and from Wolverhampton to the junction with the Birmingham and Gloncester line; and that if it should bereafter appear that there is a tratic requiring accommodation on the narrow gauge from the Staffordshire districts to the southern cosat, any anitable measure shall be promoted by Parliament to form a thrrow gange link from Oxford to the line of the Birmingham and Gloucester Railway."

THE GAUGE COMMISSION.
Analysis of Evideace givea before the Royal Commiedosers appolnted to tavenigate the subject of the diveritty of Endilway Gangen.

(Continued from page 183.)

Mr. Jambs Edward M'Connell: Is, and has been for opwards of four years, superintendent of the locomotive department on the Birmingham and Gloucester Railway, now part of the Bristol and Birmingbam. If as large an amount can be got of evaporating space, compared with the weight of the engine, on the narrow as on the broad, they would be equal in that respect.

Dimensions of Mr. M'Conxell's Lacomotite Engine at Bromagrore.

The dimensions of the Great Britain Locomotive Engine, constructed a Bromsgrove Station, and now employed to wort the heavy goods trains upon the Lickey Incline on the Bristol and Birminghan Railway, are at follow, viz. :-

The Lickey incline is one in thirty-seven, which is a very steep gradient, and bas always been worked by a locomotive engine. For the lant four years, engines were of so light a construction that they had not sufficient adhesion on the driving wheels; in order to test the relative economy of a heary and light engine in working this steep gradient, withess made an engine which bas been at work now the last two mouths, with a cylinder 18 inches diameter, stroke 90 inches, and the driving-wheels 46 inches diameter, sir wheela, all conpled. The engine carries its water in a tank on the top of a boller, so as to give it the advantage of all the weight possible to jocrease the adbesion of the wheels, aod it weighs in working order somewhere about 30 tons. There is a great variety in the weight of the engines on the two llnes, from 10 fl up to 30 tons; the average weight of the 80 -inch cylinder passenger-enginea is ahons 12f tona, with 5 feet driving wheels. Four have 6 ft. 6in. wheels, for mail and express trains, and weiph abont 13 tons. The arerage speed of express trains sbout $\mathbf{8 0}$ mulles an hour; with is tons lomd. The luggage ran is about half a ton lighter than the passenger carnages, and is placed next the engine. For the last three years, the ran has been placed there, on the recommendution of the Board of Trade, for publie eafety, and if they had two, or any empty carriages, they would be placed there to prevent riak to pancengers. Is aware that the lighler the carringe
with figh velocity, the greater in the tendency to run off the raila, but thinks when the laggage-van is londed, the weight is sufficient ; and the empty carriage is abont as heavy as the loaded van; should not place an empty ven there; would place two londed rans if he had them. The reletive spoed of heary goods trains on the two lines averages on the broad 8 miles and 13 on the narrow. The broad gauge wagons do not load more heavily than the narrow; that is the result of the regular working of the traffic. 135 wagons upon the narrow gange carried 138 tons net; and that oo the broad gauge, 135 wagons carried 184 tons net. On one occasion, the gross Joad upon the broad gange conveved by Mr. Slanghter's engine was 235 tons 2 cwt ; the tare was 137 tons 12 cwt ; the net wes 97 tons 10 cwt . On the narrow gange the gross loed whe 254 tons 9 cwt , the tare 101 tons 17 cwt ., and the net 152 tons 12 cwt . The wagons were taken and loaded expressly, that there should be as little dead weight as there possibly could; and this is a further proof of the comparative net and tare upon the two ganges. There were 36 wagons upon the narrow gange, and 25 wagons upon the broad gange. On the latter the gross lond was 235 ; on the former 254. With 35 tons 15 cwi. less tare, there was on the narrow gauge 55 tons 2 cwt . more net. Went up two inclines of 1 in 100 at a speed of 8 miles an hour. On other portions of the line, that is, on level portions of the line, and alight inclinations, our maximun speed was 25 miles an hour. Size of the engine on the broad gauge : cyliader 16 inches diameter, stroke $2 t$ inches, wheel 54 inches, groms weight of eagine and tender 23 tons. Size of eagine on the narrow gauge: cylinder 15 ioches diameter, stroke 24 inches, wheel 64 inches, weight of engine and tender 27 tons. All six Wheels were coupled in both cases, so as to get the utmost adhesion to the engine. The Birmingham and Gloucester is laid with longitudinal bearings, thinks the Bristol and,Gloncester is also laid with them. An increase of the boilers would increase the weight of the machine, and thinks that, at a high velocity, a very beary engine would act rery injuriously on the rails; so far as it is safe for the rails, the increase of the weight and power of the engines to produce speed, can be got on the narrow as well as on the broad gange. The consumption of coke, consequent upon the generation of more steam, would be greater, but thinks it is cheaper to work with one large powerful engine, than with two small: has an eagine on the narrow gange capable of taking 600 to 700 tons, and his engine will take 1000 tons on lines of enay gradients, at 10 or 12 miles an hour. Thinks the injury to the rails and permanent way would he very much increased by increased weight and speed. Believes the injury to the permanent way on both ganges is more caused by high velocity than increase of weight. Has observed that the shocks received from the fast trains appear to affect the rails more than the slow, and the contractors for the repairs do not like fast trains 80 well as heavy ones at slow speed.

Has not seen the fractures of axles on the broad gauge; has seen them on the narrow. A very extraordinary change takes place in axles from the constant blows the whecls receive; it amounts 10 what is called cold awedging on the anvil, and renders them more brittle, which must exist to the same extent on the broad gange; on the narrow, axles have broken that had worked three or four years, and though at first they might be f brous in their textare, yet on fracture they appeared as if broken op into small crystals ; considers the breakage of axles mast arise gederally from this, and the greatest care is required to get them of the best manufacture, and of the toughest and strongest iron. Prefers those of the patent axle company, near Wednesbury, with radial bars all welded together, and finds them, from experiesce, superior to the Low Moor. The elasticity of the long bearing of the axle would affect the wheel, throw it ont of the perpendicular, tend to injure the railmay, and furce it out of gauge; on curves, an objection arises again to the broad gange, as one wheel has to travel over greater surface than the other, there is cither a strajining of the wheel, or a twisting of the axle; the axle will be atrained and deteriorated in this manner more on the broad gauge than on the narrow.

100 miles is a fair day's work for an engine, but he sees no objection to doing more ; thinks that by seeing that the engines are in good order, and changing them once a fortnight, there is economy in working as much as 150 miles; the steam being raised in fewer engines would save fuel. Is aware that the London und Birmingham Company change their engines at Wolverton; they make a trip each way, being 120 miles a-day, without patting out the fire. If the gauge were uniform at Glourester, one-third of the prosent staff of porters could do the goods trade; at present they are kept for lifling goods from one wagon, and repacking them in another, which requires five to six bours from their arrival. The guards' returns show, during the month of Angust, an average detention of 16 minutes for passenger trains. The detention to goods trains by transhipment from one gauge to noother cannot be eatimated at less than from it to 3 hours. Thinks the alteration of gauge matter of necessity, and that the cost would form a very small practical part of the ultimate profit. Supposing the cost to be $\mathbf{£ 5 , 0 0 0}$ a mile, has no doubt the increased profit would more than cover the interest of the outiay, but thinks $\mathbf{£ 6 , 0 0 0}$ is very much too bigh a sum for the alteration, for this reason-with respect to the wagon-stock, it would take for instance for 80 miles of railway a certain number of wagons, but for 100 miles of railway it does not take a double number of wagoon, because if the wagons work through, a small addition, comparatively speaking, would work the 100 miles beyond what is required for the 50. And 20 with respect to all the carrying stock. Huving the carrying atock for the Birmingham and Gloncester portion, it would require a very conall addition for working the other portion of the line, comparatively apenking. To lay down the brond gavge to Birmiogham Would amonat
to a complete demolition of the present works; the bridges and tanoche are too narrow, and the stations must be renoved. Imagines the expene would be very great, almont a ro-making of the line. The largest grods train he over knew to arrive from the north at Gloucester was 380 or 340 tons gross weight, bot thinks only a small quantity was transhipped to the broad gauge, ss it consisted chiely of salt shipped at Gloucester. Is many cases, a day is occupied in transhipping. Becollects 40 or 50 loaded goods wagons waiting at Gloucester a fortnight for broad gange wragoas to come up, and that may occur either way. No mechanical arrangenent at Gloncester for tranaferring goods, but manual labour and cranes At firs, shifting on low trucks was proposed, bat on inguiry, they did not go to this expense. Goods wagons placed on additional trucks would not pas ander the narrow gauge bridges, bat they could on the broad. The weight of the additional trucks on the broad gauge would be about 3 tons 5 cmt . Although mechanical arrangements may work well experimentally, believes they will be foand in practise totally unfit for every das trafic. The strength of the railway carriage and body is increased by their beiaf united, and bring exposed to rough usage, a separation would be a coo. stant cause of damage to the carriage and the goods in it. Thinks that detaching the bodies of passenger carriages from the wheels and frames would be highly objectionable. High velocities would not increase the expense on the narrow as much as on the broad, the lighter machine on the narrow having less tendency to damage the rails. The permanent way on both lines is kept up by contract, and the oxpense on the Birmingtan and Gloucester is about $£ 100$ per mile. The rails on the latter were originally too light, and the timbers and cross sleepers of the empankments not sufficiently seasoned, nor put into the Kyanizing process, so that the expense of repair has thus been increased. A line well made would be kept up at a very low expense. Believes that 75 lb . rails are now adopted on all lines, and they are to be substituted for those ou the Birmingham and Gloucester.

Description of the improrements on the narrow gange ragines with six wherls. - The general features of both are as follows : Mr. Hobert Stephenson has always advocated the six-wheel engine, and has made it; he bas improved it very mucb; he has simplified the arraugement and coastruction of the engine; he has adopted the ontside cylinder to his pacsenger engines, with a framing rivetted to the boiler plates; and he works his slide valves in a vertical direction. He has very much increased the Length of the boiler. The average length, before it was varied by Mr. Stephenson, was from 8 to 10 feet, and now Mr. Stephenson has adopted the 12 feet tube and upwards, thereby safely calculating that a very great economy is effected in the consamption of fuel, that is, that a less proportion of heat is allowed to escape unprofitably up the chimoey. This engice is found to answer in practice exceedingly well, inasmuch as it gives a greater length of engine on the rails, and increases very much its steadiness at a high speed. Ho has also a patent for placing the whole wix Wheels between the fre-box and the smoke-box, whereby he is enabled to distribute the weight more equally on the wheels. In working the engise he also nses what is termed the expansive motion, the link motion. It eaables the driver of the engine to regulate the supply of stean to the cylioder in proportion to the load. There are various plans of doing so. There is a plan proposed and patented by a Mr. Bodmer of Manchester and Mr. Myers of Mulhausen on the Continent for doing the same thing, all coeding to the saving of steam, and providing the quantity of stean requisite to overcome the load. The size of the engine is increased. At one time it was considered that from 12 to 13 inch cylinders was a good average size for working railways. Now we find from experience that economy of working is very much assisted by taking the train by one heapy engine instead of two light ones: that is to say, you save the wages of two men; and the expense of repairs is very much reduced, and materials, for iostance, oil and tallow, \&c., and the consumption of coke in the one engive is not at all equal to the consumption of the two, which would ooly do the same amount of work. The practice bas become general on narrow gange railways to adopt 15 inch cylinders instead of 12 inch, and even bigher than that. There are at present engines being made at Messrs. Sharp's manufactory at Manchester with 18 inch cylinders of nearly the same aive as the one at work at Bromsgrove, but with 24 inch stroke, 4 feot 6 inches driving wheels. They are intended for the Sheffleld and Manchester Railway and the Manchester and Birmingham, and it is calculated they will be of very great service with heavy guods trains, and enable them to carry at a very low cost indeed. Those engines will be equal to take 800 tons, and travel with ease when they are at work; proving that, so far as the power of an engine is concerned, the power of getting machinery on the narrow gange is sufficient to take any load; it will be quite eqnal so produce it, at leust as far as it can be properly adopled without increasiog the weight of the machine to the injury of the permanent way. Oar power is increased more than it would be warrantable to increase the weight of the machine, of which the engine at work at Bromagrove is an instance; for although it is $\mathbf{3 0}$ tons in weight, the whole six wheels can be made to spin round and slip with the six wheels coupled. That setiles the point completely that we can get sufficient power on the narrow gauge, without at all injuring the construction of the engine, or rendering it objectionable. With respect to those engines that are in construction by Messrs. Sharp at present with the 18 inch cyltoder, it is a most remartable thing that the cylinders are not placed outside the whecls, bat inajde, so that there is room for two 18 inch cylinders in the narrow gange to be constructed inside the wheels, working with the crank shaft. That does not much affect the centre of grevity ; the eylinder is kept low ; the valres
are underneath in thin case. The principal objection is the crank shaft, to get room for the boiler; but on the drawing and on the elevation of the cesiace, the centre of gravity does not seem to be at all too bigh. Those engines have four eccentrics, and are to be worked with the link motion. Tbinks a speed of from 12 to 20 miles an hour with a goods train, as great mes wonld be safe with this weight of eagine on either gange. These engines not used for passenger trains, the wheels being only 4 feet 6 inches is diameter, and wanting adheaion as well as power.

Description of the improvenents un narrow gauge engines of the second kind, wamely, those soith four wheels.-Mr. Bury has always been a maker and unpporter of the four- wheel locomotive engine. They are in uae on the London and Birmingham Railway and several other railwaya. They alon have been much improred; the boilers have been lengthened to about 11 feet; they have been increased in alze with 15 inch cylinders and 2 feet stroke. The interval between the fore and hind axie is somewhere about 6 to T feet; in those of Mr. Stephenson's the distance is rather less than 12 feet; they are all in the space between the fire-box and the smokeboy. A plan is sdopted on the London and Birmingham, of attaching the engine to the tender by a draw spring, rendering it an 8-wheeled machine. Believes, with the inside bearings adopted by Mr. Bury, that the engine would go on with the axle broken. Has seen them going 12 or 14 miles an hoor with the axle cut throngh. Has known the axle broken, and not discovered till the train was at the sfation. The breaking of the axle takes place close to the journal, and sometimes at the corner of the crank, the iron being cross ihere, and not so strong. Prefers the straight axle with outaide cylinders for safety. The chief objection to the crank axle is liability to give way.

Joha: Ubpeth Rastaick, Esq,: The lergest eagine on the London and Brighton Ruilway is one of $\mathbf{1 5}$-inch cylinder. Gives a preference to the crose over the longitudinal sleeper, as it is mach more easily rectified and kept in order. At the time the extension of the Greenwich Railway (that is, the widening ont of it where the Croydon, Dover, and Brighton Railways run over it,) was proposed to be done, the Directors of the Greenwich Rallmay Company desired their engiveers (Colonel Landmann and Mr. Miller) to make a report upon the sort of rails they ought to use in the laying down of those two lines. Each of those gentlemen made out a report; obe recommended rails to be laid of the same gize as those that are laid on the Croydon Railway, which is a rail that has got a flat top to it ; it is mather a low rail, with a wide lange at the bottom, and a narrow rib between the top and the fanch, and that was to be laid on longitudinal bearers. The other gentleman recommended that the rails should be made aboat 75 lb . per yard (these are called the H rails), and fixed in cast-iron chairs with wooden kess. The Directors of the Greenwich Railway Company did not think proper to take upon themselves to decide which of those rails should be laid down, and they sent the reports that had been made to them, to witness (of conrse not putting the names of tbe engineers to the reports, but merely stating that they were the reports of their engineers), and requested an opinion as to which of these methods they ought to adopt. Advised them to adopt neither of the rails, as the Croydon rail seemed (that is the light rail, and the light longitudinal bearer,) altogether too weak, and the other was not so well adapted for a riaduct as it would be if laid on longitudinal betrers, but a stronger rail; therefore recommended them, instead of making ase of a cross sleeper, with a 75 lb . rail, to make use of a bridge rail of 80 lb . per yard, which had got a wide lange at the bottom. The rail was about 24 laches wide at the lop. Tbe fange was half-an-inch thick, and the outside width of the fange was six inches, and each of those sides was three-quarters thick; these rails were screwed to the timber; screw pins went through the longitudinal timbers, and underneath there were bars into which the screw-pins were screwed. By placing an auger-spanner on the top of the ping, the rails can be screwed down most securely. The rail laid down on the viaduct of the Brighton Hailway was foond to answer so well that wltness recommended its adoption to the Greenwich Railway, and those rails are now laid down there. The nut keeps its hold and will run back, because it can at any time be acrewed ap; they have nothing to do bat to apply an auger-spanber on it, Is laying down a railpay from Hastings to Lewes, and likewise frotn the Chichester line, from Shoreham to Chichester, with rails of that description, bat on cross bearers with this addition, that to each of them, at the joints, there is a wrought-iron plate into which the two rails slip. There is a wroughtiron plate aboat 10 inches long, turned ap on the edget, so as to form grooves; the two rails come togetherinto this wronghtiron plate ; the rails canoot separate, and of course that part which turns down on the upper lange of the rail keeps the one rail from rising above the other. In laging down these rails on the Greenwich Railway, we had no provision of that sort, and consequently they are liable in some degree to rise one above the other, unless the screws are kept tight; but even if the screws are all slack where these wronghtiron joint plates are used, they cannot rise one above the other. The rails were laid on cross sleepers; did not nse the screw-pins at all, but merely a parallel bolt five. eighths of an inch in diameter, which bolds better than screws or any other contrivance. We bore a hole half an inch in diameter, and then drive in the bolt ; in fact, they hold so very fast, that in endeavouring to get them out sometimes on the Brighton Railway when a chair has broken, we have had to bend the pin backwards and forwards considerably before we could pull it out.
The relocity of the express traing on the Brighton is about 34 miles an hour, with one stoppage at Red Hill. There is very little oncllation if
the road is in good ordor. Oatside aylinders do not prodnce any yaving motion; it is imposaible any anch motion can be produced, onless there is a play in the framing itself. Considers the ontside cylinders to be rery much proferable to the inside, and they ran a great deal ateadier.

Mr. Henry Pringle Bruyeres: Is soperintendent of the Londan and Blrmingham Railway, aud controls the general arrangements both of passengers and goods. Average speed of express trains on London and Birmingham line between station and station, exclasive of stoppages, rather more than 40 miles an hour, making no sllowance for slacking and regaining speed. Includirg the stoppages at stations, the speed is $3 t$ miles an bour. Does not think the greatest speed at any time exceeds 45 miles an hour for any distance. Passenger carriages on London and Birmingham line greatly improved. The jmprovement in the first class carriages is, as reapects the construction, making the under framework stronger, and making it solid instead of open, as it was originally; in point of comfort to the passengers, in making the carriagen larger altogether ; each compartment being longer, to give more room for the lege, and higher. The carriages the company now build are in size proportionate to those on the Great Western Railway, with the exception that they may be three or four inches less in beight. The reason of having them less in heipht is to allow of the laggage being oonreyed on the roof; however, ample room is given, even for a tall person with his hat on inside. The luggage placed opon the tops of the carriages is principally "through" loggage, belonging to passengers that are going a long distance, so that when they arrive at the end of their journey, instead of having to seek their luggage at the forward part of the train, it is over their heads, and if they can only divest themselves of the idea that they aro in a crowd upon their arrival, and remain stationary on getting ont of the carriage, they will find their luggage inmediately before them. All inaide cylinders, and only one six-wheeled engine. The Company are now building six-wheeled engines. The engine and tender are tightly screwed together. Probable expense of London and Birmingham goods wagons into loose boxes for transfer on to broad gange, sbout £50 per wagon. The London and Birmingham line now so consolidated, that the rains bave little effect upon it; subsidence of the ballast does not take place upon the embankments.

The area of the Rugby Station is sbbut 12 acres, including the portion used by the Midland Railway, as well as the London and Birmingham.

Dimensions of old and of new carriagen.-They consist of three compartments, holding six persons each; the old carriage was in length, that is between the persons, face to face, 4 feet 11 ; the new are 5 feet 9 , being an increase of 10 inches; the width of the old carriage was 6 feet, and the new is 6 feet 6, giving 2 inches more in width to each seat. The height of the old carriage was 5 feet, and the new ones are 5 feet 7 , giving an extra height of 7 inches, that is between the floor and the ceiling, and taking it at the centre of the ceiling; the roof is curved about 2 inches, and is 5 feet 5 at the two aides. The outside length of the old carriages was 15 feet 6, and of the new, are 17 feet 6 . That is the entire body. The width was 6 feet 6 in the old, and is 7 feet in the new. The height, allowing for the carve mentioned before, would be 5 feet 2 the old, and 5 feet 8 the new. The total height above the rail of the top of the carriage is 8 feet 9 the old, and 8 feet 10 the new. The additional height inside has been obtained by lowering the floor.

At present, if the Great Western Company require engines from the North of England, when not carried by water, they come up upon the London and Birmingham, and are transferred from Euston-square to Paddington, and run down the Great Western line. This has frequently been the case; they are brought up on trucks. The comparative dead and net weight carried by the down express train for the month of Augast, 1845, is as follows : number of passengers, 1,613 ; carriages, including luggage van, 132; weight of passengers, at len to a ton, 161 tons; weight of carriages, 656 tons.

Cononel Grorge Landyann: Was engineer of the London and Greenwich Rallway and the projector of that scheme. When the line wes constructed, used a rery light rail, of 50 pounds to the yard. Bubsequently changed those rails for others of a heavier deseription, weighing 85 pounds; the first rails did not reverse; the present rails do reverse; the new part is upon the Great Western principle, upon longitudinal sleepers; in the first instance, used stone blocks, which were afterwards changed to transverse sleepers. The widened portion of the line, from London to the separation of the Croydon, and the portion from Deptford to Greenvich, originally laid apon longitudinal sleepers, with the same form of rail as the Great Western; that rail was 60 pounds to the yard, whilst the Great Western was 43 pounds. The longitndinal sleopers between Deptford and Greenwich are 12 inches wide by $6 \frac{1}{2}$ deep; those npon the widened part are the whole size of the baulk; 12 and 18 inches, with ties acroes the same depth, to preserve the gauge. The longitudinal sleepers of the Greenwich line, extending from Deptford to Greenwich, rest upon transverse sleepers, 10 inches by 6 , by 6 to 7 feet long, and placed at distances of about 4 feet apart, and to which the longitudioal sleepers are apiked; these sleepers were all K yanized, and, as far as witness has been able to dis. cover, are still quite sound. With longitudinal sleepers a lighter rail might be used than would be sequired where there is a space between the supports; and if the ground be properiy tuade at first under longitudinal sleepers, is of opinion that that would be the best mode of constructing a lime; objects to the mode adopted nader Mr. Rastrick's direction of lajiag
the raile upon the widened portios of the Greeowich Railway. Witness's design was to have transverse sleepers. with the longitndinal sleepers upoo them ; it now entirely reats bedded upon earth; if it had had fised points to reat upon, it would have been much more secure. Should rely entirely upon the bearing upon the tranaverse sleepers. It is not found too elastic opon the Great Western; the longitudioal sleeper is only 7 inches thick; they have no transverse sleepers. The engines on the Greenwich line weigh about 14 tons with the water. Some are sin and some are four-wheeled engines; foor-wheel engines are going out of use as fast as they becone destroyed; upon a portion of the line (the Brighton and South Fastern line) they run with much heavier engines, weighing 16 or 17 tons.

Charles Vignoles. Esq.: Laid out the Eastern Counties with Mr. Braithwaite, bot that geotieman executed it; a question as to the gauge arose; was then very desirous of making the gauge wide; Mr. Braith. waite's view of having a 5 -feet gauge was adopted; should have preferred a 6 -feet gauge. Intended the Dublin and Kingstown Railway to have been a 6 -feet gauge; but the Directors overruled his opinion, on the plea that so short a line mipht, if necessary, have its gauge altered without inconvenience; they had to obtain all their first carriages and engines from Eingland, where 4 feet 8 \$ was the prevailing gauge, and they were very unwilling to depart from it; he has been consulted in laying out many principal lines, and also on the gauges of many ; the Edinborgh and Glasgow was laid out, though not executed by him; as it was likely to connect ultimately with lines coming from the sonth, on the 4 feet 81 principle, that gange was adopted; some Scotch lives already executed are on rather a narrow gauge ; thinks one coal line, the Forfar, was 5 feet 6 inches; but the general feeling was strong that connection with south lines should be kept in view ; most of the lines mentioned were previously to the introduction of the broad gauge by Mr. Brunel. On the Cuntinent, as the engines and carriages were obtained from England, they were unwilling to deviate from the fized rule; the first railway in Bronswick was about 30 miles to the foot of tbe Hartz monntains, and the English gauge was adopled; the latest large operation of his on the Continent was laying ont the Würtemberg railways ; there the question of gauge was greatly discussed, and is not yet settled; they are intended to unite the railways io Buden, which ruo parallel to the Kuine, and those in Bavaria, which run from the Danube; the gauge of the Baded railways is 5 feet, or 5 feet 6, and that of the Bavarian 4 feet $8 \frac{1}{1}$; under all the circumstances, he recommended that 4 feet 81 should be adopted; as all the railvays in cqnaection with Bavaria, and all the Samon and Austrian, are 4 feet 8 h , and hs a great transit trade was coming from those countries, he considered that the larger amount of traffic would be from those of 4 feet $8 \frac{1}{2}$, and that the leagth of rail on the Baden side, aext the Bhine, would be short in comparison; be thought Baden woold ultimately be obliged to change, and bring it to the gauge of the others on the Continent; however, Baden and Bavaria persist in not changing, and it is a question at what point the transit shull take place, whether on the eastern or western frontiers of Wirtemburg ; thinks the probability is, that they will ultiwately adopt the 4 feet Sis gauge throughout Würtemburg.
As to the cost of the carriage-frame, thinks it would increase as the squares of the gauges, but with a certain additional amount of accommodation; one great advantage of a large carriage is, that you get less gross weight in proportion to the det; doed not know whether that has been realized in practice, but thinks it ought to be so. As regards increase of speed, does not think on that alone the Great Western bave an advantage; the trains travel sery fast on It, but much more is due to the gradients, Which are very fiat, than to the gange; with respect to economy of working, the expense on the Great Western and the London and Birmingham is as near as possible the same. With respect to safety, as far as it is connected with steadiness, is quite satisfied that at very high velucities the trains travel more stendily on the Great Western than on the London and Birmingham, taking the gradients as they occur. In the abstract, is quite satisfied there is greater steadiness of motion on the bruad gange at high velocities. If the road happens to be out of order, or the spriugs of a carriage stiff, or if it is not loaded or overlonded, or a little slack in the coupling up, or too tight-all those will affect it, particularly at high velocities; has not made a series of experiments, but is quite satisfied that it is sleadier with the broad than with the narrow gange at a high velocity. It is impossible to write on the London and Birmingham at a high speed; be could read in their express trains very well wbere the road was in good order, but when bad could not.

Used to be, and is still, very partial to the longitudinal sleeper; but some facts have come to his knowledge to shake his views, in particular, on a foggy moming on the North Union, when an engine comes to the longitudinal sleepera she invariably alips, which does not take place on the crose-siecpers ; cannot account for it. It may be owing to a dampness that remains on the longitudinal sleepers which may impart to the rail a moiature which converts dust to mud, and produces greasiness. The soil is chiefly eand, with probsbly a little clay in that portion of it; but still, wherever the longitudiual sleepers are, the engine has a great tendency to alip. Has often calculated the relative cost of laying rails on the longitu. dinal and cross-sleepers; it was very mucb in favour of the longitudinal in the first instance, where a slighter baulk was used; but as it is now necessary to have the whole, or at all evenis a threaquarter baolk, the bulance is againat the longitudinal as the more expensive; a very heary rail, with a crom-slesper Fithont the chair, manere vory well, and is the
mont economical mode. The Grat Liverpood and Manchester rails were 35 lb ., and the 42 lb . rail on the Dublin and Kingtown is still in use. Oa the lower part of the North Uaion the 42 lb . rails have been taken up and replaced by 63 lb . Oh that line the passenger trains ary light, but the merchandize and conl excessively bervy. The lengths of bearings ars 3 feet 0 iaches and 4 feet; four to 4 rail.

Should the Grand Jaaction Company alter to the broad gauge, it would be practicable to alter the North Uaion loo, as the bridges and suunels are suficient for the parpose; none of the bridges are less than 30 feet span, and those of the Great Western are not more. His prartice is to make bridges about 30 feet. The tunnels are about 27 feet. On the Midland Counties the bridges are all 30 feet; the viadoct at Rugby is 27 , which would admit of the broad gauge by corbelling out the parapet; the Great Bibble Bridge on the North Union is 27 or 28 feet wide, and the tunnel into Prestoo, the only one, is nearly 30 fpet. With less than 30 feet there would not be room for a man with safety; it would be better to have recesses huilt in the tunnels. Thinks, by a judicious system of transfer of bodies, the packing and unpacking at Gloucester might be avoided. The passenger carriage-bodies may be transferred, as at Ronen, to the frame of the railway carriage, without uny risk or difficulty. Has ridden in one of those carriages, und been lifted up with it, without any practical inconrenience. It is bolted down, and is as perfect as if it were the railway carriage itself. A carriage put together in that why is as strong as a osoal one, in case of collision ; it is strong enough to be lifted, and, being re. quired for the road, is stronger than the railway carriage. Coosiders the 7-feet gauge wider than is vecebsary; the wider the guage, the toore tho effect of curves is felt; does not think the gradient at all enters into the question. The Great Western bave large driving-wheels, not with regard to gange, hut velocity ; there is oo decessary connexiun between the dia. meter of the wheel and the gange. Would not adopt the 7 -feet wheel on the uarrow gauge; but that is a proof that it nust be steadier on the broad. A great number of things were proposed in adopting the broad gauge, which have not yet been curried out with effect. Were he the edgineer of a broud gange line, should avail himself of the increased apace to make engines more powerful. The necessity of increusing the engine is every day appareat, and to have engines so far above the work that there can be no question about their power. The driving-wheel of the engine will regalate the velocity ; one of the Great Western eugives, with the large driving-wheel, would give the same amount of speed, whether of the broad or the narrow gauge. The diameter of the driving-wheel is quite a diferent question from that of gauge, except as regurds the iacreased steadiness arising from the wider gange.

- (To be continsed.)

VENTILATION OF THE HOUSES OF PARLIAMENT.

The second Report from the Lords' Select Commlttee to inquire inds the Progress of the Building of the Houses of Parliament.
That the Committee have again met. and having examined Mr. Goldsworthy Guruey as to the best system of ventilution for the new Houses of Parliament, are of opinion that further inquiries and experiments should be made, under the direction of Ler Majesty's Conmissiuners of Woods and Forests, before tbe final adoption of any plan bitherto proposed for that purpose. And the Committee luave directed the evidence of the alaid Mr. Goldsworthy Gurney, taken before them, to be laid before your lordships.
[We select frum the appendix the following extracts from the evidence. of Mr. Goldsworthy Gurney.]

Are you aware of all the plans proposed by Dr. Reid, for ventilating the new Houses of Parliament?-No.

Therefore you do not know what his scheme is, and how he proposes to force a due dillusion of tir over all parts of the building ? Except from bearsay. I have no mocurate lnformation.

In what manner do yoo onderstand that he intends to do it t-My a large upcast shaft, the base of which is to commonicate by air passages to the various apartments in the huilding.

Do you suppose that that is to be assisted by any power eithor of furnaces or steam power?-1 suppose it must be assisted by a blowing cyliader, or a cedtrifugal fan. Those adjuvants would be unnecessary if the upcust shaft had sufficient power. They are always objectionable, in coessequence of involving machinery, and being liable to get deranged. Yet some mechanical assistance must be had; for if this extensive building is to be ventilated by the upcast shaft it must fail. The size of a shaft would be inadmissible, for it will be evident to your lordships that the whole of the air drawn from the whole extent of the building rentilated must pass through it. This is not all; the whole of the air drawn out of the differest apartments, and passing through the shant, mast be raised to the temperat
ture of 500° of Fahrunheit, othervies it sill have ao por ture of 500° of Fahrenheit, otherwice it will have no power. Thas is a very inportant point ; one to which I wiah to fix jour ittention, and ax plain as clearly as possible. Suppose the buildings of the new hoones extend over ten meres of ground; suppose five scres-ane half ooly-ocenpied by rooms, the sectional area of the tire acres of rooms will be, in round numbers, 900,000 feet, accaratoly 917,600 feet square, which is about the equare sarfice of five scres of groend. Suppose the movement of air the
at the rate of 11 feet a minute, which it must be for good ventilation, the qomotity of air discharged must be $2,393,000$ cubic feet per minote. Now the whole of this $2,000,000$ cubic feet of air must be heated sufficiently high to prodoce an available power, by the difference in the weight or balance of the internal and exteraal columns. A temperature of 500 degrees Fah.
believe, is necessary to produce any available pressnre. The whole of Whe air must, therefore, be passed up the chimney, and then raised to a temperature of 500 degrees of heat as it passes. This appears to be imgrectirable. Bat supposing it possible, the qnantity of fuel burnt could mever be suffered. On referring to experiments made by myself some years siace, 1 find a pound of charcoal will heat 1,000 cubic feet of air from 00 degrees only to a temperature of 500 degrees. Therefore, if we take this as sofficiently accurate and favourable data, we shall find that we reqnire at least $\mathbf{9 , 0 0 0} \mathrm{lb}$. of fuel per minute. The impossibility of being able to coasome this quantity of fuel is evident; it is not possible to burn this quantity of fuel. To produce practically a discharge of that quantity of hot air, or effect an available power, it tnnst be borne in mind that air raised from $\mathbf{C O}$ degrees to $\mathbf{5 0 0}$ degrees doubles its volunue.

Yoo object, also, to the system of ventilating from the foors or sides of the room instead of from the opper portion of the apartments?

Yes; there is a praclical objection to this direction, which will be seen by looking at the subject carefally. These retrograde currents produced from air entering at a low level into a room are practically very objectionable; they produce an increased rate of evaporation upon the skin, which produces a sensation of cold. Although the temperature of the air in motion itself may he warb-say 70 or 80 degrees-it will produce a temperalare very cousiderahly lower on evaporating surfaces. The skio of the human body is essentially an evaporating surface, and soffers moch from this law. The ieeling of cold in the parts of a room where retrograde or dinect currents act is not due to the actual temperature of the currents, but to the increased rate of evaporation produced by them. Evaporation produced by retrograde currents rapidly ahsorbs heat. A person canoot get out of the influence of the direct or retrograde currents if they enter near the fioor or at a low level, but if the openinga are made in the ceiling or at a bigh level, then they are mirpd with the atmospbere of the room above, and cense or become destroyed before they can possibly reach any one tanding on the floor.!

Although not eviaced by the common thermometer?
Not by the common thermometer, but instantly by an evaporating thermometer.

It does not depend upon temperature, but evaporation?
It is entirely dua to the increased rate of evaporation produced by a current of air pasaing over the surface. It is said, "If you cover the skin with ether, or some other rapidly evaporating substance, you may freeze a man to death in the heigbt of summer." A current moving at the rate of three milet an bour, acting on bighly alcoholic ether placed on the surface of a thermometer, will orcasion the mercnry soon to fall to the freezing point, notwithstanding the curreat of air may be at 80°. Evaporation where there are partial currents goes on anequally; there is a feeling of heat out of the currents, and a feeling of disagreeable cold when in them. You cannot get out of them if the entering current is anywhere whers it impinges upon the person. There is a great objection to air for ventilation equering a room anywhere at a low level; it must necessarily impigne upon the person.

Will you state what force you propose to apply to set the atmosphere in motion?-I prefer the vis detergo arising from the escapage of high-pres. sure steam; throngh proper sized air passages it fnraishes a power capable of being managed so as to produce at will ony rate of current down to almost an insensible breathing. 1 prefer it, also, in consequence of its great capability of management. When I atate that in some experiments which I made ten years since, 1 raised a column of mercury niae inches by the force of the current of air produced by it, the Comnittee may see from that fact that it is copable of producing a force which never can be reguired for ventilation. M. Arago, in some experiments within the last few months, has raised by a current of air thus produced a column of mercary 15 inches. Therefore these facta prove that we have abundant power so as to overcome every opposition arising from wire drawing or other reeistance, and to compel air to pass with uniformity wherever it may be pecessary. It is siaple in application, and its economy great, though that is not of so mach consequance as the former; it is capable of being passed easily and independently to any part of the building separately. You may act by this principie apongroups of rooms, or upon single rooms, or anywhere where it any be convenient; by that means, you prevent the neces. sity of cotting up the building, or the making of large communications. Another adrantage which it will produce, and which though last may not be the least, is, that it is capable of passing a sufficient quantity of air, as moch as can be required to produce ventilation, through small passages, which passages may be secured egainst the communication of fiame, in case of fire, on the principle of the safety lamp. This is a circnmstance of great importance where a building is to be made fire-proof. Supposing there are several rooms connected together by ventilating fines, all would be readered safe and perfectly independent of each other as to fire by the interreation of diaphrims of wire ganze, opon the principie of Sir Hompherey Davy'A safety lamp. Wire gauze cannot be introduced unless you have great command of power, because you offer by it a strangulation diffealty in the passage of air, which cannot be orercome by the ordinary syas of ventilation.
Hon consider this principle perfectly applicable to fre-proof buildingen
that it does not affect the fre-proof quality of the boildings in any way ?Not at all; but if there shoald be may doabt as to the rafety of a wire gauze disc, or layers in succession, each room may be ventilated independeatly of any communication made betwern them; in that case it must be self-evident that there can be no danger from fire.

So that the system may be applicable either 10 sibgle rooms or to an eatire building ?-Yes; the power is sufficient to produce veatilation for the entire builutiog.

You are aware that Dr. Reid's view of taking the air, by which the bonses are to be supplied, fom the top of this areat tower, when completed, is for the purpose of getting a purer atmonphere than he thinks he can get down near the river, where it is, in a degree, vitiated by sewera and smoke; do you think that it wrould be advantageons to get your air from such a source for the general ventilation of the buildings ?-The sewers I know litlle about; but in regard to smoke, the most deleterions and injurious products of combustion in London from the chimneys I believe are those which are iuvisible. The visible smoke-the unburnt carbonwe need not be much afraid of; it blackens our laces, but I believe does no barm to our lungs. The most serious injury is from the sulpharous acid furmations, and from some of the volatilized metallic oxides: but this is a question of great dificulty, a question that much better chymists than I am must answer.

Do you mean to imply that you doubt whether air two or three bundred feet high is not likely to be loaded with much greater imparities than the lower ulmosphere, which appears to be coarserf-Yen; I should have some doubt about it.

You are awure that Dr. Reid has a plan for collecting the smoke of every fire in the building, and conveying it all through one shaft?-I have heard so.

Do you believe that can be done?-I think it is very difficult.

SUBSTITUTE FOR RAILWAY SLEEPERS.

The following suggestion occurs in the Engineer's eleventh report to the Georgia Central Ruilroad Company, (America):-

During the past year, I have made an experiment of substituting iron cross ties for our present wooden sleepers. In renewing the sleepers as they decay we use no other timber than cypress - this is not to be oblained near tbe road above the Ogechee river, and we are obliged to transport the sleepers from the lower portions of the road, which increases the labour and expense.

I have long entertained the opinion that a mach smoother track could be attained by removing entirely the sleepers, which support the string pieces at intervals, so as to give the string piece a continuous and uninterrupled bed of earth. I am now convjnced of the correctness of this opinion. The plan is as follows:-

The atriag pieces (6 by 12 inches) are laid on an even, well rammed surface, and in length of from 301000 feet-at the joininge, a bolster piece of the same scantling as the string piece and three feet long, is placed lengthwise immediately under the joint, and the striug piece pinned to it. The iron rails, of the ordinary \boldsymbol{J} patsern, are laid along the centre of the string piece, and the track is kept in gauge by the iron tie, a piece of Eat bar iron, half an inch thick by two inches wide; this tie is let flatwise into the string piece, Gush with its upper surface under the rail, and the ends, bent into the form of a hook, grasp the outside of the bottom web of the rail at the joint. The rail is confined in other respects as usual with the ordinary book spikes. The srack is filled even with the top surface of the string pieces. We have laid mbout seven hundred feet in the manner above described, on a portion of the road where the earth was springy and it was difficult to keep the track in adjustment, It has borne the transit of the trains for several months past, and keeps in much better order than with the frooden sleepers. The followng statement shows the comparative expense of a mile of road with iron cross ties, as ahove deacribed, and with wooden sleepers, for twenty years:-

With Iron Crosa Ties for one mile.

352 iron bers, 18 lb . each, at 4 cenis per lb ., Bending the ends and preparing them, at 4 cents each 830 bolster pieces under the joinings of string pieces (6 bj 12 inches, and 8 feet long), at 7 dollars per thoosand fret, B. M., to be renewed three times in 80 sears. Putting in 852 ties

Amonat
$490 \cdot 20$ dollars

With Wooden Sleepert for one mile.

660 cypress sleepers, allowing them to be len sound at the end of 20 years, will have to be reneved three times; then 1980 ties at 25 cento each
Putting in 1980 ties.
$495 \cdot 00$ dollars $471 \cdot 24$ n

Amonat
Diference in favour of iron cross ties in a period of twenty years, per mile
$900 \cdot 24$ dellars
475-28

The first cost for subatitating the iron for the wood is, per mile
First cont of reacwing the wooden deepers
Difference.
$879 \cdot 00$
322.00 $"$
57.00 dollars

You will thus perceive that in a period of twenty years, a saving of four huadred and seventy-Ive dollars would be effected, while the additional first cost is only fifty-seven dollars per mile. The cost of putting in the lies, both of iron and wood, is estimated from actual experiment.
I have said pothing in the above eatimate, of the saving which wonld be made in the labour of keeping the track in adjustment; this would not be less than 10 dollars per mile per annum, and would swell the difference in favorr of the iron ties to nearly $\mathbf{7 0 0}$ dollars per mile in the period of twenty yeurs.

SMELTING WITH ANTHRACITE COAL.

The following particulars respecting the first discovery of the applica. bility of anthrecite conl for smelting iron are communicated to the Journal of the Franklin Institute, by Mr. S. W. Roberts. He states the original inventor of this important application of anthracite was Mr. Crane, who superintended the Yniscedwin works, in Breconshire. Wheu Mr. Crade took charge of the works, and for a long time after, the smelting of the iron ore found in the vicinity wat carried on with coke made from bituminous coal; but, as an extensive field of anthracite coal existed in the neighbourhood, which was considered useless for smelting parposes, his atdention was early turned to the importance of brioging that fuel into use; and at different periods, during fourteen yeara, he had, at a large outlay, tried a variety of pland to effect the object.

Though repeatedly baffied he still persevered, and his efforts at length were crowned with complete anccess. Finding that the use of this hard and refractory fael caused his furnace to ohill, he resolved to try the effect of heating the blast to a temperature anficient to melt lead, upon the plan so successfully introduced by Mr. Nielson, for increasing the yield of furnaces worked with bituminous coal.-Having made the necessary preparations, he begun the experiment with the hot blast on the 7th of February 1897, in a furnace forty-one feet high and eleven feet in diameter at the boshes. From that date until the 12th of March the furnace was worked with roasted anthracite as the only fuel, and thenceforward exclusively with raw anthracite as it came from the mine without any preliminary preparation. In all respects Mr. Crane's snccess was complete; his fornace worked well, the yield was better than with coke, and the iron was of superior quality. He felt that the problem to which so many experimenters had turned their attention, both in Europe and America, and to which he had devoted so mach of his time, was triumphantly solved. He had accomplished the object on en extensive workjag scale, with contioued and increasing snccess; and from this period dates the establishment of a new and important manufacture, from which the iron trade, both of Great Bri tain and the United Sutes, is now deriving great advantages. The writer of this notice, who was at that time sojourning among the jron works in Wales, visited Mr. Crane's establishment in May, 1837, for the purpose of seeing the process and of satisfying himself that the materials used were similar to those which exist so abundantly in Pennsylvania, Finding that the great object was accomplished, and that the results were highly gratifying, he conmunicated the fact to his friends in Philadelphia, by whom it was shortly after made public throngh the newspapers. At that time there was no blat furnace in Penosylvania working with anthracite coal; their number in the Btate is nuw twenty-seven, and there are several in New Jersey.

At the meeting of the British Association for the Advancement of Science, held in Liverpool, in September, 1837, Mr. Crane attended and presented a paper descriptive of his process, which is printed in the sixth volume of the proceedings of that association. He had secured a patent in Great Britain and had applied for one in the United States, the issue of which was for some time delayed, owing to obstacles which grew out of the promature publication of his prucess. His patent was infringed, and he became involved in a tedious and expensive litigation whicb some of his friends feared might end in his rain. At length, however, the question as to the valdity of his Britush patent was decided in his favour, and thenceforward it became a source of much proft to him. He extended his works at Yniscedwin by the erection of several additional furnaces, and his concerms became highly prosperous.

ORNAMENTAL FLOORS.
At the Decorative Art Society, May 13, a paper "On Ormamental Floors," was read by Mr. Laugher. The enbject was treated principally with regard to modern appliances, and more particularly to the ase of parquetry (or inlaid wood), is our principal apartmenta. Some obeervations, however, wore made respecting the parements and foon of antiquity; of which eaveral familiar indtations were refarred to in the painted poor-clothe of the present day.

Sabsequently to the introdaction of Canadian timber into thin country, stane floors were anid to have become nearly universal; and also that, for upper rooms, plater was generally adopted. It was observed that boarded floort (usually of oak) were considered a very distinctive appartennce to the Boglish mansion in the seventeenth century; and that they received inereased attention to ormamental effect in the early part of the eighteenth, at which period the parquet foor had obtained conoiderable favour, and was conatrueted at great cost. Carpets of home manufacture then began to enter into competition with them; and the use of foreign deals (which, from their shrinking, rendered carpeting more essential to comfort) tended to the disuse of this auperior kind of looring. It was remarked that at present there was a revival in the feeling towards parquetry; and explanations were given of several applications of steam and machinery (by Measrs. Steinitz and Co.) for accelerating, not only the production of the geometric forma of the component parts, bat ultarior processes of framing and constraction, whereby considerable economy in time, labour, and cose renulted. Several observations were made opon the relative cost of parquetry; and it was said that ite price, when laid down marginally in dining-rooms, does not now exceed four times that of its imitation on painted cloths, and than for drawing-rooms it is not more expensive than tbe richer kinds of carpet. The superior resulte arising from having an inlaid margin of hard polished wood were enomerated.

DAMPNBSS IN BUILDINGS.

its causes and conbrguences, and the means of preventine it.
Io our last number (page 187) we gave part of a translation from the Magazin Pittoresque, of an abstract of a prize-esay, by M. Vandayer, os the prevention and core of damp. When we commenced this paper we were not aware of Professor Donaldson's intention of reading before the Royal Institute of British Architects a tranalation of the original ensey. He has however since done this, and wo gladly avail ourselves of a translation which, being prepared by one of the beat French scbolare in England, would in all probability be far superior to our own. In order bow. ever to avoid repelition of part already published, we have ventored to omit some portions of Mr. Donaldson's paper.

According to physical laws, the damp of the soil tends to penetrate, ia one direction or another, the bygrometric bodies with which it meets. It hence resalts, that the walls of buildings will aboorb from the woil a certaia dose of humidity at all the points immediately in contact with it. That is to say, if there be an underground baspment, the outside walls will abeort by their footings, and by one of their faces, and the division walls by the footings alone. If there be no underground basement, the division aed outer walls will be under precisely the same conditions, with respect to those parts of them below the level of the exterior surface of the soil. Bue are these the only causes of humidity ordinarily regarded in lower parts of buildings? Certainly not; and it is easy to prove that, with rugard to external walls, there are other causes, which, although less constinnt are notwithstanding not leas immediate;-we mean the ruin-water, which the wind drives upon the faces of walls, by which the lower part is werted; as well by that driven directly on the surface as by that which rebounds from the ground, or by that which falls down the face of the wall. In the case of dripping eaves, without gutters, it may be easily imagived the abundance of wot which the walls receive at the lower parts from the drips of water, and from stacks of rain-water pipes without shoes.

If the lower floor of a building be covered, whether it be by any parement whatever, or by a planking, immediately upon the soil itecif, it is certain that the ground under the floor contains, frst its own humidity, as also the damp which traverses the foandations of the outer walls; mo thit there will exist always a constant humidity throughout the whole extent of the lowermost fioor, susceptible of exercising its infuence upon all bodies immediately in contact with the surface of the soll.

The paving the outer surface next the bailding, or its being unpaved, materially affects the dryness of the inside; and the construction of numo rous and full-sized sewers and drains in large towns, also carries off a great portion of the surface waters; and again, an isolated building is more exposed than one contiguous to another; and atso when a house is on the slope of a hill, with one pert against a bank, through which the wetert may flow, it is necessary to adopt precautions to prevent their pesetrating the solid constructions.

No reliance can be placed on the impeactrability by bomidity, of an material-wood, bricks, ordinary stones of every quaitty, marble, nay granite itself, are more or less hygrometric-that is to say, that pluoged is water or kept in a humld atmonphere, after having been provionsiy weighed iv their dry atate, there is not one which will not bave aogaired some addition of weight. Thus, if the base of a column be immersed in water, tt will gradually rise ap the shaft, and the damp never quits a body into which it has ooce penetrated, anless it be abeorbed by the air or heet. If the upper part be dried by exposare, as soon as it ceases to be acted upon, the bumidity of the lower portion will again rise to the dry part.

A wall, therofore, constructed of brick or slone of any quality whatever, will be subject to the damp which exists in the soil, and which will eteter in all directions and in all parts, where the wall is in immediate cootet with the groand. The extent to which this damp will penotrate, anoex
be delermined, and it may rise to a very great beight above the level of the coil ; and if it be arrested more or less, that will be canked by the intuence of the seutralislog power of the temperalure of the almosphere; so val a well, which may be very damp at the begioning of summer will be mach leas so at the end of the dry season, and particularly $s 0$ if immedictely exposed to the sun, but the following winter the damp will return, celess the oriminul canses of humidity be suhdued.

It is desirable in all and erery clase of soil. th have a aubstratum of conGete ander the footings. For the purposes of damp this need not be very deep. perhaps not exceeding a foot high. As soon as the footings and tower part of the wall are carried us bigh as the level of the ground inside, It will be well to introduce a thio sheet of lead the whole thickness of the wall, or a layer of bituminons substance as thin as possible, so as to penetrate the brick and stone and fill the pores, or a double course of thick slate set in cement.

The porpose of the sheet of lead and of the hitnmionos substance, and the slatiog, is to prevent the wet from rising up from the footings. But aher precautions are necessary to prevent the uccess of dump from the anrface of the ground next the outside face of the wall. A fuciog of stune is the best remerly. It need not le very thick, but it is well for it to he at leaat two or three fret hish; and if amall interval between this facing glab and outside surface of the wall, so much the better. providing a circuiatioa of air be kept up in the space. Hy this provision neither the raid beatiag against this part of the wall. nor the water returning from the pavemeat or ground, will he able io reach the muin substance of the wall; for although the faring slubs may be temporarily damped, they will aoon be dried without commuaicating the damp to the body of the wall.

The inside of exteraal walls shoutd never have the plastering applied tmonediately on the face. They should be battrned by means of long nar. row slips of wood, attached by bold-fasts to the inside face of the wall. These slipa or buttens recrive the laths upon which the plastering is upplied. The space formed by the battens between the wall and the luthing Fectaally keepe out the bumidity.

No impervious corering should be lafd od wooden fionrs in the lowermost story, such an oil-cloth. for instance; a certain nosist air always rises from the ground, and eacapes through the joints of the buris. but if this be intercepted by an oil-cloib, the dir will rot the boards and oil-cluth in a very few months.

But it it important to keep the damp from the toor which come npon the erousd, that is, the floors of the lowermost story. It is evident that the timber of atone slabs should not be in immedinte contuct witb the soil; for this purpose, let a stralum of concrete be luid orer the wholr surface of the bouse, six or oine inches thick at the least. Upon this furm sleeper malls or piers ap to the necessary height, and on them lay the plates or paviog slabs; as an adilitional procaution, a thin sheet of lead inight be laid under each pier on the bed of the sleeper walls. In pnlaces, as a Greater precaulion, and in buildings where expense is a secondary ohject, a thickness of asphalte might he luid on the concrete. In the dwellings of the poor it is expedient at all events, to have the aleeper walls or piers, which need be only half brirk wide, and one course high, withut the cemont, and generally that will be a sufficient precantion; where stone purfing forms the fioor, bricks must be laid undre all the joinis. Thus will the memidity be more or less prevented from reaching the floors.

But of all precautions to prevent damp entering by the face of the wall, the best remedy is liave an area, which, by keeping the soil at a distance, preclade its futal effects on the wall. There areas may be three or more fet wide. and may serve as a pascinge all round the buildinz, and affurd aecess to cellars outside, as in the Londun houses ; or if this, from want $o_{\text {, }}$ spacs or the expense, be lopraclicable, it will be sufficient to hare what

$$
\text { Pl. } \mathrm{l} \text {. }
$$

Pr. 2.

te ealled blind areas, with convex walls against the earth, the points of confact with the ooter wall of the huuse being as amall ms porsible, to diminish the posaibility of the communication of damp. Care must be
taken to leave openinge at. A A A (0g. 2), so as to maintain a draft or of culation of air throughont the several areas; und to render this circulation perfect it n ill be requisite to form in the wall three or four shunt, as B B (Ag. 3), to heep up a communication with the outer air. It is necessary to leave the angle C, quite free and clear, for the angle at C being a solid mase, requires the greater exposure, that it may throw off the damp, which It originally acquired by exposure to the atmosphere, as it teads to make it evaporate. The top of the areas must be corered by atone slabs, which it is desirable to kerp ubove the sarface, and the face of the wall immedtately above should be readered with cement. If it be necessary to have the covering slabs below the earth, the face of the wall must be readered with cemeni, or the damp will undonbtediy penetrate through the wall from the alightest depth of ground next to it.

Acother pricaution must always be taken in regard to floors, and that is, to incert in the outer walls iron gratings, with chaonels in the wall, say 9×6, so as to let air pass into the fluor from the outside; and in order to exclude the air from the foor in winter time, or the ovent of damp wenther, it is well to prepare a sliding plate in the skirtiog, which mey shut it off or apen the holes for the re-mdmission of the air, as the one or the other effect may be desired.

Dripping eaves and rain-water shoots or gargoils, without atandard pipes, shi uld always be avoided; fur the water, which falls from the eaves, or gushes from the projecting spouts or shoots, is driven against the face of the wall ero it fulls n fow feet, aud keeps the brick or stone-work saturated at times with the witer. Heace eaves-gutters and standard rain-water pipes are always indispensable, and a proper shoe at the foot of the pipe should nover be onitted, otherwise the furce of the water causes it to maciermive the wall, producing the mont disastruus results, whereas a choe keeps the water from the wall, and turns it into a drain prepared to receive it.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

Jume 8.-W. Titz, V.P., in the Chuir.

Sir T. Deane, of Cork, made some observations on the drewings which be exhibited of the Abhey Chureh of the Holy Crost at Tipperary.

An address on Veatilation was delivered by J. Tormase, Esq.iP.R.S., Sargeod to the St. George's and St. James's General Diapenaery. He introduced the suhject, by atating that during the whole of his professional carcer he had almost conatantly been attached to public medical inatitutions; and that be had slowly become aware of the existence of an enormulas amonat of diease in the buman race. A large share of thin disease was incurable when once prodoced; but he was in a position to prove that much of it could be wholly prevented. He, therefore, felt that it was the duty of medical men, while they devoted themelves to the cure and pallistion of disease, alco to exert themeelves in behalf of preventive measures. In the perfirmance of this duty, he had inventigated the sources of disesse; and be fonnd that one of the moat fertile was the want of a due supply of air in dwelliage and public buildinga. In speaking on the Necesaity for Vertilation, it was ahown that 10 cubic feet of air, or a volume double the size of the person, is required for the purposes of respiration and transpiration each minate. The circulation of the blood was described at the procese of earbonization-respiration as the process of decarbonization, in the $170,000,000$ of alir cella, forming a surface 30 times as large as that of the skin. In the procees of transpiration, the co-called insensihle perspiration was continually given off; Which, together with the vapour expelled from the lunge, amounted to two luid ounces per hour. Tbus, 500 people in a chareb during two hours give of Gfteen gallons of water into the air; which, if not carried away, sataratea evergthing in the huilding, after it has been breathed over and over again, in conjunctioh with the impurities it contains collected from esch individual. The use of lamps, gas, and oil, was shown to drteriorate the air, and to add much moiature to it. The effecte of neglect for carrying out plane for ventilationare shown in the production of three of the most furmidable and frequent diseases which affect the buman race,-fever, acrofula, and consumption. Numerons facts were adduced in proof of this riew; and the way in which these disesset was produced was poinsed out. Thus, it was shown that all those who were among the victims in the Black Ilole of Calo cutta, and did not perish from immediate suffucation, died, in a short time afterwards, of putrid fever. The proportion of penple dying of consumption who follow in-door oceupations is double that of thuse who work ont of doors; and it increases as the apace for labour is more contracted. Dr. Guy has shown that it is more common in the upper parts of large eatablighments, as printing bouses, \&c., where the air is mosi vitiated. The inhabitants of towna expused to the wind are much less liable to consomption than those which are well protected and sheltered; and the goitre aflicting the inhabitants of the valleys of the Rhone is produced hy a stagnation of air. Instances were cited of sehoois in which the mase of the children were serofulous, and to whom an increased diet, warmer clothing, ate, wan not productive of any bene̊it-and by the aid of proper plans of ventilation the disease diappeared entirely. The ame fisult has taken place in the Zoological Gardent, Regent's Park, since the dew dena opened to the air hara been in use. It wat then shown that bitherto there hed been a total abeace of plans for the suppy of pure air, in a sufficient quantity, to the aboden of

Duman beingt. Towns are erected in localitics wholly unadapted for resideaces. They are constructed so st effectually to exclude the sir, and often increatie to so large a size to to be rendered, from that cause alone, most unhealthy. - The last portion of the addrean was devoted to the consideration of the means to be adopted for securing an efficient ventilation. The exam. ple set by nature ought to be followed; aod the gentle changes produced by the wind thonld be as much as pousible imitated. The great priuciple is to admit into rooms and houses a large quantity of air at a moderate tempra. ture $\left(60^{\circ}\right.$ to $\left.65^{\circ}\right)$; and that there should be an outlet for the ritiated air; the pure air to be admitted within 3 or 4 feet of the floor, and to be warmed by aid of the fire-place. The various plans for warming the fresh air were examined; and their errore were found to have been, that a amall quantity was admitted through narrow channel, and at a temperature much too hish, so that itf nature was deteriorated. The subject of warming abodea was also alluded to; and it was shown that, from the bad mode of construction of atoves and fire-pleces, and from improper materiala being used, the make wat not consumed, ventilation was readered imposible, and the preater part of the hest dispersed up the chimney. Mr. Toynbee was bappy to aay that he had recently examined some plans about to be patented by a gemtioman who had devoted a long life to the mubject, and brought it to preat chemienl and practical knowledge-in which these erils would be romedied, and important adrantages gained. In speaking of the means for issuring the egroes of the viciated air, it was stated that, as its temperature, on eacapiog from the mouth, is between 80° and 90°, it rises to the npper part of the room,-from which there should always be a means of escape. Dr. - Afnott's valve had bean generally used for this parpose; and thonanade of peeple will be indebted to ite use for their lives and health. If it were the cantom of thit country to erect itatues in memory of those who, like Jenner, saved the lives of tbousends of their fellow men, Dr. Arnott, in manifold ways, had earned for himself this distinction. A modification of Dr. Arnott's chimney-valre, by Daw, a working man, was alluded to and dib-played,-baving the advantage of elways remaining open, unlest volontarily closed. Various suggestions were made, showing how plans of ventilction may be carried out; and Mr. Toynbee concluded by appealing to the arcbitects to adopt efficient plans in the conatruction of building-by doing which, they wonld confer unbounded good upon the public, by the improvezent of the pablic health.

Dr. Buckland and R. A. Slaney, Beq., a momber of the Health of Towns Commisaion, offered some remarke on the ill effeeta arising from badly vencilated apartments, and from the eflluvia eacaping out of the gratings in the treets, which are connected with the sewern by means of a getight burning withia lofty air shafls.
Yodels were exhibited by Mr. Stedall, of his patent Scolecothic Ventilabor; adapted for the cure of smoky chimneys, and for the admisaion of fresh air into the engine-rooms and other confined parti of vaseela.

SIR JOHN RENNIE'S CONVERSAZIONI.

- Tho first of a series of four conversazioni held by Sir John Reanie, as Preaident of the Iastitution of Civil Bagineers, tonk place last month, and were very numervusly uttended by many noblemen, members of parliument, architects, artiuts, engineers and celebrated men of scieace. In the rooms were axhibited a large number of models and specimens of new mapufuctures, among the former were Mr. Maclean's proposed method for coaveying Railway trains acruss the River Den, by means of a platform travelling upon rails fxed on piles acrose the river.-A model of the Prosident'\# design for the improvement of the Great Wash, in Lincolashire, by which an arra, almost equal to a new county, will be recovered from the eea; the mudel showed un one side the present state of the oulfull, and on the other the embankments and works as they will appear when cuinpleted. -The St. Katherine's Point and Menai Lighthouses.-A model of Hal. lett's atiospheric railwny.-Plans of Mr. G. Reanie's proposed harbour of refuge, at Dover - Mudel's of Mr. H. Stephenson's lung boilrr engine, and the new Groal Western engine.-Mr. Ricardo's inatrument fur show. ing the relocity of railway trains.
Mr. Raud's machine for making collapsible tubes excited a good deal of attention. us a skilful adaptation of a kuown property of tin, that when subject a high pressure It may be molded to any furin without being melted. In the machine exhibited the pressure was about five tons. A tat capsule of too being struck by a solid cylindrical punch sprung up, and pmbracing the punch clusely, took the form of a perfect tin tube. These tubes are intended to boid some fuid aubstances (such as artist's colours), which it is difficult to extract from common butties.
Spectmens of wood carved by machinery, by Taylor, Williams, and Jordmo, were exhibited. Tbere was also a model of Mr. Oldham's machine fur numbering aud paging registers at the Bank of Eugland.

The assenubly rooms, which lust jear wero buitt temporarily of wood, have this year been constructed more substantially, and were elegantly decorated in pulychromic, by Sang. Suloiman Pacha was among the ro* markeble persoos present.

FBBNCH ARCHEOLOGICAL CONGRESS.

At the mannal meeting of the Congresi, held at Metz, several subjucts of great interest were proposed for discuspion. The Aifenemin gives the following list of questions:-Is it not possible to ascertain in charches of pointed architecture the numerical relation of the several portions, and a geometrical dedaction of their architectonic forms?-Do not the eceleaiastical monuments of the Middle Ages prove the existence of an architectonia hierarchy, by which all cathedrala, and abbatial and parocbial churches, and even private chapels, were weverally bnilt according to certain diapentiona and dimensions? - Is not the pointed or ogival style better indicated by the presence of pinnacles than by pointed archen?-May we not trace the progress of the styles of Gothic archirecture by the technical terms emptoyed is architectural docnments of different epochs?-What are the distinetire characters between the pointed styles of France and those of Germany? and is not the cathedral at Metz an example of transition betwee. two varieciee of that atyle?-Was there not in each of the dioceses of Meiz, Trères, Strasbourg, and Verdun, a special arcbitectonic achool? and if so, what were their distinctive characters? What rere the monuments which served as the prototypes of those churcbes with a choir at each end, so frequently met with in Germany ?-If, as supposed, there was some absolute rule for buitding churches due east and weat, bow can we explain the numerous exceptions to such rule observable in Lorraine and about Metz ? What is the origin of the little gallery so commonly found on the outside of Germano-Romanesqua charches?-In the architectonic decoration of Gothic churches, abould not the disposition of their statuary be ander the architect's control, and cas. aidered as an integral part of his original design? What kind of pavement whe emplosed in the civil and ecelesiastical edifices of the Middie Ages?What were the innovations in castellated buildiags brought into Western Rurope after the first Crusades?-What is now the most expedient form of church-building, whether considered artistically or economically?-What is the most fitting style of decoration for churches in the pointed style of arch-tecture?-In what cases may we venture to repair ancient monuments, and according to what generas rules should sucb repairs be conducted?- In what proportion, and to wbat kind of edifices ahould be restricted the employmant of coloured glass as church ornament?

RAILWAY GBOLOGY.

At the Geological Society, May 6, a communication Fats read: "On a dieturbance in the Hastings sand and Weald clay, exhibited in a cutting on the Tuabridge Wells Railway;" by Messra. J. Prestwich, jon., and J. Morris. The priacipal object of the autbors was to give an account of the upper bede of the Wealden series as seen on the northern side of the great Wealden elevation. It ia known that sections in this part are very rare, and the sequeuce of the beds is somewhat obscure. In the direction along which the railway cotting is excavated the beds are repeated by a fault, and disturbed by a ame galar flexure, the existence of which was cunjectured by Mir. Hopkins from the phytical conditions of one of the lines of disturbance in the diatricts. The section near Tunbridge cabibits the lower part of the Wealden clay with the upper beda of Hasting and, hut does not extend to the lowest greensand. The uppermost beds soen consist of 30 feet of browninh lanimated clay, to which succeed 20 feet of dark-coloured lamiated clay and slate; the clay generally of dark bluish grey colour, and containing impure beda of limestone with various apecies of cypris, cyreua, and paiudima Uiber clays, and some ligbt-coloured andstones, which theo appear, are afterwarde suc. ceeded by an important bed, in the upper part argiliaceous and in the lower part andy; and thit again by a hand of liguite. The fomila throaghout are few, and chiefly confined to the upper beda.

REGISTER OF NEW PATENTS.

If edditlocal information be required reapectiog any patent, it may be owalmed an the oflice ur this Joarael.

ATMOSPHERIC PROPULSION.

Joar Recd Hill, of Upper Stamford-street, Lambeth, civil ongieeer, for "certain Improcements in atmospheric propmision, applicable to mufer a well as land carriages. (A cummuatcation.)-Granted Uct. $y_{1} 1845$; Enorolled Aprii \mathbf{y}, 18 ± 0. With ao Eingraving, see Hiate XI.

The impropemeata relute-Firstly, to the mode of constructing poanmetic maias for the couveyance of govels and passengers by atmospherio propulsion, combined with the description of carriages and pistom hameidescribed.
Secondly, to the removal of the air through the piston or piston-carrtage of the mains, and almo through the pistons of metalinc cylinders, as ant used, by means of tubes cummanicating with the external carriages throegh the openings of the longitudiual valve.
Thirdly, 10 giving motion to carriages, in the manner hereafter deacribed without the uld of a preunatic main.

And Fonrthly, to the mode of applying this power to the propalaion of parsage-boats or other ressel on water, by placing the mains herein degeribed on the hanks of canals.

Fig. 1 Plate XI, is a transverse section of the main closed, with the pistonearriage, c, and air-tubes. $f f$, for the removal of the air from the main, the apparatun for that purpose being aftached to the piston-carriage. g5, the valres, or roof of the main, to be lined at the points where they close with son leutber, cloth, or other elastic material, attached to thin boards or other Hexible materials, and covered, as indicated, with a fiexible cap. a a, wrood-paving, with iron edge-rails between the blocks, level with the surface. Fig. 8 is a transverse section, with the main open, and carriages passing through it. $I h$, steps for ascending to the roof or top 'of the carriage. 6, dwarf nalls. c, concrete foundations, or ballast. d_{4} planking er sleepers. e, wall-plate and hinges. Fig. 3, longitudinal section. The pieton carriage, in its practical epplication, is to be placed at a greater distance a-head of the frat carriage of the train than is represented, as indicated by the break in the connecting-brr; a train of carriages for heavy goods may be continued from the piston to the passenger carriage, instead - this connecting-bar, if preferable. Fig. 4 is a ground-plan.

The engraving shows a maia of sufficient widih to admit of trains moving inside, each carriage is provided with rollers to throw open the upper sides; if the mains are not of sufficient size for that purpose, the carriage Is to move inside, at a cerlain distance behind the pistoo, in order to throw open these valves by mesas of such borizontal wheels or rollers attached to the opper parts of the side of the carriage, which carriage shoold also serve to connect the trains to the piston when moving outside, or to connect barges on water, by such mains being laid on the bank of the canals, and this power substituted for horse-power for the purpose of towing anch barges. The roof, or valves, are to be composed of a series of rafters, attached by axles or hinges to a wall-plata bedded on the dwarf walla, and covered inside and outside with asphalted felt, or other flexible materials, readered impervious to air and water, and of sufficient strength to reaist the atmospheric pressure; a covering of indin-rubber, or other impervious material, shonld likewise extend to the dwarf walls, in order to render the joints air-tight. A communication is also intended to be made between the roof of the carriages, thas represented, and the interior, bs moans of stairs, or a step-ladder, to eoable passengers to ascend or descend me from the deck of a ship to the rabin. It is proposed, also, to convey coods and passengers by means of pistona moving on wheels, as thus deecribed, and propelled by atmospheric pressure throngh close tanoels or galleries, soniewhat similariy coastrarted, but witb arched roofs, and the side-walls of greater elevation, in order to ufford sufficient carriage room; and such tunpels or galleries may be illuminated by artificial lights whea mecesary, or by daylight through strong glass, and provided with doors in the sides for the admission of passengers, placed at any convenient diatancen, opening outwards, 20 construcied as to exclude the external air and resist the atmonpheric pressure. It is likewise proposed to put carriages in motion by means of rapid currents of air thus driven through cylinders, traveraing such carriages from front to rear, without the aid of a preumatic main; the apparatus for such purpose being placed in such carringes, and the velocity with which such carriages can be moved will be in proportion to the amount of power applied to the area of the cylinders, and the rapidity with which the air is yropelled through such cylinders or other channels, which should traverse these carriages from front to rear.

HILL'S PATENT PRINTING PRESS.

Jorn Reed Hill, of Stamford-atreet.-Granted Anguet 9, 1844; En. rolled Saptember 2, 1845. (See Bagrueing, Plato XI.)

This is a very ingenions invention, by which, by meana of hand laboar, and without the aid of steam power, a hand printer is enabled to produce impressione with a rapidity far begond anything that the hand-prest, or any press not worked by steam, hes hitherto produced. The simplicity of comstuction is also a great advantage, for it has neither tooth wheela, rack, or piniona for giving motion; neither bas it the tapea for conveying the paper. A atrong led can work off from 1,200 to 1,500 impressions per hour with leas labonr and exertion than is required by the common hand-pressea to -ark of 300 imprestion."

We are indebted to our contemporary the Mechanic'a Magazine, for the following deacription.

A A are the side-standarde of the machine; B B horizontal frame for support of type-table; C C type-table ronning on wheels or rollers ; D, printing cylinder, revolring on horizontal axis; $E E$, inking rollers; P, distribating rollers; G ink trough and supplying roller; \mathbf{H} treadle for foot motions Ify-wherl for rendering the motion uniform; I grooved wheel for driving the machine; K K lever for throwing off the printed sheets; L receiver for abeets when printed; M register plate for receiving or "laying on" the abeeta to be printed; N part of top of machine, forming a table when in nee, but which is turned op to afford access to the type-table.

Motion is given to the machine by means of a treadle, which the presaman vorka with his foot, whilst his hands are employed in laying on the sheets: bat this in an arrangement intended to be confined to pressen for small work: is proseen of lerger dimensiona it is proposed to uso hand-wheels.

Originslity cannot of course be claimed, either for producing the impresciose by cylisedrical presure, of for the mode of working the cylindern, it
both of which respects Mr. Hill's prese diffors in little, if anything, from the (now) common steam-press. The chief novelties in this preas we conceive to be thene; first, the peculiar arrangement for moving the type-table; and second, the apparatas for taking off the sheets when printed. In both of thene respects the aimplicity of construction and working efficiency of the machine are such as apparently leave nothing more in the shape of improvement to be desired.

The manner in which impressions are taken is as follows:-The form of types being fized and made ready for printing, and motion being given to the wheel, the pressman connects the motion of the wheel to the axis of the printing cylinder by a sliding clatch; he then laye a sheet on the reginterplate, with its fronk-edge and one of ity ends in contact with a guide, and on the printing cylinder arriving at a certain position of ite revolution the front edge of the shept is secured to the cylinder by claws, which carry it ronad to meet the types and receive the impression. By the time the impreasion is completed, the cylinder has brought the front edge of the sheet within the claws of the removing arm, which claws thes close, and secore the sheet; and simultaneously, beneath, the cylinder claws open and allows the sheet to pass from the cylinder by the removing claws, and to be deposited on a shelf ready for being removed by hand.

On the end of the cylinder spindle ootside the frame, there is a crankarm which pushes back the type-table after an impression has beon taken, and on its arriving at its most backward position, the crank-arm quits its connection with tbe table, and a connection taker place between the end of the printing cylinder and the edge of the ty peitable, by which meana a firm contact takes place betwoen the two anrfacen, which produces the forfard motion of the tables and types to produce the impreasion.

The supply and distribation of ink are effected by the table and types running under the inking rollers in the ordinary manner of ateam printing machiner.

EXCAVATING MACHINB.

Moses Poole, of the Patent Bill Office, London, for "Improennents in rairing and transporting earth and other heary bodiea." A communication. Granted Nov. 18, 1846 ; Enrolled May 18, 1840. (With an Engraving, see Plate XI.)
This invention, for improrements in raising and transporting earth and other heavy bodies, consists in the application of certain mecheoicnal arrangements or combination of parts for facilitating the removal of earth, stone, and other matters, whea constructing or forming cutlings for railways, canals, and other similur works, which will be anderstood by the following description, reference being had to the drawing, which sbowe a section of the earthwork and side elevation of the apparatua forming the subject of this paten!, and consists in the application of eadless pitchchains in the following manner : $-a$ a is a framework of wood or other anitable material, forming an inclined rail or tram road, and supported by props or standards $b b b$, capable of being lengthened or ahortened at plemsure. At the top and bottom of the incline there is a wheel $c\}$, ronod which is mado to pass an endless chaind d. es is also an endlese chain passing ronad a wheel fixed on the axis of the wheel c^{\prime}, and also round a wheel keyed upon an horizontal shaft f. g is a vertical shan, which may be driven by a horse or other suitable power, and gives motion to the shaft f and pitch chains by means of a pair of bevil wheels. H h are the carts which are drawn np by means of the chain $d d$, which is provided with a number of books that tak e into an eye or link attached to the tail part of the cart. When the carts arrive at the top of the incline, they are allowed a little fall on to the horizontal rail, which, together with the velocity they have acquired in coming up, has the effect of liberating them from the hook. Fig. 2 is a back end view of one of the cart, showing the arrangement of levers for disconnecting the hind part of the cart, which it effected by pulling a string which pasaes over a small pulley and along the side to the front part of the cart.

SLUICE COCKS.

William Henry Wallez, of Vauxhall Water Works, Upper Kenaing-ton-lane, Lambeth, in the coanty of Surrey, engineer, for "isaprocementa in aluice-cocks."-Granted October 31, 1845 ; Enrolled April 81, 1846.

The improvement consists in applying moveable busbes or facings to aluice-cocks, and in constructing them in such a manner that thej shall be harder, fit more truly, and be more readily applied, and replaced when word. Fig. 1, is a vertical section of the improved slaice cock; fig. 2, a vertical section, taken transversely to the last Ggare. A is the case of the cock, bored out at the points, and recesses, and the backs of the bashes $b b$, are turned in a lathe, so as to fit the recesses thus formed. The inventor prefers making the bushes of cast-irow, the working aurfaces are chilled in the act of casting, and are ground with emery in a lathe. The busbes are coated on their backs wilh marino glue, or similar material, previously to introducing them Into the cock; and after the bushea have been introduced into the cock, they aro moved back in the recesses before ment tioned, into a proper working position, by forcing down the valve c, into its place. The patentee does sot confine himself to the particalar shape hert described, as that may be raried. d in a screw for raisiag and lowering the valve e; a screw-ant, f, formed on the interior of the opper part of the cock; and f corresponding ribs on the outer surface of the opper part of
the valve; the ribs are to gride the valve in its movement up and down. The surfaces of the valve are chilled in the act of custing, and ground with

owery. h h, are portions of two pipes let into the sockets of the cock. For slvico-cocks without movenble bushes. the surface against which the vulve works is to be chilled in the act of casting the body of the cock, so so to make it more durable; and afterwards ground true by a revolviag tool and emery.

LDCOMOTIVE ENGINES.

Tzomas Rosizll Ceampton, of Southwark-sqnare, Lnndon, engineer, for "Improwements in locomofier angines and railways."-G ranted Uet. 6, 1845; Barolled April 6, 1816.

The first claim is for arranging a locomotive engine 10 as to include the seader on the tame earriage or frame; thim is effected as shown in fig. 1 , M8. 4

There B is an upright tubular boiler, supported on the ame framing that earries the tender T with the coke and water; c the cylinder fixed on the side of the tender, and d the driving wheels; the stage for the engine driver is between the boiler and tender. The second improvement relates to using external cranks or excentrica for working the slides, as shown at ee, instend of having the excentric on the axle between the wheels. The third improvement in for forming the shape of the fire boz, so as to ionrease the

Fig. 2.
 length of the tubes and the area of the fire grate, as shown in Hg. 2. The fourth improvement ur claim is for the combination of wooden rails witb imn raile; the wooden rail in fixed on the outaide of the ordinary iron rail, and the top is a'rout one-fourth of an inch ahove the top of the iron by this arrangement the wheels of the loconotive eugine may travel upon the wooden rail, and obtain greater adlesivenesa, and the wheels of the carriages run upon the rails as at present.

ELECTRIC LIGHT.

Edward Adcodtin Kina, of Warwick-street, in the county of Middleeex, genlleman, for " improremento in obtaining light by clectricity." Being commnnication. Granted November 4, 1845 ; Enrulled May 4, 1840.

This invention consists in the application of continuous melallic and carbon conductors (intensely heated by the passage of a current of electricity, to the purposes of illumination.

The metal to be used is that which, while it requires a very high temperetare for its fusion, has only a slight mfinity for oxygen, and offers a grent reastance to the pasage of an electric current. Mlatinam, though not 50
infuxihle as iridiom, has bot little afinity for orygen, and offers a great re: sistance to the passage of the curtent, and as it is abundant and eacily worked, appears to be preferable to any other metal. It should be reduced to very thin sheets known as leaf platinulu, wo thin that, on bolding it beforo a printed page, the letters can be distinguished through it. A atrip is to be cut from the platinum leaf of a width proportionate to the quantity of the current (which, with Grove's cells, havink platinum plates three inches long and two inches wide, is about one-fourth of an iuch), and of a leagh proportionate to the intensity (which, of cuurse, varies with the number uf cells) ; care being taken to cut the strip of an equal width throuxhout, and with a clean edge, as otherwise it will be unequally heated. and will bo fused in one part befure the other parts have attained a sufficiently hich temperuture to produce a brilliant light.

The strip of platinum is to be suspended between two foreepa in the apparatus represented in rertical section at 6g. 1, a is a equare brase ber, fxed on the wooden stand b, and having a binding-screw c, at it tower enfl ; upon this bar two snckets $d \mathrm{c}$, slide, carrying the arms $f g$, which are terusinated by bruad furceps, tipped with platinum, and opened or clowed by milled screws $h i$. The upper arm f, is fixpd at the top of the bar a, by means of the screw j; and the porition of the luwer arm g, is adjusted by turning the auts $k k$, upun the acrewed rod l, which pamses through ibs arm g : the socket e, of the arm g, is lined with ivory or uther uoncomductiag substance, to preseat any metallic consmunicution betwren that arin and the bar a. m, is the platinum leaf, which is held by the twu forceps, and is included in the electric circuit by attaching one of the wires from the battery or other apparatus to the binding-serew c, wt the butom of the bur a, and the other wire to the binding screw a, at the bottion of the rod 1 The current should be one of considerable iutenaity, and the distance between the forrepa ahould be sufficient to prevent the platiang from being fustd. o, is a plass shade, which serves to acreea the pistioum from currents of air, dust, \&c

When carbon is used, it becomes decessary, on accoud of the amaity this substance has for onygen at a bigh temperature, to exclude air and moistore frunt it, which is best effected by inclosing it in a Turricellian vacuum. Fig. 2. ia a vertical section of the upparatus empluyed for this purpose. a, is a glass tube, simalar to those used for baronveters, exeept that ita upper end is enlarged into a cylindrical bulb, and a stuut platinum wire senled in at the top. The upper end of the wire is furnished with hinding serew b, and the lower end is screwed iuto the irun piece c, to which the furceps d, is atiached; the piece c, is connected, by a porcelaia rul e, with a similar piece f, that carries the furceps 8 ; and the piece of carbon h, is held betneen the furceps d, and g;-i. ts a copper wire, whieh in matiached to the piece f, and extends to the botlom of the tubs. The tube is filled with mercury iu the same manoer as a barometer (the eir being carefully expelled, us usual); its leagth. indepeodent of the bulth shmald be about ihirty incher, so that a vacuum will be formed in the ball when the tube is inverted tu a cup of mercary. The instrument is ineleded in the electric circuit by connecting one of the wires frow tho battery or other apparatus with the binding-ecrew b, and the other with a wire which enters the mercury in the cup at the botlom of the lube. The circuit in thus completed by the culumn of mercury; and when it is depresed is the tube, by the furnation of vapour of mercury in the bulb, the coasection is preserved by the wire i. That form of carbon found in coml-gas retertis which have been long used, is well suited for the purpoees of this iavestiun, and nay be wurked intu the furm of small peacile or thin plates, by the aid of the san and file. As carbon will bearm very bigt tepperalase without fusion or volatilization, it may be orployed when a very iateme light is required.

If an intermitting light be required, for light-houses or other parpenen t may be obtained by brenking the uircuil at intorvals by clect-rimet

Wheo the upparatus is suitably eealed, it may be applied to submarine Ifghting, and to the illumination of places whero it is necessary to guard egainat the infammation of highly combustible or explosive compounds, as in powder magazines, mines, \&ic. When the current is of sufficient inteaaity, two or more lights may be made in the same circuit; care being taken to regulate the power, by increasing or diminishing the number of ermatares (if a magneto-plectric machine be einpluyed), or the number of cells (if a voltaic battery be used), so bat the united resistance of the etript of platiaum or carbon thull be sufticient to prevent the passage of exch a quantity of electricity as wunld destroy them.

The pritentee elaims the application of continuoas metallic and curbos condacturs, intensely heuted by the passage of a suitubly regulated current of electricity, to the purposes of illumiastion, as above described.

SHIP PROPELLERS.

Tromas Samull Parlode, of Park road, Hollowfay, in the county of Aiddlesex, geatlrman, for .- improrcmexts in promellive ceseels."-Granted Norember 20, 1845 ; Enrulled May 20, 1840.

The Improvements relate to the form of the propeller, 6 g .1 is a side view, and fix. 2. a vertical section of the propeiler. "The propelter is formed thy taking a hollow cone, of nufticient thickness, and cutting it through the vertex at right angies to the plane of its base, so that the two parts may be equal ; these are affired to arms, as represented in the drawing: and these erane are affixed to a brow; which boas has a bole through it. for the purpose of securing it to the shuft. The number of half cones forming the propeller may vary. The anjle also of the vertex of the cone may vary; but the most atisfactory results have hitherto been obtained by tuking a halfcooe, whose angle at the plane of the base was thirty-iwo degrees. By extendiag the surfuce of the half-cone, a greater propeling surface is abtained.

FIRE ENGINES.

Јонм Whrts, of Salford, Lancaster, engineer, for " cerlain improreGeits in engines. machinery, or apporalus for raining and forcing mater." Granted Nov. 27, 1845; Eurolled May 27, 1846.

This invention is for certain improvements in eagines commonly called Are-engines, the object of the inventor being to construct sucb nppuratus with a greater number of pumps of considerably leas calibre than those hisherto employed. Tbe mode of uriunging the pumps accoriting to this invention is shown at fig. 1 , which represents a plan of a fire engine; a a is the edge of a circular tank or reservoir, iron which the pumps are supplied. This tank is mounted upou wheels in the ordinary mauner, to facilitate its romoval from place to place; b b are force-pumps, twelve in ammer, each of which is worked with a separate bandle c, moving upon a fulcrum or fixed axis at c. In the drawing only one handle is showa, which is sefilicient to explain the construction of the engiae, as each of the paope are worked in the same mancer, anauely with a eteparate handie or Lerer. The several pumps diacharge their contents into the air-vessel d, which is fred in the aentre of the machine, and over the air-vessel there is fixed a platurm for the firemen to stand upon. We bave not thought it enomary in give a sectional elovation of the umchine, as it will be evident that each of the pumps must be provided with two valves and a channel of pasange leading to the air-vesel aud are the same in construction as -rdigary force pumps.

The advantages of a fire engine constructed as above are atated to be, chat the engine can be worked before s suthicient quaptity of men arrive, tichito to may, it can be partially worked; another adrantage is slated to to that it will be easy to delect thowe men who are bot doider their duty;
also, a greater preasure per square inch will be obtained apoa the surfee of the water; and lustly, the pumps may be worked alternately, whereby a more regular supply of water will be obtaised.

Fig. 1.
7n 2

Another part of this invention consibis in the constraction of air-vewole for regulating the fluw of water through the pipe. Fig. 2 showa a sectional elavation of one of these improved vessels, in which a a reprement the vessel, on the top of which there is a perforated plate b, and on the top of this plate there is atretched a piece of ralcmnised indis-rubber $c ; d$ is an hemispherical vessel furning a cover to the whole, which are firmiy bolted logether; within this last vessel the inventor proposes to comprous atmospheric air to mbut two atmospheres, or thirty pounds, which forms a rosistance or elastic cusbion for the water to prose against. By this errangement it will be meen that the water in the aforenaid ressel does nof mix with the air; the consequence of which is, that the air cannot pase of from the vessel through the pipe and form the crachling noise which is so frequently beard when working engines of the ordinury construction, the air in the sir-vessel being kept entirely distiact from the water.

GAS BURNERS.

Jonm Lemblie, of Conduit-street, Hanover-square, failor, for " Ingmonments in the combution of cus." Grated, Dec. 4, 1846; Enrolled, Jene 4, 1846 .

Jer tube, a a, is fxed a numher of small bent tabes ece, through whleh the gas pasces, the point of ignition belag at f. jugt below the profeeting or beat part of the glase, as thown in the draning.

FILTERER.

Josian Witikinson, of Lincoln's inn-fields, ment., for "certaim Improcements in fllering water and other fimids." A communication. Granted Dec. 8, 1845 ; Einrolled June 8, 1846.

This invention consists in a peculiar mode of arranging a series of perfurated metal or wooden tubes billed with sponge, animal charcoal, sand, or other saitable materisl. The mode of constructing this improved flter is at fullows:-rig 1 shows a plan, and fig. 2 an elevatlon, of a series of

perforated metal or other tabes, arranged as thown in the plan, the centre tube a being perforated at those parts only which come in contuct with the tabes marked $1,2,8,4,5,6$, so that m commonication is formed between the latter tubes and the central one. Each of the tubes, 1, 2, 8, \&c., the inventor proposes to $6 l l$ with pponge, the tube a being filled with sand charcoal, or other suitable filtering matter. Fig. 3 shows a plan of the interior of a filter when complete, wbich consists of an arrangement of ceren groups or series of tabes, as above described, in all, forty-nine tubes, which are enclosed in an outer vessel or case $b b$, baving a pipe c, leading from a vessel placed in an elorated position and containing the turbid water to be filtered, which, by the hydraulic pressure, is forced through the perforated vessels or tubes $1,2,3,4,6,6$, containing sponge, into each of the centre tubes, whlch latter are provided with a branch pipe, leading to an outiet pipe situate above the filter and in the centre thereof, which outlet is common to all. At the lower part of the vescel there is a pipe d, provided whit a stop-cock, for the purpose of cleaning out the fller, which may be effecten by stopping the outlet pipo, opening the stop-cock, and forcing water through it. The inventor, in conclusion, states that he does not conino himself to sponge as a substance to be used is filtering, bot afterwards distinctly claims the mode of filtering by means of sponge. He also claims the mode of filtering be hydranlic presanre.

NOTES OF THE MONTH.

It is with extreme regret that we have to record the melancholy death of Mr. Benjamin Robert Haydon, the artiat, which took place on Monday, the 22nd ult., at his residence, Burwuod-place, Edgware-road. He contributed several valuable articles to this Jqurnal, and to bim we were indebted for the interesting extract from Sir Joshan Reyoolds' Diary. Next month we will endeavour to collect some information respecting the life and works of this artist.

The Augsburg Gazette informs us that Cornelins has completed and exhibited at Rome bis cartoon for the mausoleum of the royal family of Prassia. It is made the subject of the following piece of magniloqueace"The cartoon represents the four powers described in the Apocalypse, which are to appear at the end of the world. They ride through the air on horses that seem more intimately connected with them than the centaur with the animal of which be forms a part. In the ran is a Tartar chieftain, who sends from his twanging bow-string, like onto Homer's A pollo, the shuft of Pestilence before him. Hunger follows. Corn is so dear that it must be weighed in the scales which he holds on high, while a figure to the left with horrid mimicry proclaims the high price to which all food has risen. Now followi War; a youth of exceeding beauty, swinging the bloody aword of battle above bis head, with the united strongth of both arms; and lastly comes Death mowing down all that the others hare left him. A chorus of the departed accompany the dreadful hust with cries of woe, whose tones serm to sound from out the pictare and become andible to the spiritual eense. The tone preserved in this part of the painting is, it is said, indoscrihmbly heautiful. Eleven figures, three of whom are children, represent tho perishing human race. And yel in this group is contained a ropresent-
ation of all the horrors which the imagination of man can take in at a glance. In more than one figure we see the celebrated motive of Timanthes emplosed, who, In the sacrifice of Iphigenia, represented Agamemn, veiled. But what is not expressed by the gestures, by the figure of a jouth who, amid the agonising struggles of death, covers his eyen with convulsively-closed hands! What name might be given to the sufferiog expressed on the condenunces of the women, who, imploring mercy and pity, fing themselves on their knees befure the mighty band! Hut above all is Anguish, represented with a wooderfully deep knowledge of the human soul in the two little chiddren, invested as they are with a sublims beauty. The joung too, the age of innocence, all is unsparingly swept away. Despair is foreign to such tender souls; but in the connteasace of the man, who with clasped hands bas fallen to the gronod, we behold it it all i^{\prime} s horror; and this 6 gare forms the centre of the picture." From thit description it may be concluded that the Geromn schuol has exceeded even itself. Cornelius seems to have painted with a thousaud horse power, aed prepared a rich treat for the admirers of the " intenge and couvulsive."

A letter from Cairo (May 17), written by mo intelligent traveller, informa as that the temple of Dendera had been completely clearrd of all the rubbish with which it was encumbered, and was now to be seen as one of the mast perfect of the Egs ptian temples.

The architects at Hemburgh appear to bave imbibed the tuste for the chromatic style. Bülan, the architect, in his buildings, does not asedetucro, but introduces ornamental bricks of different colours.

A fue mosaic pavement has been discovered in the church of Si. Pad, at Nimes. It represents a warrior in his car driving his fiery coursers at full speed, with the body of a man fastened to the tail of the car, and is supposed to represent the triumph of Achilles.

The Academic des Sciences at Paris has elected M. Jacobi, of Berlia one of its foreign membera, to supply the loss occasioned by the death of the astronomer, Bessel.

Through the exertions of Sir Stratford Canning, England is likely to poseess the treasures discovered by Mr. Austen Layard, at Nimroud. The Times gires us the following particulars of these antiquities :-" The diopoveries of M. Butts, at Horsabad, are well known to the learned world. Those in which M. Layard is now engaged at Nimroud promise to be much more interesting and extensive. The mound is eight or thatimet larger than that which was excarated hy the French. It contains the re mains of a palace, a part of which, like that at Horsabad, appears to have been burnt. There is a vast series of chambers, all built with marble and covered with sculplures and inscriptions. The inscriptions are in the cuneiform character, of the class nsually ternued Babylonian. It is possible that this editice was built at an epoch prior to the overthrow of the Assyrian empire by the Medes and Babylunians under Cyaxares,-bot whether under the tirst or second Assyrian dynasty is doubtful. Many of the sculptures discovered by Mr. Layard are, even in the smallest detaila as sharp and fresh as though they bad been chiselled yesterday. A mongut them is a pair of winged lions with human heads, which are aboat twelre feet high. They form the entrance to a temple. The execution of these two figures is admirable, and gives the highest idea of the knowledge and civilizution of the Assyrians. There are many monsters of this kind, lions and bulle. The other reliefs consist of various divinities; some with eagles' Leads,-others ontirely human, but winged,-with batule-pieces and sieges, as at Horsabad."

A letter from Alexandria states that the barrage of the Nile is proceeding with great vigour, and the men are made to work both night and day in order to take every possible advantage of the present low state of the water. The Pasha's frigates are enployed in bringing cargoes of timber from the coast of Caramania; these are immediaiely squared and sent op to the site of the barrage with all possible speed. 16,000 men, comprining soldiers and country people, are at present employed at the barrage, and, owing to the great fatigue and privations of these poor people, the deaths are very numeroas.

The Cathedral of Durham is now undergolng varions rapairs and re storations. Among other sacred edifices that have guffered by the haod of the despoiler, this venerable cathedral has not been exempt, aod any one who visited it a few years ago must have been greatly offended at the diafigurements whicb would meet his view at almost every step. For some time the Dean and Chapter have devoled themselves to the task of restoring the jnterior to something like its original beaulg. A bighly valuable and important restoration is being mude in the Chapter-house. When is its original state, the Chapter-house of Durham justly described as the foest in the kingdom. It was built by Biśhop Kufos, 1133 43, and the only subsequent additions were some buttresses at the end, a large perpendicular window above the diorwey, formerly full of stained glase and tracery, with stained glass in the east window. Its whole length we 77 feet, width 31 feet 11 iacbes, aud the height at the westera arch of the groining 45 feet. The east eud was of a semi-circular form, and when in its original state, with its fine columnar work and beautiful tracery, mul havo been an object of greal interest.

On removing the oak stalla from the chancel of St. Mary's church, Not tingham, preparatory to repairing the roof, a sculptored tablet of suarble was discovered, baried wih its face downwards, Which prubably has been Ifing there since the Reformation. It is said to be a spirited and wellexecuted bas relief, consisting of eight figures, and represents the Pope seated un a canopied and elevated throne, consecrating a bishop. Bexidp the Pope are tro cardinals wearing their hats. The bishop is attended by his apparitor, bearing the crozjer, and three other attendant figures ever-
plete the groap. The tablat is above two feet in heighty and one io width, and has been cariously painted and illominated, the traces of colour beiug still visible.
Labaratories of the Royal College of Chemistry.-Mn the 16th of June the first atone of these buildinge was laid by Pribce Albert on the eorth side of Hannerer-square. The show front of the atructure will appear in Oxford-street, and will combiae the usual absurdities of modera debased architecture-a rusticated basement and colurons hoiated to the frst foor. Really there are co many instances of columns thus elevated ant of their places, that it is surprising that architects do not now and then, for the sake of mere novelly alone, and irrespectively of all sease of propriety, exhibit designs with the coluans in their right places.

St. John's Gate, C/erkencell.-The restoration of this ancient monument is commenced; the owners have consented to case the building with stone and cover the roof with lead. The restitution of the decorative parts is to be effected by public subscriplion.

Botanic Gardens at Cambridge.-A proposition to levy a small tax on the members of the University, tu raise a sum for forming the new Botanic Gardens, has been rejected by the seonte.

Booksellers' Procident Institution.-The "Retreat" of the aged and dentitute helongiog to this iustitution is prosressing; the first portion of the building is neurly 6 nished.

The seso College at Galscay.-The design selected by the Board of Trade is atated to be that of a magnificent edifice in the atyle of Henry the Eight's time

Scoll's Monument in Edinbirgh.-Mr. Steel's colossal atatue of Sir Walter Scott will, it is expected, be erected in its place in the monument in Pringes-street on the andiversary of Scott's birthday-the 18th of Augast. In England we bave an invariable rule of elevating honorary statwes ont of sight: we trust that our nortbern oeighbours will not disregard tim age and veaerable custom.

Tictoris Fountain at Brishton.-A new fountain bus been erected on the Sioyne at a cost of $\boldsymbol{E 1 0 0 0}$. The denign is appareatly very nusatisfactwry. It has the appearance of beiug designed by an upholaterer, it is defcirat of solidity, and looke as if it were made of anc or tin bronzed over.

2he Brighton and Chichester Railuray in now open. The drawbridge over the Arun, described at length in a former number of this Journal, ects quite auccessfully.

Concersion of the Regent's Canal inte a Railway is abandoned, the required amuunt of capital oot having been subsrribed.

The Eantarm Union Railway is ofeaed. The fares between London and Ipswich are 15 s ., 10 s ., and 5 s . Sd.

A long boiler engise of Mr. Sieplenson's construction lately ran from Birainghem to Wulverton, 521 miles, in 70 minutes, druwing 100 tons of grods. At Ackemon bridge, the funnel of the engine was struck down, is being sis incthes higher than the arch.

FOREIGN NOTES.

Embankment of the bed of the Adige in Tyrol.-The goods of this river hare of late caused such danage in the south of the Tyrol, that its embank. ment has been decidrd upon-the more important, as its valiey is one of the connectiog liuks beiween Ituly and Germany. The court councillor Dasetti bas just completed his report, which is accumpanied by an inntrucLive lithograplied map of the valley of the Adige, from Meran to Buschette. After the completion of the cut at Ischia Peratti, aoother more expensive will be commenced at Ischia Lidoruo. The plans for damming up the Noce, one of the most impetuous and mischievous Alpise torrents, are also to be commenced. The eaprenses will be very great-but only apparently $30, \mu$, by the regolation of this mighty Alpine stream, $8,800,000$ square klafter (cubite) of boggy land will be rettored to its pristide ferility, an equal area preserved from the destroying influence of foods, and the air improved for about 50,000 people, who have, hitherto, conatantly suffered from fevern and other diseases iuherent in damp localities.
Public Batha on the Contincat,--These are now being established very eitensively in almost every town. At Amsterdam a huge swimming basin that been laid out un the Y.; at Paris the old estatished and estensive salle de astation de l'ile St. Lousis has been much improred.

Gomeral Comal comstractions in France. -Never before has any legislativo seasion been taisen up by so many subjects relating to constructions, for the improvenent of the worting classes, \&c. The following is extrected from the Jourmal des Traranx Publics,-"The original plan for the maritime ctanal of Caen is still curried out with energy : 2,800,000 franca have been wose expeodrd in the erection of one of the fuur walla of the basin, a new bed for the Orme $\mathbf{2 , 7 0 0}$ metres loag, and the two jettier of Oysterham. Bome angry observations have been made on account of the opening of the Orar having cust $\mathbf{8 0 0 , 0 0 0}$ france, while the origial estumates amunatet oaly to 280000 . $1,200,000$ franca bave been voted for improving the anvigation of the Vilaine io the environs of Hennet, comprising earthwork, escayations, aqueducts, bridges, \&cc. Now a credit of $15,000,000$ france is agked for the completing of the branch canal to the Garonne, betweon Toalonse end Casterts." The allusions made hy M. Adolphe Beanmont to Eaglish cerpata, is the Chamber of Deputies, are not without intereat. "In kigiand," atid he, "canale give wey to railroads. I have apoken in Lodon of car propoed canals, but no one would beliove me. The canal
from Loadon to Birmiogham, which yields 4 per ct. is merely ao advenlitivos exception, becance their has sprung up ou its banks manafactories, which are its main sapport. The only remedy against the monopoly of railroads are the railrouds themselves. The expense of $15,000,000$ of francs for a canal at the present time is an anachronism."

Submarine Veasel.-Some experiments have been, of late, made with a boat constructed ufter the plan of Dr. Puyerne, and called by him bateaí cloche (bell-ahip). It is made of iron, and to be seen near the Pont Royal a Paris, where it is now moored. On its last experimental trip, eleven persons were on board, and the craft passed (invisibly to the public) through the space betwoen the Pont Royal and that of La Coocorde. None of the passengers felt the least inconvenience, although there was a sort of telegraph established for communicating with those above water.

Completion of E. Gerhard's work on Ancient Sculptures hitherto mppublished. -This work, which was formed after those of Winkelnan's "Monumenti Inediti," and that of Zoega, has, at length, reacbed its concluding parts, dot without many a sacrifice on the part of the author and publiaber. The plates are folio lithographs, the letter-press ruyal 8vo. They contsin a rich harvest of aculptures collocted by M. Gerhard in his many peregrinations through Ilaly. The publicalion extended over the period from 1628 to 184t. M. Gerbard was oue of the contribators to the aplendid work on Ancient Lome, in which Chovalier Bunsen also took a share.
Sapply of Water to the City of Madrid.-This metropulis is very scantily supplied with water, which the poorer classes have to purchase. An extensive contract (subasta) has just been entered upon for sapplying it with water for drink and irrigation, The cuntractor has to furniab the town with 10,000 reals of water (the standurd Spanish measure), which is to be available even to the highest paris. The adjudication amonnta to
 within the term of iwo yeurs. If we compare this projected sapply with the present which is ooly $\mathbf{6 0 0}$ reals, it may be easily imagined whut a boon will be conferred on the cunfort and bealithfulnens of the homble classea.
The New Post-office of Hamburgh.-The jodicious grandeur with which every part of the deatroyed city, especially its public edifices, are re-constructed, becomes every day more conspicuous. The Host-office, which combines the locale of fonr especial pust departments, erocting after the designs of M. Charles Teaudeuf, has aunt the atreet a lengtb of 275 feet by a depth of 87 feet, including the courts 97 feet bruad. The front is faced with asandene and orsamented wilh cornices; hat a height of 68 feet above the pavement; the roofa will be covered with thick lead plates. On the east side of the edifice will be erected the new telograph tower, 160 feet above the pavoment, or 169 feet abuve the avarage height of the Elbe, oot inclading the sigual ataff. Immediatoly below the roof will be the observation roop, of an octagon form with a wiadow at each ead. The building will include the dwelling of the Director, printing and other offices. The clock will be at an elevation of 150 feet, lighted in the night by a Bude light: each of the two dials will be of the diameter of 61 feot All the rooms in the lower story of the Puat-office will be vaulted. Besides apacions halls for the public, there will be a generul room for thome who wish to read their lettery. The building will be in mome parts thres, in other four, stories high, and contain altugether 110 rooms. The paving along the main front will be 17 feet wide.

New Galtanic Telegraph_-German journals speak of a new discovery of M. Leouhard, watchmaker, at Berlin, relating to the above subject. At present, it bas been only executed between Berlin and Putadam, but lt is to be prolonged successively to Brandeaburg and Magdeburg. The outer form of the machine is simply that of a writugg deak; ou these, two duale are to be seen. A hand indicates the letter or sign which has been made at the other station. Both machines are connected by metal wire chains, and have been bitherto placed on wooden blocks, but will heroantor be conducted under ground. M. Leonhard is also said to have discovered a new system of railway tolegraphs.

The great Danube Docks at Alt-Ofen executed by English Enginecrs,The extent of the Durube Steam Nuvigation Cumpany is such, that they possess at present thirtg-seven boats fur pas-engers, und two burges fur the convoyance of goods, buth combined of 3,926 horse-powor. 7 be docks of Alt. Ofen, since they havo been under the direction of M. Massjuhn, who studied in Eagland, have assumed the shape of a real munufuctaring culung. Since 1844 alone, there have been built at this place ten boats of 1306 borse-power. Thirty irou barges, each of the burthen of $5,000 \mathrm{cwt}$. are in preparation or nearly ready, beniden four iron coal barges, and eight for merely conveying pigs und olher culte, one gua-boat for the Austrian government, and tweaty movenble pitrs with the buals appertaining thereto. The establishment is now in a porition to manufacture is ite own workahop all the requivite parts of a stenm bout of from $\mathbf{8 0 0}$ to $\mathbf{2 5 0}$ horsepower, and even all the tools for ship construction, which hilberto they were obliged to obtuin frum England. The greatest part of the hitherto wooden buildiug has been replaced by M. Mazsjolin by fire proof structures, and boals and machinery huve been much improved. ilie passenger boats now ascend the Dunube from Pesth tu Vieuna in 18 houry, and from Vienna to Linx in 17 hours, -a considerable saviug on furtoer voyuges. Boats of 4,000 to $5,000 \mathrm{cwt}$. buriben do aut draw mure thau 4 feet water, mod can, therefore, safely pass over the sund shouls, which furaterly much impeded the gavigation of this river. M. Masjubu has ulwo established a superior mode of discipline and order amougrt the 1,200 men who constantly work at these docke. Sitill, the Austriau ruilrouds consume a great quantity of iron, which has had the eftect, that the above aumber of nteambout is only haff of whit would baic been olferwise ande.

Lately, the dyket around the docks have been heightened for proterting them against the Goods. \&c. Besides M. Mussjnhn, both the shipbuildert and chief machinist, Messra. Pretioua and Biseacker are Englishmen.

Supply of Water to the City of Lyons.- It is an inconceivable adowaly that Lyonn, situated between iwo rivera, should have been, hitberto, edtirely deficient of an adequate supply of water for its numerons mar ufactiaring and working population. After many sham proposais of projectors and contractors, the Town Council are about to take the subject in their own hands, beginniog with a complete canalization of the city, and execute the works on a grand scale, leting the public reap the profit of the undertakiog.

Inamgration of French Railsays.-The pregent seamon is, without doubt, the most important for the many new lines which have beed opened in France. Oo the 8 th of June tonk pluce that betiveen Puris mad Sceanx, a short line, it is true, but one un which the xystem Armonx inse beed Ifst tried with sucess. The Great North Line (Lille) has ulsu been opened with great festivilies.

Embellishmente of Paris.-The great work of a general paving of the Boulevards are nearly completed. The next will be the approach to the bridge de la Concorde and the levelling of the earth which is now in work. The paving of the Place du Caroussel will be completely remodelled in a very short time.
Dreprat Artesian Wril in Exrope.-In the Duchy of Luxembnurg, a well is being sunk. the depth of which surparses all others of the kind. IIs present depib is 2.336 feet, nearly 084 feat more than thint of la GirenMle, aear Purip. It is said, that this immense work has beea ubderiaken for workigg a lerge stratum of rock yalt.

EMBANKMENTS.

sfr-Having bren a subseriber to your valuable Juurnal from ita commeacement, I have read with cousiderable interest and profit several of the communications and papers therein. I am ut present in search of in formation respecting the construction of embankments fur reservoirs or water dams, in the formntion of which there is little or no muterial to work upon excepting peat or bor earth, and a small portion of clay, with stones sufficirat for the formation of $14 i$ ches of breustwork.

I observe in your Journal, vol. 5, page 26, that at a meeting of the Institntion of Civil Eingineers, on the 29th June, there was read a paper containing a "Descripion of the Bann Reservoirs, County Down, Ireland," by John Frederick Bateman, M. Inat. C.E.; and alao in your Journal, vol 6. page 426, that at a meeting held on the 13th June, a paper was read "On the Formation of Fmbankments for Reservuirs to retain Water," by Rubert Thom, MI Inst. C.E.

I should feel much obliged by your informing me, in your next number, whether either of the above mentioned papers hnve been published in a separate form, and by whom, or how l can procure a larger knowledge of their contents than i given in your Journal.

Shonld you have any knowledge of any other treatise on the subject of Water Dams, or can give me any reference to any parties practically acquainted with the subject, I aluall eateun it a favour af you will refer me thereto.

> I ana, Sir, your most obedient servant,
J. B.

Middleton, in Tecsdale, June 5, 1846.

The abstracts of Mr. Bateman's paper, and that by Mr. Thom, given in this Journal, con'ained the whole of the information afforderi by the origimal. No fuller acrounts have treen published. If our correspondent will seed ns full purticulars of the dimensions and form of tis reservoir, we will tell him the pressure the sides will have to revist.

(From Mearrs. Robertoon's Lisl.)

omanted in england from may 26, 1846, to Jone $24,1846$.

Sie Months alloroed for Enrolment, unless otherwise expressed.

Nathan Defries, of Selnt Martin'Llane, engineer, for "Improvementa in gan metern."scented May 27.
4hin Hyde, of Menchester, endineer, for "rertatin Improvementa In loome and appara tus, connected with luoms for wenving."一 Any 27.
Charies Heart de Botmelimnn, of I-icester-place, in the county of Middicerx, merehant ove "Improvements in manufacturing corls and bungs." (A commonication.) May 27 , John Aston, of Blrmingham, for "Improvemente in buttons and in ormamedt for dreqa."-May 27.

Alezander South rood Stocker, of Canden mad-vilias, rentlemon, for "Improwementa in the manafacture of lootides and othet aimilar veseds, also in stopping and corring the in the and in the mannfacture and application to the whole or part of sbe articlea to be manc., and in the
uned. 27.
John Rlyth. of St. Anne. IJmehoume, endrepr, for wan Improved mode of clophag the orlpcet of hotilem or other vessele applicable to fakboiders."-May 78.
Richurd Bfarvin, of Portees, Southampton. Ewillemen, ard Wilism Renry Moore, of

mood for the fronts of homses end geteral purposes for the admingon of light and tret Latlon. ${ }^{4}$-Mey 28 .

Henry Seymoar Westmacoth, of John atret, Relford. row, aptleman, for "am provement in the construction of rotatory steam engines."一 May 80 .
 abrous materilis." (A communication.)-Jrme 2
William Carter Staflonl Percy, of Manchester, mpholder, fir "certan Inpporement Is the manufacture of bricke, thee, chimney pots, and other simiter ardctes."-Jupe 2.
Heory Lewrence Tublan Techudy Von Uater, of the College for Cinll Enkfacera, Putme) for " Improvempata in apparatus or machinery for measurtio tad ladicaling the diatere travelled by wheel cartages."-June 2.
John Webeter Cochrait, of Paris, engineor, for "eertaln Improvemenfs in mechiner for cutting and shaping wood for ahlp-bulditog asd other pas posey."-June 8.
 " Improrements lin tocom rive and other englues and carriages."-J une $\%$.
Joseph Clinton Robertand, of Fieet atreet, London. eivil enslineer, for ${ }^{4}$ certale I provements in rallwave and fallway carriages." (A communlemilon.)-Jube 4.
George Lawe, of Finsbury. chicus, civit engineer, of an extenalon of a patient for che uerm of bive years, from the 6 th Jure, 1808 , for luct eadag the tllaminating power of geel
 the ronnufacture of coul gite Into an articie of commerce nut heretolure produced therte rom, and also of a new mode o: conductag the process of colidenantion in the manefec ture of gas for lllumination."-June 4.
John Taylor, of Carlisle, mfller, for "certain Improvements In Lour mills, and la mos chinery cunnected therewith.". June 6.
Hobert Rettle, of Glasyow, divil ingineer, for "certain Improweneats in the mamafe ture of fupl, parts of which inpruyeneats are app leable for the purpone of portifion compresslug, or extrueting vegetable aod other subatancen, and tuifs, and in the sot chinery or apparatus to be uner for the $\mathrm{A} \cdot \mathrm{me}$. "- Juse 12.
Edward Cottam, of St^{2}. John's-woor, for "Improvementa in bedateada."-Jace 16.
Frederic Handell Burkinyounk, of Baker atrewt, Iiddlewex, gearleman, for "Improw nents in plano fortes."-June 16.
Benjamin Fothergill, of Afanchester, minchine-mater, and Richard Johnson, of Citma roe, to the mane county, cotion-ipinner, for improvemente Io certala partio of machtamer used in the pa paration for spinping, and iu the spinging and doubliog of cottome and other tibrous mubatances."-Jine 16.
Robert Reyburn, of Brown- street, Glaggow, ehemist, for "Improrements in meldem axtrecti from animal and regetable aubsiancen." - June 17
William Cormack, of Thames-street, Greenolcb, cbemit, for *Improtementa in at tainicg molive powrer."-June 17.
Alfred Riphard Johnson, of the Grm of Mesarn. Johnmon and Co., of Rement-ftreeh, feanrs. Gifinitis and Johnsoth, of Uid Rund-atreet, baturs, for ${ }^{* 4}$ eertain lmprotememe in hats, caps, and bx nnets"-June 18.
John Sluison, of Biches court, Lime-street, merchant, for "certain Improvements is machinery for preparing end epinuling fin, and other fibrous materials."-June 20 .
 Improvements in woon, mosic, and letsellated mork."-June ar
 Improvements In cements, b lick, tiles, quarries, shats, and artigial atones."-Jope 97 .
Benne't Woodcruft, of Hapcheater, connalifig evgineer, for "an Improred mode of printing certain coiourn in calico and other fubrics."- Jatae 22.
Thoman Walker, of Blrminghem, stove.maker, for "Improvements In ebips"-lege m in sounding machibes."-Jane $2 y$.
Jobn Mercer, of O-kenshaw, chemiat, and John Grerawood, of Chyreh, it the ane county chemfet, for "certan lmpruvements in dyelit and i rigting Twitey red, and of county chemfot, for
co.uurs "-Jube 22.
Wtiltam Mathera Hall, of Ieedg, brachofounder, for " certetn Improvement, of exther
 -June 22.
Jowe; b Renahaw, of S Iford, Lepcashire, mechanic, for "rertaln Improremepte in me

William Cotton, of Laughborough, mianufacturer, for "certain Improremeate in tads Jog macbluery."- June $2 \mathbf{2}$.
Jolin Gillett, of Bralles, Warwict, spricultoral Inplement maker, for "antragrem apparatia for protecting property by soubding alaruma, or giviog sifuals."-
Joseph George, of Chelsen, Middlemex, conl and iwine master, for "Impromeseate the the constructiou of honsea, bulluing, and other erectlong".-June s2.
Thomas doget, of Salford, Lancaster, mach'ne-maker, for "certain Imptoremention mechinery or apparatue tor prepariog, slubliog, alat roving cotlon, wool, and mint brous mateilald."-Jude 22.
William 'Topling Neaham, of the London Docks, engioprr, for "crriate Improveranst in the apparatus and mode of applylag power for ralsing and loweriog wefgree or hant bodtos "OJutue 23.
 nacel aind the tues of atrap

COREESPOKDE NTS.

J. M.-The ahstracts of the proceerings of the Institution of Civil Bapneera which appear in the weekly periodicals are generally of too popalar a character to tie of much value to the professional engineer. By the cuarteay of the Institution we have been hitherto supplied with na otficial nocount of the proceedings, but owing to some unexplained delay, the poblication of the papers of the prewelt Sessiun has not yet hena cummenced and consequently we are deprived of our usual anurce of oforinaticim. It in really of uo use in a work uaking any pretensions to philosophical acearacy to give any hut authentic reporta. Por example, a lung paper has reseoly been read at the Lustitution, by Mr. W. Hitdug, ala resiatances to Railway Trains. The ouly part of bis conclusions which is at all new, is what be cults "reaistance from concuasion ;" we therefore naturaly wished to conalat our attention to this pait of his peper, but on turniig tu the reports in the weekly puiblications, we can find neither an explamation of what is nueast by the plirase "resistance from roncussion," nor any acesunt of the remana tor adujting the expression " V " as the sueasure of this reaistance.
A Working Mechanic, and J. B. will be anowered acat month.

THE FUTURE DEVELOPMENT OF MEDIEVAL

 ARCHITECTURE.Modern ecciesiology is the revired stady of a auglected branch of buman knowledge; and like all similar revivals compensales for provious neglect by present enthasiasm. It is by no meens an ancommon occurresce in the bietory of Litoratura and art that a zeal for reproduction and aervile imitation whould suddeoly spring op which threatens, at first, to destroy not oaly all hope, but even all desire of originality.
These indications, so prejodicial to the true interests of art are however trasaitory-at leant they have alwaya bitherto proved so, as far as wo are aequainted with intelloctual bistory, and we may sufoly bope that thoy will be co with respect to the modern etady of Medisval architectore. While the farat impulso asd freshness of the novel parsait lask, all attempt to gain a charsoteristic iedividuality is meribiced to an unthinking and andiscrimiantiag admiration of the ancieat models; but atter a while the votaries of the new acience become weary (and perhaps a little ashaned) of being mere copyiate, thoy find for the firat time that all the fentares of their idel are not admirable alike, that some parts are far more worthy of atody than others, and then finally, if they thomselves powesn creative power, adopt those parts, not as patlerse, bat as so many hinte-way-marks, as it wereof the direction in which their own genius may most succensfully parme its coarse. Just in the aumo way-the greatent orators, writers, sculptorn, and painters bave been content to bo for a tume disciples of ancient nusters, in order that they might form their own ayle an the classioal models, of which their creative genias forbad tham from copying the actual idens or modes of expremion.

In accordance with these considerations it becomen a matter of great practical importaoce to accertain exactly the degree asd antura of the admination with which wo choold regard Medisval art, to diserimisate between its merits and defects, and above all to determine which of its anmeroos varieties or atyles are most worthy of being studied with a riew to forther developmeat. We by no meane claim the merit of origioating this inventigation, it has already been parsued to a considerable extent by otbers, althongh the conolusions at which they bave arrived are extremely varions.

One clase of writers, who repremeat a conaiderable portion of the English atudeats of Medisral archilecture, recommend the excluaive adoption of the secood great afyle of Pointed Arcbitectare, commonty known as the Decorated, wbich, to use their own peculiar mode of expreasion, "is the style of Pointed Architecture which we consider to have the most nearly approeched perfection, or, as we should more troly say, the furthest departed from imporfection. It whis but an approech, and bet for an ingleat, It juat uovelled to mea a distant glimpee of heavealy thiage and damiod his [their] poor eyes with that imperfect viston." Asother claces of writors deweribe Perpeadicular as the mool perfect atyle of Pointed Architecture, but recommend Romanesque for exclusive adoption in bailding new charches, as being the most suitable for modera parposes.
These contending opinions represent, wo beliove, with tolerable accurncy the respective views of two bodies who heve rendered thomelvice cele. brated by the seal with which they parsae the atudy of charch architoc-taro-ble Oxford Architeotural Society, and the Cambridgs Canden or Eociesiological Society; and coelag, as it is imposible not to see, that theen two bodies have promulgated, among much which is inconsictant, and moch which is consrovertible, a large mass of sound and valaable information respecting Poinlod architecture, it is aspless to treat their opisions with indifference.

We are very anxions to contributo to the ettrinment of a comad conelarion as to which of the styles of Medivoral architecture abould be preferred, bot in atating the riown aad argumonth of the two Academical bodies mentioned, we are met by this difficulty, that the discossion has been made to assame a thoological character, which renders it in a great measure unsoitable for thene pages. The adrocates of one or other of the varions adylee of Medimval architecture do not rest the claims of either merely on the intrinsic benaty or constructive ralue, bat chiefy on ita typical reference, or supposed referenco to religions doctrines. For the completeness of our argnment it will bo necessary to allado in general terms to the latter alase of arguments, avd abow that even if we allow to them the weight given by their authorm, they are mill so nearly balanced as to leave the main question anaffected.

It is isdicprable that during the middie agos there was a heodesog to ectablich rememblasces botween material forms eod abetrmot itmen. Thin tendency may probably have arisen from the provilence of monastic institutions ; for ia the recaliy of thought mavoidable in a state of monetonous reclasion, the miod mast aither be occopied by wome fancelfal eareal em. ploywenten or become enfeebled by pare inaction. (Apd it may be remarked in pacoing that this conoideration is a remonable explanation of the fact thet symbolic speonlations are in oar times moat rifo anoog academical and cathedral bodies, wherein the manner of life most nearly resombles ancient monschism.) These apecalations were anclantly applied to all the wiences-chemistry was seglectod for alchemy, astrosomy for attrology. The atady of boteny became a mere collection of compariscas between fowers and charch feetivale-the mandrop and Cusdioman, the dafiodil asd the Aananciation, the rennacalas and the Invention of the Crose, the white lity and the Visitation of our Lady, ace, the passion flower being however the favourite mobject of this apoeies of mental indalgence. To the same source muat be attributed the cabalactic interprotation of mysterious aumbers, and lines on the human hand, the black art and the whote cycie of occult sciences. The whole material and intelloctual world were erraged in a aniveral syalem of type and matitype ; and all thinge visible were sapposed capable of a recondite aymbolic intarpretation. The Germass in modern times have somowhat refined on this method of double. signillcation by thair aystem of oxoteric and ecoteric idene, that is, in simplo English-che ajatem of saying woe thing aad meaning asother.
It is easy lof ppose that in the Medisval times the love of aymbolism would bo frequontly exbibited io arebitectare, avd as a matter of finct there is no doabs that it frequently wat so exhibited. For to what other canse can we amigh the cruciformity of charchen, the position of the foat dear the entrance, and oriontation or the position of the chancel at the amatern end ? Occasionally the aymbolimen reema to have been carriod into mionte particulars, and affords a carrioss reflex of the mied of the architeet, for it is generally observable that where these indications of trivial resembinooes exist, the architectore is of a feeble charsotor, and does aot exhibit that boldness and vigour of conception which beloag to a rigorous macaline intellect.
But that aymboliem of every kind, whether mioute or geaeral, depended on the individaal capriee of the architect, and not upon any accapted law of charch architectare, is evident from the partial manoer in which it is oshibited. Taking all Christendom through, the number of charehes with orose traseepts is far exceeded by those of which the plan is rectangular or irregalar. In the mame way the orientation has been as frognenilly disregurded as obsarved; in continental churches especially, the dieregard of orientation wes so great that is ave chureb tho chaseql is mometimes neerly opposite in dirsection to the chancel in a seighboaring charch. Of the position of fonte it in sot so ensy to apeak, because, being moved with tolerable fecility, thay have bean frequently displeced from their original situation. Anotber archilectural form, whiah has been eapposed to bear an obyious aymbolic meaning, the eastorn triplat wiodow, is by no means of universal occurrasce: is every auccomive atyle of ohuroh architectnce there are oumerons exramples of ether kinds of windows at the east end of the charab. Apd it is important to obeerro aloo that the Mediaral architocta were by no mease joalous of restricting to occleniastical ases the forms which are capable of a aymbolic ioterpretation, for the triplet window is commonly forad in edifons conatructed for wecular purpeses.
That the gemeral affoctation of analogies and fascifal concrits mbich provilled in the middle agges shoold be ocoanionally diaplajed in anchitecture was antarally to be expected-chat it should bo universally displased wis proctically impossible. And this reazon, if no other asiected, wown have safised to preveat aymbolism becoaing a podtive lave of charth building. If for instance it had been determined that one ensential re. quisite in the constraction of a church was that the plan of the building should typify the doctrine of the Crose, if this kind of teaching were cunaidered a religlous nocosaity, than it is evident that a charch without tran. eepts mast exhibit some other kind of teaching, that it must inculcate a hereay, and that the worahippers in it must be hegetics. It woald bowover be frequently nocomery to build churches whore it was physieally impossible that the plan shoald be cruciform. This necessity slone would prevent aymbolism from ansuming the sacetion of universal castom; for it is to bo abeerved, greatly to the credit of the Mediseral architecte, that they aever cacrificed rall palpable adrantages for the gratificmion of thair
specuiative profudices-that their mipds coantantly exhibited a prection leadeacy entirely valknown to or unappreciated by thoee who now ape their idiosyocrashes.

We trost that the reader will perceive in the sequel that our arguenent on the point before us has aot been anaccemarily miante, for the whole queation of the intore development of Mediaval architecture depends upon it. If thoee who assume the office of prosonveing pablioly on the merits of modern chureh architects gronod their criticisms on specalative doctrines, such as those here alluded to, it becomes the direct interest of architects to ascertalo how far those doctrises are correct.

What seems a fatal objection to doctrinal inetruction by the aid of matorial forms is, that the system never did and never can become general, and moreover that if it could, it would wever be free from ambignity. This kind of teaching mast belong to one or the other of two classes-suggentive of conveational : that is to asy, the forms in which it is embodied must be ofther anggeative of thair intention, or if they bear no ontward resemblance to the thingtypifled, their sigaifeation must be purely arbltrary. To the firat of these classen belong ortiformity and orientation which as we bave shown are liable to the objection of want of generality, becunse occasionally they would from local circumstanops become practically itwposaibilities. Ia the same class of suggeative asmbols mast be raviked the eastern triplet: a species of symbolism which makes ont a case atronger even than that derived from the two former species. In the case of the eastern triplet the deviation from the geveral role (if aceh rale existed) was perfeclly grataltoas and ouwirranted by necesaity : for it is imposalble to suppose that the erchitect was ever practioally compolled by local requiremente to build a window of five or ceven lighte in preference to a triple wiodow. What then shall we alay of a conventual charch like that of Jesu Colloge, Cambridge, for example i Were the worabippers poly. theists? They must have been so if they derived a symbolical teaching from the eastern window.

The argumest reapectiog ambiguity spplies with equal foroe, If the eastern triplet consisted of three separate and distinct wisdows, then it faght a heresy, and if the centre window were larger and more important that the reat, it taught anothar heresy. The natare of these heresies need sol be here specited, they are both denosnced is the Quicungue vulf, in the expreselo "una eat divinitas, cequalis ghorie."

But the ambignity would become absolately inextricable confualon Whem forms posessing similar peculiarities were made to represent difiorept doctrises. For lastanco, if anythiog like aystem and distactaces wort to be maintained, it woold be obviouly necescary that all forms of which the moat distiogriahiag mark was thoir triplicity, should megeot one and the eame doctrine. The fear-de-lyn, for instanoe, three compoeent parts united by a baod, ought to teach the same thing as the cantern triplet enbraced by ooe bood moulding. The freur-do-lys however toaches somothing altogether differeat. It bat, says the Eeclesiologits, "from the twelth centory at least, probably for aget long anterior, beea the recogniwed emblem of tho Virgia Mother as guch." We mast bog the reader to take notice of the wordy " recogaised emblem," beoanse we will abow by another quotation from the mame place how far the emblem actually was recognized. The reason of its boiag "appropriated as an ornamast to the seats of the Laity in partionlar," was that it anggested what was pecoliariy "the peoples' doctrive." Now then how far did the people anderatand the augrestion ? We are told thet the popalar name of this ornament (popie) was derived from its eappoeed resemblamee to a buadie of bemp. The old charch-denigners had bowever "mometbing more sigaifoast in view than the mere giving of an ormanental finiah 10 an otherwise plain seatead. For had they any intention of imitatiog 'bundies' of hemp or of any other Sobstance: that was a mere fancy of the eurkmon." It appears therefore that whatever may have beon the fatention of the deaigners, it failed of its effect. The work mell miannderatood the meaniog inteaded, and the people generally committed the anme error, for the name "poplo" seems to have been a popolar one, and the reault of a vigar orror oimilar to that by wbich "Pan and his Bacchanals" was corrapted into $"$ tho devil and his beg a^{\prime} nails," which was a common sige of oid inns.

So mach for the effosey of symbolic teaching, where the form of the bymbol was saggestive: with purely conventional symbols the enatter must have been ettli worse; for here even the memerie technica, which afforded come little help in the former ease was wantarg. To anderstand at all the meaning of the types, constent reforteree muxt be had to a writtea code,
like that now used in the aary for interpreting ofgals made by thage or rookets. Such a code hat been compiled by Duraedina, though never antboritatively recognized. We confess, withoat much shame, that we know as littlo of this work as we do of the "Aurea Legenda," or Bathex's marrellons "Lives of the Saints," aod that little is obtained from meraly meeting with a few cocasional extrects. Still, we apprehend, the grext body of the people, in the most fourishieg timen of the anreformed chereh, wore in the aame state of lameatable ignorance. At least wo are cortaia they are at present, and that there would be some slight difficulty in geting them to read Durandus now,-if they did not, really we cannot see what the nge of the symbols would be. It would become the case of the rockots vithout the algral book.

But suppose the dificulty removed. Suppose the people notre at last got to stody Darandas (which by-the-by seems as likely as that the inhabitants of 8t. Gilea's should take it into their boads to commit the Nantical Almanack to memory), would not the labour of tomehing be twice as great as that required by a more direct method t First the forms are to be learbed, then the eode of intorpretation has to be "got op," then the application of the interpratations. But why go by such a circoitoos route? We ar convinced the thing would never angwer. Among 20 many acholars with very different degrees of doaire and aptitude for learning, so meny mistake would oocur that we should soon have to revert to the more direct procem. Complleated machinery is seldom sucoesful in practice.

But there ramains asoher argament for aymbolisu, one derived frea mere architectural considerations, and not conmected with theologiond daetrives. It is this, that symbolism is is source of the beautifal-thet treat and beavty are so noarty allied, that material representations of trath mant exhibit beaatifal forms. This is ove of thow showy sentiments which en. trap unvary readers, especially if they have a tate for magriloquesce. But what is the fact ? The beanty of the symbol depende, not on the antare of the troth aymbolised, bat on the method of represeqtition adopted by the artist. If the artist have taste and genins the symbol may be beantifal, if not, the symbol will most likely be abourd and ugly. The redteUon put opon the desigeer that the formes adopted by him shall typtify ab strect idean, will add so mach to the dimenlty of his tesk, as to have in all probability the very reverse of a beneficial tendoncy. The design latued of being improped (as it in argued) by symbolis.a, will most likely be greaty injored: anlees we suppose that the deaire of symbollideg relsgions truth will necessarily be accompanied by the faculty for doing it in a gracoful mannar-which is mach the same thing as aupponing that evers religions porson is ipeo facto imbued with good taste. Wo will not aite examplea to the contrary, bot we may at least mestion oos of two in. stances whlch diaprove the converse proposition, namely, that mea imbeed with good tanto arc ipmofacto roligions. Material beanty is far better represeated in the palatinge of Salvator Rosk, and Raphael, than moral beanty in thoir lives and convernalion.

There conm therefore so reasons (except thooe which fanatncion would erggent) why eoolesiastion symbolian shoold be more beantiful than any other. The Ohimese oharacters are a kied of ayabolises, for they originated in the repremeotation of utaral objects by coorentionial forme, 0 did Ergptian hiaroglyphles, so did our own beruidic devices. Is there any thimg of beanty or propriets ta theme forme ? We fall of disoerning the gracentil. mese of a rampent eparemaisted naicorn, of a dooble-headed drago cevered thougt they be with Mediveval rast, and hooeatiy coofeas that we profer the Edgin marties.

We have alleded in another pince to the sigolicant symboliter of stalk, crose-boses, and chaiss, which deoorate the front of Newgate seol, as a proof that aymbolic arohtecture is not almayi beautiful, but we tave mot apoken yet of the profinity and indecency occasionaliy exhlthited by liedieval symbols and grotesque carvings. The sculpture of the Botel-de Ville of Loovain, for example, repreventing the sortad ains and their patallmont, displays forms revolting to any bat the forlest imegination. Aytia, the coastant collocation of serious and ridiculons subjects sasctioned by Mediaval architects would be deemed intolerable now. We bave seea bit an old contiaent charches an ebsard ropresentation of a moalk with his the In his mouth, \&c. These and nimilar extravagances might be permitted is

the time of the ancient "moralities" or " mysteries," religione dramas in which the Divine mames were freely introduced among the drumatis persaye, but no amonat of precedent would anfice for their revival now. If there be ooe instance more strikiag than acother of the necesuity of distinEriabing between the valuable and the vaiucless parts of Mediseval art, it is this of groteaque or monatroas devices. Nothiog wbich is uanataral can be beantiful, for mature is the source of all ideas of beantifol forme-the beraldic monsters of the new Paisce at Weatminater, the bideons enoungtic tiles receotly laid in the Temple Church, and if wo remember rightly, Eimilar modern abaurdities in the Round Church at Cambridge, are no butter than simious diaplays of the faculty of imitation.

Symbolw such as these will never probably be raoked in serions argument anong the valoable parts of Mediaval architecture. But there romalnes yet another class to bo alluded to which mey be termed historic symbols, symbols employed in church architecture to represent not doctrines which are true through all ages, but current facts of eccleniastioal hietory. We are not certain that this distiaction was really made by ascient architects, but notice it beoavee it is laid down by Durandan, and adopted by modern ecciesiologists. To take an inatance-
ω It to well known that all Medieval cathedrals either do now or did formerly cootais stalls in their choirs: we know alto that in the primitive basilcs there were no atalls in the choirs, but that the Divine offices were sugg standing. We know from hintory that atalls were mot introduced whout a stragrle. They bowerer became a "fact," (to use a mueh ebased word, and what does Durandus eay of them ?' The stalls in the chareh eigrify the contemplative.' .

Troly the contampletive life in a bealthy stato of charchmanship is a mont fit vocation for the canons of a eathedral-church, and it is certainly not very hard in this cace to discern the analogy between type and antitype. But supposa - vast increase of Bishops to be made in England under an improved state of ehurcheambip and cathedrels to bo built in our poor sud teeming tradJarg and manufooturiag town-Liverpool for ingtance and Sbefield-charity and common sense would diotate that the canons of these cathedrals would have a very different rocation from their brethren at Lichfield of Ely; that they would have in the strictest seose of the word to do the work of Evangellists; that they bave to go forth as preachers of the sery firat rudimento of religion to a virtwally heathen popmlation. Contemplation therofore to them must be a reereation not an occupation, and the symboliam that hould point them out as centemplatives would aot be borve out by facta. . The ranon of the symbolism of choirs would then be embodied in the folJowing form:-In come charches are found stalls. Thete stalle slgnify coatemplation, \&ec. (as in Durandus). In other chorehes built in lerge towns to serve as miscionary stations, there are no stalls, but there the Divine ofice is performed standing. ${ }^{*}$ These choirs algaify wretchednese It is caid in the Prophet. "How beantifal apon the mountaing are the seet of him that briageth glad tidings.?
${ }^{4}$ We have, we truet, anficiently vindicated the truthfulmess of that minute system of symbolism which is found in the writings of Darandus and other authors of the middie agea"!!-Ecclesiologiat, p. 226 .

A Ner the reader has earofoliy perased this extract and noticed the pasaages which we have marked in italic, let him refiect on the resolt likely to follow from the aystem here impliedly rocommended. How much gratifad the good people of Liverpool and Sheffield would feel to have cathedrals on the terma suggested! To be rominded continually by visible nigas Ihat they, in contradietinotion to the peoplo of Ely, are beathen idotaters ! The proposition forcibly reminds us of Sydney 8mith's colebrated celections Irome the Evangelical Magasios-" Chriatianity intreduced into the parish of Lantiton, pear Biconter in 1807." " Cbapels opesed-Hambleton Bucheeightern coothy aso this paribl was donttute of the Gospel : the people 20w have one of the Rev. G. Collimen's etudents," \&cc.

But the principal consideration in an architectural point of view is thlewe are told in the extract before us, that the kiod of symbolism which would be appropritate to a particular church at ond time, at enother u woold not be borse oot by factes." How then shall the species of symbolism bo appropriate to each locality be decided apos? Who will andertake the dekeate task? And for localities halfway between the heathenian of Gheweid asd the godliness of Ely, what intermediate system of symboliem chatl be adopted ? Who will invent a flooly gratuated acale of aymbolism which will exactly anlt all the variations of that aplrital thermometer of which Ely and 8hemeld are boillag point, and zoro respectively f And

[^32]When Shemeld has begun to improve-when the iofnence of the alanding canoss has began to tell upoo the people-when the origioal aymbaliam is no loogor "borne out by facte," who is to make the alleration, aed bow is to be accertained the exact momont for maling it ?
We are told that the mais object of symbolinom is not so muoh to temeh religioa, as to hunour it. We will not atop to prove that the syatem here adrocited would lead to the gromest materialisen and diabonour religion by making it eppear ridioulous; it is enough for us to show that the seheme is impracticable. It would be beyond the collective wiedom of the Cambridge Camden society, it woald be beyoad the compace of all baman mgacity and invertion to overcome the practionl difinoulties here mentioned. If the ayntem were a matable ono-itrue at one time and not twe at another, then it, or at least the matable portion of it, even though we wave all dis. pato as to its actual merits, mast yiold to the fatal objection of its impracticability.

A large proportion of the whole namber of chnrch symbols, anmely, the historic clase is ethas disposed of. Respecting the ramaioder, thone 85 mbole which refer to immatable truthe, we may be certain that the greateel part, like the "popies" aforesaid, would be the subjects of valgar perver. sions, which would render them useless if no worme. The representation of abstract truth by material forms is difficult enough evea when thoes forms are the 26 letters of the alplabet combined into worde and zentepoes. If the greatent of philoeophers and divines have forad all the resources of writtea language scarcoly aufticient for the perpicnous explanation of their thougtis, if the charch hernalf have been anable to exprose her articles and rabrice with a dintinctaess which woold place them bejoed iosidions mitrepresentations aed additiona, what ahall wo tay of the diffloulty of ex prosiog the same abstruse doetrioses by the uayielding form of architecture? To overy uaprejudioed mind it mast be obvious that bricks and stonon, bowever contorted, could serer anawer the parpose effectually, that the architectore must become a congeries of hideous and absurd devicen, and above all, that where hoonour and reverence were intended rulgar ridicule and derveration munt iofallibly ensoe. This consideration diaposes of the secoed sort of ajmbols; and so the wholo delasion melts into air-this air.

To nome of our readers we may perhaps appear to have been anneces. marily minate in the arguments by which we arrive at this conclusion. There are some who would have us treat church aymboliem as an obvious absurdity, not worth arguing aboat : and the whole doctrice is doubleas one which might earily be made the subject of atarcasm and ridicale, bat wo have been carefal to view every part of the question erriously and patiently, because upos the due retlemeot of it greatly deponds the fature developmeat of Medieval architeoture. Tbe principal argaments broagt forward by those who adrocate the exalusive adoption of the Decornted atyle are foonded on symbolic considerations ; those who wooid adopt Ro. manesque exclusivoly rent their case antircly on the supponed dootrioal interpretation of the prevailing forms of that style. Having then explatised to the best of our power the grounds oa which we would exclade from the queation of the futare development all symbolic conciderations, we chall have leas difilicolty in discuseling the remaining part of the question, namely, the purely architectaral considerations.
To begin with the consideration of the architectural ralue of Romanpesque or Norman architecture, our own opinion is decidedly againat ang very general roadoption of that atyle. It ha easentially imperfect in its geperal charecter and individual detrails. It is a transition alyle-not a tranaition from one of two congroous modes to the other-bat a tranaition from the Ciassio mode to another In every way autagoniatic to it, the Pointed. Ro masemque constantly exhibits traces of the effort frequenily made in Roman, namaly, that of reconcilling twe directly opposite and irreconcikable modes of conatraction, trankation or conistraction by straight beame, and ancos. frow or conatruction by arches. Eyery tramitional or mixed atyle munt of nocenity be incomplete: and for this reason a great objection will always exist egaipgt the ravival of Romanemque. It does dot however follow that because it is an incomplete atyle that it is absoldately valueless. It in at important rule of criticiam that a work of art mas have beauty and yet not be perfectly beautiful. Now this we apprehend is precisely the case with Romanezque archliectare ; the very effort to combine two incongraoni modes was the source of beaution which belong excluaively to thin faulty but effective atyle. The enormous masive pillars and walls are eridenees
of imperfect kaowledge of cometroction. Fiad the Normans ponmessed the conctroctional nkill of later architects, had thetr krowiedge of mechanics conbied then to conatrect a spire with the magical appearance of lightnest which belongs to the Strmbars spire, they woold certainly have avillod thomselves of that ksowledge. Medern ecolmaiologists tell us that the Normans built masively and imperfeetly, because their mode of contruction typified the atale of the church in their own times. The reason which we should agaign is far too aimpleand uesophistieated to find mach fivour in the Universities, but we are disposed to thisk that if the Normans did not build with the aymmetry and graceful proportions which diatingaish later architects, it was simply because they could not-

Romanesque, like all mixed architesture (cisque cento for-instace) abounds in surface decorationa. For the reason of this circumatance we need not look far. A style which combines incoagraous modes of conatraction mast afford means for making the inconsistency : and accordingly we find in Italien and Romanesque, and overy other impare kind of architecture, that the construction is never clearly exhibited, the decorations do not arise naturally from the constructive arrangemente, and that the architect is compolled to resort to surface ornamedts alternative axpedients for produciog rariety. The arches of decoration which characterise Romanesque towers, \&c. are examples of these inconstructive ornaments.

A practical objection to the general adoption of Romanesque-an objection which perhaps' will weigh more with the profosaional than the amateur architect-in that it is a very expensive style. The modern kickehsw Romaneagne atructmes with that walls and alender pillars are not very costly ; but we epeak bere of real Romanemue-not of a mongrel archicectore which minaics the details of that etyle withoot poesessing the leent portion of its apirit. The obarncteristic solldity and masiveoses of Romanesque masonry can seldom be reproduced in modern times. Besides, It is poor affectation to copy defecte-to return to imperfeot nodes of conastruction when we possese more perfect modes.

The adrocates of Devorated architecture are not quite 10 exclasive as the adrocates of Romasesque. It is true that the former asually condemn new charabes bailt in any style but their favourite one; they admit however the merits of other styles. "Will it be maintwined," eay thoy, "that though Middle Pointed be as a whole more perfect than First Pointed, yet that there are not parts and details in the latter more perfect than in the former, and that it is prima facie clear that there can be no absolute impossibility in engrafting them npon Middle Pointed t Therefore any style which shall combiae them with the mass of Middlo Pointed must be e more perfect form of architectore than has jet been produced. We admire the smooth lowing delicate gireep of a Middle Pointed moulding, will we cannot but desiderate the wooderful boldaess, the soleme depth of light and abade in a mace of Firal Pointod moaldings. Agein, We will be bold to eay, why should not beck surfeeen and aplaye dipplay that prodigal verioty of sorfece orsament whloh is the distiogulahing enebellishreat of Romaneagre $p^{\prime \prime}$

Thim question appears to as capable of a natiefictory answer. The at tempt to combise two different atyles hat always filed-alpays will fallbecause it destroys the indiriduality of both. This necesaity of charnctoristic phyaiognomy is quite independent of intrinsic beanty, and is moch overlooked in modern art The artist who endeavours to give a water. colour painting the effect of oil colours-the masician who would isopart to the violin the pecaliar letus of the piano or intonation of the organ-the seulptor who by piercing the oyes of hls statues borrows the effects of colour, entertains, wo hoid, defective notions of the true purposes of art. Each of these combinations is made at the sacrifice. 00 to speak, of identity. The mixed resalt inntead of preserving the merits of both its archetypes usually injures both.

To view the subject historivally-had not the architects of the Decorated Pertod fally as many opportanitios of comblaing with their own arobtteciure, the characteristios of the proviona peried as we bave? The very fiet thet they did not avill themselves of these oppertanities in a strong prosumptive ergameat a painet the oxpediency of makies the attempt eov. We Ben, as the acoond great style of Mediaval architeotmere appionched perfoction, the charecteristios of the first style, eee attor another, voluncarily relinquinhed. The deep anderont mouldings of Early Englinh, the exquidice lancet windows with detached ahafts, Scon fell into diance. Can we imagine that men who showed anch a thorough appreciation of the beantiful as did the architects of the Decorated period, would have given ap forms of so much beauly wantonly, and wlahout they had eatertined a fixed purpose for which those forms were incompatlblet If we examine an Early Eoglish charch or a Decorated charch eeparately, we chall had
that the details of each ere eractly consistont with the gemernl charactet of the brilding. And this obeervation applles not only to the ecteal feras but the modes in which those forms are applied. In Eerly Englich some parts are elaborately ornamented, which in Decornted were left plain. It is difficult to explain these charecteristics by verbal description, bat we feel convinced that the architectaral reader who hat become facillar with them, by actual observation, will bear us out in the assertion that the chasracter of each style so thoroughly prevades every portion of it, and is 20 atrongly marked in its minutest details, that the attompt to tranofor parts of one style to another must produce confusion.

This unsatisfactory result may be partially traced in the trensition atyles of each period. It cannot be denied that the monumentr of tranaition architectore are usually very interesting, and that their prodigal display of rich embellishments elicits the highest admiration. Bat these buifing seldom have a distinct character of their own. They are, as it were, horderers on the confines of two countries, and exblblt some of the mod and bad qualities of both, without possessing the mationality of either.

The remainder of our space mast be devoted to the defeace of Perfesdicular architecture from the obloquy to which n bes been subjoutid. The principal objection arged against thit atyle is that it is not symbelia We do not consider it necessary to resume the discension ; we shall merely make one observation with respect to the abseace of the Triforism. The symbolists protest against the disuse of a featuro which, with the clerentsry above and the arcade below it, constitates the triplicity which they love to trace in every part of a cacred edifice. To onrselves, however, a smeneimit argoment againt the re-adoption of Triforia is that they are maciess. In the uareformed Church they appear to have served as galleries from which were hung draperies on high feativals. It is clear that they could never be applied to such purposes in modern English chorches, and it mant or onght to follow thence, that all who adrocato faithfulmess in arehitectere must object to the introduction of members which are not meraly encleu. but fictitions also, from assuming an appearance of utility which does mot really belong to them.

The objection that the mullions of Porpendicular windows are incoestructive has but little weight, for it applien to all mullions whatever, whether they meot the soffit of the arch vertically or obliquely. Any oem who is acquainted with the mechanical properties of an arch kwows that it ought to be supported on its abutments ooly-that it does not reqeirs support from intermediate props. If, then, such props be applied elther by the vertical mullions of Perpendicular windows or by the carved tracery of Decorated window, these additioal members are alite facoetructive; and quond hoe the Lancet style is more constructive the enter of the other two. But it would be imposalble to fotter art by these minete restrictions. If a comparisoa be eatablished between two atylea to esceptain which is the most constructional, it is not the ornamewtal dotalls, bet thuse larger parts to which the building owes its atability, whieh choald be compared.

Viewed in this manner, we have no hesitation in anjog that Perpenticular is the most constructional of all the atyles of Pointed arehitertens. Its rery mame implies as much. It might te pronoodoed e prieri thet a atyle distinguished by contionoes vortical lises woald aford thent convenient bearinge for sustaining saparipenmbeet woights, end wead therefore be the moet areful for lofty bulldings. Acoerlingty, wed vortical shafs, much as those which ran up between the windews of Fing College Chapel, from the groand to the vanlting, bepport the roef mote directly, and therefore mere ofioinatly, than do the clerentory wally of a Decorated church. At all eveats, it cannot be dimpated that the oenther tion is more apparent is the former case.

Venited roofi eppear more consistent with Paiated archirntetestan wooden roof, because the constraction of the latter is ascully of the him which we have termed trabente. The priciple of aremation heat aner been to thoroaghly and magnificenlly developed as in the fin-raiting peculiar to Perpendlcular architecture.

It has been objected to the papel-riot of this tyle that titpodecess "an easy but gaudy syatem of sarfuce decoration." The objectors nee to forget that each style is capable of being treated ctrilfolly and mancil. foliy, and that, after all, its excellence depends pribelpally on the petency of each individena architeot. It cannot be denied that thronghems the Yerpendicular period the fecility of producing embelitahent by panel-work was frequeatly wbond-jugt at in the Decornted pacied fowing tracery frequendy becme comegled and coosmed. The Mireval architects with all thetr skin were bat infillible (bate darmibe

exceative wea in uivnje sof Wha the thole oharecter of Purpendicalar
 erchitecture of King's College Chapel. Not much surface decoration there! Plain almost to severity-bold almont to ruggedness, this glorious pile exhibits more massivencss than any other Medireval monoment whatever. In the colosal disposition of its parts, it outvies oven Norman arebitecture; as for Decorated buildings, there is not one of them that exbibits the same play of light and shadow. It seems almest incredible that thoee who have coostant opportunities of seeing this Chapel shouid speak of Perpendicuiar architecture as characterised by epperficial decora. tions.

If ant is to progreas, its resources mast be increased-not diminished. Yot, how mach must we relinquish if we decide on abandoning Perpendicplar architecture? Fan-groining, the moat magoificent of all methods of roofing ; the four-centred arch which, not to spealk of its constructive value, exbibits in its oatline when correctly worked a peculiar grace which no other arch possesses; the corven of contrary fexure in Perpen. dioular canopies; the square headed Todor arches with their exquisita ependrels; these are part only of the wealth which wo lose by the rejecsiom of Perpendicular architecture. In no other style were the windows entirely incorporated with the reat of the bailding. In Early English they were frequently sothing bal mere perforatioas; in Decorated they appanr more connected with the reat of the architecture, bat it wne not natil the Perpendicular period that the problem of identifying them with it wra traly solved. There are many Decorated churches in which some of the windows might be blocked up without any perceptible alteration in the character of the architecture; but it would be absurdto make the same experiment in a Perpendicular edifice. Unity and barmony are easential clements of beanty, and the most perfect architecture is sorely that In which each member is an integral and eseential portion of the wholo sygtem.

The moat effeclive way of advancing Pointed architectore seems to be the Liberal adoption of all three stylen, and the carefal prenervation of the distinctive characters of each. They who object to thls conrse would haven give up all the peculiar beanties of the third style, and would secommend Decorated architectare, or rather a transition between it and Early Engliah, as the model for invariable adoptios. A new charch of the pare Lancet architectore, or Romenesque, or Perpendicular, ipso facto, meets with their condemnation. They affect a zeal for the futare progreas of Pointed architectare, and yet would confne it within the narroweat compass. They would all the land with buildings of which the variety and originality should be a minimum;

Yesis mon comallons uns.
Nec diversa tamen.
Sucl edilees would bear the sase relation to the glorions works of our amentors which prime pooms do to pootry. Thes would bear all the acedemical polinh and ionipidity of the former, Fithont a particle of the senies and spirit of the intter.

It remains with arohiteols to judge for thomselves which path they will ehoceo-whethor they will limit themealves to oae style, or adopt the etholic feeling which wo hare here adroented. Wo have, howover, ave perions wood of edvies to those who presume to build in styles proscribed by eifhr of the Uedvernities. These architects are almost certain to be sondenned by oee or the othar clase of anademical critics, and if the crilinona be fandod aneroly npon the distinctive prejodices of either body, may mely compatale thomelres that mo more merious objections have been alingod apuant then.

We are eocry to have to inculeate a cartain amount of indifference to cietionen, tee is is necomary for the purpose of our present paper-a more Limed ead exicended vien of Pointed arahitecture-thet we chould do so. Aetheran time, the architect must be warned that if his efforts be contrend an poraly arohicoctural groands, the condemastion nsually pro. ceeds from those who are quelifed to prononnce it. We have no reluctment anging that we have leerved much from the pages of the Beclecio. midt and the Buports of the Oxford Architecture Society. With rempect toner contamperary empealily, we heve aeea with great satisfaction the madaneg recents exibited to adrecate progreas in architecture: instend of fring told thet meiquity end perfection are ymonomous, we are now
 Trib chac the glate of Colegee whall be as nothing. There are many obler poiats of sympathy between us-the war against unfaithful architecture, whoh, howover, we do not Hmit to the Medinval styles-the condenmetion of superifial "seve-ironble" expedients-the admiration of
anch man an Didron, Willis, and -jet us add-the author of the Manoal of Gothic Mooldingu. We recognise the general soundneas af the archtectonic criticisms of the Eecleaiolegint, and if over we diasent from tham it in with regret ; bat we have miformly fonad the mont liberal and gencral views of art to be the most valuable, and are nawilling to sacrifice its interesta to an exclesive spirit which, wa beliere, will be fornd on exsmination to reanlt from the prejudices of academical education.

Oar peper has already reached considerable length, and this must be the excuse for not fully examining the proposed alterations in the nomenclature of Pointed architecture. Brevity on this subject is the less to be regretted, beoange names are less inportant than things, A good nomenclature is that which is definite, generally received, and not liable to be changed. For this renson we are unwilling to diaturb the well tnown appelations inrented by Rickman for the three great divisions of Pointed architectureEarly English-Decorated-Perpendicular. Thene names have ceriainly the fanlt of want of homogeneity : the first refers to a date, the second to the amonnt of ornament, the third to the charactor of the ornament. The disamilarity between the eecond and third is howover aroided by romembering that Rickman spoke of Decorated in contredistioction to Florid, ane of his names for the third stylo. These names however aro well underntood, and being auggestive are easily remembered. The titlea First, Second, and Third Pointed, aro not so suggentive, and besides aro nnnecescary innovotions. They are also deficiont in homogonelity. For the term Pointed should be baianced against the term Round, as the Eccleaiologist tacitly confesses, in the same why as the Frepch term Ogivel is balanced against Plein Ceintre. Yet the adrocates of the new names inconcistently call the style enterior to Pointed-_" Romanesque," from the name of the People from whom this style was mediately derived. The term Third Pointed has also the grand defect of confounding Perpendicular with a style altogether different-Plamboyant. The old nomeaclature is not theoretically perfect, still it in more so than the new one, and besides is suficient for all practical purposes.

We agree with the Ecclesiologiof in condomning the term Gothic. Historically speaking, it involves an anachronism, and, moreover, it wes inrented as a torm of reprosch by those who knew nothing about it. For the latter reason we also object to calling Classic architecture Pagan-we would as soon speak of classic litorature magan. The term confounds a style which the Ecclesiologist confesses to be "faithful," " beantiful," and to have been produced by a "beanty-loving people," with the archisecture of the Hindoos and Mexicans. There can be no objection, however, to the application of the term to the mongrel arehiteotare of "Claspic" cathedrals, and to all attempts at combining the horizontal eopstruction of the Grecian with the vertioal constraction of the Medieval architects.*

ARCHITECTURAL RECOLLECTIONS OF ITALY.

 By Fampaict Lush.(Continued from pace 169).
In considering any ornaments in connection with the architecture of Italy, or the numerous broose and marble works which adora her pianems, we see how much the grander and more impoaing character of bnildings is met off by these smaller embellishments In Tuscany, and elsewhere, in the time of Lorenzo Ghiberti and Doantella, the charches and cathedrats were decorsted with apostles and scriptaral subjects, asd heroes ocoupiod ber colonoades ; in the sane way as formerly fablea were represeated by Phidias on the temples, and statues of gods and sarges stood under the porticoes of Greace. And the nimilar Forts were attended with correspooding happy resulte. In each epoch and country, the artist uf fit himaelf a publie benofuctor;'t and he was onc. Now, in Italy, the respeet paid by we loweat and mont noeducated clasess to artists, whether native or fureign, is greater, pertaps, than it is in any other country ; and we think this is chiefly owing to the ochibition of works of art in all her poblic places. However easy of accom thoy may be, muceums and pic-turo-galleries will do litule towards enlightening the people and interenting them in the canve of the fine arts, compared with the good derived from the works of acknowledged artists, is spots which men habitually frequest Nothing has had auch a condoncy in the month to ongage the feelings and

[^33] - Hazlitt.
indece the mind to refect and grow refoed, or inetill into it patriotic ideas, es the presence of sach prodactions in the equares and in the streeth, The public tasta is thereby constantly exeroived. Indeed, so many are the portions of groand appropriated axoluaively to worte of genios, that it may be said the tasto of the people conld not degenertito, even were the treagres of the Vatican or Ufindi nnknown to them. The efiects, also, of viowisg these worke in the open air are more healthful, and, on acoount of the freedom and jodopendesce of the spectator, yield a pleasare saperior to that afforded by works of the same decoription within a palace; the glorions san that heightoss these beantifel objects resderiag the Italiases at the aame time casceptble of every emotion which it is in the power of art to inspire. Every traveller must bave beand the exciamations of praise that are attered by mule-drivers, begsars, portors, and boatmen, when looking on the colosal Agores which adorn tore forntain, or a noble groop of etatoary in one of thoir finvorite squares. And all admire thene places ebroad, from prince to peasant. It wae gralifying to me, when in Venice, to soe the bliad Holmain foeling and passing his haods over the beantiful broase and marble works in that city, and to witness the lively pleanaro he ${ }^{\circ}$ experionced from such monuments. The faproesions thas prodaced oaly make us regret that art does not develope itseif to the aame oxtent in England, and that such thinge are not carried ont on that magnidicent and Uberal scale we nee in the Italian citios. An opportunity which was latoly offored for making one of the mont aplendid piazas in the world, in fromt of the National Gallery, was thrown away; and, with the exeeption of the equentrian statue to King Charles, tho whole is now a disgrace to the antion, and one masa of rabbiah. This is the more to be regretted, because the artists of our time take precedence of the moderos in Italy; and were there less false and more real patronage, some of our int sculptors would heve graced the apot with subjects rivalling the best productions of ancient Greece.

To those men who contributed so mach to the reatoration of art in Italy, We owe the most beantiful works in her great squares; and we canoot forget that the sculptors of thowe grand works in the Piazat del Gran. droa, at Floreace, of the broase getes to the Baptistory in the same city, of the fountains in Rome, Perogia, and Bologna, whilst they attained excellence in that high style of art which they exhibit, were at the same tites, or had been, jevellers, masaicisti, and medallists; and that the practice of patting together the minute fragmente of stone or glacs, or catting the sheil or cornelias into edmired cameoe, did not preveat them from oxecatieg some of the grandest works ever known in scalptare; works, of which the reputation is sealed by the enconiums of Michael Angolo and of our own Flaxmao.

II.

"Fow of then palaces are of sood architectore-some of wery bed; othera are whim-
 an Arehisect" \&

The details of the Venetian palaces are valuable, beonase they lead the mind, like all eccentric bot beantiful things, to think and invent for itecif. Their peculiarities and caprices of style are positive fandts if tested by the standard of the Classic eramples, or by Palladio; yet, for all this, we see in the composition of the vindows, balconies, and other parts of the paleces of Venice, priaciples of real beauty. An eariy and too ox. olusive edmiration of the Roman edifices is apt to prejudice the mied against them; but we think they mast be studied by an who woald not eeparate the painter from the architect.

The architecturo of Venice is what the city itself is in its history and acsociationa-strange and romantic; and her Doge's palace, fairy-like and Eastorn in its appearance, reverses the prinotples of all other architecture. As Forsyth says,-_Here the solld rests on the open, a wall of eoormons mase reats on a slender fretwork of shafte, arches, and intersected circles. The very corners are cut to edmit a thin spiral column, barbarism whioh I saw imitaled in several old palaces. A froot thas bisected into thick and thin, soch contrast of dat and fretted, cas please oniy in perspective. It is not enough that the etructure be really durable, it ahouid also appear co." The writer had, however, formed hiu motions of architectaral benuty and propriety on the precepts of Vitruvius and Palladio, and anything contrary to these was immediately ridiculed and censured by him. Now, the sketch of the Doge's palace (Eg. 1) show, with all its dofects, what a pleasing beauty it has about it; an effeot which it owes solely to its departure from thoee prescribed rales. On the other hand, we see edificas whioh the judgment might prononnce faultless, mont correct in the proportioes navaliy given to them, must perfect in the featores suitable to their partioular clase, and, indeed, without any of those vagaries which are
bore dieplayed-before whioh the mited reinals and and anercined. A cotal iscapaoty of raioing ploasurable emotion mast begek apactio, if mot

diegrat, towards an objeot. A building, like a book or a pictore, may be without a single absurdity, yet be very far from beentiful. Now, in the works of thoee men who thonght for themselves, and were more ambisioas to be artimes than imitators, we often find that, in doparting from cooves tiomal rules, the defects (if such they were) were redeemed by the invention of aome atrikiog boanties which pleased the imagination, acercised, whilst it fasoinated the eye, and at least poscessed the merit of originality and that charm which all worke of great invention have-of which dall coples are always dectitute. Instances of these abound is Veefce, aud in many of the Italian cities, oxhibiting an approximation to the Gothic in feeling, although that result was attained in quite a difierent way; is the Loggia of Sanmovino, for examplo, and that of Lanzi, and in the cornices and other parts of these celebrated designo, on which has been beatowed great attention; iv San Michele, Florence, aleo, remarkable for the beavety of its crowniag member and the tracery of its wiodows: and in the Yins. 50 Pablico a\& Placeaza and Como." It ahould oaly be remembered that whilst on one side, by too strictly following preoedent, we ottem sabmitate olegance for sentiment; on the other, a too open defiacoe of it, mifoth lead to $\frac{1}{2}$ corruption of true tisto.

It is observabie in the Dacal palace, as in many obber Vowetin brildings, bow woll the contruet between the flat mase of wall and its wiotows is effected; how eduirabiy one part sorres to relhove the other ; alco bow the colonred diamond patterns on those masees rodece the treavinewe wivith might otherwise appear too great for the light, ormanental corridor below.
The angolar baloony and reoes (fic. 2) from another pailace is a a merbarism" perhapa not likely to be committed by many Eagitoh archetecte. Nevertheless it is very boautiful. It wes iagenioucly coatrived for oommasding, from ose point, different viown on the camals; bet for this and a thousand other similar pioturesque fuatares in ber beildiags, with the momoties they amaken of her former pegentrien, Veaice would hae mope than half its euchantment. Sach thirge fally exprese their meaning in this wooderful city, and impreas the miod with all that poetry and no mance that is infused over it. They munt be eppliod, bowever, fritity yent caution to other places and circematanoes, for, bearing, as they de, more the utamp of power and the forve of origianal thongth, than the evidenoe of good taste, they shouid serve rether as etimuli to inreotion than ea examples for imitation. The danger of morifoing correct drawiots and jew ropresentation to a love of aplesdour, of whloh Reymolde, Peoni, and others, warned the student in the faccinading colours mand wild comparimines of the great Venetian painters, vight equally be incurrod in an imeoderate fondoese for the forid palnow of Veaioe aed the firsotiol armation of the Moor.

[^34]It is easy to reoggmine a eorrespondence ta the priaciples and effects both in the painting and arobitoctare of Venice.

7s. 8.

That variofy of tiots, of forms, of colonra, and of the manner of breaking and bloading them into one another, which is seen, with one or two exeoptions, in the Venctian palaters, was in itself extremely attractive; bat its merit of beauty and picturesquebess was fatal to all grandeur asd digoity. So in the architecture, lhere were anch a richnem, such an intriency, wany conves of contrary fleyure (archi proteiformi), and, as it wrold sometimen seem, such a positive tvoidance of anything like uniformity or a long continuation of linet, that, piotnresque though it be, and intarenting for reasoas already siven, it was yet far removed from simpll. city and grandenr of effect. All these highly orammental qualities were rejected by the Doman aud Florentine schools, which excelled in the grand and fmposing etyle; and those pelaces of Rome and Florence, which heve the mational feafures most utrougly marked on them, as the Farsese, strond, and Pith, contrasted with those is Venice most remarkable for acir pecalinritien, present the opposite chareoteristics of grandear and mere pioturesque beanty as moch as objeots totally differing from aech ofler poudbly can do.

III.

Athoggh the marted oharecteristics of these styles arose oat of peenlier times and ofrcmmetaces; yot it munt be allowed that the details of cheer edifices are alteribotable partly to the emonnt of the labour beatowed chan and, in a great meane, to the degree of artietic skill and know. budye of photorial effoet poscesced by the Italiang. At a period happy for art they uaited the yainter with the architect. Dominichino, Raphaol, Mtchacel Aagelo, were the better able (as were also our Chriatopher Wrea ad Vasbragh) to impress mowe originality and power on their worke, from pamenting thte combiaation of taleat. Orcameats, showing great atteation to chinr' ascuro, and a knowledge of the artificies of contranting Iight with shade and prodacing relief, and oxeouted with refereace to the dineneer at which they would be riewed, are well displnyed in some of the details of buildiogs in Ituly, at well Roman as Italian-Gothic; although

In a difterent, rather than, perhape, to a leas extent than that neen in the elaborate earichmente of Gothic architecture.

Thus in many of the Italian cornices,* as in the briok and terracotta ocos in Padan and Forrarn, bat eapectally (as being litewice of saperior material) in that to the Stromad palaco, therv is suck a union of boldnese and richseas-and cometimes theos qualitios etand ont 00 ocaspicnocaly isingly, that they make all the impreseion on the apeotetor which it is potsible for eneb things to do; deriviag their effects from bold projection, breadth of shade, and judicions arrangoment of anrfaces ; and sot these mombers only, bat the ohimnoys, which make such morry fgares on oar roof, are remarkable for their beauty and the ontline they offor against the sky ; and the deop effeotive border ornaments and decoration to docrs and windows often recolve all the charncter and importance of which thoy are susceptible.

Let any one compere this Stroasd cornioe with any cornices in Eaglaod, deafgoed on baildinge of an equal sise with that palanso, and be will see and Jament the difference. The former has been accused of "projecting beyond all authority"-by 20 doing it beoomes a bold and spirited production. In England, too often this featare, even in large public buildingt, whore it is oapable of boing made tmposing, and onght to be so, dwindles into insignificance and meanness; for their parts are seldom large and definite enough; bat often too amall and too confased; no secoont is taken of the point of view whence they are beheld ; and little attention is given to increase as mach as poasible the effect of light and shade, by making some parts prominent and deepening the recesses of others, as, for iastance, in the deatiles, aed egg and tongre monlding. From neglecting this, thowe portions of the cornice are often entirely loat in the open air to the eye, and require, in onder to be seen at all, to be brought within the bounds of the architeot's ona room, or alse to bo viewed throagh a telescope.

 by the mame felluge of puity and broedth that lemt so mach value to the beet worls of the anciente. I cannot refrala from calling the strention of the atudent to the corntese emplojed by the Florentine wchool, tneepuch as there fo no member of a bail)

 Picolominal palece at slenna, whoee covart and atajrense are of extrmordionty beunty, tho comsice is proporitioned to the wholo helght of the bollding, an the helght of an offer, notwithatanding the boricontal subdivalone and umall cornices that oecar batwrep the ground and she crowalof members. Not lem celebrated than chooe fant seoptosed, ha that of the Parnees palece at Rome, thich Dan alway been conaldered one of the toot
 Citictam."

A NEW THEORY OF THE STRENGTH AND GTRESS OF MATERIALS.

By Olver Brank, Profomer of Mathematice.
(Continued from pase 167.)
The work dome in elongating a bar to Its olatic limit, whose nectional area is one square inch, and leagth one foot, equal to $\frac{1}{1} \mathrm{M}_{\mathrm{e}}\left(\frac{1}{L}\right)^{2}$, mupponing the livit to be expreseed by the fraction $\frac{1}{4}$; is this eace $\Delta L=1$

The units of work done to elongeting any other bar of the anme material as the last, whose length equal L, and sectional ares equal A, to tio eleptie limit, $=\frac{1}{1} M,\left(\frac{l}{L}\right)^{2} A I_{4}$ It is evident that $\frac{l}{L}$ is the came value m in the lant case, hence, $1 \frac{M_{c}}{c}\left(\frac{l}{L}\right)^{2}$ is the came in all casen with bare of the oloegated to their elastic limit. $1 \mathrm{M}_{\mathrm{e}}\left(\frac{1}{\mathrm{~L}}\right)^{\mathrm{g}}$ is called the modulas of Resiotance, and may bo written M, and is somotimes called the modulus of longitudinal Resilienoe. If the work of elongatiog goes on till frecture is produced M_{f} the work meceseary to cause fracture in a ber a foot long and an tach equaro, is styled the medalus of fragility, to that $\mathrm{M}_{f} \mathrm{~L} A$, will express the noits of work that will cauce fracture, in the anme manser that Mr L A expreses the maits of work to extend a bar to to alastic limit. By-apd-by we shall explain what is madegetood by the tern Modalas \propto Rapture in Transvere 8trains. The modulas of fragility, \mathbf{M}_{f}, must not be mistaken for the unit of tenacity, which is the number of pounds that mould tear asunder a bar owe square inch is section. Length is nos lakea
into sceount in the nait of tenacity, bot as the strain is supposed to be on the higheat section of the bar, it is therefore at this seotion the rapture will take place, bence the length mant be takeo into accoant in determining the weight that produces fracture.

Let us bext consider the natere of the forcos azerted by the flements of the crons seotion, mear 8 , when the benm in in the state bordering upon topture.

Let g^{\prime} be any polet of the eurve 85^{\prime}, very mear g; and lat the normals ief and $t C^{\prime} g^{\prime}$ meet in the frolut o. Lot $p=$ the radius of cervature of the mean miament, $e 8$, at the poitet s, that is, the filament which is in a middle riato betwreen to and $5 \boldsymbol{g}^{\prime} ;$ it is reprecented by $k \boldsymbol{k}$ in the cross section through $t g ; k k$ bis inch a position that it is equal in longth to a b or $p q$, the breacth of the beam before the medght W was applied.

It most be obecrved that Ag. 14 is part of fg. 18 eviarged, tho sums 78. 14

latters represent the same parts, and that e e is not coonidered nentral. Let $\sigma=e \sigma^{\prime} ; x=$ the distance of any filament whatever as $f f^{\prime \prime}$, from the mean filament, and σ the length of $f f^{\prime}$
$\bullet f^{\prime}=p+\varepsilon=$ radius of curvature of $f f^{\prime}$, at the point f, then,

$$
\begin{gathered}
\sigma: \sigma^{\prime}:: p: \rho+x \\
\bullet \cdot \sigma p=\sigma p+: \sigma, \sigma=\sigma+\frac{\pi \sigma}{p}
\end{gathered}
$$

On ecconnt of the forces applied, the longitedial filameats undergo amall dilatrons, which will dettroy the equality that existed between σ and σ ' bofore the forces were applied. Let $a=$ the primitive magnitude, then, supposing 8 and 8 very gmall frectional parts of $a, 80$ that

$$
\begin{gathered}
\sigma=a(1+\delta) \text { and } \sigma^{\prime}=a\left(1+\delta^{\prime}\right) \\
\bullet a\left(1+\delta^{\prime}\right)=a(1+8)+x \frac{a(1+8)}{p} \\
\cdot \cdot \delta^{\prime}=8+\frac{x(1+\delta)}{\rho}=\delta+\frac{x}{p}+\frac{x \delta}{\rho} .
\end{gathered}
$$

Let $t H^{\prime}=a\left(1-f^{\prime}\right) ; 55^{\prime}=a(1+e) ; l t^{\prime}=\left(1-\delta^{\prime \prime}\right)$; and let the height of the fibre at $g=i$, and breadth $a b$ or $p q=\beta$, that is, the breadth before the force is applied. $e f=s ; e l=y ;$ es $=a_{1} ;$ and $e t=a_{2}$. When the element or fibre at g, becomes expanded till its length a becomen $e(1+t)$, theo 1 it breadth will be $\frac{\beta}{(1+i)}$, and height $\frac{i}{(1+i)}$, the beighti is so marall, this anpposes the cross section of the extreme Ibre, before the expansion takes place, to be similar to it after being expanded, ;-mind we san similar, not equal, for $\frac{\beta}{(1+4)^{\frac{1}{3}}}$ is less than β; so the breadth is di. minished. It will be percaived that we are here speaking of the lower filaments at g.

[^35]$$
a_{1}:\left(a_{1}-x\right):: \beta-\frac{\beta}{(1+4)_{1}^{l}}: \frac{a_{1}-x}{e_{2}}\left(\beta-\frac{\beta}{(1+8) \frac{1}{2}}\right)
$$
.\cdot the breadth of the fibres at $f f^{\prime}=\frac{\beta}{(1+8)}+\frac{a_{1}-x}{a_{1}}\left(\beta-\frac{A}{(1+e)^{1}}\right)$ $=\frac{\beta}{a_{1}}\left\{a_{1}-\left(1-\frac{1}{(1+s)\}}\right) \cdot x\right\}$. The force arising from the action of $f f^{\prime}$ is proportional to 8^{\prime}, and may be represented by $\boldsymbol{m}^{\prime} 8^{\prime}$, mbeing a cos. stant depending upon the nature of the material of which the bar consists ; therefore, the normal force which corresponds to the point f, normal to g , is represented by $\frac{B}{a_{i}}\left\{a_{1}-\left(1-\frac{1}{(1+i)}\right) \times\right\}=8 d s$, and the moment of all the forcem cormal to eg with respect to the axis $\boldsymbol{h} \boldsymbol{h}=\mathbf{M}=$
$$
\frac{\beta}{a_{1}} \int_{0}^{a_{1}}\left\{a_{1}-\left(1-\frac{1}{(1+6) \frac{1}{1}}\right) s\right\} y^{\prime} x d x
$$
but $\delta^{\prime}=8+\frac{(1+8) x}{p}$; hesce, by aubetitation,
$$
M=\frac{m \beta}{a_{1}} \int_{0}^{a_{1}}\left\{a_{1}-\left(1-\frac{1}{(1+\varepsilon)^{1}}\right)_{x}\right\} x\left(8+\frac{(1+8) x}{p}\right)_{d x}
$$

Therefore M equal
$\frac{m \beta}{1 \sum \rho}\left\{\left[6-4\left(1-\frac{1}{(t+0)}\right)\right]^{8} \rho a_{i}^{2}+\left[4-8\left(1-\frac{1}{(1+4)}\right)\right](1+8) a^{i}\right\}$
$(1+8) a\left\} ;\right.$ bot $p: \rho+a_{1}:: a(1+8): a(1+4) ;$

$$
. \cdot 1+8=\frac{p(1+c)}{p+a_{1}} \text { and } \delta=\frac{p e-a_{1}}{p+a_{1}}
$$

$$
\cdot \cdot M=\frac{\beta a_{1}^{2} p}{18\left(p+a_{1}\right)(1+\varepsilon)!} x
$$

$$
\left\{(2(1+6)+4)\left(\rho \in a_{1}\right)+\left((1+e) \frac{1}{2}+3\right)(1+4) a_{1}\right\}
$$

This being eatablished, we shall next delermine the pature of the forces betreen e and t, or on the area $\boldsymbol{k} \boldsymbol{k} d c$. The breadth of the extreame fibrea at $t t^{\prime}=\frac{\beta}{(1-1) \frac{1}{2}} ; \quad 0 t=p-a_{2} ; 0 t=p-y$.

$$
\begin{gathered}
a_{2}: y:: \frac{\beta}{\left(1-a_{1}\right) t}-\beta: \frac{y}{a_{2}}\left(\frac{1}{\left(1-a_{1}\right)!}-1\right) \beta \\
\because \frac{y}{a_{2}}\left(\frac{1}{\left(1-1_{1}\right)}-1\right) \beta+\beta=\frac{\beta}{a_{2}}\left\{a_{9}+\left(\frac{1}{\left(1-a_{1}\right)}-1\right) y\right\}=\text { be }
\end{gathered}
$$

breadth of the fibres at $l \boldsymbol{l}$. The olantic forces of comprestion between e and t, as well as those of extension between a and g, tend to torn the aurface of ropture in the same direction about the axis of rapture. The moment of all the forces mormal to $e t$, with respect to the axis $h k$, which we shall call M, is equal breaking, together with the presevre applied at \mathbf{B} or \mathbf{A} (4g. T), whith is equal to half the weigbt \bar{W} and half the woigite of the beam.

Rapreseating, therefore, by w the weight of the boam,

$$
M+M_{I}=7(W+\infty) \times r B
$$

Let $\boldsymbol{\Gamma} \mathbf{B}=p=$ half the distance betwen the supports $=$ the perpeodicular let fall from the axis round which the section of rapture tarne apon the direction of the presanre at A or B. In the bext number will be pointed out the erroneons principle upon which Hooke's lan is founded.
(To be continwer.)

$$
\begin{aligned}
& \frac{m_{1} \beta}{a_{1}} \int_{-a_{3}}^{0}\left\{a_{4}+\left(\frac{1}{\left(1-a_{1}\right)!}-1\right) y\right\} y^{\circ} y d y ; \\
& \text { but } \delta^{\prime \prime}=\frac{a_{1} p-a_{2}+\left(1-q_{p}\right) y}{p-a_{2}}, \\
& \text { for } p-a_{z}: p-y:: a\left(1-1_{1}\right): a\left(1-8^{\prime}\right) \text {. } \\
& \because M_{1}=\frac{a_{z}\left(p-a_{2}\right.}{m_{1} \beta} x \\
& \left.\int_{-a_{9}}^{0}\left\{a_{9}+\frac{1}{\left(1-i_{1}\right)}-1\right) y\right\}\left\{\left(t_{1} p-a_{2}\right)+\left(1-a_{1}\right) y\right\} y d y . \\
& \because M_{i}=\frac{m_{1} \beta a_{9}^{!}}{1 \times\left(p-a_{8}\right)\left(l-i_{1}\right)_{t}^{t}} \times \\
& \left\{\left(-10\left(1-f_{1}\right) t+4\right)\left(c_{1} p-a_{3}\right)+\left(-3+7\left(1-a_{1}\right) t\right)\left(1-a_{3}\right) a_{3}\right\} \\
& \text { Now the clastic forces } M \text { and } M_{1 p} \text { when the tean is an the point of }
\end{aligned}
$$

CANDIDUS'S NOTE-BOOK. FASCICULUS LXIX.

" I mast heve liberty
Withal, as large a charter as the winds, To blow on whom I please."

I. Eren should Burton's arch prove able to bear Fiyatt's Wellington comIortally, it in more than in all present likelibood good tente wrill be able to fo. If thowe who are mainly concerned and interented in hoisting op the statue to that " bad eminence" and uneaviable point of exaltation for it, have felt all along ao asured of a atiafactory reault, how happens it that they have not imparted some degree of that ame comfortable acarance to the public, if only to atop the month of criticism? Some half dozen years ago, indeed, a mere flat pateboard sort of acheme of the figure was atuck up on the top of the arch for a day or two,-and a strenge figure it cut, which may have been one reaton for taking it down again as expeditiously as ponsible, instead of allowing time for its heing generally seen. In the interim, which has been a tolenally long one, nothing fartber has been done in the way of precan. cinalary trial, or if it has been dove, the public bave not been informed of it. Yet mont assoredly it would not have been amis, had a good-sired model of she structure with the equentrian figure apon it, been prepered, and exhibited at the Royal Academy; bealdea which there should have been perapective views also taken from different points, in ordor the better to determine what would be the effect of such contemplated "improvement" of the arch, npon she other buildinge and objects in its lmmediate vicinity. Hardly could the expense attending ruch model and drawinga have been made any objection or dificulty, where so goodly and serione sum st Thirty-thoratand ponads or thereabouts was to be expended, and that upon a single work of art. It in well shnuk the managers not prove to have been penny-wise and ponndfoolinh in the matter, and ahoold the work 20 liberally subseribed for, not verify the proverb of brying a pig in a poke. The thirty thomand pounds for the bran-oew atatue by our modern Phidian, is not much less than what the priceless Eigin Marbles cost the country ; or than what would have secured to matheentire Houghton collection, and prevented its going out of the country. Alaa! for thone days! Among the whole toonied aristocracy, among all our wealthy collectors, nay among our city millionairea, there was not one who eared to glorify hls own name hy inseparably uailing it with that of the Houghton Collection. Many could easily have suateched the prize from the grap of the Rusian Catherine, by merely taking op pen, and giving a cheque for the anm demanded-anm that has frequently been ataked at the gaming table without componction or heaitation.
II. By way of apology for, or in order the bettor to reconcile us to the Wyatt Wellington-which might adorn eome other aitastion, being put where it will prove a Wellington "out of place," we are told that the idea has been anctioned by the consent of the late and present Sovereign. Now as to William TV. it is notorions that he peither had nor pretended to have any tente at all for ant-and that last wes some merit; he neither knew nor cared about it ; and as to the cossent of her present Majesty, it may fairly be suapected that it is merely a negative one. Like Dickens' Mra. Dario-if auch very nucourthy comparion be allowahle-ohe doen not care to be "worritted" about the matter,-though of conme there is no auch word at "worrif" in the vocabulary of royalty, $\rightarrow \infty$ leaves the managers and subecribern to please themselvet in the affir.-Granting that the Arch may be able to bear the enormons weisbt that will be put upon, secure enough for some time to come, jat the time will come, nooner perhaps than it thought of, when the eracture will require repair, and when it be so loaded, will not that be an operation attended whi come harard, as well as very great difficulty? It will not be matter for moch surprive should it eventnally be foond necenary to fertify the work by converting the hollow parts within the structare into colid mamee of earth, concrete, and brickwork. At all erents should the sebeme be penisted in, we shall have a huge Wellington mounted on gaard before little A poley Honse, which for an Ared-doke's manion is an lillipution in tate as it is is dimensions. Instead of giving us a mere "sentinel" atatue, minds not the artist have properiy throwa a little allegory into hia work, have represented the bero of Waterloo rot exactiy fast auleep, but meraly taifing a mep, whil perfectly wide awake?-or rather, patting that aid Nap to liviots
111. Ipeaking of the decoration of rooms and of his converationa with the late 8totepert architect, Thouret (who died January 17, 1845) on the sabyect, Goet he ayy thet the binitation of granite, porphry, and all sorth of garbles, tuce, is matter of great importance (setr wielify). Consequently be for en-and ble opinion mey be allowed to stand for something, even shorald

It not entirely remove the scruplet of the ultra-consciention,- ald rot look apon anch imitation as mere "tham," unworthy the dignity of gennine arehb. tecture. The deception is surely of perfectly legitimate ts well sa Innocent kind, for we all know that in the most sumptoous palaces or other brilding the internal walls never are or can be of aolid marble, at the otmost are only incruated with anch material. So long as the construction of a brilding be sound, and calculated for durability, what matters it though the beanty which array It, and captivates the eye, bo only skid-deap? Freseo paintings themselves are only superficial ; the exteral sorface once gone, no redresting or repolishing can revive it. It is no ergament against the fmitimtion of costly and perhape somewhat inapplicable materials also, that it is apt to he very paltry. It certainly in not necesarily so, for it may, on the contrary, be very ozcellent; and as the proceset by which it it produced partake more of mere manipulation than art, excellence-ponitive merit ean safely be ensured for it beforehand, which is asauredly so amall adrantage. Those who affect to deapise all deception of the kind, may be left to reconcile to themelves as well as they can, that of gilding, by means of which the most valuable of all metale in counterfeited for purposes to which that or any other metal would be perfectly inapplicable,-pieture frames, for inatance, which though apparently of gold are, and ere known to be, only of ordinary wood gilded over.
IV. Barry is now not only eclipuing sonne, but absolotely extinguishing him bit by bit, at least in the purlieus of Weatminster. Poor Soane! not ouly hat the exterior of his "Board of Trade" bean 20 completely refashiomed, as to bo metamorphosed into a different piece of architecture, bat his Scala Regia and Gallery, and hin Law Courts-on which last he prided himelf so eapecially, aro doomed to pasa away, withont leaving a wreck bebind,or other memorial of them than the wretchedly vile angravinga of them in him "Public and Private Buildinga," a wort remarkable for nothing to much as the extraordinary penariousnesa with which it was got op, more particularly the old architect's character for "munificence" conaidered. Poor Soanel pity that he had not the heart to be a little more liberal towards himsalf,- 0 mewhat leas positively atingy. Poor Soane ! too, it will be doubly, if Britton should now pase by him withont mention, when recording the other diatinguished patrons and persons of talent whom it has been hie good fortune to attract to himself daring his long and industrious career. Will he now cut " his eateemed friend Sir John Soane," or will he recant,-at least qualify his former admiration by giving a dark à la Rembrandt portrait of him?Now eerroxe.
V. Welby Pugin has obtained a dintinction very rarely conferred in any shape, upon members of the architectural profeasion, however eminent they may be, namely, that of having an engraved portrait of him publinhed. To say the truth, architects are treated as a sort of Inpersomale by the pablicscrentures withont bodies, therefore it is to be presmmed, all intellect, ill mind. At any rate, it scems to be taken for granted that no one eareit to behold what manner of men they are in ontward ahape and phyniognomy. You shall look over catalogres and lists of portrats, and among thouanda will acarcely find one of a alogle architect. It fares very little better with foreign architects thats with English ones: portraits of reeent or living ones are rare phenomena. Thingi of the kind may be painted, bat they are not tranaferred to copper or stone, pro bomo pablico. There is a pabliahed portrait of Cagnola, one-nay two, if not more, of Schinkel; beyond which number the list can hardly be extended. It may be queationed if there be one even of Zwirner, although a likeness of hum ought to be le requeat with the multitude, he being the architect empleyed upon the worke at Cologne Cathedral. What Nagler will ay of Zwirner is not likely to be known-at the rate hil work progreses-till some twenty years hence. When he does reach him, it is to be hoped that he will not blander so egregiously, as he did about Pogin-or rather the two Pogins, father and son, of whom he completely made mincemeat, by chopping them both up togother, and atufing the componnd into one articie.
VI. The second series of Allom's "Prance Illustratod," is decidedly inforior to the first, as regarda interett of subjects. In that respect it exhibita a deplorable falling-off; and hardly leas than deplorable it is to find him, after siving ua auch delicious interions of the Madelalne, the Pantheon, and several of the apartmeata at Fontaineblenn-that excepted, called the Salon d'Abdieation, a very commonplace room, remarkable for nothing more than a very big-headed Napoleon in an arm-chair,-he ahould dith np for the second course, auch watergrael things as monotonoss lasdrespeo-chiefy an monnthins and akies, that we seem to have met with before, again and aspin, there being nothing in seenery of the kind to individualize and extinguinh one pes. ticalar spot from another, whertore one or two apecimens are as good at
a score or two,-nay, very mach better, because there is then more room for better subjects. And pray, has Mr. Allom taken leave of Paris?-does he not intend to let ns have from his trant pencil-views (interior and exterior) of Notre Dame de Lorette, and St. Vincent de Panle, of the Bcole det Beanh Arte, the Hotel du Quai Orayy, the Hotel of the Banker Hope, and many other edifices which would show his forte? Let him labour in his own proper rocation and he will be almost anrivalled in that department of architectural illustration in which he has evidenced such captivating talent in his "Constantinople," and his "Prance." At much cannot be asid for the putter-together of the letter-press in the latter work, for of architecture he seems to know actually nothing,-is altogether uaable to speak of brildingu, except by cometimes blundering most deliciowsly, as when be talks of the Theatre at Bordeaux been adorned with "intereating" | Corinthian pilastera, which is nearly all that he says of it !
VII. Schlegel was not very wide of the mark in alying "Art has become a slop-shop for pedantic antiquities." Those who pretend most to busy themaelven and to take interest in it, give their attention chiefly, and sometimes exclusively, to what is not of the alighteat esthetic or artistic importance. In what are called Celtic monnments, for inatance, there it no architectural articalation, they consiating of no more tban 40 many brufe stones,unthapen, shapeless, or misshapen. Such thing are wholly deatitute of organization; hardly can they be called the work of man's hand; being merely rude blocke of atone in thelr natural form, teatifying that those who set them up, had no architectaral akill or science, and were unable to reduce them to even the simplett artificial regular form, the Bgyptinn did the mosoliths which they erected as obelisks. Yet though they posess neither pietorial nor architectural interest, soveral plates are devoted-literally as. crificed to the subject of Celtic monamentr, in both the firat and recond seriea of Gailhabaud's Ancient and Modern Architecture. Surely a ingle plate of specimens of them would have sufficed, would have been quite as much as was their due share; whereas modern architecture has as yet come off very poorly, and must do so at last, unless the work is istended to be carried on indefinitely. A really new and fresh subject has not yet been siven in it at all : they are all old acquaintancea derived from other publications, -new only to those who are themselves new in architectural study. Yet if unedited subjecto-anch as have not yet been made known in this country at least, tbere is abundance,-even perplexity of choice. Out of the number of recently erected structures at Paris, there are some infinitely more worthy of notice than those which have been selected from that capital. There is for one the new church of St. Vincent de Panle, also that of Notre Dame de Lorette; and a section of the Madeleine, which seema to have never yet been to sbown, would be very acceptable. The new Theatre at Dresden by Semper, the new Palace at Branawick, by Ottmer, would be novelties worth setting before us; whereas tbe modern specimens selected are atale and mouldy,-are of what, in speaking of ladiet, is termed a "certain age," being neither old nor young, neither lovely, nor venerable.
VIII. Architectural deacription is generally very dry staff; few bring thet rich poetical imagination to it, or acatter such flowers of "gay rhetoric" over it, as does the accomplished George Robins. As an example take the following effusion from his pen, which appeared the other day in the Times, relative to a place distinguished by the not particularly inviting name of Thistle Gruve, but he has such a Midas tonch that he makes every subject he handles glitter like pure gold.-" The house," he tells us, " is a solid piece af architecture based on the Corinthian order, adorned by a conservatory in eapital teste, with painted glass; and within this little Elyainm comfort is conapicnous in every department." An uncomfortable Blyainm, however, would be something more marrellous. "The tact that prevails is of peculiar cast; it disdains the prevailing order"! This is somewhat transcendental In meaning; and requires some cogitation to make it out. The prevailing order, by which it may be presumed the above-mentioned Corinthisn order is to be undertiood, is it seema after all, prevailed over-even diadained by the atill more prevailing tact. The tact and the order coatend for pre-emizence, and poor order comes off with the worst of it, wherefore there is likely to be some disorder in the matter.-"The doors of the drawing-room are divtinguished by plate-glass:" what an ingenious and delicate way of siving an to understand that there is no plate glass in any other part of the house! Pasaing by the reat of the description, it will be sufficient to give the concluaion-a climax not to be aurpassed: "These apartments are to perfect that really Elysium is brought to recollection" !! As George Robin! is the only mortal upon earth who recollects Elysium, he cannot posibly do batter tban ęnlighten the world by an accurate topographical description of it from his own poetico-graphic pen.

RUSTIC MASONRY.

The value of what is termed rastic masonry has beea alluded to incidentally in the paper on the employment of pedimenta and colamis in the decoration of windows ; we now propose to consider the zesthetic propriety of "ruatice. tion," a little more generally.

Of this kind of masonry there are two principal apecies. In the one ex. terior aurfaces of the swnes are indented to reaemble imperfect tooling ; in tbe other the walk are atreaked with prism-shaped chanzels in imitation of defective jointing. Both kinds of rastication are stadied counterfeita of do-formity-not merely deceptive imitations, but imitations of defects.

Were not our eyes familiar with every absurdity important into clanie architecture, during what is termed the Revival of the Arts, it would not be necessary to defend by argument the condemation of atudied defecta. As it in, however, it will be neceasary to show in what manner the defecta under conaideration violate the fundamental principles of clasaic architecture.

The origin of rastic masonry was necessity. At a very early period of Grecian architecture, while the mechanical arts were rade and immature, the irregularitiet in the masonry were unavoidable evils, and the edges of the stonen were chamfered to palliate in some degree the defects in the jointimg. In proportion however as art advanced, the anfface of the atone wat more moothly wrought, and the arris better squared, till at last the Greek menons were able to build that which is or ought to be a pleasing object to every architect-perfectly finished masonry. In this manner and no other wers built the glorious temples of the age of Periclea. Many centaries howeres after thene monumento of perfect art had been forgotien, and when also the decay of mediseval architecture evidenced how rapidly the principles of pars taste were being abandoned, an Italian architect, Bronelleachi (the nume who built the cupola of Sta. Maria del Fiore at Florence, a atructure in which the essential feeling of clasuic architectnre is systematically misinterpreted throughout) re-mdopted ruatic manonry along with a multitade of aimiler colecisms, for which he has received, facetiously we auppose, the title of Roatorer of Architecture.

A writer who has attempted to defend the propriety of rastic decoration, observes that though it be the imitation of defects, it exhibits a atodied istention, which is a sufficient excuse for ite adoption; and yet the anme writer, by aingular inconsiatency, condemns the use of rustic dies on colomas in which, beyond controversy, studied intention is wore distiactly exhibited than in rastic or tatooed masonry.* But we wish to fonnd our cosdemanstion of the practice not on the inconsiatencien of a siggle writer, but os general principles.

It has been shown in a previons paper, and will therefore be taken for granted in this, that the distinctive characteristics of Pointed and Cinsit Architecture are.maltiplicity in the one, and simplicity in the oiber. The former atyle (when correctly developed) consists in the picturesque combinstion of a multitude of dismimilar parts; the latter axhibita but a very few forms, and those of the simplest kind. Now directly chamfered manoary is adopted, this easential character of simplicity in lost at once ; each stone assumen a separato individuality and appears as if set in a frame; instead of showing but fow lines the atructare exhibits an infinite zumber everywbere intersecting each other and forming a rectangalar net-wurk. Where columas aro employed, as in porticoes, the horizontal lines of this reticulation appensing behind the columna, appear to cut them athwart, and deatroyrthat ides of verticality which is their earential attribute.

A remarkable inatance of the injary produced by horisontal Mine crondes or appearing to crons the columns of a clanic edifice, is teen in the cbureb La Madeleine at Parit, certainly at far as regarda the exterior, one of the most succeanful of modern attempts to revive pare clasic arehitectare. The channels scored on the masonry of the cella have a most injurious eftest ea the character of tbe colomas, and this injury is further incressed by the inperfect (French) workmanahip of the columns themelves. The shatime composed of atonet so imperfectly nnited that they appear encireled with a series of hoops or ringt which, exeept the observer be at a considerabia diatance, cause the columas to appear discontinuons and oerleirated.

[^36]It is obviouniy impossible that mere streake and erevicea on a wall can be digoified by the appelation of moulding, for they never could be made to have the asme value and importance; but even if for the alke of argument, we set aside this unavoidable inferiority, is it not palpably absurd to decorate a building all over with mouldings? These decorations owe their effect to their rarity and their contrast with the simpler portions of the structure ; and the value of them if applied every where indiscriminately is entirely loat. There is nothing in which the Greeks showed themelves more emident than in introducing moulding just where they were required and no where else. It cannot be expreased too emphatically that the whole effect of mouldings, the whole of the relief which they afford, arises from their being used sparingly and marking distinctly the outlines of separate portions of the building. If they be used otherwise confusion-not enrichment-is the result. The dressings of a doorway are not new accessories, but answer a diatinctive purpose : the listel or horizontal fillet, which in a Doric order separates the triglyphs and metopes from the architrave is essentially a constinctive decoration for it exbibits the method by which the joiste of the roof are supported by the colomns. And in the same way we might explain the purpose of every monldiog used in pure classic architecture; but mere channels cat in the surface of the walle canhot answer any purpose cither real or imaginary : they do not serve to mark diatinct parta of the building, for they merely separato one portion of the wall from another exactly similar portion; they do not, like moulding properly so called, divide the building into large well-defined miasea, but cot it op into a confused multitude of little parts.

If the composition of a building be properly managed it will present no large continnous aurfacet which unless so scored all over appear blank and naked. If we examine actual examples of rastication we aball find it to be a mere make-shift expedient, the palliative of an evil which if tbe architectural groaping had been duly atteyded to, would never have heen called into existence. It may be safely asserted that no buildinga whaterer, be the style adopted, can be architecturally effective unless some portions of the building throw shadows on the remainder. This consideration is much overlooked in the present age. The great defect of modern architecture is that it seldom displays enfficient deplh of shadow; it is usually to shallow and fiat; it is not made up of large strongly defined masea, and the variety which ought to be obtianed by depth is imperfectly compensated for by aurface-decorations and minnte details. Rustic work is essentially a surface-decoration, and for that reason alone, if no otber existed will find little fevour among those who would reatore architectore to that place emong the fine arta which it once possessed.

If the arehitect had to deal, not with solids, but aurfacet, be might take leasons of a line-engraver and the River fagade of the Palace of Westminster would be perfect. \mathbf{A} mere fagade however no more constitutes a palace, than a modern church-front constitutes a church. Much more than this is necesaary-especially in classic architecture of which the constituent forma ure so few and simple that anless the effective disposition of light and shadow be observed, meretricious ornaments must be resorted to prevent the monocony and nakednesa becoming absolutely intolerable. There is acarcely any thing which has more debasing and fatal inftuence upon art than a ayatem of acoe trowble expedienta : among them munt be reckoned all superfows anr-face-decorations, and eapecially rastication. We know bat one clans of buildings for which this kind of masonry is approprinte-namely, prisons, which it seems agreed should be at ngly as posible, consiatently with security. In them at least rastic masonry is in anfifiently good taste and accompanied by the ornaments of skull and cross-bones, and iron chains will conatitute a species of perfectiy aymbolic architecture which may be safely recommended to the admiration of the Cambridge Camden Society.

- The anbordinate decorations of a bnilding ought, it is clear, to correspond in character to style of architecture to which they are adopted. A most important consideration under this bead is that while Mediøval Architecture delights in free forms, in Clasaic architecture, perfect finiah and aceuracy are cential. An ancient charch-tower of rongh rabble work is a picturesque object, bowever simple and nupretending the arehitectore may be, but if the cella of Greek temple were built in a similar manner, can it be denied the courveneas of the workmanship would be totally out of character with the seat of the brilding. The delicacy and accuracy of outline which distinguish Grek architecture are churacteriatics which wonld be naturally looked for in a souchern climate; the bold and almont rugged lines of northern architecture eecm exactly to correspond to the energetic character of the people, among whom they were prodnced. Now these contiderations, simple as they appear, are of the utmost value in determining a question like that before us. perate macory displays roggodneas and coarsoness of execotion which, if
: What has just been anid respecting the distinctive character of Claquic and Pointed Architecture be correct, show it to be inappropriate to the formar style.
This brings, us to our lest argument. These who defend the propriety of rustic work seem totally to overlook this consideration-that they ought to be prepared to adapt it to Pointed architecture as well as Clasaic, or elie to poiat out some characteristic differences between the two stylet which render rustication suitable for tbe one and not for the other. This however hai never yet been done; on the contrary, any argument drawn from the comparison angested would lead to the conclasion that if there be any style for which this mode of decoration is suitahle, it must be Pointed architectore. The attempt to 10 apply it would, we apprehend, meet with univeral ridicule; should not this feeling be a sufficient argament for abandoning rastie. masoory altogether ?
To what heresies have we not given utterancel We heve condemned the use of columns which support nothing, of show sides used as maske, of pigmy columns used as window monldings; we have declared the attempt: to combine Classic and Mediseral arehitecture absurd; and now we include' rustic mesonry in our list of berbarisms. But what an emount of precedent' and written teatimony is agninst us! Does not every one of the thinga, which we have condemned exist in St. Paul's Cathedral, the pride of the metropolis, and one of the wonden of the world? And yet we maintain our position, simply because we have in no case subutituted ascertion for argument. If we have in any case failed to prove our point we thall be very' glad to be set right. That in promulgating these opinions we muat contend ggainst an enormous amonnt of educational prejudices if navoidable; but it is better to do this than to let pure Classic architecture be forgotten in the' detestation of debased Classic architecture which the modern improveri taste for the Medimera styles has juatly iuspired.

RBSTORATION OP ST. BOTOLPH'S CHURCH,

Bostur, Lincolnahter.

Among the Chnrch Restorations, which the revival of Christian archites-, ture in the present centary hae instigated, few deserve more tbe public at-. tention than that of the Church of St. Botolph, Boston, Lincolnshire, both from the celebrity of the edifice itself, and from the extent and excellence of the work of which we make this brief notice.

The charch is a Decorated structure of the 13th centary, originally e0nniating of a nave and chancel with side aislea as at present ; to this a magni: ficent tower in the Perpendicalar style, wras added in the beginning of the 14th centary.

Being the largeat charch in the United Kingdom withont cross ainlen.
The tower is a featore of such beauty and architectural celebrity at to need no detecripition here. The octagonal lantern by which it is surmonnted furnished the model from which that at St. Dunstani, in Weat Ficet-street, was designed.

The building is conntrocted of am oolite of great durability, procmrel, it is
amposed, from the quarrier at Ketton, near Stemford, Northemptosishire. The inclemanciat of the weather daring the viaters of 5 centurien (for there are no treept or records of rubatantial repairs since the orfginal erection) 4ave but alightty impaired the general effect of the structure, though the corroding infuences of damp and exposure had long been seen in the lighter and ornamental parts, and here and there on the surfice of the atone work in the walls and buttreases. The circumstance, not anknown to architecte in the present diny, deserves a notice here, that the stones placed in a horizontal ponifion, correaponding to that which they occupied in the quarry, hive entirely eccaped corronion, while those in other positions are invariably injured). To vindieate the integrity of this chief ornament of the province of Gothic architects, the firnt efforts of the Reatorer were directed to the mallions and arch-mouldinge of the wisdow, and these have been replaced almost throughout with fresh atone, the glact-work of the windows being at the same time re-arranged in diamond aquaren, for which the oblong arruggement had been anbatituted at a comparailvely recent date. The whole of the pannelled parapet of the nave and parts of that of the aiales and chancel were next rebnilt, the use of iron breces to compect the atone work, having cansed considerable distortion, eapecially of the mouth side where the variations of temperatare are more felt. The stonewort on this side was 10 mach injured as to require in a great measure to be replaced by new work, in which either copper or stone has been used. At the same time the decnyed atone in the walls of the church were entirely ramoved and freah stones subatituted.

The restorstion of the woodwork in the roof wes one of the heavieat of the expentes to be incurred in neceteary repairs: the onds of the larger beams being decmyed to come distance from the walls, which imperfectly supported their vast bulk, nound timbert were dovetailed with that part of the larger beame which atill remained mond, and along their whole length on either aide strengthened by cast iron barn, which have secured the atability of this part of the atructure probably for centuries to come.

The restoration necessary for the safe continuance of the strocture thus provided for, the ornamental parts were naxt proceeded with. Pour large pinnaclea of 16 feet in height, and of elaborate workmentip, atending at the east and weatern comers of the gorth and month aislen were entirely rebuilt for the mont part with fresh stone, and the ornamental heada of bottreases, crockoted finials, \&en, throughont the atroeture reatored or repleced.

- The work of reparation was condacted by Messri. Scott and Moffat, Who have, as usual, evinced their appreciation of the spirit of mediseral architecture. The following are some extracta from the report presented by the former gentleman to the Restoration Committee. The remarke respecting the restoration of the ceilinge are worthy of attontion. We need scarcely say how fully we agree with the condemnation of the painted jmitatione of stone and onk.

The chorcb appears, from the style of its architectare, to have been built daring the reigo of King Edward the Third, a period daring which a great movement in the way of chnrch boilding seems to have taken place throoghoot this district, as nearly every church in the neighbourhood seems to have been, either wholly or in part, reboilt at the same time. It originally consisted of a nave with aisles (perbaps the largest to any parish church in the kingdom); a chancel of three bays only in length; a sonth porch of one story only; and a chapel at the sonth-western angle. It appaars to have beea begun and completed in the first instance without any cower-the original west wall being boilt perfect and distiact from the present tower, and the arch now leading into the tower having evidently been the mestern window, which was converted into a tow or arch, by removing its tracery and mollions, and lowering the cill to the floor. At a subsequent period, probably about fift years from jis first completion, the present most wonderful and magnificent tower was added: and at about the came time the additional bays were added to the chancel, bringing the chirch to its present spleadid proportions. The porch has since been increased in beight by the addition of the chamber now used as a library, and some other minor additions have been made, and again removed, bat in the main the church retains the same appearance which it must hare presented on the first completlon of the tower, at the commencement of the fifteenth century ; and considering its age, and the neglect which is has suffered, it is in a remarkably fipe state of preservation.

Nats Roof.

The oave, or central portion of the church, is the most importane as being of the greatest span, and is onfortunately in the Fronst condition of tioy part of the roof, so far as can at present be ascertained. It wan at arst very secarely and substantially constructed. The walls were tied together by fourteen begme of most ponderous dimensions, which were aecured to wall plates syok to grooves in the atone coraice, which rons ia one width of stone through the whole thickness of the wall. These beams bare in paris becono muab decayed-the onds of many having in fact comptotely perished, 10 much 10 , that had it not been for some ruther clam.
sily contrived preanatioes, which have from time to dime been taken for their support, thoy could not heve retnined their poaition, but muet have fallen in.

The precautions alladed to, may possibly be sufficient to provide for the inmediate security of the roof (though even of this I cannot apenk with oertainty), but there can be no doobt that it is avything bul a aatifactory state for so enseatial a part of the fabric to be allowed to remain in ; and that if the decay of the boams should ineromse, very serious consequencea might be apprehended. In addition to this, I flod, on a closer inspection, that the wall plates (of which there are two on each side) are (co far asi I have been able to get at them) entirely perished, by which the coonection of the timbers with the walls has in a great measuro been destroyed. An attempt has been made (probably at a very eariy period) to remedy this, by the introduc.ion of the huge iron hooks whioh so moch disfigure the exterior of the clerestory wall; these, however, obviate the evil in a very partial mander, being ill-cunstructed for their porpoin. There are mome farther defects in others of the timbers, particalarly in the feet of soane of the upright wall-pieces and braces, which have been partially deenged through the water having been allowed to get down into the pockets or apringing points of the groined ceiling, and to asturate the masees of dost and decayed wood which have there accomalated. The extent to which this defect exisis it is almost impossible at prosent correcty to ascertain, the parts affected being completely c sncealed by the mouldings of the groining; bat I am inclined to think that it ham not proceeded to a very serious extent.

The effect of these difforeat defects has been to cause an undee thrust upon the coothern wall, the timbers being most decayed on that side, which has occassioned a considerable curvatare ia the length of the wadi. The wall having been, by the jolat pressure of the rafters above, and the braces below, thrust ontward, and partially drawn of from the ends of the tio.beams; and the enormons weight of these (each beam of itectf weighing nearly three toas) being thrown in great messure upon the braces, has teoded still further to increase the evil, which must oven mow be constantly becoming greater; and must, if not remedied, greatis $<n-$ danger thls part of the building. The north side of the roof not being so much decayed as the south,-and the latter having been the firat to give way,-the offect upoo the north wall has been of a contrary nature to that on the soath; and, as might have been expected, this wall has been Uraw a inwards, though to a much less extent thau the outward tendercy of the other.

It woold probably be hopeless to attempt to restore these walle to their proper position, and the otmost we can do is to prevat their getting worse, and to do this we mast endeavoor-lat, to restore that longitadinal etiff. ness to the walls, which has been lost through the decay of the wall plates. - 2nd, to complete the conoection between the opposite walls, which has been cut off, partly by the same cause, and partly by the decas of the ends of the beams; and sidly, to support the tie-beams themselves in such a manaer that by their own weight they may not be causing the failares which they were intended to provent. The firat object cannot, I fear, be effected without tho introduction of new wall plates of oak, where the old ones are decayed; this appeard particularly necensary on the cooth side. The second and third objects 1 thoold recommend to be provided for, by cutting off all the decayed eads of the bearas, aod replacing them with new oak, well scarfed, and with strong iran plates above and below the acarfe; and by iutroducing to each beam a chain truas of wrought iron, on soch a construction that it would at once form a perfect tie to the roof, and would in great measurse support the weight of the bean. Such other timbers as are decayed shoold also be replaced with new. The above repairs could be effected withoot materially diaturbing the covering of the roof, with the exoeption of the gutters and some other parts of the lead work, which must be takeo up and relaid.

External Stomb Woaz.

The atone work geverally is just in that state which rendert it mont difficult to determine the extent to which it requires reparation; it is in many parts much recayed and iojured, but still not to that extent to warmant the renewal of all the decnyed parts; indeed, it is generally the smaller portions of the ornamenta! work which are most affected; the more solid features generally remaining tolernbly sound. The great ohject appears to provent it frum gettiog worse, by rofixing or renewing all such parts as are in a shaken and dilapidated condition, or which are to deceyed as to endanger their stability, and to replace all those dotached ormamental feas. endanger their stabinn, and as pinacles, foials, \&ce., which have been displaced or ahaken, and such other injured parta as can be repaired without interfering too much with the more substantial parts of the building. There are aoce decayed portions of such a patare as to render it doabtial to what estent it might be prodent to attempt to replace them, anch at the pase-mouldiogt of the tower and chorch, and other parts which are intimately coanected with the atrength of the buildings, and the decay of which has not sowe farther than partially to efface the moaldlags on their susfece. No seneral rule can be laid down for these, bat they mast be viowred separatisly oo their own merits, and according to the axtent of their dilapidation, and the comparative diffically and importance of repleciug them.

I will now attempt to enamerato, in order, the several parts requiring reparation.

Cerextolit.

8outh Side,-The npper part of the stair tarret is in a very shatsend
elato. This atair belongs to the gave rather than the tower, haviog is fect oxisted before the tower was built. It appearn to be gaito distiact from the towrer till within fow feet of the rop, where it has been ewanecter with it by toraiag the stairs into those of the lower. It is this connection which hes cavoed its dilapidation; the settlement occastoned by the weight of the towrer having compietely crusbed it and disjointod the clone work, thich has from tive to time been further injured by the iron ties which bave been introdnced. I am of opinion that it will be vecemary to rebuild it from the putter npwapta, a height of about 8 or 10 feet.
The Parapet on thianide has been mnch injured by the andue pressure of the roof, and by the improper use of iron cramps. It is iwisted into every varioty of corve, and in some part overhangs considerably. Many of the stoves have beed split by the iron wedges impradently used by the plumbers, and the whole is In very bad coadition; so moch eo, that I think it neceseary that it should be taken of amd re-set, using new atone for soch parte as are ígjured.
The Buttresses to the siden of the clerestory have lost their finials, and the beads are a good deal broken. The niche-heads on the same side arn much deenyed aod broken, and all the figures but one are gooe.

The Windones require coasiderable repairs. The mullions are meny of them very much ont of the perpendicular, and the tracery is displaced and broken, both by the settlement of the whole, and from the effects of the roo-work. The ashlar-work also requires to be generally repaired, that which is decajed boing replaced, and the whole pointod whore necessiry.
North Sype-The stair tarret is as bad, or worse, then that already deveribed.
Thi Perapet is not so bad, but some parts at least must be rebuilt. The autern pinnacle is not quite so bad as that on the other side.
The Side Buttreases, with their headsand finials, ato not quito so much injored as those on the sonth side, but the fivials are all gone, the viche heads we mach decayed, and only four fguren remain. The windows and ahlar require similar repairs, though to a less extent.

Bouth Aisle.

The Parapet is in some parts shaken and crooked, and the ornamental tracery decayed. The part of the west end, and some fow other portlons, mant be taken down and refxed, and the decayed parts generally repaired with new stone.
The Buttrese heads have genorally lost their finials, and are in other reapects defective; these must be effectually repaired, and now finials provided.
The two large angle pinnacles are very much shattered, and will require very considerable repaits. That at the westers angle is particularly dilapidated, almont every part of it boing more or iess sbaken or defucedthis mont in a great measure be worked anow : that at the eastern angle is not so bed, bat still requires conslderable work to make it perfect. The Ggares from the niches are all gnne, and should be replaced with new ones. The greatest care should be taken in the restoration of these beantiful features, as if repaired by men who are ignorant of the style and character of the ornamental work of the period, their beanty would be eotirely destroyed, which would be far warse than leaving them in their present dilapideted state.
The buttrenses. string conrses, and ashlar on this side are la parta deenyed and defuced, and will require general restoration where injured.

Tre 8onth-West Chapel.
(Nnw used as the Vestry and Engine-bouse.)
The exterior of this chapel is more dilapidated then any other part of the building ; it is oordless to enter into partlculars, as nearly all the stone-work is more or less decayed. It is a very beantiful feature, and merits a perfect restoration.

Noeth Aisle.

The parapet is generally subatantial, and requires bat little repair ; excepting the exquifitely pierced parapet at the eastern gable, which requires cove restoration, heing in parts decayed. The buttress beads require nome general repairs, and now finials throughout. The large angle pinnacle at the weatern end is sanly shattered, and requiren the same extent of repair with that on the sooth aisle. That at the eastern angle has been partally repaired, but without mach regard to correctaess of detail ; it mquires still a good deal of work, and the figures should be made perfect. Tbese, like thoe on the other side, require a very careful study of the denilh, to render them correct.

Imtbrior.

Stmenoork, - I mboold recommend that the entire murfare of the freestone wort, such as doorway, windows, pillart, arches, \&c., should be carefally cleaced from the yellow. Wash and paint by wich they are at present disfigored, and that thoy whould, where broken or injared, be repaired and brought to a clean and perfect surface. The paris which havo ulways been rough, shoold be carefally pointed, and thoae which have always been plastered, ahould be co-colonred and ropairod. This woold improve the reseral aspect of the interior more than aything, and would remove that phatery, disagreeable chartoter which now so mach injures the effeot of the building. The great sarfice of the boitdiag causes this to be a rather zope expegaivo operation, than might at firtt be onpected, but the cont Fould bo amply repaid by the impruved'aspect of the boilding.

The Crilinga would require paintiog, bet on this a quention might arioe as to the colour which should be used. There are three waye in which it might be done. First, to paint it in imitation of stome, which I think objectionable, as being an imitation of a totally different material from that of which they are actually constructed, and one of which, to thoir prenent form, it world be hardly poscible that they could have been made. This syatem of imitation of one material in another, is 20 cuntrary to the pripciples of the aacient oharch builders, that I think it very denirabie to avoid it; particularly in restoring an old bailding. The centre ceiling is ancieat, though not so old as the charch; it wat originally all of oak, though much of the boarding has sloce been repleced la deal. Strictly speaking, it should not be made to appear like anything bat oak. The second tind of painting would be graining it in imitation of ank; this would be coming nearer to the truth than the formor method, bat is to a certain extent open to the samo objections, as being a mere jaitatlon. Perhaps, therefore, the most correct way would be that which was frequently used in old churches, for the decoration of wood ceilings, vis.:merely oramental painting, not imitatiog any particoler material. Some of the ancient ceilings were most richly decorated in this way, and it produces a very beautiful effect. It might perhaps be practicable to take off the present painting altonether, and wrestore the original surfice of the wood; which woold, if it could be done perfectly, be preferable to any Kind of paint: in this case the onte boarding must be restored throughoul. The experiment might be tried on a portion of the ceiling. This would not, howover, apply to the ceilings of the aisles, which are of doal.

The Stone Floor

Is in many parts very much broken, and is thronghout very damp. I should think it desirable to relay it on a good bed of concrete or ahingle. I would, however, strougly recommend that the ancient monumental slabs should be retained, and that whorever they are found to be over the gravea, they should be relaid in their proper places. They add mach to the interest of an old church, even when worn and defaced, and should not be removed merely to gralify \boldsymbol{A} love of neatmess and novelty.

The Glass.

The glazing throughoat is in a very imperfect state, and peeds extensive repaira. It has been moch weakened by the removal of the apright irou stancheons, with which every light was formerly atreagtheaed. Its strength has also been mach diminished by the nse of squares instead of diamonds, which are much less eapable of withstanding the effects of the wind.
These repairs may be varied greatly in thoir cost, sccording to their greater or leas completness. 8hould the funds be sufficient, I should recommend the whole to be re-glazed in diamonds, with new iroo-work, which would vastly improve the appearance of the church, both externally and internally, which is much disfigared by the bad character of the present glazing.
To the above suggestioas I will add a fow more, which though not immedintely mecesenry are still requisite, to render the state of the charch worthy of the original magnificence of the design. The first is the expediency of raising a separate fund for reftting the interior in oak in a manner worthy of auch a buildlog, the present fitings being so mean in their appearance, and absurd in their arrangement, as to deatroy the whole effect and propriety of the interaal character of the building. Should this be doop, a more sultable situation might probably be fonnd for the organ, which is a great obstruction to the chancel. The secood auggestion is, that the external and internal restoration should be oxtended to the chancel, and that its beaotiful atells should be cleaned from the thick coatings of paint with which they are disfgured. I would thirdly auggest that the portion of the south-western chapel, now nsed as the engine-houst, should be unlted to the remaining portion which is used at the verter, and that the arches batween the latter and the charch shoald be thrown open, enclosing the lower part oaly with an oak screen. And also that the benu. tiful roof and osher internal features of this chapel should be restored.

It would also be a most noble restoration if the present ringing foor could be removed, and the magaifoent story above, with its groiued vanlt. ing and its beantiful wiodows, restored to its origigal intention. Thia would then be one of the finest things in existonce, of thit description. I whe, on the first eramination of this part of the building, at a loes to imagine how the beils were originally rung, but on a closer iuspection. I find that they were formerly rang from the litile stome galleries, which run round the second story on the leval of the wlodow cills, the ropes pussing throngh the head of the wiadown, thence for oonaiderable height througt the interior of the wall, and over blocks or pullies set in openiags in the walle of the belfiry. The holes through whioh thoy paneod, muy yet be seen jn each wiodorphead, and also in the belfry above.

If will now conclude by strongly urging the nocessity of a raithful ad. herence to the ancient details, which caa ouly be dowe by a most careful' stody of their existing remains, and a comparison between them, and thoee of other churches of a correspooding age: without thin, the beauty of the building will be destroyed, and tbe present work become a subject more to bo lamented than rejoiced in.

I would beg to add, as a practical ancreation, that in restoring the stonework, the ase of inon should be an mach as possible avoided; ite place being sabatituled by otone plage and copper crampa, or dowalls.

ST, EDMUND'SBURY GATETOWER.

WEST VIEW.
Much interest has recently beed excited among the reading portion of the public respecting the antiquities of the Great Abbey Church of St. Edmund, at Bury, by the Camden Society's publication of the Chronica Jocelini de Brackelonda. This work contains the earlier anoals of the Monastery, written by a monk of the honse, named Jocelyn; the reader who is carious in such matters may obtain a most vivid and graphic picture of the monastic life in the times of Kings Henry II and Richard I, by referring to the republished "Chronicles," or to the intereating and most original analysis of them in Carlyle's " Past and Present"

Of the Abbey Church little is now presorred. The magnificence which from the existing remains and the testimony of historians, we must suppose to have characterised its architectore, did not preserve it from the effect of Vendaliam which accompanied the general Dissolution of Monanteries. The Norman gate tower, the Abbey Gateway and parts of the poclosure valls are now the only vestigia of glories which caused the historian Leland to exclaim enthuslastically, "The sun has not shone apon a monastery more illustrions, whether we comsider its wealth, its extent, or its incomparable magnificence. You might indeed say that the monastery itself is a town; so many gates are there, sonce of them of brass; so many towers, and a church than which none can be more magnificent, and aubservient to which are three others also splendidly adoraed with admirable workmanship and otanding in one and the same churchyard."

The growing eeal for architectural restoration has oever shown itsolf more worthils than in the efforts now making to preserve to posterity so mach of the inestimable monmmental legacies beqneathed to us by our ancostors, as yet remains at Bnry St. Bdmunds; and accordingly we view with great satisfactlon the works in progress for repairing and reinstating the Norman gate or campanile. By the terms repaiiring and relastating, must not be understood merely the removal of rubbish and plaster, and the obliteration of churchwarden "beantifyings," but thoee substantial works also which ere requisite to preserve the boilding from nctual destraction. For it appears from a well written pamphlet now before us, in which are described the present stato of the tower and the steps taken for its restoration, that it has suffered 20 much from violence and injudicions repairs as to threato immineat danger by its fall. The masonry, six feet in thickness, displays nomerons Assures in every part; several stones of the principal arch have fallen out; and the walls have swerved considerably from the rerticel. Thls dangerous condition of the towor has during the last fow years beep the anbject of cerious appreheacion, and attempts have been

I made to repair the evil, or at least prevent it from iocreasiog. In 1811, 'the parish being throatened with an indictment, some injudicious patchings' were commenced, and an elegant "pepper-box" was erected on the top of the tower. The fissures however increased; in 1818 two of then extended from the very summit to the lower or grouad arch.

The canse of this last disaster appears to have been the vibration pro. duced by the ringing a large peal of bells in the tower. All that was dona was bowever to replace some of the stones which had fallen out, and to fill up the fisemres with cement f They did "bot skin and film the aicerous place."

At length however the work of restoration was commenced in oarnert. A minute report of the state of the building having been drawn op by Mr. Cotingham, is committee has been formed for the purpose of auperintanding the works recommended in that document, and raising funds for defrajing the expenses. In the pr ogress of the survey there bave been removed nearly 100 tons of rubbish and bricke, the weight of which added to the insecarity of the building. The adjacent ground has been cleared of the mean tenements with which it was encumbered, and the general work of restoration is now proceeding in a very satisfactory manaer. Tbe Restora, tion Committee have pablished "a [n] historical and architectural potice of the Gate-tower;" the profits arising from the sale of this notice are to be preseated to the restoration fund. This tract, which contains a tien of the tower, is exceedingly interesting, and displays great research. Wa should have liked however to have seen a more ainute account of the amtare of the reparations proposed, and of the advance which has been made in them. The following extracta from the architectural description will show how worthy the building is of the efforts made for its preservation; and may perhaps awaken the interest of some of our readers and reader. them anxions to aid the undertaking.
"The Tower is in beight, from the plinth to the parapet, $\mathbf{B 6}$ feet, and, in area 30 feet square. The walls, nearly six feet in thickness, are bnilt with rubble and boulder, and faced with an ashlaring or Baraack stone. Ths ashlar stones, as usual io the most finished buildings of the Norman era are hown of the size which a labonrer could carry on his back, withont mach inconvenience, to the top of the building; and which the Normas architects, from their knowledge of the pridciples of equilibrium, saew 80 well how to apply.
"The foor stories of the tower are marked on the exterior hy horizontal fascias, or atring-courses, of varied mouldings, which go uniformly roned the four sides. The first string-coarse is ornamented with the chevron or sig-zag moulding, the most common and distiuctive characteristic of Norman architecture. Hero it is triplicate, with pendant drops somewhat resembling the gutise of a Doric entablature. The second string-conrse exhibits the plain nebule corbel table; and the third is a simple tile moulding.
iIn the lower story in a large archway, lofty and wide, for carriages, and in the centre of the South wall is the postern entrance, being a Norman transom doorway, the lintel of which has beencat out of solid atone. This doorway has been blocked up and hitberto noobserved, from being principally in that part of the wall which is below the present roud. The prin. cipal entrance of the archway is to the West, under an eiaborate deeply receding arch, with an angular pediment projecting from the face of the tower whout five feet. This noble arch springs from three single pillars and a triplicate column on each side; and ils mouldings are plain, with the exception of the outer one, which exhibita the double rull billet. The beses of these pillars are bold and plain, bat being below the level of the rand have been long hidden; the capitals are cashion-shaped and plain, with the exception of those to the triple-columns, which are scolptured-that on the Soutb side with a representation, in bold baseo relievo, of a lion doatroying a serpent, which is sobdned and under his feet; the other with human ligure between two winged dragone, who are biting thair taila. A print of St. James's Church and Tower, engraved by Godfrey in 1770, represents the great arch as filled up, above the capilals, with masoury and sculpture, similar to that of the Abbey Gateway.
"The pediment is formed by two angular lines exbibiting the cable. moulding; and the tympanum is decorated by a kind of diaper work of small sogments of circles in tines, momewhat resembling scale-armour.
"The main entrance arch is flanked on either aide by a aquare tarret of three stories, terminated by a pyramidical opex. The lower story hat a semicircalar niche with the nail head moulding. The second story has a similar niche with the double roll billet mouldiog on each jamb, and aroand the curve of the niche. In this niche, in the south turret, was a marble sculpture, which has been removed by Mr. Cottingham as it evidently formed ro part of the original editice. It appears designed to represent the casting of the apostate angels out of bearen.
"The corresponding niche in the aorth torret had also a piece of atooe sculptare, till removed by Mr. Cottingham, which, tbough of mere ancient date, was evidently an interpolation into the original building, the comth jamb of the arch hutiog been cut away to admit of its incertion. It mutc have been scalptured for the corner of some building, baving two sides fiaished in bigh relief. It was probably found at some distant period ameng the Abbey ruins placed here for preservation, of which it is mutur vorthy. The third story of each turret is ormamented with an arcade of
interlaced arches springing from duplicate colomas, and above is a corbep table coraice, with the corbels carved into heads, some of which are in good preservation. The whole is finished by a pyramidical apex.
"The second story of the Tower is pierced by two blank arches, each encloping a small duplicate arch, which served as lights to a small gallery, constructed within the thickness of the wall, to permit of ihe warder's observing what might be going on in the town. These lights, with the ex coption of a small loophole in each. were blocked up till Mr. Cottingham's survey, when they were opened, and now add much to the beanty of the facade. Within the tower on this story, and near to the western piers, are somall doorways on the north and south sides. which communicated by a few steps, still remaining, with the parapet of the emhattied wall that gur roonded the entire grounds of the Abbey. Their position is indicated on the sorth and south faces of the tower, by simicircular apertures in smal Gat buttrespes. There must have been an unbroken communication along the whole line of the Abbatinl walls, and these doorways show where the warders entered from the north, and passed to the south batlemeats. They also render it certain that there most originally have been a floor, in a line with the string-course, over the archway; and the contrivance by which it was thrown across was developed during a recent anrvey, by Mr. Cottingham. Bquilateral spaces were left in the ashlaring on one side, for the jnsertion of the floor-beums, and on the other side were oblong spaces, between two and three feet high, into which the beams were dropped to their level. This plan of fooring furnished the old builders with great facilities for the repair of the floor; and avolded the necessity for those onsightly trusses introduced in modern carpentry. The architraves of the two front arches in thls story exhibit some unusual and very beantifal monldings, with a kind of arabesque and chaln work, of a rare and singularly rich character. The masonry above the duplicate arches is ornamented by rows of amall cones, resembliug sugar loaves.
${ }^{4}$ The third story exhibits an arcade of three arches, divided Into two stories by a plain transom running through the wbole. The lower story is decorated by a doplicate blank arcade oramented by a net-mork. The bases of the two central pillars have groups of carsed heads on their faces, add those of the lateral pillars exhibit a siogle head.
"The foorth story has an arcade of three ligbts with a circular panel in eenh bace. The architrave is plain. Immediately above this arcade is the tile string-course marking the line of the embattiements, which are premmed to be the original finishing.
"The ascent to the embattlementa is by a circnlar stone staircase in the north-west pler; entered throngh a narrow doorway in the north wall, which was originally approached by an external fight of steps."

In speaking of the manner of flooring the second story, the writer tells us in a note that in one of the caissons for the ends of the floor-beams, the workmen fonnd the perfect mummy of a cat, who had probably taken refage there when the building was in the conrse of erection, and had been immared by "the ignorance or wantonness of a Norman masom." By the licence of an abominable fignre of speech, the caisson in which puss was found is termed a catacomb. Mention being made of a cesica piscis, supposed to have formerly adorned the great arch, the following account of the term is given in a note, page 4.
"The "Oxford Glossary" describes the resira piscis "as a mystical Igure, of a pointed oval or agg-shaped form, originatiog in the figure of a boh, one of the most ancient Chriatian symbols, emblematically significant of the word x^{x} Our, which contained the initial letters of the name and titles of our Saviour. The symbolic representation of a figh we fond eculptured on some of the surcophagi of the early C'bristians, [who, Tertallian says, called themselves Piaciumli, considering that the Christinn life commenced in the waters of baptism] discovered in the catacombs at Rome; but the actual Ggure of the fish afterwards gave place to an oval-shaped compartcuent, pointed at both extremities, bearing the same mystio signification as the fish itwelf, and formed by two circles intersecting each other in the centre. This was the most common symbol used in the middle ages." In this conntry it in found in a variety of positions, and of various dimensions, both io gtone and on painted glass. It is to be seen over many Norman doorways enclosing the figure of Christ; in the forn of certain windows, at in the beautifnl chancel window at Mildenhall parish Church; in the shape of the reals of religious honsea; and to it some writers have attributed the origin of the .pointed style of Architecture. Freach antiquaries sen aothing in this oval bat "a glory ;" and M. Didron says the term "eeciec piscis," which was invented, and is abused, by English antiquaries, ought to be repudiated for its grossness. The term, however, is spoken of bs Albert Dürer, at the commencement of the 16 th century as one well raderstood at that time. An interesting paper on this subject, from the pen of Mr, George Godwin, Jun., F.R.S., illusirated by various examples of its nse, will be fonnd in the Civil Engineer and Architect's Journal, for April 1842."
The attempt to derive the forms of arches and plans of churchas from the. form of the bladder of a Ash was made by Mr. Kerrich, of Cambridge, in the Archwologit. The able pamphlet from which the preceding extracts "ure made is, we believe, written by Mr. Tymme, the secretary to the Re-: gtoration Commiluee, to whom wo are lodebted for the wood-cut at the mad of thia paper.

RAILWAY SYSTEM.

The following extract in taken from the Evidence of Mr. Cubitt before the Belect Committee of the Honse of Lords. Instead of recommending for general adoption the gauge of those railways in which he himgelf ia particalarly interented, Mr. Cubitt appears to view the question on its general morits.
I think an uniform gauge might be made throughout the klogdota, which will be better than elther of the present grages, and at a very moderate cost ; at a cost which would be acarcely felt by the railway companies.
Can you make any sort of estimate of what the expense of the altention would be?-Not a decided entimate what it woold cost to alter the gaoges ; but I could state a minimum and a mazimum. I would say it would cost from $£ 500$ to $\mathbf{£ 1 , 0 0 0}$ per mile to alter the ganges. That is not a large sum.

Will you stato how you woald propose to alter the gaugen 1 -It is a tbing very easy to do practically; but there is a little to be cleared away first. Almost all persons think, of are tanght by a certain clase of persons to think, that if we were to alter the narrow gauge to a wider gaugerit would be necessary to alter the existing bridges and tunacls, and so on, through which the carriages pass. Now that is not at all neceasary; the carriages on the Birmingham line, and the generality of carriagea almost, are anfficiently large for any gauge whatever; their post-office carriages, and their large horse bozes, and the very largest trucks, are sufliciently wide for any gange that conld ba a fair workable gauge. Thoy are big enough for the wide gauge, for I believe their post-ofice carriagea are as large as the Great Western passenger carriages. That being premised, it will be evident that if we take for erample the large carriages of the London and Birmingham Railway, which now pags upon that line through the bridges and tannels, and pass within a certain dlstance of each other, and pass asfely, yon have only to suppose the carriages to remain unmoved sideways, and simply to imagine that the wheels are slipped right and left, brought out a little, abont six or eight inches. A sir feet gange woald work with the wheels set within the breadih of those large carriagen, and the carriages would ron exactly in the track as they did before. Consequently if you do that there is no necessity for any alteration of the tunnels, \&c., abont which so much objection is made. If we want to maka the gauge wider, we have ooly to bring the rails ont about eight inchee on each side, and there is still plenty of room.

You only alter the under carriage ?-Yes.
You pot the wheels at a greater distance i-Yes; and the whoels will still be within the width of the carriages. Therefore, as the carriages pass each other now at a certain distance, they will atill continue to pass each other at the same distance. The gauge will be a beluer gauge, and it will enable us to bring the centre of gravity of the engine lower down, as well as to widen the gauge.

Do you consider that the bringing the centre of gravity of the ergioe lower is a very important point for safety P-Yes; but that has never been done yet.

And practically the carriages now in use upon the narrow gauge are of such a width as to allow of that operation ?-Yes. Since this thing hee been rather more upon my mind I have given partionlar attention to it, I have now the prospect of having some control over mearly 1,000 miles of Tailway between the sorth and sonth, in large and direct lines, and I abouk be most happy if I conld see my way open to improve the gauge which might be adopted in the frat instance.

Yoo bave stated that there in no difficulty as to bridges and tunnela; is there any as to embakmeate 1 -There is no dificulty as to embankments; no carriage overhangs the ombankments.

It ought not to do so ?-I believe It pever does. The means of widening that I should employ would be very simple. The rails are almont all laid upon cross sleepers or upon stone blocks; now with respect to those which are laid upon cross sleepers, it has been atated that it would cost a great deal to alter the railway becanse of the cost of taking it ap and relaying it altogetber. Now I will undertate to widen the gauge, if the road is in good order, in a very little time and at very litule cost, and without disturbing a aingle rail on its chair, or a siagle chair in its sloeper. I should aimply cut with a saw through the aleeper in the middle of the line, and juat put each ont eight inches, and then aail a short piece of wood in to conneet the two parts of the sleeper. The thing would cost very Little to do.

Woald that leave you with a trasworthy sleeper ?-Yes. And we will take the case of stone blocks. A. great many miles of some of our greateat lines are laid with atone blocke; simply a small block opon the ballast. They will ouly want removiag six or eight inches out.
The altaration, at all eventer, of the permenent way could be made with. ont stopping the traffic?-Ceriainly. I am now going to relay a line entirely; a pow not of rails and fixtures altogether, and I shall not atop the traffic ; yet there are 80 trains a dey on that line, or 40 each way.

Where is that $?$ From London to Croydon.
Do you consider that there is room for great improvement in the permaneet way ? -The pernanent way is the most defective part of the railway system.
Are not many of the rails that have been laid down opon the lines at preacet at mork too light ? The raile are, many of than, 100 light; but we
eas alvaye meet light rails by a differeat mode of laying them. Brt the reat defect is the want of proper alteation to the facteaings of the raile and the chairs. I attribute almost all the accidents that have happened from egginen and wagoas and carriages getting of lines of railway to the imperfect state of the road; and yet ao sooner has an accideat happened, that the engibeers go to examion the engines, and examine the carriages, to find ont what is the matter. The fact is, the canse is dose away with; beeance it generally happens in mont of those cases from tho eods of the rails gettiog oet of the joint-ohnirh, or the ead getting loose, that it mast icevitably throw of the engine, and throwing off the engine it tears op the line at the place, and we never can wee it, because it is done away with. thave seed 100 yards of line torn op entirely from an engine runaing of the rails.

There was an accident not loog ago upon the Brandling Jonction, where the engineering ofieer gent dowa to report upon it stated that he conld discover no canse for it. Do you think that it probably was from some defect of this kind ?-No donbt of it. I have witnesoed an accident opon that very line. The eagine and carriages tumbled over ono another, and the line was torn up for 100 yards; but I knew from what had taken place jus' before vpoo the lios that that was from the defective state of the road.

Aud yon think that is the ease referred to in the preceding queation, whee if wae clearly proved that there wha no fanlt in cue arrangemeut of the pointa, or in the engine, in all probability there must have been some farit in the permanent way - Yes. When the permanent way is a little defective the abock becomes very sharp, and the rails, resting in an imperfect chair, are apt to work out. I am now having chairs made with a very loog socket, to provent the ends of the rails getting out, for when one of thowe ends pats loces it jampe up or gets nideways, and it must throw the engine off, and in dolug that it mast break the chair to pieces.
One of the witnesses has stated, when the Gauge Commissioners were down near York, the engive they bad went off the line, and was, upset; and that that was occitioned very much by the great length of the engine; and that they found on the raila the marks showing where it had struck, by the great sway beckwards and forwards; till it foond a defective rail, and then it went off-I have seen rails and sleepers moved out of their place from the cecillatione of an improper engioe upon a badly laid roed. 1 mean as engive not woll balanced, and having too moch play.

De you think that if it were posajble to get the weight lower down, by a greater widuh of gage, it would in a great measure obviate that 9 -The dituculty would be obviated altogether by a wider gauge, a better road, and an improved engiae. We might then go 100 miles an hour with as creat safoty as we no now do 80 ; there is nothing to limit the speed.

Is not it from the jncreased rate of speed that engines so frequently burst ?-No; it is a small tube that bursts; a tube about two inches din. meter. There are abont 90 to 120 of them in each boiler. After they bave been ased come time they wear thiu, with the draught and the fine partioles of coke; one tube may be a little defective in its making; and when a great preasure of stemm and the action of the wear apon them cot them thin, sometimes they will burst, and the water will fow into this tube, and the steam will low ont, and stop the engine going.

Does that ever happen with any bot fast trains?-Yes; but yon do not hear of it. Indeed it would be raiher leas likely to occur with an increas. ed rate of speed, because when the engise is driven very fast there is less pressure upon those tubes. ${ }^{(}$

When the directors of a railway are desirons of remedying the want of power, what is the expedient to which they have recourse ?-To build farger and more powerinl engines. Thes require to be made either longer or larger to make them more powerful. Some of the engines on some of the lines, I believe, are worked up to more than 100 -horse power. That is an enormons thing is that space.

If for the parpose of increasing the power the expedient adopted is that of lengthening the engine, does not that increase the danger upon the narrow gauget-No; not the lengthening it, but the raising it higher makes it more dangerous. They have to make them higher whed they make them larger and wore powerfol.
A. witnesa stated the other day, that projecting the eagibe very much over the wheels, if they could not extend on account of the toru tables, cansed oscillation from the weight being fore and aft ?-So it does. That was the great defect of the engines on the Eactern Conoties Railway, and caused the late eccident on that railway. In making them longer it brings the wheels too far apant, and there was an overbanging weight.

Woold not also the great length of the engive be inconvenient in a carve? The longer engines are between the wheels the more they are likely to impioge upon the rails in golog romed very sharp corves ; but that is obviated in America oponanother plan, and I recommend the plan very much to the Gange Commisoioners. I told them that all those thinge may be overcome with proper errangements. On parrow gavge railwaye they cannot git so fast as on brod, because they cannot get as large driving wheels with safety, without carrying the centre of gravity too high. I coeld maike an engine of say leagtis which shoold be better adapted for going roand curves than any engines now are. For inutance, an engine se feot long might be made perfectly sufo and nteady with very large driviag whoels upoe a narrow gatre, even with wheels as large as the Great Weatarn wheeis, simply by having what the Americans call a "Hogy" carriago-

 al velochy!-Ed
amall carriago with four low wheels moving upos a ceatre borizontally, Imagive a sauall truck with four wheels upon the line; then imagine no. other mall truck behiod it with four wheelo. Now those wheels and axles would be stronger than the present ones, and lighter. 1 bee, if wo support a very long boiler iodeed upon those track, thie truck: wilh fonr wheels can each turn indepeadentiy at each end. Then anj where between those wo may have large driving wheels without tuagee, there being eight other wheels to take the weight at both eodis. Wo might have the driving wheels of any beight; then they would tarn roand corvee very rapidly indeed. I explain this to show that there are no ingurmomatable difficulities mechanically, for the wheel might be improved in every res spect.
8till you woold recommend, as the beat security for safety, an alterntion of the oarrow gange in a wider gauge ?-Yes $;$ to a reacobable gauge. The lower the centre of gravity the greater the safety.

Will yon state what width of geuge yon would consider the beat t-A sir feet gage I take to be about the beat that could be adopted, or it enigit be five feot eleren or six fret one: a few inches more or leas is of no consequence, bat siz feet is about the best gauge; it is an integral measare, it is an even measare, it in an easy meacure, and it is of ensy reference, and well undersiood.
Is that the gange which was recommeoded by the comminaioners apoa the Irish railways ?-They recommended six feet two inches ; but 1 do pot know why the two inchen were put on.

Have you ever made any estimute of the coat of altering the carriages or wagons?-The Arst, second, and third class carriages will cont ebont the same sum almoat to alter. The avertge pancoger carriagre may be altered from a foor feet eight inches and a half to a aix feet gango as an a verage cost of $\mathbf{E s u}$ each, and I think for leas.

By multiplying the number of carriages cunatitating the stock of the different companies at present at work you could ascertain the total cont of altering the carriages i-Yes; and it would cost $\ddagger \mathbf{s 5 0}$ to $£ 400$ to alter an engine and tender, leaving the working parts exactiy as they are now.

So that it would be perfectiy posible to ascertain the cotal cost of the alteration?-Yea.

Have you ever tarned yoar atteation to the means of providing the seceasary sum to defray the expense of the alteration? I lhink it abould be paid for partly by time gone by and pertly by faturity; that is to my, money might be laken op at a certinia rate of interest for doias this work either from Government or by transferable boods, payable off by lot; amy thlog of that sort. Then the works should be paid for as they were doove. Whatever they cost ahould be epportioned, as neariy as it could be, over sbont 40 years; that is, 20 by -gone years, and 20 future jears of railwa extension; and all newly-made railways shouid pay thrir qoots of the alteration as the past had paid; so that in 40 years, or 45 or 50 years, the thing should be paid off, and the work all done. The work ahould be all done at once, for the sake of the public. It woold be paid for is a loas time, for the sake of the parties. It would not lex eny compeny harshly to make the alteration, and therefore they could not complaln of it in poist of expense. All the new railways would havs to pey a quota for the pame thing, although they would make their geuges right in the first insingee. I think that is but fair.

You have no doubt that it would be of considerable advantago to the country in many points of view that there should be bat ope quiform gange f-There can be no donbt about that.

Both for trafic and for the military defences of the conntry i -Yes; in every respect ; I will sot make one erception, because I do bot think on can be made. But I should be corry to see other narrow rauge lipes granted if there is likely to be an alteration, because thero will be mary miles of new railway; many more than are mede; I think twice a many.

You think this is a good opportunity for naking the alteration ?-I think if the thing is ever to be done there should not be a season loat, certainly. I think the thing may be oasily done, and economically doae, and done without loes to the public and withoot lose to the companies, and th a very short time, and at a very moderate oxpense.

You think it very important that if anything of the klod is coatemplated It should be setiled with the least poselble delay, in consequence of the aumerous railways now in progress?-I think 80 . It in a very serions subject, but almost all parties who speak upoo the subject are is somet way or other intereated in this, that, or the other gauge.
You think it is very important that it should be practicable to go at high speeds on railways for persons who have to go great diatances f-I think that is ovidenced overy day, for if we put on express trains every day, and advertice to go at 60 miles an hour, people will risk their neeks as long as yon will carry them, and therefore it is highly necessary for the sufely of
the puhlic (for people will not take care of themselves) to bere all the the public (for people will not take care of themselves) to beve all the ma. chinery of the best kind, and if the permanent way is perfect, and the gavge a proper gage, there is nothing to limit the speed but the resistauce of the atmosphere. That I am sure of, as far as affety is cotecrned there is on danger.

No greater danger in going 60 than in going 80 milen an bowr $?-00$ a perfect railmay there is no more danger in going 60 millet an hour the in going 80.
But the mere alteration of the gauge to the foproved width which you propone to make it woold pot at once attain the increased speed which jou hope to attrin i-It woold be the greatest atep to it

GASES AND EXPLOSIONS IN COLLIERIES.

The following latereating docoment is the report of a commission addreased by Lond Liacoln to Sir H. De La Becheand Dr. Lyon Playfair, for the perpose of obtaining information as to the beat means of preventiog, or miligatiog, the fatal effects which are eofrequently the result of the generation of noxions gases in coal mines:-

My Lord, -Having, in conformity with the instructions contained in the Eari of Lincoln's Jetter of the 37th of Anguat, 1895, direoted onr attention to the comprosition of the gaces evolved from coal beds, to the mode of ventilating collieries, and to the subject of explosions in them generally, we have the bomour to gubmit the following atatemeat for convideration.

Wth respect to the gases evolved from beds of coal, they may be viewed as the reavit of the continued decomposition of the regetable matter from which coal is derived, a decomposition which may be regarded as atill in progrees nader favourable conditions. (Omitting the mineral substances. which, when burat, are krown as ashes, conl is esecntially composed of earbon, oxyRet, hydrogen, and nitrogen; and the quality of the coal depeode opon the relative proportion of these ingredionis. When the propor: Lion of the carboa to the orygen and hydimgen does not exceed about 75 per ceat. the coal, in common terms, is called "bituminons?" when the cartion amounts to aboot 85 or 90 per coot. it is termed "anthracite," or stone conl: or, is other words, the most advanced itate of decomposition of the original vegetable matter bears the latter name.

During the decampoeition a portion of the carbon in removed by its union with oxjgen, forming carbonic acid, and another portion by combining with hydrogen, as carburetted bydrogen. Thus by continned decomposition the carbod gradoally becomes a more important constituent in the remaining part of the original vegrable mass. The change from bituminous coal to anthrecite can be produced artificially, and in a manoer to illustrate the subject, considered geologically.*

Tbough earbonic acid is, no doabt, found is many of our collieries in such a manner as to show it to be derived not only from the lights, horses, and workmen employed, but also to be partly the result of the prosressive decomponition of the coal, it is with the carburetted hydrogen, or firedamp, as it is termed, that the collier has chiefly to contend. This comes upon him in varions mays. Some coals more readlly emit it than others, and hesce they are locally tormed fiery nemms, beds, or veins. From some coals it woold appear to escape more generally from the mass of the bed than trom othera, the gas gradually accomolating from the discharge over a Fide surface. Other bedf, again, are more fiery in the cofter than the hander portions, and where joints or basures are common. When two or more seama of coal, having different qualities, make up a workable bed, ove will cometimes be more fiery than the other. Again, mach depends, all other circumatancen being eqnal, upon the kind of roof or covering rock of a coal-bed. If this be sufficiently porous, as many sandstones are, the coadilions for the escape of the firedamp opwards throngh superincumbent rocks are more favouruble than where the roof is compoted of clay or argillaceons shell.

The dialocitions of the sirata termed "fanlts" or "troobles" act froquenlly also as channels for the passage of the firedamp into the works, as they coaduct the ras from coal seams beacath, which may be highly charged with it, although the seam under work may be freeal

Although we may regard a large proportion of this gat as previously formed, and ready to escape when the necessary conditions, anch as those of colliery workings, present themselves, we can scarcely suppose that carburetted hydrogen is not alco formed daring the time oocupied by the progress of the same workingn, much being evolved from the older portiona of them. The manner in which splinters of coal are thrown off doring the cutcing of eome beds has led to the hypothesis that the gat may be present in a liquid atate. produced by condensation, so that when the needfai presesure is remored during the progress of the work, the sudden expansion of the "fire-dump" from a liquid to a gaseons form throws off the fragments. The force also with which the gas burats auddealy forth from clefte or joists in some beds of conl is so considerable as to prove much previous compression, particulerly wheu those burats or blowers last only for a short time. Whea they continue for protranted periods, we may infer a more constant sapply from continued decomposition of the coal, though the first eadden burat would point to compression. It has been inferred that the anall cavities in which the fluid gas is confined can be detected by the mieroecope in some conla. It is probable that soft places, the sides of joints and Basures, and the walls or fualts, wre more favourable to the decomposition of the conl then its more solid portions.

The eavape of fire-damp is generally infuenced by the barometrical stale of the almosphere, especially when much of the gas has become accumulated in the wastes or goafs. This in mure or less experienced in all pits; but one striking case was pointed out to us by Mr. Jubling, of Jarrow Pit. Is a pif of which he is the viewer the gas issuey from cracks in the roof of she seam, and in low states of the barometer is evolved in considerable quastity. When the barometer is high, instead of this issue of gas, there is a sensible current of air which enters into the cracks. When this inward current takes place the pit is worked with naked candles, but when the evolation of Are-damp commenoes Dary's lampa are employed.

Asaniled in this manner by agas which, when mingled with atmospheric

- 8pecineta in lllactralion of thin, wade by coldig ecol in a very ernded manner, are trpedind is the Mroum of Reonomite Geoloit.
air in certain proportions, is highly explonive, a knowledge of its exact compoaition becomes a sabject of great importance to the collfer, sidee effective precautionary measures, more especially as regards the lights employed, must necesaarily depend apon such knowledge.

Dr. Heary, Sir Humphry Davy, in this conatry, and Bischoff and others on the contineat, have eramined into the natare of the explosive gates of mines, bat with resulte difforing from each other; for while the Eaglish chemists found them to consiat of carburetted hydragen, with litile or no admixture, the continental chemists have described them as very complex mintures of oleflant gas, carburetted hydrogen, carbonjc oxide, hydrogen. aitrogen, oxygen, and carbonie acid. On such a point ignorance would be culpable; and we were inatructed to bring onr koowledge ap to the present advanced state of chemical analysis. Whilet we were engaged in this research, Professor Graham made a report to the Chemical Society on the same subject. The previous investigntions of this chemiat hed rendered him well fitted for the task, and the reaults of his inquiries (aceording, as they do, with our own) amply guarantee that the anbject, as far as re. lates to this country, may now be considered as drcided, and show that the importance of an exact determination had simulaneunuly engaged the attention of the pablic.

It is unaecessary to describe in detail the methods which we pnrsued in the analysiss it may be sufficient to state that we adopted the methods mentioned in a report to the Britich Aseociation on the apalyals of gapen by Professor Bunsen, and one of us. We may, therefore, at once tabulate our resefts, merely staling that we have devoted muob attention to this inrestigation, 50 as to remove doubt upon a subject so imporiant to the interests of the public. The gases were collected in various ways, some from blowers, others from the freshly exposed surfaces of the coal while the gas issued out with a singing noise, others from the explosive atnosphere of pits.

Gates.								
Carburetted Hydrogen	92•8	77-5	83.1	86.0	797	93.4	98-2	92.7
Nitrogen ..	6.9	26.1	$14 \cdot 2$	12.3	14.3	4.9	1.3	0.4
Orygen ..	0.0	0.0	0.6	0.0	3.0	0.0	0.0	0.0
Cerbonio Acid	0.3	$1 \cdot 3$	$2 \cdot 1$	$2 \cdot 7$	2.0	1.7	0.5	0.9
Hydrogen ..	0.0	0.0	$0 \cdot 0$	0.0	3.0	0.0	0.0	0.0

The general result of this examination is, that the oniy infammable cou. stituent preaent in the explosive gas of collieries is carburetted hydrogen or fre-damp; there is not a trace of olefiant gas, and only in one oot of the oight geses analyzed is there hydrogen. It follows from the previoss analysia that the issoe of fire-damp into the atmosphere of a mine must deteriorate the air, by adding an ondue proportion of nitrogen gas; in one case this gas amounts to 91 per cent. During an explosion the oxygan seopasary to the reapiration of the workers is recooved by uniting with the carbon of the fire-damp, and thes producing carbonic acid, a gas most fatal to animal llfe. This carbosic acid, mixed with the renidual nitrogen of the atmosphera, and that present in the explosive gas itseif, forms what is termed after-damp, which produces effects mere fatal oven than those arisiog from the explosion. It often happeas, that after an explution a euthcient quantity of oxygen romains to support the respiration of those who survire is effects, were it not for the presence of carbonic acid. This gas, when present in no greater ploportion than one or iwo por cent., is capable of prodpcing the most injurious effects. It hat therefore been sutgested, that cheap mirtores, made of subatances capable of absorbing carbonie acid, such as gla uber salis and lime, would prove usefui to thowe who try to aid the sufferers after the explosiog, 8uch a mixtare placed in a conse bag and applied to the mouth would effectanlly abeorb the carbonic acid, and prevent it exercising an injurions effect on reapiration. Certainly the want of some such precantion in the case of the Jarrow explosion caunat the death of a very meritorious man Jacob Difty, the averman of the pit.
An exploaion is, however, generally attended with much more complex results than those described as attending the cumbartion of carburetted hydrogen. The amount of fire damp which may be firat ignited may be trivial, and yet produce the most disastrous effecis. From its lightness it accumulates at the upper part of the passages, and diffuaes with considerable difficulty, often acting as a train, and communicuting the explusion to the pent-up reserroirs of gas in the goafs. It is thus that in alaost all acconnts of explosions two are generally deacribed as taking place; the Arut local, and at the seat of the explosion; the seoond more general, and aided by any accumulation of foul gas in other parts of the pit. In the case of Jarnow, the heal attending the explosion was 80 intense as ta have thoroughis cuked to the depth of memriy one quarter of an inch the coal lining part wf
the walls of one of the passages; an effect which coold acarcely be conceived without supponing that the flame played for some time apon it with the intensity of a blow-pipe flame. The surface of coal thas acted opon Wras to considerable that the amount of explosive gases evolved during this coking must have been far from insignificant, and may have aided the ex. plosion itself. Add to this, that the first effect of the explosion is to blow up and ignite the immense quantity of coal dust lying about the pit, and not only produce from it an evolution of gas, but also occesion the production of much carbonic acid. And it cannot escape attention that the whole subject becomes involved in much complexity. It is known that a certain mixture of air with carburetted hydrogen prevents its ascendibility; and, in the case of pure carburetted lydrogen, the proportion has been ascertained to be not less than 15 times its own bulk. But the variation in composition of the fire-damp of different mines, the uncertain modes of its isaue, and the absence of any ready means of ascertaining its quantity, prevent any general rule being gived as to the amount of air which shouid be thrown into mioes to prevent the atmosphero ever attaining the explosive state. All this most be determined by practice to suit the varying conditions of different mines. It is certain that inprovements might be mado on the rode methods now in use for effecting the necessary mixture. The fire danp being, from its lightoess, at the top, is not quickly, influeaced by the current of cold heavy air descending the downcast shaft, and circulat ing through the passages. It is therefore not uofrequent to gee colliers flapping their jackets among this light gas, so as to dilute it with the suff. cient quantity of air, a ad thus disturb the train of communicatiog gas which in a foul state, may connect two dangerous parts of a pit. Mechanica contrivances, such as fanoers, would more efficaciously produce the resul than the inefficient extemporaneous means referred to ; but, in general, such arrangements are only necessary when, from a defective vontilation, the current of air through the pit is not sufficiently strong.
Various artificial means had been proposed to fucilitate the withdrawal of fire-damp from a pit. Suggestions have been made to take advantage of the lightoess of the gas by favouring its ascent to the apper parts of the pits, and drawing it off by special air ways. Pipes let down into the wastes have beev proposed for the same purpose, while other soggestions have been made of pipes to blow in air at the tops of the passages, so m to canse the dilutlon of the gas.

We do not stop to consider these plans, because, as wo have already tated, the conditions under which coal is worked are so numerons, that a plan which might prove oseful in one pit would be wholly inapplicable and sometimes positively injurions in another, and the legislative applica tion of any ooe plan might prove highly prejudical to this great branch of national industry.

In 1835, a Select Committee of the Honse of Commons was appointed to inquire "into the qature, canse, and extent of those lamentable catastrophes from explosions which have occurred in the mines of Great Brisain, with the view of ascertaining and suggesting the means of preventing the recurrence of similar accidents." Numerous witnesses were exam ined before this Committee, a body of important evidence collected, and a report pablished in the same year, -a report replete with valuable information, and to which wo would wish to refer for ample details connected with the general mode of working collieries, especially in the north of England. The Committee observe, on the subject of colliery explosions, that while the loss of interrupted trade by these accidents is enormons, 4 it is nevertheless rather with reference to the cause and interest of humanity than in a pecuniary point of view that this inquiry has assumed its great importance." This Commitlee did not recommend any remedial mensares.

The difficulty experienced of obtainiog accurate information respecting the number of lives lost from colliery explasions within a limited period is nearly as great at the present time as it was in 1835. And it should be borne in mind that the number of lives lost by the great explosions, those which chiefy become known and arreat public attention, by no means affords a correct view of the collective loss of life sustained by colliery explosions generally, including the minor accidents not commonly heard of beyond limited districts; neither does it represent the injury sustained by these explosions, short of the loss of life, but from which many persons are more or less disabled.

The Committee wore enabled to ascertain that daring the 25 years prooediag these inquiries $\mathbf{8 , 0 7 0}$ persons had perished from colliery explosions; and they considered this unmber much onderrated. During the last 10 yeltrs the rate of loss of life from this canse has certainly not diminished. The experience of the past year has shown that cousiderably more then 100 pernons have been koown to have thus perished.
In has so unfortunately happened that, during the few monthe we have beon engagtd upon this inquiry two exploaions, one at Jarrow in Durham, and the other at Bisca, in Monmouthshire, have together deprired 76 percoos of their lives, 41 having perished at the former and 85 at the latter.

By direction of Sir James Graham and the Earl of Lincoln, we were 00 mimisioned to ascertain the causes of both explosions. It so occurred that, being at that time in the south of Ireland, engaged on the duties of the geological survey, 8ir Henry de la Beche conld not reach Jarrow in time for the inquiry, and thereforo the investigation into the cause of the explosion at that place devolved apon Dr. Playfair, who, ander these circumatances, availed hlmself of the services of Mr. David Williams, at that time one of the geologiste attached to the geological sorvey of Great Brtain, and woll akited in cond mining bat aow of the aorviee of the

East India Company, examining the coal resources of India. The resalts of this inqniry are given in the accompanying report by Dr. Playfair.

Inmediately after the explosion at Risca on the 14th of Janoary, 1846, instructions were again received to proceed withont loss of time to that colliery. Dr. Playfair being, however, so engaged upon duties in Loodon, that he could not readily proceed to Risca, the investigation was nadertazen by Sir Henry de la Beche, aided by Mr. Warrington Smyth, miaing geologist to the geological survey of the United Kingdom, who was in every respect qualified for such an inquiry. The accompauying report contains the results of this investigation.

During these inquiries it becamo very important carefolly to consider the kiods of lights employed in collieries, and the usoal regaiations respecting them. The subject was not nev to ns, aince fur more than 25 years the mode of working collieries in different parts of the Uaited Kingdom, as also on the continent of Enrope, bad engaged the atteption of one of us. On the subject of safety lamps, of lighting generally, and of the regnlations connected with it, the Committeo of 1835 collected a large amount of evidence, more especially regarding onr northern collieries. It the report of the Sonth Shields Comnittee of 1843 there is alno much int formation oo this head. To these reports, therefore, we would wish to refer for safficient information on the subject.
The Conmittee of 1835 pointed out that more persons had loot theis lives from colliery explosions for the 19 years succeeding the introduction of the Davy safety lamp in 1816 than in the 18 years preceding the inveation, and accounted for this fact by the working of numerons "ferr" seams of coal, which had, in consequence of the assnmed security of that lamp, been uodertaken, and by the abaodonment of many precautions coorsidered requisite when candles were commonly employed in collieries.

As much doubt has been thrown opon the real safety of the Davy lamp, it is but justice to the menory of Sir Humplarey Davy to state that he wat perfectly aware that, if a proper mixture of Gre-damp and common air were thrown against the lump with sufficient force to project the flame opoe the gauze cylinder, it might communicate with the fame, and cause explo sion. Mr. Buddle, in his evidence (Report of Committee of 1835, Nos. 2,226 and 2,227), clearly shows this to have been the case. He mentions an experiment at Morton West Pit, were a very powerful blower from the shaft was tried witb the lamp, when the fame pussed and the blower was fired. Sir Hamphrey Davy theo, addressing Lord Darham, and many other persuas who were present, said, "Now, gentlemen, you see the ne. ture of the danger to which you are exposed in using the lamp, and I cantion you to guard against it in the manner I have shown you. This is to show the only case in which the lamp will explode; and I caution and warn you not to use it in uny such case when you can avoid it without usiog the shield." The shield recommended was one of tio, inside the cylinder, to prevent a current of fire-damp from acting on the fame. Mr. Buddle stated before the Committeo that in the lamps used in the collieries under his management the shield passed from one-half to two-thirds round the inside of the cylinder, and, being bright, reflected the light to such an extent as to be more advantageous than a glass cylioder inside that of wire gauze, a contrivance often recommended to obviate the risk of carrents of fire-damp.

Dr. Pereira, at the request of the Committee of 1835, experimented upon many laups before them, and passed the lame through all those tested, except that of Messrs. Upton and Roberts. The experiments have been repeated at the Mluseum of Economic Geology, by Dr. Pereira and by ourselves, with the ordinary Davy lamp, aod with the same resulte
There can, therefore, be very litule doubt that the fiume can pass, aod explode fine-dump adjacent, if the current be sufficiently strong, and no protection be affurded either by a metallic shield or by an joternad glase cylinder. The question as to the amount of current required seems not so well ascertained. Mr. Buddle considered that the tlowers would rarely be found strong enough. Mr. Stephenson supposed that many accidents may have happened by the falling of the roof producing a suddea rush of expluaive fire-damp. It wili be obvious that the same efrect might be prodnced by the careless swinging of the lamp with the required velocity through an explosive mirture of fire-damp and air, or from the land beins so jerked out of a collier's hand, by an unlucky fall, that the cyliader presented the necessary front to the same compound.

Without desiring, in the slightest degree, to cast anoecessary doobt on the safety of the Davy lamp, since we consider its cantions une an immense boon to coal minjig, and believe that mach additional mecority is obtaiued by the proper use of the original Davy, of of lis improvemeuts, it can scarcely be denied that far more care in the une of eafety lamps is needed than is commonly employed. Althourb shields or glass cylinders are used in some localities they are never employed ta others; and the bare aingle cylinder of wire gaure, not alwaye properly manufactured, is the ooly form in which the Davy lamp is known. And it ahould be observed that, with a fow looal exceptions, the Davy lamp is that commonly employed. Numerous modifications, and in some cases improvements, of the alafety lamp have been made, but, either from the expense, or want of simplicity in management, have zever come geemerlily into use.

The colliers, by their usual mode of carrying the oommon Davy linaps certainly, under ordinary circumstances, gund agninst the panage of any current of fire-damp sufticienly strong to pass the flame, by plecing the lamp rithin their Jacket inpu, or cerciolly protected in some cher inas-
aer. Abnadant careleasoens is often, howevar, apparent; and, when the collieries are riewred at a whole, unaecessary risk is too common, especinlly when it is recollected that the fool-hardiness or carelessness of one may destroy the lives of many.

To those who have, during mang years, had oecasion to visit collierles in different parts of Great Britain, the thoughtlese daring of many of our colliern, eod their frequent carelessness under danger, must be familiar. They will ofien, in as endeavour to execnte more work in a given time, when paid by the ton or piece, remove the covers of their lamps, or employ a candle at a risk. Some oven prefer a candle to ascertain the presence of fire-damp, since by it they more readily see the change in the fame. In many districts, though in some they are anxious to employ the saloty lamp, it requires mach trouble on the part of the managers to prevent the continual ase of candles in suspected places before the danger becomes known to them. The less light afforded by lamps is considered a great drawback to their use when it can be avoided. Many most careful men, no doabt, anxionaly watch over the common danger, and great procantions are taken by many conlowners and workers; bat looking at the sabject generally, and without reference to many exceptions, especially to be found in the borth of England, the want of system in the management of lights, and in due precantions respecting the kinds employed, cun searcoly escape the obsorvalion of those whose opportunities have been sufficiently extended.

When we consider that the safety lamps have now been in use for so many years, oausing becurity in all cases where proper care is employed, although they may not be absolutely safe under uausual circumstances, their atility appears sufficiently sanctioned by experience to make them the subject of legislative enactment. The evils complained of in the modiGications of the Dary lamp are, that, while they add to the security, they diminish so mach the amonnt of light, as to render them practically useless. These are described in the report of the Select Committee referred t. A new modification of Dr. Clanns's lamp, invented since then, is not subject to this fault, and in principlo is an elegant application of the safety lamp, and consists of a wiregauce cylinder, having beneath a thick glass cover to the lamp, which only ascenda till it meets with the gauze; the thickness of this glass is supposed to free it from accidents, and, whilst strong enough to bear a considerabie blow, it is sufficiently well annealed to resist sudden changes of temperature. But whether, in a manufacture so uncertain as glans, these conditions can always be attained, is questionable, and at all events has not been sufficiently tested by experience to induce the coalowners to employ this lamp in their mines.
It has been at various times proposed, during the lest eight years, to employ electricity as a means of lighting collieries. The electricity, sfreaming between two charcoal points from a Grove's or Bunsen's battery, affurds a light of mooh beanty, and perfectly safe, if completely surronnded by glass, but capable of igniting an explosive mizture if exposed. Profeseor Grove has constracted a lamp on this principle, which he kindly prepared for us, and which we bave examined in action. It consisted of a box, containing four galvanic celle, and the light was obtained hy the passage of electricity between two coils of platiaum wire. These were sarrounded with glass vessels; the inner one for the purpose of isolation, the ozterior one beiag filled with water, so as to destroy the light should the inger glass vessel be broken. The light given out was rather more than that of a miapr's candle. This, certainly, is a safe lamp, but in its present state atill unfited for the parpose of the collier as at present arranged. The acids, sulpharic and nitric, render the lamp so inconveniently heavy, that both hands must be used in carrying it; besides, from not being covered, the spilling of these corrosive liquids on the persons of the miners coald scarcely be avoided. The water in the exterior vessel soon becomes hented, and ultimately boils, and the light only lasts in proper streagth for two or three hours. There must, therefure, be considerable moditication in this lamp before it can be reudered available for ordinary mining purposes, which we may readly expect, from the acknowledged talent of its inveator.

The menan of obtaining the needful lights in collieries, though mont im. portant, woold atill appear snbordinate, as has, indeed, been before remarked, to such a syatem of ventilation as should not expose men in such large porthus of a colliery as is now frequently the case to the risk of death from explosion (the greater proportion, and often all, perishing from the carelespess of one man), or to unforeseen accidents under the greatest precastions in the use of lights. The too common use of single shafts in collieries, In cases where others might have been sunk, the single shaf divided into two or three portions by wooden partitions named brattices, a down esrrent of pure air descending throngh one division, and the foal air from the colliery workinga rising ap through mother, has often been reprobsted. The Committee of the House of Commons of 1835, and many important witoesees examined, animadvert upon this practice; and the bad effects of this system is pointed out by the Sonth Sbields Committee in their report of 1843.
In a slogle shaft, as has been often remarked, the ventilation may be cut off from the workinge of a whole colliery in an instant by an explosion safficient to destroy the doors or partitions directing the air-courses, the air merely going down one division in the shaft and rising through another, Then the brattices may not be destroyed by the explosion, and a kiad of draggt kept ap. Thas all not destroyed by the explosion perish in the mintore of nitrogen and carbonic acid, known as afer-damp, to which no frath air can resoh. In the explosion at Jarrow Colliery there wan only
a single shaf commonicating with the workings opon two beds of coal one above the other, and the lower part of the brattice in the shaft was so shattered by the late explosion in it, that Dr. Playfair and Mr. Williams, in their deacent into the pit, then containing a large amount of fire-damp, had to be let down a considerable distance by a loop in a rope. In this explasion the upper portion of the brattice fortunately remained, and thus the lives of many of those engaged in the opper workings were saved; although several perished.

Even in a double shaf, or two shafls not fur distant from each other, if the air be vot made to course for a considerable distance amid the workings by a firm thick parting of coal, any needful perforation in the parting for the progress of the colliery being frmuly built up, a whole mass of workings may, by an explosion, be suddealy cot off from pentilation, and numbers of persons, not killed by the explosion, perinh by the after damp. This was the case at the lute explosion at Risca. It should, however, in this instance, be observed, that the colliery was, as regarda veatilation, in a transition state, a more perfect arrangement for ventilation being in progress.

Great improvements were introduced in the rentilation of collieries in many diatricts, when the course of air was quickened by means of a furnace established vear the hottom of the upcast shaft, or that through which the foul air passes outwards, and more particularly when, in the north of England, instead if permitting the air introduced by the downcast shaft to pass slowly and imperfectly along a course of 20 or 30 miles of pass. agee, it was split or divided into separate courses, from two to six miles in length. Those, bowever, who nay possess an extended acquaintance with our collieries in different parts of the country cannot but be aware, that, as a whole, their general ventilation is very imperfect, good as it may be in some collieries, particularly in certain distriets.

When it is considered that cools are worked in the United Kingdom under every variety of condition,-from levels driven into mountain sides to pits sunk to great depths through masses of superincumbent roska,-in beds ranging from a vertical to a horizontal position, and even contorted and bent,-sometimes traversed by faults, at others free from them,-thu beds near the aurface in one place, and ranging benealh mountains in another, -in fact, under a great variety of geological conditions, it is not dif. ficult to see that many plans which have been suggested for the working of collieres, good as they may be for some localities, would be inapplicable generally, and would indead fail, except under the conditions fitted for them.
So various are the conditions under which collieries are or can be worked In the United Kingdom, that we would suggest fur consideration, if legislative measures should be deemed advisable, and an extension of the principle which regulates the employment of women and children in our mines, and the labour in our factories, be thought good, that effective discrationary powers should be vested in properly qualified persoos, appointed in convenient districts, so that the aeedfal adjustments to conditions may bu effected, and no aingle system be attempted inapplicable to our collieries as a whole.
Any general systom of legislation for conditions so different could only be productive of failure or of injarions coasequences, both to owners and workers ; but a local examination and inquiry, with power to adjust tospecial conditions, would, we apprehend, remove the difticulties which the Legislature hes felt In dealing with interests so impurtanl.
Jealons as the coalowners should properly be of any undne intermeddling with their collieries, it may noverthaless be true that a judicions aystem of superintendence in a district, by which the proper ventilation of collieries, efficient knowledge on the part of subordinate agents, and proper punishmeat for fool-hardiness or carelessness on the part of the colliers. may be secured, would be a great advantage to them individually and collectively, and be the saving not only of lives but of mach capital, securing them, in the case of accidents, from many an unjust accusation for aeglect.
On the other hand, earefal but not overmeddling supervision woald aford confidence to tbe collier. Proper persons being appointed as superintendents (and, if lmproper, their deficiencies would soon become apparent, and their removal tbe consequence), be would feel that he bas the advantage of the existing knowledge of the day brought to bear opon the particalar conditions ander which the colliery in which he labours is worked. In some districts the working collier is far better informed upon the general principles which should receive attention than may be com: monly supposed, and be would feel far more secura from danger than he now does, if assured that the State was oot deglectifal of his safoty.

Though several collieries in particular districts possess good plans and sections of their workings, and an inspection of such plans and sections affords a view of the system of ventilation and general mod of working adopted, this is far from being the case generally, and has been much regretted alike by the enlightened coalowners and by the public. The ims portance of correct plens and rections has been prominently pointed out, bolh by the Committee of the House of Commons of 1885 , and in the report of the South Shields Commituee of 1843 ; indeed, the vecessity of them is sufficiently obvions.

Should the suggention of a system of jadicious inspection be considered worthy of consideration, the ready access to proper plans and sections of collieries, brought up to given times, would necessarily form a part of any general syatern of regulations. If correct (and power to ascertain that they were so would be eseential), they would at oese disclose the ayotem
of worklag and ventilation adopted, and, with information respectiog the police regulations, and an account of the kind of lights employed, would at once afford a general view of the mode of conducting any particular colliery, and of the adjustment of the workings to conditions.

It being considered that safety lamps, properly used, do effect mnch se. cority in the working of coal, and that in so many cases explonions do take place when they are not employed, it has oflea been suggented that the Legislature should compel the genernl use of safety lamps in coal mines. But, on the other hand, there are many collieries in which firedamp nevor appeara, and it rould justiy be considered a bardship ia such cases to compel a precaution altogether nanecessary.

We would suggest thet it could not be considered nnjust for the Legislature to compel the use of safety lampe in all fiery collieries; and, in the present stute of the law of property, it might even be prudent to assume that all collieries in districts where explosions hava been frequent are fiery; pattiugs the onus probandi that they are not upon the owners of such collieries. If proved to the satisfaction of the inspectors that no reasomable danger was to be apprehended in their collieries, license might be giveo for them to work with naked candles, this license ceasing at short periods, hut hoing redewable on ascertaining that the conditions of the mine had sot allered.

Careful investigations into the causes of explosions in collieries, only part of which arreat public atteution by their magnitude, appear to have led to the very general conclusion that the condition of our collieriea is most unequal. While in some localities there is so litile to improve that it hecomes subject of regret that such examples should not more geoerally bo follower, in others it becomes a matter of surprise how the wurks can be permitted to remain in so defective a state, seeing that the owners themselves auffer much loss thereby. Under such a atate of things, and considering the number of valuable lives annually lout by colliery explosions, the contiuued risk to which 50 many are daily exposed, the national injury austained by the imprudent and careless mode of extracting coal in many localities-one often felt oppressively also by the parties engaged in colliery speculations-and that the workings for coal must be adjusted to local conditions, we are led to consider that these evils might be at least mitigated by the careful and judlaions inspection of convenient districts by competent persons, the necestary funds to be raised from such districts by e very slight impost, not even exceeding one farthing on each ton of coal raised in it; and we bolieve that the cause of humanity and the faterests of the coalowners would be alike benefted by a well-considered legiale. tive meanure of this kind.

We have, \&ce.,
H. T. De La Becre.
Lyon Playpate.

Lyon Playpatr.

THE HOUSES OF PARLIAMENT.

The following are portions of Mr. Barry's evidence before the Committee eppointed to inquire into the progress of the Houses of Parliament :-
\& The committee had an impression, from ovidence giren by you on a former occasion, that you would be willing to undertake to warm and vensilate the new Houso of Lords upon aystem of your own ?-I believe I 30 thated.

If you were to edopt a system of your own, would it render it impossible hercafter to revert to such sybtem as Dr. Reid has in a general way recommended or suggested - Is it meant that that question should apply to the House of Lords exclusively, or to that and any other portions of the bailding ?

To the House of Lords exclusively $\mathbf{T - A s}^{\text {As }}$ the subject is altogether new to me, I could not at the present momont answer satisfactorily; but if your lordships would give me four-and.twenty hours to consider that point, I will thea be prepared to give you a definlto answer to the queation.

Do you think that you could propare the apartment for the Peors by the comemencement of the sencion of 1847, if it were ventilated and warmed sceordiog to your own system, and without any interference with your systom from any other quarteri-Until I have determined what that sysiom shall be, it would be rather difficult for me to answer that question. With reapect to the fixing of the joiners' work, as nufortunately a very large portion of the year, and the portion beat adapted for fixing work of thet description, has been suffered to clapse, I should be sorry to pledge myerlf that I woald completely tinish the House of Lords by the time menmosed, Fis, the commencement of the next session; but all I cansay is, that I will dovery thing in my power to accomplish the object, and I Hest that I devold at leact bo able to bring the House into such a state as, iteot completely finished, it might be occupied by your lordships.

The "seaslon" is rather an indefaite word; do you mean by the lat of Tebruaryi-I understand the commencement of the session to mean the Let of February.

You think you could got the House ready by the lat of Fobrairyt-I should not wish to pledge myself to have the House completely fuished in all respects by that time; but I thlak I could finish it 50 completely that it might be ocoupied by your lordships.

You mean that every convenience for the sitting of the House might be sopplied, although the more ormamental parts alght not be inished iExactiy,

Hes any farther advance been made in the arreigetnents of Dr. Red since you were last eramined before this committee ?-Not that I am amare of.

Have jou the slightest hope, from what has already transpired, and frem what you are able to vollect, that the work would be at all advaaced by this time next year, unless sume new arrangements were made with regend to the ventilation i-I mast say that I bave no bope whatever.

All the fitiags are prepared ? They are, with the exoeption of pertions of the throne, and they would be prepared during the time that the rest of the fittings were being fxed.

In muking any arrangement for the ventilation, you do pot conceive it will be necessary to destroy any part of that which bas ulready been pre. pared in connection with the arrangements suggested by Dr. Reid P-I do not think it would be necessary to destroy any part; it would be peceasary, probably, to modify some of the arrangements, in order to make them arelable to my own system, if I may so call it.

In the arraggement that you would contemplate for warming, you woald not have to alter the ceiling, or any thing that has been done there \&-Nid at all.

Is the putting op of the ceiling a very expensive work i-The patitas up of the fittings is a very expensive and rather tedious work; the work ia of an unusual descriptiun, and will require the greatest posaible care in fixing.

Are you in such a state that you could proceed inmediately towards the completion of the House if you received the secessary authority i- Yes; I am quite prepared to do so.
Will you deacribe the state of forwarduess of the buildiag adjoiaise the House, including the lobhies i-The Victoria Hall, which is the aparfmeat immediately adjoining the throne end of the House, is covered in, and tho ceiling is neerly fxed. I think it possible to make that room aveinable as well as the House, although the fitings which are to be placed in it migt oot be completed. The public lobby is also roofed in, and the ceiling in completed, and If it were necessary, that portion of the building alse mifht, I think, be got ready for use. The finishings of the corridorm edjoining the Housc on each side ere entirely propared, and I thint, if the time is men. cient for fixing the work, which is very minate and elabornte, thare is mo reason why the corridors should not also be made available for coen pation with the House.

What is the state of the royal gallery t-The roof of the royal gallers ia on, and a commencement is made with the fring of the ceiling.

What is the atate of the Queen's robing room ?-The roof is over the Queen's robing room, and the brick arches forming the celling are testaed, but none of the fittinge are comurenced.

In what stato is the staircase from the royal ontrance? -That is in a very forward state. All the stonework is completed, or neariy to, with the excoption of the steps.

Have you sufficlently digented your plan for the rentilation to be able to stato in what manaer you propose to introduce the air into the Honee and the lobbies? -No, I have not, becuuse my attontion has not been dirveted to that part of the subject.

But you heve stated that you would be prepared to undertake tha veatilation and warming of the now Houses, and to complete the arragemeate before the meeting of next session i-Yes.
Without tying you down to a day, you can have no objection to the ceanmittee reporting that you propone to ventilalo and warm the apartmeets upon your own responsibility ? - None whatever.

And that that is not the portion of the work from which son contemplate any delay in preparing the House for next seasion ? Not at all.
If Dr. Reid's plan was abandoned, as it respects the Hosee of Lards, will the central tower still be necesoary ?-If Dr. Reid's system, or any part of it, is adhered to in other parts of the boilding, it will certaialy be necessary, eccording to the arrangements made, to bave the central tower.

But not otherwise ?-Not absolutely Decescary, axcept for Dr. Reid's purposes.

With respect to the central tower beiag abendoned for the perpoese of ventilation, might not that tower be made available for other public perposes :-I thlak it might.

Do not you think that eres io the erent of abandoning Dr. Reid's achare it would be a great loss to the deaign if the central tower were givee upiI think it wonld be very denirable to retain the canatral tower; bet ide not mean by that to ay that it would be depirable to retain the rane heigha or form of cower as would be required by Dr. Reid for his veatilating per poses. I think the central tower would be a great ornament to the biviing; but I am not of opinion that it in necessary to carry it to the height that Dr. Reid requires In order to obtain the effect that I showld deaise.

The ceniral tover, such me conternplated by Dr. Reid, would be of a lower height than the Victoria tower f-I an hardiy propared to anamer that question, becanse I am not aware that Dr. Roid bas yot made up hit mind as to the hoight of it. When I have apoken to him on the anbject, be has said, "I should like to have it as high as posaible; the higher the better; higber than Saiat Haul's," and so forth.

What is the proposed height of the Victoria lower?-Abont $\mathbf{3 4 8}$ feet.

The followligg are the answors of Mr. Philip Hardwicke, Mr. Georpe Stephenson, and Professor Graham, to queations submitted to them by the Chiof Commlesloner of Woodn in regard to the warming and veatilution of the New Houses of Parliament.

1. To call upon Dr. Reld to lay before them the details of the system of warming and reatilation, ms intended to be applied to the New Houses of Parliament? In consequence of the instruction numbered I., we called apoo Dr. Reid to lay before os the details of his syatem of warming and ventilation, as intended to be applied to the New Houses of Parlimment. He bas laid before us his general principles on warming and ventilation, the details only to a limited extent, bat safficient to earable us to form an opinion on the subject.
2. To consider and to report how far it is practicable, and if practioable whether it would be advisable, that snch syatem should be extended to the whole building, including the subordinate offices and private residences contained therein; or whether the application of the syatem should be restricted to such portion as comprises the two Houses of Parliament, their corridors, libraries, kitchens, ad refreshment rooms, or to a still more limited portion ?-Agreeably to the inatruction numbered II. Wre have considered Dr. Reid's system as he has explained it to ms. It conaints of of one general scheme for the warming and ventilation of the whole of this extensive building, bringing in the atmospheric air from a considerable altitade at the Victoria and clock towers at the two extremities of the bailding, carrying off all vitiated ad impure air by a set of channels, both conveyed to a central tower proposed to be of greater olevation than the fowers already mentioned. Althoogh tho scheme may be practicable, we are of opinion that it is too much complicated in its details and oltimate management to realer such a system advisable to be applied to the whole ballding, including all subordinate offices and private residences contalaed therein, and that the application of the ayatem considerably modified should be restricted to snch portions as comprise the New Hooses d Parlimment, their corridors, libraries, titchens, and refreahmant rooms.
III. To coosider and to report whether there would be adrantage in applying the syutem, as far as its application abould be deemed abvieable, to diferent divisions of the building separately and independently of each other?-In reference to the third inatruction, we are of opinion that there woold be edvantage in applying the systen modifed to two divisions of the bailding - viz., to each Honse of Parlizment, and the variona nooms and corridors belonging to it, and separately and independently of each other. We are further of oplaion that it would be unnecessary to apply the systera to the committee rooms, as we consider they aro capable of beigg rarmed and ventilated in a more simple mancer. That whatever marning and ventilation may be requit ed to the Speaker's residence and the other private residences should be effected separately and independenty of any other parts of tho building, and from each other.
1V. To ascertain and to report how far Dr. Reid's system of warming and ventilation is compatible or cad be made compatible with rendering the boildings of the portions thereof to which it is applied fre-proof iWe have not been able to consider the fourth question so much in dotail as coold be desired to enable as to express a decided opinion upon it; bat we bave a strong impreation that the system of warming and ventilation, as proposed by Dr. Reld (if carried ont in conformity with his plen) eannot be made compatible with rendering many portions of the building fireproof.
V. And, according to the opinions which may be formed of the points above mentioaed, to ascertain and to report how far such plans and information in regard to the building have been supplied to Dr. Reid as are safleient to enable him to furnish to the architect corresponding plans and information, is regard to ventilation, or if further information should be coasidered regnisite for cither party, to what extent and in what manner it ahoold be formished i-WIth respect to the fint point it appears to us that Dr. Reid has had accens to or been furnished with a great many plans and nections of tho building, and has recelved sufficient essistance to enable him to apply his plans for warming add veatilation to the building is progrest.

Prilip Handfiger.
Gro. Stephenson.
Thomas Grabam.
Sarth Andley-gtreet, 25th Juse.

LIVERPOOL TOWN-HALL DECORATIONS.

The Lierrpeel Mifil praises the deceptions employed in the decoration of the ceireese of the Lirerpool Town Hall in the following terns:-By geme procest, the inveation of Mr. Ingram, decorative artint, of Birmingbela and London, who is now, with abont twenty of his own workmen, eirimg on this work, the walls, which are of the usual description, and pillara, are mode to represent the finest polished marble, and are susceptible \& roceiving a polish of great brilliney. The walls are enamelled in imitation of gienna marble, and the colvmas are finished in Jasper marble. 80 perfect is the work, that the beat judges acknowledge the imitation to bo perfoct, and, to the mintutered sye, the deception, we art sure, would be complete. On the wiodow caset and frasing are paisted the arabeaques frow the Vatican-the anbesque style being etrictly obeprved, nothing Which has life being introduced. The door cates will be fininhed in imite. tioo of atatuary marble, highly polished, and the Jasper piilars stand out io bold relief from the Sjeana and statuary marble. The whole of the ormarents in the door rases and under the dome, the frieses, corvices, \&cc., are richly etebed with gold. This cammelled style differs moch from that of seagliolu, masmuch as that grsat tramsparency and aparry character, pecular to marble, can be produced."

FORENNG STOCK OF RXISTING RAIIWAYS.

The following in an ebotract of the Retorna made to the Railway Department of the Board of Trade, in purnasince of an order of the Honse of Lords, of the " Horking atock (evgines, carriagea, and Fegons) belongiry to Railway Companien at present in operation" :-

Name of Railway.	Rngines.	Pascenger Carriagea.	Luggage Vavs and Tracku.
Arbroath and Forfar -.	5	12	110
Birmingham and Gloweenter . .	40	46	386
Bristol and Gloneester ..	11	20	213
Chester and Birkenhead	10	60	36
Dablin and Drogheda ..	15	69	105
Dundee and Newtyle ..	7*	9	138
Darham and Sunderiand ..	$13+$	23	28
Danfermliee and Charientown	Horsea	2	189
Bastern Countles	66	204	1142
Bdiaburgh aod Delkeith ..	Horses	28	104
Rdinhurgh, Leith, and Granton	Horses	8	
Glagow, Paialey, Kilmarnock, and Ayr	31	133	1334
Grand Janction, Inclading Liverpool and Manchester, and Bolton and Leigh	128	343	1978
Gravesond and Rochester ..	4	16	6
Great North of Eogland	37	46	717
Great Wreatern. .	127	232	919
Hartiepool Dock and Railway	5	8	6
Haple . ${ }^{\text {c }}$	7	6	119
Holl and Selby	17	45	238
Lancaster and Preston Junction	6	37	36
Leicester and Swannington	8	4	13
Liannelly and Llandillo ..	4	2	454
London and Blackwall	$2+$	47	9
London and Brighton	44	163	423
.London and Croydon -.	8	56	89
London and Sonth. Weatern ..	47	212	308
Manchenter and Birmingham. .	27	100	961
Manchenter, Bolton, and Bury Canal Navigetion and Railmay	12	52	228
Maryport and Carlisle (including Whitehaven junction)	8	16	135
Midland	109	251	1842
Newcastle and Darlington	37	81	2515
Newcastle-apon-Tyme and North 8hields	5	28	124
Newcatlo-apon-Tyne and Carlite ..	26	67	653
Newtyle and Coupar Angus ..	1	2	48
Norfolk ..	18	50	497
North Union ..	19	49	54
Pontop and South Shielde ..	13	5	2649
Prentos and Wyre	8	40	108
St. Helen't Canal and Railway ..	9		20
Sbeffeld, Ashton-ander-Lyne, and Manchenter	25	105	469
Stockton and Hartiepool, and Clareace	19	23	67
South Baatern	90	409	881
Taff Vale ..	12	23	328
Ulster	11	34	102
Wishaw and Coltness	11	10	1016
York and North Midland	48	109	1050.

- 8 wre entitomary enginem
\dagger All are mationary casiset.

AMERICAN PATENTR.

Gratill in Aprit, 1848, reperted the Americun Franking Jowral. For "am Improvement in carriage whoela." Ellphalet S. Scriptmen, New York City.
The objeet of thin improvament is to arrange the apokes and hub in anch mancer as to afford a ready means of tightening the wheel when the spokea become loose by shrinking, which is effected by finclining the apokes either way from the plane of the wheel to form what is termed a double dished wheel, one half of the spokes being inserted in a permanent hub or cheek piece, and the other half in a movabie hub, or cheek piece, which slides on the pipe box, so that by means of a nut the moveable hob cas be forech with its spokes towards the other, and thas tighten the spokes.

For"an Improwement in the comnecting rods for connecting the crank pins of three or more driving wheels of locomatives." Holmes Hinckloy, Boston, Mass.

The object of this improvement is to connect three, four, or more, driving wheels with a single connecting rod, and permit those fatween the two end ones to have a vertical and lateral play, which is effected by having the crank pins of the intermediate wheels work in boxes that olide vertically in the connecting rods, the said crank pins being made of sufficient leagth to give end play to the axles.
Claim-"I claim making the bores to slide vertically in the connecting rod, in combination with extending or lengthening the crank pins of the wheels beyond the said boyes, 50 as to slide through them in the direction of their axes, as set forth; the whole being for the purpose of conterting all of the soveral wheels of the engine into drivers, as described.

For" Improvements in the auriliary steam engine for anpplying steam boilers with woter." Jobn Cochrane, Baltimore, Md.

The patentee says, "The intention of an auxiliary aupply engine is not only to supply water to a boiler, but to preserve the same at a aniform height therein, withont its being affected by any irregularity in the consomption or eraporation of that flaid; said auxiliary engine stopping and starting, and working quickly or slowly, as the demands of the boiler may require. Under the arrangement that I prefer, the admiasion of steam to the eaxiliary engine is governed by a float and balanced valves, placed in e chamber ontside the boiler, but communicating therewith by two branches, ooe above and the other below the water line; so that the water may have the same level both in the chamber and boiler. The float is furaished with a tubular stem at bottom, opening into it, for the parpose of carrying off any leakage; this stem passes out through a stufing-hox in the lower part of the chamber, the arrangement of this part being substantially the ame with that represented and deacribed in the specification and drawingn accompanying letters patent of the United States, granted to me on the 18th day of July, 1844, for regulating the supply of water in steam boilors. The float, however, may be otherwise arranged and modified, the only requisite being that ita action on the steam valve shonld be governed by the height of water in the boiler.
" It is not pretended that an ausiliary engine for the supplying of water to steam boilers is in itself new, such engives having been heretofore employed for that porpose; bui I have, as I believe, snceeeded in so constructing and arranging the parts of sucb an engine as to obviate the main difficulties heretofore encountered in the attempts to employ them."

Claim.-"Having thus fally described the nature of my improvements in the anxiliary supply engine, what I claim therein as new and desire to secure by letters patent, is, first, the manner herain described of completing the stroke, or traversing motion, of the valve, by the commencing return stroke of the piston operating on the spring arms, substantially in the manner and for the purpose berein set forth.
"I likewise claim the manaer of regolating the stroke of the water pomp, by adjnsting the same by means of a ralve, or cock, as set forth, so that a smaller and regulated quantity of steam sball be admitted to the lifting, than is admitted to the forcing, side of the piston, as described."

For "t an improved method of mpplying unater to stean boilers by means of an axriliary steam engine." Isaac N. Cufin, Washington, D. C.
Claim.-"What I claim as new, and desire to secure by letters patent, is the combinatlon of the float with the valve, steam engine, and uapply pumps, substantially as herein described, so that the depression of the foat, cansed by a deficiency of water, shall open a valve, and that the steam which escapes through said opening shall drive an engine to operate the eapply pumps."

For "a hydrostatic power machixe." John Gregg, Rochester, Monroe county, N. Y.
The patentee says,-"There are many situations in which the power of Water can be obtained ander a very considerable head which, from local causes, cannot be rendered available by means of water wheels without an expenditure of money greater than could be made with prudence; it is principally in such situations that it is intended to employ the machinery invented by me. To effect this object, I employ two cylindrical or other formed water receivers, into which receivers, water is ulternatel 5 admitted under any desired head, and is made by its pressare to condense atnospheric air, which air, s condensed, is to be conveyed by tubes to a cylinder furnished with a piston, valves, and other appurtenances, similar to those usually employed in a steam cylinder; the air being, in fact, substituted for stean in such manner as that an ordinary steam cylinder* will not require any alteration to adapt it to use by means of condensed air."

For "Improvements in the steam engine." Balph Pomeroy, Belleville, Essex county, N. J.
Within the cylinder of this engine there are four plstons, the two end anea being connected together and operating one crank; and of the other
two, each operates a separate crank; and the three cranks being on the same shaft and dividing the circle into three equal parts. All the piston rods, except the last, are hollow, and pass through each other, and the steam is to be admitted alternately to the different pistons, and so cut off, that whilst it is expanding in one division, another division is receiving the steam directly from the boiler, but the manner of operating and arrangieg the valves for this purpose is not described or represented.

Claim-" What I claim as my invention and desire to secure by letiers patent, is combining four pistons, constructed and arranged uubstantially in the manner set forth, in one cyliader; said pistons being connected with three cranks placed at about an anglo of 120° from each ocher, all as berein described."

REGISTER OF NEW PATENTS.

If additioral faformation be required reapecting any patent, it may be obtained at the omee of this Jourual.

MOULDING IRON.

William Mushet and Robert Mushet, iron-founders, of Dalkeith, Scotland, for "Improcements in moulding iron." Granted Dec. 10, 1845; Enrolled J ane 10, 1846.

This invention consists in the application of stampers and rollers or other suitable apparatus for pressing the sand into the boxes instead of performing such operation by hand as beretofore. In carrying out this invention, the patentees propose to employ a machine having one or moro stampers, or rammers, worked by means of eccentric or other convenient neans, or the same may be effected by a roller or rollers in the following manver: that is to say, the sand after being put into the lower box, is placed opon a carriage and passed onder the machine, for the purpose of compressing it into the box, the mould being inserted and saitable sand employed to form the parting; the top box is then put apon the lower one and filled with sand in the usual manner, when it is again subjected to this improved mode of ramming, after which the mould is finished in the ordinary manner. The patentees state that the moulding of railway chairs and other similar articles, when a great number of the same sort are required, will be greatly facilitated by the process above describod.

STEAM ENGINE IMPROVEMENTS.

William M'Naoght, of Glasgow, Scotland, engineer, for "certain inprocements in steam engines."-Granted December 10, 1845; Earolled June 10, 1846.

This invention, which relates to certain improvements in steam engines, consists in the application of what the inventor terms a non-condemsing cylinder, in addition to the present cylinder in bean engines, which present cylinder may be supposed to be the condensing cylinder. In ear. rying out these improvements, the patentee proposes to have a second stean cylinder placed between the centre of the beam and the connecting rod, the piston rod of suoh oyliuder being attached to the beam by means of links, and to that part thereof about midway between the connacting rod and beam gudgeons. This auxiliary cylinder is provided with a valre of the ordinary construction, and worked by a rod, one end of which is attached to a lever keyed upon the weigh shaft of the ordinary cylioder, the other end being attacbed to a lever on the weigh shaft of the auxiliary cylinder, so that the valves of both cylinders are worked by ove eccentric. The action of the engine is as follows: thet is to eay, the steaun from the boiler is first admitted into the anxiliary cyliader, and haviag acted apon the piston so as to force the same from the top of the cylinder to the bottom, it passes through the eduction pipe into the ordinary cylinder at the opposite end of the beam, and into such cylinder at the upper part thereof, so as to force the piston down after performing the stroke $;$ the steam passes througb the eduction pipe into the condeuser, which is of the ordinary construction. So that the steam from this additional or auxiliary cylinder, after having performed a stroke-say the up stroke-passes from the underside of the piston of that cylinder to the anderside of the piston of the ordinary cylinder, which latter, it will be observed, is at the bolfom of its cylinder when the other is at the top, 90 that the inventor works with high pressure ateam in one cylinder and low pressare in the other, from which latter the steam passes into tho condenser.
The specification shows a mode of applying the invention to marive steme engines. in wbich case there is a cylinder placed at each ond of the bean. one of which, that is, the higb pressure cylinder, being somewhat senaller in diameter than the other; by thim means the power is maid to bo mooe equally distributed than in engines having bat one cylinder.

RAILWAY CARRIAGE WHEELS.

Joseph Romnald Bozex, of Cheapside, mecbanic, for "Iaprowements in the construction and applicution of railway carriage wheels."- Qrented January 0 ; Enrolled June 24, 1840.

The improvements relate to the epplication of the fiange of milwey Fheeis on the outside instend of on the inside of the wheel.

GLAS复 TILES.

John Rosseti, of Edinburgh, acconntant, for "Manyfactare of glass tiles.'"Granted December 30, 1845 ; Earolled June 30, 1846.

This invention relates to making tiles out of sheets or pieces of glass ; the pieces have two of their opposite sides turned up perpendicularly, from half an inch to an inch, to form fanges, and made in such a manner that the plave or fiat part of the glass shall be wider at the upper end of the tile than the lower end, so as to allow the lower ead of one tile to lap and f t into the top of another between the two fanges. These tiles, the inventor states, may be formed of auy shape, suitable for hips, valleys, domes, or $\begin{gathered}\text { rrades, and either of atained, coloured, or opaque glass. The }\end{gathered}$ tikes when used are laid on laths nailed on to the rafters, in the nsual manner, and the apertures between the flanges are to be filled up with palty or any other suitable cement, and covered over with a hollow bead of metal or glass, or a thio slip of metal may be fastened to the rafters and passed up between each tile and then turned orer the flanges on the top.

The patentee slates that he does nist claim the mode of shaping or manufacturing the glass, but only for the form or shape of the glass and for the parposes of roofiug, as above described.

ATMOSPHERIC RAILWAYS.

Johm Robert Johnson, of Alfred-place, Blackfriars, in the connty of Surrey, chemist, for "Inaprocements in the muttrials employed in constructing and werking etmaspheric railacays."-Granted December 6, 1845 ; Enrolled June 6, 1846
This jovention relates, Arst, to a new composition for sealing the longitadinal valves of atmospheric railway tubes. It is made bs adding to verions mixtures of resinous, oily, and bituminous substances, dry clay, ocbre, and chalk, in powder, as much as will make the composition of the proper consistency; the following mixture is preferred and found to succeed: 1 part palm oil, 2 parts brown resin, and 4 parts china clay, in fine pnwder. Insoluble soaps, prepared by a combination of fat and an oxide or earth with oily or resinous substances, may answer the same purpose.
The second improvement is a composition for labricating the interior of the traction tubes, made by mixing with fat or ojl, and resin or pitch, a quantity of earihy matter, as before described; the following proportions are recommended : 7 parts resin, 4 parts stearine, 4 parts tullow, and 19 parts elay.

The third improvement is for making fabrics impervions to air and moisture with elastic varnish, for the purpose of using them instead of leather for the longitudinal valves. The fabric may be made either of cotton, tax, bemp, or wool, in the form of a belt, of the breadth and thickness required. The varnish must be such that oils or fats will not act upon it when dry, and it mast possess sufficient elasticity to bear the bending resolting from its use; linseed or nut-oil is preferred, particnlarly boiled lisseed oil, which is made to penetrate the fabric by heating the oil to 250°, and immersing it therein until the air and vapour is expelled from the interstices of the fabric. Tbe fabric is then passed between a pair of iron rollers, to squeeze unt the superfuous oil, and dried in a warm room, and afterwards again passed through oil heated to 200°, and also between the rollers, and dried. The operations are repeated until the interstices are alled by the successive coats of varaish and the fibres cemented together jato one mass. To remove the inequalities, if any, on the surface, pamice stone must be nsed, after which a finishing coat of varaish is to be applied.

The fonth and last improvement is for constrncting the traction tubes of materials not before ased for that purpose, such as calcareous cement, Keene's cement, Roman cement, and the like, which can be cast in the form desired, and do not require buraing. The cement may be mixed with anod or finc gravel and rammed into moulds of tbe form required. The patentee prefers to form the pipes by the nid of an apparatus mado with a cylindrical case and a bollow core for forming the inside of the pipa. When the tabes are dry and seasoned they are rendered impervioas to air and moisture, by causing the cement to absorb coul-tar, which has had ite more volatile portions separated by distillation.

STEAM ENGINES AND PROPELLERS.

Jomy Pemw, of Greenwich, engineer and manufacturer of ateam engines, Wuliam Hamthe, the younger, and Jobn Matriew, of Greannich, en. piocart, for ${ }^{*}$ the inoention of certain improvements in steasm angines and machinery for propelling veepoli, which improvementa are alco epplicable for other gurpores." -Granted December 25, 1845; Barolled June 25, 1846.Ropotied in the Paters Journal. (See Engreping, Plate XIII.)

These improvements in steam engines relate to a certain mode heretofore invented, of making the piston rod of steam engines of enlarged size, and bollow, like a tube, to admit a long connecting rod to be received within the bollow of the piston rod, for transmitting the force and motion of the piston to the revolving crank on the axia, which in to be turned round by the force Othe steam engine, like the direct ecting steam engines, the said connecting red being jointed to the piston at that ond of the rod which is fartiocst within the sidd hollow of the piston rod (and which for distinction may be term-
ed its inner end), and the other (which may be termed the onter end, becanse that ead extends out from the anid hollow beyond the hollow end of the piston rod) being jointed apon the crank pin of the revolving crank, so at to operate by direct action for turning the crank and axis thereof round. The anid bollow withis the piston rod is sufficieatly wide for permitting the vibration of the connecting rod, without tonching the inside of the hollow, 50 that the conochting rod being moved round with continnous onward mos tion in the circumference deacribed by the crank pin, the joint at the inner end of the connecting rod will move with allernating motion in a line which is central with the line of the piaton rod, the said joint being guided in the reid line by the sliding motion of the hollow piston rod, through its stuffing box in the cylinder covert, as the motion of the crank pin in the circumference of ita orbit will occasion a very considerable extent of vibration of the connecting rod within the hollow of the piston rod, which is of so large size externally, in order to have sufficient hollow to allow its vibration withont touching. The large size of the hollow piston rod deducta materially from the surface of the piston against which the steam is to act for impelling the piston in that direction which will move the large hollow piston rod (through ite stuffigg boxes in the cylinder covers) into the interior of the cylinder; consequently the piston will be impelled with less force than if the rod were small, or of proper size to such piston. But, on the other hand, steam will operate against the whole area of the piston, withont any such dednction therefrom, when steam operates for impelling the piston in a contrary direetion to that already asid, or in that direction which will move the large bole low piston rod (through itn staffing box), out of the interior of the cylinder. Hence, the piston of a direct-acting stenm engine, with large hollow piston rod as aforenaid, will move by the steam with more relocity in one direction during onn half of the stroke, than in a contrary direction during the other half of the stroke. And to avoid any nnuecessary size of the bollow piston rod, the asme (instead of being of cylindrical form and circamference in its transverne section), has been made oblong in its transverso section, having two flat sides and two semicircular ends, so that the lengthway or oblong should allow wach room within the hollow of the connecting rod as required for the performing of its vibrations, but in breadthway the oblong hollow baing no wider between the iwo flat sides than necessary for admitting the connecting rod to move freely. The staffing box in the cylindercover was edapted to the oblong form of the said bollow piston rod. In direct-acting stean ongines, with such oblong dattened form of hollow pinton rod, have been called trunk engines, and were subject of patent granted to Fracis Humphreys, for Eagland. 28th March, 1835.* Our improvement in steam engines of the aforeanid description, consists in extending the aforesaid hollow piaton rod or trunk each way from the piston, inatead of merely on one side as heresofore. And with that improvement, the surface against which steam will operate for impelling the piaton, will be the same when impelled in one direction as the other. Also, the guidance of the piston in its alternating rectilinear motion within the cylinder, will be rendered more complete in consequence of the said prolonged hollow piston rod paraing through the atufing boxes at both ende of the cylinder. Also, the joint at the inner end of the long link or connecting rod, is repdered more acceasible than herotofore. Fig. 1, is a borizontal section of an engine constructed according to this part of our improvementa; a, a is the steam cylinder; b b the steam piaton 6tted into the cylinder, and moving up and down therein; $c e$, the hollow piston rod or trunk, fastencd to the piston, and moving therewith ; $d d$, the end of the cylinder; and \mathbb{B} E, the cylinder cover, heving the stuffing box, e e, at the centre part of it for hollow piston rod, c c, to pass through; f is the long link or connecting rod, jointed at its inner end upon a pin, A, at tbe centre of the piston, and jointed at ite onter end apon the crank pin, B, of the revolving end of the crank, G, which is on the main revolving axis of the steam engine; $i i$, is the frame-work for suataining the said axih. The hollow piston rod may be either of cylindrical or oblong form, at aforeanid, but must be truly priamatic. In the motion of the engive, the centre of the joint-pia, A, at tbe inaer end of the connecting rod, will move along the cylinder with an alternating rectilinear motion, whilst the centre of the crank pin, B, at the outer end of the anid rod, f, is moved onwards around, in the circle described by the crank pin with a continnons rotary motion, and during auch motion the connectiog rod f will require to vibrate from the direction of the central line of cylinder to the axtent of the internal diameter of the piaton rod, with alternate deviation on opposite sides. The hollow within the hollow piaton rod ec, is sufficiently large to permit of anch extent of vibration of connecting rod f on aitber aide. Thns far this engine is the came as other trank engines, or hollow piaton rod engines ; but 1 g. 1 show the hollow piston rod c, c to be prolonged at 1,1 , from opposite nide of the piston b, b to that side thereof from which the aforeaid part c, c proceeds; the prolonged part 1, 1 pausing throagh, and boing fitted with a stuffing box 2,2 , at the centre part of end, d, d, of cylinder, and the part 1, 1 beiog a continuation of the part c, c, which, logethar with the said part 1, 1 , forms a long hollow piston rod, c, c, having piaton 6, 6 fatened to it at or near the middle of such sod, and the said long hol low rod c, c, heing guided by both stuffing boxen at e, e and 2,2 ; the pistom 6 is thereby securely retained in a proper position at the centre of the cylinder when moving with it alternating motion therein, withont any nodue rubbing with more force at one side than the other of the inaide of the eylinder; and the aaid long hollow rod c, c being open at the ead of the prolonged part 1,1 , the joint of the inner end of the connecting rod f upoa
the pin A cau be got at for acrowing up or tightening bramea of sach joint when the eagine in stopped. Pig. 1 is supposed to be in avery other reapect exactly like other direct acting engines, which, being well knowa, noed not be described. The air pump may be worked by means of another short crank or an eccentric apon the maia revolving aris. Sach an engine may have the fiy wheel on its main aria, and may be applied for qetaatiag any machinery requiring a continoous rotary motion; or may be applied in ateam veasels, in which case the main axin would be prolonged each way scrow the vesel to serve ss the axis for wheels on each ride of midship line of reasel with the main axis of both engines in the seme horizontal line acrous the veasel, the air pump or pampe being amidehip in a space left for the parpose between the two engines, and the air pamp or pumpe may be worked by a short crank or cranks, or eccentric or eccentrica on the main axis, all which being the amme at in diroot seting engines need not further be described; and in consequence of the effectual guidance of the pinton daring ite motion in the cylinder, which resalts from the long hollow piston rod passing through stufing bozes in both ende of the oglinder an above deseribed, such an engine in well qualified for working with the centre line of the cylinder in a horizontal position, es in If. I, becanse the weight of the piator and itt hollow piaton rod is effectrally suasained by the itting of long bollow piston roda into and through the ataffing hoxes at both ende of the cyliader, and therefore that weight will not cance the circumference of the piston to reat with any more force at the loweat part of the internal surface of the cylinder than at the apper or other part of that internal sarface. Bagines of this deseription are well adapted for steam vestela having revolving propellen at the atern ander water, or nearly $\mathrm{or}^{\text {, operatiag in water hy an obligue }}$ or apiral serew, or windmill-shaped propeller, that require their axis to be low down within the vencel, and to be taraed roand with a rapld motion.

Several different engines are given in the drawinga attached to the specitcation, \rightarrow ome rertical, others with the conneeting rod projectiag from the lower part of the hollow pitton rod, with the oglinder at right angles to each other, and attached to the ame crank, or the ead of the propeller ahaft.

Another part of the said improvements in stoam engines relates to the air pump, or rather to the valres of the cir pamp in cases where the air pamp is pleced in a central line in a horizontal powition, and is double acting, eo at to draw water and air from condensers, when the piston of the air pamp in mored either backwards or forwards in its horizontal berrel; an air pump, disposed in a horizontal position, douhle acting, as aforeaid, mast have four valves and a solid piston; such air pumps have been proposed, and are not yew, bat, according to this part of the improvements, those valves, and the senta to which they fit, are so disposed with respect to the barrel of the promp, as to be able to be removed with ease, and spare valves and sease sabatituted when required. Fig. I contuins a longitudinal section of a condenser and air pump, or a pair of condensert and air pampe, suitable for a ateam engine or pair of ateam engines, an already dencribed. q, q in a metallic veasel, serving for condenser and hot water ciatern. It may be divided with a rertical partition to divide its intermai capacity into separate condensern for the two enginet, or elee may be two soperate reasela, diaposed oide by side. In either case, the sir-pump barrel, r, r, oxtends in a horizontal direction throngh the latide of each compertment (or of each condencer), with an openiag into an end of the barrel, whereof one opening may be closed hy a door, q, and the other by an air-pamp cover, R, R , which hat, as usnal, a abifting box at the centre of it, for the rod, a, of an air-pump, to pass through the piston, t, of the air-pump, which is fastened on the rod a, is solid. The apace left within vessel q, q around the extent of each horizontal air-pump barrel is further divided by a borizontal partition not hhown in drawing, but it is nearly at the level of the apper part of each barrel, r, r, and so much of the upper space as is benoath the level of the borizontal partition is the actual capacity of the coadenser for reception of steam that is to be eondensed, and of the injection of told water by which the condenattion in to be effected. The eduction pipe, R, from the cylinder of the engine, joina by a side branch to that lower part or condenser; the space above the level of such horizontal portion is for the hot water eistern or hot well, into which the air-pump is to discharge the hot water, and air in extracted by it from the condenser, and the surplus of which hot water will pass away al usual by the overflow pipe, 8 .

The air-pump, being double-acting, requirea to be constrocted with fnur valven, two at each end of barrel, r, une of these valves being a foot-valve, for admitting water and air to pass from the condenser into the harrel, r, when the air-pump piston, t, is moving away from that end of barrel, r, at which such foot-valve is situate, and the other of the said two valves being a discharge valve for allowing air and water to pass out from barrel, r, into hot well, w, when air-pump piston, t, is movipg towards that end of harrel, r, at which such discharge-valve is situated. This part of the improvenents consiats in disposing the said two valvet, which are at the same end of the barrel of air-pump with said discharge-valve, exactly over foot-valve, so that the same upright spindle or guide rod will serve for both valves, and will alco serve to keep seats for both valves in toeir respective places in the metal work st the end of pump.harrel, into which places the said valve.seats are accurately fitted. But when the guide-rod is withdrawa, then the valves become loose, and can be taken out for eramination or repair, and the valve sents can aloo be removed out of their said places, if necessary, sad other spare valve seats pat in, and valves thereon. 6, and 4, are the lower or footvalves, and 5, upper or discharge at each ond of air-pump barrel, r. 6 and 7 being their reapective valve seats, decurately fitted into recenses in the metal
at end of barrel, r, those recences being bored correctly cireniar, and olightly conical, to as to be correctly concentric with upright guide rod or apiadiea 8, which passes through central hole of upper valve seat, 7 , and into ceatril hole of lower valve seat, 6 , and has suitable shoulders formed opon it, for confaing both seats, 6 and 7 , down in their reapective places, whee rod 8 is forced and hold down end-ways, by a cover, g, screwed down over a bole in opper part of hot water cistern, q, and which cistern bears on the upper end of the rod, 8, so ts to press and hold the same down, and consequenty faten down the two valive centa, 6 and 7. Valres 4 and 3 bave central holes through which the rod 8 paseen, co as to allow the ralvee to fall and rise on the rod which galdea them when so rising and falling, and the rod has suitable slip shoulders formed or fastened apon it, to limit the heright to Which the valves shall be allowed to rite. Valves 4 and 5 may be fited to their seats, 6 and 7, with flat sarfaces, or with conical fittings, when the door, q, or air-pamp cover, R , is also corresponding with the door, in same end of hot water cistern, W, or one door on the top thereof, and likerviw the Co 9 ; then the upright rod, 8 , beiog withdrawn apwards through bohe 9, will leave valven 4 and 5 loose, and at liberty to be removed throegh door or openings aforesaid; and the valve seath, 6 and 7, may be alco bitiod out of their respective receases into which they are fitted, with a sreilicient tapering to be tight, bat withont any other fastening than by means of rod 8, an aforemid. And the upper valvo seat, 7 , may be made no mach lefger than the lower valve seat, 6 , as well as the upper one, throught the bot water cistern, we, and its doors, an aforestid. The apright apindle, 8 , of twe valres, 5 and 6 , which are at the game end of the barrel, r, as its corer, $\mathrm{R}_{\text {, }}$ is no much on one side of the central lise of the berrel as to avoid any interfereace with the air pump rod, e. Bat a can be disconsocted, and, together with the air pump present, can be withdrawn from the barrel, $r_{\text {, }}$ through the door, q or R, and the packing of piston t, can be performed at thone doors. The recesses into which the valve neats for the foot ralvea, 6,6 , are lodged, thould be continned downwards, as at s, s, near toward the bot. tom of the condenser, in order that water may be effectually drawa ap from the lowest part of the condenser by the action of the pamp; and ap to our suid improvements for propelling and other purposer, the same are, for the most part, applicable to vessels, with revolving screw propellera for diminisbing friction and wearing which tekes place at that extremity of the borisonal axis of the revolving propeller within the vesel, and which extremity, at the mame time it is tarning rapidly round, muat promendways againat tome suit able fixed end bearing in the vessel, so as to transmit to that beariag the whole endway force of the propeller, by which the vensel in to be urged oan through the water. This part of the improvementer relates to such bued end banring or extremity of revolving axis, or any other end bearias for quict revolving asis in mill work or machinery of any kind, and consiate in applying a flat cireular disc of hardened steel or other hard wetal, in a vertical plane at the proper place for recairing the fat end of the revolviag aris, which ond is also to he hardened steel, the said disc being lerger in diameter than the asid fat end, and being lodged in a cell at the central part of a toothed wheel, which in mounted at the oud of a short horizontal axia, sus. tained in snme suitably fixed socket, 10 as to be somewhat eccentric to the central line of the axis of the propeller, and the said toothed wheel being turned mond by meana of other wheel work, carries the steel disc slowly round with it in the same direction as the end of the axis of the propelier in, at the same time. revolving vith a rapid motion; and owing to the suid tow revolving motion of the disc being eccentric to the quick revolving motion of the end of the axis, fresh parts of the ssid surface of steel dite are continually brought opposite to, and in contact with. the same end, in order to aroid any tendency to wearing the rubbing surfacea into rings, as usaslly takes place, and alao to introduce oil or watar more effectually between the rabbing sarfaces.
Figs. 2, 3, 4, show some of the improvements by way of axample, bot the detail of conatruction there representod may be greatly varied. Fig. 2 is a longitudinal vertical section; fig. 3 a plan riow, and fig. 4 a borisontal section taken at the propeller shaft. The box A, A, is to be securely fastened in the vesal, so that a apisdle, H , will correspond with the direction of centre line of the axis of the propeller, the anid upindle, H , being inserted and fastened into the end of the axis; hnt there is another saitable beariag nos shown, which sustains the uxis laterally on ita intended place as it revolven The spindle, H, pesses through a holo in one end of the bor, A, A, which bas partition across it at A, through which the epindlo, H, also pames is a staffing loox, b, the smaller compartment of which box enntaing the cireder ateel diye hefore mentioned, and filled with oil or water for keeping rabtiag surfuces cool. This is lieter shown in Gg. 2. B circular disc, and D in a toothed wheel into tbe cell, at the centre whereof the stoel disc, \boldsymbol{B}. n inlid and fastened, so sa to be beld on vertical plane, and so at to be carried roand with slow revolviog motion of wheel, D, which in sustained by mens of prominent central boss, e, e, on opposite side of $i t$, to that oide on whict disc, B, is fastened, which bous, e, e, is rectived in, and fitted to, corruponding circular cell, f, f, whicb may for the present be considered as immovelily fixed, with its centre somewhat eccentric to centre line of spindle, $H_{1} m$ is apparent in fig. 3.
The toothed wheel D, is capable of tarning round in sadd cell f, f, w though it were mounted on the end of the borizontal aris, and revoling therewith in a vertical plane, and carrying the dise B, round with it ia mem motion, and there may be a horizontal centre pin at g, in centre of the mid cell f, f, fised to or part thereof, and fitted into the central hole of the whel D. around itt prominent boss e, e, appllet with close contect egainat the th
chemer berder anound cell f, f, and by the sformadd fitiogs and conteot over a copaderable dianoter, the wheel D, and disc B, are wecerely mastalned fo sinatr inteoded vertical planes, and qualified to bear the endway preasure of epiadie H, notwithatendias the eccentricity thereof to wheel D, as shown in H. 4. The aformid slow-revolving motion of the dise B, and wheel D, is given thereto by means of the endless screw B , on the cross axis F, which is staned roand by opin-wheel G, on the end of it, that wheel receiving motion thow another spia-wheel N, on the end of another crose asis I, whereon th enother cerew wheel J, which is tarned by the endless serew j, on opindle H. The aforesaid wheel-work and serew-work will give a very slow revolving metion to wheed D, and the dise B, complared with the rapid revolving zpindle H ; bet the proportions of the sald wheele and screws may be veried, and the ewtless screwt, \mathbf{B} and $;$ (or one or thera), may be made with 2 or 3 spiral thareads, in which case the revolving motion given to dine \mathbf{B} will not be se slow. And if the parts are covstituted according to the drawing, $s 0$ that the cell fff in not immoveably fixed, the degrees of eccentricity can be Foried at phessere, and the motion quickened merely by tarning the lever handle K , which is fastened on tne extreme end of the aria k in figa. 3 and 4, which axis is part of the metal of the cell ff; bat eccentric thereto, as chervin ing. 4.

It is eanily teen that the said axin is itted into a socket, perforated tharongt the end of the bor A, and fat vertical anrface of the said end rround that rocket, affords a fiat bearing for the fiat vertical surface at back of the cell, $f f$, around its aris k. The socket for the aris k is somewhet eccentric to contral line of spindle H , as shown in fig. 4 , and by the position of the parts there shown, the eccentricity of axis A, in reapect to apindle H, concurs with the eccentricity of the cell $f f$, in reapect to itt said axis R, for giving the full degree of eccentricity for dise B, in respect to spindle H, that the dise B, and of the end of the apladle H, will permit, as is shown in 4g. 4. But if the handle K, and axis R, with the cell $f f$, were to be turned niff-my round from their maid position, fig. 4 , then the eccentricity of the axia R in respect to the spindle H ; and those of the cell $f f$; in reapect to ste eais k, would counteract or neutralise each other, so ta to give little or no eceentric motion to the dise B in respect to the spindle H. On the handle K being tarned to any intermediate position between the aforesid exsremen would give any intermediate degree of ececntricity as may be preferred. The axis \mathbf{R} should be made leas tight into its socket, and to fasten shem by screwing a pat on the end of the axis. The lever handle \mathbf{K} should luve some adequate menas of holding it fast in any requinite position. And whereat the motion to given to coll $f f$, in tarning it with its axis R by the Jever handle K, an aforeanid, would derange the position of the wheel D in reapect to the gearing of its teeth in spirll threads of endleas ecrow \mathbf{E}, the aroen axis F of that serew; and if the spar whoel G mast be allowed to to rise and fall in ite beerings, but it will be retained at itt proper distance from the cross axis I of the other spar wheel N by means of two levers $r r$, formed by bearinge for the cross axis F, which bearinge will rise or fall freely With it, but will always keep it horizontal. Also, the endless acrew E is fitted upon ite suid croas axis \mathbf{P} with feathert or keym, so as to be capable of aliding along that axis F, end-ways thereon, but so as to be compelled to go round therewith, and the place the endless screw will occupy in iengthening of its mid cross axis P is regulated by two bearings $t i$, which are fitted on axis P, to as to haclude the screw between those bearingt, t, at projected from the collar, 0%, fitted around the onter circumference of the cell $f f$, and are collars made on two halves united by trrews $x s$; the said circumference is concentric with the interior of the cell $f f$, and consequently with the wheel D ; wherefore when the celiff in terned round by the lever K , the collar Of, by its projections $t t$, will canse the ondlest serew E to rise or fall, together with the axis F, or move sidewayn along that axis with such compocmd motion; t will alway preserve proper contact of itn spiral threads with the wheel D, for tarning the atme round, as aforesaid. Clime first : for improvements in steam engines, which have bollowed piston rods and conreetivg rods in the hollow thereof; of making such hollow piston roda execad both way form the piston, and passing through atnfing boxes in hoth ende theylinder, in order to abtain an equal enface of piston for receiving preanare of steam, and impelling piaton in both directions in cylinder, up, down, back, and forwards, at ame time obtaining secure guidance of the platon in anch motion, in consequence of long hollow piston rod aliding through stafing boxes at both ends of the cylinder, also rendering joint at inner ead of connecting rod accesrible within the hollow piston rod; bat no cleitn in made to exteading of piston rod each way from the piston, and gaidiag anch lowg piston rod by pasing through stuffing bozes in both ends of cylinder, when that is dane for the mare purpose of the gaidance of the pfotion in itt motion vithin the cylinder; but chim is only made when the loug phaton rod, which it so grided, in bollow, for the purpose of receiving the connecting rod within the hollow, at before described. Secondly, in improvements in disposing the valves of horivontai double-meting air-pumps, wish the lower or foot valve directing beneath the upper or discharge valve, and holding the valve seata for both those valren fast in the proper place, and atso guiding the valves in their rising and falling motions by means of one forced upight spindle.

IMPROVEMENTS IN GOVBRNORS OF STRAM ENGINTS.

Cances Wuriay Simanes, of Finsbary-iquara, Middlewer, ongineer, for " Improvemento in stoan anginer and in ragwiating the power and velocity of machion for corrimanionting pownr."-Graated December 24, 1845; Rarolled Jane 24, 1846. See Bugraoing, Plate XII,

The frat part of this invention consiste in some further faprovemoste in the chronometric governor, a patent for which was granted to Mr. Jomph Woods, of Barge-yard Chambert, Bucklersbury, April 18th, 1844.

Figa. 1 and 2 represent the improved chronometric governor, which is generally applied to team enginet. The differential velocity betwean the engine and a revolving pendulum P is obtaiped hy mesnt of three bevilwheels, A, B, and C. The wheel A is Armly connected with the arm or crank B of the pendalum by means of the ppright ahaft K, and roveiven alway in concert with the pendulum. The under wheel 8 is fired to the palley D, which in driven by the engine with ite nncertain veloeity and in contrary direction to the motion of A. Both thene wheels move in gear with the third bevil-wheel C, which rans perfectly free on its axis, and is alto permitted to travel round the perpendicular socket d. It is ebvious that whenever A and B revalve in contrary direction, but with equal velocity, C will also revolve on its axin, but will not change its angular pesition, while any difference in velocity between \mathbf{A} and B will cause \mathbf{C} to follow the directiou of the faster wheel, which win at once alter the supply of stem, the double arm m being attached to the throttle valve T hy menas of the lever and connecting rod $\&$. To maintain the motion of the pendulum a conntant power is required, resembling that of a falling weight in an ordinary olock. This power is given ont by the weight w, which tends to pall the wheel \mathbf{C} permanently to one aide, and this strain being borne eqnally by the wheels A and B, causes A, and with it the peadulam P, to revolve, while B, which revolves in the contrary direction to A, is conatantly engaged to lift W book again in its proper position. In practice, it has been found that the pewer requisite to maintain the action of the penduluna is moch lnat than that required to effect the movement of the valve, and the inventor mow adopta the principle of driving the pendulum with an excess of power, whieh shall be neutralised by a friction apparatus when oot wanted, and shall be allowed to act freely when the governor requires it assistance to move the vive. This is effected sf follows: \mathbf{R} is a ring of cast iron or other proper material, against which a surface of ateel or other material g, revolving with the pendulum, is pressed by its short lever, a apring s being placed between the point of the rod and the ateel rabber, to let the preanare come on gradually. It in evident that whenever there is an excess of driving weight, which causet divergence in the arc of vibration, the anrfaces of thie steel rubber and of the txed ring will be pressed in contact together with a force exactly sufficient to prodace the required amount of friction necessary to connterbalance the excess; and so soon an the pendulum falts back towards a amaller arc of rotation it will relieve the friction apparatua, and permit an increased supply of power to overcome the resistancel of the velve, te. A second spiral spriag t is laid in the groove of the arm P, behind the point of the pendulam, for the parpose of never sllowing the latter to drop quite in its perpendicular position, and also to facilitate its starting with the engine.

There is also detcribed another mode of obtaining the differential velacity between the pendulam and the engine and a governor of a more powerfal description, which is calcalated to move the gates of water-wheeh or the expansion gear of large engines, but the general principle of these governon is the same an we have already deacribed, and wo therefore omit thom.
The great advantages of the chronometric governor over Watte's Ceatrifogal governor, or other which have hitherto been proposed, are-that the engine munt alwaps keep pace with an "independent" pendulum, which will travel only with its proper velocity according to its perpendicolar length -no matter whether the engine has to overcome the maximom of her load or none at all; and another principal adrantage is, that the adjustment of the valre is done at the very intant when the equilibriam between the load and power of the engine is distarbed; there is no variation in speed visible, even if the whole amount of load of an engine is suddenly thrown of, an advance of about $\frac{1}{8 f^{t} t h}$ part of the revolution of the fly- Wheel being sufficient to shat the throttle valve.
The patent has been applied to enginet at the Steam Four Mills of Mr. Carpenter, Shed Thamen ; at the aaw mills of Mr. Ronling, Southwark-bridge, and Mesmra. Ranmome and May, Iparich, and several other plecet.

ELECTRIC CONDUCTORS.

Wililay Young, of Paisley, manvfactirer and dyer, and Amomisals McNaln, of the tame town, merchant, for "certoin improvements in the conetruction and mean of mawnfecturing opparatur for ennduoting electri. cify."-Granted August 1, 1845 ; Barolled Febroary 4, 1846. (With Ban gravings, Plate XII.)

This invention of improvements in the construction of apparatus for conducting electricity consists of a new and improved method of manufacturing electrio conductors. The electric conductors are formed of one or more copper, tin, or other metalic or mixed metallic wires, which may be covered with cotton, woollen, or linen thread, in a manner similar to those termed "bobbia wire," used in the manufacture of caps and bonnets; or the wiree
may be covered with threade in a plaited or braided form, by meana if a briding-wechine; such description of covering being mach stronger and leas lifely to be diaturbed or rubbed off when paraing through the machinery hereater deecribed, than the coiled coverings of the ordinary bobbin-wires, or any other description of eovering bitberto employed for that purpose. As the liablity of the wires to come into contact, and thereby diaturb the electric circuit, is greatly diminished by braiding thoir surfacea, the patentees consider this mode of protecting the wires as ode of great importance in the construction of electrical eondactora.
The wirea so covered are to be introduced into and enclosed within a tabe or pipe, composed of lead or other similar soft metal; which tube or pipe is gilled with apphalte, pitcb, wax, reain, or other subatance, being a nonconductor of electricity, and capable of being liquified by heat, and afterwards becoming concrete by cold.
The wires being covered with thread, as above mentioned, are prevented from coming into contact with each other, or with any adjacent conducting modian which might divert the course of the electric fuid; and the spaces between the covered wires being filled rith pitch or other saiteble conconbetween the cotrered, af electricty, as before mentioned, and enclosed in pipes or tubes of lead, or other.soft similar metal, the wires will be effectually preserved in an insulated state, and protected from damp as well from other sonrces of injury.
The means of manafecturing the improved electric conductors will be beat undertiood by reference to the drawinge in Plate XII. Pig. 1 , is an elevathon, partly in section, of a muchine for effecting this object. a, is a cistern or reacel, formed of iron or other suitable material, for containing the bituminous or recinons mattors which are intended to surround the wires in the leaden pipe; b, reprecenth/is tubular or hollow rod or mandril, open to and dececending from the bottom of the vessel a; which mandril is preferred to be made of polished iteet, and fixed, by means of fanges and screw-holts, to a triaggular plate or head, q. c, is a tubular core at the lower end of the mandril b, also made of polished steel; and d, d, is a circular hollow die, reatiog on the top of the ram e. The ram e, is cylindrical, having a perpendicuinr opening through its centre; the lower part of the ram is enlarged at f, with a tranaverse slot tarough it, and is bolted firmely upon a triangular plate s. g, is a piston, working in the bydraulic-cylinder i, baving a projecsion or enlarged dimmeter h, to be packed with leather or otherwise, so ne to fit the cylinder i, aecurately. This cylinder is of cant-iron, bored, and lined with copper, and is bolced to the ground; λ, if a ring or cap-plate, over the end of the cylinder, embracing the smaller diameter of the piston g, which is to be properly packed; $l_{\text {, }}$ in a malleable iron cylinder, baving a chamber m, within it, and an aperture to admit the sliding tubular mandril b; it is alvo provided with a umall openiag at 0 , for filling the chamber m, with lead or other soft metal. p, p, are pillart, fxed upon the plate q, and intended to support the cistern or vesuel a; the plate q, has an aperture in ita centre to admis the tabular mandril b, shown in the drawing. r, r, are three slidingrods (two only are shown in gg. 1,) which pass through the anage or ears of the plate q, and are fatened thereto by nuta ; their other enda are atteched in the same way to the plate a. These rods pase freely through a heary circular plate 0 , which, by means of a ring-plate bolted to its ander aurface, supporta the cylinder l; a ledge or belt being provided at x, to rent apon the inner edge of the plate y. z, z, are six iron pillars, with screw-ants at their eada, for binding the plate v, to the cylinder i.

The covered wires which form the electric conductors a, are intended to proceed from reek, placed in convenient situations (but which reela are not pepreseated in the drawings), and pass through the vessel a; the reels should be londed with a weight or drag to keep the wires always at a certain tension.
The relative position of the hollow circular die d, d, with regard to the tubular core c, of the mandril, will be clearly seen in fig. 1. The core c, is turewed into the tubular mandril b, and is tapered of and terminates before it reaches the most contracted part of the opening in the hollow circular die d
The mode in which the machine operates is as follows:-The wire or wires, covered at before deacribed, are iutroduced into the machine through the vessel a, where they become conted with pitch or other similar material. They are then brought down through the tubular mandril b, the bollow coro c, the hollow circular die d, and the tubular ram e, to the opening at f, where they isune from the machine. The apphalte, pitch, wax, resin, or other noneqnductor of electricity, capable of being liquified by heat, and afterwards becoming concrete by cold, is pat into the vessel a, and brought to a liquified state by means of heat applied to that vescel. The liquified pitch, or other similar substance, will deacend into and fill the tube of the mandril b, and the hollow core c, and daring its pasage aown the said mandril, the pitch or other matter will remain in a liquifed atate. The chamber m, of the hollow cylinder l, is filled with lead or other similar soft metal, introduced in a molten atate through the opening at o. The metal in thie chamber is to be forced therefrom by the action of the hydraulic ram, when in either a heated or cold state ; but the patentees prefer to operate apon it in a heated though solid atate, varying from 250° to 400° of Fabrenheit's in a beatoineter. This degree of remperatore may be preserved in the eylinder by say convenient menns.
 metal mill asume the form of thick hollow cylinder or tube, of which the mandril b, and the core c, form the centre. The cylinder i, and piston g, conatituto an common hydraulic press, and water being forced into the cylin-
dor i, at the opening ω_{i} below, by meaps of force-pampa in the mand wisy. the pistong, will be made to accend. and with it the rame, and the whole of the superotracture attached to the plate of. As the ram ascenda, it will forco the hollow circular die d, aguiast the mase of the lead or other metal in the chamber m, which, baving no other ontlet than the chanael between the core c, and the bollow circular die d, the thick cylinder of lead in the cham. ber m, will be forced into the form of a small pipe or hollow tube, asd descending through the tubular rame will be delivered finisbed at the opeaing at f, with the wires frmily secured and enclosed within it.

When the charge of lead has been pressed out of the chamber m, it in again to be filled with melted lead or other metal, to be operated opoa is the ame manner, and the charge repeated, antil a proper length of tabe is produced. The metal being hot when it is poured in, will amalgamate with the remaining metal of the previous charge, so that ose continuous perfoct tube will be formed. Previoully to commencing the operation of forming the pipes, the wires must be carried down to the opening at f, and when the firat portion of the pipe is produced, it muat be made fast to the wires; the further operations will then dram down the wires from the reel or coil, through the pitch vessel a, and tubular mandril; to that the pipe or tabe, during its whole formation, will always have the wire or wires and the mome conducting material enclosed within it.
The screws at each end of the rods r, and correaponding nuto, are intead ed for adjusting the mandril and die. The vacancy formed in the cylinder i between the projection h, in the piston g, and the ring k, is to admit of water being injected through a small opening by force-puopps, for the parpose of accelerating the descent of the piaton.
Figs. 2, 3, and 4, represent rarious views of anotber conatraction or arrangement of machinery, which in a modification of the one above described; for although the acrangement of the parts is somewhat different, the priaciple upon which both machines are conatructed is the same, and the effeet produced is identical in both. Fig. 2, representa the machine in vertical eection. As many of the parta in both arrangements are the same, their eitanlion only being changed, it has heen thought unnecessary to give a detailed description of this machine; but similar lettera of reference are employed to denote the corresponding parts. The bollow mandril in this machine is made of much greater length than that in the fint deacribed machine, and the position of the core and die is consequently changed, which is poured in at the top, by raising the ramo or plunger e, out of the chamber. In this machine the hollow mandril and the die do not move up and dowa with the other moveable parts, but are stationary, and only so far moveable as to allow of their proper adjustment. The die d, is placed in a recess made as the bottom of the malleable iron cylinder l, and is secured therein by meanas of a plate d^{*}, bolted to that cylinder. Through the cover of the bydrantie cylinder passes the hollow mandril b, surrounded by a atrong tube a, which is a prolongation of the pitton g.
The ram a, is firmly bolted to the lower end of the piston or pluager on and the hollow mandril b, which, at this part, is contracted in diameter, ia pasced through it. The lower end of the ram e, is furnished with a ateed plate, which accurately fits the chamber m. The cylinder l, is nuspended ie a strong circolar plate θ, Arroly secured to the frame work, and is prevented from moving from its seat by means of a ring y, which is bolted to that plate q, in a circular plate, sapported from the top dange of the hydraulic eylinder. i, i, by means of rods, and has an aperture in its centre, througb whieh the bollow mandril b, passes ; j, is another plate, supported above the plate s. upon vertical worm-shafth a^{*}, a^{*}, which panh throngh boles made in the plate; and to the centre of this plate j, the hollow mandril b, is secured io such a manner that by moring the said piate j, up and down, the holtow mandril is moved also in a corresponding ratio. The vertical worm-atharte a^{*}, a^{*}, each carry a toothed pinion b^{*}; and upon a horizontal ahafi e. mounted in bearings on the piate q. are amall endless acrews or worms F^{*}, e^{+}. which gear into the pinions b^{*}. When the pinions b^{4}, b^{7}, are made to revolve, the worm-shafts a^{*}, a^{*}, will raise or lower the plate j, and, consequenth; the tubular mandril b, to which it is secured. By this contrivence the die' tance between the core c, and the die d, is regulated, and, consequantly, the thickness of the pipe is determined with the greatest aicety.
The mode of operating with this machine is very similar to thas first deseribed. The wires being enclosed in tuber or pipen, filled in the manaer aforeaid, may be laid down or otherwise used, either above groand is the open air, or underground, or below the surface of water: and when 20 comstructed, according to this improved method, will prement outwardly the sppearance of a common leaden or soft metal pipe. The improved condretions may be manufactured, hy the machinery and means deseribed, io long leagtbs, and may be rolled upon reels. If the electric conductors are to be ared is great lengths on land, it is proposed to carry them on reels, on a wheejed carriage ; and while the pipe it being laid down, ose end is to be held fane. as the earriage proceeds in the direction in which the pipe is to be laid, 0_{0} that the reel may revolve on its journals or centres, and thereby allow the pipe containing the wires to be unwound and delivered on the groand without risk of injury, and with great facility. Should the conducton be required to be laid in water, it would be adrisable to employ a fionting resed. propelled at a suitable speed, by drawing apon ropes or ctalina, zande fast to the bottom or banks ; or by steam-bont machinery, appliod so at to regrine the speed.

When the electric apparatns is laid dom or uned on lend, it way be thet In a trench made ia the gronad; and at regular or convenient diatioces, the ende of the pipes should be raised above ground and placed in a centiros or
athes anitable ease or bos, provided with a lock or other mesos of safe keeping, so that the wires may be easily accessible to the exemination of parties wishing to commonlente intelligence by them. The end of the individual wires may also be disconnected from each otber in these boxes, and the cirenit with the correuponding wires belonging to the adjoining tube completed, when required, by means of small piaching screws, or by cansing the ends of the wires to dip into a hollow space, thled with mercury, or an amalgam of that metal, so as to produce metallic contact, in order that the conductort may be so joined at to form a continnous length to any extent, but capable of being disconnected when required.
Por this purpose the patentees propose to employ an apparatus, shown in pian viewat fig. 5 , which reprenents the terminations of two pipes of soft metal, each contaising three conducting wires a, b, c. The ends of these wires extend beyond the termination of the pipes, and are bent downwards into eaps of merenry g, A, i. By this meana the connection of the conductor is restored through the mercurial mediam ; that is, the conductor a, by itsend heing immerted in the cup g, communicates with the wire d; and the wire d, in the $\operatorname{cup} h$, communicates with the wire e; and the wire e, through i, witb f; connection is also made with the outaidea of the pipes A, and B, by thict wiren A, and 4 , soldered to the pipen, which are made to commanicate through the mercurial cup w. Thia apparatas, placed at any deairad part or parts of the line of communication, may be enclused in a box n, and locked up serurely.
The improved electric apparatos may be ased not ooly as conductors for telegraphs, either by land or water, bat alof for firing mines, or other purposea for which electric conductors have been or may hereafter be employed. It is likewise proposed to nes the leaden or other aforesaid metallic pipes or tohen, as means of returning the electric currents conveyed by the metallic wires eaclosed in such pipes. Metallic contact is produced through the whole length of these tubes, so as to complete the eleetric circuit, either by noidering a piece of copper or other metal to each end of the leaden tubes, and bringing these pieces of copper or other metal into metallic contact through the mercury, or by other moans, as above said.

When the conductorn are ased for electric telegraphs, theae eads and the wiven enclosed therein are attached to the wires proceeding from the clockwork of such telegrapba, in the esual way; bat which may vary according to the construction of apch telegraphs. If the conductore are to be employed for igniting grapowder, athort piece of metallic wire, of suall diameter, may be placed in any convenient situntion, so as to form a part of the elecLric aircait; and if the electric currest be sutficiently powerful, this amall wirs will be made hot enough to iguite ganpowder, when a curtent of electricity pases alowg the wires.

The patentees, in concinsion, state, that they do not intend to cleim the adaptation of wires, surrounded with zonconducting substances, enclosed io tobes for electric conductort; but that which they do claim is, the construction and manufactare of electrical conductors, by the omployment of maehinery having a tuhuler mandril or bollow rod, through which wirea may be drawn, whilet the lenden or other soft metal tube is forming, by preaure betwen a core and die; such wires being at the name time imbedded in pitch or otber monconducting material.

PROPELLING ON RAILWAYS AND CANALS.

Willam Hanmis Taylor, of Piccadilly, gent., and Fraxcia Roubrluo Condon, of Biraingbam, clvil engineer, for "certain impropements in propeling,"-Granted December 20, 1845; Enrolled Juue 20, 1846. (See Engraving, Plate XII.)
The object of this invention is to propel a train of carriages by means of electro magnetism in connection with the atmospheric prinoiple, in the following manser :-A tube e is laid betwixt the rails throughout the whole length of the line, having two pistons b moving within it, similar to the preseal mode of working atmospheric railways, with this difference, that in place of forming the connection between the piston and leading carriage by meane of an arm passing through the longitudinal opening. The in. rentors effect the above by means of powerful magnets e attached to one \propto mare of the leading carriages of the train. On the top of the atmospheric tabe a, which is provided with an opening of about three inohes wide, there is firmly fixed a rectangular box of cupper, d, projecting above the tabe abont three inches, so that the longitudinal opening is covered as it wers with an inverted trough. Within this box there is a piece of soft iron, e, sapported from the piston by means of a wood frame and arms, f. The maguets s are bent of anch a form that the two ends or polea approach the sides of the copper box, or covering to the longitudinal openiag, and fied to the nederside of the carriage; then being charged with the magdetic indoenee, by a gelvadic battery, are attracted by tbe piace of iron e, attached in the manner before described to the piston, so that the connection botween the carriane and the piston is effected by means of powerfal magneta, in place of an arm pasaing through the longitudinal opening as teretofore.*

[^37]
CONNECTING OF BOILERS.

James Garmorph, of Dunkiofield, Chester, engineep, for "certain im. protements in machinery, or apparatus for connecting of boilers, and other purpaces."-Granted December 10, 1845 ; Enrolled Jone 10, 1846. (With Engretings, tee Plate XII.)

Theme improvements for connecting metallic plates for the construction of steam boilers consiat in the direct appllcation of the ex pansive force of steam to the dies for rivetting the plates together, and in the machinery or apparatus, whereby such force is brought into action. Fig. 1 is aside. view of an arrangement of machidery for rivetting metallic plates for the construction of steam boilera, and fiy. 2 is a vertical section of the cglinder; a, a, is the frame work supporting the steam cylinder b, b, in which a steam-tight metallic piston c, is mounted upon the rod d, d, which passes through stuffing bozes e, f, at each end of the cylinder b; in the end of the piston-rod the die f is fixed, the other die g, being monnted in the pillar k, Which is firmly secured to the frame-work. Sleam being admitted through the entrance or feed-pipe i, it passes onwards throngh a common slide or other valve k, to the cyliuder, and after having performed its office, is allowed to pass out through the pipe l, the slide valve k, being worked by hand by means of the lever m, so as to admit the uteam on cither side of the piston, as reqoired.

The operation of the apparatus is as follows:-steam of suficient pressure being admitted by means of the alide valve k, on the left hand side of the piston c, it will force it, together with the piston rod d (to which is attached the die f, against the head g, which forms the ead of the rivet n, between the dies f and g; thus firmly connecting the plates p, therehy produciag a perfectly steam, air, or water-tight joint. The head of the rivet being formed at one or more blows as required, the intengity of the blow depending upon the area of the piston, the length of the atroke, and the pressure of the steam emploged. The valve k, is tben reversed, the steam admilted on the other side of the piston, which movement will with. draw the dlo f, when another rivet may be introduced and the operation proceed as before.

The invenfor does not confine himself to the use of steam pressure, as the direct action of water, air, or any other elastic!medium, may be similarly emploged without departing from the principle of his invention. He does not claim as his invention the excluaive use of the several parts of the above machine, except it be employen for the purposes of his inventiun, which consiass in rivetting metal plates by dies driven by the elastic force of steam, water, or other elastic medium as above describod.

CHIMNEY DRAUGHT

Hemer Wafson, of Newcastle-npon-Tyne, bracs-founder, for "Improvements in withdrawing air and vapomra frow furneces or other appars. tus, and in condenaing and employing such mapowrs."-Granted Jannary 6 ; Earolled July 6, 1846.

This invention relates to introducing a jet of steam through a cone fired in a chimney, to create a dranght and for withdrawing the air and vapours. Fig. 1, is a eection of a tre, with a cone bluted inside, and made' to

slide, 80 as to regulate the proper position for preventing a back draught. c is a pipe for introducing a jet of steam through the apertare of the cons, and for producing a partial vacunm below the opening ; the inventor also shows how a chamber, D, to be used as a condenser, may be convected with the apparatus when a dranght is employed for the purpowe of reducing ores, such as lead, c is the floe, leading from the fornace. D, the chanber, half eHed with water, and divided into compariments by partitions alternately dipping into the water. As the vapour passes from the flue e it will, thi inventor states, on account of the partial racuum created in the cone b, be made to pass throngh the water, and thereby be condenoed and abeorbed by the water.

STEAM SHIP PROPELLNG MACEINBRY.
Jonsfa Maudslay, of the firm of Majdslay and Finld, Lembeth, angineer, for "Improvemente in propeling and propelling machisery." Granted Jra. 13 ; Rarolled Juiy 13, 1846.

Fls. 1.
FIg. 2.

This invention consists in a mode of raising ecrew and other similar stern propellers, when the same tre fired abaft the stern-post. Fig. 1 shows the mode of effecting this object a a is a rectangular framework of iron, which supporte at it lower end a hollow shaft b, carrying the vanes of the propeller and working freely in the plummer blocks c c. The rectangular frame $a \in$ is provided with projecting piecen $a^{\prime} a^{\prime}$ which fit into and are attached to a sliding piece d, in a similar manner to a hinge joint. Tbis aliding piece $d d$ is capable of moving freely upon a strong frame $e e$, which latter is firmly bolted to the connter of the vescel. f is the propeller sbaft which pewees through a bollow shaft or tnbe g, the propeller shaft being squared it its outer end so as to fit the hole formed in the bow or hollow ohaft b, which hole is of the same figure. I represents a cbain, one end of which is attached to the rectangular freme a, the other being attached to a eapptan or windlast on board the veasel. When it is necesary to raise the propeller, the square end of the whaft f is withdrawn from the boss or shaft b, then, by giving motion to the windlans, the part d will slide upon the frame ee, cars rying with it the rectangular frame ah and propeller. The advantaget of this arrengement are stited to be, that the propelier may be placed lower down then bertoforte, and consequently larger propeller may be employed, moreover the whter yeandig from the propefier will meet with leas obatruction against the aides of the veasel. and wbich vessel will be lefs subject to that tremalous motion caused by the action of the propetter.

The second improvement comints in dieconnecting the propelling shaft from the driving theft, thereby allowing the former to ron loose npon its axis when the vessel is required to be worked with ails only, or when she is laying in a tide way. In ffg. 2, a is a circular plate of cant iron, firmly keyed on the onter ond of the driving shaft $b ; c$ is a cating in the form of a frustrom of a cone, and is firmly keyed upon the inner end of the propeller shaft d; opon the periphery of this conical piece there is a hollow caisting e tarned accurately to at the conical part e. On the peripbers of the plate a there is cast three "snugi" or projections, through each of which is pased a bolt f (oue only of which is shown in the drawing) ; at the outer end of these bolts there is a winch, g, or handle, having three projecting anms g^{\prime}, so that one is alweys uppormont. It will therefore be seen by the above that by acrewing the bolts f, and the part c, the propeller shaft d will be driven by the friction of the two conical pieces c and e, and by unacrewing the conical part c and propeller shaft will bo allowed to run loose.

ATMOSPHERIC RAILWAYS.

Canames Wrember, of Speenhamlend. Berkahire, machiniat, for "certain improvements in the comptruction and working of reiboayd"-Granted Jemary 22 ; Enrolled Joly 22, 1846.

The firt part of this invention is for an improved form of rail for railway, thown at ifg. 1, which represents a transverse section of a ruil constracted of such i form as to present three different anfaces to the action of the wheeis, that is to asy, when one surface is worn out, another can be tarned up, as will be clearly underatood by the following deacription. a is a tection of the rail, fasteded down to the sleeper by means of cant iron biocks b; between the rail and the block a piece of felt it placed, or a key inay may be formed in the blocis, as abown at at, and a hard wooden wedge drives. The raile are farther cecured to the sleepen by means of a half round piece of wood e, upon which the rail is made to rest. The apecienes. fiom atates that this description of rail may be made by rolling the bern of irop betwirt three rotiers.

The second part of the invention consiats in transmittieg motion from the piston of an atmospheric railmay to the carriage by having $\frac{1}{}$ lexible covering
to the top of the tube, which in rived up and forced agaiast a wheal attached to the leading carriage by menns of a wheel attached to the piation."

Mg. 2.
The third part of the invention relatet to a mode of clociag the longitu. diand opening by means of a continuous stiding valvo, shown at fig. 2, which representa a transverse section of the pipe and sliding valve conatructed according to tbis part of the invention; c is the tube, which is cast with a projecting rib $b ; c$ is a sliding plate, slso having a projecting fiange similar to that upon the pipe; a number of these platem are hinged togetber with a rule joint, so as to extend the whole length of the line. Upon the nederside of this sliding plate there is a piece of leather d firmly atiached to the vide of the pipe, which pieoe is brought over the longitedinal alit or apening by the inner edge of the plates c, the outer edge of mach phaten being acted upon by means of springs e, aspported at inservals by pillera, which have a tendoncy to force the plave e and leather over the opening. O is a framework of iron sttached to the vertical arm h; thin fremewort supports three enti-friotion rollort which, es the piston travels elong, forces back the plate c, so as to allow the vertical arm to pana, the opening being closed again by the action of the apringe. Pig. 3 abows a plan of the framework g and rollera i.
ver

DRCORATION OF HOUSES.

Henai Auousts Bex, of Great Titchfield-atreet, Marylebone, decorator, for " A neto melhod of drying, polishing, and colowing markh, stemp, and certain other materials wed in the conatruction or deconstion of thomere and other buildtage."-Granted December 10, 1845; Barolled Jane 10, 1846.

The improvements are: Firt, in polishing marble and atone by filing ap the pores with planter of Paris or marble cement; then rabbing them with hard stones, applying a thin layer of plastlc before each rubbing; and latiy rabbing them with wex, or a mixture of wax and tarpentive. Secondiy, it pollathing other materials used in the construction or decoration of homea hy rubbinn them with a varnish of gam lec. Thirdly, in dyeing and colouring marble, stone, and other materials used in the eonatruction or decorntion of houses, by wetting them with certain acids, alts, and colourint materinis or their chemical combinations, by means of a bruah or aponge.
The inventor then proceeds to deacribe the manner in wbich the asid invention is to he performed. To polish marble or stone-the surface to be poliatiod is first rubbed with a piece of sandstone, sod afterwards with a tandscone of fiver description, in eame manner as is now ordinarily practhed; the, pores of the marble or atone are then stopped up with plaster of Paris mired with a thin solution of gelative and some colouring matter, to reader it of theneme colour as the marble or atone to be poliabed, till it attains the comivenere af cream, or elee marble cement mixed with colouriag metter, till it anime asme consistence, and is similarly coloured. These mixtures are then hid on reapectively, as the case may be, with a brusb, and afterwards scraped ofl with a wooden knife, taking care that all the pores of marble or atome filled up. The marble or stone fo thon rubled with a kiad of eacotwoee callad Charley Foreat stone; the pores being atopped up, are rulibed with the stone, and after that with a piecerof German stone, and fonaly with a
piece of tnuchatone; before each of these ruhbings there is raid on with a brush a thin cost of plaster of Paris or marhie cement, mised with water to the consistence of milk; and latly, should the colour of the atone or marble be clear, a coat of wax, or misture of wax and turpentine, is laid on and rablied with a linen, cotion, or woollen rag, till the marlle or stone becomes perfectly polishes, but if the colour of the tnarlile or stone should not be clear before applying the wax, or mixture of wax and turpentine, it is ruhbed with linseed oil till the colour becomes clear, taking card to remove all the oil before the wax is applied. In addition to the above process, sometimes the marble or stone to be polished is rubbed with a piece of jasper, if a very brilliant polish is required. Other materials used in the construction of booset are to he polished in same manner as the marble and stone above described, till the rahbing is completed with the Charley Porest stone; they are then rubbed with linseed oil, taking care to wipe it off thoroughly, and then varnished with gum lac in the following manner:-Take a ball of wool, wet the surface of it with the rarnish, and cover it with a linen rag. Then well rub the material to be polished, adding a little oil occasionally, if the varnish should not work freely. To dye and colour marble or stone, and other materials ased in the construction and decoration of houses, the same aystem of acids, saltp, or colouring matter is etnployed as generally used by dyers in dying cloths and other textile fabrics. The said acids, salte, or colouring materials, or their chemical combinations, are applied in a liquid state, orer the surface of the material required to he dsed or coloured by means of a sponge. If the dyed or coloured surfaces are to have the same polish as the rest of the surface, the said colouring materials are applied before polishing the said substance, or when the process of polishing is only half finished; but if it he wished the dyed or colnured matter to he dead or unpolished, the colouring unaterisls are applied after the process of polishing is completed. The certain other materials alluded to in his title are plaster, atucco, acagliola, and a apecies of stucco invented in France, and introduced by the inventor for the first tinse in England, and which is called stuc è la browe. The claims are :-First, the flling up with plaster of Paris, or marble cement, in the manner above described, the pores of the marble or atone intended to be polished, and ruhbing them with certain hard stones, as hereinbefore described; secoudly, the polishing of certain other materials used in constracting or decorating houses, \&c.; and thirdly, in deeing and colnuriag marble, stone, and other materials, as athove descrihed, by wetting them with certain acids, salts, colouring materials, or their chemical combinations, as above deveribed, by meana of a brush or sponge.

GRAND BLAST AT THE DOWNFIILL TUNNFLS, LONDON.

 DERRY AND COLERAINE RAILWAY.The norel outure of the undertating proposed by the Londonderry and Coleraive R-ilway Company, has, from its first uppearance before the public, invested that project with peculiar interest to scientific and the monetary world.

Lough Foyle, a deep indentaion of the sea on the porthern coast of Ireland, covers an area of about 60,000 acres. With the exception of the channel along the Donegal shore, leading up to the port and city of Londunderry, the tide in this lough does not generally rise more than six feet, and, at low water, a large portion of its area is len perfectly dry, exposing a slob formed of the richest Elluvial deposit, capable of inmediute conversion into valuable coil. The situation of the lough-almost lund-lorked, protected from the swell of the Atlantic by its naprow entrance, and shelcered from the prevailing westerly winds by the mountainous nature of the country on the Dunegal coast-is such as at once to suggest the idea of facility for ahutting of the sea, and reclaiming a great portion of the slob Iand. In the Session of 1887, an Act of Farliament, authorising this reclamation, was ubtained, and two enclosures were made, winning from the sea aboat 4000 acres, upon part of which luxurinat crops have already been reared. In 184 , publio attention became alive to the necessity for extablibing railway commnnication between the important towns of Londoadrity and Culernine. The mountainous nature of the interjacent country, readered a line ioland impracticable. and the idea was conceived of combiniog the Rallway and the Foyle reclanation, making one embank. mant aerve for both. With this ubject a Coupany was formed; terms were arranged wits the partiea in whom rested the powers uader the Act of 1837 ; and, in the Session of 1845, the Londunderry and Coleraino Railway Company obluined its Act of incorporation.

The lragth of line proposed by this Compeny is 30 miles, including a brach to the town of Newtown-Limavady- 15 miles to be cunstructed on an embankment through Lough Foyle; and by which embankment about 22,000 acres of land will be recovered from the sea. Of this reclaimed laid, 12,000 acres are aet apart to cover the expenditure on the railway. Tis worke are now so far advanced, that by the end of the present year the 'Directors anticifate being in a position to eaclose and soll a portion of the land; and, as the works procesd, like purtions may from time to time Be eaclused and suld.

The live, after leaviog Longh Fosle, proceeds eantwand acrose Magilllgrop Point; and along the const townris Culeraine. About seven miles from the latuer tuwn, and clume tu Duwnhill, the beantiful ratidence of SIr

Hervey Brrce. Bart., it passes through the eliffs between Downhill Howeo nud the sea by two tunuels, one about 700 yards and the other ahout 800 yards in length. The works upon those tundels have leen anme time in progress by the ordinary process of picking and blusting; but it being deemed nerepasary to expedity their constroction, it was letermined to eficet the removal of the obstructing ruck by one grand blast.
rock before the explogion.

rock atter the explonion.
We are indebted to the Illustrated News for the following particulars relative to an extensive blast which took place at Downhill, about 7 miles from Colernine, on the Gith June last:-" The mass of rock which it had been originally necessary to remove was at the western mouth of the large tunnel, and measured nearly 60,000 tons, the maturial being the hard basaltic stone, in which the const of Antriun and Londonderry abounds; a large portion of this rock had beco previously removed by the common slow process already named. Having resolved upon the large blart, Messra. Bromhead und Henming, the contractors, formed a heading or gallery into the rock, from the side of the cliff, 50 feet in length: at tbe end of this, a shafl was sunk, 22 feet to the level of tbe railway, as seen at $\mathbf{C A}$; and again auother gallery at the bottom, running at right angles to the first gallery, and furthre into the rock, was made for 10 feet. At the end of this was placed the large charge of powder, $2,500 \mathrm{lb}$., shown at A. The whole was then well filled up, nud tanped with clay and masonry, and the wires to convey the electric duid from the buttery throngh the charge were cartfolly arranged. The smaller charge, which wis higher up in the rock, and which is seen ut B, contained 600 lb . of powder; and the gallery B F leading to it was about 70 feet in leagih; this was also tamped in a similar manaer to the larger one. The galvanic battery, which stood on a shed on the top of the cliff, was n very powerful one, consisting of 18 cells, each cell about 14 inches square.

The operations were condncted by Mr. Hemming and Mr. Webb, Sapenintending Engineer to the Contractor. Mr. M•Leod, acting uader Mr. Rubert Stepheneon, the Engiucer of the Company, was present, with Mr. Langon, and other civil engineers. There were also several royal engineers and scientitic gentiemen who had come from different quarters of the country to witness the explosinn.

At the appointed hour some little delay occurred in connecting the wirea with the batlery; but, at half-past three o'clock, the two polea were united, and inslantaneously tbe bottom of the rock was seen to beave out for a moment, the mass of rock above atood, trembled, and, crackinx into a thousand bssures, rolled into the sea bencath. A deep and hollow sound was beard, like distant thunder, bat no report. The quantity of rock removed must be opwards of 30,000 tons. The effect will be seen by referring to the accompanying profiles or sections taken throagh the lines a a 66 , in the front view, buth before and after the blast. The result, in an engineering point of view, was perfectly successful, and reflects the greatest credis on the gentlemen auperintending the operation.

The doited lines shuw the quantity of rock to be removed. A is the larger chamber, containing $\mathbf{3 4 0 0} \mathbf{~ I b}$. of ganpowder. c , the heading leadiag to it, which is 50 feet in length. B, the gmaller chamber, containing 600 lb. of powder. A x, the line of leack reaistanies- 50 foet. From A to the top of the clifen 165 foet.

THE GAUGE COMMISSION.

(Continued from page 214.)
Mr. Edward Buny: Is a manafactorer of locomotive engines, and has been such for 17 years. The heariest engine made by witness has not exceeded 13 tons. 14 -inch cylinder the largest yet made by witoess; evapo. rating surface in proportion to the cylinder. Length of boiler increased from 8 foet inches to 11 feet 6 inches. Space between fore and hiud axle very cemiderably increafed; interval 7 foet 6 inches. W'itness considers that the epeed now attrined on narrow gange lines as great as consistent with safoty. The securities for the rails eot suffient to justify a higher rate of speed.

The traceverse oleeper better than the leagitndinal. There is a better chance of keeping the transverse sleeper right than the longitudinal sleeper; there in a great deal less pacting with the transverse sleeper than the lon gitudioal sleeper; the uoder surface of the longitudiall sleeper is too great to admit of its beiag thoroaghly and uniformly packed. Greater speed can be obtained on brond gange than on narrow, because the speed depends upoa the retio of the stroke to the wheel, and on broad gauge a longer stroke and larger wheel can be had. The narrow gange trains, however, can travel faster than is decessary or safe. If the Midiand Counties were changed to broad gauge, the inconvenience to the London and Biraingham Company would be so great that they would be compelled also to ehange to broad gauge. Does not consider the rigidity of the rail esmeatial to safety at high velocities; it would be better with a moderate elaticily in.it. The best part of the Liverpool and Madchester Railway, asd the most easily maintained, is that which occurs at Chat Moss, which ia always elastic. The most difficult part to maintain on the Liverpool and Manchester line was that which went through Olive Mount, which is on a sloce foundation. They have been obliged to take the stone out for a cowiderable depth under the rails and fill it op with ballast. The engineer of the Bolion and Mencbester live was anxions to make that lise perfectly sigid. He bails a contiauous wall, and put it upon a T rail; but that did set ataed at all ; it knocked everything to pieces; it was always out of order, and they have been obliged to change it. The rail itself ought to be rigid, and the foundation on which it is placed should be elastic. Does not think any of the rails that have hitherto been laid are heavy enough. Has no knowledge of the feeling of proprietors in the mineral districts with respect to broad or narrow gauge, but considers that the narrow gaoge is more suitable to their traffic, because the curves can be made sharper than on broad gange, and bring them closer to the pit's mouth. Prefers a wider gange than 4 feet 8 inches, which witness belieyes too narrow for the engines and carriages and machinery working on the rails. 0 or 8 inches' additional width would be amply sufficient. Does not at present use outside cylinders, but some are now being made. Can get sufficient power on the narron gauge, but a more convenient and accessible machine, with greater range and capability, could be constructed with a little additional width of rail. If witness had to determine on the gauge for a country having no railway, should certainly not adopt the 4 feot 81 inch gauge. Would not adopt the 7 feet gange. Shoald adopt an intermediate gauge, as preferable for engines, carriages, and wagons, Strength of passenger carriages on London and Birmingham Railway considerably increased, weighing 10 or 12 cwt . more than when the line was first opened; this increased strenglh essential to public safety as well as to the durability of the carriage. Reserve fund appropriated to porchase of new engines. Stock deteriorated within the last half-year in consegnence of being compelled to ran the enginea, \&c., longer without the usual repairs, on aceount of the heavy traffic on the line.

Stock of Great Western Company ralued at $£ 534.000$; of the London and Birmingham at $£ 275,000$, the latter doing the most work; difference acconnted for by inferior sizo and expense of engines on London and Birmingbam line. With the additional stock the expenses will cone nearer the expenses of the Great Western Company. The 175 miles now worked with the original stock of the line. They have 93 engines and one borrowed from arother Company.
Accidents from breaking of axles of rare occurrence; Dot one carriage axle broken within the last five years, and rery few engine axles. The fracture of axle usually occurs in the journal; outside the wheel in the carriages, and inside the wheel in the engines. Engines frequently run some distance with a broken axle; have never had one so crippled as to be unable to get home; some have oven taken out trains with a broken axle. The train taken off the line from broken axle in only one instance, when the front axle of the engine broke. Increased length of engine gives increased steadiness. Measrs. Sharp are manufacturing an engine With 18 -inch cylioders; the cylinders aro not placed outside the wheels, but inside, so that there is room for two 18 -inch cylinders with the narrow gauge to be constructed iaside the wheel with the crank shaft. Impossible to say what load an engine cas be made to take on narrow gange, but considers that for the ordinary traffic of the country, an engine on narrow gauge may be made of sufficient power to take at high speed both passen. ger and luggage trains. Present luggage engine on Londoa and Birming. ham line too small. Luggage trains often worked with several engines. The heaviest luggage train on this line was a train of 112 or 110 wugons, making upwards of $\mathbf{0 0 0}$ toms; for thts tralii four engines were used.

Loag trinim much impeded by high wind. Has seen the traparerse sleepers pusbed out of their places, sometimes twisted like the letter S, by the expansion of the rail; this has occurred vhen suficient allowance was not made between the rail for expansion. Average speed of express trains on London and Birmingham line $43 \frac{1}{2}$ miles an hour, includiog stoppages. They now use 13 -inch cyliaders; some of their eagioes for the express trains have been altered, by iocreasing the size of the boilers, an additional inch to the cylindersand three inches to the wheel. Does not chink it safo to run a small train very fast; should prefer more weight on the engine to make it run steadier; when any of the royal family are on the line, alvay put more carriages on than are required for passengers, in order to steady the train. Has frequently travelled by express train on London and Birmingham; there is rery little oncillation; thinks the express train steadier than any other because it is better screwed op; everything ls in higher order. Outside cylinders not yet tried on this line; they were tried on the Liverpool and Manchester and conderoned; the oscillatory motion obJerted to; the boilers, however, were shorter than they are at preseat; there was a greater tendency to the yawing motion. Decidedly objects to the ase of carriages with shifting wheels on account of the difficulty of keeping the securities almayaright. Experiments have been made in tho United States to allow wheels to adjast themselves on curres; they were soon abandooed, it being impossible to keep them in order. A very ensell increase on the Darrow gauge woold afford great accommodation in the construction of the engine. The difficulty of oiling and cleaniog the narrow gange eagines a very great inconvenience, and can onis be felt by engine-makers. They require more space for the tube of boiler, and a larger fire-box.

Mr. Bemjamin Cobitt: Does not think an equal power can be obtained on narrow as on broad gange. The narrow gange does not allow width enough to get a fire-box large enough, and is crnmped for width is getting strength for the working parts of the engine. Thinks it isposaible to make so effective a boiler for narrow as can be made for bruad gaege.
Has not particularly considered the relative advantages and disadvantages of ontaide or inside cylinders. There are abont half-a.doser outside cylisders upon the lines of whict witness is superintendent. Total stock of engines about 120 ; all but 16 on 6 wheels. The Dover Company have ordered a large number of outside cyliudera. Has ridden a good deal upos the outaide cylisder engines. At first they travel as steadily as the inside cylinders, till they have been at wort eight or ten weeks, and thes they begin to get side play and oscillate a good deal. This motion increases with the wear. The repairs upon outside cylinder engines are not more costly than upon inside cylinder engines.

The repaire required on the outside cylinder engines.

- April 14, 1846.-Taken Into dock to have new iyres, axle-bearings, and cenema ropahra + Augugh, 1844 - Taken lnto dook for two new eccentric strape, and teapormer se
pairs.
\& April 21, 1845.-Taken into dock for new driviog-wheele, pew bestay in leadibs Wheels, and general repairt.-Jaly 10, 3845 : Taken loto dork for new bearing to trill ing whecth.-Iuly 27, 1845 : Taken into dock for leading wheek keyed on to aslet, and mew ale bares and bearloge to drivios-whels.

In the narrow gange inside cylinder engine there is scarcely guncieat space for the necessary repairs and cleaning; there is also a diticulty in the ontside cylinder to get at the bearings, both to oil and to clean then, without lifing the engine. As a locomotive engine.maker, is in favour of agauge of 5 feet 3 inches. There is at the New Cross station now ensine of great power, made by Bodmer; he hes taken ont a pateat not onls for locomotives, but for steam engipes in general, for what he calls a compensaling engine, as it Forks with two pistons in one cylinder, so that tbe connecting rods pull and throst at the seme time, which takes the strain off all the other parts of the eogine, except betreen the cylieder and the crank. The length of the boiler is 10 feet, the cylindrical part of the boiler. The firebox is as large as it can be got to suit the gange; This engine has been tested against other engines and fonnd more powerfal than any other with one pair of driving wheels, because it is a larger ete. gine, with a larger boiler, and larger cylinder; the cylinders are 16 iaches io diameter, and the stroke is equal to a 90 -inch stroke. being four 7 -ions crante. It hes iaken 38 carriaget upoa an inclise of 16 teet mile, abot
 twas.

Cannot seesrately ascertain the comparative locomotive cost of working goods trains and passengera trains apon this line, the acsounts not being teparately kepl.
Locomotive Expenses of the Brightom, Croydow, and Doter Railways, cempared with the Great Western Railocay Company, for the half-year ending December, 1814.

	Greas Wenkern Rallway Corapany.		Brighton, Croydon, and Dover Locomotlve Comp.	
	Pasengers.	Goods.	Paspengen.	coods.
Trumber of eokitret and tenders melonglag to the Companten.	102	22	83	14
Nomber at mork duriag the halfyear	96	22	77	14
Number of engines in ateme each	85	11	3	7
	7690	8720	6058	5232
			Pamoryers	d Goods.
Anvege cont per ton per mille .	0.15 d .	0.05 d .		
Awormpe medelde of cabs per ton per mile	ib. 0.56	1b. 0.23	${ }_{\text {Lb. }}^{\text {cis }}$	
levernee quantity of colve used per milie ras :	84.27	51.0	34	
Average cont of repalra, including cepertl chergen, per mile	2-81d.	$2 \cdot 1$	$8 \cdot 31$	
arrage cost of osthe pee mile ron	388	$8 \cdot 86$	4.87	
Averate cotit of reges per mile run	1.19 990	12.44	11.12	

Dimentions of two engines on Brighton, Croydon, and Dover Railvay.

Distance from Centre to Centre of leading and following Axles.

The passengers of an ordinary train of 10 or 12 carriages could not be changed from ose train to the other under 20 minutes. With engines on garrow gauge, even with outside cylinders, there is more difficulty in getligg aceess to the axles to clean and oil them than in the broad gauge. Thi dificulty of oiling the axle depends apon the circumatance of the cylinders beiog outside, and not upon the breadtin of the gange. It is easier to do this with the wide pauge engines; on the crank axles the bearing is taken on the outside of the wheels: no the four-wheel engines the beeriag ara ivside bearings, and there is a difficulty in getting the men to keep thuse bearings clean. If the gauge were increased from 4 feet 2 105 feet 3, the weight of the engines would be increased from 10 cwt . to a ton. A verage weight of engines on Soath Eastern Railway, about 14 tons; an Grait Wentern abont 17 toms. Considers that the general condruction of the roads will admit of heavier engines being placed upon them.

Weight of rail upon the Sonth Eastern line 85 lbs, a yard. The bearinge average 3 feet apart upon a croas sleeper. The sleepers are Iriangular; they are foar triangles cut ont of a is-inch square. The rails are festened to chairs with wouden keys; and the chairs are fastened to the cleepers by wooden treenails. The boilers apon Great Weatern are not meeh larger theu those upon the Brighton line. It witness had the control of the engives of the Great Western, should certainly make larger Doitent. There is room to got subficient strength and cranky, with inside
cylinders ; but the ongive and the boilor bave to bertred, wilith a a great objection. Would like to have the cranks more seperafed, aod keop the boiles still the same beight. To give the cranks strength, oblyged to make the beariugs shorter to get room for the crable. The thichsess of the side of the erank. which is perpendicular to the asis, 4 ioctes ; some 41. Does not thiok it necessery to make that thicher; the great advantage would be in gettiog the bearings longer. The eecentrics are roduced as much as possible. When they are very short bearings, they are apt to heat and get dry; then they cut away the journal, and it is redueed and made weaker. With the present condruction of the South Easkera Railway, should venture to increage the speed by having mach wore pewerfal eagines. The quickest truin is apon the Brighton live, which rane from Brighton to Loodon in an hoor and a half; that is 501 miles, stopping once tre minutes. The diatance is often rav in a hour and a quarter; sonpe parts of the disiance cannot be ran at 40 miles an hoar, on accoant of the gradients; and other parts have to be rua at more thas that apeed, in order to keep the time. There are 120 engimes for the three Companies, working 106 miles. This includes the Dover, Brighton, and Croydon, asd two miles of braach to the Bricklayers' Anms, and the branch to Maidstooe.

William Cobitt, Eso. : The limit to safe apeed on narrow gauge Iines is the want of evaporating surface and space for the fire boxes, the want of solidity and perfection in the road, the want of base for engines or carriages, the want of greater strength in the rails, and greater security in connecting them with sleepers; many accideots bave been caused by attempting to go.too fast upon a bad road. And that danger is very mach increased by increased velocity. A speed of 15 or 20 miles an hour may be asfely attempted on a bad road, while double that speed woold throw engines and cariages off the line of road. Attention to the state of the rond has not kept pace with the improvement in the driving machise. Before increased speed is attempted that partienlar should be attended to. The perfection of the permanent way bas been loss thought aboot than almoet any other part of railway mechabism, and that is the basis upon which it all rests. Does not think that the speed might be increased, without a correspooding increase of danger to the iraveller, by adding to the width of the narrove gange; conaiders the narrow gange wide enough for bafety at almost any practicable speed, but not wide enongh to get tho most perfect machinery for speed. An addition of 6 or 8 inches over the present narrow pauge is wide enough, perbaps, for all practical parposes of machinery of locomotive engines and carriages. A gange of aboot 6 feet would be the best. Has often heard that an increase of gange would involve the necessity for widening the tunnels; does not concur in thia opinion; if the size of the largest loads ia mot altered, nothing need be altered bat the gange. Does not tbink that if they had carriages upon a wider gauge, they would wish to carry larger loads; in railway operations would rather adopt the same width, making the vehicles of greater length, which woold produce greater safety and greater convenience than by shortening them, so as to produce greater width and greater height. The adoption of a wider gauge in tonnels would not restrict the room for workmen, as regards trains passing; the wheels are always far inside the ontside of the trains, and so they would with the 6 feet gauge, hecaase the loads are 8 feet; the only difference would be that the two inner rails would be nearer to each other, and the two outer rails would be nearer to the walls; the centre of gravity would be the same if the loads wert ne higher.

An increase of the width of gange would not renrer it imperative to have a corresponding increase of the radius of the curves. An increase of the gauge would not render neceasary a corresponding increase of the height of the driviug wheel. Does dot think that in reference to the nomber of miles run on the broad gauge, and the number of miles run on the narrow gauge, that there are fewer accidents on the broad gauge than on the narrow. The superiority of either gauge depends uot upon the gauge, but upon the condition of the perinanent way. Gradicnts are of less importance if the road is in perfect order. Rigidity in a road is preferable to elasticity in a road. With elastic rails, it becomes like driving over a serits of points. If there be any elasticity at all, it is best to have it in the whole road, like having a perfect road laid upon a bog, as in Chat Mose, or any other soft ground, where the whole railway itself could, in a very great length, have a very slight elasticity. There is less cost in the repair of Cuatmoss than any other purt of the Manchester and Liverpool Railwoy on that acconnt. It always will be so upon soft ground. If you have a good permanent way, thick enough and strong enough in itself, and lying upen a substratum, which has a little tendency to elasticity, it is most easily kept in repair. Cross-sleepers are better than longitudinal slerpers for kcepiog in repair. Any sleeper of a proper form can be packed, whether it lies longitudinally or transversely. There is a greater length of bearing to be obtained apon cross-sleepers than upon longitudinal sleepers. If we were to have a railway laid from end to end, all upoe cross-sleepers, there would be a much greuter length of bearings than upoz a railwas whe e it is all upon longitudinal bearings; and the greater number of sleepers we have the better the road will be.

Is not aware of the exact limits of contraction and expansion, by cold and heat, of a 16 -fool rail; has known the road lifted up; bas known it bent sidrwaye by expansion; has mever had time or opporionity to seasure it exaculy ; it is a difficult thing to acertaio what the axpansion in in certain cases; it can be done beat of the liae, by accertaioing the tereperteture of certain lengths of bar nniformly. Expansion and contraction on

Iongitudinal bearings bave a tendeacy to loosen the screws which bind the rail to the balk.

Break of gauge is of litle consequance in refereace to passengers, but becomes a great dififalty in trwnsferring heavy quods. It becomes a matter of importnace to devise the best, chenpest, and quicikeut mode of transhipment from the one gange to the other, whether it be by removing the goods from one carriage to another carriage, or by muving the bouly of one carriage on to another set of wheels by unechnnical power; it becomes a question of cost. The measure of the inconvenience is the cost per ton to do it quickly. The expense of constructing powerful lifting machines of lille importance where the traffic is large; bas laid out $\pm 130,000$ to save about a halfuenny per ton upon the shipping of couls. Could put up apparatus to move 25 wagoos in one minute, or in a couple of minutes, requiring the empluyment of not less than 50 , nor more than 100° men. The cost of tranabipment would be a trifle upon a long line, but a large item apon a short one. It is perfectly easy to make wagon frames and vagon bodien for a large irade that would go to any part of the conntry ; the bodies mudt go quite through, and return again; the frames would keep on their own lineg, and the waguns would simply drop into them. There would be no difficulty in constructing pussenger carriages to move in the same way; if there is trafic enough to render it worth doing, there is no dificults in doing it.

THE HOUSES OF PARLIAMENT.

Ventilation has iaken the character of stagnation in its effect apon the progrese of the Houses of Parliament; more especially those parts of the interior whose completion is soonest required-at lenst impatieuly demanded. Talting and Reidiag have considerably retarded operations. No one room is yet anything like finished,-or much more than merely aketched out,-though the main work, that of construction in the rough, is nearly terminated in the House of Peers and the royal approach to it. At present, the picture is merely drawn in and dead-culoured; therefore we pretent not-especially from such cursory inspection as ours has been-to judge of intended effects otberwise than conjecturally, and with due submission to correction for any misunderstundings into which we may have fallen.

To hegin, then, with the rogal entrance from the giganfic porch beneaths the Victoria Tower:-the Scala Regia, which is parily lighted by lanterns in its vaulted and groiued ceiling, macends in a direction, as seen from the entrance, turaing to the right or southwards, in two successive fights. We furgot to connt the namber of steps in each fight, whicls Lord Sudely foond fualt wilh as being too many for architectural dignity. But there is - precedent for more multi stepped, and certuinly for loftier, figlits, in what is, perhaps, as magnificent an example of a slaircase ns any we know of-viz., the Parade trepue in Gärtarr's new builling of the Bibliothek at Munich. This greaily exceeds in point of amplitude, spleadour, and perspective displas, what the W 'estminster staircase promises to be, In one respect, indeed, the latter is almost unparalled, -the risers being nnusually low, and the treads broud ; so that what, in novermion, contributes to elegance and convenience, is bere carried to such excess as to be likely to prove an incommodity. It is not only somewhat fatiguing to walk up such very shallow and broad steps, but rather difficult to do so without seeming to atride or jerk along, nr making two steps of each stair. Some little practising will be necessury fur either uscending or descending majestically. Passing through the shell of the Victoria Gallery and another ronm. we enter the Huase of Peers, at the west, or throne, end; the first glance at its ceiling, a wide expanse of gorgeousls carved and gilded work is already striking enough. How far more imposing-almost bewildering-will be the drst comp d'cill of this spacious and magaificent hall when completed in all its decorntions-its walls arrayed in gilding and embluzoning. displaying a series of compartuents of fresco below, With a corresponding range of richly painted windows (six on each side) bove. Still, we have our misgivings: because, though casual visitors may be more than satisfied-even enchanted -" My Lords," themstlves are likely to feel sated by the constunt hlaze of so much architectural and pirtorial pomp. Such a sumpluously, not to say extravagantly, adorned ball, would be more in place within the walls of Winclsor Castle, for royal banquets and feativities, than as a place for solemo debnte on grave and anxiuus matters. Putting propriety of purpose out of the question, we extertain great doubts, too, he to the effect which such profusion of painted glass as is intended will have upon the fresco paintings. Besides that gleanss of coloured light may occasionally full from the windows upon purts of the mural pictures, quite different in hue from the colours on the futter, - will not the windowe overpawer the paiutings, antl cause them to look Qutand dull, by comparison?-or can thut inconvenience be remedied by exaggeruting the colcurs of the frescoes, and painting thern up accordingly? We way be allowed also to ask, whether another matter bas been taken ints consideration-because if it has hitherto been forgotted or overJowked, altention should be directed to it without further delay. Will not the effect and character contemplated for the "Huuse" be, in great men. sare. lust at these paricular tinues when the plare will be chiefly used for buniopss? Aftredurk, the puinted windowa will not show themelves otherwise thun as gloumy gapu and Facancles, occapying the apper half
of the two side walls. A singular degree of brilliasey might, bowever, bo ubtained at night, by lighting up the hoose chiedy, if not entirely, freas withoul, by means of gus Lurners on the outside of the wioduws. This would be further useful as helping ventilation. The plan appenrs to as to have, independently of its vovelts, much to recommend it; should there be oljections to it, nut pererived by us, we yet hope that while they bave thrir due weight, the suggestion itself will not be wholly diwregarded, merely becaure it is a suggestion,-Athesaru.

ROYAL SCOTTISH SOCIBTY OF ARTS.
June 8, 1846,-Jozn Bratson Bell, Esq., V.P., is the Chair.
The following commonications were made :-

1. Deveription of the machinery watd, and of the manner in which the and at the sides and end of the open-culting was mpported during the excerstioy and onilding of the works of the Ediubwrgh, Leith, and Granton Railaciy Thanel in Scotland Street. By Mr. William Pattmom, P.R.S.S.A. Reajdent Engineer of the Tunnel. In this communication, Mr. Paterson deacribed the machinery used, and the manner in which the annd at the aides and end of the open-cutting was supporter during the excarating and building of the works of the tunnel in Scotlend-street. A beantiful and acenrate model was at the same time exhibited, representing the face of the tannel, and the saanner of disposing the beams to resist the pressure. There were also plass and sections of the works shown. The Society were greatly interested in this communication, which was clearly lllustrated by the model and dravinge Referred to a committee.
2. Deteription of a Patent Crane, by David Hendengon, of Reufrew, in which the important peculiarities of his improvements will be illuatrated by drawings and a working model. Mr. Slight deacribed this patent erane, diftinctly showing the important peculiarities of Mr. Henderson's improvemeats by the aid of drawings and a working model. One of theae patent cranes is at work in Mr. Slight's own works, and the valuable invention is comiag into general operation in the west. In the ordinary crane as the Derrick rises the load also rises, and mach time and labour are wasted; but the relative forces of the present have been all calculated by Mr. Ilenderson with mathematical accuracy. so that it cosubines great power and efficiency with sa'ety. The barrel and wheels are so constructed as to affurd a self-ncting check; that in to say, althongh several tons weight were suspended, and in the act of beimg raised or lowered, the handle of the crane can le let go at once, and the mat chine remains in staft guo. Mr. Slight pointed out several other valuable properties of this invention, the principle of which consists in the Compeasetion Barrel, by which after the loud is raised as high as necessary, it is the brought in nearly on a level, although the Derrick be rained. This of itsclf saves much time and labour.
3. Description of a Revolving Valve for Locomotive and olher Sleam En. ginee. By John Anderbon, Esq. The principles and construction of this valve are entirely new. Instead of the reciprocating or alternating motios, so long in nse, Mr. Anderson adupts a continuous rotary motion. ithe valve may lee said to consist generally of two circular metal disca, connected together hy a tube, placed opposite the ports of the cylinder. These diacs are divided into two chambers, the one baving communication with the steam. and the other with the exit pasaage. Into each of these chambers ports are cut so as to form, at certain parts in the revolution of the valve, a free pare age, either for the ingress or egress of the steam, the disc for the npper part leing so placed that the one may be admitting ateam into the cylinder whils the other is allowing it to escape. The whole valre wark: in a cylindrical case, having ports corresponding with, and opening into, those of the cyliader, the same as that of Medhurst's, but with this important difference, that the one revolves, while the other moves in a vertical direction. The revolring valve, Mr. Anderson states, possesses the following advantages:-
4. The valve, hy its continuous rotary motion, effects great saring in power, especially in locomotive engines, where the motion is very rapid.
5. The valve is devoid of pressure, and auperiol in that respect to the lone and short D, or slide-ralves.
6. The valve creates no loss of stean in the ports, as is the case in the short $D_{\text {, or shide-ralve. }}$
7. The valve mears equally, and can, at a comparatively amall axpeana, be given any length of lap or lead.
8. The valre can be easily cxamined and packed when required.

COLLEGE FOR CIVIL ENGINEBRS, PUTNEY.

It it very gratifying to those who take an interest in the advancement of practical science to find that a sound knowledge of the exact sciences is becoming more publicly recognized as a necesary part of the education of the engineer. Compared with the atupenduus public wolke which hare ben undertaken during the last few yeart, the greatest enpineering labours of the ancient world are as nothing: and wheu it is reflected that the lipe of
theomands may probably depend on the construction of these worts with a due knowledge of the mechanical sciences ; it becomes a matter of direct poblic iaterest that those to whom the task is confided should possess a gyolematic knowledge of their profession. That the importance of this caowledge is becoming publicly reengnized, we have a gratifying proof in the condition of the College at Putney, and the reanlts of the recent examinationt there.

We have to regret that the limit: of our space will not permit, at prement - detailed acconnt of the course of the examination, and an analyais of the printed examination papers now hefore us. We can do little more than record she names of the atudents who obtained honorary distinctions, and priacipal circumatences of the annual meeting, which tonk place on the 21 st Jawe, for the distribution of these rewards. The fullowing is the list of trizemen.

MATEBMATICS.-lat Cland, 8tephedson.
 8hap.
 2nd C̈are, W. Clart
 CHEMISTRY,-Leborthory Clism, Newome.
 Ward
 lat Clase, Codingto

3nd Clasen, W. Clark
Ind Clase, Cramp

MACEINERY.-lut Clams, Draving Prise, Nale. 2ad Clasg, ditio, Hawter

GEODRSY,-Tigonometical Surpeying, 8tephenmon.
Oritaary Survey add Mlan Drawing. Coghian. Dita 8rd Clasg, Cbristie. Mutar Clase, F. Davideon
MANDFACTURE OP IBON AND GENERAL PRACTICE OF MACHINERY.Puntifex.
Deacriptive Genmetry, Sharp.
Premeh, Baldry.
Lendecape Drawing, P. Devidson.
The chair was taken shortly after two o'clock by the Dake of Buccleuch, who called upon the Reverend the Principal to read the report detailing the camanation. Of these reports we can say no more than thry nuas have been satirfactory to the most sanguine supportera of the Inatitution. The certificatea for prizes were given by the noble rhairman to the students as 2beir names were succeasively mentioned in the Reports.

The noble Chairman in the course of his address ahowed in very clear terms the fallacy of the notion that mere profestinas "experience," unguided by preliminary aystematic ellueation, was sufficient for the purposes of the engineer. He argued that modern engineeing had made such ad. rances and was now frequently applied to purposes so perfectly new and maprecedented, that cases must continually occur where the "rule of thamb," as it was called, would be of no avail. He took occasion also to compliment Mr. Cowie on the successful issue of his halous.

The Bishnp of London, in his usual felicitous manner, eulogised the moral and gentlemanly deportment of the students. Prom living in the vicinity he had takea great intereat in this suliject, and had uniformly found that bit meighbours concorred with him in giving the college this merit. Their testimony was of the greateat value because founded on impartial personal observation.

The Serl of Devon ppoposed and Sir Charles Lemon seconded a vote of thanks to the Duke of Buccleuch. Sir Charles Lemon observed that the enlightened sentiments of the Duke bad never heen more conspicuous than in his zealoas support of the College, andl his talents had never been better exbibited than in the clear views which his uddress contained of the resulta of the aystem puraued in the educalion of the stadents.

The following were among the noblemen and genilemen present:-Duke of Buceleach in the chair; Bishop of London; Barl of Deron; Earl of DenBigh; Bir C. Lemon, M.P.; Sir J. Duckworth, M.P.; Hon. IR. Howard ; E. Antrobas. Beq., M.P.; the Right Hon. the Lird Mayor ; Major Olephant; Gen. H. Thompson ; Col. Sykes ; Capt. Monrsnm; Cil. Devereux ; Dr. Armott; J. C. Whiteman, Exq. Mr. Walker and Mr. Cubitt had both promised to attend, anless prerented hy argent business, and the Bishop of Oxford seat a letuer regretting that buinneas prevented his presence at the College.

A NEW THEORY ON THE STRENGTH AND STRESS OF materials.
8re-Althoagh I did not intend to answer queries, or disenss differences reapectiog the theory of the atrongth of menterials, which I um advancing, oatill I sbould hare the whole developed, jet I think it my duty to slup and more fully explain ooc or two points 10 whici you have ulluded in your lact nuasber. My theory is nut founded on the idea, "that there does not exiat in defrited beums what is temed a nemtral line." yet I deny the existence of a nexural line, or a neut, al surfuce as some writers tern it. Your definition of the neutral line ditisera a lattle from that given Dy Bariow. Tredguld, Moseley, sec.; be povd enuagh to look at Tredgold's defailion again, 1 geve it in my Oral article. Moceley says, "One surfice
of a bram brcoming, when defected, conver, and the other concave, it is eviclent that the material forming that side of the beam which is bouaded by the one surface is, in the act of dexare, extended, and the uther compressed. The surface which separates these tro portions of the material being that where it exteunion uruminaten and its compression begins, and which sastains, therefore, neitber extension nor compression, is called the neatral surfuce." If you look you will bnd that your definition of the neatrul line differs a litule from this aleo. You say that "the originators of the term neutral line stated that when a horizontul beum supporis a transverse weight, the upper part of the beam exerts a thrust and the lower part a tension; and since these two portions of the beam exert opposite kinds of action, there must be in the beace some intermediate part whith marks the transition from one state to the other-where, therefore, there is neither thrust dur tension." Nuw this is the truth, but not the whole truth; consider two sections in m beam deflected by a weight, one in the centre and the other anywhere between that and one of the supports; the compreasions and extensions in these rections will differ in intensity, and if we suppose a fibre whose breadth is very small, $d x$, if you please, 1 say that the state of neutrulity of this fibre, at onte of these sections, differs in degree from that at the other, without neference to the netion witich increases or endeavours to increase the thickness of the beam at top and decreases it at the lower part, which action has been neglected by every writer on the subject. For argument sake, let the line which separates the thrusts and teasions of every section be a mathematical line, then the only change that can take place in this line is in its leugth and deflection; then ask yourself the question, as the beam becomes loaded, is not this neutral line, under one amount of pressure, lunger and more dellected than under any less amount. However, my great difterence with otber writers is not about the neutral line or surface. Other writers might have eatablishrd their theory indrpendent of the thickness of the beam, for they state that no action tukes place in the direction of the breadth, that is, in the direction of your usis of Z. I show that there dnes exist an action in the direction of \mathbb{Z}. I say that if a body becomes extended, or compressed, its cruss sectionul area ia diminished, or inerensed, or has a tendency to diawinish or incremse, although the cross sections pronent similar agares : I and DuW speaking of the elungation of bura suspended vertically, and sobtaiulng a given strain in the direction of their length. Other writers go so fur as to suppose thut the cross section remains the same till the body bo extended to iwice its length;-of this matter 1 will npenk by-and-by.
When you refer to fig. 3 of my last article, page 164, "the suys," speuking of me, "that if a beam be deflected and a slice luken from the mpper part of it, this slice has the same furm as the whule bemm, aud consequenlly thery is us much reason for assigning a neutral line to the slice as to tho whole beam." Yuu will find that I did not take a slice frum the upper part, and that I suid, "the sume process of reasoning which points out a ueutral axis in the whole, will point out a neutral axis iu any portion of the body, no matter where it is silumed." In this instance you will fod that I attucked the reasoning emploged by others. Lowrr down it is said, "For when he suys that the form of the thin mpper alice is an argunent for the existence of a neutrul in it, te makes the neutral depend werely on the furin of the beam and not on the mechanical action of its paris." You will find that I said no such thing, nor numde use of no such mrgument; what 1 sud I will repeat; it follows immediately what I quuted abuve, -" in fact, every fibre may be said to be compressed un one side and extended at the other, while the whole or each is beat round a cominuo centre, entrely outside the body." When I melect a portion 1 do nut tuke an upper slice, for I suy, " Now let us lake gcdiriyqz (6 f. 3, page 104), any purtion of the beam, it is evident that the biluncuts in the upper part near d/ q are expunded, and thuse near to $x y z$ are cumpressed;" mark what 1 say, -" mecordiug to this reusuning there is a set of Gibres betweead $d q$ and $x y z$ which are ueither compressed tor expanded; hence, e ects purtiou of the bemmis eotitled to a neutrul axis, which is relatiorly correct, but each neutral axis is itself bent round a ceutre." I hupe jou du not mean to say "thint the form of the benm is not intifenced by the mechanical uction und connection of its parts," for I think that it will not be denied that the mechamical metion ia infueuced by the form, and ulso that the forns is influenced by the mechanicul action. I have got to the place where juu say, "We proceed nuw so the direct arguneuts establishagy the uetual existence of the neutral bouodary," Neutral will respect to what? Neutral with respect to thrust and tengion? Neutral with respect to what degree of turust and tensiou? You might as well try to upsel the trulhs of the matiplication table us $\mathbf{Z}(\mathbf{X})=0, \mathbf{\Sigma}(\mathbf{Y})+\mathbb{t}-\mathbf{1} \mathbf{W}$ $=0, \geq(Z)=0$; mud you might as well try to nodersmund what the author of the work on the "Cindeulut," published by the Siuciety for the Dituusiod of Useful Knowledge, means wheu he deacribes the third differentini coutficient, as to try to underatund what writers on tnis subject mean by such terus nu "the internal forces of he beam," - the mulecular action of the forces in the cross section," \&e. ; or, in cher worls, the equations huve nevar beea sutistied. If $\mathbf{K}=\boldsymbol{i} W$, it is evident that $\mathrm{X}(\mathrm{Y})=0$, but how is $\sum(\mathbf{Y})$ made up? This would be of no consequence, only the thruais aud teusiuns of $\boldsymbol{\Sigma}(\mathbf{X})$ are uninfluenced by it. You, or ralher the writer of the article in question, having despatched $\mathbf{X}(\mathbf{Y})$, muya, "similar reusuning applies to the forces repremented by $\left.\sum(Z)\right)^{\prime \prime}$; yow this nssertion is nut correct. I have before atuted (page 105, Hg. II) the unture of the action of the paticles in the direction of the axis of \mathbf{Z}, min need not dwell upon the winter here; mad although $\boldsymbol{Z}(\mathbf{X})=\mathbf{0}$ may be repremented by the stuticul couple + M. - M, litue is kDuwu with respect to thrir actual anount, and as the dismace between their poiuts of appscation vary, your equatior,

Mb= Wh, although frue, leaves as in the vary same dificalty at $X(X)=0$. As b is meribble, it would have beea better to have said My=1 Wa. Indeed, in teking moments about A (Gg. 9, p. 205), it Tould bo as well to call the perpeadicular let full from \mathbf{A}, on the direction of $+M, x$; and the perpeodicular on the direction of $-M, x^{\prime}$; then, $+M \times \dot{x}$ added to $-M \times x^{\prime}=M\left(x-x^{\prime}\right)=1$ We; this supposes botb forces to be directed at the sempe side of A; however, if one acts above and the othar belom, then wre have $\mathbf{M}\left(x+x^{\prime}\right)=1$ Wen but in both cases, the quantities between the brackets in the distance between the points of application of the forces. At frst sight the equation $M y$, or $M b$, or $\mathbf{M}\left(x+x^{\prime}\right)$, or $M\left(x-x^{\prime}\right)$, $=\frac{1}{2}$ Wa would appear to involve but ose unknown quantily; but it involves two, for there is as little known about M as there is sboat y. I cannot see for what gurpose these equatioas were introduced, except to show, if wo were able to do it, how the priaciples of statice might be applied to the prohlem nnder consideration; however, I can see no consestian betwees them and what follows, but perhaps others my.

The cast conr paragraphy, beginning with "We havo, therefore, the apper and lower perts of CD in \&e.," at the bottom of the firat colama, page 295, contains very litule more than different methods of stating the same thing or some general expressions that would be trwo is almont ady inquiry, sach as, "We are, therefore, perfectly safe in supposing that thore is some genaral law by which theee variations of action uny be represented, that is, that the amount of molecular force at any point of either mide of the beam in a continnous function of the distance from some Bred point." Yea mast sot be offended, for I am aow speaking plainly; to bet round the bech would take up too much space. Lower dovin, Where you come to the conclasion, "Consequently there is no longitudiond action whatever at the neutral boundary." If you reflect for a momeot, you must edmit that this boundary might be cloogeted, for it is only capar he of being eloagated and defectod, without altering the thrusts or tenaions, except with reapect to their intensity, of which there is but litile cnown.
For the present, I beg you will excuse these few remarks, hastily made, cti! I tar"e demeloned the whole of my Theory, then I will be ghad to enter iato eas explanation that may be required.

I am, Sir, yomra obediently,
Oliver Byrme.

NOTES OF THE MONTH.

Wellingion Monerial.-The newspapers annonnce the gratifying intelHigence that, io cunsequence of a discussion in the House of Commons, the preparatione for raining the statue of the Duke of Wellington to the top of the trivephal arch in Piecadilly will be discontinued.
Fitzwilism Mrecum, Cambridge.-We learn also with great pleasure that Mr. Cocterell has obtained power to deviate from the original plan for completing the Fitewiliam Museam, by substituting real marble for imitation marble ier the interaal decorations.

Jesus Coltege Clapel. -Among the contemplated alterations is the subatitation of as areade of five lancets (according to the original plan) for the present Perpendicular window. A Norman triplet in the north transept will be disphyed. The choir had formerly aisles eztending as far as the present lancet windows; the northern aisles will be rebuilt. We are not quite reconciled to the destruction of any of the genaine architecture, bot the restoration is superintended by Mr. Salvin, and is therefore in safe hande.

Ely Cuthedral.-The restoration advances rapidly. All the plaster work is being ruthlessiy destroyed. The great tower is opened to the gecond story. Two painted windows by Mr. Wailes beve been completed. A painted wiodow will be iaserted in the lanthern at the expease of the members of the University of Cambridge in staty puppillari.

The French Minister of Public Instruction bas ioformed the Ecclesiological, late Cambridge Camden Society, that a complete set of the works of the Comite Historique is placed at the disposal of the Society.

Standon, Herls.-A new Decorated church has been erected from the designs of Mr. Sulvin.

St. Barthahano's, Nettlebed, is being rebuilt by Mr. Hakewill.
Seamen's Church, St. Katherime's Dock.-This chuich, which will hoid $\mathbf{8 0 0}$ pernow, is in the Edrly English style. The design uppears to be exceedingly fanliy.

St. Jameds Church, Weatminster.- A pew east window has beea painted for thit chureb by Mr. Wailes. The colours are rery brilliant and the joiating of the glass is managed so skilfully as to be scarcely seen from the interior of the church; but the designs hare an appearance of confusioe and the drawing is not rery correct. Of conrse we deed not state onr opinfoa respecting the use of Corinthian columns as mullions, as in the case of thin window. Among the decorations or desecrations is the painting of parts of the walls is imitation of marble.

Architecture in Edinburgh. The Scotsman speaks highly of the architecture of the New Commercial Bank, from which the scaffolding is pertially removed. The design and also the aculptore is by Mr. James Wyatt.

There is a project under consideration for connectiog all Natural History Societies wilh the Linoman. The latter will be the principal Society, and the others will be considered as sectiong.
M. Fialletle, whose inventions connected with atmompheris milmang bave been described in this Journal and are new being experineated apent at Peckbam, recently died at Arras. He wes an exipent baikder of hamomotive eagines.
The third centeoary of the birthday of the Danioh astrocomer, Tyole Brab6, was celebrated on the 2lat of Juna by the ertction of a moper meotal bust under a triumphal arch on the little island of Reers, hig birthplace.

The second ceatenary of the death of Leibnitz has been celobrated wish great pomp by his alrag mater, the Uaiversity of Leipsig.

At Parim the Charnber of Depoties has voted $\mathrm{f} 41,000$ for pownares ground required for the purposes of the Musem of Neraral Hiseery.

The sew papal goversment have withdruwe the wh pembitition agind the construction of railways in the papal dominions.

Painting on Lata-This new process seems to be one of copsiderable importance as a substitute for enamel painling; on account of the lerge size of which the pieces of lava cas be ottained. A large historical picture, painted on four plates of lava, which together have a surface equivalent to 10 feet square, has been completed for the church St. Vincent-de. Paul, at Paris. The advantage of lava for this purpose is, that being vitrious it receives vitcifiable eolours withoot changing its furm in beking.

The restoration of Malvern Abbey is completed.
The figures on the great gate of the cathedral of Senlis have been restored by M. Rabinet, seviptor, under the direotion of the architect, M. Ramé.

The French Chamber of Depaties bave voted a sum of money for the publication of the work by MM. Colta and Flandin on the ruins of Nin. eveh.

It has been suggested that the felds north of the Model Prison at Pentonville should be converted into a park. This, if done at all, wust be quickly; otherwise, there is every reason to suppose, from the rapid tacrease of buildings in this neighbourbood, that the gronnd will be $800 n$ built upon. A park in this locality, which is far removed from any of the existing "lungs of the metropolis," woold be an incalculable benefit to the poor inhabitants.

Electric Clocks.-By means of the electric telegraph on the Ediaburgh and Glasgow Railway, Mr. Bain has exbibited a clock of which the peddulom at Glasgow regulated the movement of the dial-wheels and handis at Edinhargh!

The Presbyterian Church, in Lower Gloncester-street, Dublin, has recently been completed, from the designs of Mr. D. Fergusor, a joung aed rising architect. This huilding is the frst in the Grecian Doric order that has been erected in Dublin, with fine Irish granite, and the execution is highly crediable for a first attempt of the workmen. The Acroteria are perfectly new in this country, and have a very pleasing effect apon pedtments too smoll for the support of statues. The lightiog of this charch is effected by a most economical plan, costing not more than half the oxpense of lighting in the usual manuer with pillars and bracketa. Mr. Ferguson holds the Mastership of the Arehitectural School of the Royat Dublin Society.

An Institule geing abegging.-Under this title the Alhemarum allades to a circular issued by the Institute of British Architects. solicitiog arehitectural essays from men of erndition and science. The paper in the Athranm contains some valuable suggestions, to which we must refor next month.

Comparison of the economic properties of conls.-A most fmportant series of experiments is about to be undertaken at the College for Civil Engineers, Putaey, on the part of the Admirally, in order to a comparison of the relative evaporstive powers and fucility of combnstion of differeat kinds of coals. The examination will be condncted by Sir Heary de la Beche and Dr. Lyon Playfuir. A enormoes maes of fuformation on the same sabjert is contained in a report published by order of the American Congress, which was doticed io our last volwne, p. 248.

The French Geological Society meet at Alais od the 14th of September. St. Diary's Church, Kidderminster, is to be reatored, at a cost of $\mathbf{2 0}, 000$.
The Isthmus of Panama Railuuy will be commenced, it it said, maxt November.

The Ilungerford Bridge Terminus of the Southampton Reilmay.-8nver houses are being cleared away for the constraction of the viaduct from the Nine Elms station.

Bridge orer the Mersey at Rumcern.-The Admiralty requires that the arches shall have a clear headivay under their centras of 100 feet, and a waterway between the piers of 280 feet. If liat girders be anhatitnted for arches, 260 feet between the piers will be sufficient.

British Museum.-Sir R. Inglis has stated in the House of Commons, that the works will be completed in three jears time.

Geology.-A very curious theopy has been propoonded by Commander Morton resptcting the columps at Ginat's Causeway and Staffa. Re asserts that woliea lara in crystalising could never form blocks fitiog ioto each other with sockets or joints; and that, coasequeatly, the usan opinion that the columns in question are formed from molte basalt for ontenable. He asserts that they are patrified forests of cigantic buabows: and refers to the wefl-known fact that bamboos and ewoes, whea growiog secrele silez. The divisioss ie the basaltic colames resembte is form a poaition the Joints of growiog bambees.
= Prokeme Bomilnat inrited all the priseipal members of the ArchiteoEral proferina to a soireo al his house at Bolton-gardens, Tussell-square, o Treeday, Tih olt. ; it was well attended, Several works of art were laid oe the tables, and a sumptanas emtertainment provided at the close.

Wanmineter Bridge.-It is reported that Mr. Walker and the committee hare had several consultations respecting the condition of Westminsterbridge, and the general opinion entertained by them is that the present etructure should be palled down and a new one substituted. MIr. Walker bas already drawn out plan and specifications for the new bridge. He proposes that a temporary wooden bridge should be erected, and the mew britge contreece enalward of Ginger's Hotel.
Substifute for Guyposeder.-Professor Schonbrin has just preseated to the Society of Natural History, Basle, a specimen of colloo prepared by him whioh is more inflamene than gapowder, and explodes within a capanle. Sevaral trials have been tmade of it, from which it appears that a sumil quatity, equad to the sixteenth part of an onnce, placed in a gun, projecked the ball with anch force that it perforated iwo plank at a distance of any-eight paces, and as another time, with the same charge and at the same diaiomea, drove a hall into a wall to the depth of nearly four inches.

Colowred Glass.-Mr. Hoadly, of the Hampstead Road, has shown as sereral pattarns of a new dacription of coloured glase borders which poszesi considerable elegance, and can be produced at a very moderate price, a haodeone berder with a raby or blue ground and a silver and gold eanbosed orament can be sold at 5s. 6d. per foot, and a ruby blue or gold greand with silver or white embossed ornament at 2s. to 4s. per foot.

Forlifications at Shecrase.-The new works continue to progreas slowiy and steadily. The scarp of the battery forming opposite the DockYand gato is now being proceeded with. The mosketry walls connecting it to the old works of Garrison Point on the one hand, and to the line of bas. Lions extending from the Thames to the Medway in the other, are well nigh completed. Each wall is upwards of 120 jards in length, three feet thick, from 10 to 12 feet io height, and has loop-holes for musketry at every three and a half feet distance. A ditch 50 feet wide, and 15 feet deep, is to surrowed the battery. It is almost formed, and will communicate with that from the Medway, which is to be cleared out and deepened, and the bastions extending along it are to be heightened with the mud procured by the excavation. The following guns bave been ordered for the pew works: Oee 60 -pemader, 97 ewt., 11 feet long, 17 eight-inch guns 65 cwt each, 9 foet long- 2832 -poonders, 56 cwt . each, 9 feet long-and 1224 -pounders of 90 cwt . each, 6 feet long-total, 58 . The 24 -pounders will be mounted on irom carriages, but all the heavier guns on wooden carriages with traversiag platforms. Sinty-three guns of a simular description have alreedy been receired, and are to be mowated on the old works surromading the garrisom. The alterations and repairs tbere are progressing favourably, the pivots and tramwaya for the traversing platforms of all the 32 -pounders being already laid down; the parapet has also been heighteoed along its whole extent. One or two compabies of artillery are to be ir future permanealy stationed here, and new and extensive barracks are to be erected for their aceommodation, the present being confined and incapable of acconmodatict more than soe mew, which is the average number of troops forming this garrieon.

THE BASILICA AT ROME.

The Times correapoodent of Rome gives us the following demoription of the Banilica:-The Basilic is the metropulitan of Rome. The origiad strncture was commenced ten centuries ago, but the bailding was twice bont down, and the Resilic, as it sow stands, was begun in ISCS. Several Popes, iacluding Clement V., Urban V., Alexander VI., Pias IV., Siztus V.; and Clement XII., Ievished caormous soms of money on it, wo that, albough the proportions aro not so rast as St. Peter's, it is almast equal in magnificence, and certainly far superior to all other churches of the Eteral City. Severe taste will, however, cundemn the gilded roof, though by the crowd it is very mueh admired ; but where mosaic marble, painting and sculpture bbound, the meretricious orament of gilding should not be intreduced. Tho bijon of the cathedral is the Chapel Corsini; it is perfertion, and within that little space there is mare to be found to satisfy the eye and exalt the mind than in any other part of the immense pile of buikeinge. The altar-piece is a mosaic, copied from a picture by Guido, exe. cried with eo much delicacy that you almost desire to touch the work to be convinoed that it is not a paintiog. The bronze statue of Clement XII. is aleo admirable. The expression of the face is perfect ; and overy line traced by aare and age is reproduced with the fidelity of oature. There are two groups of marble in the niches at each side of the bronse slalue by Moaldi, on which it is anid Canova studied intensely. Thary is a female figure in ooe which is almost the model of his Venus, but the neck, bust, and arm are far superior to anything that Canova ever produced. The mosaic toor is very remarkable, as well as the precious marbles, which are used with an unsparing hand; but the wonder of the place is a subterravesn chapel, where the tombs of the Cursini famity abound, and whera a marble groap of the Virgin and dead Christ are not inappropriately placed. Berniai is given as the aculptor's mame, but I imagive that much of the fane which the group has acquired is owing to the purity of the material, which admite a little of trick in the exhibition, and to the place where it is
situated disposing the mind to religions meditation. The man who show the statue does so by the light of a small way taper, and as he passes the light alog the lifeless body of our Saviour it appears to bo wax, not marble. The hends are positively transparent. The agony of life in the Virgia is finely contrasted with the inert weight of the corpse which hangs from her embruce; but I believe that the groop, bowever beemtiful, would lowe much of its value if exposed to the open day. The late Count Somariva, at Paris, used to show Canova's Magdalen in the same manner ; but good judges condemned him, as the eye never embraced the whole gigure, bat was carried from one litulenes, such as the graiaing of the akin, which Canova introdnced, to another. There is a chih of death in the sobterranean chapel of the Corsini, and the sacristan who shows it not ooly covers his own head, but carefully recommends you to do the same. The ceremony at St. John de Lateran was limited to the celebration of mase, and the Pope reterned to the Quirioal in the same simple manser that be left it.

THE CHANNEL SQUADRON-TRIAL OP STEAMERS.
On the s0th June, the steamars were ordered to try rale of stoaning. At 10 a.m. the Retribution, Gladiator, and Avenger, started, full power, with a strong breeze six points on port bow. In two bowrs the Betribution gajned on Giadiator $1 \frac{4}{4}$ miles; on Areager three miles. At aoon altered course to wind on port bean, and tried until 4 p.m. -at each suo cessive step of expansion gear-during the whole of thie time the relative distances were perceived as near as possible as daring the trial from 10 to 12. At 4 , being about seven or eight miles dead to leeward of the Admiral the eignal was mode to prepare to steam to wiadward. Topmests were in consequence struck, and eversthing got ready to join the ships to wind. ward. At about $4 \cdot 30$ they started abreast. Retribution eooa gut the laed, although Giadiator stuck very close for a few minutes; but once clear of her, she soon shot ahead, beating her in the rus aboat two miles, and Avenger four miles.

Gladiator and Avenger were asch working up to 10 lb . the square inch, having tubular boilers Retribation can only work up to 6 lb , having the old common boilers.
Jaly 1.--The Terrible having juined the fleet doring the previoug night, a aigoul was made to try rate of ateaming with her. They accordingly started at abont 10 a.m., with full power, the Terrible, with her tabular boilers, working up to 131 b . the square-inch, and afier steaming dead to windward, with a strong breese and heavy bead-swell for three hours, she beat Retribution as near as possible half a mile an hour. Unquestionably she is a noble ship; but, nevertheless, I am inclined to beliove she beat Retribution principally by the great command of steam generated by tubular boilers. Had both abips been fitted with similar boilers, probably the result woald have been differeat. One thing by this trial appears to be clearly setuled-that where two ahips of similar tonnage, or vearly so, and equal horse power, bat fited with tubular and comana boiters, are matched, tbe former must have the advantage in speed over the latter. This was very evident in the trial the day before with Gladiator, for with Retribution's immense engines of 800 horse power, over Gladiatur's 460 , the former certaialy ought to have beat her double the distance, had they both been fitted with similarly constructed boilers. At i p.m. a aignal was made to Terrible to steam with 6 lb . pressure ouly. At firt Retribotion gained rapidly on her, but as sood as this was perceived on board she ahot ahead again. In short, thim trial is not worth rolatiag, it beimg almeet impossible to keep steam at any exact pressure. A few shovolafal of oech, er alightent alteration of throttle valve, more or less, will almays cance an alteration. In the evining they both banked the fires.

July 2, at 9 a.m., we tried rate of sailing on the wind, slarboard tack. Terrible, under all plain sail ; Retribation, with single-reefed topaails. At 11, the wind falling light, Retribution shook ont first reefs. At $1.30 \mathrm{p} . \mathrm{m}_{\mathrm{m}}$. Retribntion being about oue mile abead, tacked. At 3, having weathered on her opponent about three quarters of a mile, bore ap and get port atudding suila. Ran until sunset without any difference of sailing then lighted the fires of two boilers and steamed all night. Terrible gained two miles all night. Arrived at Cove this evening, July 3, at 7 p,sm. Found the squadron lying there.

miscravanta

Sculptute Machine,-During a recent visit in Bostod we were shown specimens of the production of a wonderful plece of mechanlam, which were, Indeed, traly matonhhing. They were milaiature busts of Dantel Webater, A btot Lawreace, and Levi Woodbury; betng perfect facalmillit of thetr diatinguighed originali, and wroughe
 Thomas Blacetied, of Bowin. This inveation certaialy antabilahes a more era In the art of sembtare, and promises to dibpenve almoes eotirely with the deep thenght, and claselo atudy, and indefnugable labour of the artist, in his eftorts to put itse and pertry into the marble, for patura, art, every thling cangible, ana be copled by thta anotian, with a poo-
 the most kifted talent. The machine, too, san be graduated so as to edoe raduced coplina of any statuary, which shall, in their miniature, be perfict and ersed daplet of the orim

proportion, - By the asme machivery, the mont correct and perfoct bas-rellef protie likpmeraee niay be cut, on the hardest matirima, and of any aize required, from half an foch to
 bead of that staisiman at we bave erer seen io any of the bust or cants to be found, ant
 were the heads of several of cur acquaintances, cut in sameo sud ivory, the proper aize for selting ta pias, the frat glimpte of wbicb called before our minder the orlginala ma for selling in pian, the orat glimpte of whicb called before our minds the orlginala mis readily als the most perfect daguerreolype or penellied miniature would bave done. We are anared that he hrat of Greenoughe and Pers co's productiont, whict hare cost them years of atndy and riort, can be copied by this apparatua with most positive acct. racy; and the locir of shapeleas marble put into ite power will. in a few hours, stand forth a pertect copy of the mnat beauti ul and animaced staiuary the greateat acujpinra to increase or diminish the copy, so as to furolah a colosal or a metature bgure, with to increase or diminish the copy, so as to furgian a colosasal or and in all respects exact proportions.-"American piter."
Allicatur Jil.-A letter from 3t. Angustine, dated April 18. sajs:"I suppose that you may not have heard that wo have discovered the otility of alligators. An alligator is tound to be as valuable in has way as a spermaceli whale. An expedition tas lett this place for the river of 8 t . Joho's, and thy dark trlbutary stream of Blank Creek, swarming with these hideous creatures, with the view of killing them to obtaln their oll. The oil of the alligator ls anid to be better for lampa than urra whale oil, and It is extracted from the animal in conaiderable quantity and without any great dificulty. For this diacovery we are Indebted to the Indlans, who have bown in she habit. for bow Jong a time I konw not, of extractir, the ofl of the alligator and using it for varlour parposet. It maket a ine transparmit Ausd and burne ad mirably. You know bow many of these enormous animal are shot out of wadtonness from the decks of the steamboats that plough our watera. I expect he eafter to bear of lavs paseed for their protectlon. Erery time an allgator of 18 fret long ls shot lin the long grass of the river banke, or While he fe swimming, a barrel or half a barrel of oll, ats the case may be, fa wasted. Thia should not be. We must alluw them to be killed only at a proper season. when they are fattest, and not permit their deatraction at the temson when they lay iheir egga. The altigator is a furinidable lookiog creature, it is true, but he te generally harmiens. His office is to prowi in the sluggish waters of this southern region, whk up what he can, aod digest it juto excellent oll for the fllumination of our houtes. Alligators will be hereafter esteemed as aseful animals as ptge-perhap more so, for their keeping costo notbing The danger is, that now that the world has discovered what they are good for, their race Il be exterminated."-1 Jontreal limes.
Mammoti Loconotives.-The Great Western have just completed three Enost powerful locomotive engioes, bult upon the plan and under the aperintendence of Mr. Brunel. aststed by Bir. Gnoch, the superlatendent of the locomolive department. The dimensions of the Great Weatern eagioe (the leplethan of locomotiven) are as fol-Lows:-Dtameter of driving wheel 8 fett; cylinder, 18 inches; stroke, $2+$ inches; boiler between 15 and $I \in f$ fet; welght of engline, 96 tons, without water; weight of the tender, WIthout etther cole or water, 10 tons; making a total of 4% tons. This spleudid engine ballt for passepger traios drew a traio weigbing 136 tons up the incline at Wootton Bas
 The engine Quren is likewise for passenger trains, and wan built at Swindon: Driviog Wheels, 7 feet dismeter; stroke, 18 Inches; cylioder, 16 locben; boiler. it fret; welpht of eng'ne, without water, 25 tong; welybt of tenier, 9 tond, without coke or water. The above engines, when their machinery get futo perfect order, are intended to be employed in propeling the exprean traios. The other ts in linggage engine, the I remler, having her sis wheels of 5 feet dismeter connected. The dimessions of this locomotive are in other reapecta aimilar to the Great Weatern pasaenger engine. The Prepler Is decidedly the most porerful employed on the broad gauge, surpanging io strength and onerd the fier coles engine, which propelled 406 tons on the experinental trip with the gauge commis tonera.-A dew and powerful locomotive, the Gollah, wan lately triet on the sheffild Ashton uoder Lyoe, and Nanchester Railway. It fe the largest crank-axle locumotive engine ever bult.. The cylindera are 18 tnches in diameter, with two feet stroke, mounted on six wheels of four feet six inchen in diameter, all coupled, so that thry will not be liable to alin in wet weather, or. with heary load, ts lo often the case with those conatmicted apon the prement procipic. The englie is calculated to take a load of upwaris of 1,000 tons, on a lerel, at the rate of 80 milies an hour. It bis piven every antidaction to the company, who have nine more engines of a aimilar description in progrest of bullding et the work of Neagrs. Sharp, Roberte and Co.

LINT OP DEW PATENTEB.
 (From Mestre. Robertson's List.)

GANTED IN ENGLAND TROM JUNE 27, 1846, TO JULY $23,1846$.

Six Months allowed for Engolment, unless otherwise exprested.

Jomph Storer, of Staohope atreet, Momington creacent, musical instrument maker, por " Impruvementa in organs, seraphinef, and other free reed intruments, part of which twirumente are mpplicable to plano furtes." (a communicadon.) - June 27.

John Davie Jorra 8siriting, of Black Range, North Britain, esq- for "certain trat Jloys and metalic compound with a mothod of welding the same and other metila.". Jupe 29.
Prancois Stanilas Meldon de Sussex, of Milimall. Middewex, manafactaring chemlat, tor "Improvements in the manufecture of coda and potash."-June 2y.
Thoman Lane Coviton, of Ansington Hall, Avalngton, 8uffolk, eaq., for "Improvements th the constroction of chalrs." ${ }^{\circ}$ - June 29.
Charlea Payne, of Whitehall wharf, Cannon row, Weatmiaster, gentleana, for "Im provements la preserving vegetable matter."-Jane 29.

Willam Mill, of Newhall street, Birmingtam, manufacturer. for "Improvementa In tet.

Mooet Poois, of London, gentlaman, for "Improvemente In regulating the relocity of team entives." (A communication.)-June 29.
Jowph Moreland, of Oid atreet, Middiesex, eopper atill and boller aetier, oven ballder,
 eopperi, stlla, and boilers, aod in the construction of fur aces."-Jnue 29.
 mente in gas aneters."-June 29 .

Antoise Perpigne, of Parla, sdrocate, for "Improvements In regulators for qualliylne the actloos of mechankal powers." (A communication)-June 29.
John Tacham, of Bochdahe, Laorester, machine makep, Darld Chertham, of the ame place, mechine malrer, asd John Wallace Dunena, of Manehenter, geatlempa, for co cere ota Inprovementa in machloery or apperitus, to bu used is the preparation and sptadat \& cotton and cher abrues sabitaces."-June 29.
Joseph Seraphin Faveon, of Roven, in France, binker, for "Improvernente in eon-

Str James Caleb A pderwon, of Butsevant castle, Ircined, beroopt, for "eortaln Improwe. se the drivior of minhimery,
 In the uneant of giviag molon to locomolive carn ges, with or without beviar mberit attached to them, aodi in the construction of waps, pasarges, and roads, ar whata elve
sald carriages are to travel."-June 25 .

Charles Clark, of Cornhill, Clis, merchant, for "eertain Improvemente ta the pro
 vapoara, and fur obtaining vegeteble extractas - Junce 29.
James Fastinga. of Havre, in France, for "an Improved machine for mathy brete tilen, quartes, and cormice ornamenta "-Jupe $\$ 0$.
William Clarte, of Hozion, Middiesex. machinht, for "certain Itoprovequesta welghing machlipen, ateel rarla, aud scale beami."- Jave 50 .
James Thompton, of Liverpool, engineer, for "certain Improvemente in machlaery e apparatus for oltained motive puwer, part or parta of which tmprovementis ace applith ble to other aseful purposes." - July 6.
Peter Ward, of Oldbnry, county of Worcenter, chemical maniger, for "caproverenta In the mapnficture of certaio salis of modu and magneain." - July 6 .
Richard Wight, of Hermitige-terrace, in the parlah of Bow, anger refinet, for me provementa in refining eugar. "-July 6.
George Downing, of Birminghmm, eleel pen tool maker, for " 2 certain Improvenant th the manuthe ure of prenholders."-July 6 .

Frederick Ransome, of Ipswich, engineer, and Jolm Crabb Biair Warren, Litele Borte ley, Essex, clerk, for " certain Improvements in the manutacture of bricte, difes, pappes and otber articlas composed of plastic mate-iala, and in the preparation of piathe mate fieda to be used for ancb purpotes. ${ }^{21}$-July 6
John Palmer De is Fons, of Caritoo-hill, St. John's Wood, in the connty or Midilenerg Feq., for "improvements in the manufacture of locke and uther fasteninge "indyet William M'Gary, of Hoxton, Middlemex, for "Improvemente in lumpe, inopg gionel, candles, and ahades."-July 6;
Thomas Woolley, of Nottiggham, piano forte manufacturef, for "Improvementa hat piano fortes."-July 8.
Robert Reart, of Gudmanchester, in the county of Hontiogdon, farmer, for wimporements in tiling land."-July 10.
Williom afiddlemore, of Birmingham, manufacturer, for wa certain Improweromet, as certain improvemente in taddles."-Juiy 13.
William Seed, of Preston, Ladcaster, machine maker, for "certaln Improwerneate to machinery or apparatus for proparing, slublulng, and roviog couton, tod other them ubatances:"-July 14 .
George Kintght, of Sonthampton. Wine merchant, for "certain Improvenceta If exen vatiog and dredging; alio in the formation of peimaneat and temporary harboarn, cemale bridges, docks, and other slmilur works, and in the spparalns to be employed theneinan July 14:
Odert Gripenberg, of Finland, Ruasia for "Improvementa in machiaery for emint frain and other seed."-July 14.
 miat, for " Jonprovements in the manufacture of chlorine."-Jaly lf.
Charles Frederick BieleBeld, of Weilington-stroet, Stragi, papier macbe entefterer. for " Improvements in the makiog of mouide or d *is used to the manglactere of perfer macbe, and other matcers, and io moulding or forming aftleies from certition platice me-terials."-July 14 .
Guataf Victor Gustafeson, Inte of Sweden, bat now of Warren-etreet, Fitari-matern engloeer, for "crertaln Improvemente in atem engines."-July lis
Lawrence Hill, joni., of Glasguw, elvl and mechanical engineer. ${ }^{4}$ for Improveneeta is

Eir Samuel Brown, Knight of the Hanovritan Guelphic Order. Ah, meate fa ar Nary, of Rlackheath, for "Improvements in raliways and carriagetild ian ob antirey and in the conatrucion adt mimig ships or reseris."-July 14.
David Yoolow Stewart, of Hontrose, Scotland, for "Improvemente In monenne tat and braca."-July lt.
 chinery for excavatiog."- July 15 .
Wllitam Thoman, of Cheapaide, Loodon, merchant, for "certain Impowneracter b

 and."-July 15.
Whilem Shurman, of the town and county of Nottloghas, boeler, sur oreater If
 James Nupler, of Shacklewell, In the county of Atiddlemex, opermative chernith for min provements lo smelling copper orea." - Jaly 20 .
John Boyes, of Mincing-lane, gentleman, for *Improvementie th machinery for thrm lug and wincowing grain and sdeds."-July 28.
Aqpustus William Miliary. of No. C6. Cadogan-place. Cheleet, at proment realding at No. 146, Avenue dee Champn Elye
the manulucture of gat."-Jnly 28.

CORREAPONDENTR.

"A Working Mechanic."-The improvement of the hydralie prors if very iogenious, but the small end of the pomp piston must nort in to air : for if it work in a reservoir containing water, the water will be forcul throngh the upper compartment into the man cy linder, and conaequenaly the quantity of water pumped in at euch struke will eqoal the sum and bot the difference of the voluntes of the two pierts of the plunge. If out optreapondent will allow us to make the neceseary alteration, the deacription shall appear nozt month. If we understand the action of the Archimeden air pamp, the mouth of the spiral tube must alternately rise above en giak belur the surface of the mercury. But as the exhenstion advance, the mercmry Fuold be elevated, till the mouth of the tubo becmae whit, submerged.

From preas of matter, the Reviews and reveral commeniestions art elo. avoidably poatponed.

ERRATUM, Page 228, col, 8. The anme of the urchitect of the Now Post Onice, at Humburgh, miapriated "A. Charles Temenenfo sbould be " M . Alesis de ''hateaoneof," anthor of "Arehitectera Dombtica," a work publicked in this cosery' ial 1850 .

28ST

HOME OFFICE, BOARD OF TRADE, \&c., WHPTBHALL (With an Engraving, Plets XIII.)

Twofold intarest atteches to this sabject becanse, as it exhibita a rifscein-mento-a re-drwaing, to to call it, of the former exterior, while the atructure itnelf remaina in other respecte nearly as before, we have to consider not only the beilding at it now pretents itself, bat also what it has repleced. We have, betides, hera a very remarkable case,-that of a building of quite recent date being sabjected to complete alteration; while many othera that maight be materially improved by a mach alighter degree of it-some of them oven by a few correctiona, remain in statu quo with all their blemishes: let us hope therefore that the example shas set will not be thrown away. Sir John Soane himsolf, we dero any, would not greally have relished the idea of his "Board of Trade" coming to a mecond edition after his death; more eapecinlly as it wes, with the exception of the "Bank," his principal and beat work : but his design is now expunged, and what is more, after other thinge will have disappoered-as will ahortly be the case-the froat of his own home in Lincoln's Ina Fielde will remsin and be preserved intact to ponterity ta a monament of hir teate. Herdly could Sonne have conceived it to be at all posuible that any thing which he had dove should pass away, or alce be would doabtleas have ensured the perpetaity of his designs and ideas by means of the graver. It is trae he did pablish many of them in a folio volume, bat they are to iscorrect and exceedingly rude in execution, many of them of such paltrily diminative size, and altogether so insofficient and unastisfactory, as to be in some respects worse than nothing-more injurions to his reputation than the contrary. Were they to be jadged of from that work alone, it moast hereafter be thought that at the time of ite prodoction, both architectural drawing and engraving were at the lowest ebb in this conatry, since with all his wealth, and alno his solicitade abont his work, Soune could find no artista capable of doing them jastice.-And here we mey juat remark en parsant that engraving might almost as well be extinct among ne, for any advantage that is now taken of it by English architecta, wo bhave execoted atractares, that if adequately represented would obnain for them celebrity where their names are now not so much as heard of.

In the volume above alladed to, there in a plate containing several varistions or different idean of the denign of the "Board of Trade," inclading the wee adopted, but they are apon so preposteroualy small a scale (attached zeale there is none)-the antire height, 54 foet, being ouly $\frac{1}{18}$ of an incb, 一 that they are mere diagrams, from which no more can be made out than the general composition, and the number of colamnt and windows. There would have been no harm in giving that plate, had there been also another showing the execoted elovation at large, or rather ouly so mach of it as conld be abown on the iargest cale the size of the plate would admit of ; whereas now ouly the mere skeleton of, the eieration is there given, all its lineaments being rappressed. In the "Illustrations of the Public Boildiugs of London," again, it is shown very natatiofatorily,-ouly a small ontline pergpective view; wherefore we parpose to record it faithfolly next month in another engraving, in like manner and apon the ame accie as the prosent one of Mr. Barry's new front to the Board of Trude.

Were there nothing elee astisfactory, it would be to to know that the building will now forthwith be carried on northward as har as Dover-hoose, and the entire fagade at leagth completed, at perhapa it would have been done before; bad it not been for a mont atrunge overuight ia retting out the Itse of front, owing to which the North Pavilion conld not have been arected withont adrancing conaidenbly apon the parement. Therefore if that really was an oversight on the part of Some-and we can account for it no other way he has been panished for it, since the consequence of it may have decided for remodelling the façade in order to get rid of the adranced bexastyles at its extremitien. Besiden which, even had there been no obstacle to completing the building according to Soane's deaign, it would, when so exrended to half as much again in length, have looked atill lower than it did: wheres now there will be better proportion in the ensemble, and the entire tryade will form a noble masa,-one that will show admirably well in itaelf, but which will perhape overpower that little architectaral gem Dover-honse, and will eertainly canse the Horse Guards (that in, its street front) and Adminalty to look more indignified than ever. In one reapect, indeed, tbe conermet in an aqreeabie one, lianmuch as Mr. Berry's new pioce of architecture abown, as comptred with the two heot-mentioned structares, the very great improvement that has taken plece ell at ouce in the quality of official and

Na. 108-Von IX,-SEprsiong, 1816.
goverament baildings, which have hitherto been mostly made jobs of, and instead of condacing to the adrance of teate, have in some inatances been quite dircreditable to the pation. The National Gallery stands a monament of the wretched syatem of doing things of the kind by balves ; either a great deal too mach was there attempted, or a great deal too little done ; and should any thing more now ever be done to $i t$, the expenve will be very much greater than if it had been done properly at firat, for there will be much to correct as well as to supply.
In the present inatance every thing has been done mott liberally: we have got, not as repeatedly before, what might have been good, or a good thing spoilt, bat a really excellent ove- very anperior example of ito particalar atyla, one that is thorougbly adudied, and which therefore both deverves and cannot fail to become an instrective atady and authority. While elaborately ornate it is markod by sueh refined twato, that rich as it is, it is the very reverse of tawdry. Numerous as the detaile are, there is not one that weams to have been neglected, or not to have been carefally considered by the architect. The whole and every part appearn to have been done with relich -with trae guato,-withoat which, what is called art is only manufacture. If there be any thing which we could wish had been otherwise, it in, that the hends of the second fioor windowi had not been carried np quite so high, becasse they now break into the line of the lowes edge of the capitals of the colnmas, which if not actnally objectionable, is what is much better avoided; and no doubt Mr. Barry would have done so, had he not been over-ruled iu that particular.
It in quite naneceanary for n to enter into a minnte archilectaral description, becanse the engraved eleration, from Mr. Barry's own drawinga, in npon such a scala that eren the details are shown anfficiently distinctly,-an advantage that very far outweigha that of having the entire front represented in a plate of the same size. Had there been a marked central fature-one principal in the composition, the case might have been different; bat as there in not, it being the extremitiel alone that are dintingaished from the reet, and that ouly by the addition of an attic, both the composition itself is clearly enough made out, and the chanacter of the whole inteligibly convejed by as mach of the elevation at is here represented,-which is rather leas than half, there being thirteen windows on a Aloor, between the two end pariliona. To remove all doubt as to one point, that might otherwise be felt by thowe anacquainted with the bailding itself, we should observe that the middle compartment resembles the others, there being not even to much as an entrance there to mark it out at once to the aye an the centre. Perhape a doorway there, of more orate design than the othert, either in addition to the four present ones, or as a subatitate for the two in the middle division of the fagade, might have been an improvemeat, but Mr. Barry was obliged to conform to the number and uituation of the entrances determined by Soane's plan. There in also one poculiarity which has been forced npon him, in order to accomplish the rining of the columns to the level of the frat thoor; for they are placed apon projecting breaks or piers in the ground loor; that nerve as pedestals to them; had not which boen done, the tbickneas of the wall there mast have been very groatly increased. While these breaks below produce a certain degree of variety and richness, they are in conformity with the treatment observed for the order iteelf, whose entablature is now made to break over the columna, and thereby, ituelf conforma to the treatment of the order, both the columas and their imwediate portions of the entablature, being "engaged." Whether such effect bas been an intentional or incidental reanlt, tbin continastion of breaka upwards, throwi a atroing expression of verticality into the design, more eapocially at its extremities, where the vertical lines are prolonged by the attic pilianters, and their breaking coraices, and after being farthor carried on by the pedeatala in the balustrading, terminate in the pyramidal vace-shaped acroteris.

The character of the ruatication for the groend door or basement of the order, has moreover been infuenced and determined by the neceasity for breaks in it, below the columns, it being thas reduced to nearly horizontal channels alone, with only a uingle vertical one in the alternate conrses of each pier: what is bere done however explains itself, and the effect is very different from that monotonous and plant-like appearance (without any indication of bond in masoary) which takes place when horisontal chansela alone are continued nuinterruptedly on the surfice of a well, witbout any jointing. In both the order itself and the attic, the rastication in treated with some degree of novelty, the channels not being contioned quite up to the columas, but stopping againat the edge of a narrow plain surface; where. by the rantics themedves are let into a sort of upright panel, not wider than
bulf the diameter of the colamns. And the panels thas formed, appear very much to asiat the expreavion of verticality, which we have pointed out. We hardly need call attention to the developmeat which Mr. Barry hat given to his attic,-rendering it not a mere addition or excresence to the order, but identiffing it with the latter in point of laxariant richnea, and thereby rendering those portions of the design crowning onen in it,-parts which are to the general mas-what its capital is to a column, or its cornice to an entire order. The example of an attic, which he has here given as, is compared with the thinge of the kind we are accustomed to, what the cornicione in his Clubhouses is to the meagre shelf-like cornicea in that lean atarration style which so long prevailed in every stylo we affected. Barry will have given embonpoint to our architecture.

Leaving our readers to note for themselves minor specialities of devign, which if their attention has been at all exected by what we have asid, they vill no doubt do, we will merely add that the north pavilion (the one thown in the engraving, and which in for the Home Office), together with the two adjoining compartmenta, has yet to be built, and vill, we undentand be commenced almont forthwith. When the entire front is completed, it will extend 296 feet, and be $56 \frac{1}{2}$ foet in ite genernl height, and $67 \frac{1}{9}$ at its ex. tremities.*

Tho atructure is not only adminably finished up, but all of a piece through out, every part that is at all visible, being atrictly in accordance with what is completely seen. Thns the Weat side 'of the attic of the South or Down-ing-atreet pavilion, is finished-ap like the othern, although seen only partially above the adjoining buildings ; for Barry does not conntenance that miserable aystem of pinafore deaign, which leares the end of a building-that is, at much of mach end at really shows ituelf-whether intended to do 20 or notquite bare and unfinished; as is the case with Inigo Jones' Banquetting House, just by, which as there is no probsbility of ita unsightly ende being shat ont from viow by other buildingu erected against them, ought to be completed exterally. Unless that be now done, it will cut but a poor igure in comparison with Mr. Barry's new work on the opposite ande of the atreet. The South-eant view of the latter presenta a striking contrast to the Southweat riew of the other, whoso South end is a mere brick wall; whereas the Sonth end or elevatian of the Downing-ntreet parllion (the Council Office), is precisely similar to the Eant one (therefore to the one shown in our engraving), with the alight difference, that there are five windown to the groand thoor, there being no entrance on that side.

If there be much to excite admiration in the building, there in aleo something to excite surprise, for aurprising it in or woald seem to be, that so superior a plece of architecture should have risen up almost all at once without any fiourish at all of newspaper trampotings, while the mont valgar nonsentical fues is made abont the mont trampery baildinge imaginable, merely -because somebody or other who is a somebody, performs the furcical ceremony of "laying the firnt atone," a it is called, to the great edification of all the nobodies who assist on the important occesion.

Mig. 1.-Plan of Prat Floor, Windowe and Columan.

Fig. 2.-Plen of Ground Moor Windowi and Balustrade.

CANDIDUS'S NOTE-BOOK. FASCICULUS LXX

"I muat have liberty
Withal, as large a charter as the winds, To blow on whom I please."
I. As Wightwick vows to go, D.V., to Naples and eat macaroni there, it is to be hoped that he will not forget to bring back with him some ped-and-ink sketchings-and if he like, some pencil sketches, too, of the recent architecture of that city. There is sufficient pabulum of that kind for hia pen,-the church, for, instance, by that unNaglerized nobody, Bianchi. And let him portray that and whatever other buildings he speaks of, architecturally, so that we may be able to make ont a tolerably distinct image of it, not a mere formless, shapeless Ossianio spectre. Let him take a Iesson from the noveliats:-they after all are the people for exact and con scientions description; they are content with nothing less than that of giving as a complete inventory of a heroine's "personale", noting every item separately,-though with all their exactitude they never inform us of ber exact weight-the weight of a mortal "gylph." As to Vesuvius, we ean very well dispense with any remarks on that from Wightwick; so let him eschew speaking of its erater-that bere of tremendons calibre, $=0$ we shall wish that he bad fairly jamped into it, and like Empedoclea, dintipe guished by extinguishing himself within it.
II. It is carious that we should be indebted to a Cookery book for a detailed plan of the kitchen offices in the Reform Club-house. M. Soyer has supplied a leaf that was very much wanted in architectural lore, for those who have published plans of town mansions, have never revealed t us the complex arcasa of their below-gronnd territories, but have literally passed over them, as matters altogether beneath them,-low, vulgar, and infra dig. Yet the arrangement of the numerous separate rooms requisite for an extensive domestic establishment, within the basement of a cown residence, calls for the exertion of more than ordinary ingenuity and cootrivance. A collection of a dozen basement plans, minutely detailed and explained, would form eeries of valuable and nseful lessons. There then, is an idea at once for a pablication of eatirely new character. So let some one now take it up. Bnt no, -nothing will take or go down with the profession or the pablic, that does not address itself to and filtter the presont church-manis, and the passion for atudying Roman Caubolic "rub bish." What with churehes, church furnituro, and church apholetery, on the one hand, and with railways on the other, the demand for architectaral publications of any other kind, seems to have ceased. Archeology is all very well in its place, wh the handmaid to architecture, but it has of late given itself such airs, and domineered at such rate, that it is time for it to be taken down a peg, and not be suffered to keep poking all sorts of peltry old trampery in our faces, and insist upon our admiriog hatched-faced saints, and angeln with dialocated limbs-Let as escape to the kitchen.
III. Talking of escaping to the kitchen, reminds me that the kitchen it self has completely escaped the attention of that great architectural encyclopmdist, Gwilt. Even 80 ; his fat Falstaf tome contains nothing whatover on the subject of kitchens and their accesmories, and the maltifarions spparatus belonging to them; an omission the more remarkable considering how much atnfi-detufing I mean-he has cramoed into his book, that one wonld never think of looking for in it. He has indeed givea the wrond "kitchen," a place in his Glomary,-and very properly, it being so atriotly technical a term, an to render expinnation of ite meaning, indispenanble,indispensable at least for the information of those over-apd-above gaoteel yongg ladies in middling life who are preanmed never to have entered a kitchen, or to know what sort of operations aro carried on in one. It in only thus that the insertion of such word can be acounnted for, while mo many strictly architectural terms which are not to be found in general dictionarien, or even in encyclopeadias, are omitted. Nor are omisaions of the Inst-mentioned kind the most remarkable of all in Gwilt's book, becane he has choven to omit Bickman's well known work in the list which be gives of publlcations on Gothic architecture. I say "chosen" to onith, because it is not for moment to be supposed that he was ignorant of the oxistence of a work which besides beligg ezceedingly useful as a syoopais or catalogue of English structures in that style, is continually roferind to as an authority. There are bealdes what look very mach like instanoen of intentional forgetfulnese, in regard to other publications, which though not mentioned by him were as well or better entitled to such disfincties as vary many of thone which obtained it. That on Barry's Travellers' Clubhouse, is of sufficient merit if only on acconnt of the examples of Italine
detail given in the plates, to have been worthy of a place in the list of worke on Italian architecture; and its non-insertion is all the more remarkable because Grilt himmelf points out for particular admiration, and as example in which "the principles of that style are so admirably developed," the facade of the Palazzo Pahdolfini, to which the Clabhoase above-mentioned bears a more than casal general resemblance. Possibly, however, Mr. Gwilt never saw or heard of the book; and if so, he wll thank me for pointing out both that and Rickman's, that he may insert them accordingly in the next edition of his valuable Encyclopmedis.Apropos to Rickman, -the German Nailer (Nagler) has not nailed him in his Lexicon, thongh he has nailed up there an immense number of obscore or alse quite forgotten names-some of them the smallest of the small-fry artists. Woil then, all the more induatry and greater research does it show to go and pry abont with a farthing candle, and peep into all the crevices and crannies of teaebrous obscurity, and turn out the poor little things that lay there ensoonced.
IV. The "Times" has been very pleasant à la Punch, on that Nashional calamity, Buckingham Palace, which it is now discovered is hardly habitsble, neither Nash nor George IV. having any idea that royal nurneries could ever be wanted within its walls, and not narseries alone, but apartwents for a whole colony of tators and preceptors. As to a mere nursery -that is already prorided, there being nothing more required than to make use of the "Garden Parilion" for such purpose, for which indeed it appears to have been actually intended, it being so very pretty, all covered over with " nice darling little pictures"-exactly what a royal baby-house should be, with a kitchen and other "conveniences" attached to it,-a proof that it was bnilt not only for abow, bat for service. The idee of ao making use of it, was perhaps abendoned, because it was found not sufficienuly large for the purpose ; jot surely it is just as easy, and wonld be as oreap to build additional rooms ont behind it, as to enlarge the palace iteelf. If Mr. Blore will take this hint-and be onght to jump at it-it will spare him a great deal of pathos, and perhape oo less perplexity aleo, since perplexed be, no doubt, will be to patch ap decently the Park front of the Palace, on which side it is proposed to add another range of buildings, filling ap the space between the wings, and enclosing the open const io front. In doing merely that, there will be no particular difficulty; but unless the wings themselves-the ends of them at least are to come down, and to be taken into the new East front, either what comes between them must be accommodated to them-made of a piece with them, in which case the architecture will be jugt as mesquin as at present, or the whole will be more or leas a piece of patch work. It will be necescary also no doubt to advance the new building before the present line of front, and continue the wings also for the same distance, because anless that be done, what will then be an inner court will be smaller than the present open one; besides which the side elevations of the wluge towards the court mast either be altered accordingly, or their regalarity would be destroyed; 一-an may be seen by one of the plates of piens and elevations of the Palace in the improved edition of the "Public Buildings of London,"-which, if never looked at before, are likely to be 80 now, out of curiosity, and in onder to judge what contrivance can do for improving the building.
V. Whether Blore be a great master as to contrivance, I know not, but it may be questioned if the be exactly the right B for the occasion, or likely to improve the architectural quality of the Palace. What I have seen of his, is marked by littleness and feebleness of manner; and though be has had some favourable opportunities-Lambeth Palace for inatance, he has done nothing at all of a superior kind, nor is any work of his ever quoted as masifesting more than ordinary talent. In one respect he is a copyiat of Sir Robert Smirke, for like him he has a Lorror of exhibitiog at the Royal Academy, and exposing any of his designs to the profane gaze of the multitade. Pity that such architects can not keep their buildings as well as their drawings secladed from pablic view.
VI. There is one notable inconsistency in what is romoured relative to the alteration of the Palace : the worke, it seems, are to be carried on with all possible dispatch when once commenced-the necessity for which is sofficienty apparent, and yet only $\mathbf{£ 3 0 , 0 0 0}$ per annam is to be voted for the parpose, althougb $£ 150,000$ is the estimated expense-at present, and if there has been any miscalcnlation at all in the matter, it is easy enough to guesen on which side the mistake will be fonnd to lie. But I forger, the Pavilion at Brighton is to be sold towards paying expense-of taking it down, perhaps, unless nowe railway millionaire abould bappen to take a fancy to it, and offer to give a grod round sum for $i t$, -about a tenth of what it bas coot first and last. Yet that would be horrible !-only think of some mustroom man of money iustalling himaelf in the pet place of George the

Foarth. Poor George ! poor Nash! poor Sonve! methinks I hear the ghosts of all the three abusing "Posterity" for its rillainous taste, and for committing such deadly havoc with their works. Carlton House gone, George III's Gothle Palace at Kew gono, the Pavilion going ; Soanc'd "Board of Trade" so metamorphosed that it does not know itself, the Scala Regia going, "my Law Courts," too, going-aboat to be knocked down, though not by George Robins' hammer, and now Buckingham Palace to be improved !-improved indeed! as if what the newspapers, at the time of its being built, and John Britton also spoke of as an august metropolitan palace becoming the dignity of a British sovereigo, conld possibly admit of improvement. Ob dear !-bnt it is all owing to the March of Intellect.
VII. One comfort is that it will now be more work for the "Bilver Trowel," as no doubt the first stone of the new front of the Palace will be Laid with all due pomp and ceremony, if only for the beaefit of the newspapera, which invariably take prodigions interest in such operations. Prince Albert mast by this time be quite a proficient in the art of handling the trowel, if in no other; but his Royal Highness seems more ready to lend a hand that way, than at all to care what the bnildings themselves will turn ont. There is a little pigms-I might almost any piggish or priggish -thing growing up in Oxford-street, the first atone of which was laid by the Prince on the 16th of last June-happy and memorable day !-bat all the other atones after that first one have changed into bricks, which are to be compoed over; and whatever it may turn ont in other reapects, the front will be a most minikin affair. Mosen-Minories Moses, I meanwill tarn up his nose at it, as a thing that he conld easily stow away in his own shop. Of course the Prince did not see the design, or be would have employed the trowel differently from what he did, by plunging that instrument into it. Hard work that some first-stone-laying, considering the precious balaem that must be listened to on such occasions. However the Prince is relieved from the drudgery of Cabinet-making.

ARCHITECTURAL RECOLLECTIONS OF ITALY.

By Frederice Lube.

(Continued from page 231.)
"Archltectare (where it was not a mechanical art dependent on mere convenience, and upon the rale and plammet) was an emanation of the arts of design, and consequenthy, In ererything that regarded ita more Hberal concerns, its benniful and majestical effecte, at a whole and perte, it was the pure offipring of drawing or mojeling, and absolutely and solely depended on the compositlon of forms, and the compoutiona of chleroweuro and rellevo which those forms produced."-Barr's's "Lecturen on Palnting."

The most important constitnents of beauty and grandenr in architecture are mentioned in the above quotation. They can only manifest themselves in art in proportion as that mind is imbued and acquainted with the principles of beanty which we find are requisite for the painter, and by which alone the architect is distingnished as an artist who thinks and feels, from the mere mechanic who measures and buiids. How necessary then it is to posaess these principles will be very apparent. Arohitecture, as a fine art, mast be judged of by ite agroeable effects and expremsions-a cultivated eye or mind being the arbiters in these resalts. But the architect must need have a strong perception of several painter-like qualities-of the composition of beautiful forms, chiar 'oncuro, and relievo-before he can give that expreasive character to his works which fils and elevates the mind, in the same manser as poetry and painting. To accomplish this end is the chief giory and ambition of the architect. Bnt to what motives and to what ignorance are such noble ends too often sacrificed?
This art being in its nature so utilitarian, necessarily demands an acquaintance with those general principles of art which, combined with its atility and fitxest, may aferwards invest it with that poetic character which all works must have whose ultimate and grand object is to affect the imagination. The Italians, at the revival of art, who applied the principles of painting, i. e., drawing, harmony of light and shade, \&ce., to urchitecture, eminently succeeded in this particular ; but their works, and the effecte they produce, could never have been created but by this combination. Were proofs wanting, look at Michael Angelo-perhaps the grandest painter, one of the greatest architects; look at St. Peter's and his other works. Then Raffaele, greatest in expression and beauty as a painter, is he oot elegant and beautiful in his architecture? Villa Madama ana other brildinge may oocur to the reader as illustrations of this troth. Again, what is more elogant, simple, and lovely, than the Campanile of the Duomo, at Florence? And was this not the work of a painter, and Then painting was in its early days of purity? Yes; Giosto was great
both as a painter and an architect. And why are the works of anch masters never forgotten when once seen; that even in presence of them they soem as if they had been called ap by enchantment; and that at an after period they so frequently come before the imagination like dreams? Why, but because of their extraordioary and powerfal effect; because of that beanty and grandeur in composition, which give life and intelligence and poety to buildiag. They well knew that architectore required to be distinguished by such forms, such magical effects, anch prominent bulks in the grand mass, as would produce this, and with it a most lasting impression. Where such thongbt and mind is ovidenced in the werks of the Italians, there is ample atonement for their defects, which are numerous; just as in the earlier paintings fine foeling and expression, make us forgive every anachronism and absurdity.
The noble group of baildings in that solemn square at Pisa, the cathedral, baptistery asd oampanile (whose beanties we owe more to painters and sculptors, than architects,) whether each is viewed as a whole or in detail, are further instances of the incalculable beneft architecture derives from a thorongh understanding and practice of the union of the principles of the siater arta. Very many other names might be bronght forward and examples mentioned to show that these men, when they took apon themselven to bnild and adorn, possessed a painter's perseption of bennty. Eeach brooght to the task and ennobled hle design by apply. ing the principles of palnting and grounding it not so much on antiquated rules and precedents, as on the eternal laws of taste, harmony, and proportion existing in the mind ; who, from the enlarged and comprebensive view he had of art, knew more than the subject demanded when he commenced the wort; felt the mature of the ides bis building was made for; saw his work was made for the place, and took care the place was adapted to his work.
Now, the neglect of these principles of painting among English architects is, with some few exceptions, the main cause, we think, of bad architecture, want of originality, \&cc., and one reason why we observe the art $s 0$ often degeaerates into a mechanical trade. We eeldom see origin-ality,-and where it does occur, there is little taste; and beaty is another word for the evidence of the existence of pictorial facalties, and indicates or reflects a mind that is conversant with the beautiful forms in nature.
Those principles (referred to by Barry) of uniformity and variety which must be porsued in the arrangement and construction of all forme which enter into the composition of huildings-are executed with the greateat success by him who is most capable of conceiving and delineating fine forms-and this power of drawing is very much neglected by the English student.

I of courge allade to the study of the buman figare, for all drawing implies a knowledge of that, and deserves first consideration, as it is this alone which is the best means, in the first, as well as in the last step of the art, for caltivating the eye and flling the mind with idens of beautiful form, which facilitate and ennoble design, composition, and all the effects of chiar' oscuro resulting from them.
The prevailing practice is to begin with architectural inanimate lines, and copy ancient examples, before any part of the hnman body or even ornament is attempted to be drawn: the one has a vicioustendencycramping both the band and intellect; and the negleot and ignorance of the latter makes the power of addlog the beauties of ornament, the foliated capitals, the enriched frieses, \&co., at first an unconquerable and diagnating dificulty to the tyro.

Without a knowledge of the principles of design, we cannot give that contrast, elegance of llae, and variety of form which, bearing in mind the purpose of the building, add to its bearity. A knowledge of chiar' oscuro will enable the architect to combine the variogs parts of his work with such general effects that, while every part may be beantiful in itwelf, such beauty will bo but a part to increace the ensemble of the whole building. "It is he alone," as Barry says, "who, from the mure and expansive principles of composition and ohiar' oscuro, can purane beanty and sublimity in a thousand different ways; whilst, without these essential requiaites of deaign, men are but mere builders, and must anavoidably copy or plander from the works of those who are gone before them; and in either case, the absurdities that may result from the difference of climate, local aituation, and from ill-according particulars, however beantiful in their own original proper arrangement, are too obvions to be mentioned."

But a knowledge of chiar' oscaro will prompt him to dare to gire relief and power to his work as be can combine light with shadow, and play with relief till his ides of effect is fully carried out. In our old Gothic cathedrals, what richness and variety-what effect! bow powerfal they
leok, and eloquent and grand they are! In the numerons oburchea that have been erected in imitation of them, wo see, with only a few exceptions, in their effects, the deficiency of architectural spirit and talent in their authors. In generul what sameneas-bow barren and nameaning they seem! as if they had tottered out of their places-and could bot stand there long. So far short do they come of those glorious models of the 13th century-socb meanness is thero instead of profusion-soch saving instead of cost-such reduced proportions and littleness of mannerthat although the Gothic may be more appropriate to oor Christian churches then the Clasaic Roman, there is far more beauty and skill obsert. able in the spires of Sir Cbristopher Wren, than in those of the modern Gothic bailders. The skill displayed in the construction of the spires of Wren, and the ingenuity with which he applied the ancient orders to the modern Campaniles, for which be had no authority, deserve our admirntion. They exbibit, too,-many in an eminent degree-the priociples ad. vocated in this paper. We observe such simplicity, yet such varietysoch a fine relief and "making ont" of the parts, and to an extent which is vain we look for in the fat modern Gothic towers, \&c.

It is a knowledge of these principles-valuable in their application to every branch of art, but more especially to architecture-that is the soarce and inspirer of originality. Hence the old Italians, though little profesting architecture, passessed qualifications which raised and ennobled it; their inventions are steeped in beanty, for they were drawn from the infallible principles which guided their practice. And the opinions apos architeature as a fine art are alwaya to be accepted and preferred before the jodgment of architects, why then separato from their profession a knowledge of painting.

STAINED GLASS WINDOWS.

St. Jomes's Church, by Mr. Wailes,-Woolwich Chwreh, by Mr. Hoedley; from a Certoon, by Mr. Corbould.
The two new windows lately completed, in the opposing styles-modera and ancient-which now engross so much attention, affurd a good opportanity for instituting a contrast between them. The ancieot wiodow, or rather, series of wiadows,at St. James's Church, Piccedilly, consists of an upper and lower range of compartments, separated by a deep entablature. In each ragge are three lights, divided by columns: the painted glass with which each light is flled exhibits a ecriptural subject contained in a panelled centre or medallion, which is sorroonded by a wide border of monaic work, with an additional circular masaic ornamrnt introduced in the lower part of the apper centre compertment. The drawing, though auperior to that of mans of Mr. Wailes's former prodactions, is very inartistic,- the arms and legs appear to hure been atack on, as though the painter had copied some Dutch doll, made to scale, and wrapt round with cloth of various hues, for a model. The beah tints and other colonring must have been done from some of those Italian glass paintings frequently seen docorating (1) many of oar agricaltoral labourer's cottages-they exhibit abont the same taste. The Mosaic work has littlo pretension to consistent design; it is distinguished by all the beantiful "regular irregularity" of the kaleidescope, and conld not, we should have thought, by any chance have been executed in any other way,-whe oolours are so varied and the patters so heterogeneons.

As we happen to be a little in the secret, we may perhaps be erensed in explaining how this competition was managed. We believe it to have been all fair and above board at first, and that many of the committoe did, after looking many times over the several designs, choose one, extolled it, and were delighted with its originality, grandeur of coaception, and extraordinary talent. It wai but a sketch-bot we all know whet the sketch of a good artist is, -and they determined to make it their own. It appears, however, that after the committee had come to this recolution, they were ioformed hy the Bishop thut he liked not this modern style of glass painting-that it must be ancient "for his movey;" mosaic work, With figures and all that sort of thing ; which he thought the best adepted to this window;-and then, by come extreordinary argument, dictation, or power of patronage, did he win over this said committee to his views, and the resalt now appears to stain, not the window only, but the character of Eaglend, as a nation of tate.
The skotch fint chosen we have seen, and pronounce it to be, th our hamble jodgment, one of the best conceived designs we over bebeld, eithor from ancient or modern painter. The lowor purt west tie re-
moval of Our Gaviour from the Cross, and a cross on each side for the thieves. The principal cruss and figures would have occapied the cenire compartment, and one of the other crosees, with the thieves and subordinate Agnres, the sides;-bat althongh thos eeparated, the subject was so well managed and balanced, as to appar one pioture. The whole was treated as a night sceae, and lighted up with burning foel in vessels with long handles, held by attendants; giving a sombre and grand effect to the solemnity of the scene. The upper windows would bave contained the "Wise Men's Offering," consisting of splendid figures of all nations, attendiag on camels with canopied seats, and other display of Oriental mafnificence, seldom before embodiod ln one picture. These would also have ocenpied the three upper compartments, as one picture. Thus woold have been exhibited the Birth and Death of Onr Saviour, treated in a bold and original manner, and, from the well-known Lalent of the urtists, conid have bean executed in a way that would have revired the art of glass paintiog, and have been a proof that there are now thoee who can produce better things than ever ancients did, and redeem the art from its prement degraded state. This sketch was by Mr. Corborld, and wras to have been painted on glass by Mr. Hoadley, from Mr. Corbonid's ourtuon, who would otherwise have ausinted in the progrems of the work.

The St. James's window has been in contemplation bot beck as thirty jears, when.Mr. Backler was actually commissioned to mis a de. aign from the Trasafgaration by Raffeele, and wes engoged to eitcnte the work, but by some unforeseen cirenmatanoes has beas oufurionately deiayed to this day to give place to asother, who declared bimself incompetent to paiut the window in the style required, bat was nevertheless chosen for thet parpose I

We do not so much complain of Mr. Wailes, - he would have been to be pitied, had he not pocketed the good ronnd sum of 1,0001 , for his labours, which may, in some measure, cover any little annoyance he may receive from the iodignation of the public ; but we do blame the committee, with. out the least reserve, for allowing themselves to be seduced from the right path and dictated to in a matter of such importance; for it is not the St. James's window alone that may be sabject to thia degradation,-but the iendency to imitation is so atrong in this country, that many other parishes will follow this vile example, for although many excellent examples of painted glass have been dane of iate years in diatant parts of the country, yet thia abominable trash, called Mosaic work, is still patronised and selected by a committee who, of all others, from its position in society, should have known better.

The plessing effect of old stained glass, we well know, is not always caused by good drawing; on the contrary, it is produced by harmony of colours and a mellowness obtained by time. This gives that richness and beanty so much extolled in ancient windows; but it is no argument that bad drawing should be used; at it stands to common sense, that were the sabjects better treated, the beautifol effect woold have been greatly enhanced and the dincated eye would not have been subject to the diagust now experienced on viewing the caricatures 20 often eeen on old glass. Let any one attempt to decipher the aubjects of many ancient windows, and he will find it as groat a dificulty as transposing an Egyptian hieroglyphic.*

The Woolwich window, painted by Hoadley, is in the pictorial style, from a cartoon by Corbould. By a singular coincidence, these are the same artists who were to have executed the St. James's window, if the committoe had not been deterred from their good judgment by the ecclesiastical dignitary. This window is 14 feet high and 6 feet wide, circular headed, and contains but a aingle figure-that of Cbrist bearing the croes, with a wide border and pedestal beneath, the latter having been judiciously designed to shorten the window and give the picture a better proportion; upon this the emblems of the palm branches are introduced with the touch. ing motto-"Cneist bearing His croas went forth." The figure is cologaal, being at a great height and generally viewed from a distance; the fea. tores of the face depict sorrow and suffering, and the haods and arms are well executed and doing duty-not mere puppets to the figure, as at 8 t . James's ; tho drapery is broad, and allows of a depth and mans of colonr which give digaity to the picture, exhibiting those spiendid roby and purple tints asid, by the ignorant, to be lont; the border judiciously introduces the parsion flower, well executed aud entwined in soroll work,

There ia a grave solemnity about this single figure that strikes the be-

[^38]holder with religions reveronce, at the same time there is a pleasing harmony in the colonring and design of the rich border, which relieves the principal composition. It is a contrant-and a bold one too-to that style. we have just denonnced in the St. James's window, and so mach admired by ecclesiastic patrons of the art. We would seriousily advise these genthemen to look " opon this picture and on this," and try for once to clear their vislon, 80 as to distinguish gold from tiosel, art from kaleidescope, talent from mechanism, and then decide whether 'twero better to remain in ignorance or to recant those bigotted notions they have heretofore so strongly held, and, although at the eleventh hour, to assist this degraded art, and make it one worthy of an intelligent antion.

ARCEITECTURAL IMITATIONS.

——esse quam videri malebat.

In the introdactory note to the present volume it was stated that our architectural criticisms would be based on the doctrine of faithfulnems in architecture; and accordingly in the paper immediately following, the practioc of naing imitative materials in building was discuaned and condemned. It was hoped that tbia and similar papers, if they failed of prodacing absalate conviction, would at least preclude the cbance of our views on the anbject being misapprehended. It appeart, however, from some obervations in our last namber, that this hope wat ill-fonnded, for we are by a side-wind accased of uttering sentimente which, if legitimately carried out, would lead to a condemustion of the use of gilding in architecture.

Gilding, as ordinarily employed, is not a deception. No one who looka at the gilded boss of the raulting of a church-roof is deluded for an instept into the idea that what he sees is solid gold. Not only is he not deceived, but there is no attempt made to deceive him; for the position of the boss among other atones sculptured in a situilar manner, and many of them painted of different hues, plainly shows that the gilding is nothing more than a means of giving to the stone a beautiful colour. When bowever gilding is used to make the substance beneath it seem to be solid gold, it becomes at once a paltry contemptible deception. The flahy gentleman (or gent) who wears gilded ringe will generally prove, like his jewellery, a counterfeit: not in outward appearance anly, but in education, feeling and language also, he will be found to be a gentleman in semblance alone.

What matter, it is asked, though the beanty which inveate works of art be only skin-deep? If it be no matter at all, why then should stone and marbleand costly woods he in any case preferred to leas expensive materials? If the deception can be practised to perfection, why should we have the leant preference for the reality? Bat as a matter of fact we have that preference -there in not an architect in England who would not alway, if he conld afford it, use real stone rather than the most perfect counterfeit. The existence of this feeling proves that the mere excellence of the counterfeit does not remove all objection to it一that the imperfect nature of the deception is not the omly argument again.t its employment.

Let as suppose it to be diccovered hereafter that the soble piers of the aave of Canterbury Cathedral are not Portland stone bat Portland cement, and that the shafte of the Norman choir aro not Petworth marble bat staceo overlaid with black varnish, and that the beantiful foliated ornamente of the crocketa, pinascle-work, \&cc. were not sculptured by the hauds of skiffal artista, bnt were ran in moulds by common workmen-Tould our admiration of the building be increased or diminished? Why should it be diminiahed? The imitation wa perfect; we have supposed it to remsin for centorien withont being discovered, and though the beauty be oniy akin-deep there Fay no outward signe to reveal that circumatance.

Or to take a commoner illastration-athe descriptions of pablic entertionmente manally enlarge on the magniticence of the display of gold and ailver 'plate, and the splendour of the jewellery work by the gaents. Would the description be more or less glowing if it were fonnd that what seemed gold or silver wea merely electro-plated, and that the diamonds were only peate ? Why thould people care to have the Hall-mark on their dinner-ecrvice? Britannia metal is exactly the same colour an ailver.

But we are told that it in no argument againat deceptions, that they are " apt to be paltry." Thin may be diaputed-for if all the paltry imitations were got rid of there would be scarcely any left to dispate about. And in is not obvious moreover that those who practise paltry imitations will ableld themselves under the sanction of thome who defend more contly deceptions? So that in fact these defender are in fact fairly chargeable with providing excuses for the most miserable axpedients of sham showy architecture.

Let us consider for a moment what are the imitations most generally practised. By thr the most common of them is the expedient of smearing over the honeat hricks actually employed in the conatruction of a house with a coating of plaster, on which vertical and horizontal lines are drawn with the point of the trowel. It may be fairly ansumed that at least half of the nower honses in London are ornamented in this way. Occanoaally the lines, eapecially inside charches, are drawn in black lead ! What miserable expediente are these? Can any one for a moment be induced to suppose that a few thin black lines represent the joints of real masongy? Ther show all the intention of deceiving, but are too clumsy to effeet the deception. Another favourite expedient in to paint the ataceo of a noiform colour, and then spatter it over with apots of daris paint, by means of which it in apposed to amame the appearance of granite.

It may be amamed that no one sincerely deairous of maintaining the disnity of architecture as a noble art will defend these wretched juggles. But the condemnation rests not merely on their nasuecessfainess, for then a thief by parity of reasoning ought not to be panished onless taten in the fact The true ground of condemnation of all architectaral deceptions, whether auccessful or nasuccesful is that they " partake more of mere manipulation than of art." They tend to suhatitote the workman for the artist, the builder for the architect. Unless, as has been well observed by the Builder, the alifful hand be apparent, the result in disappointment rather than delight. It is to this consideration we mast refer for the canse of the failore of all the save-trouble expodients which have to long exercined their pernicions and debaning intuence apon architecture and the other fine arts.

But there are many other arguments againat that clase of save-tronble ex. pediente which we are more particularly considering. Imitative ornatnents are necesearily inconstructive. A pillar or pilaster of atncco must be atack on for show-the material has not anfficient cohesion to be useful in resisting either vertical or lateral pressures. Again, there is a practical tendency to evil in the nystem of imitative decoration, which if it be not an actual part of it, results certainly form it-namely, the introduction of redandant and inappropriate ornaments. The facility of being showy is certain to be abused : the temptation is too atrong to he rosiated by those who make the common mistake of confonnding architectural beanty and elaborate enrichment. Accordingly we find plester-architects bedizening their work with a arowd of ornaments as ridiculous for their number as their inapplicability. A building with showy bite of pleater thus stuck over it reminds one involanterily of a village landlady tricked out in her myriad of Sunday ribbons.

They who defend deceptions in building should remember that for the sake of consiatency they should be prepared to vindicate all such deceptions if well executed. If an architect wiah to introduce more windowi into an external elevation than is convenient for the intarnal arrangement of the building, why may he not paint resemblances of those windows on the external walla? The deception might be managed 20 well that it would scarcely ever be found out. The ornament wonld be only skin-deep to be are; but What of that? Why thould not the grest doors of a cathedral be of deal grained and varnished to look like oak. Why should not the timbers of the roof of Weatminster Hall. be painted so as to appear elaborately carred? or why sbould not the parapet of the external roof be painted to look as if panelled or perforated? The triglypha of a Doric order might be drawn in their proper places instead of being aculptured there, and the more inacessible columnt might have the flotings painted opon them. This aeams the legitimate development of the the theory of architectural deceptions.

It is gratifying to those who are anxious for the adrancement of arcbitectare to find that the importance of faithfulness in architecture is being every day more distinctly recognized. The rapid growth of this doctrine even the lant jear or two is a mont favourable indication that art is not to remain for ever in ite present degraded condition. Every periodical which treate on subjects of art new recognizes tbis principle of criticism, and contains correapondence which proves that the detestation of planter Gothic and planter Grecian is becoming pretty generally diffased. Of course those who have long practised or defended these kinds of architecture are very angry at haring their favourlte tenets cut ap by the roots: bat they will generally acquiesce when they find the tide of opinion too trong for them and silently adopt the prineiples which they ind it in vin to oppose. Those few who have too litule wisdom or too mach obatinacy to yield to the dictates of impmoved public teste will be left behind to exjoy their own opinions in undisturbed solitode.

NEW METROPOLITAN OHURCHES.

All Saints, St. Jahn's Wood.-The new ahurch which has bean recently erected in the Finchley Rond, 8t. John's Wood, from the deaigns of Mr. T. Litule, is, an regards the exterior architecture a great improvement apon the chorches built in and about London ten years ago. The general oharacter of Mr. Little's design is an unprotending simplicity, which if it do give opportunity for the display of much original genias, at least preclades the ocenrreace of groes defort.

The plan of the charch is neariy a parallolognm-a nave and two aises, with loan-to roofs, a tower at the sorth wett angio, and at the east ead a prolangation of the nave which, though too mhallow to be called a chance?, aerves the purpose of a meruriun. The ctyle is Perpendtomer. The fotlowing are the priboipal dimensions.

The tower is deaigsed to conalst of three stories sarmonnted by a spiry, bot at present the innt atory only is finithed. In the west gable is a fearlight window, benoath which is a small door (with very poor mouldings) for the ase of the coldient of the neighboaring burracka. The north and south windows are the least praishworthy features of the external architec. tare. The window at the east end is of five lights divided by a transom.

One of the principal reasons of the satisfactory appearance of the church is the jndicious manar in which the architect has used his boilding mate-rials,-Kentish rag with Bath stone dressings. The ragatone instead of being squared and laid in regular courses (a most expensive and ineffective method) is built in what is technically termed 4 Random-coursed work." It is a matter of great regret that in many modern charches the ragatones are hewn and laid with the same precision as softer kiads of stone, and that the joints of mortar are moulded 20 as to give the appearance of projected filleta, in which, as has been observed, the individual atones appear set as in frames. This mothod is very fanlty; it arises from the alonost noiversal ambition of modern architects to make their materials look better than they really are, instead of applying them honestly to the purposes for which they are natorally adapled. The very fact that this coursed ragstone masonry presents the appearance of rastic work is quite sufficient condemnation of it. The practice not only adds to the expense on accoant of the hardneas of the material, but detracte greatly from effect of the masonry. Onr old conntry churches are proofs not only of the beanty of the irregular ragstone masonry, but also of its durability : for a familiar example near London, we may refer to the tower of Lambeth chorch. Ales, when will modern architects build with the beldness and pictareaque simplicity exhibited in that stracture?

The interior of the new chorch, at St. John's Wood is by no means so praiseworthy as the exterior. The internal architecture is in fact as bed as it well could be. The span of the nave arches and the width of the nave are disproportionately great. The north and south windows are treated as mere holes cot in the walls, without any dressings or mouldings to connect them decoratively with the rest of the building. The difference between the forms of the inner rault of the windows and the exterior win. dow opening, which in ancient Perpendicular architecture is a principal source of beanty, is here entirely disregarded. The piers and windows are intersected by galleries supported on paltry cast iron columns. The mouldings througbout are very poor and shallow.

The walls are coated with some kind of plaster on which are drawn black lines to mimic the courses of real masonry: orer the heads of the windows and doors these lines converge and suggest imaginary arch-vonssoirs. Can any artifice more paltry and palpable be imagined? Were it eot so common it would be absolutely laughable. The trick is as shallow and obvious as that of the ostrich which is said to hide its hoad to escape pursuit. Even if we allowed (which we do not) that deceptions and imita. tions were at all permissible in building sacred edifices, surely they shoald be better managed than this is. It is merely a child's mako-belief-ao otre can be deluded for a moment into the idea that a few indentations and black streaks are are the joints of real masonry. The artifice shonld be reserved exclusively for gin-palaces and the lath and plater edifices digaio fied by the appellation of suburban cillas.

The church is alled with low agly pewt of deal stained and varnished: this etaining is another ridiculous deception, an abortive attempt to make deal look like a better kind of wood; whereas in factit looks much worne than in ita natural atate, for the rarnish renders the coarse grain and misshapen knots of the wood offensively and unnecessarily conapicuous. In village charches where the deal boards are elther painted of some uniform colour not imitative of a costlier material, or left in their natural atate, the lines of this unornamental wood are little seen, and consequently the sppearance is comparativels unobjectionable. But to make an ostentations display of the "figure" of a wood which bas no beanty to recommend it is a piece of valgar pretence, which we always rejoice to see proved, as in the present instance, a complete failure.

There is a large famlly pew for the minister acreened off from the reat of the church by a cartain; the privileged inhabitants of this pew aro therefore enabled to offer up their praises and petitions unseen by their fellow aincers assembled and met together for public worship. These invidions distinctions in a charch are most anseemly, especially when they Who arail themelves of then are those who are sot over the congregation, and whoce duty it is therefore to afford an exmmple of fervour and attentive demeanoar.

We regret to see that it is pablicly atated elserwhere that this bailding is credtable alike to the taste of the architect, and the munifeence of those who contributed the funds. These goneral commendations can answer mo beneficiai purpose whatever. The great object of archilfectaral criticium should be the advanoement of architeotare, and therefore evloginms of bed architecture (except in newapapers, where their valne is pretty well understood) can never be innocuous. We have already praised the external deslge of the new church, but the interior displags the grossent fanlts. It has however one good feature whleh we mast not omit to notice. Considering the shallowness of the sacrarinm, the absonce of a chancel-arch is a matter of commendation. In some modern charches with mere rocesses for the communion table, the pave terminates with an enormons chancel-arch, which would be in proportion were there a spacious chancel bejond it, but from the absence of that member appears disproportionate and ontirely out of place. These cases are jnstances of the onthinking retention of forms after the uce of them has ceased. It also should be stated that the building has not a show-fide-it is a church and not a churchfrowt. The architect has avoided the valgar ostentation of making the mont conspicuous side of the edifice the moat showy : the eastern side of the chorch is as much ornamented as the wostern, aithongh the former cannot be viewed from the public road, and is therefore comparatively inconspicaous.

BTEAM NAVIGATION.

We are indebted for the annexed Table abowing the proportion of British and American built Steam 8hipe, to the American Franklin Journal, it is taken from a Report of Mr. W. C. Redield, of New Yort, U. 8., to the President of the Board of Nary Commisaloners, dated Dec. 11, 1841.

Of the steam veseels comprised in the table, clase A is intended to represent the largest class of war stemmers which has yet been constracted; together with the mont approved and suocesofal class of ocean steamers now employed in transatlantic navigation ; but which, in case of war, will also be employed as ateam frigatea. Of the former, I have solected the Gorgon, steam frigate, belonging to the British navy, the Kamschatika, lately built in thill eity for the Russina nary, and probably superior to any war steamer tn the navies of Earope; together with the Missouri, from our own navy, ouperior in sise to either of the above named vessels. From the mercantile clam of stemm ahipe I bave celocted the Great Western, and also ons of the four Halifux or Cunard ateamers, each of these being perhapesuperior in roletive power of engine, and probably in speed, to the war stesmers already mentioned. It is known the forr Halifar ateamera are alike to all respeota.
The mediam sised war ateamers, or clans B, are represonted in the table only by the Unitod States ateamers Fulton, and the two whr stomers lately constructed here on the British plan, for the anthoritios of Cabe. I do not attech much importance to the results shown in this class.
Clace \mathbf{C} consiats of three American stemers which are employed on coasting routes, vis.-the Narragansett, Neptune and Now York; together with the South America, one of the steamers emplojed on the river Kadson. It is to the quallies of this class of steam vessels that I shall wore particularly invite the attention of the Board,-believing as I do,
that it promises to be more efficient and useful for naval service and coast defence than any other class.
Class D in the table consists of the steamer Balloon, a very light vessel, built solely for the navigation of the upper part of the Hudson, but which has been well proved in her sen-going qualities in rough weather, and has been also employed on Narragansett bay, and on James river; together with the steamer Gladiator, which was first employed on the coast routes eastward of this city, but now runs regular trips on the southern const, between Charleston and Wilmington. This class, I shall attempt to show, is also capable of rendering most important services.
It would hive been easy to have added other examples of this and the foregoing classes had it consisted with the size of the table, or been necessary to the immediate objects which were had in view in its compilation.
The English methods of computing the tonnage of steam vessele, not being suited to show the full size or capacity of the vessel, and disagreeing also with Americun rules of computation, I propose to adopt the following as a rule for obtaining the approximate tonnage, viz:-"Maltiply the length between the perpendiculars (reckoned from the rabbete of the stem and stern post at the level of the deck) by the full breadth of the bull at midships, and the prodnct by the central depth from the top of the deck beam to the top of the ficor timbera, or of the ceiling thereon: divide this product by 100, by separating the two right-hand Gigares, and the quotient may reprenent the conventional, or approximate tonnage."

As the estimated working power of marine engines will doubtless continue to be expressed tn horse poser, and as the power actanlly obtained in practice, even with like engines, mast necesearily be rariable, it seems desirable to obtain, also, a ready rule for this estimate and expression, founded on the capacity of the cylinder, or of that purtion of it through which the piston moves, at each stroke. I have, therefore, in the construction of the table, adopted a rule founded on this priaciple, "and have estimated fourteen hundred cubic inches of the capacity aforesaid, as being equal, approximately to the power of one horse." This rale affords results which perhaps correspond more noarly with the working power of English marine engines, than with those which are found in the beat American stean retaels.
For my eatimate of the actual buoyancy of the several vessols in the table, as compared with their eatire weight in line 17, I have taken the immersien of the midahip cross section, both at the greateat load and at light load, as boing the measure of weight; and the fioating area of the same section, from the water line to the top of the beam ends, as being the messare of surplas buojancy. This method of compatation is probably sofficient for the purposes of comparivon; although the entire welght or displacement of the vessel as compared with the whole Aoating capacity between the entire water line and the top of the central beam ends, woald show the surplas buoy ancy more accurately, and would increase somewhat the comparative buojancy shown in line No. 17 of the table. The want of room has caused the omincion of some other comparisons which might be interesting and useful.

On examining the table it will be seen that a atrong contrast is presented i the proportions and other qualitios of the steam vessols of the clases A and \mathbf{B}, as compared with those of the truly American clasess \mathbf{C} and \mathbf{D}. This contreat is mainly founded on the more balky proportions and greater weight of the two first named clasees.

One of the most important elements of proportion in a stenm ressel is the ratio of its length to its breadth; as will appoar from considerations to which I have already alluded. In the clase A, of frigate build, the proportion of length to breadth, line 22 of the table, la fonad to be as 5 -6t to one : while in clans \mathbf{C} the proportion in nine to one. The proportion aleo, of depth to both leagth and breadth, lines 28 and 96 , aftord us a constrast equally remarkable: while the proportion of breadith to the draft of seater, Hoes 97 and 28, are no less worthy of our attention.

I do not now propose to examine all the various pruotical resalts which are exhibited in the table, nor to poist out the many important inforeaces which may be drawn from the facta here presented; but shall confine my. self to a pasuing notice of some of the chief qualities which appear to chaim our attention.

It is weil known that the finer proportions and leseer weight of the stears vessela of clasees \mathbf{C} and \mathbf{D} onsure for them a higher rate of speed than onan be attuined by the ressels of the other ciasses, even if we allow to the latter, in favourable circumatances, the full add of zaild. Nor can it be doubted that saperior speed in ships or war stoamers mast constitute a chief element of succeat in naval warfare.

Table of Dimensions and Qualitiee of Britieh and dmerican Steam Vemele.

cipications and propositions	As					Oeneralachere otcciat A.	ass b.				
	erm.	Acadis.	Gorgon	Mamour	ebb		Falton.				
					$\begin{aligned} & 210 \mathrm{n}, \\ & 38 \mathrm{n} .10 \mathrm{in.} \\ & 24 . \end{aligned}$						
ad lune		$\begin{aligned} & 2107 \\ & \begin{array}{c} 1591 \\ 408 \\ 14 \end{array} \end{aligned}$ 17 ft 3 ln .			$\begin{gathered} 700 \\ \hline 2000 \\ \hline 1000 \end{gathered}$	$\begin{aligned} & 2380 \\ & { }_{2176} \end{aligned}$					
	2196 tons. ${ }_{13}^{316} \mathrm{f}$ 17 n .							$\begin{gathered} 2 \pi 30 \\ 1060 \\ 1060 \end{gathered}$			
							2 f .4 in .				
	80.6 lo .		${ }_{7} 7 . .2 \mathrm{in}$.		-. $8 .$.	$8 .$.					
		$\begin{gathered} 6 . .1 . . \\ 608 s \end{gathered}$			8	7.	3024	$\text { 4.. } 5 . .$	3 24.6		
			5882		cas	6507					
		${ }_{375}^{687}$	${ }_{320}^{555}$	${ }_{668}^{618}$		${ }_{3}^{527}$					
		8.3			${ }_{4}^{2 \cdot 2}: 3.1$		249:.1				
						${ }^{\text {a }}$					
rtion		+2.: $6 .:$ 9.					5.2.:				
$25 . .3$		\|rici:	17								
${ }_{26}^{25}$: \quad Breadth to deppht of bold	${ }_{207}^{207 .}$			17.	$1{ }^{15} 3 .:$	${ }^{1.64 .}$:					
22.1 .. to dratit of water tat fall load		${ }_{2}^{1 / 3 .:}{ }^{1}$ 1nearis	13.			\%:					
	2.7				${ }_{3}^{2}: 8$						
			$\xrightarrow[\substack{11 . \\ 15 .: \\ 19 .: 1}]{ }$								
				$16 .: 1$		123.		$24 .: 1$	$\begin{aligned} & 2_{2}^{2}-\frac{1}{2} \\ & 20 .: 12 \end{aligned}$		
${ }^{3} 78$				14 tous.86411121Two 62$10 \mathrm{f}$.							
*0 Comparative efrciency or movement at inio											
42 Length of trroke											

ON RUSTICATION.

By Candidos.

Taking at his word the writer who has just decried Rustiontion an being no better than the connterfeit of deformity ; and believing, or at least pretending to bolieve, him sincere when he declares his willingness ${ }^{c}$ to be set right," I purpose to do so-at any rato, to make it apparent to others t hat hehas been setting them wrong,-lo expose the futility and one-sidednesa of his objections, and to convict him either of great intolerance in some matters, or of great inconsistency in tolerating in others what may have similar objections may be enforced against with equal plansibility. That Rantication is most decidedly expressive of stonework construction, and that it renders the articalation of masonry more prononcl, is not to be denied. Buildings are not supposed to be exstructed or carved out of solid masees, they being known to consist of separate atones pat together in courses; wherefore there can be no impropriety-nothing irrational in permitting sach compaction and bonding to declere itself * to the eye, and become mode of deooration for the general surface of the walla, which, accordingly as it is treated, may be expressive chiofly of rude strength and energy, or of finished elegance and elaborate symmetry. While it is 30 anjform that it does not at all cut op the anrfuce and distract the eye-therefore, is not destructive of simplicity-it gives the surface richnens, crispness, and colour, and forms a groand that greatly relieves pilasters and other architectural members, causing them to appear more distinct. So far from deserving to be stigmatized as a deformity or atudied counterfeit of it, Rustication appears to me to be perfectly legitimato and astheticat leant in itself, for like everything else, it may be mede to ministor to bad tuste as well as to good.

One formidable argument levelled against Rustication, and Intended to opernte as a complete demolimer, is that it was not practised by the Greeks; at least, not at the best period of their Doric atyle. Yet what then f-are we at once to condemn, without farther inquiry, everything that does not accord with Greek practice? Is it pretended to be affirmed that the Greeks, who conteated themsolves with just one or two ideas in their temple architecture, so completely exhansted all the modee of beauty, and all the resonrces of design available for any aimilar style, as to leave os no other alternative than either doing precisely as they did, or planging into deformity? Because severe simplicity was the charactor of the Parthenon, is it to be that of every other atructure ? Are critics to be allowed to male use of the Parthenon for ever as a bed of Procustes, by which they take measare of overy building, lopping off from the anlacky one which has fallen into their clntches, whatever of it exceeds that infallible tendard of excellence? The Parthenon was, unquestionably, most exquisite both as to material and execution, as it was constructed of large blocks of white Peatelic marble, so admirably wrought that the jointings of the masonry were imperceptible. Bat to that kind of beanty our buildings may not aspire-wo have neither the marble nor the climate of Greece. Our best ashlar stone-work will not retain perfect naiformity of tint and surface, and even were it to $\mathrm{do}_{\text {, }}$ and could it be 50 wrought that the masoary joints would not at all be seen, the effect, it may be presumed,
 no better in appearance than the other, 00 long as the stucco remains in good condition. It is, therefore, an advantage that we are enabled by means of Rastication to turn the masoary jointings to aocount, and to produce a different species of regularity and beanty of surface.

If we are to abide by Grecian architecture aloce, and to reject all that has been added to or engrafted apon it, only as so many corraptions of it, wo ought not only to protest against Roman and Italian architectare, but ought to abandon the stady of them, leat we shouid catch infection from them. The Florentine atyle more especially mast be held in averaion by those who perceive neither grandeur, vigour, nor any other merit in Rustication, but ouly nuqualifled deformity, and what the writer whom I am trying " to set right" is pleased to brand by the intended-to-be-igaominions terms of "tatooed masoary" and mere "surface decoration." He will have it that "as soon as chamfored masonry is introdaced, all simplicity is lost at once, cach stonc assuming a separate individuality ;' yet, as it appeart to me, he might just as well maintain that a atriped dress is incondisterat with perfect simplicity of attire; or-to keep to architecture-that a striped-in other words, a finted-column is contrary to simplicity and is a berbarism, a shaft so decorated being in fact neither more nor las than "tatooed," while each of the fillets "assumes a separate individuality;" and the beantifal rotundity of the chaft itsolf being greatly impaired by

[^39]anch unlacky "surface decoration." Even the Greek themselven then, it Foald seem, were not altogether infllible; and besides baing at variance with what eppear to be nome persons' notions of true simplicity, what meaning is there in the flating of a column l-what does it express ? -most asmredly sothing constructional, whereas Rustication does. It has been supposed by some that the first idea of flating was dorired from fissures in the shafts of wooden columns, or from channels worn by the rain on the surface of stone ones,-an hypothesis, however, that mast henoeforth be rejected with scorn, becanse it would make out the Greeks to have been guilty of such very bad taste as to condescend to counterfeit defects and deformities, which woald have been an inexcasable enormity, notwithstanding that $s 0$ counterfoited what wore originally defect! became beantien, There were very strong mithetic reasons- 100 generally known to require to be stated here-which indaced the Greoks to adopt the practice of futing, if anch term be not "too digniled" for the scoring prodaced by " more streak," and for the absurdity of covering the shafts of colnmns "all ever with mouldings."

May not the deep channels employed for the futings of Ionic and Corinthian columas be raproachfolly described by the terme "gathes" and "incisions," with just as much falrness as the channelled joints of rusticated masonry? Difficult it surely would not be for any one so disposed to get up-upon paper-a pretty strong case against the practice of finting columbs as an unmeaning one at the best, as one at variance with simplicity, and partaking more of diafigurement than of embellishment.

It is conteaded by the writer who has laboured to prove-and who, no doabt, fancies that he has clearly proved, both the irrationality and bad tasto manifostod by Rustication - that when employed together with colnmas, the horizontal channels appear to cat athwart the shafts of the latter and "dealroy that idea of verticality which is their essential attribate;" of which injurions effect, he quotes the paristyle of La Madoleine as an instance. Now, had he shoeen to say that the columas appear to cot athwart the horivontal linea of the rusticated wall behind them, he might have done 50 in welcome, and have made ont of that cireamstance as much as he coald for argument ageinst Rastication; bat as he did not do so, it it for him now to make ont how the columns appear to be cut through by lines which they themselves cat by interrapting and intercepting. It is, therefore, rathor the idea of horizontality as expressed by the courses of masonry is destroyed, then that of eerticality, which latter is reodered all the more evident by the direct contrast between horizontal and vertical lines 80 produced. But of the value of contrast the critic who has detected such equally unlucky and curions appearance in La Medeleine seems to have no idea. Fortunate, therefore, is it for the credit of the Grecian-Doric style itself that it in protected by the eegis of classical precodent and anthority, else were it over to suit his immediate purpose to do 50 , the same writer would probably not scruple to censure as an absardity the intermiztore of trigiypha and sculptare in the Doric frieze. With far greater plansibility of argument than he has now asod, he might urge that if eculptore is to be introdnced, the trigiyphs ought to be dismismed; or if the latter must be retained, the metopes ought to be left plain, since menlptare and triglyphs together mutually deatroy each other's effect, and produce a most ansatiafactory jumble the very reverse of sime plicity. Instead of being kept continuons, the sculptare, it might be argued, is cut up into bits and fragments; each pieco of it assumes a soparate individuality, and really appears to be "set in a frame;" besides whiah, the sculptare of coarse seems to cat the triglyphs themselves athwart, precisely in the same manaer as the rustic joints on a wall behind colemns out athwart the colomas in froat. After being $s 0$ exercised, criticism might deacend-might stoop down to examine the steps of Greek Doric tomples, and attack with ridicule the deep moulded channel cut below in the front of each of them, as boing a marked defect, and cansing the ateps to appear undermined and weakened. To be sare, thone grooves contribute to anthetic effect ; and if that be sufficient excase for what, if now done for the first time, would be reprobated as a caprice, excuse may be extended to other canes.
Having pointed ont circumstances in pare Greek architecture, apon which the same sort of captions hypercriticism might be brought to bear which protests so peeviahly against Rustication, we follow the writer's remarks, and nezt find him just after obsorving that the mank-chennels in Busticated work cannot be received as "mouldings" -and who has ever called them anch 7 -talking of the absurdity of a building "ail over monid. ings;" so that in one and the same breadth, he denjes and admits them to be equivelent to monjdings. As to confusion being produced by 80 many lines of that kind on building-that mey be left to contradict iteclf-it,
in fact, mengly contradictod by the exterior of Nowgente; which is chanracterieed by breadth of surfice, but which, had it not been Rumticated, would have been comparativoly an inajpid blank; although admirably combined in its general comporition, in wich respect it falds a condition which the writer in question has made a very stringent one, although it is frequeody quite impracticable. "It may be safoly asserted," he says, that no baildings, whaterer may be the atyle adopted, can be architecturally effective unless some portions of the building throw shadows on the remainder." No doubt, bold relief and chiaroscuro contrasts are bighly valuable and impart unwonted spirit and energy to a componition; and the same distribution of projeoting and receding parts which produces shadow, prodnces also great variety of perspective effect. Yet, except in some few eases, how is it passible to plan town buildings 50 as to abtain the requisite breaks for the purpose in the general line of frontage? Of what can atreet architecture chiefly oonsist if not of what so greatly excites the writer's positive indignation, viz., "sbow fronts" towards the street, and "sarface decoration" upon them,-terms which are quite farourite and pet ones with him, and invariably intended to be eminently reproachfal ? If, without regard to its merits in what it does show, we are to be dissatisfied with overy buikiog that does not stand quite insalated, and 00 as to show itself on every slde,-if that is to be made a sime que mon, we must be prepared for being very much out of hamonr for a very long while to come. There is no help for it; so let ns console oorselves by fairly damning modern architecture altogether, as our philosophical writer sppears disposed to do bimself, and, if he can, to prevail on others to do so likewise.
We canot, however, afford to damn it just yet, becanse we have not set quite done with Rustication.-Rough robble-work, we are told-not that there was much occasion for the information,-would be unfit for the cella of a Greek temple, because " the coarsences of the workmandhip would be quite out of charecter wlth the rest ;" and by this is is intended to be insinuated that every mode of Rustication mast be equally unsaitable for the same style. Is there then, I ask, 00 disticotion of charecter between rubble-work and rusticated masonry? -none between the coarse workmanabip and rough surface of the one, and the naiform regularity and elaborate workmanship of the other? This difference-which striking as it seems, the writer does not perceive, or else wilfully shats his eyes to it, -goes very far towards answering what he says when he calls upon those who would defend Rustication, to point out wherefore, if anezceptionable in itself, such mode of masonry should not be equally proper for baildings in the Pointed as in the Classio style. He affects very innocently to wonder what can possibly be "the characteristic differences between the two styles," that they require, at least admit of, different modes of manonry for them, just after he had himself said that rebblo-work wonld be iecomgruous in a Grecian edifice. If Rustication is to be held illegitimate, and to be renoonced because it does not become all styles alike, the irregular masonry of the stonework in Gothic buildiags, together with brick work, slatwork and rubble, may be all set down as vicious and absurd, opless it can be shown that they are just as appropriate for the Classic as in the Pointed and Old English styles. As well mlght we be told we ought to be "prepared to adapt" flutings to columns in the Pointed style as well as in tha Classic, or else abandon such decoration altogether.
The difference of character between the two atylen, or rather the two distinct erchitectoral races, is so great that hardly any one except the writer whose opinions and dicta I am controverting, would propose to reject Rustication because though it accords with the idiom and practice of the one alyle, it is coutrary to the practice, and therefore to the idiom of the other. Had rubble-work been used in classic buildings, it would bave belonged to the classic idiom of the art; and in like manner had that apecles of masonry which is distinguished by the term Rustication been practised by the medisval architects, it would have been lncorporated with the rest of their syatem of design, and would have become idiomatic and characteristic. Separate styles have, like separate langunges, their respective idioms and peculiarities ; but though peculiarities widely difforing from each other, it does not follow that they are therefore conirary to thoes universal and catholic principles which apply to all styles of the art alike. In architecture a very great deal is purely conventional, and might be applied indifferenlly were it oot that custom has atamped auch or anch particular mode as belonging to a particular style, as being a part of its coetume, consoquently proper to thet, thongh in any other it might abow as a docided isppropriely. Possibly, therefore, it will still be pertinacionsly maintained, that Ruatication is foreign to pure Grecian architecture-a departure from its costume: trua; bat it is Doman, and so far legilimately antique and
clasaic, quite ns mach as the Roman, or what we call the Corinthian, order itself. And if the Romanions which co decidedly pervades La Madeleine in all other respects be not objected to, wherefore should its Romasisen in regard to Rastication and the "surface decoration" of ite walla be condemned as nothing less than a barbarism at variance with all clasaical procedent? If we ougbt henceforth to abide strictly by pure Greek architeetare, joat as it was practised by the Greeks themseives in such tempies as the Parthenon, without presuming to adopt into it innovations of any kisd -not even those which bave become to ourselves rather archaismes than ianovations, let as be told so explicilly; bat let those who would enforce such doctrine, keep to their own bond. Let them reject and discard all and every thing that is at variance with Grecien practice and costamethat is, the costome of Greek temples, almost the only class of Greek brildinge which we are sufficiently acquainted with to be able to judge of them correctly as a clasa,-and then perbaps they will discover to what ex. ceedingly limited resources they will have restricted architecture; jet whether even then all of them would actaally confess as much. may be questioner, for eome of them might feel far more exultation in having gained their own point, than any sort of concern for the consequences to architecture itself. And thls seems to be the case with some who not having any real affection for the art, seem to regard it only as a very good subject for them to discourse and debate abont, more or less fluenily, caring for little else than displaying thelr own expertuess in logomachy. One characteristic of such critics and criticism, is that bigotted intolerance which peremptorily decides every thing to be wrong which differs from their own exclusive standard of what is excelleat and right ;-nor is it at all difficult to make it appear to those who are content to look merely at one side of a question, and take op with a decisive and aeemingly firmly settled opinion without further troable to themselves, -that whatever devistes from such atandard mast of course be wrong.

My opponent-at least, the writer to whom I have here presented myself as an opponent, is certainly most intolerant of Rustication, for he insiste that it is absolutely intolerable-a grose abuse and absurdity that ought to be no longer tolerated by us at all, nor any longer be recugnized as a mode of decoration to which the architect can bave recourse on suitable occasions. How greatly I differ from bim is sufficiently attested by this vindication of Rusticated masonry,-whlch, indeed, I conld wish to see more frequeatly and more effectively made use of among us than it now is. I am very far, however, from inteuding to recommend it as an infalli. ble nostrum, or as what ought to be applied in ali cases. Rustication may he well or ill-applied; may be either very good of its kind, or very bad; Fet the bad is so far from justly discrediting the good, that it rather alda to the merit of the latter. Were not such the case, some of our modern speclmens of it woald long ere this have brought "pure Classic architecture" into utter discredit among us, they being far more deserving of "detestation" than that "debased Classic arcbitecture" which had openly revolted from Classic precedent, had thrown off allegiance from it, asd had readered itself independent of it,

PENESTRATION AND WINDOWS.

Audi Alteran Pastrix.

Although another writer has in the interim taken up the subject of the Decoration of Windows, and given his opinions apon it, eapecially ee regards theemploying columis for anch parpoee, that in so very far from fromerating the intention hinted at by us in a note (page 130), in the articie on the Fitawilliam Musenm, by forentaling what we meant to any, as rather to atimulate ns to take up our pen without further delay. Having then apprized the reader of this Journal that the remarkn, in the May number, on the building just mentioned, proceeded from ourselves, we may be permitted to confess our surprise at finding, the following mouth, a second paper on the Fitzwilliam Musenm, denying it all those particular merits as a piece of architecture, which had been claimed for it by ournelves. Hed that second article distinctly announced iteelf to be the production of a mecond writer, and intended to reply to and correct the criticiam that had juat before appaared, the mort of myatification that must now have been oceasioned in is would have been avoided. Strangely enough, it did not evee tabe the slightest notice of what had been previously said,-mo move than if nothins bad been wid thall, at aby ralo nothing more than a mere account of the brilling, withont any ertioism mpon it Admiration was atill propined:
only it was made out after all that every thing in it which had been eapecially admired jost before, Fas naught, and that the design would have been infinitely better, were it almont the reverse of what it is; wherefore we may consider is fortunate for us that what wo had said was not formally contradioted asd cut up. Tardy as it is, this explanation is duc both to ourselves and to the Journal,*-for the latter not undesirable, since it exculpates it from what mant have looked like inconditency.

We ere very far from wishing-to say the truth, have more cosceit of ourselves than to desire that opinions which militate ageiast our own should be suppressed; and wo only claim in retarn that ours be not suppressed, becanse they happen not to accord with those of other permons Differ we mont asuredly do very strongly, both from the author of the article "On the Employment of Colnmns and Pediments as Window Mouldings,"(mouldinge seem a term very oddly applied to colamna), -and from Dr. Falton,-who hat miataken a ludicroasly droll and whimsical comparison for argument ad absurdum against window pediments, and has flourished it about secordingly for the purpoce of intimidating those who allow themelves to be acared hy words and nicknamea. Bot before we begin to apeak of wisdow themealves, it may be as well to say something on "Fenetration" geberally,-ita infoence on dosign and composition, and the characteriatic physiognomy occaioned by it. Rather strange to asy, it is one of those ubject which so far from being taken up are scarcely eren approximated to in architectaral "treatises," and didectic writinga of that kind; and when it has been touched apon elsewhere, it has been only aulant, and to fly off from it again in a tangent. While of apeaking of colerme there hes been no end, hardly a word has been uttered as to the ententials and conditions of Cohameniafion $;$ and in like manner, instruction with regard to whodows is conined to a few ordinary matter-of-fact roleo-withont anything being anid of Fenestration as a syatem. Neverthelew that and Columaiation are two auch de cidedly distinct aystems, that buildinga now clased together as belonging to one generil ntyle might properly enough be further distinguished accordingly as they belong to, or mont partake of the one or the other of the two different modet. Neither are the two syatems merely difforent forms, but hostile and repngaant to, and almost incompatible with each other. They constict so obatinately-what is required by the one is so strongly opposed to what is demanded by tbe other, that acarcoly any treatment, however dexterous, can effectually reconcile them, or effect more than a tolerable compromine.
That windows are totally at variance with the effect attending genolne antique coluronintion, whose columps are backed by a continnous aurface of wall, mabroken by openinga for admiation of light, is indiapotable. If not dewtructive of beanty, they are deatractive of the effect-amociated with idess of classical tanto-which reaulta from their abeence. Wherefore it generally happens that the more ambitionsly and rigorounly clandcal parity of atyle is almed at in all other reapects, columniation incinded, the more ofensive and incongruou does feneatration ahor itself. It avails not to say that it is matter of sheer necensity,-that window there muat be, onleas the buildiag-however elee it may be divided within-has no division of foors, in which case it may be beot of all lighted through ceilinge and roof. If eneh unavoideble necesaity suficiently axcuses the fepestration, it at the same time condemns the practice of mixing up that and colamniation for the noace, when it is, or to be, known beforchand how greatly the effect of the latter moat be impaired by the former. That very necessity which is pleaded by way of apology, ought to be suficient argument egainat a style which, however scrapalomaly copied in regard to matters of mere detail and mechanical execution, must be violated altogether in what constitutea its genuine añd pecoliser phytiognomy. The neceasity for numerous apertures in the walle for wind ows proves that a pure Greek style is not the one for us at the present day, It being only in very rare cases, and under peculiar circumntances that it can be edhered to with tolerable sidelity and consistency. Qulte idle is it to point oot to us the Parthenon as if it were a model exprasaly stted for moders parposes. At any rate it ought at the arme time to be pointed out aiso that the sine qua mom condition of being faithfol to its Doric didiom, as well as to individual forms of detail, ahonid be oberved and attended to.

In tuch moders structures as the Walballa near Regensborg, and the Mecleine at Paris, which being lighted within entirely from above, conld therefore be mado peristylar esternally, without any intermisture of wiodown,

[^40]the ample dignity of columnlation and the repose which ought to accompany k, can eanily enough be kept op. So dino is it when columnintion in the form of portico or colonnade in employed for embellinhing that sde of a building, where wisdowe can be diapensed with, as is the case with the facade of the Berlin Muscom, the Fitzwilliam Mosem, and the Bast or principal front of 8 t . Gearge's Hall, Liverpool.

Peneatration and Columnistion are two modes of architectural composition, requiring auch very different treatment, and prodnctive of anch opponite cbarecter, that they mutually neatralize the good effect which each might be made to ensure separately. What would be well proportioned and dignified as an anfylar front, becomes almost ineritably more or less discordant, and ort of character as the background to any colonnade whose pillars are erected in adrance of it. Either the colonnade itaelf has the look of being an afterthought, an addition-whether made for convonience alke, or for mere ontestation,-to what was or ought to have been complete without it. On the other hand, the mein atructure itsolf looks as if it had been erected behind a previonsly exiating range of columne, originally belonging to an edifice very differently conitituted. While the colnmis seem as much to encember as to adorn the front behind them, certainly not to belong to it by evidently growing out of the general organization, the wiodows-be they ever so unexceptionable in tbemselves, become blemishes, inumuch as they out up the general composition, nay, the graceful simplicity of a colonnade, and contredict the would-booclanacal tate which is affected by merely sticking up a few clanical columos. Many preposterous inatancea of the kind are to be met with in the baildings erected some few years ago when we were in the heydey of our Greekomamia. Of such examples we might mention scores, but will content ourselves with one-nor is it by any means the wort, vir, the Law Iantitation in Chancery Lane, which exhibite the front of a Greek Jonic tetrantylo in antis temple, atock ap before ane that in totally different in costome, filled in with windows-it being bonselike, and therefore poaitively undignified, intimataly amociated as it is with what reproeches it for being howely and dowdy. Well is it, perhape, therefore that column cannot kick, or they would frequently be tempted to kick down what stend juat behind them.

In fact so far from being at all fit to become yoke-mates, Fenestration and Columniation pull in auch contrary directions as to leave only a choice of inconreniences. Ono of them may be good, or the other may be good, bat hardly can both be rendered to or if it be attempted, the result is likely to be that both the one and the other, will prove on a par by being eqnally na. matisfactory. While good Penestration requirea wide spacing, good Colamnia. tion requires jut the reverte, otherwise it in attended with a look of meagrenoes and meannesp-the very same defects that are prodnced by close apaciog or pyomentyle disposition of the piers between the windowin in Fenestration. If there are windows in a wall behind a ragge of colnmas, corresponding with the intercolumns, hermony regaires that those openinge soonld partake of the proportions of the intercolumns themselves, that is, be very nar row and lofty, and even then such openings will appear erowded together and be deatractive of all breadth of aurface and repose behind the colvmas, they being conined to the alternate intercolamen, as is the case in the portico of the Chambre dea Deputes at Paris, which comaste of tweive columas in front, coneequently eleven intercolumbs, but hee only tive apertures (doors) in its beckground. Therefore in that erample-and we are not aware of any similar one, the two diffareut rystems are admisubly reconciled, and for each the particular mode of apacing which it demendis, is doly observed : \rightarrow merit which, remarkable as it is, han never before been pointed out by any of those who have spoken of that façade, 一not even by Woods himself.

In some cases the Gordian knot has been attempted to be cut by putting the columps in pairs, therely obtaining great width for the intercolumes, and the breadth of two columas and a balf between them. Yet although this obriatea the inconvenience of thick set windows and narrow piers, it is objected to as an impropricty-by architectural puritana at leant, who will have it to be downright solecinm, becanse mot annctioned by classical precedent; which is surely being over serupalous and hypercritical, for where can they find precedent for windows at all within a Greek or Boman colonasde? If they can tolerate the one innovation, they have no right to be very much ecandelized at the other.

One not unasual mode of getting over the dificulty-at leant so it seeme to be thonght-and obtaining infliently parrow intercolmaniation, at the
same time avoiding disagreesble narrow proportione for the piers between the windows, is to adopt a macroatyle order for the colonaside, incloding two flocrs of the bailding behind it, and two serion of wisdown. Consequently these latter become saall openinga, in height at least, an compared with the columns, and by their frequency tend atill more then ever to cut up and dibturb the surface behind the colamns. White greataes in affected by the order, littlenest-comparative littleness at least, is expressed by the fenentration, and the inner wall asoumes anort unlacky resembiance to an antyiar composition, in whone phyniognomy Fenestration is intended to predominate, and from which Columniation in intended to be axcluded; to that while the wiodows are a sed drawback upon the pomp and clawical atyle affected by the order, the order itself serreas chiefly to put un out of conceit with the Fenestration.

Your Peckaniff, indeed, get over the difficulty very eacily by making no difilculty of it at all. They merely make co many holes for the windown, which being left quita bare of dremingt, are not to be comidered as belonging or intended to belong to the architecture at all: the columns are the things to be looked at; the windowe to be overlooked. Yet would it not be far more economic and answer the purpose just at well, to leave it to the imagination to put in columns, in the same meaner which it is now called up to put ouf windows, by fancying them away?

All thinga considered, if an order muat be employed in conjunction with Peneatration, the bett way perhaps, is to make use of it avowedly as decoration, either with pilarters or attached columns, to that the intercolumnintion can be regulated according to, or rather accommodates itself without forther difficalty to the spacing which is most suitable for the windows ; without occasioning that atraggling look which would attend a colonnede whoee pillars were at the axme, or any tbing near the bame intervile apart. There is at least a certain degree of compactness and rolidity attending stech intiroate combination of colomnar architecture and fenestration; wherems co. lamniation is mostly so employed as to appoer something quite adecititionsa mere hors d'owere, and perbapa an inconvenient and encambering one into the bargain.

Wiking, who plamed himeelf so much apon his rigorous observance of clatsical proportions an to intercolumniation in the portico of the National Gallery, does not reem to have duly considered the counequences of it in regard to the interior of the portico. Had there been within only a single door of lofticr proportions, recesed at at present between two columna in anth, there would have been nothing to contradict or diaturb the close intercolumnintion affected for it ; wheress now the interior looks crowded-ap even to confacion, and the and doort are of too wide and low proportions, so as to appear crammed into the apaces they occupy, although those speces correspond to two intercolumas in front.

There is another apecies of combination of the two syotems (columpar and fenentrated) which ought to be noticed, nemely, that wherein colamniation in employed only for one or more diatinct portions of a façade, the reat of it deing astylar and fenestrated. The Post Office exemplifiet such combination the centre portion exhbiting colamniation without window, and the two next fenertration only; while the extreme compartmente of the front display, both feneatration and columniation together; the iatter however at mere embellishment, becanse though the columne are insulated, they do not form any sort of practicable colonnade or loggia, therefore seem atill more idle and uscless than such an by being atteched to a wril appear in some degree to perform the office of buttresses to it. Well, what is tbe effect of the combination alluded to ?-does it not partake rather too much of the saviwoteh, the componition being that produced by mere juxtapoaltion? We behold a portico of temple-jike aupect clapped between what look like two diatinct buindinge. altogether different from it in character and otylo-constituting a sort of macaronic architecture-and by no means very satiofuctory in therneedres. Of the window drewinge we need not speak, they being little more than architectaral afg-leaves to screen ponitive nudity; but the feneatration iteelf is poor and undignifed; the windowa are too close together, neither is there sufficient space between the two tiers of tbem; whence there in nothing of that simplidity which arieet from breadth and repose. Notwithatanding howevar the odd patching together of modern poly-frmentration with the windowieas astem of the Greeks, the Pont Office was hailed at fint by the Greckomanis of the day, as something ratly clasaleal; and to well astiuffed with it it the architect himedr, that he in now giring uif a second edition of

It in the sucade of the British Maseam.-Pity, be in so alow about it, for Greakomania will be all evaporated before that emfertowore of pare cinoical tate, " neat as imported," be completed.
In the two brildinge arected at detached wings to the Musoum fagede, wo have fenestration betwean a single order of pilasters, carried the height of three ficent, which mode certainly preserves due width of apecing as regends the pilasters themsalres, but it causes the windows to appear meagre and incigaificant, and too much cromped op.
One Greek example of a detign for windown there is, namely that afforded by the Triple Temple at Athens, which we could wish had never been made known to un, becanse then it is most likely that when they wanted windows for buildings in the Grecian Ionic atyle, architects would have derived idens for the parpose, from the exquinitely beautiful doorway in the tetrastyle portheo of the edifee just mentioned, whose highly finished and delicate orateness correspond perfectly with that of the order; whereas the window does not partake of, or agree with the order at all; there being no more than a very plain border round the apertare, defined by an external moulding. Yet this unlacky precedent has been taken by ua , in our Greckomanin, as an anthority to be impllicitly adhered to on all occanions-a matter bow different thowe occutions may be in themselves. Be the order Daric or Ionic, ar if the letter, the plainest or the richeat in character, we find that miverral window perpetrated everywhere alike, at if no modern architect could muater op imagination enough to detign a dreasing for a window apertare juat a easily a for that of a door or a fire-plece. Thus instend of being made characteristic featares in our modern Greek style, windows are suffered to become quite negative ones,-monotonous, feeble, and inexpreaive.

In the Gothle or Pointed atyle, on the contrary, fenestration is so characteriatic, an to be almost indispenable on that acconnt alone; and is beaides differently conetituted, and accordingly subjected to other conditions,-mant certainly is emaocipated from mont of those reatraints and regulations which it has to submit to in Greco-Romen, and Italinn architocture. But learing our readera now to cogitate upon what thus far we have said, wo reserve our remarks upon Gothic fenentration till we retarn to the nabject neat month,-

> "che η Canto prewente
> Non e bustante a dirla degnamente."

practical problems important in plane trigonometrical surveying.
 By Olivla Byrne, Professor of Mathematics.

Sir,-In the October Journal of last year, you published a portion of an article of mine, entitled "Prohlems on Plave Trigonometrical Surregiog," as moon as convenient, I hope you will insert the remainder. Thet epirit of fairness, which has ever been an ascondant properts of your valumble publication, will necure also, I foel conident, a corner for the sucoeeding remarks. The subjects upon which I have written, if they have do other recommendation, have at least the quality of being original; but, is the case of these problems, originality has been questioned by Mr. Turaball, which, I belleve, could not have been done, had the whole of my paper appetred. But, for tbe following editorial remark, appended to Mr. Tarobull's communication, I would have attended more promptly to the matter: -"Wo regret to say, that Mr. Turnball's present lettor appears to have been written under moot painful circumstances; they are of too private a nature to be made public, but we can a ssure the reeder that they entiraly preclude any further atrictares on Mr. Turnbull's pest productions." Mr. Tarabull says, speaking of me, "The principle from which the Profemor deduces the solution wes first employed by me for that parpose in 1899, when all the cases of the problem were recolved extetly in the aume masner as in your Jourbal." Why did he not atate his priveiple and compare it with mine ? He further mdds, "The problems, with their solutioas appeared in one of the earlieat aumbers of Colharn's United Serrioe Joarnal, but, belag without aignatare, the aothor's asme was nuknown to the pablic." Under the head "Staalmetric Barvejiag," Colbora's Uaited Bervice Journal, second part, page 75, 1899, the firt four or five probleme
given by me in your Journal, were solved from the fallowing principle; "The angles of the figure can be ascertained in terms of those observed withoat involving any of the containiag or sableading parta, and heace The distance between two remote objects become known in terms of the observed angles and the measared base. If to all the angles of any plane polygon figure, right lines be drawn from a point within it the product of the sines of the alternate angles will be equal to each other." From what Mr. Tarmball calls an obscure and neglected proposition in Emerson's Trigonometry, the above principle woas very readily drawn. It will be found that the principles on whioh Emerson, Gregory, and the writer in Colburn's Joornal, proceoded, are but partioular cases of the very extensive one, apon which I have based my solutions; this will become very evident when the whole of my paper is published. You will find that I worded my general principle thas:-"If any number of lines A, B, C, D, \&rc., be drewn, the ratio propounded of the ratios of $A: B, B: C, C: D, \& e$., continued in order te A, is a ratio of equality : or which is the same thing, when each becomes an antecedent and a consequent, taken in the above mentioned order, the continued prodict of the antecedents is equal to the continued product of the consequents." My application of this propout. tion I coasider entirely origizal; I have used it in the solution of nomerous problems, a fow of which I have submitted to you for publication.

Whon the whole of them appear, I will revert to the sabject again.
I am, Sir, your's sincerely,
Oliver Byrur.

Continued from Part XCVII., Ocl., 1845.

(5.) In order to determina the borizontal distance between two remote objects, O, B, a base line $\mathrm{A} \mathbf{C}$, of $\mathbf{5 0 0}$ chains was measured, then at each extremity of this base the following angular distances were taken:-At $\mathrm{A}, \mathrm{OAB}=75^{\circ} 50^{\circ}=c, \mathrm{BAC}=45^{\circ} 05^{\prime}=b$; at $\mathrm{C}, \mathrm{OCB}=75^{\circ} 30^{\circ}=c$, and OCA $=40^{\circ} 20^{\prime}=\mathrm{d}$. Required the distance between the two objects? From having the angular distance a, b, c, d, all the other angles of the

Fig. 1.
 figure may be found, without knowing the lengths of any of the lines; therefore, from haring the length of any of the lines, under such clrcumstances the remaining linear distances can easily be determined. Let angle $O B A=x$, $\mathrm{ABC}=180^{\circ}-b-c-d=e$. Then $\mathrm{OBC}=e+x, \cdot \cdot \mathrm{OA}: \mathrm{OB}=\mathrm{aid}, x$: sin. $a ; \mathrm{OB}: O C=\sin . c: \sin$. $(e+x)$; and OC: OA $=\sin .(a+b)$: sin. d. Hence, sin. $(a+b)$ sin. c sin. $z=\sin , a \sin . d \sin .(c+x)$; sin. $(a+b)$ sin. $c=\sin$. a sin. d
 cet. $x+\cos . f . \quad . \cdot \sin .(a+b) \sin . c=\sin . a \sin . d($ (sin. $e \cot . x+\operatorname{con} . e) ;$ $\sin .(a+b) \sin . c-\sin . a \sin . d \cos , e=\sin . a \sin . d \sin . e \cot , x . \quad \cdot, \cot$. $x=\frac{\sin .(a+b) \sin . c}{\sin . \sigma \sin . d \sin . e}-\operatorname{col} . e ;$ or, $\cot , x=\operatorname{cosec}, a \sin .(a+b) \sin . e$ cosec. de owec. \& - cot. e. Rule.-Add together, the log. cosec. of a, the log. sin. of the sum of a and b, the \log. sin. off, the log. cosec. of d, and the log. cosec. of e; the natural number .corresponding to this sum, rejecting 50 in the index, made lese by the natural co-tangent of e, will give the natural co-tangent of x.
$a \quad=75^{\circ} 50^{\circ}$, log. coseo. $=10.0134127$
$(a+b)=12055$, log. sin. $=0.0384445$
$c \quad=7530$, log. $\mathrm{min} .=9-9869416$
d $\quad=4020$, log. cosee. $=10.1889391$
c $\quad=1005$, log. cosec..$=10 \cdot 4855479$
0.6072758
The nutaral number corresponding $=\mathbf{4 . 0 4 8 3 2 9 0}$
The natural cot. of $10^{\circ} 05^{\prime}(c)=2.8905467$
Natural cot. of $x=1.1577823$
$\therefore \varepsilon=40^{\circ} 49^{\prime} 04^{\prime \prime}=\mathrm{ABO}$; and $e+x=59^{\circ} 54^{\prime} 04^{\prime \prime}=$ OBC. Hence,
$O C=1844 \cdot 49$, and $O B=1493 \cdot 34$ chains reapectively, which may bo found by Plane Trigonomelry.

Buppose the argles a, b, c, d, remain as before, bat it is foond imponerible to measure AO with any degree of accuracy, OB boing on a plane it is measured and found to be 18609 links. Roquired the angie x, and the distance ΔC in feet? In this instance, $x=40^{\circ} 49^{\prime} 04^{\prime \prime}$; and $\Delta C=$ 4112-997 foet. This could not be solved by the rules of plane trigonometry.
(6.) There are four stations on the name place, the linear distance between evory two of any three of thom being given, as woll as the angular distance of the fourth from each of the other three; to find the remaining parts.
Let \mathbf{A}, B, and \mathbf{C}, be the three stations whoee distances are known;
 hence the three angles a, b, and c, of the triangle ABC may be found. [See Problem III, in the Jourual for October, 1845.] Having these three angles, and also $5 n$, and n, taken at the fourth atation, we can find all the angles of the figure without any reference to the lengthe of the lines.
Let \approx be the angle mado by the diagonal AD and the side AB; then will the angle $\mathbf{B C D}=b-m+x$. Hence, $\mathbf{A B}: \mathbf{B C}=$ sin. $c:$ sin. $a ; \mathbf{B C}$: $\mathbf{B D}=\sin .(m+\pi): \sin .(b-x)+x ;$ and $\mathbf{B D}: \mathbf{A B}=\sin . x ; \sin . m$. \therefore sin. $c \sin .(n+n)$ sin. $x=\sin , a \sin .\{(b-n)+x\} \sin . m$. $\frac{\sin , c \sin \cdot(m+n)}{\sin , a \sin . m}=\frac{\sin .\{(b-n)+x\}}{\sin x}=\sin .(b-n) \cot x+\cos$.
$(b-n) . \quad \therefore \frac{\sin . c \sin .(m+n)}{\sin . a \sin , m}-\cos .(b-n)=\sin .(b-n) \cot x . \cdots$ $\frac{\sin . c \sin .(m+n)}{\text { n. } a \sin . m \sin .(b-n)}-\cot (b-x)=\cot 2 x . . \cdot \cot x=\operatorname{cosec} . a \sin$. c cosec. $m \sin .(m+n) \operatorname{cosec} .(b-n)-\cot .(b-n)$. If $b=\pi$, the problem will bo indeterminate, for cosec. ($b-\pi$), or cosec. 0 , is infinite. It also shows that a circle can be described through the four points A, B, C, D; so that the point D , when such is the case, will bave an infinite number of poaitions all satisfying the question. When A, B, C, aro in the same right line, this problem is readily solved by problem 2. Or when any two of the stations $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and the station D , are in a atraight line, the problem falls under the resolation of plane triangles. It may also be remarked, that the angles b and c, ane negativo when the point A in below the line BC. Role.-Add together the log. casec. of a, the log. sine of c, the log. cosec. of m, the log. aine of $(n+\pi)$, and the log. cosec. of $(\delta-n)$; the natwral number corresponding to this sum after a proper allowance is made in the index, made less by the natural cotangent of $(b-n)$ will gire the natural cotengent of x.
This problem, of which the three following examplen are particular cases, was first proposed by Richard Townley, in the Phillosophical Transactions, where also is juserted solutions to the different cases by John Collins, No. 09, 1671. The frat of these examples is given in the Lady's Diary for 1723, by John Richards, and answered the following year by Jobn Topham. Dr. Hatton in his edition of the Diaries gives an addr. tional solntion, with a geometrical constraction. Profensor Leybourn, in his edition of the Diaries, gives a second additional solation, also with a geometrical construction; and in his appendix to the same work, he gives a general one from "Cagnoli's Trigonometry." However, none of theso solntions are as simple or as practical as the one here given. Caguoli maken $\cot x=\cot (B-n)\left\{\frac{\sin . c \sin .(m+n)}{\sin . B A C \sin . m \sin .(B-n)}-1\right\}$. It should be cot. $x=\cot (B-n)\left\{\frac{\sin . c \sin .(m+n)}{\sin , B A C \sin . m \cos (B-n)}-1\right\}$

This mast be a misprint, for it cannot be supposed that either Cagroli or Leybourn could make nuch a mistake.
I. It is required to find the distance from the Edyatone Lighthoase to Plymonth, Start Point, and the Lizard, respectively, from the following data:-The distance of Plymouth from the Lisard 60 miles, from Lizard to Start Point 70 miles, and from Start Point to Plymoath 20 miles; also Plymouth bears dee north from the Edyetone Rock, the Lizard W.S. W., and Start Point N, by E. Let E represent the ponition of the Edystone, L the Lizard, P Plymonth, and 8 Sturt Point. When a right Line ia sup-

posed to be drawn from L to 8 , it is evident that the point E falls within the triangle LPS, the angles of which are found by problem (8) to be as follows:-

$$
\begin{aligned}
& \angle \mathrm{BPL}=112^{\circ} 01^{\prime} 97^{\prime \prime}=a ; \\
& \angle P L S=152182-b \text {; } \\
& \angle \text { PSL }=523701-c \text {; wo have also } \\
& \angle \text { PES - } 1193000=m=10 \text { points, or W.S.W. } \\
& \angle \text { PEL }=784500=n=7 \text { points, or N. by En, and } \\
& \angle \text { LPE - a. Then by the general rule we have, } \\
& \text { log. cosec. a } \quad=10.0399082 \\
& \text { log. sin. } c \quad-90001454 \\
& \log . \text { cosec. } \mathrm{m} \quad=10.0813847 \\
& \text { log. sin. }(m+\pi)=92902357 \\
& \text { log. cosec. }(b-\kappa)=10.0486918
\end{aligned}
$$

Reject 50 and $40-3062958=\overline{\mathrm{T}} \cdot \mathbf{3 0 6 8 9 5 8}=$ log. of $0-2024395$; from which ubistract-5002568, the natural cotangent of ($b-n$), and wo have, 0-703s00s for the natural cot. of $x, O^{\circ}, x=54^{\circ} \delta 8^{\prime} 40^{\prime \prime}=\mathrm{LPE}$. The distances LE, SE, CE, can be found by Plane Trigonometry, and are s5.11006; 17.1334; and 13.91746 miles respectively. John Topham makes them $58 \cdot 04 ; 17 \cdot 36$; and $14 \cdot 833$ reapectively.
II. Being at a town in Kent I obeerved three objects on the other side of the river Medway, a cartle (C), a wiodmill (W), and a apire (8), whose. ditances from one another are known ; from the cantle, (the nearest object soen, to the spire, (CS) is 10 furlongs ; from the castie to the windmill (W C), 23 furionga; and from the windmill to the spire (W 8), 25 farlongs.

I took with a theodolite, the angular distance between the castle and the spire (C T S) and foond it to be 28° 34', and between the castle and the windmill (C T W) $57^{\circ} 45^{\prime}$; what distance did I stand from each of these objects? From having the three sides of CS W we can find the three angles by problem 3 ; hence we have,
$a=89030^{\circ} 06, \quad$ Being calculated independant of
$b=233438\}$ each other, and making 180° affords
$c=60$ s5 16 a proof.
m=57 4500
$n=283400$
$\cdots(m+x)=86 \quad 1900$; and instead of $(b-n)$ take
$(b+n)=520838$ negative. Patting $x=\angle T C W$; and proceeding according to the general rule, we find the sum of the five logarithmic quantities to be $50 \cdot 1382785$, or 0.1389785 which correspond to the natural number 1.87492s, which is negative. From - 1.3749236 take the the nat. cot. $\left(52^{\circ} 088^{\prime} 88^{\prime \prime}\right)=0.777493$ and it leaves - 0.6976737 :-this nat. cot. corresponds to $59^{\circ} 08^{\prime} 04^{\prime \prime} ; . \cdot x=120^{\circ} 51^{\prime} 56^{\prime \prime}$. Then ($59^{\circ} 08^{\prime}$ $\left.04^{\prime \prime}\right)-\left(57^{\circ} 45^{\prime} 00^{\prime \prime}\right)=1^{\circ} 28^{\prime} 04^{\prime \prime}=\angle \mathrm{T}$ W C. To flad the remaining parts fall under the head of common-place Trigonometrical calculationa TW =23-3459 farlongs, T C $=0.6570643$, and $\mathrm{CS}=10.57215$,
III. In a garrison there are three remarkable objects, A, B, C, the diatance of which from one another are known to be as follows :-BA=21s, BC=424, and AC=262 yards. I and denirous of knowing my position and distance when standing at a station A, with respect to the three points A, B,C ; at AT observed A to be the nearest object, and the angles BSA=13 30^{\prime}, A $8 \mathrm{C}=29050^{\circ}$. This example was originally propesed in Dr. Hatton's Conic Sections, then reproposed in the Lady's Diary for 1797, where two different solntions are given the foliowing year; bat none of the different colations to any of the oases of this problem are as practical as following the general role here given. A 8 will be found $=429 \cdot 6814$; CS $=594 \cdot 2266$; and B S $=605 \cdot 7122$ yards.
(7.) In ruaning a mean line through a country, I arrived at the bank of a river, B; and having booked a station at O, I find by subtraotion that

O B is $\mathbf{2 0 . 3 0}$ chains : causing a fagstaft to be planed at \mathbf{O}, and another at B, I crosed the river in a boat, and set op a third at A, in a right line with B and O. Proceeding along the line to O^{\prime}, a diatance of $\mathbf{2 5} \cdot \mathbf{3 0}$ chains, a fourth thagtaff is set up; then continaing the line to a conveniest point T, a theodolite in set up and the point in each ataff as O, B, Δ, O, Fig. s .
 Which is cut by the eame boricontal plane is soted. Now at C any atation where the points $\mathbf{O}, \mathrm{B}, \mathrm{A}, \mathrm{O}$, can be seen, I take the angles a, b, c, and find them to be $19^{\circ} 05^{\circ}$, $28^{\circ} 25^{\prime}$, and 17° a3' reopect. ively; required the breadith a the river AB: Let BA=3i the angle $A O^{\prime} C=n$, then will $\angle B A C=c+\varepsilon$, and $A B C=$ $180^{\circ}-b-c-s=d-\varepsilon$; also $d=180^{\circ}-b-c=184^{\circ} 19^{\prime}$: BOC=1800-s-$b-c-x$, putting $e=180^{\circ}-\varepsilon-b-c=188^{\circ} 07^{\prime}$. In this problem we shall compare the ratios round two pointe O and O^{\prime}.

First roand O,OB:O $A=x: x+y$;
O A: O C $=\sin .(a+b): \sin .(c+s)$;
O C:OB=sin. $(d-x)$: sin. 2
Second round $O^{\prime}, O^{\prime} A \cdots O^{\prime} B=n: x+y$;
$\mathrm{O}^{\prime} \mathrm{B}: \mathrm{O}^{\prime} \mathrm{C}=\sin .(b+c): \sin .(d-\alpha) ;$
$O^{\prime} \mathrm{C}: \mathrm{O}^{\prime} \mathrm{A}=\sin .(c+s): \sin . c$.
We obtain directly from compounding both the analogies and expungiog the common factors,
$\frac{\sin .(d-x)}{\sin .(c+a)}=\sqrt{\left.\frac{\sin . a \sin .(b+c}{\sin . c \sin .(b+a)}\right)}$. Lot the right hand member of thi equation for the sake of brevity be called K. But, $\sin .(d-s)=$ sio,

$$
\begin{aligned}
& \left(180^{\circ}-b-c-a\right)=\sin .(b+c+a) . \quad \cdot \frac{\sin .\{b+(c+x)\}}{\sin _{0}(c+x)}=K . \\
& . \cdot \text {. sin. } b \text { cot. }(c+x)+\cos . b=K \text {. } \\
& \because \cot (c+a)=\frac{\mathrm{K}}{\sin . b}-\cot , b . \\
& . . x=\cot ^{-1}\left\{\left(\frac{\sin . a \sin .(b+c)}{\sin . c \sin .(b+a) \sin .^{2} b}\right) \frac{1}{2}-\cot b\right\}-c \text {. }
\end{aligned}
$$

From this equation the rule is deduced. Wo need searcely remarit, that before finding any of the distances is necessary to And the anknow anglo x.
Role.-Add into one sum the log. sin. of a, and the log. sin. of $(b+c)$; then add together the log. sin. of c, the \log. sin. of $(b+a)$, and twice in \log. sin. of b; subtract the latter swm from the former and divide the romainder by 2 , the nemiral number cor responding to the quotient made lese by the nat.cot. of b, will give the nat. cot. of $(c+x)$, and comequently a becomes known.

Log. sin. $12^{\circ} 05^{\prime}(a)=9.3208400$
log. sin. $4548(b+c)=9.8654654$

This divided by 2$) 0.5384385=0.2067192$ which correspond to the nat: nomber $1 \cdot 8480720$, this is to bo made less by the nat. cot. of $28^{\circ} 25^{\prime}(b)=$ 1.8481761 , which is greater than 1.8480730 by 0.0001081 ; . . . this is the negative nat. cot., and correaponds to $21^{\prime \prime}$; hence, $(c+s)=90^{\circ} 0^{\prime} 21^{\prime \prime}$; but $c=17^{\circ} 23^{\prime},,^{\cdot}, \quad=09^{\circ} 87^{\prime} 21^{\prime \prime}$. The remainder of the calculations are commoo place. $B \quad A=43 \cdot 88967 ; A C=81 \cdot 009$ chaina. Before proposing the next problem, which is rather complicated, we wish to remark, that it is given more to illastrate the properties of the foregoing amalogres than for any practical utility.
(b.) It saperintending an extensive anrrey, I gave directions to an assletunt who chained one of the base lines, A B, to not ap dagatafie equally
distant from each other as he passed over a common which lay in his way； not knowing the comparative length of his proposed line，be was not con－ fined to any particular distances．Now it so happens，that he sats up a etarf at asch of the four points $\mathbf{C}, \mathbf{D}, \mathbf{E}, \boldsymbol{F}$ ，as in the annexed sketch，and continued the measurement of the line．A sacond assiatant who measured a tie line from G to K ，before leaving G ，took the angular distance be－ eveen P and F at $16^{\circ} 16^{\prime} 16^{\prime \prime}$ ；this was the only angle he could take from the point G ，he not being able to see \mathbf{C} or \mathbf{D} ，though from the direction Clay， be knew the angle F G C，to be acute：－then measuring from G to K，his line exactly pasces through the station D ；but when 1 met him at H ，the chain be was naing was not correct．Therefore，the only particular we koew of this line was，that G D happened to be the same number of false chains as D H．Leaving this assistant to take the angle EH D，which be makes $84^{\circ} 94^{\prime} 34^{\prime \prime}, I$ measured $H K$ ，with a correct chain and fonnd it to be 1500 links，and at the station K ，I took the angle FK C at $70^{\circ} 10^{\prime} 10^{\prime \prime}$ ； not being able to see \mathbf{D} or E ．It is required from this data to find the length of the different lines；not having any information from the first eacistant as to the distance he placed the pickets，and on returning to re－ measure the distances，the exact place where they stood could not be as－ certained．

Now，we have given，the distance $\mathbf{C D}=\mathbf{D E}=\mathbf{E F}$ ；and $\mathbf{D G}=\mathbf{D H}$ ； also HK $=1500$ links．Likewise，$\angle F G E=16^{\circ} 16^{\prime} 10^{\prime \prime}(a) ; E H D=$ $D G C=84^{\circ} 84^{\prime} 34^{\prime \prime}(b)$ ；and $F K C=70^{\circ} 10^{\prime} 10^{\prime \prime}(c)$ ．Let $\angle \mathrm{DGE}=$ $\pi, \mathrm{DEG}=y, \mathrm{CKG}=x_{1}$ and EKF $=\boldsymbol{v}_{0} \quad \cdot \cdot \mathrm{CDG}=(x+y)$, FKD $=(c-2)$ ，and EKG $=(c-0)$ ．Hence，by comparing the ratios round two points C ，and E ，wo have

$$
C D: C E=1: 2 ;
$$

CE：CG $=\sin ,(b+x): \sin , y ;$ CG：CD $=\sin .(x+y): \sin . b$ ； FE ：FD $=1: 8$ ； FD ：FG $=\sin (a+s): \sin .(s+y) ;$ FG：FE＝sin．y ：sin．a．By com－ pounding these six ratios and expunging the common factors we have，sin．$(a+\infty)$ $\sin .(b+x)=4 \sin . a$ sin．b．cos．$(b-a)$ $-\cos \{(a+b)+2 x\}=2 \sin .(a+\infty)$ $\sin (b+x)=8$ sin．a sin．b．Cos． $(a-b)-8$ sin．$a \sin . b=$ cos． $\{(a+b)+2 s\}$ ．Bot，-8 in $a \sin$ ． $b=4 \cos .(a-b)+4 \cos (a+b) ; \cdot \cdot 4 \cos (a+b) 3 \cos .(a-b)=\cos$. $\{(a+b)+2 x\}$ ．An are whose cos．is $4 \cos (a+b)=3 \cos (a-b)$ ， written thus：$-\operatorname{Cos}-{ }^{1} 4 \cos .(a+b)=3 \cos .(a-b)$ ；made less by $(a+b)=2 x . \quad \cdot, ~ 2 x=\cos -1\{4 \cos (a+b)-3 \cos (a-b)\}-a-b$ ． Wheoce the Role．－From four times the natural conine of $(a+b)$ ，take three times the nelural cosine of $(b-a)$ ；an arc whose natural cosine is the remainder，made less by $(a+b)$ ，and divided by 2 ，will gire as．

$$
\left.\begin{array}{rl}
\begin{array}{r}
a+b)
\end{array}=50^{\circ} 50^{\prime} 50^{\prime \prime}, 4 \text { nat. cos. } & =2.5255016 \\
(b-a)=18^{\circ} 18^{\prime} 18^{\prime \prime}, 8 \text { nat. cos. } & =2.8481943
\end{array}\right\} \text { snbtract. }
$$

The angle which corresponds to this nat．cos．in the table is $71^{\circ} 10^{\circ} 41^{\prime \prime}$ ； but as the cos．is negative，the angle may be $108^{\circ} 49^{\prime} 19^{\prime \prime}$ ，or $351^{\circ} 10^{\prime} 41^{\prime \prime}$ ； bat it cannot be the latter，becanse the angle FGC is known to be acute． Then from $108^{\circ} 49^{\prime} 19^{\prime \prime}$

$$
\text { take } 50 \quad 50 \quad 50=(a+b)
$$

half of $67 \quad 58 \quad 29=28059^{\prime} 14^{\prime \prime}-5= \pm=K G E$ ，
In order to determine y ，let us componad the ratios of the lines drawn from E ，which are compared in the foregoing ration．Hence we have sin． $(a+s)$ sin．$y=2$ sin．$(x+y)$ sin．a．But，sin．a cos，$s \sin , y+\cos , a$ $\sin . E$ ajn．$y=2 \sin . x \cos , y \sin . a+2$ cos．x ain．y sin．a．This divided by sin，y ，gives sin．$a \cos , z+\cos , a \sin , a=2 \sin , x \cot , y \sin , a+2$

$\frac{\sin (x-a)}{\sin a}=\cot . y$ ．From this value of cot．y ，the following method of calculating y is deduced：Rolb，－Add together the log．sine of $(x-a)$ ， the sub．log．of 2 ，the log．cosecant of a，and the log．cosecant of a ；the anm will be the log．cotangent of y．By this rale y is casily found，and a is
known，－call their sum m．［Which will be foand too by $\left.79^{\circ} 5788^{\prime \prime}-5\right]$ ． Then to find x ，wo have

$$
\begin{aligned}
& \text { FD: } F C=2: 3 \text {; } \\
& \text { FC: } \mathbf{F K}=\sin , c \sin .(m-x) \text {; } \\
& \text { and FK: FD }=\text { sin. } m \text { sin. }(c-x) \text {; } \\
& \cdot \cdot 2 \text { sin. } c \text { 时 } \mathrm{m}=8 \text { sin. }(m-z) \text { sin. }(c-z ; \\
& \text { cos. }(m-c)-\text { cos. }\{(m+c)-2 \pi\}=2 \sin (m+z) \sin (c-2) \text {. } \\
& =\frac{3}{} \mathrm{sin}, c \sin , \text { 制; } \\
& \cos (\boldsymbol{m}-c)-\frac{1}{3} \sin . c \sin . m=\cos .\left\{\left(m_{n}-c\right)-2 z\right\} \text {. } \\
& \text { But, cos. }(m-c)-008 .(m+c)=2 \sin . c \sin .14 \\
& \therefore \cdot \frac{2}{2} \cos .(m-c)-\frac{2}{2} \cos .(m+c)=\frac{1}{3} \sin , c \sin . m \\
& 1 \text { con. }(m-c)+\frac{1}{3} \operatorname{con} .(n+c)=003 .\{(n+c)-2 z\} \text {. } \\
& . .2 x=(m+c)-\cos ^{-1}+\{\cos .(m-c)+2 \cos .(n+c)\} .
\end{aligned}
$$

Role－Add together the natural cosine of（n－c）and twice the netural cosine of（ $m+c$ ），and divide the sum by 3 ；the result will be the matural cosine of an angle，which angle taken from（ $m+c$ ）will leate twice z ．

This gives the angle $=22^{\circ} 60^{\circ} 14^{\prime \prime}=0=$ CKG．To find the angle GKE $=0$ ，we have FKG $=(c-2)=47^{\circ} 19^{\prime} 56^{\prime \prime}=$ a；FDK $=(x-y)$ $=79^{\circ} 57^{\prime} 35^{\prime \prime}-5=$ 施。

We have also，FE：FD $=1: 9$ ；
FD：FK \Rightarrow sin．n ：ein．m ； and FK：FE $=\sin (m+v): \sin .(n-v)$ ．
$\because \cdot \min . n \sin .(m+v)=2 \sin . m \sin .(n-v) ;$

 $+\cot . \mathrm{n}=2 \cot \theta-2 \cot n ;$
 cotangent of m_{m} ，add twice the natwral cotangent of m ；the awn will be the natural cotangent of $0 . .^{\circ} 0=26^{\circ} 19^{\prime} 55 . "$ All the other anglea of the figure can be fonnd by addition and aubtraction；and any of the linear distances calculated at pleasure．EH，ED，and GK，will be 46．4018， 26．7428，and $100 \cdot 7355$ chains，respectively．

TEE PRACTICE OF SETTING OUT RAILWAYS AS PRE． LIMINARY TO THE CONTRACT WORKS．

The duty of an engineer when setting out a liae of railway，finally and permanently，has not，so far as I am ewarn，been described in any publication．It may be serviceable to some of the readers of the Journal to show in what it consists，and to impress the evident fact that its careful and accurate performance is important in every department of the construce tion of the line，and to the interest of the railway company in relation to the landowners．Can anything be more discreditable than a distorted or irregnlar alignement；－than a deviation from the gradients established on the permanent section，or than winding alopen？Can anything be more injariona to the character for honesty，which a railway company，through its servants，ought to maintain，than the frequent squabbles with land． owners as to the quantity of land purchased from them？Discreditabie， howerer，as these exceptions to propriety are，instances of them all are familiar to the practical engineer．They are in many cases attributed perhaps to the hurry of commencing the contract works，most fre－ quently they can be traced to the want of experience or of care on the part of those entrusted with the daty of permanently setting out the line．

To assist the inexperienced and to direct attention to the points which chiefly require care，is my purpose in offering a contribution to the pages of the Civil Engineer and Architect＇s Journal，upon this part of an ene gineer＇s practice，and it has been my object to avoid all，bnt the simplest forms of calculation，to reduce them to the fewest in number，and to show how they may be made with the least trouble－in fact，$s 0$ as to save all the trouble that it is possible，consiatently with accuracy．

A line of railway is permanently set out，－Firat，by tracing upon the groand the sentre line，which must conform to the final plan，es to curyes and tangents．
Secondly，by planting permanent bench marks to indicato the gradients laid down on the final section．
Thirdly，by marking off the widths so as to show the space occupied by the railway at formation level，or balance line，by the slopes，and by feace and ditch，from the dimensions presented by the cross sections．

To the two last operations it is proposed to confige this paper．

Setting out Grediente.

A fised point to whioh the gradients aro referred is alwayl determined at one end, at least, of a proposed line of railway, and from this point the levels muat be carried forward, following the oentre line, which, it is assamed, has already been marked by pogs or stampa at distancos which ought not to exceed four or five chains. Two levelitigg staven, a obsin of afty feet in length, and a perfoct apirit loval in complete aod acoarate adjustment, are the instroments with which the engineer should be equipped, and which bo will require to ure with akill and expedittoa.

The gradiente should be laid down in the field,-
1st,-By measaring the length of each from ond to end, and Axing ordinary pegs to mark the beginning and termination.
snd,-By carrying a series of levels over the whole length of the gradient without uning the chain, we as to dotermine the differance of lovel of the ground surface at each end of the gradient.
ard,-By planting permanent bench marks within a convenient distanco of the line, bat secure from being baried or destroyed during the progrese of the worke.

These bench marks abould be formed of posts of squared timber, 6 inches $\times 6$ inches, secured round the heed with an iron hoop, and either driven into the ground as a pile, or, being aquared at the foot, set apon a slate, tile, or flat stone, in a bole dug to the depth of three foot, or theraabouts; and they should atand $9^{\prime} 0^{\prime \prime \prime}$ ort of the groand. Upon this post a saw kerf, nick, or other mark, to be described in the lovel book, mast be made as a reference to the height of embankment or depth of cutting at the end of the gredient, alroedy marked by a peg on the centre line.

It is a matter of most essential convenience daring the whole progress of the construction of a railway, that these bench marks should be readily accessible and properly protected from injary or derangement, and a littlo expense incorred to attain this end will save ultimate cont, in the shape of time, to all parties interestod, whether contractor or engineer.

Mr. 1.

The only calculation requisite to complete this proliminary operation is readily underatood from the figare, in which $a b$ in the ground surface, cd the gradient line, and g b the difforence of leval at the sarface between the limits of the gradiect ed. Then, as wo know the position of the point c, with reference to a, at the beginning of the gradient, that in, in the present figure, the depth of enting $a c=g h$, then $g b-g^{h}+h d=b d$ the hoight of embankment at $b_{\text {, }}$

Now, to render this process perfectly general and free from any hesitation in applying its resalt, the following conventionality mast be bome in constant remembrance:-

Calling, B the sumo of all the beck sights. F the sum of all the fore aights.
G the rate of inclination of the gradient or the height dis, through which it rises or falls in its whole length.
C the depth of catting or beight of embankment at one end. C^{\prime} the same depth or height at the other end.
Then the general formula is $\mathbf{B}-\mathbf{F}+\mathbf{C}-\mathbf{G}=\mathbf{C}^{\prime}$.
In which we muat use the positive or negative sign to \mathbf{C} and \mathbf{G}, as the circomstances may be, thas-

When \mathbf{C} is in cutting it is always taken with the positive oign; when in embankment, with the negative sign.

When G is a faliing gradient, it is to be prefixed by the negative sign ; when a rising gradient, by the positive aign.

Then the sign which will be the resalt attached to \mathbf{C}^{\prime} will indicate whether the end of the gradient is in cutting or embenkment.
Suppose a case, in which $B=200 ; F=908 ; C=+0 ;$ and $G F+8$; then, $200-208+6-3=-5$, where we have a cntting of 0 feet at the begianing of the gradient, and an embankment of 8 feet at the other.

Suppose we use the same figares, bat work the reverse way; then 208-900-5 $+8=+6$.
A little consideration will make this familiar, and the remembrace of the proper aigus will be facilitated by connecting them with the fact, that when the groand falls, the difforence of level is negatice; or, in other words, the sum of the fore eightu is greater thmn the sum of the back slghts. In the same way, when a gradient line falls, the expression \mathbf{G} is negative. On the other hand, where the ground rises, the difference of level is pasition, for the sum of the back sights will exceed the sum of the forenghts ; and in like manner, when a gradient line rises, the exprescion G is positive. Also a negutive sign before C shows that the ground surface is below the gradient lint; and when the sign is positice, that the ground surfice is above the gradiont line ; the frat indicating an embankment, the last a cutting.
The inclination of the gradient must, on no eccount be taken from the ratio of inclination usually given on the section, bat the difference of the beights above datum at the ends of the gradient mast alone be emplojed in all cases.
The groond between the onds of each gradient must be levelled over at least twice, and should any difference appear, it mast be gone over antil all ancertainty as to the truth of the result ranishes; and then-and not untif then-the haight of embankment or depth of cutting, above the nick, or saw-kerf, in the bench mark, should be properly painted in figures on the post, say in red paint for cattinge, and in black or white for embankmenta.
When the iength of the gradient is, in the firat iastance, chained oot, pegs shonld be driven into the ground occasionally where the rise or fall amounts to a whole number; thus suppose a gradient of 1 in 500 , a peg at 300 would show that the rise was 1 foot; at 000 feet that it was 8 fret; and so on. The use of these pegs is to serve as a check apon the levels taken for the widthe, where an accumalation of amali fractional parts of a foor, individually too small for reading on the staff, and therefore nogiected in each chain's length, might amonnt to a serious multiplied error if carried on; and for distinction these pegs should be painted red.

Marking off the Widths.

The first step, at this stage of the work, is to divide the entire length of each gradient into apaces of one chain, or 50 feet each; for these spacea, levels to determine the height of embankment or depth of cutting should be simultaneoasly carried oo with the chaioing and measurement of the widths. It is not ancommon that the surface of the ground is covered with soll or grass turf, wbich is directed in the epecification of earthwork to be removed from the site of each embankment, and sot aside and reserved from ewch catting before the embankments are began, and to be used snbeequeatly in soiling the slopes, in forming mounds for the quick fonces, or to be disposed of to farmers or others. In calculating, therefore, the quantities of earthwork in each chain's length (for it is presumed the contract quantities will be compated from the level books, and not according to the lary method of scaling heighta from a section), we mast bear in mind that the removal of this soil increases the quantity in every embenkment, and decreases the disposable nomber of cubic yards in every cutting: and the thiokness of soil directed to be removed mast be added to the beights of embankment shown, as taken from the surface, in the level books; and must in the same way be anbtracted from the depth of cuttings. For the widths, however, the existing surface must be worked from.
We will now suppose then, that commencing at the beglaning of a gradient, a length of 50 feet has been measured along the centre line, the apirit level get ap, and a back uight to commencement, as well as a foresight to the ond, of the chain's length observed and ontored on a levalbook, the form of which will be presently given.
The height of embankment, or depth of catting, mast be then calculated, as already explained, for the value of σ^{\prime}, and also entered on the levelbooks. Half the width of the rondway mant be measured off horizontally on each aide of the centre line, and at right angles to it, and aleo a space for each alope corresponding to the value of C^{\prime}, multiplied hy the ratio of the slopes. A readiog from the level staff, taken at each of these lant points, and entered on the level-book, completos the first part of the Geld work.
The values of \mathbf{G}, or inclination of the gradient, for the severnl distances of 50 foot, should be very accurately calcalated, and entered in the proper column of the levol-book in the office; -and it is not sufficient that this calcniation be made for one distance and repeated; bat the sum of the ioclinations for any number of separate lengths should correspond with the inclination for the whole length; so as to correct any multiplication of
minute errons from the necessary amission of amall decimals,-For example: On a gradient of 1 in 300 , the value of \mathbf{G} for 50 feet would be 0.16686 , sce; ; now, if we used 0.17 as the nearest approximation and repented it, we ahonld obtain a total difference of 17 feet in one hundred lengths of 50 feet ; whereas the correct difference for 5000 feet is 16 feet 8 inches. But if we take G, for the first two lengths as $0 \cdot 17$, and for the third 0.16 , and porsue the same alternation for the attire leagth, we ahall have a correct rearlt. This will, it is hoped, be sufficient to show one subject deserving of care. All the pointe laid ont should be marked by a nick in the ground; bat if such a mark is not very visible, small wooden pega muat be employed.

The cross sections annexed exhibit what has been dope so far, and what there atill remains to do.

There has been determived, the height of embankment or depth of cuttiog $c c^{\prime}$; the widlh, measured horizontally, of roadway $c d, c d^{\prime}$, and for alopes $d e, d^{\prime} e^{\prime}$; and the heights $c h, f c, f^{\prime} s^{\prime}$ have been taken. And thero remains to calculate, the horizontal addition to the widthe for slopes $e x$ on one side, and horimontal deductions on the other side, of $^{\prime} \boldsymbol{x}$. The properties of the imilar triangles $c g e, c z s$, and of $x x g, a g d$, afford a variety of expressions for the distance $x g$; and in making a selection from them, I have chosen that which requires the least quantity of field work, without increasing the labour in the office.

The notation employed will be-

> Fis. 8.-Catting.

C^{\prime}, to represent the height of embankment, or depth of catting.
$r=$ the ratio of the slopes.
$B=$ half the width of rondway, ac, or $c d$.
$h=$ the hejght read off the stafi at the centre, c A.
$h^{\prime}=$ the height read off at the edges of the slopes as first set out, that is $f e$ and $f^{\prime} e^{\prime}$.
Take $H=\boldsymbol{h}-\boldsymbol{H}$. The expression then for the horivontal distance $\boldsymbol{C}^{x} \ln$ its general form is $\frac{\left(r C^{\prime}+B\right) H}{C^{\prime}+\frac{B}{r}-H}$.
In applying this formala we mast pay attention to the ensential signs of H and $\frac{1}{\mathrm{r}}$, as well as of C^{\prime}.
As already explained, the essential sign of \mathbf{H} is pocitive when the ground in crose section is rising, and is negative when it is falling; and the sign of $\frac{1}{r}$ is to be taken as negative in embangments, for the slopes fall from
the centre towards either side,-and as positios in cotrinas, because the alopes rise in the same manner; the sign by which the result is affected will show whetber it is to be added to, or deducted from the width already set out for slopes.
The calculation of this formula is best performed in the office; and the result in each case should be entered in the proper columna of the level-book, to be net out on the ground on the next day devoted to field work, when the marks indicating the spaces for slopes shoald be removed, and replaced after the corrections.
It is recommended to nee the ordinary slide rule in making the calcula-tions-a modification, in the shape of two concentric circies of card board, divided on the edge into a logarithmic scale, of which the circumference of the smaller circle is the logarithm of 10, I have employed with mach satimfection. The outer circle is laid down on a rectangular piece of cardbourd, and divided from right to left; the inner clrcle is a meparate card, cat exactly round its circamferenco, is divided from left to right, and is moveable apon the rectangolar card on its ceatre ; and all the calculations, involving multiplication and divinion, are performed by inspection. The smallor circle may convenintly be 8 or 3 inches in diameter.

I need not encumber the Journal with a demonstration of the simple formulao I have given; the investigation may, however, prove an amusement to the younger members of the Profecsion, and to them it will be a aseful employment for half-an-hour. The only postulate is that the three polnts, c, e, x, should be m one straight line lying in the piane of the croes sections.
When the corrections to the widths for alopes are made which are due to the inolination of the groand surfice, we complete the work by addiag the neceseary width for bedge and ditch, which ahould be measured off horicontally ; this offors no diffculty.
When all the widthe are measured off, the several lines are marked on the ground by nicking it with a spade or grafting tool, or by ranuing a light furrow with a plough over the neveral marisa.
A convenient form of level book for entering the partioulars, which ought to remain on record, bolonging to the setting out of the widiba, has been alluded to in a previous part of this paper. I annex a form of this kind, and have inserted in it, the registry of a short leogth of railway, sufficient to offer a prazis, to thowe disposed to pursue the sabject.

Form of Level Book to be mood for Setting out Widilho.

Ne.	$\left.\begin{aligned} & \text { Dist } \\ & \text { ance. } \\ & \text { Feet, } \end{aligned} \right\rvert\,$	$\left\|\begin{array}{c} \text { Gra- } \\ \text { dient } \\ a \end{array}\right\|$	Centre Levels.		Value of C^{\prime}		$\left\|\begin{array}{c} \text { Ratio } \\ \text { of } \\ \text { Slope } \end{array}\right\|$	Horizontal Wldths.			Cross Levels.		Difference of levelfrom centreB.		Corrections for Slopes.				Remarks.		
					Left.	Right.															
			Back. B	$\underset{F}{\text { Fore }}$			Catting.	Embuk.	r	Slope	$\underset{\text { R way. }}{\substack{\text { B }}}$	$\frac{\mathrm{B}}{\mathrm{r}}$	Lefl.	Right.	Rise.	Fall.	Add.	Subtract		Add.	Sabtract
0	0	0		$4 \cdot 12$	10.5			$1 \cdot 5$	15.75	15	10	$2 \cdot 22$		1.9		$3 \cdot 15$				Gradient rises	
1	50	0-37	4-12	$7 \cdot 95$	6.3			$9 \cdot 45$		10	4.95	6.32	3.0	$2 \cdot 2$	$5 \cdot 5$			2.96	$2 \cdot 4 \mathrm{ft}$. in 320 ft ., or 1 in 133.		
2	50	$0 \cdot 38$	$7 \cdot 95$	5•97	8.6			12.9		10	$5 \cdot 27$	9'85	0	1.9 0	0	0		2.53			
	50	038	795	597	86			129				$7 \cdot 97$	0	$2 \cdot 7$	0			$3 \cdot 53$			
3	D0	0.37	$5 \cdot 27$	11.50	2.00			3.0		10	$13 \cdot 4$			1.9		$2 \cdot 45$					
4	50	0.38	$5 \cdot 5$	$10 \cdot 12$		3	2	6.0	15	$7 \cdot 5$	10.12	$10 \cdot 2$	1.3 0	0	0	0	$2 \cdot 25$				
			5.5	1012							10.12	$12 \cdot 42$		$2 \cdot 3$		0	$3 \cdot 77$				
5	50	$0 \cdot 37$	$4 \cdot 88$	9.71		$8 \cdot 2$		16.4		$7 \cdot 5$	6.91		2.8			$4 \cdot 75$					
6	50	0.38		11.23		$10 \cdot 1$		$20 \cdot 2$			8.53	$11 \cdot 41$	2.7	$1 \cdot 7$		6.38	$3 \cdot 81$				
	50	0.38	971	11.23							8.53	13.93	2.7	$2 \cdot 7$		6.38	$4 \cdot 67$				
7	20	$0 \cdot 15$	11.23	12.98		$12 \cdot 0$		24.0			9.73	$14 \cdot 58$	$3 \cdot 2$	1.6		$5 \cdot 5$	$3 \cdot 4$				
Total			58.66			12.0															
Totai	320	$2 \cdot 4$	58.66	68.76	$10 \cdot 5$	12.0															

WBSTMINSTER BRIDGE.

Report of the Select Committee appointed to consider the present state of Westminster Bridge, dated Δ ugwot $5,1846$.
The Committee having taken evidence on the subject of the present state of Westminster Bridge, ananimously agreed to the following reasola. tions and Report:-

Resolutions. F. That the majority of the witnesses who have been examlaed on the point concar in the statement, that the foundations of Westminster Bridge having been originally vicious, the bridge can never be permanently sound.
II. That the expense of completing the alterations and repairs now in progress or contenplation, according to contracts and designs under the superintendence of the bridge commissioners, will be very considerable, amonoting at the least to $£ \mathbf{8 0 , 0 0 0}$.
III. That this expenditure will still leave the bridge in a state requiring constant attention in respoct to repairs, and without any certainty of permanent secority; while it will likewise leave the water-way far less adequate to the requirement of the navigation, particularly when the contraction of the stream by the embankment in front of the New Palace is considered, than would be the case under a new bridge.
IV. That, irrespective of the approaches, the expense of a new stone bridge near the site of the present loridge, and retaining the present bridge for temporary use, would not exceed $\mathbf{£ 3 6 0}, \mathbf{0 0 0}$, according to the highest of the eatimates for that object which have been fornished to the committee, either in 1844, or in the present year.
\mathbf{V}. That the bridge estates would probably furcish a clear surplus of at least $\mathbf{£ 1 0 0 , 0 0 0}$, in aid of the funds for the erection of a new bridge.
VI. That Parliament having by direct grants from the Exchequer (the remaining expenditure having been provided by money raised in lotteries under Acts of Parliament) fornished a large part of the expense of erecting originally the present bridge, and haring constituted the commission under which the said bridge was erected and has since been administered; and baving by sec. 20 of the 9 Geo. II. c. 29, declared, that the said bridge shall be extra-parochial, and by sec. 21, that it shall not be a county bridge, maintainable as such bridges are by county rates, has recognized and sanctioned the principle tbat this bridge, which is thus by law excluded from other support shall be maintained, and when needfal, repaired, restored, and rebuilt, at the expense of the Stato.
VII. That, in these circumatances, a sulfictent case has been made out to justify this comaittee in recommending to the-House, that the present bridge be pulled down, and that a new bridge be constructed; and that a bill be broogbt into Parliament next seasion to transfer to the Commissioners of Her Majesty's Woods, \&c., the estates and property of the bridge commistioners, due consideration being had to the claims of the officers of the bridge estates, if their services should be discontinued.
Report.-The practical question which the committee had to decide, in relation to Westminster bridge, was, whether, under all the circumstances of the case, it were or were not desirable to endeavour to maintain the existing fabric of the bridge, or, on the other hand, to pull it down at once, and to substitute an outirely new bridge.
The result of the inquiry instituted in the session of 1844, and referred to this committee, proved unquestionably, that, without reference to money (i. e. assoming that the pecaniary means were forthcoming), every considoration of the convenience of the passage onder and over the bridge, and eren of economy when the expense of the maintenance of the existing structore is regarded, combined to reconmend the removal of the old bridge, and the erection of a new bridge.

It was stated in snbstance by several witnesses examined in that year, that the foundations of Westminster bridge were originally defective; and therefore that the superstructure could never be made as effectively aecure as if the whole were now rebuilt on an improved plan.
Even irrespective of the particular vice of the foundations, the character of the soil on which the bridge is bailt was sufficiently illustrated by the late Mr. Teiford, in the following passage describing one of his own operations on the site: "I then proceeded to ascertain the natare of the matter of which the bed is composed, and on whlch the piers rest ; and I fonnd that an iron rod was easily pressed by hand throngh and and gravel, to the depth of six and a half feet below the surface of tho bottom of the river, or three and a half feet below the bottom of the platform ; bow mach lower a longer rod might have penetrated I had not an opportanity of trying." And as to the foundations, James Waiker, Esq., C.E., who was at the time, and still is, the professional adviser of the bridge commissioners, atated in 1844," Ali the defects of the bridge have arisen from the imperfect foundation of the piern." In his original report to the commissioners of Westminster bridge, se ven years before, namely, 28th Febraary, 1837, Mr. Walker, after having atated "that for every useful and oraamental purpose a new bridgo wonld be preferable, if the funds will jusuly the oxpense," proceeded to state the facts and reasons which led to such conclosion; namely, "that the piers of Westminater bridge were built in caiseons, without beariag piles under them ; that the bed of the river, for a considerable depth under the caiseous, is loose gravel; and that the effect of the removal of the piers and dams of London Bridge is to increase the relocity of the ebbing current, and to doepen the chamel between the
piers, and thas to endangor the foundations." After the experience of pine more jears, Mr. Walker, reviewing the whole case, and being requested to state bis opinion as to the perfect stability of the existing fabric of the bridge." says, on the 19th of May, 1846, "A fer that bridge has sunk and twiated about in the way it has done, from the commencement of its building to the present tlme, I have seen enough of it not to riak anything like a profesaional opinion opon it,' i. e. its perfect stability..... "4 feel with reference to Westminster bridge, that it is like a patieot whose constitution I did not make, which has been in the hands of doctors from the day it was built to the present time." Mr. Walker added, indeed, on the same day, "I do not think that there is any reasonable expectation of anything like a sudden failure of the bridge that would cause public danger; but when it is considered what an immense stake there is, in the case of any accident happening to the bridge, to be set against the taking of the thing boldly in hand, and making a complete job of it at once, to ane an expression common with us, I must say, as I have said from the beginning, that it is nothing but a deference to the Lords of the Treasury which would in my molnd make it politic at all to expend a great deal of movey upon the repair of the old bridge." Mr. W. Cabitt, C.E., stated in 183T, in his report, "It also appears from the history of this bridge, that the fonndations, as at present existing, were designed and calculated for much smaller piers, with a light wooden superstructure for a bridge; which plan was afterwards changed to that for the present stone bridge, and carried into effect opon the original foundations, by casing or lining out the piers, and surmonoting them with heavy stone arches." Under these circnmstances, it is not surprising, as was stated in a contemporary work, which describes the erection of the bridge,-that, "before the bridge was even finishod, viz. in 1747, the third pier from the centre, vir. the finh from the Westminster shore, began to siok; so that the two arches which rested on it departed from their circular figure, and some of their priscipal stones fell into the water." (Gephyralugia, 1751, p.111). The remedy applied, in the first instance, according to that authority, was, to lay such a weight on the pier as to sink it gradually to the level where it might find rest. Accordingly, a weight " amounting to 12,000 tons" was laid on the sinking pier, apparently to sink it lower; and it "continued sinking several months after the weight was laid on." Three whole years was the use of this noble structure retarded by this accident," pp. 111-113. It is trne, however, as the late-Mr. Telford observed, in a memorable report which he addressed to the commissioners of Westminster bridge, on the 12th May, 1823, that "the dangerous instability of the piers of Westminster bridge seems to have passed into oblivion." It is true, also, as Mr. James Walker obscrved in his evidence, that, "in the course of 90 years the fabric had come to a state of repose, comparatively, until old London bridge was removed, the effect of which was to increase the velocity of the tidal corrent. This deepened the gronod under the bridge; and the piers being thus deprived partly of lateral support, and some of the fine sand also getting from under the caisson bottoms, they began to be restlese again."
The cause of the original failure in 1747 was the omiasion of driving piles onder the piers; bot the miserable economy of saving five or six thouand pounds, for which Mr. King (whose name onght to be thereopon preserved in honour) offered to execute the work, prevailed; though it was "另 one part in 60 or 70 of the whole expense of the bridge." (Gephyralogia, pp. 96, 97). Hence, the first failure; and hence all the sabsequent weaknesses of the atructure, and the enormoas expanse of makeshift repairs.

When engineers like the late Mr. Telford and the present Mr. Walker suggest a remedy for an evil, occuring in the line of their own profeenion and in matters daily under their eyea, those who have not the advantage of their science and experience ought to be alow to pronounce an opinion anfavoarable a priori to any suggestion so made. Mr. Telford recommended, that, as piles had not been originally driven under the piers, "piles should be driven ronnd the piers, using the diving-bell for placing them and catting them. A number was done in this way ; bnt even thow that were done did not seam quite at reat ; and the commissioners, from the expense, ancertainty, and delay with which tho operation was attended, seemed, before 1 was called in" (said Mr. Walker in his evidence), "to have resolved, for a time at least, not to enclose any more of the piers in the way I have described." Then came the system of coffor-damming. "My decided opinion is that coffer-damming ja the best plan:" and that plan wes thereupon adopled; but while Mr. Walker discontinued Mr. Telford's use of the diving-bell, and did not concur in Mr. Cubik's plan of pariag the bed of the river, Mr. Cubitt, on the other hand, equally condemped the ase of cuffer-dams in the case of Westminster bridge; atating distinctly "That in the case of Weatminster bridge, the original construction and present state of the foundations are such as will not admit of the coffarm dam plan being carried into effect with safety to the bridge, or a well gronnded certainty of a auccessfol resoll." Between these two discordant suthorities, the commissioners made their election, and adopted Mr. Walker's plan of coffer damming, and in the courso of the following year entered into contracts for completing it.

It is doe, however, to both gentlemen to state that, even in 1837, they each recommended a now bridge, if the pecuniary means could be fonnd, iu preference to any attempl to repair the old structore. Mr. Cubitt ataled "That there is no doubt but a new bridge would cure all the ovile conplained of." And Mr. Walker enumerated those considerations, which"would probably turn the balance in favour of the new bridge." At a
later period, the committee of 1844 received from that genlleman this further statement: "Withont hesitation I say there is no art that can make the piers of this bridge so secure as I could bave made a now one." Neverthetess, upon a review of all the case, he added: "I did not doubt as to the security of the whole superstructure. When I say this, I mast at the same time allow, that the sinking which has taken place in the 17 feet east pier, after the water was admitted within the coffer-dam, is a drawback," meaning, of course, the only drawback, "which has at all raised a doubt on my mind;" a sinking, be it remembered, which has none down aine inches, and has left that pier three inches out of the perpendicular: "but ever since last October that pier has been, as every other part of the bridge has been, perfectly motionless: and therofore I bave reason to think that the canse which created that movement in the 16 and 17 -feet piers is at an end, and that these also aro secure." At this time, the 36 -feet pier had gone down two inches, and the $17-\mathrm{f}$. pier nine in.: "all the piers," indeed, " sunk a little during the operation of driving the piles. ${ }^{\text {" }}$

The confidence, however, or to use Mr. Walker's words in another place, "My faith, which amonnted to conviction previously," (i. e. to the sinkiog in October, 1843), "was somewhat shaken" by that sinking; bet he addr, " it is proper aleo to say, that my confidence has revived, by the entire freedom from all movement since that time," viz. up to the dete at which he was then speaking, 10th June, 1844. If, however, the conidence revived solely becanse the piers had ceased to sink, it mast, of coarse, die again when they again begun to sink. And this is the fact. The sinking has begun again; and, though in no one week considerable, or indeed observable except by very nice tests, yet the aggregate sinking in the course of many weeks becomes perceptible to the eje; and above all, as it is pro. gressive, musl, at some period, terminate in the destruction of certain portions of the bridge, even if it do not endanger the whole fabric. So aarly as 1837, Mr. Walker's recommendation to the commissioners, as already seen, hed beew to build a new bridge, if the funds conld be obtained. On the 7th May, 1845, he stated to the commissioners, stil more strongly,"to the reasons I then gave for recommending the new bridge, there is to be added the bad foundation which has caused the sinking in the two piers; for even half an inch in two years is enough to prove the want of perfect stability, and to weaken that confidence which I ought to feel in order to justify my recommending an outlay of $£ 100 ; 000$, in addition to the $£ 90,000$ already expended. I have before stated, that all the othe piers, which have been finished, are secure; but two piers on the Surrey side next to the defective piers, remain to be coffer-dammed round and, piled; and if the sand noder tbose two be of as loose a nature as those adjoining, they may cause further trouble and expense. Should they require to be taken down, the difference between the partial plan" (i. e. coninuing the system of repairs) "and the entire renewal" (i.e. the removal of the old bridge and the construction of a new bridge) " will be considerably lessened." The causes which induced Mr. Walker to recommend a mew bridge in 1837 and in 1844 and in 1845, have not ceased to operate. The siaking in the $\mathbf{1 7}$-feet pier aince the 7 th May, 1845 to the 19th May, 1846, has been $1 \frac{1}{5}$ inch, and in the 16 -feet pier abont $1 \frac{1}{1}$ inch; and it con. tinues in both. By the report of Messrt. Walker and Burges to John Clementson, Esq., Secretary to the bridge commissioners, dated 20th July, 1846, those gentiemen state that they have this day taken the levels of the piers of Westminster Bridge, and have to report a further ainking of子uths of an inch In the 17 -feet east pier, and $\frac{1}{t}$ th in the $\mathbf{1 6}$-feet east pier, since their report of the 6th instant." [6th July, 1846.] They go on to say, "The movement of zths of an inch in the $\mathbf{1 7}$-feet pier is double what we have had occasion to report for a considerable time. The contioned sinking in the two piers has affected the stones of the $\mathbf{7 2}$-feet arch which rests upon them, an open joint being perceptible in the soffits between two of the coarses near the crown, and one of the south-face stomes having dropped down about half an inch." Messrs. Walker and Burges concur, accordingly, in the statement, "that a way or thoronghfare over the river at Westminster, consistently with the safety of the public, can be best secured (or perhaps we onght now to aay can be secured only) by a temporary bridge ; and that no time should be lost in proceeding with it." Moro than a month earler (11th Jnne, 1846), Mr. George Rennie gave, in ubstance, the same opinion, namely, that no time should be lost in making arrangements for the construction of a new bridge; and being asked, "盍ight not the present bridge serve as a temporary accommodation while another bridge is being constructed $?^{"}$ he replies, "It might;" but he adds, ceith all the chance belonging to it."
It is true that Mr. William Cabitt, the contractor, whom your committee felt it to be their duty to call as their first witness, inasmuch as the progress of the New Palace was a matter, as has already been observed, of comfort and convenience to the two Houses of Parliament only, whereas the safety of the bridge was of paramonnt importance to hundreds of thonsands of the Queen's subjects, stated in answer to the second question, "I do not apprehend the bridge to be otherwise than safe." - "I do not mean by that, that it is in a state of perfect stability; that there may not be from time to time slight settlements in it; but 1 am very atrongly of opinion that no settlement will ever take place to a degree that ahould endanger the public safety."

The same witness, indeed, had stated in 1844, that he thought the bridge may last for two or threo centnries:" "that the bridge, with a very moderate repair from time to time, is capable of carrying the public sufely for centuries to come;" and he added, uccordiugly, "I know no reason why is should be pulled down."

On the extent, however, of the knowledge of the witness as to the facts connected with Westminstor Bridge, it is due to the other gentlemen who gave a very opposite opinion, to state, that Mr. W. Cubitt, being asked whether he can state the depth of the river at Westminster Bridge now, as compared with its depth before the removal of old London.bridge, answered, "I cannot;" and being further asked, "Have yon ever understood that it has already (1844) deepened as mach as five or six feet $f^{\prime \prime}$ replied, "I have never hard such a thing: if that has been stated, it can only be in one particular place, where, from some cause or other, there has been a gullying ont by a peculiar current :" and when again asked, "You are not, however, aware of the depth which has been given to the river by the removal of old London bridge?" he replied, "I am not aware of it; but I am pretty sure that it has not given an average of 18 iuches." The committee understood, of conrse, that in this answer Mr. W. Cubitt was apeaking at the time of the locality in question, namely Westminster Bridge, and not of the Thames at Staines or Wallingford; and therefore proceeded to put the following question: "You conceive that anything less than an avarage of five or six feet would not endanger the security of the sheet-piling ronnd the piers, by which they are surrounded $?^{\prime \prime}$ to which Mr. W. Cubitt answered, "I rather hesitate in giving the procise live: if it came to five or six feet I should begin to feel uneasy, if I was sure it ever came to that." It appears, by sections of the river laken by Mr. George Rennie, and laid before this committee, as furnishing a very curious and interesting view of the changes produced by natural causes in the bed of the river, that between 1823 and 1835 , the river, 50 feet below Westminster Bridge, had deepened between six and seven feet; proving the tendency of the river to "engineer for itself," to use Mr. Page's expression, to a greater degres than was previonsly anticipated; and this measurement near Westminster Bridge proves that the very case had happened which, as Mr. W. Cubitt atated, would have made him "begin to feel uneasy," namely, that the bed of the river had there deepened at least five or six feet : it fact, it has done more, inasmach as, "by a longitadinal section of Westminster Bridge which appeared in Appendix 15, G. 1, to the Report on the Thames Embankment, and apon which," said Mr. George Rennie in his evidence, "I bave coloured by a dark line the existing bed of the river in May 1846, it will be seen that the sixth and seventh piers from the Surrey side have their fouudationa exposed eight or nine feet.'

On the whole subject of the effect which the deepening of the river or any other cause may have had in unsettling the foundations of Westmin. ster bridge, and consequently its superstructure, the committee feel it to be their duty to recal two circumstances to the attention of the House : first, the settlements which did take place in the antumn of 1843, which, as already noticed, caused the bridge to be closed and shut up for carriages during a portion $\boldsymbol{p q}^{\prime}$ the winter following; and secondly, that the favourable answers already quoted as to the stability of the whole structure, depend on the assumption that the whole structure is to be subjected to the same process and system of repair which hat already been applied to parts. Now, the amount of the contract-remaining so to complete the repairs- was, in 1844, $\mathfrak{£ 5 2 , 8 7 0}$, together with a further sum of $\mathbf{£}_{\mathbf{4 0}, 000}$ to make the bridge of the same width as London bridge. This aggregate of $\boldsymbol{£ 9 2 , 8 7 0}$ was therefore necessary, in 1844, according to the then views of the commissioners, to the repairs of the exiating bridge ; and might have been saved accordingly, and made applicable to the construction, in part, of a new bridge, if the repairs had been then discontinued, and if a new bridge had then been snbstituted.

In addition to this, it must never be forgotten, that Mr. W. Cubitt being the contractor for the works commenced in 1838, gave evidence as atrong as that of any other witness, on the question of the original vice of the foundation. In 1844, he referred $"$ to the original defect in the surface of the fonadation;" adding, "I mean that it never was correct and proper." "There was one pier nhich had always been called the sunken pier; that was the one they were obliged to unload when the bridge was first built. Then these two other piers in the bridge which were called sinking piers: they had that name given to them becauso they had been in the habit of sinking more than othera," And being asked, in reference to a subsidence of nine inches in one of the piers, whether such subsidence shakes his belief in the future stability of the foundation, he replies, "I always had an impression that the bridge would be liable to sink a little;" and being further asked, whether, "When yon say 'a litue,' do you consider nine inches a great or a small subsidence ?" Le replies, "I consider nine inches to be a great deal; but with reference to an arch of that form and with stones of that thickness, it is of very litule importance with regard to the safety of the bridge." While, however, Mr. W. Cubitt statea, that, so far as the original defectiveness of the foundation is concerned, the bridge is sufficiently stable for all purposes for which it is required, that no disaster ever can accrue by wbich the public would be damaged from that cause, he does not retract his preceding opinion, "that the bridge alwajs must be an imperfect structure" in reference to the mode in which it was built; and, though he may contradict the opinion of others, he cannot gainsay the fact, that the bed of the river has been gradaally deepeniag, and the foandations of the bridge abraded and laid bare in consequence; and the committee feel, that if this be so, Westminster bridge cannot be "as atable as it ought to be.

The very remedies, indeed, which have been applied to strengthening the foundations of the piers may in fact have looseoed them, by loosening the ground on which they rested. Even so early as the 16 th of May, 1823, the late Mr. Telford himself admitted, in refereuce to his own sug.
cestion of aheot-piling, "I believe I did not aumefently explain that by driving piles through loose sand and gravel, that the matter is always disturbed, and, daring the operation of driving, liable to be washed away, and of course produce more risk to the piers than if left undistarbed." And Mr. W. Cabitt boing asked, as the coatractor engaged on the work, "Can jou state to the committe whether it be or be not the fact, that every pier, as has been alleged, with only one exception, sank, more or less, after the sheet-piles round it to secure the bottom of the caisens from bring noderwashed by the general deepening of the river, were driven ?" Mr. W. Cabitt replies, "they have not all andy;" and being thereapon reminded "The question implies that one was an exception; do jou wish the committee to understand, that all the piers, with ove exception, have sank more or less since the pilen were driven ${ }^{p \prime}$ Mr. W. Cabitt answers, "I am not prepared to state positively that they may not all of them have sunk a litue. I am not quite sure but that they may have sunk an inch or half an inch, or some very slight thing; but one of them sank pine inches, and another sank two inches." And at to the fafuro, Mr. W. Cubitt had already stated his previounly formed opinion, thet the bridge was not in any part of it in a state of perfect steadinens; that it might alwaye be liable to subside a little, from the defect of the foundation."

The result of the whole question connected with this species of repair is stated by Mr. Walker in answer the question, "Do jou think that the bridge will now be brought to a state of as perfect eceurity and stability as anew bridge, if yon were called upon to comatruct it ${ }^{\prime \prime}$-" Certainly not." Aad in answer to the next question, "Do you think that by any resources of your professional art, this bridge can be brought into a state of perfect stability and secarity as compared with new bridget" Mr. Walker replics, "Without hesitation, I say, there is no art that can make the piers of this bridge so secure as I could bave made a new one." It is right, however to add, that Mr. Walker stated, in his examination this sesaion, "that the measures which had been adopted had been completely succesaful in preventing any further movement in six of the piers: there has been no movement since" (i. e. since the 7 th of May, 1845,) "in any of the piers, except the two 1 have already referred to." Neverthe. lesp, in answer to the question, "Are you, or are you not of oplnion, that with a due regard to the public convenience, and to avoid danger, arrengements should be made, without loss of time, for building a new bridge f"Mr. Walker's answer is distiact: "Certainly, without reference to money, I say "Yes.")

As to the mere durability of the bridge, by which the committee understand the perfectness of the masonry both in the arches and in the piern, excluding always the question already discussed as to the stability of the foondation, there appears no reason to doubt the accuracy of Mr. Walker's opinion: "There is no part of the work which will not last for aget;" but a qualification to this opinion must bere be given on the avthority of Mr. Walker himself, who, in 1837, stated as follows:-"Prom the piers being intended originally to carry a wooden bridge, and being cased round when a stone bridge was resolved to be substituted, and frow the very bad quality of the masonry, the superstructure aever cac be made a very mecore and solld work ;" and even admitting the soperior accuracy of his later opinion, when, during the interval, he had had fuller opportunites of examination in relation to the durability of the superatructure of the bridge, it is obvious that this admission does not at all establish the expediency of maintaining the present bridge solong as the first and main question, as to the auffiriency and stability of the fonndations on whicb the structure rents, remulns in a state $s 0$ onsatisfactory as at present.

It was not contended in 1844 that the bridge was then in a "perilous" state : Mr. Walker expressly repudiated the word; and, even before the new system of repairs, be had stated, "that the bridge is not in immediate danger; ${ }^{\circ}$ and W. Cubil!, Eeq., the civil engineer (and not the gentlenan of the same name, who is the contractor for the bridge), being asked, in reference to the state of the bridge when the repairs should be completed, "Your conclusion is, that the bridge will be an insecure bridge f " replied, "A very doubtful one." "You will not any it will be an insecure bridge?" _" No." He had been previously aaked, "Do you regerd it poesible, Fith any talent and any expenditure of money, to make the fonndations of Wetminater bridge as secure, ander existing circumstances, as the foundations of a new bridge could bet" replies, "Certainly not." Mr. Cabitt, C.E., forther states, that "from what I have seen, I would rether build a new bridge than speod more money upon this, seeing it bas done exaclly what I expected it would do when I mademy report in 1887. My opinion is, that it is best not to go on spending a great sum of money to repair and widen and beavtify this bridge, which never can be good, either in its rond. way or in its foundacions." Therefore, under all the circumstances, the bridge having proved to be too heary for the nature of the clay it stands upon, it being very difficult to protect it without piling and paring, I say, as an engineer, that the best thing is to dispense with all further ropairs, and muke a new bridge. I said so before, and Mr. Walker seid so also, and I am confrmed in that by what has subsequently taken place." And when usked in the next quention, "You consider the only question to be one of finanoe?" be replies, "Certainly; the bridge is a mast of rubbish. The piera and the masses of masonry and rubble were first boilt for a wooden bridge, whicb was afterwards converted into a stone bridge, and henvy arches were put upon that which was not more theostrong enough for a wooden bridge." The small piers were then cased round to make them larger; and apringings were mado for stone arches, and a very heary bridge was put on those foundations."

Though Westminater bridge so constracted,-without plies and on the imperfectly-levelled natural bed of the river,-did actually fail during tis constraction, yet, "after it was constructed, and the arches which had failed were rebuilt, it stood for some 60 or 70 jeers unmoved." - On the removal of the dan cansed by old London bridge, "a wider pasage was opened to the Thames, and the forndations of the arches onderaenth Weatminster bridge began to wear away; so much 40 , that they canced a great apprehension of the bridge falling; and from time to time they vere repaired by the diving-bell, and various other modea. Mr. Telford was called on, and advised stones being thrown in; and he advised also to pare underneath the archea between the piern, so that the bottom might not be washed away. After his death, the commissioners did me the honour to call upon me to advise them. I considered the thing, and felt quite aware that disturbing the hottom would not be a good thing; but that if we could contivue the bottom exactly as it always was, the bridge wonld wend the same as it had done; that there would be nothing to prevent it; and to do that, I propose to pave with large stones, iwo feet thick;" * - 4 40 pave a perfectly filat floor down as low as the frames which form the foan. dations, and have been carried into the wil.". " "I proposed, paving ander the whole of the bridge, and 50 feet parallel along it, abowe and below, so a to make a perfect atone parement ; with such pavement tho botom never could bave washed away; and withont weahing awry, the piers would not bave falled down.'

A suggestion made by such an anthority as Mr. Cubitt, C. E., is of course entided to just attention; but your committee, after bestowing that attention apon it, feel bound to state two objections to it, which, in their judgment, are Insuperabie. They relate to the effect of the plan upon the pavigation, and to its cost. The one may be convejed in the admission of Mr. Cubitt himself- ${ }^{4}$ The ouly disadvantage (if disalvantage it can be called) of thim plan is, that it limits the depth of the navigation onder the bridge to the lavel of the stone paving; but as this would be greater, by aboot three feet, than originally existed, and till after the removal of the old London bridge, I imagine that no complaint could arise on that head."

- The answer to this observation is, that thoae conceroed with the state and probable condition of Weatminster bridge have to deal with the river, and its actual depth in 1846, and not with its depth in 1828 ; and must not forget that if the river ban deepened under the arches, say six feet, the proposed plan of raising a pavement of something like three feet, would take away a depth of three feet from the actual gavigation. The secund objection ia, that irrespective of all repairs to the bridge; and leaving that bridge as it is, the probable cost of the paving would, in Mr. Cr bitt's own opinion, be about $\mathbf{8 1 2 0 , 0 0 0}$. It is not necessary, therefore, to pursue this subject.

Abother remedy was proposed by aoother gentleman, Wm. Hoaking, Esq, architect and engineer, and professor of the principles and practice of architecture in King's College, London. While he differed from otber witnesses on some important points, and specially in his belief that "t the present foundations might be rendered sufficiently secure to be ontrusted with a new superstructure, especially if the superstructure was not an annecosarily heavy one," he concurred with almost all in the opinion that the present bridge cannot be made "permanendy available," to use his owa words, "without the bar or weir I bave spoken of, which I consider to be an absolnte esseatial to the security of the existing foundations." Now, inasmoch as the bar or weir in question is, in the judgment of the same witness, a necessary precavtion "at the other bridges" also, as otherwise "all the other bridges will be vadermined as well as Westminster bridge," it is clear that his remedy must be viewed in relation to the whole of the river as it fows through the metropolis ; and irrespective of the objections to which the plan, if ever adopted in any one breadth of the river, woold be liable as an obatruction to the navigation at that part (which, even the witoest admits, "it certainly would not improve,"), and so on, wherever adopted, the ultimate expense of making succeasive weirs above each bridge would be obviously immense; and the committee-to confine them. aelves to the consideration of this project in relation to Weatminster bridge alone, the immediate subject reforred to them-annot recommend any further attention to it.

However wonderfol as a structure Westminster bridge was regarded at the time of its erection, and there is reason to believe that at that time it was the longest stone bridge which covered water all the year round, not in Englaod ouly but in Earope, Mr. Hosking expreases an opinion, in which your committee fully concur, "that a bridge, in every respect better, would be produced at the present time by almont any man of moderate ability, who is conversant with the subject."

On the general subject, both of the present state of the bridge aod of the expediency of subsistuting anw one, other professional gentiemen, of the first cbaracter for akill and for experience, give evidence to the tame effect.

Mr. Rendel states, "I should be very indisposed to risk any profonsional reputation opon giving to the present structure that permanelt character wbich is adverted to."-u The foundations are wholly different from the foundations of any other bridges across the Thames."-" I do not believe that any talent or any skill, or any application of that skill, conld, at a cost wbich I should call justifiable, give to the present bridge that cecurity which its importance demands."

Mr. George Bennie states, "I should decidedly condemn the old ane (the bridge), and recommend the expediency of its being taken down, ro garding it man engineering questlon entirely." "Settiog aside thet (i.c.
monery, I should condemn the present bridge decidedly, and have a new bridge; not only that, but you may be liable to very considerable further repains besides those at present contempinted." - "I have no other observasion to make, but that I consider it a great pity to devote that money to the repairs of an old structure which might and ought to be devoted to a new one, on the groand of the insecurity of the present bridge, and that there is no safe guarantee for the money laid out apon it heing properly spent" In his evideace before the present committee, Mr. George Reanie stated that he retained precisely the same opinion: "I think it would be throwing away good money after bad to attempt to repair the bridge so as to zalk it a permanent structure." The removal of from $\mathbf{2 0 , 0 0 0}$ to $\mathbf{3 0 , 0 0 0}$ tons, as stated by Mr. James Walker in 1844, in order to lighten the vertical pressure opon the piers, by means of the abstraction of that material, has, in Mr. George Rennie's jadgment, not sacceeded in preventing the farther subsidence. In fact, the further subaidence is stated distinctly in the evidence of Mr, James Walker this sesaion.

The committee could readily extract, for the more easy consideration of the House, nomerous other passages in the evidence of 1844 ; but they have perhaps sufficiently selected some of the most striking answers which have been given to the inquiries made on the subject of Westminster bridge; and they leave the remainder, without forther selection. to the attention of the House, But they cannot conolade thls collection of extracts from the evidence of 1844 without adverting to the fact, that the vitmeases who depose the most explicitly to the propriety of removing the existing bridge are men of the higheat engineering talent and experience in the empire; while the only witnens, however excellent and respectable in his profesaion, who gave in that year any testimony in favour of maintaining the present structore, is the contractor employed to repair it.

Mr. Walker, wbile, as already stated, be repudiated the word "perilous," as applied to the bridge, diatinctly ntated that the want of money for a pew bridge would alone induce him to propose the continuance of the acteal slructure.

When examined In the present semion, Mr. Walker admits that, so far as regards ove of the piers, "My oplnion of being able to make the bridge perfectly mecure, has not been a correct opinion, as far as it is shown at present. There is to be set against that, the expense to wbich the commissioners bave been pat, in repairing and strengthening the other piers; brot, on the whole, my opinion is now, that, but for the question of expease, the better way is, ander all circumstances, referring to the im. provement of the situation, the future stability of the work, the giving an easier approach, an easier inclination, a wider bridge, a better water-way, and an improved navigation by amaller number of piers, the aafer and bettar conrse is to rebuild the bridge."

This answer well embodies the chief considerations which induced the committee to recommend, by unanimoas resolution, the removal of the existing structure, and the sabstitution of an entirely new bridge.

Other considerations, however, have not been without their weight on the minds of the committes in the resolution which they adopted. The traffic over Westminster bridge has greatly increased within the last few years, "so much that it is difficult at times to get over it." It is obviously immense. Sir James M'Adam stated, in 1844, that he had been directed to canse to be counted the nnmber of horses which passed Charing-cross anaually, and that it had been ascertained that it was $6,600.000$; and though there mas no record of the proportion which passed over the bridge, be added, "I consider that the larger proportion of that thorougbfare, particularly the beavier carriages, paseed over the bridge." It is stated further in evidence, that the inclination of Westminster bridge wes in 1844 probably greater than that of any bridge over a tidal river in England; that ite inclination was, at its commencement, i. e. for a distance of 50 yards at each end of the bridge, about I in 141, and about 1 in 33 for the remainder. It is true, that the inclination has been reduced slace 1844, but it has been reduced by the sacrifice of a quarter, at least, of the carriageway of the bridge. As a general principle, it is clear that the wear and tear, both of the animals which draw a carriage on a steep inclination, and of the surface of anch inclination itself, must be considerably greater than on a level, or than on any road-way in proportion to its approach to a level. When, in addition to this, it is recollected that, in the course of tbe system of repairs recently adopted, and for the purpose of lightening the vertical preasure on the bridge, such a mass of stone has been diaplaced as has reduced tbe present aurface of the road by a depth of five sleps below the footpath, on both acclivities, and that the carriage-way has thereby been contracted about the widib of a carriage, it is sufficiently evident, that almost in the measure of the increase of the traffic has the accommodation for its pasazge over the bridge been diminished,

When, further, it is recollected that the headway under the existing Wealminster bridge is lower than the headway under any of the bridges in the metropolia, and until reaching Batiersen, it is clear that, as favourfeg the anvigation of the river, it has no special claims to consideration.

New Bridge.

The committee of 1844, whose report has been referred to the considera. tion of the preseat committee, took evidence on the question, whether, in the eveat of its being decided to pull down the present structure, and to erect a new bridge, the material shoald be of irou or of stone; and if of iroa, whether in sospension or in the form of arches; and if of atone, whether of granite or what other material. And the committee, in the
present eeasion, oramined at some length bolh Mr. George Rennie and Mr. J. Walker, on this geaeral subject. The committee do not feel it nocessary either to analyze this evidence, or to come to any formal concluaion on the subject, except to recognise the two following propositions, namely, (1) that a aupension bridge, though affording greater facilities to the navigation than any other form of bridge, is inexpedient; and (2) that irrespective of expense, a granite bridge is expedient. On the first point, Mr. George Rennie compressed into ooe sentence the whole question:- The great inconvenience of sospension bridges is, that they are always at work, that they are always in a state of degradation; whereas, bridges by compression are always in a state of equilibrinm." The illustrations which he gave will well repay the attention of the Houge. On the second point, it is clear that, in proportion to the strength of the material, may be its thinness ; and a greater waterway can be afforded by an arch of granite than by an arch of Bath stone. From this gentleman, from Mr. Walker, from Mr. Barry, and from Mr. Page, the committee have received deaigns for a aew bridge, and have directed them to be lithographed. All have great merit; and perhaps the one which possesses the least might, if it stood alone, have satisfied every requirement. Bat the committee do not feel it within their province to give any opinion on the relative value of these productions. They do not, however, consjder it to be inconaistent with their doty to recall to the attention of the Hoose a suggestion applicable to the erection of all public works; it was made to the committee of 1844 by gealieman already cited, who appeared to have given particalar attention to the subject. The substance is stated in the nezt paragraph.

Competition Desigur.-On the mode by which competition might bent secure the application of the first talents to the production of the best designs, and might theace enable some superior authority to select one from all, or to combine different parts from two or more, Mr. Hosking stated as follows (and the committee concur genorally in his opinions) :-The essential matters should be defined by the proper authorities, in the first instance, and before attempts are made to oblajn designs. A specification of what is required should then be made; and this should be more or lets particular, as it may be determined either to fix a sum of money as the limit of ex pense ; or, on the other hand, to recelve designs with reference to the object and mithcut limiting the expense. Sucb a specification should be put into the hands of a reasonable number of competent practitioners, with a request that they would each make a design for the contemplated work in accordance wlth the stated conditions. All the designs 00 obtained may be examined and inveatigated with the advantage of the presence of their anthors to explain what they may bave intended, and to correct what may be misunderstood. In this manner the beat energies of competent men would be applied to the work, and it is probable that the best reeplt would follow. ${ }^{-\quad \text { A general competition would end in general dimap- }}$ pointment; - as none of the persons who would be recognized as most competent, would send designs without being specially applied to for them. - At the time London bridge was in contemplation, advertisements were issned for designs, with offers of some three or four preminms. Drawings tere sent accordingly by 70 or 80 persone, and the premiums were awarded to the three or four which were said to be the best designs; bat not one of them was used; thes were immediately thrown away, and a design was taken up which had not been in the competlition ; but which, indeed, bad been in the hands of the bridge committee beforeband, and the author of which was already dead. The late Mr. Rennie's design mas execated. In order to avoid this apparent invidionsness and unfairness, and to secure the real benefits of a competition among competent mon, the selection of the architects and engineers ahould bo limited; and each should receive a cortain remuneration for the wort Which he might send in. No man can afford to work for nothing. Every design asked for should be paid for; and no one ought to be asked, either directly or indirectly, to make a design, unless it be intended to pay him for it. If this system were adopted, the property in the designs so sent in would belong therearter to the authority, by the directions of which they had been sent in ; so that tbe good parts of one design might be accommodated to the good parts of other designs, and the combioed result of the whole would be something superior to that of any one individual design. This is one of the adranteges from requiring designs from persoos of known ability, and paying for them, so that all the designs obtained may be turned to acconnt. It is the parties seoking designs, and who desire to derive advantage from the application of many minds to the same subject, that are to be benefited; and they who seek a benofit must be contented to pay for it. It can nover happen, but that in several designs for the same thing there will be some points or parts in some of the designs, other than that which may be generally the beet, better than the same points in the best design. When all are paid for, all may be need; and the best design in a "concurrenoe" may be greaty improved by the incorporation of the excellencies of the others.

Site of the New Bridge.

The House will observe that the committee, in their resolations herein adverted to, have not prononnced any opinion as to the precise site of the new bridge; but it is pbvions that, while many considerations might be urged for the removal even to a distant position, other considerations, entitled to the higheat attention, might be adduced in favour of the exinting line, or one in immediate joxia. position to it. It has been suggested by a high authority that it would be verj. desirable to remove the bridge to the south of the Victoria Tower, thereby opening a more direct communication
from the region of Belgrave-square to the right bank of the river, and generally to Lambeth, Sonthwark, and London bridge, and the ruilway termini now established in ite neighbourhood, or hereafter to be so established. It has been also suggested, as a consequence of such remoral of Westminater bridge, that a new bridge might be thrown over the Thames at the east of Whitehall-yard, with an access from Charing-cross, and another access from the Horse Gnards. But independently of the objection, more or lese valid, of disturbing the present trafic from Charing-cross to the north, and from George-street, the rest of Westminster, and the parks to the west, the commirtee think it right to refer to the evidence of Mr. Rendel in 1844: "I do not believe that there is a part of the Thames better suited for a bridge, by which I mean a permanently foonded bridge, to stand npon, than the site of Westminster bridge." It is right to add, that the approach to the actual bridge from the left, or Middlesea hank of the river, is carried along Bridge-street, almost the whole of the property on the north side of wbich is part of the bridge estates; and therefore, that a new bridge, on the existiog site, would be erected with little sacrifice of that property; and that a new bridge erected to the north of the present structure, that is, further down the river, and at a better point of view for regarding the New Palace, need involve no other sacrifice of the bridge estates that that of the ten houses forming part of the north side of Bridge-street, and withont any considerable ontlay in the purchase of the other houses on the same side. In connexion wth this consideration, it Was at one time assumed, that, though there was no prospect of permanently preserving the present bridge, it might, nevertheless, continue available for the temporary passage over the river, while the new bridge was in the course of erection in joxta-position to it on the north. But Mr. Walker urged, in the apring of 1845 , the erection of a temporary bridge as even at that time desirable; and he has orged it with increasing earnestness in the courne of the present examination. He estimates the first cost of a temporary bridge, of which ho has prepared a plan, at $£ 40,000$; and be considers that a certain portion of that expenditure might be recovered by the sale of the timber forming the materials of that temporary bridge, when the new bridge should be opened; and that the remaining portion of the cost of auch temporary bridge would be met by the valae of the materials of the existing bridge, if used up on the spot.

```
Estimate of New Bridge.
```

Your committee will now proceed to consider what means remain in the hands of the commiseioners of Westminster bridge, in aid of the expense of a new structure; and what, in the first instance, is the constitution of the commission itself.

The management of Westminster bridge is in the hands of 94 commissioners : 26 sit by virtue of their offices; 57 by virtue of their seats in the House of Commons, as representing the metropolitan counties; and 11 sit as elected by virtue of the Bridge Act, 9 Geo. II. The annual expense of that management, irrespective of the expense of repairs, is in salaries :

Treasurer			B. ${ }_{0}$ d.
Clerk	- ${ }^{\circ}$	40	00
Clerk of the Works		140	00
Sir James M'Adam for "coating the road," including a small sum to bimself for superintendence.			
Police .	- . -	169	160
Gas	. .	65	0 0
		,487	6

The general expenditure in connexion with the bridge from the 5th of April, 1810, to the present time, that is to say, to the quarter ending 5 th of July, 1846, has been $\mathbf{1} 190,221 \mathrm{lss} .10 \mathrm{kd}$. There is a further sam remaining due to Mr. W. Cubitt, under his contract ; and another sum due to Mr. Walker in respect to his per-centage. Probably, if the account could be closed at the date of this report, the aggregate charged and chargeable upon Westminster bridge would not be less than $\mathbf{E 2 0 0 , 0 0 0}$ from the 5th April, 1810, to the Lth J aly, 1846.

The sum actually expended is distributed over three periods: I. From the 5th April, 1810, to 51h April, 1838, when the commissioneri began their great system of repairs and alterations in the structure and fonnda. tions of the bridge. II. From the 5th April, 1838, when that great syetem may be held to hare commenced, to the 5th April, 1844, which may be taken as the period when the attention of a committee of the Honse of Commons was called to the question of the expediency or inexpediency of continuing that system. III. From the 5th April, 1844, to the sth July, 1846, namely, from about the period when the said committee concurred in the expediency of coninuing the system of repairs, and thereby encouraged the commissioners to proceed therein, to the periud when the present committee, on a review of all the circumstances which had occurred up to the 15th July, 1846, unanimously, on that day, recommended the removal of the existing bridge and the erection of a new bridge.

The sum for the repairs under the old system, and for management, Sxc. was for the first period
The sum for the repairs ander the new system, and for management, \&xc. Was for the second period
And for the third period

83,097 0 9f
$81,84116 \quad 8$
25,782 $12 \quad 5$

In addition to this sum, in addition to the two items which remain chargeable upon the bridge eatates for work already done, and for the percentage apon it, it must always be remembered that, in order to complete the great system of repairs commenced in 1888, two, at least, of the puers remain to be included in that aystem, at an expense proportionate to that of the others, and the widening of the bridge 12 feet to make it equal in width to London Bridge, that is to ary, building a bridge 12 feet broad, in union with the existing bridge, on its sonth side, at a cost of $\mathbf{2 4 0 , 0 0 0}$, the aggregate of all which was stated by Mr. Walker, the professional adviner of the bridge commissioners, at $£ 100,000$, abont the time when the works generally were discontinued on the bridge; namely, in the early sammer of 1845.

The House will observe that the committee in their resolotions took the sum remaining to complete the repairs, and which might be asved aod applied to a new bridge, if those repairs were discontinued, at mo more than $£ 70,000$; they tloo took the amount which might be reised on the credit of the bridge estates, in aid of the fond for erecting a new bridge, at no more than $£ 100,000$;-in both cases preferring to anderstate rather than to overstate the facts on whicb their recommendation has been found-ed;-but, as they have placed on record the evidence, parole and documentary, which they received on the general subject,-the excess of charge which might remain to be incurred if a new bridge were not built, and the erceas of assets, above the amonnt which they have been willing to take as available for a new bridge, if such now bridge be built, will be open to the judgment of the House.

The commissioners began the works with an amount of $\mathbf{5 5 1 , 1 2 4} \mathbf{1 9 4}$. 6d. in the funds, and a cash balance of $£ 4,2990 \mathrm{0s}$. $10 \frac{1}{\mathrm{~d}}$., being the accumulutions of their income above their expenditure. Since that time, besides the, expenditure of their current income, sales have been made, in order to provide for the repairs which they had andertaken. These sales bare reduced the capital to $\mathbf{£ 1 0 , 0 0 0}$ Consols, giving an income, after deducting the property tax, of $£ 2916 \mathrm{~s}$. The vulue of their estates was estimated by their architect and surveyor, Philip Hardwicke, Esq., in 1843, at £172,521.
The aggregate of this sum, and of the funded property, might almost have aufficed, according to some of the plans before the committee of 1844, to build a new bridgn; or if not, at all events to have required bot a comparatively small sum from the public Exchequer in order to complete the whole structure, as well as the approaches, of a new bridge.
It is right to recollect that the case of bridges in the metropolis differs widely from the case of those in the connties of the empire; not ooly ioasmuch as all the Queen's subjects have a common interest in their resort to her capital, and a share in the fame wbich its aggrandisement reflects on all her dominiona ; but apecially, because, perhaps from this canse, the State did, in fact, orect the ooly bridge which for centuries existed in London; and in the last centary did create, directly and indirectly, by grants from the Treasury and by money raised by lotteries, the very fand from which the present Westminster bridge was actually itself buidt a hundred years ago. If, therefore, it be said, that the natiou does not erect bridges in the county towns of England, or did not erect the other existing bridges in the metropolis, it may be replied, that the case of Westminster bridge, built in a large part by annual votes from the Treasury, stands os different and now exclusive grounds; that the structure has been adopted by the nation; and that when Parliment enacted,-tee 9 Geo. II., c. 29, s. 20,-that it should be extra-parochial, and should not be a county bridge, chargeable either to Middlesex or Surrey,-mee same Act, s. 21,it sanctioned its claim to be national, and to be sustained at the expense of the empire.

The expense bowever of a now bridge, if a new bridge shall be deemed essential, will not, as alreudy shown, necessarily fall on the State esclasively. It was calculated in 1644 that a sum of $£ 172,581$ could be raised on the credit of the bridge estates, irrespective of a comparatively emell amount of funded property then in the hands of the commissioners: and even deductiog from tbe number of their houses, those which would be required for the completion of a most magoificent approach on the Westminster side, if that site should be adopted, and indeed on the Surrey aide also, there will atill be left, in addition to the balance of the funded property, enough to raise at least $\mathbf{£ 1 0 0 , 0 0 0}$

Resolution of Committee.-In this atato of things, the committee felt themselves juatided in coming to the resolation which on the 15th of July they adopted unanimously, -That it is expedient that the present bridge be pulled down, and that a new bridge be constracted; and it is further axpedient that a Bill be brought into Parliament nezt session to tranyfer to Her Majesty's Commissioners of Woods, \&c, the property of the bridge commission; just consideration being had to the claims of thoee ofioers of that commission whoseservices should be discontinued.

Partial Destruction of the Net Locgs at Beigtol.-By the
 extenative works now in progreme by the dock company, with a riew to widentag the couthern entrace lock suficiently to mimit of the ingress to the port of vessole of the cepecity of the Great Western ard Great Britaln, were aerionaly injured. In order te admit of the necesiary excavatlons and erections, the fow of the tide hed to be kept oot of the tock la quention, and this wan eought to be effected to the unad way, by drivios doable rows of ples and londing the tatarntices, to as to form powerful daros.

ON THE PROFESSIONAL EDUCATION OF THE ENGINEER AND ARCHITECT, THE BUILDER AND MACHINIST.

The Classes of Architecture and Engineering at University College, ander Professors Dooaldson and Harman Lewia, closed on the 15th of Jone. The distribution of prizes, of which we were compelled last month to defor the notice, took place on the 1st July as follows:

In Architectwre.-First year's conrse in Fine Art: Prize and First Certifonte to J. Benwell; Second Certificate to F. Lawrence (see below). Firat year's Clase as a science : Prise and First Certificate to G. P. Boyce and F. Lawrence, equal (see below); Second Certificate to B. J. Benwell (nee above). Seoond jear's course : Fine Art Prize and First Certifcate to John Pollard Seddon; Second Certificate to W. Wood Deane (see below). Second year's course as a science: Prize and First Certificate to J. G.D. Allason ; Second Certificate to W. Wood Deane (see above).

In Engineerinf. - Prize and First Cerlificate to F. Lawrence (see above); Second Certificate to - Mackenzie.

The advantages of the courses of instruction followed at this Inatitution mast be obvious to every one. It has hilberto been too much the practice for yonng men in this conntry, in almost every department of professional knowledge except the medical, to neglect a systematic elementary course of education, and to rely upon the experience of actual practice to carry them through their arduous career. The consequence has been that men of an inferior rank in society, moved by greater energy of purpose, more self-denying habits and activity of mind, have devoted their spare hours to master the elementary branches; and thua having fitted themselves for great undertakings, have stepped forward and acquired repatation and wealth, while their more genteclly connected competitors have been thrown in arrear by the weight of the more solid acquirements of the humbler aspiranta. Nay, we feel astured, that if, in the inferior ranks of construction and mechanical science, those connected with such pursuits an buildings and machinery would make thomselves acquainted with the elementary priaciples of acience, their inventive genius would receive greater development, obstructions would be more readily overcome, and they would find less dificulty in giving reality to their conceptions. In every department of knowledge there is now a great advance, and those, who wish to sacceed in the contest for wealth and fame, mast propare themselves for the struggle by their superior attainments. The studeat, the apprentice, the mechanic, the foreman, the clerk of the works, may, in such courses as these, learn to regard their pursuits in a methodical aystem of instruction and reasoning. Commencing from first principles and masters of the elements, they proceed to the conaideration of their application. The choice of materials, their applicability and adaptatation for economic parposes, are brought before them; a wide and comprehensive view of the world of acience is opened; they eequilre the babit of reasoning with precision and of a systematic consideration of objects; they have explained to them, in addition, the finest examples ; they learn the history and progressive development of invention, with the names and charseters of the most illuatrions men; they are alco made acquainted with the valuo and importance of the best scientific literary works. They are thus theroughly grounded with a fund of knowledge, which the hurry of subeequent practical life forbids their ever acquiring, and which they cannot gain in the office of the professional man. It were idle to suppose that this system can supersede the knowledge to be gained under the architect, engineer, or bailder; but it completes, at all events, the practical experience acquired on the works of the master: and the edncation of the young man being perfecter by this combination, he is enabled to follow up his purnuit, the matured and well grounded architect, engineer, builder, or mechinist, and not with the raw inexperience of unskilled yoath.

Both the Professors accompanied the clasees during the session to works in progrese, and explained the principles which directed the conception and execution. Professor Donaldson bas had to acknowledge the liberal conrtery of the Deans and Chapters of Westminster and St. Paul's, they having granted unrestricted permistion to the Profensor and his pupile, to visit overy part of those edifices, the examination and description of which occupied in each case many hours.
To give an iden of the habits of thought foculcated in the class roome, We transcribe merely two of the questions out of the series which the atudents had to answer for the prizes ; and we will ask, if the qualitication to anawer these does not presuppose a course of provions atudy of incalcalable beneft to the fature caddidate for fame :-
*Take a review of the history of architecture from the third centary of the Christian era, and investigate the infinencee which probably caused the modifications of sentiment perceptible in the edifices of the different epochs of mediaval art in various countries."-" Sopposing that the expression of a leading principie in buildings may be distinguished, accordingly as the leading lines of the elevation may be either vertical or horizontal; examine this theory by reference to the edificen of ancient and modern art, and state under what class respectively should be ranged the monuments of Egypt, Greece, Rome, and the Middle Ages."

REGISTER OF NEW PATENTS.

If additional laformation be required reapecting any patent, it may be obtained at the office of thile Journal.

PURIFYING GAS

John Robrat Johnson, of Nelson-square, Sorrey, chemist, for "Im* provements in Purifying Gas, and in the treatment of products of gas-works." -Granted Docember 20, 1845 ; Farolled June 20, 1846.
This invention relates, first, to a new mode of parifying gas used for illumination, from those impurities which consist of ammonia and its compoonds. The inventor effects the separation of the ammonia, by using the sobstances possessing the property of absorbing ammonia or its componnds in the dry, or more properly speakiag, solid state, inatend of in the state of solution, as has hitherto been practised. Among this class of substances are comprised, the solid acids, such as the phosphoric, boracic, and other acids ; the salts with excess of acid, as the bisulphatea of potash, of soda, and of ammonia, the biphosphates of these bases and other salts of this class ; the salts of alumina, and of some other earths. Those substances which absorb the compounds of ammonia entirely, acid as well as base, entering into combination with the components of the substance used. The metallic salts, containing the requisite quantity of water, will serve more or less perfectly for the parpose required; bat the salts of iron and manganese, from their cheapness, will be found preferable to others. These salts are reduced to powder, and used precisely as the moistened lime is used in dry lime parifiers.

The second part of the invention consists in a new mode of treating the ammoniacal liquor of the gas-works, for the purpose of preparing the salts of ammonia in a porer state than they have been usually obtained, and without the noxious exhalations which attend the ordinary mode of operating. The liquor is placed in a vessel \mathbf{A}, similar to an ordinary ateam-boller, and heat applied through the furnace \mathbf{B}. The liquor consists principally of bydrosulphuret and carbonate of ammonia, with small quantities of other salts of that base. As soon as the temperature rises, the hydrosulphuret of ammonia comes over, it being the most volatile product. A slow lire is kept, so as to volatilize this product exclusively, and during its passage is conducted by the pipe a, into the vessel \mathbf{C}, containing a solution of some substance which has the property of absorbing the sulphuretted hydragen and the deleterious gas, as the salts of iron and manganese. The product, after sufficient of the vapours have passed to saturate the material employed, is a solution of a salt of ammonia, holding in suspension the sulphoret of iron or manganese. In this plan, one vessel for holding the material through which the vaponrs are passed is anfficient, but if more be emplojed they are charged with the amme solution. When lime or alkali is used to absorb the sulphuretted hydrogen, the ammonfa is liberated and must be conducted into a second ressel D, charged with an acld. At the end of this part of the oparation, that is, when all the hydrosulphuret of ammonia has paseed over, the prodacts fouad in the first ressel are sulphuret of lime and some free ammonia, and in the second a colotion of a salt of ammonia. If the acid was but slightly dilated, the polvtion may be obtained aaturated and fis to christallize on cooling. The liqnid remaining in the boiler, and now consisting principally of carbonate of ammania, may be treated iu the ordinary way for preparimg the salts, or the evaporation may be continued in the boiler at a higher temperatare, in order to drive over the other volatile salts and the vapours passed through acid to absorb the ammonia. In the lattor case the apparatus just described may be used, the cock E being opened. The vaponrs then pass through the pipe b, and throngh the acid in the vessel D, without entering the vessel C , containing the lime, and are then absorbed. The evaporation is continued until the volatile salts of ammonia are all driven off, when the liquor in the boiler may be rejected, unless it be fonnd that the fixed salts remaining in the liquor are in sufficient quantity to be worth extracting, which may be ascertained approximatively by evaporating a drop of the liquor on a strip of glass, or accurately by evaporating to nearly drypess a known quantity of the liqnor, and by weighing the resulting salt. These fixed salte may be obtained by entirely evaporating the liquor in a lead versel, or by adding to the liquor, while in the boiler A, a certain quantity, more or less, according to the quaplity of the fixed salts present, of sulphuret of lime in solution. This substance nay be
obtained from the first part of the operation when lime is nsed, or from the liquor of the wet paritiers of the gas-works. The sulpharet of lime decomposes the fixed ealts of ammonia, liberating the latter substance in the state of hydrosulphuret, which may be treated in the same manner at that evolved in the firat stage of the process.

STEAM ENGINRS AND PROPELLERS.

John Seawand, of the Cadal Iron Works, engineer, for " Improwements in the steam engine, and in machinery for propelling. Granted Janaery 19; Enrolled Jaly 12, 1846.-Raported in the Patent Jowrual. With Engravinga, see Plate XIV.

Gwide block,-The first part of this invention relates to a gulde blook (ig. 1) for presorving the paralliclism of cross-heads of steam ongines, and other machinery. a a are two guides, bevelled on both aides, forming angular edgen, to which aro fitted two sliding pieces, $b b$. cis a blook fitted between the pieces $b b$ and their reapective lags or projections, $d d d d$. Two powerful spiral springe, at ehown by the dotted lines, are compressed within the block c, forcing the pioces a b against the guides, and in order that they shall got cause the friction to be too great it is farnished with two bolts $c e$ on each side side, and thas regulated at pleasure if is a hole for the reception of the cross heads.

Plumber block.-Secondly, this invention relates to a plumber-block, to be used where the force acts longitudinally, or at an angle. It is fitted with two sete or pairs of brasses, one being divided longitudiaally, the other vertically; the last-named are closed by keys placed vertically at the beck; these are furnished with sorews and nats similar to the key of a eonnecting rod; the others by bolts, as usual.

Valces.-Thirdly, these improvements consist of an apparatas for working the valves of such eagines as are fitted with a double set.

Fig. 2 shows a fore and aft vertical section of a eylinder fitted with a double set of slide valves; and fig. 8 an extercal side view of the same. a is a horizontal slide, which moves in dove-tailed groores, $b b$, and is cenneoted to the bent lever c by a rod, as shown by dottod lioes. This lever works on a fixed fulcrum at d, the short end being conneoted in the uanal way to the eccentric or other rod by which it may be worked. ecee are four weigh sbafts convected in pairs by the leversffff, and croes-rods 8 g. The lovers A A A A on the weigh shats are conneoted by links to the valve spindles, as shown in fig. 2.

Now, it will be observed that when the slide a is moved to the right by the motion of the engine, the tappet h will come in contact with the lever i, thereby closing the steam valvo j, cutting off the stoam at any part of the stroke according to where the tappet may be set, and partially closing the escape valve k, as shown in fig. 2. On the slide moving atill further, the lever i will slide along the back of the tappot h, till it meets with the rappet l; this will entirely close the eduction valve k; the lever will be acted on in a similar manner by the corresponding tappets producing the motion of the opposite valves as before described, when the lever i is moved by the tappet l. The toe a (fig. 4) is aanght in the step o, and held in that position till relieved by the opposite toe p ooming in contact with the corresponding step, which, it will be remembered, does not take place till the tappet q closes the eduction valve s, the weight on the weigh shaft bringing it smartly back to its original place ; the opiral aprings, r r, are for keeping the steps more effectually to their work. The tappets are fitted with regulating screws $t t$, for the purpose of altering their position so as to cut off the steam at any required part of the strokes. wa are rods by which the weights are hang on the wrigh shaft to alter the valves for the return atroke of the engiae.

Stean Pipe. -The fourth part of this invention relates to an epparatus for the better separation of the steam from the water in boilers, thereby preventing what is usaally called priming ; it consists of three circuler concentric casings, $a b c$ (dg. 8); they are attached to the upper parts of the boiler in the space occupied by the stom. b is fitted with a cosical bottom, torminating in a pipe d, reaching nearly to the bottom of the boiler; the upper purt of this assing is perforated with a number of amill holes to admit the steam which passes op between it and the outside oasing a, theace downwards under the inside casing c, where the water coparates and raos down the pipe d; the ateam again rising, pasees off by the stom pipe e to the engine.

Screwo Propeller.-Finhly, this invention has relation to an improved method of shipping and unshipping, or in other words, raiaing and lowering screw propellers, and the meane of fixing them to the shaf.

Fig. 6 is a view of the atern quarters of a ship fitted with these improvements. Figs. 7, 8, and 9 , show some of the parts soparately. a e is a swinging frame furnished with beariags and jorrals, in whioh the propeller revolves freely. b b are two sliding bearinge to support the jearnals of the awinging frame, and gaide it in its ascent or descent. The lever c is for swinging the frame on its bearings $d d$, for the purpose of placing or displacing the propeiter on or from the sbaf, which, it will be obwerved, is conical at the ead, for its more easy eatrance and removal. Fig. 8 ahows part of the propeller shaft $e c$ in section, having an internal shaft, the outer ead of which is furnisheed with a serew f, the inner with a screw wheel g; searing into a screw spindle by it tarned round. The action of this is as follows:-The swinging frame and propeller being placed within the sliding pieces bb, it is lowered (by means of the chain and crab placed in the atera, as indicited hy dotted lines) sill, opponite the end of the shaft,
the lever c is forced back; this will place the propeller on the ahat, and, by turning the screw wheel, the screw will enter the propeller, thereby firmly securing it. The reverse of this operation will unsbip the propeller. By another plan the swinging frame is dispensed with, in which case the shaft is supported by two stays, as seen at fig. 9 , by dotted lices. The propeller is raised and lowered by means of two round bers, pointed and ecrewed at the lower ends, and placed in a vertical position immedirtely over two holes formed in the blades near the centre; these bars slide vertically in guidas, and are connocted near the lower ends by a yoke, which is attached to a crab by a chain, as shown in tho last case; the boes is drawn on and secured to a conical wedge-ghaped clutch on the propeller shaft, by the means before described; when it is desired to auship the propeller blades, thoy are placed in a horizontal position, with the holes before mentioned appermost; the roand bars are lowered and ecrewed into them; the shaft is then withdrawn from the propeller, and parohase applied to the crab, which will bring it above water under the coantar of the ship.

The sirth and last part of this invention has also relation to propelling machinery, and is for the parpose of reducing the friction on the end thrust of the propeller shaft, by introducing a thin film or stratum of oil of water between the rabbing surfaces, which are of hardened steel. The face that receives the pressure from the propeller shaft is secured to soces convenient part of the engine, or beam of the ship, and has a chanot bored through to the centre of the steel face, which is turned concave about one-third its diameter, as also that on the end of the shaft. A continuous stream of oil or water is forced by three pumps through this chan. nel into the hollow faces, and escaping at the circumference, where it \& collected by a casing, is returned through a tube to the tank below the pumps; thas preventing the rabbing surfaces from coming in oontact, and thereby reducing the friction.

Clajm:-Firat, the forming of guide blocks of steam ongines of three eoveral pieces, having springs and adjasting ecrews, as before described.

Second, the improved compound plamber block, having two sets of brasses, one pair divided longitudinally, the other vortically, as before described.

Third, the working of steam engines having double slide valres, by moans of horizontal slides having double tappets at each end, an before deacribed.

Fourth, the adaptation of an apparatus to steam boilers, for the prevention or lessening of priming, as before described.

Fifth, the mathode of conaeoting and disconnecting the propeller to or from the shaft, in screw-propelled vessels, as before described.

Sixth, the means of reducing the friction consequent on the end thrast of the propeller ahaft, in ucrew-propellod veseels, as hereinbefore described.

PLATE AND BHEET IRON CUTTER.

Williat Vimaent Wenminoton, of Goscote iron-worke, Staffordahire, Esq.. for "Improbqments in or improved methods of culting plate and abeet irone-Granted Jannary 20 ; Enrolled July 20, 1814. With Eagravioge, see Plate XIV.

The improvements consiat in the combination of a rotary and borimonal continuove movement, by which means plates of iron of any leaith may be cat without curling or backling. The rotary movement conaists of a circalar cutter a, set in motion by the gearing hereafter explained and the horimontal movement of another cutter b, attached to the traversing table c, opon which the iron plate is lald. An alternate rotary motion is prodnced by the circular cutter a being fixed on one end of a shaft α, revolving is boarings fixed between the atandards c, and over the bearings are regulating screws $f f$; on the other ond of the shaft is a bevelied wheel f, which takes into either of the bevel wheels h or i, keyed on to the hollow shafts $j j$, end which slide on the main shaft k, set in motion by stenn or any other known power. For the parpose of giving a horimontal movement to the traversing table, there is a cog wheel keyed on to the ahant d, immediately at the back of the cutter a; this cog wheel takea into the rack l and canses the table c to move on the $\mathbf{\Lambda}$ rails m m. On the ander side of the tuble aro tappets m, which act on a lever, m', Axed on the amall shaft 0 ; and at the other end is a forked lever p, which acts on the alatich 6 , for throwing the bevelled wheels h in and ont of gear; thus an alternate backward and forward movement is given to both the rovolviag catter a, the traversing table c, and cutter b.

The claim is for the combination of a rotary and horizontal motion for entting plate and sheet iron.

COKE OVEN.

Jabsz Chotch, of Colohester, Essex, gas englneer, for "c Improumerata in manwfacturing cake."-Granted December 90,1845 ; Earolled Jube 20, 1846. With Engravings, see Plate XIV.

The improvements consist in the construction of coke ovens with regulators, valves, and faes for admitting cold air to the inside of the ovea during the manufacturing process and to cool the coke within the oven at the ead of the process. Fig. I shows one balf of the front elovation and one half of the transverse reotion of a coke oven; fig. 9 the side eleva-

Fig. 5.

Pig. 2.

Fig. 4
WENNINCTON'S PLATE IRON CUTTER -

Fig. 3.

tion; fig. $\$$ one half of a horimotal plan of the cooling passages noder the oren, on a lerel with the line Y Y, and one half of the plan of the oren on the line $Z \mathrm{Z}$. The other half in each figure is similar in construction to the half shown in the engraving, and similar letters refer to similar parts in each figure.

A is the mouth-piece of the oven (see onlarged view, fig. 4) with a temporary wall of bricks 6 , built ap as the coke is potin; c cast iron door with oblong apertures d, fitted with vertical slides e, for regulating the lise of the apertares, or entirely closing them; ff are two passages on each side of the oven month, 6 tted with regnlating valves and inclining upwards towards the top of the interior of the oven; g is the foor of the oven; h the fise leading from the interior to the chimpey $\mathbf{i} . j \boldsymbol{j}$ (fig. 1) are two vertical pipes with binge caps and covers, opened by the dependent chains, to allow the escape of the air employed for the cooling down process from the interior of the oven to the external air. $\boldsymbol{k} \boldsymbol{k}$ (figs. 2 and 4) are two openings with regulating valves, $l l$ (fig. 4), through which, after the coal has been converted into coke, the cold air is introdnced to the borizontal passages m, under and round the oven (but not communicating with the interior), for cooling down the coke: Those parts marked n between the brickwork forming the pasages are flled in with concrete. The mode of operation is as follows:-The foor of the oven is covered with coal to the thickuess of about two feet, the surface inclining a little from the front and sides towards the centre; the brickwork b to the oven mouth is built up as the conl is introduced, and the bricks luted with five clay; a shovelful of buruing coal is thrown in at top, and when the coul is fairly ignited the regulators of tbe door c are then closed; the apertares d, as well as the passages $f f$, are kept open until the coal is fairly ig. nitert, and at the same time, the passages $\boldsymbol{k} \boldsymbol{k}$ are kept entirely closed. At the conclusion of the process, the valyes $l l$ of the openings $k k$ are opened, for adnitting cold air to the chambers m, to cool down the coke, and at the same time the caps of the exit pipe $j j$ are tazen off. The coke is not to be removed from the oven until it has been thorougly cooled down.

Another part of the patent is for the application of electricity to parify. ing of coke from sulphur and other metallic mistures, which is done in the following manner:-As soon as the fiame on the surface of the innited coal begins to die away, the apertures of the door c and $f f$ are closed; an iron rod is then introduced through the temporary hrick work of the mouth into the coke near the bottom, and passed through to the back of the oven to the fue h. A second rod is passed over the surface of the coke, so that it shall rest and be in contact with it. The former rod is conoected with the positive pols of a powerful electric battery, and the second rod with the negntive pole by means of copper wire, leaving the body of coke in the oven to complete the electric current. If the mass of coke be equal to six tons, it ought to be subject to the electric action for about two bours.

TANNING.

Robert Warrinoton, of Apothecaries' Hall, London, for "Improve. ments in the operadion of Tanning."-Granted March 25; Earolled July $25,1846$.

This invention consists in the application of certain mixtures or compounds to be employed in the process of tanoing hides or skins, the several mistores being diviJed into three classes, which are as follows:-First, in order to prepare the skins for anhairing, the inventor proposes to enploy carbonate of soda or potass, in the proportion of from one to two pounds to ten gallons of water. The second class is also intended to prepare the akins for unhairing and also to swell them, for which purpose the inventor employe various agents, such as baryta, potass, and soda, dilute inuriatic, nitric, ozalic, or any other acid, except sulphuric acid. The third class consiats of vegetable matters, such as rhubarb, sorrel, appie, mare, vine cuitings, and orber similar vegetables, which may be econonically employed. In the first class, from half-a-pound to two pounds may be added to ten gallous of water, the sane being reodered caustic by the addition of fresh burnt lime; of the second class, the inventor prefers about the same proportions of muriatic acid, of specific gravity $1 \cdot 17$, to the same quantity of water; of the third class, the inventor prefers to employ culinary rhubarb. The following is a sumunry of the claim:-First, the applicution of carbonate of soda or potass when soaking the hides or skins, for facilitating the removal of the hair; second, the employment of baryta, soiln, potane, and muriatic, nitric, oxulic, or uny other acid, except sulphuric, together with the above named and other similar vegetable matters, for facilitating the removal of the hair and also swelling the billes or skins. He also claims the application of vegetable matters and cheinical agents for retarding oxydation, which agents are to be used with the tauning liquor; and lastly, he claims the application of bi-carbonate of potass and dilute sulphuric acid for preserving the skins and other auimal substances.

RAILWAY SAFETY BUFFER.

Edwin Chesshire, of Birmingham, for "Improrements in apparatur to te applied to raitucay carriages to reduce the prejudicial effects of collision to passengers in railway carriages."-Granted Februars ${ }^{\text {; }}$; Enrolled Ausust 3, 1846.

The apparates consists simply of a strong straight inflesible rod of either irou or wood, or boih combined, placed lougitudinally nuder the
centre of the carriages ; the ends of the rod are to have enlarged beads, and the length of the rod to be somewhat less than the carriage, to which it is attached, and the buffers when io ordinary contact. This rod, which the inventor calls a "safety bnffer," is not intended to have any effect in stopping the motion of the train in the usual manner, but ooly when a violent colliaion, either before or behind, ocenra,-then the heada of all the hars will be brought in contact, and "form one straight, infiexible, uayielding bar," by which means the effect of the collision will be neutralised.

ELECTRIC LAMP.

William Greener, of Birmingham, gunmaker, and W. E. Staje, of Peckham, Surrey, Esq., for "Improred means of ignition and illumina-tion."-Granted Fehruary 7; Enrolled August 7, 1846.

The invention is for the purpose of effecting illumination of public and private bnildings, streets, \&er., by means of solid or hollow prisms or cylinders of carbon (parified from imparities), or rods or strips of platinum, or other difficult fusible metal, enclosed in transparent air-tight vessels, and rendered luminous by passing currents of electricity; the carbon or metal is to be divided on the surface iato nomerous acate points. Hollow cylinders of carbon may be used, partially inserted within, and placed in perfect contact with, hollow cones of platioum, either plain or acuminated, and enclosed as before described.

CEMENT.

John Keating, of North Mews, Fitzroy-square, Middesex, scagliolist, for "Improvemeats in the manufacture of cement,"-Granted February 11; Enrolled August 11, 1846.

This invention consists in mixing borax with gypsum (sulphate of lime) in the following proportions:-5 lb . of borax and 5 lb . of crude tartar are each to be dissolved in 8 gallons of water, and when dissolved the two solations to be mixed together. Gypsum in lumps (first deprived of its water of crystallization by heat) is to be put in this solution till it has absorbed as much as it will take up, and then put in an oven and heated red hot; afterwards it is allowed to cool, and ground, and then again mixed with the above solutions and heated in an oven; when taken out, it will be ready for use.

LOCOMOTIVE ENGINES.

George Stephenson, of Tapton House, Chesterfield, engineer, and Willam Howb, of Newcastle-upon-Tyne, mechanic, for an "Improrement in locumotive steam engines."-Grunted February 11; Enrolled August 11, 1846.

The improvement consists in the application of three steam cylinders to locomotive engines, two to be of the same diameter and capacity, and together to be equal in capacity to one large cylinder. The pistons of all the three cylinders are to move simultaneonaly in the same direction; the large cylinder is to be placed exactly in the longitudinal central line of the engine, and the other two cylinders on each side at equal distances from it. The piston of the centre cylinder is to drive a crank on the axle of the impelling wheels, and the pistons of the two smaller cylinders are to be connected with crank pins fixed on the naves of the driving wheels; the crank to be fixed at right angles to the crank-pins. The intention of this arrangement is to neutralise any fendency that the oblique action of the connecting rods on tbeir crank pins may have to produce a lateral vibration on the supporting springs of a locomotive when travelling very rapidly.

RAILWAYS AND CARRIAGES.

Conrad Haverkam Grebnhow, of North Shields, Esq., for "Improrements in the construction of railuays and raikcay carriages."-Granted Jaunary 6 ; Enrolled July 6, 1846 . With Engravings, see Plate XIV.

The improvements relate, first, to forming the tyre of the wheels and raile so that they cau be adjusted and adapted to each other. This is effected by usiug a convex rail and a peculiar formation of a concave wheel tyre, combined with inclined spokes, whereby, in the event of one rail sinking below the level of the other, the tyre of the sunken wheel will bear on the rail with an increased diameter, so an to compensate in surface motion for the depression; and from the peculiar concave shape, the whee! and the rail will maintain a correct adjustment in respect to each other. Notwithstanding any varying elevations and depressions of parts of the length of rails, the n heels on the opposite rails will at all times be ranning on such diameters as to make the distance moved through (by the commou axle) the same, withuut any drag or friction corresponding with that heretufore consequent on the fiangea, when moving against rails similarly circumstanced. And owing to this constant adjustment between the running surfaces of the wheels and the rails, the rails may be laid with the gauge so currect as not to allow of any play, for the adjustment which takea place will preveat, or tend to prevent, any rebound from rail.to rail, besides
there will be no tendency to ran of the rail; and should there be any im. pediment to the wheels on one of the rails, those wheels may rise over such impediment withoat injury, owing to the opposite wheels retaining tbelr correct contact with their rail, so long as the raised wheels do not rise off their rail to an extent which will throw the diagonal live on the opposite wheels beyond the perpendicular line.
Figs. 1 and 2 show the section of rails upon the improved form, which may be of wrought or cast iron. The inventor does not confine himself to the section sbown, but the ruil is auch that the surface on which the wheuls come is to be a portion of a cylinder, and part of the running surface of the wheels is to be struck to the same radius; hence, the two cylindrical surfaces will correspond. Fig. 3 shows a section of one of the wheels on an axle, and also one of the rails; the spokes are to be set at an augle of $22 h^{c}$ Fig. 4 is an enlarged view of the rail and tyre.

The second improvement relates to suspending the body of the carriage a, as shown in figs. 5 \& 6, on axes at each eod at b, bearing on uprights c, fixed on the frame of the carriage d; the body is prevented oscillating by weans of chains or straps e, which allow sufficient movement to the body as may be required. The frame d is fixed on the springs mounted on the lower frame e. The clatin is for combining the suspension, as described, with the use of straps or chains.
The third improvement relates to applying " an uncontrolled locking action to the axies and wheels of railway carriages," as shown at fig. 7. a is a strong bar formed into the arc of a circle, sliding in bearings b, fixed on the fraine; the bearings c of the axle of the wheels are made fast to this bar, and can ouly move within a short space, there being stops at $d \mathrm{~d}$. By this means, when a carriage is going round carves, the wheel accummodates itself to the curve.

REVEEWE.

Metropolitan Bridges and Festmonster Improvements. By Sir Howard Docglas, M.P. Second edition. London: Boone, 1846. pp. 27.

The second edition of Sir Howard Douglas's pamphlet appears opportonely at a time when much public interest has been excited by the report of the dangerous condition of Westminster Bridge, and the proposal to replace it by a new structure. The old bridge was erected aboat one hundred years ago, and considering that it was built with scarcely sufficient atrength to re. sist the comparatively gentle current of the Thames when its tidal waters were impeded by the buge piers of old London bridge, it would need no prophet to predict that the removal of those obstructions must ultimutely involve the destruction of Westminster bridge also. The pamphlet before us describes the defects in the original construction, and the progress of the consequent injories, hut as these subjects are investigated with considerable minutencss in the official report now before the public, it is not necessary to enter into detail respecting tbem here. We shall prefer giving one or two extracts in which Sir H. Douglas describes his proposition for the improvements hetween Charing Cross and the river.
"All that can be expected from the expedients which have been tried is, that they may retard the ruin, which nothing, in fuct, can avert-so that, with proper precautions, the bridge may serve as a temporary means of communication while a new one is being constructed; but even for this it would be prudent to lighten it as much as possible, by removing the masses of ma. terials which form the foot-path on both sides, down to the level of the car-riage-way, and to replace the stone balustrades, with a temporary railing or parapet of wood. Should the piles, which form the present caisson or cofferdum about the pier on the Surrey side, be not removed, they might be cut down; and if that or any other pier should seem to be in danger of settling further by the deepening of the water-ways, the expedient already proposed, of paring the hed of the river in those parts, or depositing there masses of stone, might be adopted as a temporary measure. It is somewhat remarkable, that, notwithstanding the defective mode of construction of Westminster bridge by caissons, and the large sums of public money laid out in vain attempts to rescue this bridge from destruction, it abould be seriously proposed to adopt the like expedient on an immense scale io Dover Bay :- to strand caissons containiag large portions of ready-made break-waters in 7 or 8 fathoms water for the formation there of a harbonr of refuge ! A new bridge cannot be constructed on the present site without previously removing the old one; and this would involve an expense of at least $\mathbf{4 0 , 0 0 0 l}$. in erecting a tempnrary bridge, to avoid stopping altogether, the communication between the Borough and Westminster, whilst the new work is proceeding. There is no room for a new bridge between the Parliamentary Palace and the present bridge, for these are already in contact; and the construction of a bridge any where helow the present site, say from Maudslay's premisez to Manchester buildings, would occasion a very great outlay in providing new approaches. But, if leaving Westminster bridge, in its present state, as a temporary enmmunication, a new bridge were constructed from Lambeth stairs to the nearest part of the opposite bank, no expense for new approaches would be incurred, a direct communication with Westminster would be esta-
blished, and a magnificent entrance into the capital formed, at ap intereating and venerable part. The river face of the new Parliamentary Palace, nould be seen to great advantage; and, no longer disfigured and obscured an the other flank when the distasteful atructure which now defaces it shall bave been removed, the edifice standing gracefully and boldly out, would forma beatiful object upon the concave sinuosity of the river, extending thence to Blackfriars' bridge, and Somerset House, which, for this purpose, should be reclaimed from its present nowholesome and disgusting atate by the proposed embankment and terrace, which it were easy to show is an interference with the atate of the river much required at that part,-and thus tbat peatileatial locality would be transformed altogether into a beantiful and bigbly embel. lished portion of the metropolis. From the Westminater end of this new Lambeth bridge, a street should be opened to lead directly to Shaftesinary terrace, Baton and Belgrave squares, or to communicate with some part of that which is now being executed under the provisions of a late aet, sce.; and another formed by the river bank, to Victoria Tower and Whitehall, passing between Westminster Abbey and the Parliamentary Palace. Entering the Court end of the town by this magnificent porial-St. Margaret'a church remored, in conformity with the unanimous recommendation of a Select Committee, from the immediate vicinity of a splendid and ample place of worship, which requires not the aid of an adjoining church, and tbe relice which lie around that incongruous building, exhumed-the western face of the quadrangle, by which, according to the present design, it is intended to enclose Weatminster Hall, set hack, to give greater apace between it and Henry the Seventb's Chapel ;-l'arliament street widened, by remoring the block of buildings hetween it and King-street-Downing-street finished-and the Board of Trade completed, a majestic communication would be formed, between the Regal and Parliamentary Palaces; and if Whiteball-street may not, or cannot be straightened throughout, those buildings at least should be thrown back, which, on approaching Trafalgar-square, obtrade, wore immediately ou the left, to destroy its symmetry."

The last sentence of this extract pleases us but little. We wonld mach rather see St. Margaret's Church restored than destroyed. It was once one of the most magnificent churches in London, as those who bave seen the old prints of it can testify; the work of desecration has, it is true, proceeded very far, but not beyond remedy; and in the hands of a judicious architeet St. Margaret's Church might once again raise its head unmarred by the vile barbarisms of the last age. The desire of removing this structure for the purpose of obtaining a clear and uninterrupted view of Westminster abbey, proceeds from ignorance of the true principles of Pointed Architecture. which always appears most beautiful when it affords picturesque combinations of numerous detacbed parts. We accordingly see that the mediseval architects loved to gronp a great many different structures together, and ad jacent to a cathedral nsually erected its cloister, chapter house, baptistery or collegiate buildings. It is precisely this combination of a crowd of pinnacles and towers, steep roofs and massive battresses, fiom which arises the magnificence of a pile of Pointed buildinga : and for this reason also (though there are many others) the demolition of an ancient church in the neighbourhood of a cathedral can never be justified except on the plea of unavoidable neces. sity. St. Margaret's is at present covered over with a thick coating of plaster, the tracery of the windows has been destroyed, the panel-work of the tower concealed by stucco, the finials and crockets churchwardenised; bat great as are these injuries, they are not past all surgery, and we unhesitatiog repeat that a judicious restorer of this ancient church would have tbe honor of adding one more to the gumber of beautiful buildings with which this interesting spot is crowded.

For the same reason that we would retain St. Margarets' Cherch we would resist any project for erecting a continnous pile of buildings concealing Westminster Hall. The irregular outline of the Palace of Weatminater on the Abbey side is far more in accordance with the spirit of Pointed architectare than the flat uninroken surface of the river front. It is most desirable that the present pseudo-classic Isw courts should be remored, and that the magnificent flying buttresses on either side of Westminster Hall should be displayed; but the proposition for enclosing it altogether is unjustifable. Neither do we see the necessity of throwing down the buildings which "on approaching Trafalgar-square obtrode more immediately on the left to destroy its symmetry." We quite concur with the general opinion that for the sake of the national character for good taste, Trafalgar-square ought to be kept out of sight as much as possible.

To torn to a different subject, we must notice what seems an error of principle in a note (p .7 -14), the object of which is to prove that Hongerford bridge is not built with sufficient strength. It is first shown that the utmost load which can by any chance be put on the bridge at one time is less than one-third of the weight which would impair the chains. This excess of strength is pronounced insufficient; but the opinion is not confirmed by very conclusive reasoning : among other things the curve of the chains is assumed to be a common catenary, which it is not. The note thea preceeds
"There is one additional point still to be noticed, namely, the preanarea on the piers. It is shown by writers on mechanica, that the horizonsal strain at every point of the chain is the amme, and equal to the tension at the lo west poiat of the curve. When a bridge is properly constructed, the catenary on the other side of the pier is a portion of the same curve as the first. The borizontal strains on the two sides of the pier will then be equal, hut in opposite directions, and, therefore, they will counteract each other: the two vertical strains wlll also be equal, and in the same direction: and as it is evident that each of those strains is equal to half the weight of the chain between the piers, the vertical pressure on each pier is equal to the weight of this chain. (See Military Bridges, p. 311). In the case of the Hungerford Bridge, however, the catenaries at the two ends when completed, have a considerably less span than the central curve, but they bavo the same droop or deflection. Hence if $2 y$ be the span of the centre arc, $2 y^{\prime}$ the span of the curves at the two extremities when completed; and a, a^{\prime}, the corresponding tensions at the lowest pointa, we have

$$
a=\frac{3 y^{2}+x^{2}}{6 x} \quad a^{\prime}=\frac{3 y^{2}+x^{2}}{6 x} .
$$

And as y^{\prime} is considerably less than y, a^{\prime} will evidently be less than a in a still higher ratio. Hence there will be a constant horizontal atrain, equal to ($a-a^{\prime}$) scting at the top of each pier, (which the ingenious contrivance of the shifting saddles at tho summits of the piers cannot remedy, which will of course tend to pull and ahake the piers, and may ultimately overthrow thern, foonded as they are, without underpiling, on the natural bed of a river, Which is continually becoming deeper."

The conclosion here arrived at is erroneons, and the error arises from the application of a formula to a cese with which it hat no connection. The value given for a^{\prime} is taken from the expression for the tenaion in a chain at its lowest point, when the chain is suspended between two piers of the same weight, and the lowest point is consequently horizontal. But here the shorter chain at the end where it is attached to the ahutment on the banks of the river in inclined to the horizontal at conniderahle angle. Moreover if the addle (which is furnished with friction rollera) were acted upon by an accelerating force $a-a$ ', it would be get in motion. And lantly, however, the question may be complicated by matbematical aymbols, the general truth remains indisputable, that the pressure of the rollers upon the top of the pier is normal to the surfaces in coatact, and is therefore wholly vertical. Consequently the reader, whether acquainted or unacquaioted with mathematics, will not bave much difficulty in concluding that the danger of the piers of Hungerford Bridge being overthrown by the unequal strain of the suspension chaina is purely irnaginary.

A Critical Dissertation on Prqfessor Willis's Arehitectural History of Canterbury Calhedral. By Crarles Sandrs. Smitb, Old Oompton-street. 1846. pp. 62.

Canterbury Cathedral is in one respect pre-eminent beyond dispute above all other ecclesiastical edifices in England; more has been written about it than about any other. Not only ia its library rich in manascript chronicles and records of the erection of different parts of the building written contemporarily by resident Monks, but the namber of lineraries, County Histories, \&c., of comparatively recent date, in which thia cathedral is dencribed as unequalled with respect to similar buildings.

The work of description seems to have gone on nearly continnously from the time of the Conqueror to the carrent year 1846, and probably is not yet faished : for the dissertation by Mr. Sandys, is of too controversial a aature to remain long without an answer. We have no intention of plunging oureclves or readers into the labyrinth of a purely antiquarian discussion; atill as the name of Professor Willis of itself carries considerable interest with it, and as his opponent has displayed great learaing and accumen in conducting the controveray, a good many architectural readers will be anxious to know What the dispute is about.

Simply this: Professor Willis ascribes the architecture of a large part of the Cathedral to an arcbitect who, Mr. Sandys says, bas no claim to the merit. There is something very laudable in this anxiety to commemorate not ooly the building bnt the name of the builder, which might be imitated with advantage in more modern iastances: atill we apprehend that the question whether Archbishop Anselme built merely the choir of the present cathedral, or the external walls of the choir-aisles, the Trinity chapel, and the eant transept also, will not attract so large a share of public attention as to render it incumbent upon us to give more than a brief ootline of the discussion.

The dispute seems of long standing. We have before us an old and we believe rather scarce copy of Somner's Antiquities of Canterbury,* published

- Mr. Sasdyaquotea from we amose book, but from a much later edition : the original work tit the more interestag becnuse writen befort the compentoment of the Civil wars, 10 whet the Cuthedral grealiy sulfered.
in 1640 (the imprimatur is dated from Lambeth, October 1639.) Now Somner alludes to the subject of this very dispute-namely, what parts of the cathedral are to be assigned to Anselme and Eraulph-in the following terms.
"Mattheso Paris Records a dedication of the Church of Canterbwry in the yeare of Christ 1114, being the yeare of Antelmes death. Haply it was of that new piece or new work, as Edmerus cals it. This doubtlesse is the part meant by Malnesbury, ascribed to Ernulphus the then Prior of the Church, and of him (erroniously it seemes) said to have beene built in the place of a like part then demolished, whereof he hath these words Cantia (saith he) dejectum priorem partem ecclesic quam Lanfrancus adificaverat, adeo splendide erexit, ut niAil tale possit in Anglia videri, in viltrearwm fenestraum luce, in marmorei pavimenti nifore, in diversicoloribus picturis qua mirantes oculor trahunt ad fastigia lacunaris."

The above extract proves at least thus much, that tbere has long been a dispute reapecting the architects of the eastern part of the church. Mr. Sandys has not referred to thia circumstance; he gives however the Latin sentence from Malmesbary, with his own translation, which coumences "Eraulphus having thrown down the front (or fore part) of tbe church which, \&c." It may be observed that the assumption that Ernulph was the author of the work of demolition is Mr. Sandy's own. The original Latin simplystates that part of the church was thrown down-but does not inform us whether destruction wes accidental or intentional, or who was the destroyer. The whole dispute turns on the interpretation of the words " priorem partem," which Mr. Sandys takes to mean the choir and no more; wheress Mr. Willis gives the phrase a much wider signification. The former takes it to mean the choir, the latter the whole eastern part of the church. Aligbt we not translate priorem simply" former" or "older"? In that care the meaning of the quotation would be that "Ernulph rebuilt an older part originally erected by Lanfranc, which had been thrown down."
The author in the present dissertation gives sereral extracta from Edmer, \&c., in confirmation of his opinion, but his translations are in one or two cases made more favourable than they ought to be, for his own side of the question. Por instance," super hec, ipsum or atorium quantum a najore furri in orientem porrectum est, ipso Patre Anselmo providente disponente, auctum est." he translates thus, " Moreover this oratory [choir or chancel] so far as it stretches from the great tower eastward was enlarged, Anselm himself providing for and directing the works." The words super haec are not represented with sufficient force in the translation. In addition to these things Anselm enlarged the oratory ifself-meaning that he had undertaken other works besides that. This interpretation, if it do not apecifically assign to Anselm the works whicb Professor Willis assigns to him, at all events leaves room to suppose that he did more than Mr. Sandye would have us believe. He neglects also the word ipsum which adds force to the super hase : and his assumption that oratorium means the chancel or choir is at least controvertible. An oratory is a place of prayer in distinction to auditorium, the place for hearing. We may therefore sappose every part of the church set apart for prayer, to be included in the word oratorium. Mr. Sandys quotes the expression finis ecclesia ornabatur oratorio beata Matris Dei Maria, and this instead of confirming his interpretation seems to show that there were all over the church parts distinguisbed by the appellation oratorium, which therefore is not limited to the choir. The sense of the passage seems there-fore-that in addition to other works Anselo's labours exteaded to that part of the church which is devoted to prayer, and that be enlarged so much of it as was built to the east of the great tower (intimating, it may be surmised, that there were parts to the west also set apart for prayer.)

Mr. Sandys atates, page 43, as a conclusive objection to Professor Willin's opinion, respecting the architect of the present Trinity Chapel, that Lanfranc is expressly stated in the Latin history to have been buried in Trinity Chapel, which must therefore have been standing at the time of his death. Bot this difficulty in entirely got over if we anppose Trinity Chapel to hare been one of those parts of Lanfranc's works which were subsequently de. stroyed and then rebuilt by his successors.

In an architectural point of view it seems difficult to auppose that Anselm could have enlarged the choir withoat rebuilding the choir aisles and their external walls. There seems nothing unremonable in Profeasor Willis's anppoition that "the increased space must have affected all the arrangements of the choir of the monks."

We tbrow out these suggestiona merely to ahow that Mr. Sandys argu. ments are not of such a nature as to preclude reply. We aro tolerably weil acquainted with the architecture and history of Canterbury Cathedral, and
ave examined the choir with Mr. Sendy's book in our hand, but coufest ourselves nuable to form a decisive opinion on this question. There is no doubt that Profeasor Willis's reply will clear up many apparent difficulties: at the ame time Mr. Sandy has the merit of arguing his cane acutely, and of duly acknowledging the learning and research evinced by hin opponent. The following extract from the publication before us is selected rather as a apecimen of the general etyle than at referring to the particular queation above alluded to-there in little in it which will gratify the lovert of mongrel architectnre.
"The Dark Agee (6 th to 19th Centwry.)-England at' the commence. ment of the sixteenth centory possessed in ite cathedrel and parochial churches, abbeys, priories, and other monatic and conventual atructures, the most splendid apecimens of the Saxon, Norman, early English, decorated, and perpendicular styles of architecture; whilst Henry VII, in his newly erected chapels at Weatminster and Cambridge, bad carried the florid Tudor style to the utmost perfection. These temples were, however, the ahodes of the most ahject and degrading auperstition, of the most revolting and disguating idolatry. Hence arose the ferce and bitter contest betreen truth and error, between the pure and undefled religion of the gospel, and the legends, lying miracles, and extravagant pretensions of the See of Rome. This atruggle terminated in the Reformation. Glorious as was the emancipation of the human mind from the degrading influences of superstition and Papal tyranny, yet we cannot bat deplore the iconoclantic zeal of the reformers and poritans, which, not satisfied with removing the idolatrous sbrines, altara, and chantries, violated the acred repositories of the dead, destroyed the tombs and sepulchral monuments which pity had raised to the memory of departed worth, and levelled to the dust some of the most beantiful remains of the architectural skill of our forefathers. Then slso arose the Royal Roffian, at whose name humanity shodders, and religion beraelf grows pele! This ruthless tyrant having dissolved the monasteries, extorted from his parliament a grant of the possessions which were annexed to them, a large portion of which be afterwards parcelled out amongst his courtiera and flatterers. This led to the rapid decline, and at length, total extinction of Bagliah ecciesiastical architecture, and the revival of the claseical style, (ibortly afterwards introduced from Italy,) completed the downfall of a acieace which had for many centuries been the pride and glory of our country. In these more enlightened day we are astonished that men of the greateat genius shonld so long have continued blind and insensible to the soblime beautie: of our native architecture. But to show their utter ignorance and contempt, they bave even branded it with the approhrions name of 'gothic.' Joigo Jones (tbe English Palladio) with most inharmonions taste, added a Corinthian portico to the weat front of the venerable gothic cathedral of St. Paul, London; and Sir Christopher Wren (struck with its want of hermony) afterwards wished to replace the whole of the gothic church by another to accord in style with Inigo Jones'a classical portico. This scheme, thongh opposed at the time, was afterwards rendered inevitable by the great fre of London, which involved both the gothic cathedral end its classical portico in one common rain. So great indeed was the darkuess of this period, that even Addieon's cultivated and enlightened mind could not appreciate the exquisite heanties of Gothic architecture. It is at once amusing and instructive to hear his remarks. If to the illustrious names of Jnigo Jones, Wren, and Addison, we add those of Somner, Battely, and Gostling, (the learned historians of Canterhury Catbedral), no anmirer of that venerable and exquisitely beautiful church will censure us for appropriating to the last three centories the opprobrions appellation of 'the Dark Ages.' "

Onr author might bave added that the ignorance of the true principles of architecture exteaded to the Classic as well as the medigeval styles. It is not so many years since a grest architectural authority expressed bis opinion that the Parthenon woold be improved if surmounted by a steeple I

Mr. Sandys scolds Professor Willis for not describing the restoraliona which the present Dean and Chapter have effected in the cathedra, nader the supervision of Mr. Austin, their arebitect. Why did not Mr. Sandys supply the omission! He is an inhsbitant of Canterbory, and probably has had ample means for fulfilling tbe tagk.

Description and uses of the Byrnegraph, or new proportional compasses, an instrument for multiplying, dieiding, and comparing lines, angles, sur. faces, and solids: by Oliver Byrne, formerly Profescor of Mathematics, Collep, efor Civil Engineera. Adlerd, 1846; pp. 38.

The purposes of this poblication are the explanation and illustration of the uses of an instrument invented by Mr. Byrne, to which the Britiab Association bas given the not very descriptive appellation of the "Byraegraph." The object of this invention is to attain increased accuracy in the use of proportional compasses, or rather, to so extend the use of them, that ithe improved instrument bears to its prototype mach the same relation as a Manton to a matchlock,

With the uld proportional compaseet, lines coold not be reduced with
even tolerable accuracy to less than one-niath their original size; but, by combining with them the reraier scalo. the new instrament not only effects much greater reductions with perfect accuracy, but may be made to tndicate proportinns which extend to several places of decimals. For instance, at page 26 is explained how the compasses may be set to the proportion $1: 8 \cdot 1416$, the ratio of the diameter of a circle to its circumference. These refined adjustmente are perfectly onattaimable with the old instrament. Fig. 1 is a side view of Mr. Byrne's invention, of which fig. 8 re. presents the plan when the instrument is open ; fig. 4, when it is shut. Fis. 2 is a separate view of one end of the compass.

The principal feature of the iavention is that the moveable centre $\mathbf{E} \mathbf{F}$, aboat which the two arms turn, is provided with a vernier, and that the points x, y, are moveable and also provided with verniers. Beside this, there are tightening screws to fix all the points when they have been adjusted.
"The framework of this instument may be made to assume differeat proportions and forms for the sake of ornament, compactoess, or convenjence, according to the fancy or design of the maker; the first completed was constructed by Cary, 181, Strand, London, and explained at York, before the British Association, in 1844. A view of the instrament, which we shall describe, is given (6g. 1); it differs but little from that constructed, according to the directions of the inventor, by Désiré Lebrun, of Paris. The two boxes Epq, Fpq, are so adapted to the beans AB, CD, that thes may be moved together by sliding to any part and fixeri in that poaition by tightening the clamp screws \mathbf{E} and F. When the moveable centre EpqF, is clamped in any position, the instroment turns on an imaginary live or axis passing throngh EF, perpendicular to a plane passing throngk \mathbf{P}_{q}, the junction of the boxes $\mathbf{E} p q, F p q$, the friction of the planes meating at $p q$ renders the motion uniform. Cunnected with the brass boxes at K and L are two points of the iustrument meeting at $x:$ at K and L there are two clamp screwa to fix the boses, which sust be moved together. When tbe points are in their proper places, the proportions of the instru. ment that we are describing arn these:-Suppose $t=1$, then ty=24, and $u v=5$. The points at x are represented in proper adjustment, but those at y mnst be moved till y comes up the line $v w$, and then made fast by the clasnp serews at \mathbf{Q} and R."

The faces of the arms are graduated to four scales, which mark the pros portions for straight lines, circumferences of circles, surfaces, and solids, respectively. Tables of the numbers corresponding to thene graduations are given in the publication before 08, and as instances of the application of them, we quote the following problems, taken at random:-
"In the circumference of a circle A B B' it is required to lay off an are
equal to $8^{\circ} \mathbf{8 0} \mathbf{8 7} / \cdot 26 . "-P a g e ~ 20$. "Let it be required to describe a Sgure abcde, similar to ABCDE, Whose area will be 17 of it.' Page 21.
"Let it be required to construct - parallelogran whose area shall be equal to that of a given circle."

-Page 26.
"Describe a circle whore circumference will be 11 is inches."一Page 27.
" Given the diameter of a globe, to find the side of a cabe whose solidity will be equal to that of the globe."-Page 28.
"In a certain construction the sqnare root of $\mathbf{3 3}$ equal parts is required with great accuracy; at what point must the centre be set to effect this object?"-Page 28.

Mr. Byrne has not spared his labours. The tables which he has given for the purpose of graduating the instrument are very extensive and carried to a greater number of places of decimals than would be generaily required in practice. The explanations are so ample and precise that, with this book before him, the draughtsman can never be at a loss respecting the various problems which he is constantly called upon to solve by practical construction. It has been remarked truly that, while the theodolite, sextant, and other instruments of surveging, have been bronght to extraordinary perfection by the refinements of modern ingenuity and workmanship, the constructions obtained from these exact instruments nre rednced in a very rude manner. While almost everthing that could be done for attaining accuracy in the original trigonometrical operations has been effected, the means by which they are readered practically available have been comparatively disregarded until the invention of the simple instrument which we have been describing.

Proposal for a general Metropolitan Raihoay. By J. C. H. Ooxnz, Esq., Barrister-at-Law. London: Weale, 1846. pp. 14.

This pamphlet is published in the form of a letter addressed to the Commiscioners for inquiring into the varions railway projects of which the termini are proposed to be established in or near the metropolis ; the object of the letter is the discussion of a plan for uniting the varions metropolitan reilways in such a manner that they may be rendered acceasible from every part of London. The impartial opinion of an unprejudiced person, on a subject usnally debated with referance to individual interents, is generally worth having: and accordingly in this pamphlet we find the various schemes for perfecting the railway commanication with London put in a new light, because for the firat time examined by one who bas no private interest in the settlement of the question. Mr. Ogier ohserves traly that with respect to the project for uniting the various great linea which now radiate from London, "the greatest impediments arive from the clanhing of the various interests connected with it, rather than from the impracticable aature of the undertaking."

The proposal that a line of railway should be laid down eccording to a scheme agreed upon by representativen of the intereste of each railway company, the city corporation, and the goverament, appears very practicable, and moreover it is saggested by the wise policy which avoid obatacles in. stead of overcoming them. There is no doabt that hy a little tact all the companjes might be enabled to come to an agreement reapecting the method of connecting their lines, and the course so agreed would probably be the beat that could he devised. In all other great citien bat London the travoller is able to pans from one line of railway to another withont incurring the wearisome and unnecessary delay of traverning the extreme length of the city through crowded atreeta; wbereat facility of uninterrapted commanication with opposite parts of the kingdom it the most important with respect to London, where the traveller is frequently delayed as many hours as would anfice for the rest of the journey. The object is one of antional intereat, and impartial practical suggestions such as those here offered towards the effecting so important an undertaking, deserve the attention of all who would have the sabject fairly discussed.

A Series of Letters on the Improved Mode of the Culttyafion and Management of Flax. By James H. Diceson. London: Groombridge, 1846. pp. 248 .

Thia book deserves attention, as the resalt of the observations of one who han devoted fiftean years assidugusly to the examination of the subject. We
confoss ourselves incompetent to give an opinion a to the merits of the several improvements suggested by Mr. Dickson; still we imagine that his object will be sufficiently answered if we draw the attention of those interested in the cultivation of flax to the fact that they will here find detailed inform. ation on every point connected with its agricultural and commercial purposes. The machinery for apinning the yarn, \&c., the economic value of the plant, ascertained by a comparison of the cost of cultivating it, and its productivoneas, and the methods of cultivation and preparation for manufacture pursued in varions countrics, are fully and clearly described.

Gothic Oramments, being a Series of Examples of Enriched Detcile and Accesrories of the Architec/ure of Great Britain, drawn from exiating awab. rities. By James K. Colling, Architect. Bell, Fleet-atreet, 1846. Nob. 1 \& 2.

Every contribution towards a more accurate knowledge of the beautiful architecture of our ancestora is worthy of commendation; and the work before us is one of the most elaborate which has been published with this ob. ject. Each part contains one illuminated, and three uncoloured, lithographic platem. The subjects are the decorative enrichments of Pointed structures, and will comprise "bosses, canopies, capitals, crockets, corbels, dripatone terminations, finials, foliated cuspe, gurgogles, patere, poppy-heads, spandrils. subsellce, string-courses." The subjects of the firat illuminated plate are portions of a Perpendicular rood-acreen in Langham Cbarch, Norfolk, showing the manner in which it is enriched by painting. The coloura are magnificent, and beautifully printed. The other plates contain poppy-heads from Paston Church, Norfolk, wooden spandrils from North Walsham Church, and capitals from the choir of Ely Cathedral. The subjeet of the illuminated plate in the second part is diaper onamelled on copper gitt, from the tomb of William de Valence, in St. Edmund's Chapel, Weatminster Abbey. The other subjects are dotiila from Lincoln and Norwich Cathedrals.

We certainly object to the ase of the word "Gothic" as applied to forms so beautifal as those here depicted, but it is difficalt to find a substitate for it. We are not favourable to the onnecessary iovention of technicalities, but certainly wish the continental term "Ogival" were in more general use in this country; the word is expressive and does not involve an architectural or chronological blunder. The ornement delineated by Mr. Colling are Ogival-not Gothic. We must not couclude whthout apeaking in commendation of Mr. Jobbina, for the very beantifal manner he hat got np the illustrations.

Tables for setting out Curvesfor Raihoayt, \&c. By G. C. Darbysmine, land-surveyor. Wealo, 1846 . pp. 16; foolscap.

Tbe review of a series of tables can contain little more than an opinion reapecting the general method of calculation; an examination of the acenracy of the numerical results canoot be expected. As far, then, as conceras the general method, tbis little work has our unqualified approbation: there are many grounds of superiority to similar pnblications; in the first place, instead of mere ruies for calculation, which, in practice, would be fonad tedions and liable to error, the actual figurea are hefe given, and can be referred to at once; in the second place, the curve for which the calcalations are made is the arc of a circle, and not a parabola; lantly, altoras. tive methods of calculations are employed, so that where the nature of the ground does not admit one at of tablea being used, another may be aubatitated. The following is the author's preface, which, being brief enough, may be given entire:-
"The author calculated the following tables for bis own private use, bat at the solicitation of several frionds, he has been induced to publish them. He can speak with confidence of their accuracy, great pains having been taken to prove every figure, and the atmost cantion observed in correcting the press. When the calculation of these tables was nearly completed, the anthor's attention was directed to the 'Civil Engineer and Architect's Jour. nal' for January, 1840, containing tables (calculated by Mr. A. A. Mornay) on the same principle, bat having only the colamn headed t for finding the tangent to the curve: and it was satinfactory to find that the principle he had adopted bad been approved of by the conductors of that Journal."

A table showing the Contents of Excavations, derived from Mr. O. P. Bidder's furnulas. By C. Ceerdr. Maynard, Baris Court, 1846. 24 mo. pp. 24.

This is a pocket edition of Mr. Bidder's tablea, of which the atility bat been greatly increesed by Mr. Croedy's addikional calculations for mach
greater depths than those for which the original tables were formed. Mr. Bidder's formula appeara quite correct, but has this defect-that the application of it is limited to those cases in which the cross section of the surface of the ground is horizontal. For the admeasurement for side-long ground and excavasions of which the vertical depths depend on the inclination of the natural aurface of the ground, we must refer the reader to the more comprehensive tables by Mr. Hughes. (See ante p. 73.)

COMPETITION DESIGNS.

Sir-It is time for those who regard either the interests or the credit of the architectural profession, to protest in the most unqualified manner against a-most scandalous practice that has of late come up, and which if not openly reprobated and stignalized will become confirmed. The practice I allude to is that of obtaining designs for a mere nominal price, by means of a very plausible artifice, yet at the same time so very transparent that it might be thought no one could possibly be gulled by it ; nevertheless tbat it does succeed is but too certain, since otherwise it would not be continued. Either a builder himself or those who intend to employ one without calling in an architect. wants a design, and accordingly resort to the following clever expedient of getting one as cheaply as possible. They know very well that they cannot apply to an urchitect only to make them drawings for the purpose without paying him a fair equivalent for his tiase and trouble. Even their own sense of common decency deters them from going to Mr. A. or Mr. Z., and suying : we do not intend to employ you as our architect, all we require is a set of drawing:, and if sou will prepare one for us, for Five Pounds or so, you are our nian. They have an instinctive suspicion that such an otfer would be received not as a kind. ness, but a personal insult. What therefore thes dare not propose to an individual, they do to the profession generally. The additional cost of the advertisement, will they know-at least hope-procure for them, not only one design, but many, from which they can choose. Accordingly the advertisement is fairly drawn up, and it very honestly stated in it, that the architect whose design is approved will not be employed, but that he will be entitled to a small PrEmitm !-so very small it seems that it is not at all adviseable to give it its money name, lest it should operate as a scarecrow instead of a bait. Nevertheless, small as it is, the premiun is not to be dung awny, but is to purchase for the liberal adrertisers the possessiou of the fortunate drawings !

After all, too, what assurance is there that there may not be some dirty trickery at the bottom of this appareot fairoess, -though at the best very evident paltriness i-W bat assurance that the preninm is paid to any one? If when the designs are looked at, it is found that there is do occasion to retain any one of them, for expressly making use of it, all that each com. petitor knows is that he gets back his own, and that he is not the forlupate man. After that, nothing further is heard of the matter, till, perhaps some local newspaper informs its readers that: "the new - is just completed, and cannot fail to obtain for their talented townsman, Mr. the title of the Fudgeall Vitravius; it is particularly chaste, the windows being quite unencumbered by any mouldings," and so forth.

What is the Institute about-what the prufession, and also you Editors, that one and all suffer auch iniquitous and shameful transactions to pass unrebuked, instead of exposing them, and branding and cauterizing those who are inplicated in them? How much longer do you mean to tolerate auch skviking bole-and-coroer proceedings,-such a species of systematic swindling \rightarrow for in reality it is no better, though not of that kind which the law can take notice as jllegal? But if not illegal it is base and scound. relry, and if nothing else can be done to check it, it is probable that insulting advertisements would not be hazarded, were public indignation to be most strongly and quequivocally expressed against them. Or are the whole profession so white-livered and pluckless to a man,-each one so entirely for himself alone, that none care for aught beyond selfbeyond what concerns self directly and immediately, bat they can put up with such abuses without the slightest effort to repress them? The question will be answered one wey if not another; fur should the matter be let drop, that of itself alone will confrm the opinion of

Vindex.

THE CATHEDRAL OF COLOGNE

The following extract from the Athencwin will be read with interest, and the concluding suggestion especially is worthy of atteation:-
"Before the Germans, incited by the example of the King of Prassia, began to take up the matter so warmly as they have lately done, one of goor correspondents wrote with animation and ioterest on the subject of the works executing at the Cathedral of Cologne-nndertaken to redeem what poor Hood so poetically called a "broken promise to God." The nine years which have since elapsed bave done wonders; opened many a journal besides yours to the subject,-enlarged progressively the interest of Europe in an undertaking. the accomplistment of which need no longer be considered a chimera,-and added largely to the funds provided. The

Colognese gentlefnen and Herr Zwirnpr, the gifted and indefatigable architect, now say with confidence that, in twenty-five years the Dom may be completed, even to the spires;-and this, not in bravado, bat from cal. culation, based upon present progress. To the tourist, approaching the building at railway speed, who sees, as yat, no appreciable diminution in the enormous gap betwixt the choir and the crane on the western towersuch promise seems an extravagance; but they who have had the privilege of look ing into the details, in compauy with the arcbitect, may admit the possibility of the feat.
"In two years, as Herr Zwirner ahourd us, the nave, aisles, and transepts of the Cathedral may be thrown open-not, in trath, to the entire height; but complete to a level above the clerestory windows. The vaulting of the side-aiales will be then completed; and a temporary roof will be easily placed over the central portion,-leaving, within, the npper part of the walls, vaults, \&c., to be raised :-without, the flying buttresses, pinnacles, and other garnitures, are more serious business. The raisiog of the transept walls to their present important height, Herr Zwirner assured us, was a heavier two year's task than what remains to be done in realization of a scheme so atiractive to the funcy. Moreover, the casual visitor is little aware of the vast collection of ornamental sculptares, ready to bo placed, which the workshops contuin. The canopies round the relreating portal of the northern transept are already fixed : the capitals of the pillars of the clerestory gallery are waiting, by the score. Let not my statement mislead any one into imagining a case of manyfacture. The old capricious variety of fancies in ornansent has bren as religiously carried out as every other intimation of the ammeless architect'a intention. The small grotesque figures at the angles of the canopies aforesaid (which are merely shelters for statues of saints, angles, \&c.) are as minutely Gnished and whimsically diversified as if they could be seen without the aid of as opers-glass when they aliall be raised to their destined position. The foliage, again, of the capitals has the sharpness of the best period of catting. No two devices are alike. The stune used for these more delicate portions is of peculiarly fine and close quality, from Rochefort. Nothiog seems slighted or overlooked; and the workmen, of course, become more skilful as they proceed, and fuller of spirit and invention. A growing confidence that all this labour is not to be in vain as regards the grand result, probably animates those who have contributed to a scheme somagnificent, but for a long time deemed so visionary. Windowrs are beginning to dropin. The King of Bavaria's donation of sir for one of the side aisles will be ready in 1848 ; and then, it is said, the spell is to be broken -the wall thrown down betwixt aare and choir, with splendid feative ceremonies. This will give an immense impetus to popular feeliog. I was shown the corner where our Queen's donation is to be placed. When I saw this, and was told of one window contributed by Herr - at a cost of thirty Friedrichs d'or, and of another promised by some other en-thusiast-a wish arose in my mind, to wbich you will, perhaps, not object to give currency. Would it nut be a pleasact thing to the English artiats and lovers of art to have their memorinl in such a building? One of the amaller windows-presuming their zeal unequal to vie with that of Roym donors-might be handsomely compassed for fifty sovereigns: or, let os say - to state the sacrifire more taugibly to those whom I fria would in-terest-fifty white-bait dinners! Could not so much as this be done, without injustice to any of our own works of art or benificence? It is troe that the offering, when completed, would make little more show than the hatchments or votive tokens wbich cover the walls and pillars of the Catholic churches abroad; but it would be, still, "the Englishmen's window," for the father to show his son-a token of brotherly kiodnese and s) mpathy, especiaily grateful to such lovers of memorials and celebrations as are our German friends;-who, let me add, are more abundanly irritated by the sneers and exactions of our swarin of vulgar sommer tonrists, than soothed by the courtesies of the refined and intellectual amosg as. At all events, my hint can do no one liarm."

To the above, the following particulars, taken from the report of $\mathbf{Z w i r}$ ner the architect, may be added. The past winter was chiefly occupied in preparing the stones required for the triforium of the uave and the north and south transepts. On examining the foundations of the great north tower, they were found to be so imperfect that it will be necessery to excavate to the depth of thirty feet in order to renew them. This discovery will lead to great delay and labour. Zwirner complains that the employment of workmen on Gve different portions of the building simuliadeously leads to needless trouble and expense. The list of royal donations is as follows :-Emperor of Austria, $\mathbf{£ 8 3 3}$; King of the Netherlands, £84; Grand Duke of Baden, $\mathbf{£ 1 7 0}$; King of Hanover, $\mathbf{£} 86$; Prince of Lich. tenstein, $\mathbf{X} 96$; Queen Victoria, £525. The most favourable sigas of progress are the arching of the south aisles and the completion of the porth and south portals, The latter are already arched over. Considerable controversy has existed respecting the manner of erecting the south portal; certain traces of foundations which bave heen discovered, and which are said to indicate the form which this part of the cathedral was intended to assume, have been disregarded in the restoration. The restorers appear, however, to have acted on mature deliberation, and the restoration of the north portal, which is indisputably in accordance with the original plav, furnishes a powerful answer to the objections raised respecting the couth portal.

NOTES OF THE MONTH.

The Tubular Bridge, - It appears from the report of the engineer of the Chester and Holyhead railway, that the model tube constructed by Mr. Fairbairn, one sixth of the actual size, has been subjected to such experiments as he considers sufficiently justify the company proceeding with the works. He reports:-"In the former preliminary experiments, I was led to the conclusion that great care would be required to prevent the upper side of the tube from crushing, -that, in short, the main ubject to be aimed at was to give the top of the tube the requisite stiffuess. In this respect, the result obtained from the model has been highly satisfactory; and, being upon so large a scale, may be deemed perfec'ly conclusive upon several important points. The ditneasions of the tuhe were as follows: length, 75 ft . between the supporters; depth, 4 ft .6 in .; widu, 2 ft .6 in . The total weight a little above five tons. When progressively loaded, the mean deflection was about one-tenth of an inch per ton; and with a load of thirty-five tons suspended in the middle, it gave way on the under side, the upper part not having exhibited the least sign of failure np to the moment of fracture. Heace, therefore, we have arrived at a most interesting result ; viz., that the liability of the plates on the upper side to crush has been completely removed from the construction in compartments. The experiments having now furnished us with the vecessary means of calcu. lating the relative thickness and proportions of the several parts of the lube. we are in a condition to contract at once for their construction." Sopposing tbe strength proportional to the size, the real bridge ought to break with sir times the load on the model-that is, with 210 tons, and the defection would be 21 inches. Mr. Stephenson stated, in his report, that 747 tons on the centre, or double this distributed over the whole bridge, though equal to any weight "that can in practice be placed on the bridge, is not sufficiently in excess for practical purposes." But tho sup. position which seems to have been acted upon in this experiment that the strengit is directly propartionil to the dimensions, is founded on false philosophy. The load which can be sustained is a function uot of the length, bot of the square of the lengih nearly; or at all events, depends on a tigher exponent than the firat power of that quantity. The deflection woald depend oot on the breadth and depih simply, but probably on the cabes of those quantities.

Buckingham Palace is to be enlarged by the addition of a fourth side, completing the quadrangle : the architect is Mr. Blure. Let us hope that the faults in the present structure will not be repeated-that columas will be ased to aopport the building - not to be supported by it, and that there will be no shan pediments stuck on for show. The destruction of the hoge triumphal arch, supporting nothing but a little flag-stuff ("a most lame and impotent conclusion"), is bappily resolved upon. The proposition to baild an altogether new palace of purer architecture seens piefer able to that of patching up the uld one. The liberality of the people o England must, in the former case, be the nore acceptable to the Qureu because forced upon her, as it were, in generous disobedience to her ex pressed wishes.

Trixmphal Arch, Piccadilly.-The statue of the Duke is to be hoisted up after all, and to remain on the arch for three weeks, to sce how it will look. Sir F. Trench might as well walk through London on stilts, to see how the would look. This scheme of puting up the atatue on trial appears very much like a ruse: the pieces of metal, if soldered together, cannot be disunited withuut injury. Besides, it would be much easier and cheaper to again raise the great wooden dull which was placed in the same situation as a gazing-stock some time ago.

At the anniversary merting of the Butanical Soriety of London the receipts were stated u be $\pm 12,641$ and the expenditure $£^{\prime} 9,845$.
In the Papal States an Auglo-Indian company has been formed for establishing a complete system of railway communication. The Pope is stated by the Journal des Debals to have obtained from the Freach Goverament copies of all the statutes relating to railways.

Mont Blanc. this summer, appears for the first time this many years, discrowned. The sun has robtued "the monarch of mountains" of his insignia of royaliy; peither "the avalanche is in his hand," nor does the - diadem of stuw" remain upon his brow.

Navigation of the Seine.-The Freuch Chambers have voled $26,000,000$ franos for the improvement of the Seine navigation. Neur the month of the river the chanuel will be uarrumed, in order that the current by its increased rapidity may coustantly act to scour the passage.

Mr. Hudson's railuays. - The following table exhibits the average of fares per hundred miles on the railways uuder Mr. Hudson's management and eleven other railways:-

	18t. Clans.	2nd. Clasa.	3rd. Clask.
Uud		103. 6d.	13s. 4d.
Eleven other lines	15x. 91ti.	13s. 71 d.	88. 9 年d

In one case (the Gireat North of England), 17 s . 9 d . per 100 nules is charged for second cluss passengers, white on the London and Birningham the firgt class fare fur the same distance is 16 s . Gd!

The Birmingham Town Hall luas been decorated in the Polychromatio style.

The Masonic Hall. Corces,-A long account of the laying the firat stone of this building has bern given in the newspapers, The Illustrated London Nrues publishes the design, which appears to be perfectly diggrnceful. 1t has been observed, among other things, that the Grecian.Doric pilusters are iwelvo dlameters in height!

The Sailor': Home, Lirerpool, is to be erected in the Elizabethan style from designs by Mr. Cunningtim. It has been calculated that the cere mony of laying the foundation stone by Prince Albert has cost more than will suffice for erecting the boilding.

St. Michael Hearitree, near Exeter.-This church has been re-erected under the superintendence of Mr. Alexander. Tbe form and details of the former church have been almost exactly repeated.

Trinity Church, Paddington. - The cost of this building is $£ 18,000$.
St. John Baptist, Sudbury.-A small church, near the Birmingham railway, has been erected frum an excellent design by Messrs. Scott and Moffatt. The style is Decorated; the materials fint, with etone dressings.

All Saints, Harrow-uceald.-The first stone of this church bas been laid. The desigu is by Mir. Harrison, in the Early English style.

Frcscoes in the House of Lords.-Very favourable reports of the success of Mr. Dyce's labours are in circulation. His mural picture is said to have been recently inspected by the nieabers of the Royal Comminsion of Fiue Arts, and to have given great satisfaction to the distinguisbed visitors.

Statue of Sir Forrel Buxton.-The competition respecting this statue, which is to be erected in Westminster Abbey, has rebulted in favour of Mr. Thrupp. The price is $\mathbf{f 1 , 0 0 0}$.

Mf. Vignun, architect to the Empress Josephine at Malmaison, to Louis Bonaparte when King of Holland, and to Murat, recently died at Paris, at the age of eighty-five.
The Society for building, \&.c., churches and chapels determined, at their last meeting to graut assistance towards the erection of 11 new churches, the rebuilding with enlargement 7 parish churches, und the eulargenient of 19 churcbes and chapels. The Sociely, since Novenber last, has coutributed $£ \mathbf{£} \mathbf{2 0 , 3 6 0}$ towards the erection of 69 new churehes.

South Devon Railuay.-Atmospheric tubes of the increased diameter of 22 inches are sajd to be in cunrse of formation.

The Midland Counties telegraph, from Leeds to Birmingham, and from Derby to Nottinghana and Rughy, has been completed at a cost of $£ \mathbf{4 0 , 0 0 0}$.

Instruction of engine drivers.-Tbe French Minister of 1ublic Works has resolved on instituting a school for this purpuse at Paris.

A failure of an embankment on the Sheflield and Manchester railway took place recently, when 3,000 yards of earth feil.

The Richmond lise is opened. It cost ouly $\pm 170,000$, thongh the original estimate was $£_{2(0)}, 000$. Mr. Lucke is the eugiuetr: the rate of progress was a mile a month.

Foreign competition with English manufitctures.-The merchants of Birmingham have been offered Belgan wine glasses and tumbleris $2 \mathbf{j}$ to 38 per cent. cheaper than they can be produced in England.
The newspapers announce the death of Dr. Bustock, of Liverpool, an associate of Priestly and Dary in their labours. His principal work was the "Elementary System of Puysiology."

Discorery of an ancient forest - In escavating the new road from Woodside, which has been commenced by the Birkeuhead commissioners, the workmen have discovered a forest six or eight teet below the level of the soil. Many of the trees retain their original forms almost perfectly.

The Neucfoundlund Times asaerts, from observatious of the sea level, that all the land about Conception Bay, and probably the whole islaud, is gradually rising above the sea.
Chichester Calhedral. - A rose window has been placed in the cast gable. The tomb of Hichard, bishop of Chichester (1252), has been rextored and placed in the south transept.

London Docks.-A new warehouse is being erected by Mr. W. Cubitt. The lengit of the new building is 234 feet, the breadth 189 feet, and it is five sturies in height.

The Hotel de Ville of Aix-la-C.hapelle is being restored. In this building took place the congress by wbich the celebrated treaty of Aix-faChapelle was concluded.

Ruiluay Legislation of the Present Session.-3,672 miles of railway bave been muthorized, wath a capital of $5: 90,500,000$, and power to borrow E'38,700,000 miore.

Lordon and North. Western.-In consequence of the grand amalgamation of the London and Birmingham, the Girand Jusction, and the Liverpool and Mancheater, into one great company, wamed the Lundod and North.Western, most extensive improvements are contemplated. At Eus-ton-square und Camden-town whole streets will be demolinhed to gain additional space. The Wolverton and the Crewe stations will be greatly eularged; but the most imporiant alterations are being carried on at Liverpuol: there will be a tunnel right unuer the town of cousiderable length.

The Contracts for the Menai Tubular Bridge are distributed as follows: Mr. Walter Williams, $\mathbf{2 , 0 0 0}$ tons of best irua plate; Bramah and Cu. aud Fuster and Co., each 1,500 tous; Thuraescruft and Co., the Colebrook Dale Company, and the Butterly Company, each 1,000 tous;-14 all, 8,000 tons.
The Railway of the United States extend over 10,500 miles.
The late Storm has considerably injured the exterval musuury of Heary

VIIth＇s Chapel，which，notwithstanding the comparatively recent restora－ tion，shows signs of general decay．It is of Bath slone．

The Gorernmend School of Design．－The annual meeting for distribu－ tion of Prizes has recently taken place．This inatitution has effected little which roold induce the pablic to respond to the tone of gratulation adopted in the annual report．

The Three New Parks at Manchester have been opened．
The Restorations at Ely Cathedral progress rapidly．The tombs of Bishop Alcock and Cardinal de Lidanborough，the Purbeck marble shafta of the triforium and clerestory，the corbels，string courses，\＆c．，have been purged of the coatings of paint and plaster．But the chief works are at the west end，where the lowers have been restored and opened to the nave． The Chapel of St．Catherine，which opens into the newly－restored tran－ sept，is to be repaired．At the east end of the church，the south pinnacle， which was never finished，is in course of erection at the expense of Mr． Hope．The dean has restored Prior Cranden＇s Chapel．

MIEOETHANEA．

Roceit MaEing in tel Royal Arszmal at Woolwich．－The out－ tide case of the rocket is of thin abeet iron，and the loser case of paper．This case being ixed，a ladiefull of ciny is placed at the bottom of the rocket and the compoasition Is then poured in；one ladiefull being put in at a time．Each complement of the com．－ ponition ta then driven down by an ingrament called a＂monkey，＂aimilar to those uned In plle－drifiog，which is allowed to fall on the rammer 60 times．This procenals repeated on the addition of each ledlefall of the composition，till the whole tube or cate in filled， when it in coated over with ciay，which hardens and protects the composition from acel－ dent till it is required for uee，when the clay is bored throngh．

Blabtina of the White Shrll Rocis at Sondzqland．－Tbese rocks，which have long been a source of danfer to ahion enterng the port of Sunderiand， were examined recench by T．Meek，Eaq，engineer．On Eurvering thalr for an and an－ ture，hy means of the difing bell，he satisfied blmaif of the practicablity of thels belng blasted whth grappowder，and their mont dangerous parts removad．The surfice was forad to conslat of rid ea of pseodo－magnesian limestone，runniag in an easterly direc． tion．The higheat projecting indge wan not more than two feet six inches below the garfice of the water．Thin belng the mont dangerous point，it was selected for the com． mencement of the operatione．The first blant loonened and displaced aix tons of rock， and by mesas of two otbers this portion of the ndge was levelled，and a depth of five feet water at low apring ebba obrulned．Anotber prujecting ridge，not so dangerons，has been lowered and broken up．The operations are atill progreasing，and mach advanuge to the port is expected to result from thers．

Indian Railways．－The Indian journals，received by tbe overland mail， are difcusaligg the possibility of conatructing the ralloods．Mr．Simms，after afir month＇s aurvey，hai declined to attempt a rrgular entimate of the cost of cnostracting a Hets it down at Als．000 per mile；one bridge nlone he eatimates at two villion rupeen． Thin really appears no extravagant eatimge of what th may cosi wo carria a rapliway
 throagh a conntry subject to lonnations so volent sit to aweep the moat molit atruetures away．At this rate，the tolal expense of a rallway from Calcutia 10 Delhi would be come－
 course，to rise tib teet in rather leas than six milies and in this portion of it there are throngh which these operallons are to be conducled leads to＂＂ragged dimealt conn世5．＂

LIET OR NNEW PATEETTE．

GRAKTED in England fiom joly 23,1846 ，to august $25,1846$.

Sis Months allowed for Bherolment，walest otherwire espressed．

Charies Willam Firchild，of Leamingtion，in the county of Warwlck，for＂a new en－ tiae for obtalidog rotary motion．＂－Sealed Joly 28.
Peter Clouscen，of Lelcester－aquare，Middiesex，gentieman，for＂Improvement in me－ thode of，or apparatue for，propeliting and exhaneting and compreastige alr and aenform bodjes．＂＇July 23.
John Talloh Oaborn，of Demerana，now realding to London，Eeq．，for＂certata Im－ provemente in power machides，or machinery for tuling，dralning，sod otherwise culturat－ provementa in powtr machione，or machinery for tulig，draining，si
Jumea Heary Dickson，Eeq．，Capt．Balf－pay，of Chellenham，for＂certaln Improve－ mentela taddles．＂－Jnly 23.
Harold Creace，of Brixton．hill，Burrey，paper stajner，for＂certain Improvem－nts in the preparation of pelinti and coloara for decorative and other almilar parpoece．＂－Jnly 23.

Francois Henry Bliken，of Mayence，on the Rhine，in the Grand Dachy of Hesse，gen－ Herien，for is Improvements fo distliation．＂－July 23.
George Benry Fonrdrinter，of Esaley，in the county of Staford，paper－maker，for＂ Im － provemente in preparing the materlale used in manufecturligg eartheuware sod chion， ad in printing the dealgne for ornamentiag the seme．＂一Juiy 23
Edward Hammond Bonsall，of Heybride，in the county of Ersex，Iron．founder，for ＂Improvemeatin in laplementa for ploughing land，and clearing land of weeds．＂一July 23.

Alred Vincent Newton，of Chapcery－lapp，dimaghtuman，for＂certaln Improvementa to the manufacture of sugar．＂（A communication．）－July 28 ．
Thoman Bell，of Don Alkall Workn，Boath Shietide，for＂Improvementa in atoelting copper ore．＂－July 28.
Robert Heath，of Msachester，gentleman，for＂certaln Improvementa In wheels to bo uned upon rall and other ronds which improvements are aloo applicable to mill geariog， and other s！milar purpoies．＂－Jnly 27 ．
John Auruatin Alexin Sauvafe，of Rne Ricber，Par＇s．for＂Improvements in condendigg the steem in steam－ergines，and in aupplying woter to steame englne bollern．＂－July 27 ．
Thomas Lucns，of No．113，Alderagate－ntreet，London；lozenge manifacturer，for＂cer． taln Improvernents in the mannfacture of lozenget or itretmeats．＂－July 29.

Henry Besemer，of Baxtor．Louce，Old St．Pancrea－roed，Middienty，engipeer，for＂cer－ tina improvements to the manofacture of plase，and In machinery and apparation con－ cectod therewith，and also in cilvering or coatios giact，parts of which tmprovemeats are appilicable to the manafacture of tin foil and thin wheth of other metal，ar alloys of me． cap．＂—Joly 80.
Robert Mallett，of Dublin，eirli angineer，and John Somers Dawion，of Dablin，eomed bailder，for＂ceritaln Improvetnentita rallway carriages，and in the macbinery for work－
 iss ralwayh，parta of when
machinery．
Whilam George Armatrong，of Newenatle－apon．Tyce，for＂an Improved Inring，lower－ ing，and hauling apparatua．＂July 31．
Theophlle Auguate Drescbike，of Rae Therese，Parts，late an oficer of Artillery，in the service of Pranala，and late profetsor of sacred bnasic at the UDiversty of Bertio，for is Im piovementa in the keyt of planofortes and wher keyed muslcal instrumente．＂一，July 31 ．
John Bayley，of Heaton Norta，Dear Stockport，manager，for＂certaln Improvemento In macbinery or apparatan for spinaing or twiating cotion and other fobrene sabatences．＂ Augat 1 ．

Thoman Payne，of Bandaworth，zear Birmingham，gentleman，for＂Improvementa in the manufactare of rulls for rolling fron and other metals．＂－Auguat 4.
Chariee Vignoles，jualor，of Apperby－hridge，near Bradford，Yorkshire，civil englaeer， for＂Improvementin in employlng steam at a motive power．＂－August 4.
Fravcois Teychenve，of Rederoms equare，Cripplegate，fetther merchant，for＂Im． provementa in treatiog stone to reader it hard and lomparmenble，and in colouring the same．＂（Partly a commanleation．）－August 10 ．

George Lodge，of Leeds．Yorknhire，engideer，for＂certain Improvementa in beatiog

Prank Fille，of Depiford，Fent，manufictaring chemiat，for＂a method or metbods of treating certaln geses，and manafacturing sulpbartc achd，marlatic acelle actid，and oer－ taln alite of potash，coda，and ammonia．＂－Auguat 11
Willem Eayer，of Bread－atreet，Cheapaide，London，gentleman，for＂Improvementa

Richard Whytoch，of Edintorgh，manufacturer，for＂an lopproved method of manu． facture which factitates the production of regular Agures or patterns on differene fabrica， partleularly velveta．velvet pile，and Bruabela，Wuiton，and Tarkey carpera，beiog an es．
 tension for the term of tive yeari，to be compated frome the stb day of Septeanber， 1846 ，
of letters patent granted to the andd Richard Whytoch for the sald fovention，by bie fite Malters patent granted to the andd．Richard Why
Majug William the Fourth．＂－August H ．
Charles Dowse，of Camden Town，gentleman，for＂Improvemente in the unanoferare and Anlohing of fabrica capable of bofag nsed an substitasea for paper．＂－Auguat 11.
Whiliam Warcap，of Anhton－terrace，Coroaation road，Bratol，ctvil enplower，for ${ }^{\text {a }}$ eer． taln Improvemente in the manufacture and arrangement of parts and apparatue for the construction and working of atmospherce rallwayn．＂－A nguat 11.
Henry Constantioe Jenntage，of Camberland terrace，Regent＇s－park，practicul chemiat， for＂a new method，or apparatul，or machine，for the better or more economic evaporn． tion of Anids or liquids containing cryataline or other matters to be coocentrated or erye－ tallised．＂－A uguat 11 ．
Jean Michel Borgognon，of New Broed－atreet，London，geademan，for＂certatn Itw－ provementa in producing artifcial babaluc havas．＂（A com munication．）－Augast 11.
Daniel Sydney Hacluck，of Birmingham，merchant，for＂certain Improvements is the manufacture of harnesa for beasta of burden．＂（A communication．）－Augure 13.
John Buchannn，of Queen．aquare，Weatminster，gentleman，for＂certain Improve． menta in ohlpa or ressels，ant io propeling therrof，and in mecuring the game from dotal danage，certale paitu of which machinery may be uned for molton on land．＂－Avg． 15 ．
Willicm Altken，of Aberdeen，In North Britatn，gentleman，for＂certaln Improvemente in two and four wheeled carrigen．＂一August 15 ．
George Phliliph，of Park－atreet，Islinglon，chemiat，for＂an Improved construction and arrengement of apparatus for sapporing gardeu－pots，and Improriog the growth of planth．＂－Auguat 1% ．
Moses Poole，of the Patent Bill Office，London，gentleman，for＂Improvementa ho manufacturing terry and cut plled fabrics．＂（A communteation．）－Augnti 17.
Joseph Gray，of Redcrose－atreet，Southwark，machinlat，for＂Improvemente in gate zee－ ters．＂－August 17.
George Remingion，of Park－street，Weutminater，civil engineer，for＂oertalo Improwe－ menti in locomutive engines，part of which lmprovementi are．applicable to marline ard stationary enginea．＂
Jomeph Clinton Robertson，of Fleet－street，London，civil englpeer，for ${ }^{4}$ an Improred method of coantructidg boall，ablps，and vesselo of wood．＇＂（A commantention．）－Aas． 17.

George Binton Borill，of Millwall，Middlesex，englaeer，for＂Inprovemente in mann－ facturing wheat and other grain into meal and lour．＂（A communication．）－Augent 18.

Samuel Haven Hamilion，of Parla，gentleman，for＂Improvemenis in machinery or apparatas，for dredgtng or excavatiog．＂（A commudication．）－A uguat 19.
Willam Crofs，of the Park，Notungham，for＂Improvements in the menafectore of lace and other fabrics．＂－August 20.
Henry Parry of Bigh．street，Deptford，gentleman，for＂certaln Improrementa in the manufacture of hata．＇．－Aurgat 20.
 machine for resplag，cutling grats，and other similar purposes．＂一August
Maximilian Françis Joseph Delfosse，of Paris，bns dow of Regent－street，Exy－，for ＂Improvements in provendiog and removiug incruatation la steam bollers．＂－Auguait 23. Jumes Biahop，of Plecadilly，warehouseman，and Thomas Wood，of Upper Barmabary． street，Ieliogion，gentioman，for＂Impnuvementifo passengers＇carriagee．＂－Augut IY．
Thoman Ruseell Crampton，of Adam－atreet，Adelph，Midileser，engineer，for ${ }^{\omega} \mathrm{Im}$ ． provementa jn locomotive engines．＂-A wguat 25.
Alexander Pakes of Birmingham，artat，for＂Improvements in the manufacture of eandien，and in preporing and combining certaln animal，regetable，and miperal oub stances，applicable to the manufacture of candict and other uses．＂－Auguat $\% 3$ ．
James Durdeck，of Staple－Inn，Middlesex，for a procest for＂makiug a corapodtion of aribicial atone，applicable to bullding and other ueetul purpones．＂－August \％．

CORRESPUNDENTS．

Received＂Hodgkinson on the Streugth of Cast Iron，＂＂View of Chriat Cburch，Portswood，＂＂Nunnullus．＂W＇e are agaic compelled to postpose several pepers for want of room．Correspondents who wish to bave theis comnlunications inserted mast send them eanly in the moatb．

C．Bagsies

山禹。

THE BOARD OP TRADE, WHITEHALL.

(With an Enynaving, Plate XV.)

We have reserved till now, when we exhibit an elevation of it, our remarks on the "Board of Trade," an it was originally designed by Soune, and we may commence them by observing that though he selected a aingularly ornate and bighly Anished exmmple of the Corinthian and adhered to it with that literal exectaess which though merely belonging to the province of arehitectural orthography, is allowed to pass for a positive merit, he deviated widely from-at least did not at all enter into, the spirit of it. Were the reet of the elevation shown before the columns were pat in, hardly would it be imagined that the hatter were to be of the Corinthian order, least of all that example of it; or wice berad, were it the order that was drawn in irat, we should naturaily antlcipate a corresponding degree of richnesa for the other features, whereasthey are of such marked plainnese as to be both inconsistently and afrectedly 00 . It is rather atrange that at he did not intend to keep np to tone of the order, he did not adopt the middle conrme of sobering it down to that of the rest, preserving its proportions and profilet, but retrenching itn lazuriance. But like many others, Soane wat content to take ordern and apply them just as he fonnd them without endeavouring to make them induence the composition. He could copy Corinthian columns-and we are certainly indebted to him for the introduction of the Tivoli example-but he had no clear perception of Corinthiondem, still leas of Ionicism, for his Ionics are intolerable. With all the originality, too, that he possessed, or hid the credit of possetaing, he does not appear to have ever turned any of it to the composition of a well studied and carefully devised example of his own,-we say example, for we are not no absurd as to expect any one to originate and perfect a new atyle of order-a preposterous idea that has proved a stumbling-block to those who have attempted to do so, and whose extravagant and tastelesa conceits have caused those to exult who comfort themselves with that good old orthodoxy which apares them all trouble of invention, and which by making the whole profession mere copyists in regard to the orderi, puta all of them so far upon the same level.-But all this may pass for digrestion, and we therefore break away from it.

In bis "Board of Trade," Soane kept up aniformity of intercolnmaiation, but not to the very great advantage of that portion which had insolated columns, the latter being like the attached ones, four diameters apart; which occationed in the building what does not show itself in an elevation, more especially an outline one, namely, a certain degree of meagrenesa to to cO lumpiation, at variance with the character of richness aimed at by it, and certaiuly at variance with the intercolumniation in the original example, where it is only one diameter and a balf. Another disadvantage was that the effect of shadow was greaily diminished in consequence of the width of the intercolnmps. What is more, those advanced columns were quite as parasitical, and more decidedly for mere embellishment than the others, for instead of the order being a portion of the building, it was merely stack up againat it, the entablature being actally detached from it, and having immediataly behind it amall windows to a mezzanine foor. It would seem therefore that those columns were brought forward chiefly in order that the entablature might be so also, for the purposing of masking the nnsightly apertures required in so ungeinly a situation. As an expedient in urgent necesaity, anch concealment of what would else have hlemishes, might have passed for ingenious and legitimate, had not the artifice manifested as much bungling as contrivance by being allowed to show iteelf; whereas had the soffit of the eatablature been closed up, it would not have been even suapected, while at the came time by the entablature being hollowed out, 80 as to form mere parapet in front of tbose windown, the light to them would have been hardly as all obstracted.

In one respect the fenestration of Soane's building wat praiseworthy, for the heads of the second tier of windows and their dressings-in builders phraseology those of the "one-pair"-did not break into the line of the capitale of the columns, owing to which the latier display themselves with more dignity. Nor can we belp being of opinion that in thia particular point Mr. Barry has not improved upon the original design. We expressed some diapprobation last month of the infraction of linear harmony by the second loor windows being allowed to rise up between the capitals of the order, hut we did not mention-in fact hed not then considered how the difficulty was to be overcome, the columas being just of toe same height as before, and she windows in question considerably taller. As to difficolty, indeed, there we no sech word in the case, nothing being more easy of aceomplishment,

No. 109_-VoL. IX.-Octores, 1846.
for there was only to raise the colomns to the level of the window balattrades, which done, their bases would have ranged with the silla of the first Aloor window, and their capitals would have cleared the line of the top of the upper window. The building would that have gained an addition of three feet in haight, which increase would hardly, we conceive, have been on objection, though decrease of height, to the tame extent, might very jantly have been so.

Sonne's attic looked more like an after thought, and excrescence than at having been deaigned in conjunction with the order. Inatead of contributing any of that play of outline and concomitant piquancy of composition, which so happily mart some portions of the Bank, it produced only monotonous and apiritleas heaviness. If that be any great merit, it was certainly free from Soaneisme, but unlnckily when Soane was not somewhat oddly faciful he was dull, and sometimes even without a decent idea at command. We have, however, his architectural autograph here in some of the chimneys, which have certainly more of Soane than of Corinthianiarn in them. Pity that with his ambition to be original, he got out of the beaten track only by fits and aterts ; he jumped out of it only to jump beck into it again, or only to jump about the new track he thought he had discovered, but without making any progreas in it. He had ideas of his 0 wn , but he was apt to put then forth to the public in too raw a state, and he almost invariably left some grating incongruity-some trait of littleness and meanness in overy thing he did. His choicest plece of design was the Loggia forming the north-weat angle of the Bank-from which, most atrage to say, no one bes ever taken an artistic lesson in composition.

fenestration and windows.

sECOND ARTLCLE.

Although there are other characteristics which more or less strongly mark Gothic exteriors, particularly in regard to outline and composition, it is in the apertures alone that the arch, whiob prevails throughoat the entire organization of the interior of the fabric (at least, in ecclesiastical edifices), manifests itself externally, for open arcades corresponding to porticoes, on the outside of buildinge are of such exceedingly rare occurrence in the Pointed style, as to be only exceptions. We shall perhaps be reminded of the open arches of porches; but they belong to doorways, and do not form continuous arcades, of which latter, however, or what may else be called a portico of three lofty arches, the front of Peterborongh cathedral affords an instance, and is accordingly very remarkable. This comparative absence of the arch from exterior situations has led Schnaase -jf we mistake not the writer-to give it as his opinion that the Pointed style seems to have been calculated chiefiy for internal effect, inasmach as it is within hoildings that it displays itself in all its completenese and with periect homogeneousness-not in doors and windows alone, bot in a succession of arches, combiued with vaulting and its arched surfaces. Externally, therefore, windowa are valuabie features, because strongly expressive of the style, even should there be, as is sometimes the ctise, very little besides to indicate it. Nor is it only on account of the presence of the arch in them that they are thas expressive, for in the later Perpendicular the arch is sometinues almost lost, or even entirely so as regards the general form of the aperture, since square-headed windows occur even in ecclesiastical buildings as well as in secular ones; notwithatanding which, the character and constitution peculiar to Gothic windows are strictly kept up. It becomes necessary to consider in what respect Gothic windows are differently constituted from others, and so very much more advantageously, that what renders them both highly characteristic and ornamental externally, renders them also such internally, or vice.cersa. Perhaps the matter is so exceedingly obvious as to require neither consideration at all, nor explanation,-at least it would seem to he so, for wo do not recollect to have seen it adverted to by any one of the namerons writers on the sabject; nevertheless, we will, at the risk of putting forth an officious and superfioous observation, lay it down as the distinguishing constitution of Gothic windows, when the styie is fully developed, that they bomsist not of one, bat of many apertures united together into a geneind composition. . However large they may be-and they may be exteumied to any practicable dimensions-they are not mere gaps in the wall; on the contrary, the larger they are the more decorative they be-
come, the increase of size being obtained by an incrensed number of lights and mallions, and a consequent increase of tracery riba in the "head" of the window; whereas, unless the general opening were divided in its lower part into lesser apertures, there conld be no tracery above.

After the idea of them had been fully developed and brought to ma. turity, Gothic widdows exemplify very strikingly how admirably that disposition of them which originated in convenience if not in actual necesvity, was made to conduce to both character and decoration; for the division into separate compartments or " lights," aystematically combined into one general whole, resnlted in some degree from the exigencies of constraction-not indeed as regards the arch which is so filled in, but in order to afford due support, and also the appearance of it, for the glasing and it lead-work, Instead, therefore, of cansing mere vacancies and voids in the walls, and of being little better than dull gaps and hlanks in the architectare, without ans of the bold effect attending anglazed openinga, the apertures themselves become positive features in it, they forming so many perforated screens inserted into the arched roids which they occupy. Hence, they differ not only most decidedly hnt most adrantageously from windows in the Greco-Roman and Italian styles, in which ornamental design is entirely confined to the dressings enclosing the aperture, which, however rich they may be in themselves, contribute nothing whatever to internal effect, the apertare itself remaining nothing more than a mere large circular-or square-headed, opening, withont any possible variety of design for it ; whereas, in Gothic architecture, the actual windows, and not the mere external framing around them, admit of almost inexhainstible diversity; and however plain they may be in their splays and external moaldings, they are both integral and orammental parts of the structure.

In some iustances, however, mach external and adscititions decoration is bestowed on Gothic window, -eren anch extraneous additions as small crocketed gables enclosing their heads, which therefore seem to offer a direct precedent for the application of pediments to windows in Italian composition, and must accordingly be condemned as gross solecisms, -that is, by those who are intolerant of window-pediments, buch gables or Gothie pediments being, lize the others, merely "stack on," and miniature resemblances of constructive forms diverted and perverted from their original intention into mere accessories for the salce of embellishment. Indeed, miniatare gables, we may stop to remark, are so exceedingly common in Gothic architecture, that the term Gablet has been expreasly inveated for them; and some of them-ex. grat. on the several stages of buttresses-are so diminutive, that they ought to be held very "ludicrous" things indeed by those who adopt the profonnd dictam that "the lodicroas is inseparable from diminutive resemblances of things noble and dignified in themselves."

To return to windows, 一those whodenounce the application of pediments and columns to windows in the Italian style, must be equally acandalized as those examplen of Gothic windows in which miniature buttresjes fortify the lower part of the principal mallions, and again, at such enormities as "embattled" transoms. In claiming for Gothic windows the merits and advantages we have done, we must of course be understood to refer to gencine and worthy examples, since we can by no means extend the same praise to that sort of "something like Gothic" that gives us little more than the mere skeletons and radiments of mullioned windows and tracery, ach as, till very lately, we have been doomed to behold in churches and other modern Cothic buildings, for whose windows, proportions as to the mallions and intervals between them are totally disregarded;-probably, becanse it has not been even so much as suspected that there ara any proproportions at all to be attended to. Nevertheless, though it may not have been formally entered among bookish rales, the same principle regulates the spacing of mullions-or, what is the same thing, the breadth of the mallions in proportion to the width of the lights-as regulates intercolum. niation. The mullions should not be forther apart than 8 or 4 at the most of their diameters, so to call them;-or, in other words, should not be mach narrower than from abont a third to nearly a fourth of the width of the "lights." It is owing to the non-observance of such proportions that $s 0$ many modern Gothic windows are very unsatisfactory in character, oven when correctly designed in other respects, the mullions being reduced comparatively to mere npright bars, so that the whole window has a wiry and meagre appearance, as offensive to the eye as yawning and straggling intercolumuiation, the disagreeableness of which is felt even by those who are nasable to account for it. Another point to be attended to, yet frequently disregarded altogether in modern practice, is systematic uniform. ity of diviaion of the wludows for all of them alike, both large and amall;
that is, the width established for the lights in one window shoold be adhered to for those in all the others, whether the number of lights be more or less ; instead of which, modern architects-oven thoee who are very particular and exact indeed in matters that are comparativoly quite indifferent and unimportant in compoetion-do not soruple to vary the width of lights, jnst as suits their convenience or their indolence.
f attention to uniformity with regard to the width of the lights eeems to be a fettering restriction in Gothic design, there is freedom enough in all other respects as far as windows are concerned, for their dimensions, forms, and position may be varied in the same building, as oircumstances require. Nor is it the least recommendation of the Gothic style, that oven where exact uniformity, both as to dimensions and general design, is required for windows, they need not be precisely alike in pattern. It is, again, is favour of Gothic windows-at least, for churches and other spacious halls-that even when there is no stained glass in them, the light is considerably moderated by the mallions, transoms, and tracary.

As the value of advantages is generally beat appreciated by compariag them with contrary deficiencies, we will now consider bow the cese stands with windows for churches in other styles of architecture, nor heve we long to contider since it is easy to perceive immodiataly that they have been and continue to be made blemishes in the architecture. Nothing equivalent to tracery hat ever been invented or adopted for them, accordingly they are invariably mere vacant though glazed spacet, and as the glam is always of a very ordinary cort and in small panen-in conformity with church etiquette. we presume,-they become actually mean in appearance, and externally present only so many dingy and paltry-looking aurfaces, which contrast rather grotesquely with the dressings around them, if these latter aro at all nolle or elegant in design. The larger too the mindow the worte does the defect become: the glazing appears insecure and to need support; and no better method, of strengthening it can, it seema, be devised than that of employing cometimes rude metal bars wbich have an equally mean and clamay appetrance. If Wren's churches in general are not disfigared by their windows, it it-we make bold to say-because there is nothing to be disfigured in them, they being exceedingly uncouth both in composition and style, though there may be a bit of tolerable detail or good feature in their elevations here and there, but the system of design adopted there is radically faulty and tasteless, it being modelled npon the Gotbic without poscesaing any of the qualities or resources of that style: on the contrary, window which are the source of so much character, beauty and variety in the Gothic style are at the very beat only dull, insipid and monotonous features in the other, and to make matters worse, very obtrusive ones. In that otherwise nohle edifice, St. Paul's, the windows are sad drawbacks on the architecture generally, both within and without; and within, although there is not that offentire rawness which is occasioned oy undue quantity of light seattered in every direction to the destruction of that valuable ingredient-shadow, there in 00 effect of ligbt-no brilliancy, no relief, for the windows show 40 many hersh and cutting spots or holes, in comparison with which the reat loaks gloomy. Never do we enter the building without regretting that Fren did not bethink him of getting rid of side windows altogether except thowe forming the clerestory of the nave; nor would it have cont him mach atudy to do so, the mode of effecting it being obvioun enough, for he had only to open the small blind domes in the vaultings over the aislen, and there would have been not only abundance of light but a charming effect of it. In that ease the spaces occupied by the present windows would have afforded large compertments for fresco painting, which if such decoration for the edifice was erer contemplated at all, conld not have been introduced half so effectively any where else, since the light would diffuse itself upon them from above, and from the nave each picture would have been seen in succession, framed in, as it were, by the arch between the nave and ainle.

At the time St. Paul's wat built, Hypathral Fenestration-as we may for distinction's sake call that mode in which the light is admitted from above through the roof of a building, does not seem to have been even so much ts thought of, not even for domes, since the light wat made to proceed chiefly from windows in the tambour beneath the dome, where they form a circular clerestory. A most noble object externally, the dome of St. Paul's shows itself almost the reverse within, presenting to the eye littlo more than a mass of sullen gloom, rather increased than the contrary by Thornhill's paintings. It seems therefore to require to be lit up by the most lastrous surfaces and ornaments of the purest white and gilding, which might perhape cufficiently overcome the obscurity which now prevails in it. At to olutaining a sufficiency of light in a single volame of it by ealarging the ate
of the dome, that was and is an impossibility, owing to the great apace botween the external and internal cupola.

Should the modern Greco-Roman or Italian style be resumed by as for chorchet-as at it in be hoped that it will be, at least for those in towne, let wiook formard to ite being treated in a very different apirit from what fis hitherto has been either in the last or present ;century, and to its being enriched by new elements and comhinations. There certainly ir abnadant upportunity for imparting to it a new and more refined character hy correcting it in regard to fenestration, to as to convert what has hitherto been a mource of deformity into one of beanty and captivating effect. All the rariona mode of Ayparthral fenentration-and they are exceedingly numerous, might be employed according to circumstances, very successfully, although they have hitherto been obstinately rejected for churchea, -perhape with a sort of poritanical horror,-asuredly more for conscience sake than for taste's. We can, howevor, vouch for the equally novel and happy effect produced in a recantly built-in fect not yet finished chapel at the Weat-end of the town, where the light ia admitted eatirely from above, and on one side only, and in anch manner that the Findow themelves are not seen ou entering, or afterwards, except by atanding on the opposite side to them, and looking directly up at them, when they are discoverable, but even then only partially 30. The ides thas thrown ont-and to us it is quita new-is a valuable and fertile one. Owing to the beantifal effect of light and half-light-and the breadth of chiaroscuro, the interior we allude to is a complete picture. Posaibly, the pecaliar mode of lighting was forced upon the architect by circemstances of aitortion and juxta-position to honses; and if to, he has to Bless his stars for the felicitons necesaity which compelled him to step out of the hackneyed proario track of ordinary church-builders into the pictureaque, the artiatic, and the poetic. How fortunate would it be for many, were they to be equally faroured by untoward circumstances.-Our subject is not exbansted, but we will here close our present paper on it.

GOETHE'S HOUSE,

As the German Diet have resolved on purchasing Goethe's honse, and on having it preserved in its present condition, as a monament of national rocognition, the following description, derived from the German, and written by one of Goethe's friedds, will, we trust, be acceptable to the reader :-
u On a roomy place (square), enliveued by tho marmar of a fountain, etands a two-storied house, painted reddigh-grey-the wiodows surrounded by a black border, Although apparently of spasions dimensions, it in no wey exceeds the size of the dwelling of a reapectable commoner. We pase the threshold, and enter a hall, whose colouring, resembling yollowish stona, renders it of a light and cheerful appearance. We now ascend the taircase, surrounded by a massivo entablatare, which leads us, by its broad ateps, aimost imperceptibly upwards. Its breadth must astonish any oeo, being disproportionate to the other diznensions of the building-ocenpying, nay absorbiag, the whole lower part of the atractare. It is interesting to know how it came to be such. During Goethe's stay at Rome, the house presented to him by the Grand Duke was to be finished, and an appropriato staircase was all ready, when the poet sam one at Rowe which enraptared him. Having procured a drawing, he sent it to Weimer, with ordert to make a similar one in his house. Vaia were all remonstraces seat ovpr the Alps ;-there was no help but to obey him. When he retarned, be saw, not without surprise, this huge suracture, whioh deprived him of the lower part of his house,-ascended it, shaking the head; and never spoke of it afterwards.

In the upper veatibule, the statues of Sleep, Death, and the colossal bsed of Juno, gaze at the visitor from their maral niches. Roman landscapes and viows, also, remind us of that land, a ter the lenving of which he said he never more enjoyed perfect happiness.

A small yellowish saloon is now opened. There he dined with his suests. Meyer's drawiags of antiques, and Poussin's master-pieces, cover the walls; and behind a green cartain he praserved the Aquarell copy of the Aldobrandini nuptials, also by Meyer, which be considered his greatent treasure. The adjoining localities also ex hibit only such objects which appertain to that period of art, and to that teodency of Goethe. Here, overy where the pant and its recollections apent to us, and to any one familiar with his works, _r the stones have tongues, and the walls featagres."

A string of historical associations seizes ns, 一that sensation which alone can make ns thoroughly happy; becanse nothing is here which had not been touched, as it were, by him during the period of his life-apprentice. ship;-and to everything new or different, the access was hereafler rigonpously prohibited. It is with a deep feeling that wo survey those trifies and minor things, in which this great man found snch high edification.

To the right of this saloon we see the so-called ceiling-room; it is not known why Goethe thas called it, as all the rooms have ceilings made of stucco. To the left is his blue receiving-room, and behind it the Urbinoroom, thas called after a pictare of a Dake of Urbino, which Goethe had hrought with him from Italy. On the threahold of his receivingroom greets us his friendly "Salve!" When he received strangers, he never came the way which we had passed from the stairease, hut went from his study by a passage to the Urbino.room, and from thence he stepped forth, prepared and composed. He did not like-

> "That moments, blind-passioned and dark-ruled, Should have their swray."

These, therefore, were the rooma accessible, in the main, doring his lifetime. To his study he admitted no one, with the exception of a few of his most intimate friends-Coudray, Mülier, Riemer, Eckermana. When the King of Bavaria paid to Goethe his famous birth.day visit, he asked the poet to allow him also a view of the laboratory of his mind. Guethe looked perplexed, and intimated that his stody was not adequately fitted up for the gaze of Majesty. The king seemed reaigned, but feig ned soon afterwards a bleeding at the now, declined any one to foliow him, and ordered the servant to conduct him to Goothe's washing-basin. The follow, surprised and perplexed, brought him into Goetho's bed-room, which is behind the stady, and lefl him alone, according to the king's desire. He remained long absent. Goethe, at last, went himself to look after the king-and found him in his study, absorhed in the observation of its contents.

The descriptions which I had found in memoirs and travels, of these rooms had all given me but an incorrect idea. I expected a cortain splendour, as it might well be met with now in the houses of those who have talent and means to orasment their alemtowrs. It was to that supposition that the flimsy words of viaitors had led me. They saw Zews, and therefore the walls surrounding him widened in their eyes to templehalls, resplendent from his lustre. Most probably, I should have found myself in the same position then. Now, as we pass through the widowed rooms, illusion vanishes to give way to modest trath. It is a dwelling, comfortable, cheerful, decent, but thoroughly aimple, in the fanbion of a time rather passed away-in some places oven the worse for wear. It is the dwelling of a patriarch, whose best recollections are attached to some piece of furniture, seshes, or colours, of former days, and which he therofore wishes to be proserved around him, even if they have begun to be unseemly, and are fading away into a doller colouring.

The death of the master has now broken the spell; wo pass frealy through small closets of commanication, right through the house, to bis library and stady. In one of the rooms, we stopped a moment-it was that in which he dined, when alous, with his children; a blind throws a green shade around. With one step wo wore in the garden, in which the poet was accustomed, in time of leisure, to onjoy every clear glimpse of the sun. In the corner is a littie garden-house, where he used to keep his physical apparatus.

In the fore-room of the museum we sew, in little presses and under glass frames aroond the walls, minerals, pieces of rocks, shelis, fossils-in fact, ail which had become a subject of his studies in natural history Everything was kept very clean, and arranged with good taste. A door to the right opened into the library. For such means as were here avail. able, it may appear small; but Goethe parposely did not collect many books, as the libraries of Weimer and Jens were at his disponal - nay, to avoid the accomulation of such sort of treasure, which appeared superfa. ous to him, he geve awny most of what had been presented to him from far and near, after having perused them.

Assiatant-librarian Kränter, clerk to Goethe before ho took John as a copyeat, not the faithful guardian of this sanctuary, opened the door of the master's stady. I recollected from Eckormana's conversations, the occasionai allusions of Goethe, which prepared me to find here high simplicity ; still, even here, reality was somewhat difforent. This amall, low, unornamented, green cabinet-oloset, with the dark blinds of serge, the worn out sills, the nearly.deceyed frames, was therefore the apace whence such an abnadance of the most splendid light has poored forth !

Nothing is moved from its place; Kränter adheres with pious rigour to his charge; every leaf of paper-every worn ont pen-remains on the spot where it was when the poet fell asleep. The clock yet shows the death-hour-half past eleven;-it stopped then; an accident almost miracnlons! Near it, to the right of the window, stands the small writingdesk, which the grandfather had made for his grand-children, whon, after the death of the father, be took ander his care and immediate protection. Wolfgang was his favoorite; next to him, Walter; Alma, for the sake of learning to sit still, was obliged to plock pieces of silk naxt to her brothers at the little desk. There they are yet, in the envelope of a letter.

Here every apot is boly ground, and a variety of objects, of which the room is fall, bespeak the being and actrity of such a mind. Around the walls run rather lov presses, in which MSS. and other papers are kept; above are shelves, in which Goethe placed the objects with which be chanced to be occupied. The wood is browned by age, which is much contrasted by a cheat of drawers of well polished cherry-wood. It was Goethe's daughter-ia-jaw who gave this piece of furniture to him; but he conld not long suffer its insinating appearance, saying that it "distracted his thoughts." On that account also, there is no object. of art in the room, and the visitor seeks in vain for either a looking-glass or a sofa. The latter he was not in need of, on the account that he either stood or moved abont the whole day; -he read atanding, wrote standing, and even rook his breakfast on a high table. A similar conduct he recommeaded to every one in whose welfare he took any interest, designating it as "life-prolonging,"-as well as the keeping of the hands behind the back, by which, he added, "every narrowing and compressing of the chest is avoided."

Let us look a little more around this reverenced workshop of a great mind! There, at the left of the door, hang a sort of historical teatimonials of character. Goethe had, at a certain period, written out one column in whlch was a list of celebrated men and public bodies who, according to his opinion, promised to bear some political frnits; and in the next column was remarked, whether and how far they had yielded, in subsequent years, the result which had been anticipated. Of General Jackson, Goetbe had great hopes ; his behaviour, however, towards the Indiana was subsequently marked in black.

A triangle of pasteboard, which he had bimself made, and which ocenpied the next shelves, is interesting as a sort of physiological jem d'esprit. Goethe wanted to illastrate to himself the action of the powers of soul. The senses (Sinnlichkeit) appeared to him the basis of all; to it, therefore, the lower part of the triangle was devoted, and be painted it green. Imagination received a dark red; intellect (Vernunft), a yellow; reason (Verstand), a blue colonr; and occnpied each one of the sides. Next to it is a black hemisphere, also of pasteboard, on which, by the aid of a glass ball filled with water, Goethe used to depict all colours of the rainbow, in moments of clear snoshine. With this be could pass bis time for hours, especially after the death of his son, and be enjoyed great pleasare when the motley glare was developed right powerfully. And thus he fonnd thorough happiness whenever a phenomeron of natare carae within his reach. There stands the small bust of Napoleon, made of opal-flux, which Eckermann bronght him from Strashurg, and on which he found confirmed some of the assertions of his doctrine of colours (Farbeniehre), which flled bim with extacy. A sealed bottle, which we see on one of the tables, be exulted in like a child. There had been some red wine in it, bnt had long been pat aside, and Goethe once holding it towards the light, saw therein the finest crystals of cremor tartari in the shape of leares and flowers. Like one inspired, he called those aronnd bin, ordered a candle, and pnt, with an air of festivity, his seal of arms on the cork, that no chance should any more destroy this the phenomenon. The bottlo henceforib never came out of his room.

From Napoleon be received revealings in the sphere of light; but he acted also demoniacally npon him from that region, to which, it seems, no ray of an upper world can ever penetrate. On the day of the baitle of Leipsig, a medallion of plaster of Paris fell from the wall; a piece of the margin was broken off, without, however, the portrait of the bero being injored. There-in yonder recess-the image is yet to be geen, aronnd which Goethe, parodising Lacan, had placed ia red letters': "Scilicet immenso superest ex nomine multum."e

Thus stand's Goethe's bonse-lastefol, simple, as it behoves the man of mind and letters. A monument of his life and being, it will remain a

[^41]beacon for others, pointing out the track they have to follow; although there is no person living at present, to whom a similar public recogntion could, by any possibility, be ever decreed.
J. LL_

ARCHITECTURAL RECOLLECTIONS OF ITALY.

By Frederick Lush.
(Continued from page 264.)
The dependance of architecture upon painting and the composition of furms, for its most beautiful and majestic effects, and consequently the necesaity of studying its principles in the works of eminent painters, was shown merely as an introduction to, or foundation for any remarhs which I might subsequently make on the buildings of Italy; for a koowledge of these, forming the judgment to speak accurately opon tbe effects and combiations of visible objects, seemed the only aound basis for architectural criticism. Writers on art bave oftentimes evinced much classic learniog. and in some instances mucb taste; but these are not necessarily connected with eacb other; in some they are found existing together, though in ofhers not. Wood and Fursyth, to whom the arcbitectural world is indebtod for a geat deal of leurning, sagacity aud research, in some of their critiqnes, do not appear to have always appreciated those excellencies in Italian build. ings which to others were so striking, so obvious, and to often praised. The faculty of looking at them with a painter's ege, seemed to bave been deadened, or not called into exercise; the want of perceiving beanty where it existed lying in the temperament or condition of mind under which it was viewed, but sometimes bigotted and pre-conceived notions of wbat was beautiful, and of a beanty altogethe r different, perverted their jodgment, and they have seutenced a bnilding, as ugly and monstrous, because it was so contrary to their previously jmbibed ideas, and exhibited that which was totally at variance with the rules which guided the architects of their own favourite edifices. In these cases, their upinions were produced not upon the feelings or impressions which the objects were capable of making on their minds-or at least on minds not posspssed of such an-tipathies-but frum their dissinilurity from obber styles to which their thongbts had been reatricted.

Now a building which has made a wonderful impression apon myself and many other travellers, is St. Mark's, Venice; but this has been sererely censured both by Forsyth and Woods. Here it is evident their senses were blind to its magic effects; to those effects at least which other minds differently constituted have experieuced. But because they saw beauty in one style of architecture, will they deny it in another? The beauty of one flower differs from that of another-but if we admire the loveliness of the rose, are we to despise that of the lily ? Because we have received one kind of emotion in bebolding the awfal ruins of the Coliseum and bave felt the gloomy grandeur of Kome, is the heart incapable of admiring the splendid and magnificent architecture of Venice? The grand simplicity and conrenience of the Colisco adapted for the cruel, barbaric daylight spectacles of the Romans cannot be compared with any modern theatre, nor can the massive architecture of the Romans, or the purity and sublimity of the Greeks be placed in juxta-position with the rich fantastic Gothic of Britain, Normandy, and Belgium. But can we infer that one is bad or faulty, because it differs from the other?

It seems that the romance of St. Mark's could in no manner operate on hearts steeled against its influence by a confirmed partiality for the stern, grand, and diametrically opposite features of the Roman school. The dislike to it extended so far with Woods, that in his "Letters," \&e.;' wo find bim, after blaming this thing and the other, suggesting such additions and alteratious as he thought would improve it. I believe it was tho same, or a similar person, who thought it a pity the Parthenon was not surmounted by a steeple! Here the greatest deformity was in the mind, but none whatever iu the work, its beauty, slong with many another, being that of fitness, whuse necessary quality the change proposed would instantly destroy.
The architecture of St. Marks, beautiful in spite of its want of purity and many anomalies, is, as un Italian says, un grotesco, wa wn groteace magnifico. Exhibiting a happy mixture of ditferent styles and dulerent materiala; making the rales which have limited the cunceptions of all uther buildings only subservient to its purpuses, it can bave nothing in commun with them, and is put ont of the acale of comparimun. "There

1

is no law-says Charles Lamil-so judge of the lawless, or canon by which a drean mary be criticised."

Seeng. therefore, by what false criteria St. Marks has been judged, and consequeully how the beautiful characteristics of this strange pile, have been misunderstood, I rpeak in praise of it now, out of pure love and recollection of the feelings which it gave on the spot, and am grateful-as those who have seen and been wrought upon by it must be-for the proud vision whicb memory frequently briugs before the fancy. Its effect on the mind, as well as of the scenery amilst which it is placed, should be pondered over, as a means of raising the taste aud increasing our ideas of the beautiful in art.

This Basilica (combining, as it were, the Mosque or Mubommedan house of prayer, with the Christian temple), both in its parts and as a whole, is magical in the extreme. Look for a moment at the profusion and magnificence of its ornaments. The Byzantine.Greeks, unlike their forefathers, aroided the borizontal line as much as possible, and indulged in the curve; the fondness for it resulting from their co-operations with the Saracens; mod the communitation of the crusaders with the East served to apread it orer many parts of Europe." This love of wavy lines and intricate forms characterises the Venetian architecture, and is most conspicuous in $\mathbf{S t}$. Marks. (See the annexed engrariug of a portion of the vestibule.) The object of the denigners was a great richness of effect-which certaialy the nature of the ornamenta produced, and often also a grandeur of ensemble, -although, on a close examiuation into their minirtim. We find nuch that is defective : as in the ornale and kiudred style of the Alhambra, or thal of the Elizabethan. But with all the blemishes in ite details, the mind is presented with a view, resulting from the uniou and consent of so mang opposite parts, which is a principal cause of its beanty. The wildness or irregularity in the simplicity of the whole uffect the mind with a series of strong impulses, more delightful tban that monotonous, though sometimes agreeable, sentiment whirh is experienced in works built alter ordinary rules and common-place precepts. Even the

[^42]littleness and multiplicity of the ornaments, spreading over a vast surface, produce a great effect-beautiful and rich in its masse s, like the fuliage of a majestic and wide-spreading tree.

The rich colouring of the many mosaic pictures also greatly add to the splendour of San Marco. Here Iris may be said to have dipt the woof. These mosaics are described by Northcote in his "Life of Titian." This painter, as also Giorgione (who first introduced frescoes to the Venetian palaces), contributed much by their pencils to the architectural decoration of Venice; delighting the eyes of the iuhabitants with that colour, a love of which they imbibed from the gorgeous landscapes of their native city. The effect imparted to most of the churches in Lfaly, and abroad generally, by mosaics, painted glass, frescoes, tapestries, carvings, \&c., makes one regrat that these arts are not more in use anongat us. Or, wilhout refering to the decorated and impressive interiors of the foreign churches, we bave eminent examples at hone, iu the magnificent cathedrals of our Gothic ancestors.

In looking at the rich mosaics in St. Marks, and ohserving what taste and bkill are displayed in shrine, altar, screen, lamps, candela bra, and, in short, every work which the ceremonies and spleadour of the church required, we see how every art, that was known at the time, was bad recourse to for heightening the ellect, both of its exterior and interior. Every object that enriched it, received an additioual attraction from, and was in keeping with, the spleadid crosses and reliques borne by the processions in the celebration of the festivals; -witness it, for instance, on the festa of Corpus Domini. The one absorbing object in its erection and adornnsent was to render it as splendid and symbolic as possible,-most precious in all materials and worknanship, and to surpass even the Orientals in its magnificence. This was the porport of its inscription: "Istoriis, auro, forma, specie sabularum ; hoc templum Marci fore dic decus ecclesiarum." Its interlor, thougb far from "gloomy"-as it bas been miscalled-has, it is true, become somewhat dimmed by age and the frequent buraing of incease;-but in its palmy days, bow bright and glittering must have been its gold! what life and light must it have transfased around, by reflection and refraction!

There is mother poiat for our admiration. Placed in one of the finest. piaszas in the world, can anything be conceived more enchanting on such a spot, viewed from the Palazzo Reate, either at doon, when the sun pours its full brilliance upon it; or ar night, when the numerons lights below bring out in all their contrast and colours and proportiops the wonderful detuils of its façade;-the moon shedding a bright light on its cupolas and pinnacles, and the dark bive eky aronod heightening its effect? Can any object be mure nppropriate than this to Venice? Wealth and gaiety, lurury and romance, make the character of the city,-and the srchitecture partakes of it. Yet the vesture of mosaics, and gold, and sparkling mar. bles, in which it is arrayed, seen anywhere else but in Venice, would luak like a mountebank in a company of divines.

 VI.MENAI TUBULAR BRIDGE.
(Continued from parge 174).
In the last paper on the Menai Tabolar Bridge (ante p. 174), a formula was given for calculating the horizontal strains to which the vertical plates of the tube would be sobject, and a truth hitherto entirely overlooked was demonatrated, that these plates ought to be stronger towards their ex. tremitien than at the centre.

To completo the investigation of the forces to which these plates are sabject, the amonnt of the vertical strains ought also to be determined. Bat as these papers were already been carried to some length, it is necessary to study brevity; and it will be sufficient to point out the general steps of the calculation.

The vertical plates consist of two different portions discharging two different offices. That part of each vertical plate wbich lies over the abutments supports the upper horizontal plate upon the lower : the part between the abntments and clear of them empends the lower plate from the upper.

In the following diagram, then, the vertical forces of those parts of the vertical rib which are over $A a$, and $B b$, are thorats, and the vertical forces of the part of A B, tensions. To consider the latter first, let us suppose

sections made at \mathbf{A} and B, and that the connection between the upper and lower plates is made not by a continnous rib, but by a number of vertical rods. Then it is clear that we may consider the lower plate and the load on it suspended by means of these rods from the apper plate. We must also take into account the vertical molecnlar at the sections at A. B. But as it is impossible to calculate their amonnt exactly, it will probably be sufficient for practical parposes to suppose that they sustain half the pressure of the load, and that the other half is communicated by means of the sospending rods to the upper plate. Hence the total tension of these rods will be equal to half the weight of the train + the weight of one of the horizontal plates. If we suppose the rib continuous and not formed of rabs, the eonclusion will not be widely different. A continuous rib indeed would be cut by the section through A and B, bat the molecular forces of the rib at the sections wonld be small compared witb the total tension distributed over its whole length.

Hence we conclude that the vertical plates between A and B must together possess sufficient strength that half the load and the weight, one of the horieontal plates may be suspended from them without injuring them.

To consider next the vertical thrasts on the portions $\mathbf{A}, \mathbf{a}, \mathbf{B} b$ of the sideplates, it may be easily seen by similar reasoning that these portions sup. port half the load and the woight of one of the horizontal plates resting on them. An important practical conclusion from this is that the portions of the vertical plates over the abutments should be much stronger than the remainder, for they have to resist an equal amount of force distributed over much less surface, and moreover the power of wrought iron to resist thrust is greatly inferior to its power to resist tension.

We cannot conclude this part of the investigation without expressing a conviction that the connection between the upper and lower plates ahould be maintained, not by continuous plates, but by a lattice of vertical and horizontal rods, firmly clasped together at the pointa where they cross each other. Tbe necessary strength of them might be calculated with considerable accuracy, they would accommodate themselves far better than continuous plates would to the variations of form produced by changes of temperature, would offer less resistance to the wind, and would admit light and air to the interior of the tube.

7. Variations of Temperature.

It may be demonatrated in the simplest manoer, that on account of the expansion and construction of the tube from variations of temperature, it would be absolntely necemsary that the ends should be left free to more in a horizontal direction.

It is shown by a very common experiment that a plate of metal if fastenod in a horizontal direction between two props, and then considerably heated, will, if prevented from expanding laterally, become bowed or detected. The same thing would happen with the tubular bridge if it were
$s 0$ fastened that it could not expand lnterally. In.order to ascertain the monnt of defiection let A. B be half of the length of the bridge before, A C

after, expansion. We will first for ake of simplicity moppoee AC straight line. Then B C is the deflection, and

$$
B C^{2}=A C^{2}-A B^{2}=(A C+A B)(A C-A B)
$$

It is unval to reckon the limits of expansion of iroo at Trise of the lengh. Therefore if A B be 225 feet or 9700 inches, the expansion to be allowed for is 2% inches eacb way, \cdot A $\mathbf{A}=2700$, $A C+A B=54009$, $A C-A B=9 . \quad$ Hence $B C^{9}=12150$ inches, and $B C=110$ inches nearly. Therefore the amount of deflection by expansion would be rather more than nine feet.

A C has been here assumed to be a straight line: if however we auppose as a probable approximation to the truth that it is a segront of a circle we shall fod that the amonnt of defection is not materially diminished. It may buascertained by a laborions numerical operation which it is oot mcessary here to repeat that the amount will be about 8 feet. It is clear that a mauch less distortion than this would suffice to fracture the vertical plates, or wrench them from the horizontal plates,

> 8. Effect of Wind.

A subject of the utmost importance with respect to the permaneot stability of the Tubular Bridge is its power of withatanding the lateral pressure of wiud. It appears from the experiments of Smeaton, detailed is the Philosophical Transactions for 1757, that the extreme pressure of the wind, when blowing violently, is $49 \cdot 2 \mathrm{lb}$. to the aquare foot. This probably is as amount of pressure which the wind rarely exercises except at sea or whes confined betwoen hills. It is said, however, that in March last the force of a gale in Scotland, as registered by an excellent anemometer, wes 45 lb . to the square foot. We are also to consider that the aitnation of the Mesal Bridge is one exceedingly subject to the violence of storms, and that the sea-winds confined between the high lands on either side of the straits would exert their force perpendicolarly upon the Tubular Bridge, whieh of conrse crosses the atraits at right angles.
We therefore shall not be exaggerating if we estimate that 45 or 50 lb . per square foot is the amount of lateral pressare which the tube ought to be capable of resisting. In this case we shall find that as the area of coe of the vertical sides is 18500 square feet, each span of 450 feet would asstain a pressure of 271 or 301 tons.

Now the utmost vertical pressure which the weight of a train will exert on the same length of the bridge is 200 tong-that is 71 or 101 toms less than the lateral pressure of the wind. It wotald therefore seem to follow that whatever precantions be necessary for vertical strength are atill more necessary for lateral strongth, and if it be requisite to streagthen the top and bottom of the tube by a collection of rectangalar cells or compartments, the same apparatus (or rather one much stronger) ought to be applied to the sides of the tube. It is quite impossible to ascigr any solid reason for preferring the consideration of vertical strength to that of laterat, or for endeavouring to obtain the two kinds of strength by dissimilar methods. For it is clear that if the apparatus of cellular compartmeats be the best possible for ensuring strength vertically, it is aleo the best for ensuring strength laterally.

It might be answered perbaps that the cellolar compartments give to the top and bottom of the tabe an excess of strength which will bever be required in practice : but then it may be replied that this excess of strangh is just as requisite for the sides of the tube; for the effects wotald be equally disastrous whether the structure broke laterally or vertiolly. if the tobe require an excess of vertical strength, it equally requires an excess of lateral strength : if it do pot require an excess of lateral etreagth, neither does it of vertical. In which latter case the cellular compartacate are simply superfuous. 1

The force of the wind on one apan only of 450 feet has been reckoned. If we calculate the force of the two spans of that length, and the force an the two smaller apans of 250 feet eacb, we shall have the tolal farce teeding to overturn the piers or otherwise diaplace the atructare.

9. The lest form of the upper and lower sides.

In calculating the strength of the tube, the conrse taken is the preoeding parts of this inventigation has been to estimate the sectional ares of ine
metal composing the upper and lower gides of the tube, and to suppose the strain equally divided over the whole area. In order howerer that the latter assumption may obtain, it is necessary that the top and bottom of the tube ahould be of a particular form. We shall proceed to show that where the top and bottom consist of continuous plates, ertending from one side of the bridge to the other, or where they are formed of cellular compartments such as those described in another part of this Jonrnal, the above requisite is not answered, but that on the contrary, a large proportion of the metal Is placed whera it ia almost entirely inoperative, and that consequently any calcalation foanded on the supposition that this metal contributes to the strength of the tube must lead to dangeroun results.

If the reader will take hold of the page which he is now perasing, at the top and boltom, and pull it, he will see that if the paper were torn the reut would commence nomewhere in the aeighbourhood of the straight line joining his two thumbs. If, for example, he held the paper by the two right-hand corners the rent would commence on the right side of the page, and the material on the left aide would contribute nothing to reaist the tearing. Again, if he took the page near the two ends of the black line, separating the two columns of letter-press, the rent would in this case commence in the middle, and the material to the right and left would not under these circumstances contribute anything to the strangth of the paper to resiat tearing.

These experiments may appear very simple, and perhaps very puerile. Bat it is precisely these simple illustrations which give as accurate notions of the action of forces. The case of tearing the paper is exactly analogous to that of tearing the lower plate of the Menai Bridge. It has been shown that owing to the connection of the lower plate with the two side plates, the latter commonicate to the former a longitudinal tension which acts all along its two sides. Now this tension is most effective in the immediate neighbourhood of the line in which it acts. If the bridge were overloaded and the bottom plate torn, we are are that the rent would commence at the edges, and not in the middle of the plate.

If a piece of india-rubber, origioally square, be stretched by four forces acting in the directions represented by the arrows, it will be found to assume the form here represented; that is, the extension will be greatest in the beighbourhood of the lines joining each pair of opposite forces, and least midway between those lines. In fact if the forces be not too great it is possible to ertend the sides of the india-rubber without extending the middle portion at all; so that a small slit made near the centre will remain closed. There is probably some law for the decrease of tension from the sidea towards the centre, hut there seems no way of ascertaining it except by experiment.

In the recent discnssion respecting the Tubular Bridge, in the Mechanical Bection of the British Association, it was asserted by Mr. Lamb that provided the top and bottom plates of the tube were of a given sectional area, it was immaterial what proportion the thickness of the plates bore to their width. If this theory be true, it muat be true in the limit; and consequently if the top and bottom plates were rolled out till they were no thicker than the finest goid leaf, or the film of a soap-bubble, they shouid retain their original strength. The mere statement of this notion might be conaidered a sufficient proof of its absurdity, had not something very cimilar been sanctioned by high authority. Professor Moseley states in a pasage already quoted, that the strongest form of a beam would theoretically be that in which the material of the extended and compressed sides is "collected into two geometrical lines parallel to the mentral axia." Now this would be perfectly true were we dealing with mathematically rigid bodies, but with oxtensible and compressible substances it seems obrious that the extension or compreasion could not be uniformly distributed over
two indefinitely thia fanges, but would be greatest in the neighbourhood of the vertical rib. Professor Moseley has throughout hin investigation assumed that in the vertical section of a defected beam the extension or compression is proportional to the distance from the nentral axis, and i^{t} seems curious that he should have overlooked the fact that in a girder with wide flanges the extension and compression of the fanges almo would be, not naiform, but greatest in the neighbourhood of the rib.

We come then with the utmost security to this conclusion, that the strongest form of a beam is one in which the material of the fanges is collected as closely as possible to the upper and lower edges of the vertical rib. This form is very nearly approached in the rails in most general ase on onr reilwaye, and may be easily imitated in the case of the Tubular Bridge. The
 accompanying diagram shows a section of the bridge with the principal portion of the material collected at the four angles. If we auppose theme four masses to have circular sections, it is easy to calculate what diameter they must have in order to satisfy the conditions of the preceding iovestigation. It will be remembered that the sectional areas of the upper and lower plates were each taken at 180 square inches, and if the half of this area be as. signed to each side of the tube, the ares of each of the circles represented in the diagram must be 90 sqnare inches, and the diameter will consequently be about 10 en inches. Let as take the diameter at one foot. Then the thickness of the solid masses at the angles will be equal to one-thirtieth of the height of the bridge. These masses should not be united by continuous plates bnt braced together by a lattice of iron rods. There are many reasons for preferring open lattice-they are chiefly these-superior strength for equal weight of material, diminished resistance to the wind, admission of light and air to the interior of the bridge, equalisation of temperature by which the danger of distortion by anequal expansion is evoided, and lastly facility of construction.

The bridge is to consist of two parts, containing two parallel roadways. These two parts shonid be united so as to afford mutual support : the sec. tion of the bridge would then appear as in the accompanying illuatration.

The upper and lower sides of the bridge would be braced together by lat. tice work similarly to the vertical sides. By these means it will be seeu from a mere inspection of the section that the lateral strength wonld even exceed the vertical. This may be considered another most important advantage arisng from the disposition of the material in masses at the angles. If the bridge be covered above and below by cellular coinpartments extending acrose it, the same apparatus ought to be applied to the vertical sides, as has been clearly proved; whereas by disposing the material in compact nasses it in made to answer both parposes at once-it resists the lateral pressare of wind and the vertical pressure of a train with equal efficiency.

There is one reason more to be assigned for the employment of the upper and lower lattice work. It was observed during one of the recent experiments that the top or compressed side of the tube bulged out transversely ; and it may be seen that with a bridge of the conatruction here saggeated, the masses at the upper angles would, when in a state of compression, tend to be similarly bent. They would be likely to be bowed outwards or inwards, and this teadency is restrained by the horizontal bracing. These con. siderations confirm, to a certain extent, the views of Mr. Byrne, recently proponnded in this Journal. The particular mode of calculation adopted by him may fairly be subjected to discussion; but it cannot be doubted that his general views respecting the horizontal tranaversal strains to which deflected beams are subject, when they tend to break rather by the distortion of the material than the disraption of it, form a valuable addition to the theory of the strength of beams.

10. The employment of Smopension Rods.

The reader who has followed the course of the present argument will have no difficulty in understanding that the strength of the bridge depends on the moments of the molecular forces about the abutment-that is, the molecular forces multiplied into their perpendicnlar distance from the abntment. Aud it will follow as a necesary consequence of this consideration,
that by a proper disposition of suspension rods, an eoormons saving of material may be etfected.

In some of the published views of the Tubolar Bridge, there are represeated curved chaios, similar to those of commun suspension bridges, meeting the tube at a very acute angle. The only points where these suapen-siun-chuins are attacked are their extremities, and as they are unprovided with vertical rods, their action is extremely indirect, the greater part of the tension being revolved horizontally instead of vertically. A more inefficient contrivance could scarcely be suggested.

If however rectilineal rods be applied according to the plasesplained by Mr. Bashforth, jn a former number of this Journal, the result is very different. Let the diagram represent a section of part of the bridge and

one abptment-tower. B D E one of the straight suspending rods joining the points D and E of the bridge directly with the top of the tower. Then the perpendicular distance of $\mathbf{B} E$ from the abatment is equal to $A C$, and the moment of the forces about A is the tension of the rod multiplied by the leagth of AC. This length may be sermed popularly the leverage of the rod. Bat the leverage of the horizontal forces in F D will never exceed A F, the beight of the bridge, and consequently the efficieacy of the material in B D, over the material in F D is the proportion AC:AF. If we suppose the beight of the towers to be 80 feet, (the helght of the towern of the Hangerford Bridge), and E to be at the centre of the bridge, we shall find by simple trigonometry the proportion AC:AF equivaleat to $2 \cdot 985$ to 1 . In other words by putting the material in the form of a straight rod the efficlency is in this particnlar case dearly trebled.

The enormous increase of strength for a given quantity of material which this reasoning demonstrates ought scarcely to be neglecter. Even if wo luok at the question practically without regand io defnite mechanical principles, it seems clear from a mere inspection of the diagram, that the rod B D exerts an opward pull or strain applied directly to sustain the bridge and that the action of F D is comparatively indirect and inefficient.

Bot there is another great advantage in the ose of suspending rodsthat they act by tension only. Where the metal is applied to exert a thrust it will give way far sooner by bending than by actual disruption, as the recent experiments abundantly prove: but where it exerts a tension it can only fail by being torn asunder. If it were accidently bent, a thrust would tend to bend it still wore, $-a$ tension to straighten it again.

It will be seen by reference to Mr. Bashforth's paper that the effect of the expansion of the rods in summer would be so small that it might safely be neglected, and small as it ia, it would be almost entirely compensated for by the expansion of the masonry of the towers. The sinking of the bridge from thls canse would not be nearly equal to that due to a heary load. The rods could never become loose and cease to erert a tension. Even if we suppose they could do so, their value as means of security would still remain the same: for this is certain-the bridge could never actually give way onder the effect of a heavy load wnill the rods were broken.
The experiment of the applicaion of rods to the trbe has not get been tiied. If this were done, it may be safely predicted that the amount of the breaking weight would be very greatly increased. It would be dififcult to calculate beforeband the exact increase of strength, but if the comparison be fairly instituted by experiment between a bridge with cellalar compartments and withont suspending rods, and one with suspending rods and the material collected in masses at the angles of the bridge, it may be confidently anticipated that the strength would be increased to three time -probably many more times-its former value.

The suspension chain should be relied upon as the principal means of security, the masses at the angle of the bridge as the principal means of
rigidity. By thos assigning to each part its separate apprupriate office, the efficiency of the whole is most likely to be ascertained.

The preceding iovestiga:ion has beeu carried to so great a length that many thiags are oecesarily omitted which are important with respect bwib to the theory and to the practical construction of the bridge. The circamstance of the oxperiments being confided into such haods as those of Messrs. Fairbairn and Hodgkinson has prevented the appearance of many suggestions which otherwise might not have been superluous. If however the remarks here offered conduce to any improvements in the particclar structure which bas been here consldered, or should facilitate the application of simple statical principles to the general theory of the strength of materials, the labour of the writer will not go unrewarded.

> H. С.

BETTING OUT RAILWAY CURVES.

8ir,-In reference to Mr. George Heald's communication to you on the anbject of laying out railway curves, I beg to say that I bave occasionally used a method which is, I think, more simplo and eccarate, which is as follows:-
Take any given corre, and tix the two extremities of tt by two poles and flags. Then rua a right line between these two points, which will, of course, be a chord to the curve. Divide this chord liae by two, which point of division will be its centre, and each half will = sine of the whole are, and its versed sine will be the perpendicalar to set off at this point; and this e.s. is found by multiplying the tubular e.s. by radiua of curve.

Then proceed to ascertain, in a similar manner, the centre points of each of the two halves of the curves, by ranning chords, dividing them in two parts, and setting off the perpendicalur from the ceatre by means of ite versed line.

When the curve bas been divided into a few parts in thls way, the small divisions, being now equal and close at baod, may be ascertained by striking one of them on a large size, and, by a siale of equal parts, asocrtaia the ordinates of one part, which serves for all the other yarts.

I aw your obedient servant,
An Enaineer out of Employment.
Osweatry, Joly 18, 1846.
[The suggestion above is well worth recording. The method desoribed by our correapondent appears to be very practicable, and is geometrically cecurate. Whether, however, this method, or that requiring tables of raitway corres, similar to those reviewed by us last modt, require the leat labour, can only be determined by actual experience.]-ED.

THE PROBLEMS IN " PLANE SURVEYING."

Sis-Such communications as those of your correspondents, Messrs. Byrae and Tornbull, are little calculated to support the bigh credit to which your work aspires, and to whicb by the general ability of joor articles it has attained. In common, therefore, with other of your readers with whom I have coaversed on the sabject, I coold not but feel indiganat at the unwarrantable preteosions to originality which characterise both; and still more. at the accusation brought by one of them of bad failh os the part of the late Dr. Olyathns Gregory. At the same time, it was a sourre of real regret to see your pages made the mediam for claina, which, to say the least, are preposterous; but mach as I shoald dislike any personal dispute, or other intercouse, with either of thase writers, I consider that the importance of any utherwise unworthy statement which may appear in your pnges, is so far enhanced by that circumstance, that is ought not to be allowed to pass into currency without a caveat from thome who set an estimate upon truth, and are theonseives cultivators of acience.

In the first place, Mr. Byrue's "fundamental principle," upon whict be sets such extraordinary value, was given by Carnot, nearly half a centery ago, in his Gémérie de Position, and in his Esoai sur la Theorie dee Transreraales. The application of it to the problems in question have been given over and over by Dr. Gregory in successive editions of Hutton's Methematice, and there they still remain in the last edition of that work, published in 1842, in a form only differing so far from that in yoni pages an would follow from a wish to conceal their origio. So much for Mr. Byroe's boasted "quality of being original."

With respect to your other correspondent, Mr. Turnball, 1 have in the second place to admit, that against his opponent his claim is coaclusive for as moch as it is worth. That worth is however, inconsiderable, in a prartical point of view, at least; and beyond being useful exercises in trigonometrical reduction, they have no scientitic valoe whatever. Under either aspect, no person whose inventive powers in mathematics is of the average order, would consider the discovery wurth a moment's dispate. It is to the grave charge made against Dr. Gregory by Mr. Turabull, (who ahonld have been the last man to make that chage against bind) that I
thice the most decided objection, and to which I will wholly eonfine my remarks.

It was in your number for October 1845 that I believe this strange charge whin first made, and on the same page you refose to stlow any anim. adversions on Mr. Turnbull's writings-merely from private reasons affeoting that person. It most have escaped your notioe, at the trime of writing that interdict, that you had just marked for press a commonication from him which casts a serious imputation apon the memory of a distinguished goometer and traly good man, whose name is justly endeared to the en. gineering profession.

Now it appears to me that notwithstanding any private considerations effecting Mr. Turnbull, you and the public are entitled to demand of him his evidences of the truth of the statement which he malkes respecting Dr. Gregory. Mere allegation in such a case is not enough from any manfrom Mr. Torabull certainly not. The question is one between Dr. Gregory's honesty and Mir. Tamball's veracity : it is a qnestion of eharacter, and must not be slurred over as one of no moment. Originality is in this case a question of such minor importance as not to deserve a single thought, axcept so far as regards its decision upon a question of permonal character. I at once apprize Mr. Turabull that his explanation will be submitted to a scratiny 80 rigid, that th will be detirable that he attead more closely to striot accuracy than usoal : for the charaoter of public men, and especially of auch men as Dr. Gregory, is pablic property, and will be gaarded with corresponding vipilance.

Ponding Mr. Turabull's proofs that Dr. Gregory appropriated his discoveries " without acknowledgmeat of the source from which they were derived," I ouly claim that due weight shall be given to the admitted charactere and known talents of the accuser and the accused:-and that with this shall be coupled a recolleotion of the triviality of the scientific part of the question at issue.

> I am, Bir, your obedient sarrant,

Vimpex.
September 15, 1846.

PROOEEDINGS OF THE BRITIBH ASSOCIATHON.
The British Associaton for the Advancement of Science held its annual meeting at Sonthampton during the past month. The President's address appears on another page. The following report contains merely a selection of thowe parts of the sectional proceedings most intereating to the engiveet. The proceedings of the mechanical section are the most fally soticed, and are followed by some editorial notee. The roport will be concladed nert month.

On Thareday, Bept. 10, the General Committee met in the Town Hall over the Bargate, Sir John Herschel in the chair. After the minutes of the committee meetiags, Camhridge, were confirmed, Colonal Sabine read the following Report of the Counci, being the account of their proceedinge since Juse, 1846 :

Report of the Council to the General Committee.

1. The Council have the very satisfactory duty to perform of reporting to the General Committee that the Resolutions of the Magretical and Meteorologieal Conference, adopted by the General Committee at Cambridge on the 20th June, 1845, were submitted to the Right Hon. Sir Robert Poel, Bart., by the president, Sir John Herschel, Bart., accompanied by a communication from the Marquis of Northampton, . president of the Rogal Sociely, conveying the concurrence of that body in the recommendatiopa contained therein; that they received a very favonrable consideration from her Majesty's Covernment, and that the racommendations connected with the British observations both at home and in the colonies are in progrems of being carried out. The resolations relating to the East Indian cheorvations and sarveys have mot with an equally favourable reception from the Hon. Court of Directors of the East India Company, and the recanmeodetions which they contained have been approved and sanctioned. In accordance with the resolutions passed at Cambridge, therefore, the Magnotic Obervatory at Greenwich is permanently continued apon the mont exteosive and eficient scale, The magnetical and meteorological observations are constituted a permanent branch of the duties of the Astraeomical Observatories at the Cape of Good Hope, Bombay, and Madras, and arrangements are in progress for making them also a permanent branch of the obserations to be made at the Observatory at Paramatia, The delechment of the Royal Artillery, by whom the daties at the Cape of Good Hope have beeu hitherto performed, has been relieved by a permament increase in the civil strength of the Astronomical Observatory; and in like manner the officers of the Royal Navy and the marines who now form the establishment of the Observatory at Van Dieman's Island, will be relieved as soon as the establishment at Paramattin is completed. The Ordaance observatories at Tononto and Bt Helena are to be continued antil the close of 1848.

With reference to the recommendations relating to magnetic survers, a magnatic survey of the Indian Seas, by Lieut. Elliot of the Bengal Engimeers, has received the sanction of the Hou. Court of Directors of the Eant India Company, and arrangements are in progress for its commence. ment. Also, early in the prosent summer Lient. Moore, of the Royal

Nary, proceeded under the direotion of the Iords of the IAdmiradty to Hudson's Bay, in ooe of the vessels belonging to the Hudson's Bay Compaoy, for the purpose of conneoting the obsorvations of the Canadian Burvey with those which the expedition under Sir John Franklin is making in the seas to the north of the American Continent.

In accordance witb the recommendation concerning the co-operation of foreign magnetical and meteorological observatories, communications were made, on the application of the president, ty the Easl of Aberdeen, her Majesty's principal Secretary of State for Foraign Affairs, to the governments of Russia, Austria, Prussia, and Bejginm, from all of whom very favourable replies have been received.
2. The resolution paseed by the General Committee to the effect " That it is highly devirable to encourage by speolfic peouniary reward the improvement of aelf-according maparatical and metrorological apparatos, aod that the Presidents of the Royal Society and of the British Aseociation be requested to solicit the favourable consideration of her Majesty's government to this subject," has been brought under the notice of government, and favourably received, and arrangements have been made to carry the recommendation into effect. Whilst on this eubjeot, the Council has also mach pleasure in noticing that the President and Connoil of the Royal Society have granted $£ 50$ from the Wollaston Donation Rand, to assiat in the constraction of apparatus devised by Mr. Ronalds for the self-ragistry of magnetical and meteocologioal iostraments, and which apparatus is in progress of completion at the observatory of the British Association at Kew. The Council are perauaded that the General Committee will view with satisfaction this co-operation of the Royal Society and British Aseociation for objects common to both, and for which the observatory at Kew furnishes a very convenient Jocality.
3. The Geveral Committee at Canbridge having passed a resolution, "That it be referred to the Council to talke into conaideration, before the next meeting of the Association, the expediency of diecontinuing the Kew Observatory," the Council appointed a committee, consiating of the Pre, sident (Sir John Herschel), the Dean of Ely, the Astronomer Royal, Professors Graham and Wheatstone, and Lient. Col. Sabine, to collect information on the scientific purposes whioh the Kow Observatory hes served, and on its general usefulness to soience and to the Association. The report of the committee wey as followe:-
"Kew Observatory, May 7, 1846.-Preseat: Dir J. F.W. Eersobel; Bart, the Astronomer Royal, Profescors Graham and Wheatelone, and Lient.-Col. Sabine. After an attentive examination of the preant state of the establishment, and of other matters connected therewith, the following resolutions were unanimously adopted, viz.:
"That it be recommeaded to the Genoral Committee that the eatablithment at Kew, the occupency of which hes been granted by her Majocty to the British Association, be maintained in its present state of efficienoy. 1. Because lt affords, at a very inconsiderable expense, a local habitation to the Association, and a coovenient depository for its books, manusoripts, and apparatus. 2. Bocause it has afforded to members of the Ancociation the meuns of proseonting many physical inquiries whieh otherwise would not have beed entered upon. B. Becanee the entablinhment has elready become a point of interest to scientific foreigaers, several of whom have visited it. 4. Because the grant of the occupancy of the building by her Majesty, at the earnest request of the British Association, is an instance of her Majesty's interest in, and upproval of, the objects of the Association. 5. Because, if the Association at the present time relinquish the establishment, it will probably never again be available for the purposes of science. 6. Because it appears, both from the publications of the British Association, and from the records in progress at the establishment, that a great amount of electrical and meteorological observation has been and continues to be made, and that a systematic inquiry into the intricate sabject of atmospheric electricity has been carried out by Mr. Ronalds, which has been productive of very material improvements in that subject, and has in effect furnished the model of the processes conducted at the Royal Observatory: and because these inquiries are atill in progress under local circumstances extremely favourable. 7. Because other inqniries into the working of self-registering apparatus, both meteorological and magaetical, are in actanal progress at the establishment, and that there is a distinct prospect of the facilities it affords boing speedily much more largely profited by. B. Becarse the access to the observatory from London to mambers of the Association will shortly be greatly improved by railroads, and becanse the looal facilitios and conveniences of the eslablichment have boen very greatly enhaseed by alterations in its relations to the Cometig sionets of Woods and Forests."

> "J. F. W. Hensohil, Chaimean,"

In laying before the General Committee the report received from this committee, the Conncil desires to add the expression of its own opinion in conformity with its resolutions.
4. The Council bas received a letter from the honorary secretary of the Literary and Philosophioal Inatitution at Oheltenham, expresaing on the part of the members of that Institution deep regret that circumatances have arisen which render uncertain their being able to give the British Apeociation that welcome and generous reception which it would be their desire to do, and which they last year folt they could have done had the Association been so circumstanced as to have accepted the invitation for the summer of 1846.
6. The Conncil has been informed by a letter from W. R. Grove, Esq, F.R.S., that a deputation has been appointed by the Mayor and Corporn-
tion of Swansea, the priacipal inhabitants, magistracy, and the country gentlemen of the neighbourhood, and by the members of the Royal Institution of South Wales, to attend the meeting at Southampton for the purpose of inviting the British Association to hold their annual meeting at Swansea at as early a period as may suit their convenience. The General Committee will therefore bave before them at this meeting invitations from Oxford, Norwich, and Swangea.
Southampton, Sept. 9, 18 ± 6.

Proceeding: of Sections.

Segtion A.-Mathenatical and Physical Science.
President: Sir J. F. W. Herschel.-Vice-Presidents: Sir D. Brewster, Prof. Wheatstone, Col. Colby, Dr. Whewell.-Secretaries: Dr. Stevelly, Messrs. G. G. Stokes, J. Drew.-Committee: Prof. Oersted, M. Stanberg, Prof. Wortmann, Messrs. Allen, W. R. Birt, Hod, and Rev. C. Herris, Messrs. W. S. Harris, R. Aunt, Dr. Lee, Mr. J. Phillips, Rev. Dr. Robinson, Mr. F. Ronaldo, Capt. Sir J. C. Ross, R.N. Mr. J. Scott Russell, Col. Sabine, Rev. Dr. Scoresby, Rev. Dr. Wilson, Rev. R. Walker, Mr. J. A. Dale, Dr. Green, Col. Evorest, Mr. R. W. Fox, Prof. Eicenlohr.
Sir J. F. W. Hergchel, President, on taking the chair, explained the objects of the Association.
The first paper read was a Report, "On Gausa's Magnetic Constants," from Professor Erman. - The author, aftor pointing out, by several examples, the uselessaess of accumulating, heyond certain bounds, mere observations, withont subjecting them to scientific reduction, and the importance now attached un all hands to such reductions-as exemplifiod in the case of the reduction of all the Green wich Observations, lately execnted by the Admiralty, at the solicitation of the British Association-a work which M. Bessel welcomed in the last moments of his life as the begioning of a new period in astronomy ; and, after instancing the fact that the Association had been rompelled to discontinue many valuable and aystematized courses of meteorological observations, in consequence of the stores of unreduced observations outstripping their power to bave them reduced, stated, that the determination of the Gaussian magnetic constants had appeared to them at the meeting at Cambridge last year, of such importance, that a sum of $59 l$. was entrusted to him, for the purpose of reducing certain observations made by hitn on terrestrial magnetism daring the year 1829, at several stations round the earth; and applying them to the porpose of determining those constants for that jear. The present report was a statement of the resolts already ohtained from this arrangement. The observations to be reduced bad been made by M. Erman, from the year 1828 to 1830, at 650 nearly equidistant stations, along a line encircling the globe between the latitudes $62^{\circ} \mathrm{N}$. and $60^{\circ} \mathrm{S}$.: 一at each station the dip, the horizontal direction, and the intensity had been observed. The labour of reducing these had not only far exceeded that which he (M. Erman) could afford to bestow on it, but even the leisure of an indastrions and intelligent yongg mathematical friend, M. Petersen, to prosecute the task; and the report now detailed the extent to which he had gone in hia labours.
"On the Bands formed by the Partial Interception of the Prismatic Spectrum." By Profeseor Powell.
"On the Constitution and Forces of the Molecules of Matter." By Dr. Laming.- This was an elaborate theory of the molecular constitution of matter; applied in forty-two distinct propositions to the explapation of gravitation, temperature, and specific heats of gases, cobesion, affinities, latent heat, volume, disturbances of electrical equilibrium, and other electrical phenomena, with electro motion and electro-chemical decomposition. One remarkable consequence of this theors is, that gravitation depends on the electrical atoms aline; aud that bence a positively elec. trifird body must be heavier, and a negatively electrifed body, lighter than the same body with its electricity in the ordinarily undisturbed atate. This the author proposed to prove experimentally to the Section hy an experiment to which he was conducted by the theory, as so0n as be could procure a cylinder electrical machine with an insulated rubber. The proident proposed that discussion on the communication should be suspended ontil Mr. Laming had exbibited this experiment.
"Report on Recent researches in Hydrodynamics." By G. B. Stores. -This report was divided into the following heads:-1. General theories connected with the ordinary equations of ginid motion. 2. Theory of wares, including tides. 3. The discharge of gases through small orifices. 4. Theory of sound. 5. Simoltaneous oscillations of foids and solids. 6. Formation of the equations of motion, when the pressore is not supposed equal in all directions. The first head referred to investigations of a rather abstract nature. Voder the second, the researches of Mr. Green, Piofessor Kelland and Mr. Airy. on the subject of waves, were particularly alluded to, and the accurate agreement of theory with the experiments of Mr. Scott Russell pointed out. The important investigattons of Mr. Airy on the the theory of the tides, were also mentioned. Under the next bead were mentioned some experiments of MM. Barre de SaintTenant and Wanizel, by which an empirical formula wes obtained for the velocity of discharge of air through a small oritice, when the discharge is produced by a considerable difference of pressure. The common formala does dot apply to extreme cases. A memoir, by Mr. Green, on the reflection and refraction of sonnd was then alluded to-a memoir which is remurkable from its bearing on the physical theory of hght. The investiga. tions meptioned ander the fifth head related priocipally to the motion of
pendolums in resisting medin. Mr. Green has solved the problem in the case of an oscillating ellipsoid. The last head contained a notice of the theories of MM. Navier, Poisson, and others on the irregularity of pressure in differant directions about the same point. This theory may be considered to be that of the internal friction of fluids.

Dr. Whewell thought be had ample reason to congratulate himself and the Section on the success of the advice which be bad given when, in the year 1830, his friends Mr. Harcourt and the Dean of Ely, had consulted regarding the proper objects which such an association as the then contemplated Britisb Association should propose to itself. He had then advised that one very prominent object should be the preparation of reports on the actual state of human knowledge in the aeveral departments of science. -and one of the fruits of that advice bad been the very able report which had just been presented by his friend Mr. Stokes. When be contracted the present acientific position of British philosophers with what it had been only sisteen sears ago, when Britain was vastly behind the continental philosophers, not only in scientific attainments, but even in the knowledge of what had been achieved by others, be could not but congratulate all concerned that that stigma had been ao completely wiped away. Dr. Whewell then proceeded to comment on several parts of the report and pointed out the inportance of keeping distinctly before the mind the essential difference between two kinds of wuves, in one of which the motions of the particles of the quid were the same from the top to the bottom, in the other, the motions of the particles, while all circular, or rather elliptical, diminished rapidiy until at the bottom it became nothing. Of this latter kind a familiar illustration could bo had by watching the waves which the wind produced as it swept over felds of standing corn or long grass. He then adverted to the formation of the double wave-an example of which was afforded by the tides at Southampton; and which had been investigated by Mr. Scolt Russell in the Forth, and by others at Jpawich. He then briefly reviewed the theoretical researches of Weber, Kelland, and Airy, oo the subject of waves; and concluded by saying, that as waves of sound were refected echoes, so he conceived they must suffer refraction, though the observing of this was attended with experimental difficulties; but that these waves were diffracted, be conceived no ove could doubt who would attend to the rarying sound of a cascade as you approached it round a bending course, it being at first hidden from sight by interposed rocks, banks, or other obstacles. The President agreed with Dr. Whewell, and not only did he conceive that sound conld be reflected, refracted and diffracted, but pointed ont several cases, as in some of the phenomena of the tuning fork, Fhere something closely analogons, at all events, to polarization must take place.
"Notice of a New Property of Light exhibited in the Action of Chry. sammate of Polash upon Common and Polarized Light." By Sir B. Brewsfra, -The chrysammate of potanh, which chrystallizes in very small, flat rhombic plates, has the metallic lustre of gold, whence it derives its name of golden floid. When the sun's light is transmitted through the rhombic plates it has a reddish yellow colonr, and is wholly polarised io one plane. When the crystals are pressed with the blade of a koife on a piece of glass, they can be spread ont like an amalgam. The light transmitted throagh the thinaest films thas prodaced, consists of two oppositely polarized pencils - the one of a bright carmine red and the othor of a pale gellow colour. With thicker films, the two pencils mpproach to two equally bright carmine red pencils. It is to the refiected light, however, and its new properties, that 1 wish to direct the attention of the Section. Common light, reflected at a perpendicular incidence from the surfaces of the crystals, or of the films, bas the colour of virgin gold. It grows tase and less yellow as the incidence increases, till it becomes of a pale blask white colour at very great incidences. The compond peocil, thas refected and coloured, consists of two oppositely polarized pencila-obe polarized in the plane of reflection, and of a pale blnish white colour at all incidences, and the other polarized perpendicalar to the plane of reflection, and of a golden yellow colour at small incidences, pasaing succesaively into a deeper yollow, greenish yellow, green, greenisb bloce, blue, and tight pink, as the angle of incidence increases. This very remarkable property, which I have discovered also in some other crystals, is not canesd by may fim of oxide formed upon the natural sarface of the cryatal, aor is is the result of any change prodnced upon the surface by external cansez. It esbibited, under the usual moditications, if the sorface of the chrysamante is in optical contact with fluids and with glass: and when the crysul is is the act of heing dissolved, or when a fresh surface is exposed by mechanical means, the superficial action of the crystal apon light is in both cases the same. When the chrysammate is re-crystallized from an aqueous solution, it appears in tufts of prisms of a bright red colour, the goiden refection being overpowered by the transmitted light; but when these tufts are spread into a 6 lm by pressure, the golden yellow coloar re-appeurs. When the crystals of chrysammate are heated with a apirit lamp, or mbove a gas burner, they explode with a flame and smoke like ganpowder; aud, by continuing the beat, the residue welts and 4 cross of coloartess anoorphous crystals is left. I bave foond the same explosive property is the aloetinate of potash.

Dr. Wrewell conceived this was ralher a curious action of the charysammate and aleotidate of potash on light than any new property of lighs. The Yresident, Sir J. Herschel, was inclined to agree in thint opinion, since oothing was more clearly eatablished than that the coloars oftimetely exploded by light refected from the sorfaces of bodies deperded oo the number of superficial particles which the light penetrated in the first ta-
stance, and their power of abeorbing or extingniahing a portion of that light doring that peoctration. This had been oxperimentally decided by thin plates of gold, through all the various shades of that metal, down to the red of copper. Whether the title of the paper, bowever, exaclly agreed with the observed facts or not, all must admit that these facts were most important, and deserviug of serious attention. He was nos acquaninted with the substance-chrysammate of potash-but its properties, both optical and mechavical, seemed to be interesting. The plasticity which it seemed to exhibit in particular occurred to him as curious; and this reminded him of a somewhat analogous property lately discovered in the substance plnmbago, or the black lead which pencils are made of. It is well known that that substance can only be obtained in any purity at Borrowdale, in Comberland, and is lately becoming very scarce. Now, although the powder of plumbago is one of the best materials for preventing friction, or the partial adbesion of other things, yet it bas been lately found that the particles of the powder themselves are capable of being made to adhere into a mass-indeed, more compact and uniform in its texture than the best mineral plumbago, by simply inclosing it in a case, extracting the uir frow among the particles, and subjecting the mass to vlolent'compression.

Professor Powell gaid that the young gentleman who sat near him was the disceverer of the chry $\begin{gathered}\text { monic acid, aud would, perhaps, be kiud enough }\end{gathered}$ to describe ite mode of production. Mr. Schunce (of Rochdale) said that he had discovered the acid, which was part of the composition of the salt of which Sir D. Brewster's papor treated. It was formed by the action of boiling nitric aeid upon aloes, and was one of the last products of that action. The chrysammato of potash was a beautiful and curions salt; and altbough so plastic as to be readily moulded into thin plates, was yet so sparingly soluble as to require above 1,600 times its weight of water to discolve it.
"On Elliptic Polarization." By Mr. Dale.
"On certain Cases of Elliptic Polarization of Light by Reflection." By Prefessor Powell.
"On some of the Results of the Magnetic Observations made at General Sir T. M. Brisbane's Observatory, Makerstoun." By J. A. Brour.1s1. Magnetic Declination.-The annual diminution of westerly declination at Makerstoun is $5^{\prime} 8^{\prime \prime}$. When proportioual parts of this have been added to the monthly means, from January 1844, till August 1846, their whole rasge is only $g^{\prime} 1^{\prime \prime}$; that is to say, the mean position of the magnetic needle for any month, freed from secular change, has not been about $2^{\prime} 1^{\prime \prime}$ farther west than the mean position for any other month. Mr. Bronn cunoeives that he has found the anzual period of westerly declination to consist of a minimum at the vernal, and of a maximum at the autumal, equinox: the mean range being under $1^{\prime} \mathbf{2}^{\prime \prime}$. From the observations for 1843, Mr. Broan has concluded that there is a maximunt of westerly declination when the sun and moon are in opposition, and a minimam when they are in conjunction; that there is a maximum of westerly declination when the moon bas its greatest north, and also when it has its greatest south declination, minima occurring when it crosses the equator. In the dimenal period, the douhle maximum and minimum have been found to exist in each month of the year. In the "Transactions of the Royal Suciety of Edinburgh," Mr. Broun has given certain results relating to the horizontal and vertical componeuts of the earth's magnetic force; but these resulte were obtained in scale divisions corrected for temperature by his nsethod. In order to deduce the variations of magnetic dip and of the total magnetic force, from the variations of these compouents, it was neces. sary to determine the values of the scale divisions in known units. Mr. Broun had previously shown* the inapplicability of the method given by lise Cummitiee of Physics of the Royal Society of London for the balance magnetometer. He now described a meihod by which the value of the micrometer divisions may be satisfuctorily determined. This method will be found in the Introduction to the Makerstoun Observations for 1843. He bas applied the same method to the bifilar magnetometer, and has found that the value of the scale divisions, obtuined in the way recommended by the Committee of Physics, is also inaccorate for this instrument. With the aid of the values obtained by the new method, the followng results have been deduced 2nd. Magnetic Dip. -The dip is mininum when the sun and woon are in opposition, In the wean diural period for the year,

Makerstoun mean time being always used. These periods vary to some extent throughout the year, the priucipal minimum occurring at $6 \mathrm{a} . \mathrm{m}$. in winter; the two minima being nearly equal to the equinozes, and the diurnal curve being single in summer. Mr. Broun has found that there is a maximum of dip about four hours and a half before the monn's passage of the superior meridian; a minimum about half an hour after the passage; a secoudary minimum about three hours ufter it ; and a secondary max suan about eight hours afler it. 3rd. Total Force of the Earth's Maf-aetism.-A minimum occurs when the suu and moon are in opposition, rqual maxima near the quadratures, and a secondary minimum at the time of conjunction. In the mean diurnal period for the year,

[^43]

The periods of maxims and minima shif about two hours in the course of the year, and in summer the principal minimum occurs at 10 h .30 m . a m. The variations of force with reference to the moon's hour anglo were fonad by Mr. Broun as follows:-The principal maximan occurs aboot two hours after the moon's passage of the inferior meridian; a secondary minimum about four hours before the passage of the superior meridian: a secopdary maximum about one hour after the superior passage; and the principal minimum about six hours and a half after that passage. Cursen were exhibited illustrating these results, and also the diurnal motion of a magnetic needle freely suspended in the direction of the magnetic force. From the latter some curtous results have been deduced, which will be found elsewhere. It will be enough to mention, at present, that in the mean for the year, the motion from 6 a.m. till 6 p.m. is very trifing; between midnight and 0 a.m. the needle is almost atationary, nearly the whole motion occurring between 6 a.m., noon, and 6 p.m. The end of the needle describes an ellipse whose major axis is at right angles to the magnetic meridian; but the direction of this axis varies thronghont the year.

Mr. Hopicins, "On the relations of the Semi-Diurnal Moremente of the Barometer to Land and Sea Breezes."-Mr. Hopkins exbibited diagrams, drawn up from Col. Sabine's paper "On the Meteorology of Bombay," of the diurnal temperature corve, total pressure curve, and gaseous pressare curve; with a diagram representing the swelling and sinking of the land and sea breezes; and endeavoured to show that these were inconsistent with the explanation given by Col. Sabine, but harmonised with alternations of pressure caused by the alternate extrication of heat and absorption of it during the alternate evaporations and depositions of water, in the state of clouds and dew.

Capt. Shortrede asked Mr. Hopkins several questions; and, from his own observations in India, extending over many years, must dissent from Mr. Hopkins, as to the manner in which he supposed clouds to form and disperse. The effects be ascribed were disproved by the fact, that several miles inland, when there were no land and sen breezes, the clonds wero formed and dispersed in precisely the same mauner.

Section B.-Chemistry and Mineralogy.

President : Mr. Faraday.-Vice-Presidents: Prof. Grove, Dr. Andrews, Prof. Johnston, Dr. Daubeny,-Secretaries: Dr. Miller, Messrs. R. Hunt, W. Randall.-Committee : Prof. Rosé, M. Dumas, Prof. Ö̈rsted, Dr. Playfair, Prof. Solly, Mr. J. Prideaux, Prof. Schöabein, Prof: Forchhammer, Mears. B. Mallet, H. Osborn, W. Weat, R. Warringtod, Dr. Loeson, Messrs. J. Wilson, W. Lucas, T. J. Poarsall, T. Ward,' Capt. Ibbetson, Dr. Percy, Messrs. W. Sharpe, T. P. Gasuiot, Profo Connel, Mr. J. P. Joule, Dr. Sohonk, Mesars. T. Henry, W. Francig, Rev. J. Barlow, Dr. Letheby, Messrs. P. Juhnson, - Maskelyn.
"On the Prescnce of Almospheric Air and Uncombined Chlorine and Carbonic Acid found in the Water of some of the Wells in the Suburbs of Southampton, and their Action on Lead." By H. Ossorn.一The principal object of this paper was to cuution persons residing in the neighbourhood of Southampton, against the use of leaden pipes for conveying water, and to induce them to avoid the use of lead in any form for that parpose, without having the water previously examined in order to ascertain whether it possessed the property of acting upon the metal and holding it in solution. The author brought forward soveral instances of the serious consequences which had resulted from the use of water impregnated with lead, and pointed out the diferent solvent principles found in the water; one of which was uncombined chlorine discovered in a apring in the New Forest. The water possessed the property of bleaching brazil paper, and reddening litmus paper by evaporation. The atmount of uncombined chlorine was estimated as chloride of silver,-hy dedacting the amonnt of the latter contained in 20 ounces of water from that of the chlorine contained in the solid contents, the former weighing $1 \cdot 2$ more than the latter-thus indicating 0.296 of nacombined chlorine, which is capable of naiting with 0.864 of lead, forming $1 \cdot 16$ of chloride of lead in the imperial pint. The lead held in solution by carbonic acid, and the oxygen of atmospheric air, was converted into chromate of lead, and eatimated as chloride of lead, which indicated 0.25 or 0.2 of the oxide in twenty ounces of water. The solid contents in an imperial pint were fonnd to vary from one grain to three grains, and to be composed of the chlorides of sodium, calcinm, and magnesium, sulphate of lime, silica, and vegetable matter. Notwithstandiag the preservative property, which the salts contained in spring water are said to possess, by forming an insoluble crust in the interior of the pipes, it was found that the leaden pipes had been in use for some years, and the action of the water on the lead atill continued with as much energy as when they were first laid down, thas showing the presence of the above solvents, and that they met with no resistance from the preseace of the saline matter.

Dr. Daubeny made sotue remarks pointing out the importance of the inquiry of Mr. Osborn, and the necessity of paying attention to the condition of the water supplied to towns through leaden pipes, or received is leaden cisterns.-Mr. Pearsall stated that he found that the presence of lead may be constantly removed from the water by the action of carbor, and that lead may be always separated by well agitating the water in cont
tact with the air, and mixing, up the sedimentary deposits, -The subject excited considerable attention, and many ganileman joined in the conversation, all of them addacing additional evidenne of the importance of investigating the condition of whier supplied to large towas.

Section C.-Geology.

Preaident: Mr. L. Horser.-Vice Presidente: The Dean of Wentminater, Sir Hi T. De la Beche, Dr. F. H. Fitton, Mr. W. Hopkins, (For Geo'grapiny. Mr. G. B. Greonhough.-Searetaries: Mr. R. A. Austin, Prof. Oldham, Mr. J. H. Norton, (For Geography) Mr. C. T. Beke.-Com-鳥iftee: Prof. Aganir, Prof. Ansted, Mons. Le Btanc, Major Clerke, Mesere, C. Derwin, Duncan, Prof. E. Porbet, Mr. G. W. Peathergtonhaugh, Mons. Greves, Messrs. E. Hutton, W. J. Hamilton, Capt. Ibbetson, Mr. W. King, Mome. de Koninck, Mr. C. Lyell, Prof. Von Middendorf, Mr R. Mallet, Marquis of Northampion, Mons. de Pinteville, Mesers. W. Sanders, W. Sherpe, Rev. Mr. Walkér, Mr. J. Yates, Lient.Col, Colby, Messrs. G. W. Ormerod, J. Phillipa, Sir P. de M. G. Egerton, Bart., Dr. Pye Smith, Hon. and Rev. C. Harris, Mr. J. B. Jukes, Capt. James.
"On the Arfesian Well on the Southampton Common." By R. Ksele, Baq:-The town of Southampton has hitherto depended for a supply of fresh water to private mella, which are attached to almost every houso. They are sunk through a bed of gravel, and. vary in dopth from 10 to 20 or 25 feet,at. which depth the London alay in reached. An uncertain quantity has also been obtained from the public water-works, supplied by land springs. These sources being insnfficient for a growing town, with 30,000 inhabitento, other modes of sapply, have long been contemplated. The river Teat wa considered too distant; and the commisioners could not accede to the terms proposed by tbe proprietor of the mont convenient part of the river Itchen. In Novembar, 1835, Mr. Clarke, of London, made an experimental boring on the Sonthampton Common, through 80 feet of alluvial strate, 300 feet of London clay, asd about 100 feet of platic clay; andiferwards the boring wate extended 50 feet into the chalk. The anpply was axaple; and an Act of Parlinment was obtrined for providing the meene necessary to construct a well which should supply 40,000 cubic feet of water duily. Mr. Clarke enimated the expense at $\mathbf{6 7 , 0 0 0}$. In 1887; a contract wet made with Mr. Collyer, who proposed to sink an iron cylinder, having a diameter of thirteen feet, to the depth of 160 feet, and from that point to bore to the further depth of 400 feet, commencing with a bore of 30 inches, and gradually diminishing to one of 20 . The eatimata amounted to 69,980 . The oflinder was found inefficient; and a brick shaft, of 14 feat diamoter, was continued to the intended depth of 160 feet. . Two pampe wert employed to raine the water, which amonnted to 4,000 cabic foot per diem. Here, insteed of commencing the boring, the briok inaft was carried on, hy advice of the contulting onginser. At the depth of 164 feet, the dinmeter of the shaft was reduced to 11 ft . 6 in . At this period, the candles could scarcely be kept lighted; and an airstube of zine, with a pair of bellows worked by the steam-engine, was atteched, for the purpose of ventilation. Masses of limestone, five or six tons in weight, had frequently to be raised. There was a conaiderable escape of gas from the sides and bottom of the wall, which, together with the vapour that filled the shaft. and the impure air. caused by so many men at work, occasioned some alarm. At the depth of 214 feet, the sbaft was reduced to 10 feet in diameter; and at the depth of 270 feet, to 8 feet 6 inches. The work wat then suspended till more powerful pumpe could be obtained. On emptying the shaft, and deepening it 23 feet, the influx of water became so great that iron cylinders, 7 feet in diameter, were agsin resorted to, instead of brickwork. At 322 feet the brick shaft was resumed; the quantity of water raised by the engine amounted to 30,240 gallons in twenty-four hours. At 380 feet from the top of the well, the plastic clay was reached, and the brick shaft continued through it to the chalk. Little or no sand or water wim found in the plastic clay. The work was continued day and night till December 4, 1841, when the shaft was 520 feet deep; about three gallons of water flowed into it per minute, its temperature at the botom rauging from 61° to $62^{\circ} \mathrm{Fab}$. The atmosphere of the well at 50 feet wes 54°; at 160 feet, 60°; at 543 feet, 65°. The temperature of water at the surface was 44°. In Maroh, 1842, the shaft measmed 562 feet; and the pumping having having been suspended for a week, the water rose 400 feet, amountiag in quantity to 21,578 cubic feet. This supply being insufficient, the contractors commenced boring with a 7 -inch augur, attached to a rod, conducted to the bottom of the shaft by an iron tube, fixed in tho centre of the well. The total depth of the shaft and boring anoonnts to 1260 feet; and at the time the boring ras saspended the water rose to within 40 feet of the surface. In 1845 , during upwards of four monthe' daily pumping, the delivery of water was at the rate of upwards of $1,500,000$ gallons per month; and afterwards, in eight days, the quartity raised exceeded 725,000 galloms. When the pumping was discontinued in November, 1845, the water rose, as before, to within 40 feet of the surface.

Mr. Hopinss, in reply to questions as to the advantage of continuing the operations, and the probable supply, atated that the example of the artesian weh at Grenelle was calculated to give confidence in similar undertakings where a general analogy existed. The comparian, however, between Paria and Southampton was not complete. Paris was in the very centre of a tertiary, and probably over the deepest part; the water flowed to it in all directions; the inclination of the beds, too, was gentle; and there were no dialocations. Here, bowerer, the chalk of North Hampsbire inclined gradu.
ally towand the ses, and, paning onder it, rose again, wht 5 mach greater inclination, in the Inle of Wight. There was ao reacon for supporing that Southampton was situsted over the lowest part of this bain; and since, in the Isle of Wight, there wan an enormons dislocation, there wight be other dislocations or flarures in the intermediate space, which might afford an outlet for the water below. The height to which water would rise in an artesin well would be affected by the construction of other wall in ita neighbourhood. The first arteaisn well at Cambridge rose 15 feet above the garface, but other walls had reduced its height to 4 feet below the sarface. The borings in these instances were only 4 or 5 inches in diameter; but the supply was large, and independent of the existence of any large caverns or fisures. The water came from the iron ands below the gault clay; it had a alightly ferruginous taste, but was quite good. No water was obtained in the chalk, nor could an artesian well be expected in that formation, which is too permeable to hold water. In concluaion, Mr. Hopking said that he should himself recommend the continuation of the boring, as the trial was not complete till the beds below the ohalk were reached.

Mr. Griannouar remarked on the ertent of the dislocation which extends through the centre of the Isle of Wight. He believed geologinta had done more good by discouraging hopelets spectiations than by encouraging useful experiments; and they would not give a positive recommendstion, except from experience. He alluded to the artenian wells of Lincolnshire in a district before scarcely habitable, on seconnt of the scarcity of freah water, and the thickneas of clay impervious to water. Porous beds, reating upon others which were not porous, could alone afford a supply of water.
"On the Origin of the Coal of Sitaia." By Prof. Gompremer, of Brealan. This paper was an abatract of an easy which received the prize offered by the Sociefy of Sciences of Holland, at Haeriom, in 1844. Prof. Gocppert remark, that hitherto few well-proserved planta had been obtained from the coal itself, but its composition had bean inferred from the plants which lie in the associated shales. In the coal-fields of Upper and Lower Sileria, which yiald four millions of tona a year, he had mot with axtensive layers, in which the plants were so well preserved, that he could distingaish coal formed from Sigillarite from that formed by Aracarise or Lepidodrendra. In most inatances the bark alone was preserved-the apecimens being fattened; but the Araucarise, being much harder than the reat, often retained their woody tissue and medullary raye. The species, 80 in number, werefonnd to be differently grouped in the various coal strata, and also under different conditions ; and this, with the delicate preservation of the ferm, the maltitude of npright stems, of which 200 have alreedy been observed, and the uniform thioknem of the strate over a apace of many milet, aro comidered by the anthor a proof of tranquil deposition on the presant loealities. The Silesian coal strata are from 30 to 60 feet thick; a larger portion of which M. Goeppert sapposes to have accumulated after the manner of pear, daring the lapse of time. He has ascertsined that, by keeping vegetables in boiling water for three month or a year, they are converted into brown coal (lignite), and, by the addition of a small quantity of sulphate of irom, a anlt which occurs commonly in coal, acquire, at last, a totally black, onel-like condition.

Sir R. I. Murchison expressed his readiness to receive this explamation for the origin of many extensive coal strato. Thero were other large conlfields to which the explanation would not apply at all, the materials having certainly been drifted to a distance by currents of water.

Mr. J. Phulips remarked, that although even fragments of coal-plants were uncommon in the coal of England, yet, with the aid of the microscope, comiferout tissue might be detected in much of the fibrous canl, which differed only in being less bituminous than the reat. In the ashes of conl, siliceons casts of vegetable tinaue were always to be fonnd; and Mr. Bowerbask had detected traces of stracture on the fractured surfaces of ordinary solid coal.

SBCTION P.-Statismes.

Prasident: Mr. G. R. Porter.-Vice-Presidents: Sir C. Lemon, Colonel Sykes, Messrs. Heywood, R. Nightingale.-Secretories: Mesara. W. Cooke Taylor, J. Fletcher, F. G. P. Neilson, Rer. T. L. Shapcott.-Committee: The Mayor of Southampton, Messrs. W. Duckworth, H. Hillum, M. Phillips, M.P., M. Ricardo, J. C. Sharpe, J. Shattleworth, T. Tooke, G. S. Kenrick, Dr. King, Mr. M. Milnes, M.P., Cept. Allen, Rev. Prof. Elton.
Among the papers read was " A Review of the Mines and Mining Industry of Belgtam." By R. Valpy, Eiq., of the Board of Trade. It stated that, as a coal-prodecing country, Belgiom ranked the recond in Europe. The ratio of the conl district to the total area is

Tons

			$\begin{aligned} & \text { Tons } \\ & \text { annually. } \end{aligned}$
Great Britain \% , or	2,930,000	producing	34,000,000
Belgium	335000	"	4,500,000
France .. . ${ }_{\text {gho }}$ or	630,000	"	3,783,000
Germanic Union.			3,000,000

In 2838 the total number of conl-mines in Belginm was 307, with 470 pile in work, and 172 in process of construction, employing 37,171 persons; being an increase of 8,454 , or 28 per cent. on the number employed in 1829. The increase of the quantity of coal raised was not accurately ascertained, but it appeared to be about 37 per ceat. The average cost of production is 10s. 8d. per ton, and the average price 23s. 1d. for firat quality, and 16e 63d.
for the second quality of conl; the svarage rate of waget is la. 6Agd. por day. The eatablishment for preparing other mineral productions for market in 1838 were, for iron 221, copper 8, zinc 7, lead 2; the total aumbes of furaceen was 132, of which 47 used coke and 22 charcoal. The total number of eecidents from 1821 to 1840 was 1,352 , which occusioned evere larts to 882, and deaths to 1,710 , making a total of 2,592 sufferert.

A paper was read "On Plate Gless-making in England in 1846, comtrasted with what it wes in 1827." Bf Mr. H. Howard.-The writer furrished' carefully all the meterials for catabliahing this comparison. Anoagat other roults he stated, that in 1827 plate glase was sold for about 12 s . avesuge per foot, to the erteat of about 5,000 feet per week; in 1835, for froma 8s. to 9 n . per feot, to the extent of sheat 7,000 feat; in 1844 , for from 6 s . to 78. per foot, resobing abont 23,000 feet; and in 18464 for from 5 ta to 64 ,aboat 40,000 feet per weok. The mie in now abont 45,000 foet weekly. He mentioned thet, in 1829, a plate glan manufactory cessed operations Lecmee of the small protst realiaed when selling at 12s.; while, in 1846. a company, with a paid-up capital of $130,000 \mathrm{l}_{\text {, }}$ realized a net profit of 30,0002 salling at from 5 a . to 6 s . Looking at this extroordinary increase, in spite of the eeverity of excine restrictions, the auther anks, what would te the probable demand if the price were reduced to 4 m. or 3 s .6 d . per foot, which, free as the trade now in from encise incerferemee, would yield at ample profit?

Section G-Mechanios. Profrecor Willis in the Chair.
Fies-Presidenta: Rev. Dr. Robinson, Messrs. G. Reovie, J. Scatt Rassell, W. Soow Harris.-Secretaries: Mengr. C. Manby, W. Betts, jon.Compnittee : Mescra. J. Taylor, J. Walker, R.Stephenson, J. Locke, 1. K. Brunel, C. Vigmolles, W. Frirbairn, E. Hodgkinson, E. W. Dent, W. Chatseld, J. Whitworth, J. Nasmyth. J. G. Bodmer, J. Fincham, R. C. Grantham, T. Hoblyn, Dr. Phippe, M. Ricardo, Mr. R. Roberts', Sir J. Guest, Mesars, Grant, Brockedon, C. H. Gregory, W. Harding,
Dr. Robinsox gave as account of a "Modification of Dr. Whewells Anemometor," for mensuring the velocity of the wied. He explained to the section verbally the nature of the varioms anemometers hitherto employed to mangure the force of the wind, and distimgiabed Whemell's from them, as a masure meraly of comparative rate. The fand of it was, that the instrument gave no absolute messure of velocity in miles per hour, and that it roduced the raten to $n o$ standard, and therefore the observations made at one cheervatory were not capable of comparison with thowe at another. He had applied an obsarvation of Mr. Bdgeworth, who was a fanily connerion of his own, to the constrnction of sueh ala addition as would render Whewell' anemometer more perfect in this reapect. He monnted on a vertical axis three or four arma, carrying hemotopherieal eups at their extremities. These cupt opposed mach less reaistance to air acting on the concave siden than on their convexities, and in such; ratio that uniform revolution was produced, at the rate of one-third of the velocity of the wind. From this measure, which would be the same for all sizes of the instroment, and at all places the mean velecity of the wind during a given period could alwaya be ob-- tained in miles per hour. He concluded by reading some of the determina tions of his owo instroment at the observatory at Armagh.

The Chairman, in giving the thanks of the Section to Dr. Robinson, expreased their sente of the scientific elegance and great practical value of an invention applicable generally to the measurement of velocity of fluids; and he called their attention to the dexterous logical process by which the one definite desired term had been eliminated from a multitude of onknown quantities. as exhibiting an admirable example of the combination of sound mathematical reasoning with sagacious experiment.
Mr. Vignolles read a paper farviehed by M. Arago, for the express porpose of being communicated to the Association, at which M. Arago was prevented by illaess from attending, "On a mew method of boring for artesian eqrings," by M. Factelle, of Perpignan, in France. The paper, which was an abridged tramelation of M. Fauvelle's own account, stated that-
${ }^{4}$ In 183s, I was present at the boring of an artesian well at Rivesaltes; the water was found, and sponted up abondantly. They proceeded to the iebing, and for that purpose enlarged the borehole from the top down wards. I was struck by observing that it was no longer necessary to draw the boring tools to get rid of tbe material, and that the water, rising from the bottom, brought up with it, in a state of eolution, all the soil which the enlarging tools detachod from the sides.
1 immediately observed to my friend, M. Bassal, who was with me${ }^{*}$ This is a remarkable fact, and one very eany to imitate; if, through a hollow boring rod, water be sent down into the bore-hole as it is sunk, the water, in consing op again, must bring with it all the drilled particlen." On this principle I stierted to establish a new method of boring. The apperates is composed of a holiow boring rod, formed of wronght iron tubes sarewed end to end : the lower end of the hollow rod is armed with a perSorating lool, suited to the charactor of the strata which have to be encountured. The diametor of the tool is larger than the diameter of the tubalar mod, ia order to form arourd it an annalar space through which the water and the excavated material may rise op. The apper end of the hollow rod is connected with a force-pump by jointed or texible tubes, which will follow the descending movement of the boring tube for an extent of some jards. This boring tabe may be either worted by a rotatory movement or by percasaion with a jumper. The frame and tackle for lifing, lower-
ing, and manining the bering tube, ofior nothing particnlar. When the boring tube is to be worked the pasip mast be frot put in zootion.

Throget the interior of the tabe a colmang of patier is suth down to the boctom of the bare holes, whict water, rising in the amuler space botween the axterior of the hellow boaing rod, and tbe aides of the bonehole, cruates an accandias current which anries ap the tritmrated soil ; the boriag twbe is then worked like an ordinary boring red, and as the materied is seted upon hy thotool at the lower end, it is imenedintaly carried ep to the top of the borehote by the ascendiag curreat of air. It is a consequance of this operation that the cuttings befog constantly oarrind up by the witer, there is no longer any ecoesion to draw op the bors ing tobe to ciear them awny, making a very great maning of time. As. other importent and certainty no lese advantage, is, that the boring toole never get clogged by the noil ; they work constantly (r ithout meeting abstructions) through the strata to be penerated, thus getting rid at ance of nise tenths of the difficulties of boring. In addition, it shomid be mentioned, that experisnce has shown there are so slipe in any ground which ordinary boring-rade can penetrate; that the bering eube works at 100 yerds in depth with as much facility as when only ten yards dom, and that from the very circumstances of its being a holtow rod, it presents more resistance to torsion than a solid rod of equal thickness and quita as much resistance to traction: these are the principal advantages of the new aystem of boring. Indeed these advantages have beea fully confirmed by the barings which I have just completed at Perpiguan, in St. Dominico'ssquare. This boring was commenced on the Ist July, and was completed on the 23 rd , by finding the artesian water at a depth of 560 feet. If from these twenty-three days, each of ten hours' work, are deducted three 8on. days and six lost days, there remain fourteen days or 140 honrs of actoal work; which is upwards of one yard per hour, that is, ten times the wort of an ordinary boring rod.
In the method I have described, it will be peresived that the water is injected through the interior of the boring-rod. Experience has tasght me that when grave, or stoves of some size aro bikely to be met with, it is better to inject the water by the bore-hole, and let it rise through the boring tabe. The additional volocity which may be thereby given to the water, and the greater mecuracy of callibre of the tube, allow the free ascent of all aubatances which may be found at the bottom of the bor bole, and which the former mode of working may not se readily accomplish. I have brooght ap by this latter way atones of 81 by 14 inches

The jdea of making the water remount through the interior of the boring tnbe suggests an easy mode of boring below a flm (sheet) of fiowing water: it would be sufficient to close the orifice of the bore hole hermetically, still howerer so as to allow the boring tube to work, bot jet so that the flowing water should be always forced dawn to the bottom of the bore hole to fod its way to a vent: it woold thus draw ep and carry away all the detrites. If, in eddition to the above, we connider the posaibllity of making the bollow stem of the bering rod of wood, and of belanolng it 80 that it would weigh no more than the water in which it bes to move, the problem of bering to depths of 1100 yards and upwarde would appear to be selved.

In the square of St. Dominique at Perpignen, a boring had been earried on upos the ofd method for upwards of eleven monthe for the purpose of forming an artesian well, and the water had not boen foond. Fanvella placed his new tabe alongside the old boring tackle, asd soon got down to a depth of nearly 100 yarts, when an accident occurred which woald hava required some days to remedy. Fauvelle decided upon abandoning the bore hole already sunk so deep, and commencing a new oee, satisked that there woald thereby be a saviag in time. The rate of sinking was equal to four feet per hour of the time the hollow boring rod was actually at work, the depth of 560 feet having been obtained in 110 working hours, for a bore hole of about six incbes in diamoter.
M. Arago, who had seen the rods of Fauvelle at work, mentions how folly they answered, and that the large powerful tools at the bottom of the hollow boring rod cut easily through the hardest strata; be confirmed the fact of the large sized stones and gravel coming up with the ascending current, himself having watched them. He also mentioned that such was the opinion of the people in the vicinity of Perpignan, and so moch was water wanted, that orders for the sinking apwards of 200 artesian wells had been given to Faurelle. The introduction of this system into this country, especially if combined with the Chinese or percussive system of boring, as practised with bore holes of very large diameter, at the Saarbruch mines, and at many other places on the continent, mat be productive of great benefit, and wuid not merely effect a saving of money and labour, but the paramount advantage of immediately solving the question of the existence of coal, miverals, water, \&c."
[By reference to the last volume of this Journal, page 56, it will be seen that a patent was granted to Mr. R. Beart, Jaly 12, 1844, for a method almost identical with that of M. Fauvelle.]-Ed. C. E. and A. Journal.

Sir Jome Guegr asked Mr. Vignollen to explain the syatem of percuasion boring, for the information of those gentlemen present who migbt not be sequanted with it.-Mr. Vignolsas said, imatend of boring with augare or roas, there was a heavy weight mupended by a rope and pulley; and fixed to the bottom of the weight was a tool of the crown form, vis., a circular tool of iros, indented at the bottom. There whe no deacription of rock on which he had tried it that this tool did not peactrate with facility. The prejodice of Englinh workmen, however, had hitharto prevented ita intro-
duction in this country; but he had no doubt it would make ite way, particularly if it conld be combined with Fanvelle's syntem.-J. Loss, Eeq., Mayor of Southampton, wished to ask a queation relative to the applicability of Pauvelle's plan to the boring of the Sonthampton arterian well They had got to the depth of 1,200 feet with a bore of 6 inches in diametorand the expense had been nearly 20,0001 .; this syatem, however, seemed to, diminiah the expense of boring in an axtraordinary manner; and be wished to ask if it could be applied to the present boring at the Sonthampton Com-mon?-Mr. Viononise, as an engineer, had no hesitation whatever in anying that it conld be applied without difficulty. If they wanted force to send the water down the tube, they might use a steam-engine.-Dr. Robinson suggested that a depatation from the Section should go to the works of the Southampton well, and inspect them.-Mr. J. Hill said that percusaion had long been used in this country. They had used that plan whenever they carne to hard substances in the Southampton boring. The rode were drawn up by a wiadlass, and dropped down a foot or six inches; and after the material was loosened the rods were drawn, and the pulverized material rised op by a cyiinder.-Mr. Vignolles aid this was different from the Chinese sytem of percussion, where a rope was used, which saved the trouble and loss of time in drawing the rods. The power required for sending down the water on Fauvelle's plan was much less than might be supposed.-The Marquis of Nobreampton anggeated that a committee of the Geological Section should be invited to accompany the committee from this section.-Dr. Lancester expressed his warm approral of M. Fauvelle's plen, and hia opinion of its applicability.- 1 conversation followed, in the course of which Sir Juen Gezsr anid the weight of a hollow rod, three inches in diameter, and the iron a quarter of an inch thick, would be less than that of a solid rod of an inch diameter; the weight would be farther lessened by the rod floating in water.

Mr. Shazp read a paper on improvementa in the construction of gasmetors.

Mr. Ricardo explained the conatraction of a machine which he had used for registering the velocities of railway trains. An eccentrio is keyed on to one of the carriage axles and gives reciprocating motion to a rod which turns a ratchet-wheel by engaging with each of its teeth in succession. By these means, a drum, provided with a paper for indicator-diagrams, is mede to revolve with a velocily proportional to that of the train. A. separate part of the machine contains the mechanism of a commonclock, attached to which is a tracing pencil, which mores with a velocity proportional to the clock's rate of going. Consequently, the diagrams register the velocity of the trains for every period of time during the tran. sit of the train.

Resistance to Railway Trains.

This paper was of considerable importance, and we are the more glad to have the opportunity of expressing an opinion reapectiog the formula proposed, beceuse it is the same as that of which Mr. W. Harding recently gave an account before the Institution of Civil Engineers.

Mr. Scott Rossell commenced by brielly revieving the lubours of those who had gone before him in the investigation of the subject. The report on the experiments, instituted at the instance of the British Association, concluded by observing that the results were so enomalous, that no satisfactory law could be deduced from them. He had undertaken a large aries of experiments, hut only collected those on which be could place perfect reliance. The trains varied in size from one one to fourteen carriages. Mr. Russell then exhibited his results in three columns of figures; the first column showing the velocities in miles per boar, the second the resistance experimentally determined in pounds per ton weight of the train, the third the resistance determined by his formula.

It would be seen from the second colvmin that it was not very easy tu elicit a law : the resistance was very variable with respect to the velocity; for instance, in certain cases the resistance actually appeared to diminish as the velocity increased. The old theory had been that the total resistance was about 8 lh . per ton, and remained constant at all ordinary velocities. It had been found, bowever, that this theory was quite untenable. The next improvement was to add for the resistance of air a term varying as the square of the velocity. This, however, was still insufficient to represent the experimental results. He was therefore induced to propose a modification of the formula, which be by no nesus asserted to be theoretically correct, nor did it exactly coincide with the experimental results; but which, however, came nearer to them than did any of the uld formula, and might be ueed till a better one was discovered.

Mr. S. Ruseell's formula is-

$$
\mathbf{R}=\mathbf{A} p v^{2}+\mathbf{B} m \mathbf{v}+\mathbf{C} m
$$

where \mathbf{R} is the total resistance, A the area of the front of the train, othe velocity, m the weight of the train ; \mathbf{B}, p, and \mathbf{C} empirical constants. The last term of this equation represented the resistance from the friction of the axles. The value of C, as determined by tbe experiments of Wood and the British Association, appeared to be six pounds per ton, so that the whole of the resistance $=6$ times the number of tons weight of the train. The dext element of resistance was that of the air, which depended rather on the surface exposed than on the weight of the train. The greater nomber of experiments under this head were few and inapplicable. Smeaton's were made by observing the rotation of thin disks, which presented no analogies to the present case. It appeared, however, to be pretty clearly eatablished that the total resiatance could be deduced from multiplying the ares of the front of the train bv the square of the velocity,
aad by malliplying this quantity again by a certain empirical constant, which he bad represented by p.
After deducting these two reaistances, namely, $A p v^{9}$ and C m, there still remained a considerable residue, which indeed was, in many cases, more than half the resistance determined experimentally. Now the general appearance of this residue was, that it was a quantity varying as the velocity multiplied by the mass of the train; and therefore o being the velocity of the train, m its mass, and B a coustant, $B m$ represented the remaining term of the expression for resistance to trains.
The whole argument turned on this question-Does the expression Ben represent with sufficient accuracy the residue, after substracting from the toral resintance, as experimentally determined, the theoretical quantities for friction and resistance of air? In answer to this question, Mr. Ruscell proceeded to examine the two colnmns of figures before him, one of them ahowing the theoretical, the other the practical, resistance. In many cases, the accordance was very exact : in others, he confessed, there were great discrepancies. There were anomalous results in both columns of figures ; for instance, in the column of experiments, the resistance to the the train at 82 miles was actually less than it was at 31 miles. In fact, there were frequent instances in both columas of the resistance diminishing when the velocity increased: the resistance at a given velocity was often $n o$ greater than, and often less than, the next less velocity.
Mr. Scott next considered the physical causes which would account for the new term. A most important element of resistance was the concussion ustained by the wheels of the carriages as they passed over the joints of the rails. This concussion produced a moise and vibration of the earth, which was sometimes perceptible at extraordinary distances. It was frequently so great as to derange the position of the rails, and was a constant cause of wear and tear of the road. This was one most important element of his new term. Another was the lateral abrasion of the flanges of the wheels against the rails-this abrasion representing, of course, a loss of force. A nuther loss was occasioned by the vertical movement of the carriages on their spriogs, which was, from the imperfect elasticity of the springt, equivalent to a loss of ris vira. There were other elements of his "remainder" or new term, but these were the principal. In conclusion, Mr. Scott Russell atated that all the experiments were not his own; that some of them were the previous property of the British Absociation, made on trains descending inclines by their own gravity. The dynamometer which he had employed was an excellent one, made by Morin; it was placed between the tender and the first carriage. He exhibited the diagrams which had been actually drawn by this dynamometer, and which were traced in red ink hy a camel's hair brash.
The following is the teble referred to:-

Veloctis io Mlles per hour.	Realstance by experiment in lbe. per ion.					Reatatance by formala in lbe per toan.	
${ }^{8}$..	"	..	8.0	\cdots			
14 ..	-	-	12.6	..	.	\cdots	18.0
$\cdots 9$..	.	.	16.5	-•	.	\cdots	15.7
31	23.3	\cdots	\cdots	.	25.4
32,	.	\cdots	22.5	22.7
33 ..	.	\cdots	32.5	\cdots	-	.	$29 \cdot 7$
34 ..	\cdots	\cdots	10.6	.	.	.	17.3
35		-	22.5			\cdots	22.4
36	.	\cdots	225	\because	\because	\cdots	$25 \cdot 5$
37	.	\cdots	17.5	\because	..	\because	$18 \cdot 2$
89 ..	-	..	80.0	\cdots	-	\cdots	31.8
41.	-.	.	82.9	\because	-	.	198
45.	-	\cdots	21.	.	.	\cdots	210
46 ..	\cdots	..	23.1	-	\cdots	\cdots	23.3
4 F	33.7	.	.	\cdots	33.1
50	38.9	\because	\because	\because	36.8
51 -	-	.	28.4	.	-.	\cdots	23.0
531	-.	\cdots	41.7	4. 1
61	52.6	\because	..		$54 \cdot 8$

Dr. Robinson said that though great credit was due to Mr. Scott Rugsell for putting the investigation in an improved form, there were still several elements of resistance which he thought ought to be taken into 000 sideration. He then proceeded to write on the diagram-board a formula, of which each term explained some kind of reaistance, which he explained as he wrote down the corresponding expression. The loss from concussion at the joints should vary as (velocity) ${ }^{2}$. The resistance to the motion of the wheels, regarded as separate bodies acted on by the air, was twofold ; aud arose, frst, from their rututiou, secondly, from their loagitadjnul motion. The one resistance would vary as the velocity; the ocher, as the square of the velocity. In like mander, the resistance from the air to the carriages themselves was conposed of iwo terms ; the one representing the resiatance to the front of the train, the other to its sides.

Mr. Srarp thought that Mr. Scott Russell ought to have taken into account many contingencies which occurred in practice, such as the efect of curves in the railway. The asle-friction was far greater in some carriage: than in others.

Mr. Roberts confirmed the latter statemenf: he hud constantly obeerved that the wheels of carriages were out of their proper place, and considerably ioclined to the uxle. In muny cases which he had examined, the divergence fron the perpendicular was oo great, that the resistance oust buve beed enormous. The learned professor did not, however, appear awure that Mr. Russell's formula applied to the resistance of the inria only, indeperidpally of the engive: nor did he seem to have a very clear idem of the line of argument pursued, for he took occasion during the discussion to observe that Mr. Hussell had proved everything experimeulaily, and that "he had not taken anything for granted," whereas he had taken for granted an integral poiat of his argument, namely, that the accuracy of
the first and third terms of his formula had been proved by the labours of preceding investigators.

After some further observations, Professor Willis closed the discussion by remarking on the reciprocal action of tbe pistons as a fruitful cause of resistance and loss of power.
[It remains only to give oor own opinion on the result of Mr. Russell's labour. On a subject of such great moment to the engineer, a general account of the deductions to be made from the arguments employed in the discussion cannot fail to be acceptable. We must begin then by according to Mr. Russell the merit of having approached the subject in a philosophical spirit. He says that his conclusions are the results of a great number of careful experiments, but he does not dogmatise upon them. On the contrary, he tells us plainly, that his formula has been suggested for wrant of a better. With respect to the "remainder" term, which constitates the novelty of his results, he rather asks whether it may not represent physical facts, that asserts that it actually dues so. This is precisely the language of a true student of science. Wbile, however, we feel that Mr. Russell has made a step in the right direction, we unhesitatingly deny that his formula will account even approximately for the resistance to trains. There appear sufficient reasons for questioning the accuracy of each of the three terms of his expression. The last (Cm$)$ makes the axlefriction independent of the velocity; whereas it depends materially on the velocity, as we will show. Mr. Russell says that the friction of the axle is proportional to the pressure, and he evideutly takes it tor granted that the only pressure is a vertical one, vamely the weight of the carriage. This louks very like an error of principle, for it is obvious that if no horizontal pressure acted on the axle, the wheel would not move forward. The wheel is subject to two retarding forces,-the action of the rail on its periphery, and the action of the air on its whole surface. Now, these forces both depend on the velocity of the train, and their sum is equal to the accelerating horizontal force on the axle; on the principle that when a body is woving uniformly its accelerating and retarding forces are equal. The pressure, then, on the axle is a function of the velocity, and consequendly the axle-friction also depends on the velocity. It may be further observed, with respect to the retarding force on the circumference of the wheel from the rail, that it is made op of three parts-rolling friction on the tire, lateral friction on the fange, and concussion at the joints of the rails. The effict of all these probably, or at all events of the latter of them, depends materially on the velocity, and also greatly uffects the pressure, and consequently the friction, on the axle.

Next, with respect to the term (Apv), Mr. Russell here assames that the whole resistance of the atmosphere varies as the square of the velocity of the train. Now it seems certain, that whatever law represents the resistance to the front of the train cannot apply to the wheels; for the latter rotate as well as move forward. The action of the air on them differs so greatly from its action on the rest of the train, that the resistance must be expressed by different functions of the velocity. Moreover, the symbol o onght to express not the actual velocity of the train, but the relative velocity of the train and the wind. For if the wind and the train were both moving in the same direction, with the same velocity, the resistance on the bodies of the carriages would be zero. And lastly, whatever function be adopted ought to be discontinuous one, for this reason: if the wind moved faster than the train, it would urge the train forward and be changed from a retarding to an accelerating force. In this case, 0 (the relative velocity) would be negative; but c^{2} would still remain pusitive, which it onght not to do. This contingency onght to be provided againgt. We know that the expression for the motion of a projectile in air is discontinuous: the resistance during the ascent of the projectile is not the same function of the velocity as during the descent.
Lastly, in the term $\mathbf{B r a v}$, it is assumed, without sufficient data, that ull the other resistances besides those of the air and at the axies, vary as the velocity simply. We may decide with absolute certainty, that this canoot correspond to physical facts. The concussion of the joinls, for instance, is more likely to depend on the second thati the first power of the velocity. It is shown in Moseley's Engineering (p. 694-6), that when a body in motion impinges directly on a body at rest, the mutual pre:sure at any period during impact is expressed by certain quantities, which represent the harduess of the materimls, multiplied by the product of the mass of the moving body into the equare of the velocity. There are many other ingredients of the calculation for which it would be difficult to prove that they. vary as the velucity simply. It niay be also observed, that Mr. Rus: sell's formola frequently did not egree with his own experiments. In about a dozen cases there was an analogy; but the coincidence seems porely accidental, and it woald be easy to invent a score of different formule which migbt be supported by similar comparisons.- [Editor C. E. and A. Joarnal.]

A paper on Improrements in Steann Engines, by Mr. Lamb was read. One object of the paper was to suggest an iniproved muthod of "blowing off." It was found by experiment that the scales which formed the coucretion in boilers wery boyed on the surface of the water when boiling, and that they were not precipitated to the bottom till ebullition had ceased. Mr. Lamb propowed to tuke advantage of this circnmstance by puiting the blowing of pipe near the surface of the water. The subject of the next paper was

The Menal and Confay Tubular Beideen.
The subject was illustrated by a large number of diagrams, sectiona, and working drawings; a view of the Menai Bridge with two long and
two shorter spans was shown, and on the table was a large model of the bridge which it is proposed to erect over the Conway before the Menai bridge is commenced. The model of the Conway bridge sbows a single span; the abutments are two massive towers rising to about twice the height of tbe tabe; the sides of the tube have a series of cruciform apertures for the admission of light and air.
Mr. Fairbairn commenced by detailing the courge of the experiments which had been made to ascertain the strongest form of the tube. The tube generally gave way on the upper side, and it was first attempted to
 strengthen it by making the top plate of corrogated iron. This being found insufficient, the next proposition was that the top of the tube should contain long tubes between two horizontal plates : the form of the section being that represented in the accompanying diagram. This form was afterwards modified by making the top with rectangular cells or coinpartments, and a model of this form was made one-sirth the dimensions of the proposed bridge; that is to say, of onesixth the length, breadth, and hoight, and with plates rolled as nearly as possible to one-sixth the thickness of those intended to be adopted.
The following diagram represents the section of the model at the middle, and also of the Conway Bridge for which the dimensions will be as fol-lows:-

[Section of the Conway Bridge at the middic.]
Dimensione.

Dimensions.						
Eedght outaide	-	18	0
"	.	\cdots	\because	\because	21	
"1 Inalde	.	-	\because	\cdots	14	0
Thelmese of eide plates	-	-	

A :- ㄱ: + teh of tha three portions which ate untred to form the dide
platem

Breadeh of ditto
(Ercepting those at the anglea of the trbe wilch are in breadth
Thlefrees of platea formalge the celle
In all the experiments on the large model the weights were suspended at the centro of it, from its lower side. In the first experiment the tube broke with a weight of 35 tons. It was then thoroughly repaired and the sides were stiffened by vertical ribs attached at intervals thronghout thoir loagth : by these means and the addition of anfthar plate the bottow the breaking weight whas increased to 56 tons, It wese obsarred in one case that the top of the tube bulged out transwersely. The form of joint which wan intonded for the top of the tube was made by laying the ends of the plates together wlthout uniting them; they were then to be amply overhapped by pieces of metal above and below to prevent them ialipping past each other ——_-_. Instead howover of adopt. fing this form, the maker of the model had by mistake used a joint of the lollowing form ——, bolting the two platos where they overapped. In consequence of this arrangement and the great pressure to Which the uppar slde of the model was subjected, the plates slipped some considerable distance past each ofher, and alits were cut in them by the bolta. The section of the Conway bridge given above, shows one of the vertical stifening plates attached to each of the sides of the tube. These stiffeaing plates are T iron $\frac{t}{t}$ inch thick.

Mr. Eaton Hodorinson said that his own decided coaviction was that the best form for the top of the bridge was a serics of long hollow cylinders auch as those finst described by Mr. Faitbairn. There were three forms propeed for the nop-colid iron, rectangalar compartments and cylindrical compartments. He certainly thought the lattor form was the best. In fect the enperidify mes to greet fak wh dificalty or enpense in the manufacture ought for an instant to woigh as an ehjeotion to its adoption. The great object was perfect secmrity, and to this every minor consideration of troutle or preliminary outlay ought to be sacrifioed.

Frem the proportions which bad been chosen he estimeted that the strenth to resist lateral pressure was oue-fourth of the vertical strength. In infern models the proportions for the side plates were differeot, and he hed laid his tubes on their side to compare the lateral to vertical strength. He found the latter was to the former in the proportion $26: 15$. Thin comparison he had instituted in order to ascertain the capability of the baidge for resistance to the action of wind. As however the proportione actually chosen for the Conway bridge differed from his own, he had suggested that the strength of the side plates should be increased, and this angzeation had been partially acceded to. He did not think that the top plate should be arched between the abutments as in that case the steam of the ergine would rise to the top and have no means of escape. [This by-the-by is a very insufficient objection, and one which might be easily remoned by some simple mechanical contrivance.]

Itr. Clarx, who had been present during the performance of all the ex pertments, nert read a peper. Each of the longer tubet of the Monai brin would be 462 feet long, and weigh 1200 tons. It was intended to put en the parts of tube together at a place about a quarter of a mile from the intaded position of the bridge. When the stracture was finishod it Tond be floted to its place on large barges, and finally raised by hydran. lic presses at the two ends simultmemsly. The Conway bridge had to be raieed only 18 feet, and this work would be completed first. Mr. Clari then rend some calculations respecting the strength of the bridge, bat they bone so great an analogy to those which have been already published in this Journal, in the Notes on Engineering, that it is not necessary to repeat them. He said also that the tensile strength of the bottom would be proportional to the sectional area, and independent of oither the width or thickness considered separately; so that provided the sectional area contained a given number of sq玉are inches, it was immaterial what proportion the thickness of the bottom plate bore to its width. [This is one of several grave errors which have been comnitted in the contrivance of the Tubular Bridge. We do not however consider it necessary to enter on the demonstration here, as it will be given in the Notes on Engiacering.]

From the experiments it would appear that the sectional ares of the two sides together ought to be equal to that of the bottom plate.
Mr. Fafebaiza expreseed some surprise that Mr. Hodgkimon whould take to himself the credit of suggesting the cellalar form for the top of the tube. He could assure him that he was mistaken on this point, as experiments on tubes witb cellular tops had been commenced at Millwall before he arrived there. With respect to the pressure of the wind, it would be found that if it be taken at 80 lb . per square foot, the total lateral presalare on one side of the bridge emounts to $3 n 0$ tons. The proposition of supporting the bridge by suspension chains bad been finally abandoned. In order to deaden as much as possible the effect of vibrations from the passage of a train, the rails would be laid on vulcanieed indis-rabber 2 inches thick.

Dr. Robinson ariled attention to the differesce between laying a load gradually on the bridge and drawing a load rapidly over it. If the impulses from the train were syechronoes with the vibrations, the latter would be increased to a frightful extent. He himself had ascertained the vibration of a train at a distance of 15,000 feet by obserring the effect on quickailver. He thought that in the model different lowds ought to be drawn through very rapidly to test effects corresponding to those of the passage of trains.

Mr. Fairbairm said be would certainly endeavoar to follow oat the -0ggestion.

Inr. Soort Rossell said that it appeared to him that the principal question had not yet been discussed. The point to be considered was-not whether the bridge conld be made strong enough to bear the woight on it; for there was no doubt that the eagineers would keep on adding metal till they removed all chance of fracture-but the real question was whether the requisite streagth was attained with a minimum quantity of metal: whether, in fact, the metal was disposed in the mont adrantageous manaer. He had some doabts on this point. If two spans of the bridge were anited at the bottom pier, it was clear that any dedection in one apan world communicate its effect to those which adjoined it ; so that there wonld be points of contrary flexure, and the line of the bridge wovid be alternately convex

and comeave. In this case the top plate of the bridge would, in the neigh boarbood of the pier, be eubjeot to tension instad of compression, ned conversely for the bottom plate of the bridge.

Mr. Hoberimeon said the consideration of vibnstions from the repid tranait of a train was of the phomot importasee. The effect of a trais in motion coold scaroely be calculated acoprately. *I comfess," added Mr. Hodgkinson, "that when I consider this subject my wind misgives me and I caneot hetp feeling a few treiners." This aninonecement produced a scomation.

Mr. Roberts said that vibrations might be ehected by pltering the time of the impulses. It was a common practise of engize-drivers, when they foasd the engine began to "kick," as they term it, to accelerate or retard the train, and this generally destroyed the vibrations.

Mr. Faikbaikin allowed that rectangolar compartments for the top of the tabe were sot theoretically the best, but they were so practically. It wes neceseery to provide means for the ontrmoe of workmea into every compartment to make any repairs that might be required, or to rebew defcotive phates.

Dr. Rosimson said that what was to be apprehended duribg the pasenge of trains was not a sudden impulse, but the accamiletion of fibrations. It was well known that even a child might set a great bell to motion by continued afforts properly timed. If the impales commanionted by the bellrope wese synchrosous with the vibrationst of the bell itself, the eritut of those vibrations might be increased till the bedl got its fall awing.

Mr. Hodarmon said that it had been euggested that the top plates should be of oast irea. He objected to this proposition on the followiog grounds. From his own exporiments on the etreagth of cast iron, and Wrought iron columns to resist pressares epplied in the direction of their lengths it appeared that the relative strength of the two matorials apended entirely on the leogth of the colmans. The oolumms might thil eitur by beading or by crushing. With short colames east froe bore to wreaght inco the atrength of $17: 10$, bet with loeg coturens the streagth of cast irom to that of wroaght iron was at $14: 50$. This sbowed the experiority of the latter material for the upper plates of the tobelar bridge.

MICHAEL ANGELO.

A correspondent of the Literwry Gasette has farainhed to that paper some particolars relating to the diccovery of certain works by Miohmal Angelo and other artists of renown. The correapondeat is described as lady married into a collateral branch of the fayily of the great Italian. A minute search through the Buenaroti Gallery has led to the following results :-" Upon opening the door I found Micheal Angelo's owa original wax model of bis superb David, looking even more majeatic and iaponing than the well-known gigentic efatee on the Piase dol Gran Duce, which may be imputed to the fact of his baving been atinted in the siae of the block of marble. Besides this master-piece, the cupboard further cose tained two other wax models by Michad Angelo, one bis Giorno, the other his Crepascolo,-both of which are is the chapel culled Cappello di Michel Angelo in the Church of St. Lorenso. There were likewise in this sume closet modela in clay by Giovanni di Bologan ; they are his Arat concoptions of bis most celebrated groups and statues. Asolber in was, by Rece cio Bandineili, besides another by an anknown hand. Then, at tho bottor of all, under a thick vail of cobweb, I perceived a quastity of fragaenta, which appeared to we of surpassing beanty. I collected the pieons, and joined them together with boiling war, thread, \&c.; when, to my great delight, I found my fragments ussumed the form of the torso and legs of a Satyr, which is one of the fipest works of Art that can be imagined. The celobrated engraver Jesi and another artist chanced to call upon us, and both proclaimed the Satyr to be the work of Michael Angelo;-bat then, we had no proof of such being the case. Now comes what I deem the marvellows part of the story. The following morning, I again occupied myelf groping and poking about the gallery, particularly in an old cabinet or closet which they say Michael Argelo used to write in. At length, I pulled ont a dramer, in which was a letter, dated 1680 , from one Covr. Paneani, who bege the Proc. Buoparotti to accept a Toree di Satiro, the work of his great ancettor Michan Angelo." - E-In this extracrdiany manner have I obtained the proof of the anthenticity of my Satiro."

desiderata for the more advantageous study OF MEDIEVAL ARCHITECTURE.

Ma. Editor-In yoar Augost number I read the article on the "Fature Development of Medizval Architecture," with mach interest and gratifcation, and no doabt very many of your other subscribers did the same, the good taste, the conadness of judgment, the freedom from all dogmatising or fippant treatment of opposite opinions, quite led me to anticipate from the paper a thorough knowledge of his subject in the aathor, and this the whole article fally sustained.

With a view to follow ap the subject in a practical way, I will venture to put down a few thoughts that have for some time occurred to me, and which you may perhaps consider worthy of insertion in your valuable Jourana. They relate to the necessity there still exists of some well digested compilation, to set forth the choicest examples of really good Medieval architecture, both in the mass and combination, and also in the details. This may at first appear a startling assertion, when the number and vast variety of works already pablished and constantly isaning from the Press are considered, intended to bear upon that professed object.

So far as I am able to judge of any work I have yet seen, I think we have no grammar of the art, as it were, such as we have in all other studies, whereby the student may really begiu at the right end as to what he has to learn, and arrive at the procurement of that elementary kuowledge in the ahortent possible time. I consider this later, in their reilway era, of real importance.

From the architectural stadent of the present day so much will be required, that whatever facilitates his path by enabling him promptly to acquire the mechanisal, and helping him quickly to discover or to feel the beantiful, and as readily to repudiate the elaborated though expensive trife, however ancient, will do mach to help forward the future practitioner to a fuller altaiament of the style in ite highest excellence.
That much has been done within the last few years, to set up and indoce the adoption of the style on a right foundation, must be admitted; and perhaps a condensation of, or a compilation from, existing publications might go far to accomplish what is wanted. Of books we have, I consider, far too many-that is, as to the good a atudent can derive from them; of those that profess to be initiatory, how much is there in the best of them of litue or do avail for his purpose. We find a beauty of engraving-a cestliness of drawing most engaging, - but there is in them all far too much beyond the energy or the attuinments of a mere architectural atudent to expect bim to work out; and, except the treat of frequently reviewing the plates and, perhaps, some general suggestions, he does not derive the help from the work which is most needed by him.
After mach stady of the architecture of the Middle Ages, I am satisfled the real practicable and imitative beanties for our adoption are confined to a much briefer epoch than many of its professors have been diaposed to admit: and of these beauties-like all other truths or principles-the simplest, the most obvious, and least intricate of them, are those identical ones most capable of combination and expansiveness. Of the worka insued by the several provincial societies, there are none that I have yet seen that will survive as conferring any abiding solid benefit on Pointed architectare ; they all start from the same point, and oone advance beyond a parallel degree or stage ; indeed, it appears as though the pleasing illustration of the architecture of a district or archdeaconry was their only intention. Now this, from the nature of auch associations may perhaps be essential to keep op an interest amongat subscribers; but I have long since thought that a portion of the funds at the command of these societies might be devoted to higher and more permaneat advantages. Most of the elementary or instructive treatises that I am aware of have heen undertaken as a trading matter, and an such they must necessarily combine an much for the money as possible, and they must further be made to suit the tastes of the greater number, and bere appears to me to result their inadequacy. Withoot intending to disparage any work, it strikes me there needs in all of them a much sounder discrimination, to separate the precious from the vile; and, therefore, a society not publishing for profit could do what an individual publisher could uot. In looking through even those works most recently issued. or in course of being so, I am surprised to find the omission of wany choice examples infinitely more worth the drawing and engraving than some of the subjects given, and sucb examples, too, not at all in. acceasible. Now, the collective knowledge of a society is likely to be able to gather a much more select assortment of specimens than an individual can be supposed to be aware of. I will repeat-what wo want is far fewer, and far more select, subjects. The publishing of whole build.
ings cannot procure thene, for in almost every structare there are many points which the student should be cautioned to avoid, as well an others he should be called upon to admire;-and therefore why publish faulty lessons instead of nenceptionable ones! Were the several societies moderately to contribute part of their fouds to a delegated number of their respective bodies, some half dozen well qualifed individuals might unite for the purpose of selecting examples wherover they were to be met with; to procure their accurate and detailed delineation, suitably figured; merely giving the place and where attainable, the date, and architect's or charch bailder's name, without encumbering the work with any topographical particulers, but giving, instead, the reasons for the excellency of the subject, the caures of beanty in the composition, or the featare. The oramples oeed not be expensively ongraved, but they should be drawn to a sufficiently large scale to be at once obvious and serviceable, as conveying their trne portraiture, and to have a form and a substance imparted to them even more speakingly than is sometimes dove in many of the exquisite axamples of engraving frequently adopted in the present day.

The germ of the plan or method of selection is suggested by Pngin's lectures and Paley's moldings; but it ought not to be a safficient recommendation that the examples be copied from an esteemed structure, or be of unquestionable antiqnity ; - its only recommendation should be its essential fitness and beauty; multiplicity of examples, except of the best character, should be most cantiously avoided.
After treating of details in their order, the work might procoed to give examples of combinations, atill excluding or carefully repodiating every part not worth imitating, and then at the concloslon, some examples of the massing of whole structuren, which many of the Pointed buildings beautifully illustrate, and which Mr. Petil, in his work on Architectural Expression, has so happily developed from the very plainest atractures. These might be accompanied with a fow simple structures, showing why the effect of a certain mass is rich, and the effect of another poor.
The labour of the rising school of architects will have to be given to 20 many objects, that it will not do to direct the atadent to a choice example merely ; but it must be to the very choicest of any two choice ones, that he may sieze the best first, and leave the second best, and go to something forther,-that he may know more, day after day, how to weed his portfolio of questionable treasures in exchange for cardinal verities, and to give him time to digent these verities and get them thoronghly into him;so that after a while he may trust to books less, and himself and his own correct principles more. The moltiplication of books, as an arcbitectural poblisher admitted to me the other day, was the bane of the age, to far as the student was concersed.

On the basis of some such priaciples as these, Mr. Editor, do I consider Medieval architectare should be stadied;-to copy merely because the example is ancient, or because the original is associated with circumstances which can never be imparted to the imitation, is not to advance in architecture-but to retrogade.

If these remarks should lead to any practical good, I shall be glad; or should they suggest any hints to an inquiring and industrious architectaral student, so as to show him what lies before him, I shall cionsider my time not mis-spent.
$1 \mathrm{am}, \mathrm{Mr}$. Editor,
One of your early Snbscribera,
Nomedids.

THE GAUGE COMMISSION.

Analyin of Evidence siver before the Royal Commisioners appolnted to Investigate the subject of the diventiy of Rallway Gangen.
(Continxed from page 214.)
Groror Parier Bidder, Esq.*: Is in the immediate management of the lines in Norfoik, and the Peterborough line. From his connexion with Mr. Stephenson, bas more or less information of the lines with wbich he is connected. With respect to the great increase of cost which Mr. Gooch says exists upon the narrow gauge lines for the locomotive power of the goods trains, the cost upon the London and Brmingham and the Grand Jnnction being double what it is apon the Great Western, is prepared to dispute that fuct eatirely; but there are circamstances which migbt affect that comparison as to the particular character of the goods trade. On one line it may be necessary to have trains which may have to pick up goods at different stations, so as not to carry the same load from the terminus,

[^44] be found in thelr proper placen, laperted in brackels.
and at the same time to have the same engine power; and there may be a variety of other circamstanceu. For instance, on the Norfolk railway : at present the connection is not completed of the two railways at Norwich on acconnt of a bridge of an original construction, aswing bridge; so that the fish is bronght from Yarmouth to Norwich, then discherged, and carried across the river, then loaded again, and then bronght to London, and those trucks go back light. Therefore, if yon were to take the actual cost of the locomotive power for the goods there, you would bave to charge two miles of locomotive power for one aile of effective traffic, and consequently, although the locomotive engines might be ronning at actoally a less milleage than another line, yet in that sort of comparison, they might be made to appear to be working at a greater cost. Therefore, unless gou have all the circomstances brought before yon, any comparison of that nature appears to be not conclusive.

It does not appear that very moch higher rates of speed would be roquired. There would be moch more convenience from giving frequent departures, than from ranning particolar trains at a very high velocity. And there is another question; after you have attained a speed of 40 or 45 miles an hour, the saving of time by the increase of speed does not go on pro rate; it is very much dimiaished. Yon ave a great deal of time by an increase from 90 miles an hoor to 40 miles an hour; bat an increase from 40 to 50 miles an hour ls not of that importance. With the present permaneat way, where the rails are 70 to 75 lb . weight, you might travel certainly at 70 or 80 miles an hour.

The repairs are very macb angmented by bad curves, and a wide carriage, or a wide engine, must be subject to greater torsion from corves than a narrow one. Caonot believe that it is posaible that the repairs of the vide gange carriage and engines can be 80 little as of the narrow. Has no experience of the repairs on the wide gange, bat on a bad corve line the repairs are vory moch angmented. On the Newcastlo and Carlisle. the repairs of the engines, as compared with the North Shields, are about $£ 250$ per engine per annum.
Has a return of the performance of a goods engine in ordinary working on the Midland line between Derby and Ragby; and whether yon take it as the actoal weight moved or the evaporating power, it stands a favourable comparison with any engine refurred to io the ovidence of Mr. Gooch. In one trip the engine took from Rugby a gross load of 348 tons 16 cwt ., to which you would have to add her own weight and that of her teoder, about 35 or 36 tons. She took that load op 16 feet a-mile from Rogby, and she acquired a velocity for that 16 feet a-mile, of 15 miles per horr. If you compare that with a level lioe, it is equivalent to a grose load of very oearly 700 toos on a level. The quantity of wreter evaported on thet length was $35 \frac{1}{2}$ gallons per mile; that is equal to about 100 feet per hour, Now, from the experiments it appears, and it is consistent with one's notions, that the power of evaporation is directly, or nearly so, as the power of blast, that is, the nomber of strokes per minote, and the volume of that blast. From a return of an experiment on the Northern and Eastern, an engine which, at 30 miles an hour, evaporated not more than 70 or 80 foet per hoor, evaporated 150 feet at 50 miles per hour.
[Mr. Bidder here assumes that the resistance to a train of 818 tons, on a gradient of 16 feet a-mile, is the same as that to a train of 700 tons on a level. The conclusion is independent of the velocity, and seems derived from taking the resistance of friction at 7 or 8 lb . per ton. This calcolation omits the pressure on the blast pipe, which is a fanction of the velocity, and the reaistance of the air, which is nearly as the aquare of the velocity, and depends, moreover, not on the weight of the train, bat on the surface exposed to the action of the air. But setting all this aside, the mount of $\mathbf{7}$ or $\dot{8} \mathrm{lb}$. for friction is not even approximately correct, for it is cortain that resistance from the quevenuess of the rsils, \&c., is much greater at high than at low velooities. The idea that "the power of evaporation is direotly or nearly as the power of the blast," is cootradicted hereafter by Mr. Bidder's own figares. Besides, if this theory were true, no water at all would be evapornted when the engine was standing still, for then the blast is not in action.]

On the last experiment the train was reduced to 72 tons 19 cwt . gross, a little more than half the first load. The net speed realised was is niies per hour, and the quantity of water ovaporated was at aboat the rate of 190 feet per hour. This engine wras a long-tube engine; the tubes are 13 feet long, 15 inch cylinders, 22 inch stroke, 6 feet 6 inch wheels; the area of the fire-boz is 49.786 feet, and the heating surfuce of the tubes 738 ft . Then the letter from which I take this goes on,-""To prove the tempera. ture of the heat in the smoke box I suspended four pieces of metal, viz., one piece three parts tin and two parts lead, one piece one part tin and four parts leed, one piece lead, and one piece zinc, their melting points respectively being $884^{\circ}, 470^{\circ}, 500^{\circ}$, and 680°. These metals being suspended immediately above the top row of the tobes, about one inch from the tube plate. 1 foand at the ond of the journey that the threo first-mentioned metals had melted, bat the zinc did not melt in any of the three trips, proving the temperature of the heated air to be aboat $600^{\circ} .{ }^{\prime \prime}$ Now that shows that tho temperature of the stenm in the boiler being about 819°, and the air, when escaping from the tnbes, being about 600°, it is quite cloar that every part of those tabes must hare been avaitable in heatiog the water, and in the evaporation of steam ; and by a comparison, taking the difierent loads and comparing them with the experiments of the
goods engines, which are of a similar construction, with the same area 0 fire-box, and the same tube surface, you will find. as nearly as can be, that the ovaporating power is a function of veiocity, and also the fonction of the area of the cylinder. This clearly shows that the long boiler mot only increases the evaporating power, but increases the economy in the conversion of water into steam.
["This clearly shows" nothing of the kind. To got at anything like a trustworthy conclusion, the same experiment should have been made with a short-boiler engine, and the results compared. We are not told who made the experiments, or how they were made, and conseqnently do not know how far they deserve to be trasted. Our confidence, by the by, is not increased by reading that the fact the zioc did not melt proves "the temperature of the beated air to be about $600^{\circ \prime \prime}$: this makes well for Mr. Bidder's side of the question, bot all that can be legitimately concluded is, simply, taat the temperatare was noder 680°-it may have been 670°. The fact that the temperatore of the air was abont double that of the steam, shows that not nearly all the beat of the former was usefally ap. plied. To economise the whole of it, the hot air must continue to act on the steam till it can impart no more heat to it-that is, till the temperetare of both is the same. How can we tell, a priori, that if the oxperiment had been tried on a short engine, this result would not have been more nearly attained than with the long-boiler engine, especially if wo are to cooclude that "the evaporuting power is a function of velocity and also the function of the area of the cylinder," and does not depend on the amonnt of heating sorface. It is to be obwerved the words, "is a fanction of," are incorrectly used as synonomous with "t is proportional to.']
"In those experiments are you woll assured that there was no priming ? -Yes, especially in the goods engine; because, if you take that particular experiment to which il havo alloded, where she twok 385 tons gross up 16 foet a-mile; if you take the ares of the cylinders and see what quantity of steam mast huve paseed through them in passing over that gradieat, and see what was the volume of the steam at the requisite pressure to convey that train, you will Gind that the quantity of water is more than that which appears to have been consomed, which I attribate to the fact that they most have been using steam at rather a bigher pressure than ordinary in the boiler.
"How did you ascertain the amonot of evaporation; after the experiment was over, how did yon ancertain the quantity of water f -They take the gauge of the tender, and the gauge in the boiler, and then they have the superficial area of the boiler at the different heights, and the area of the tender. It is ascertained with very great exactness, and great facility."
[Here Mr. Bidder assames bis proposition in order to prove it. He takes it for granted that there would be no priming, in order to show that there was none. First, with respect to the means of ascertaining the amount of evaporation: his method simply shows the quantity of water got rid $\&$-not the amount converted into steam and osefully employed. The water miyht have passed away by leakage or priming," or the steam might have escaped by the safety valve. But he is assured these contingencies could not have occorred, for he calculated the amount of work done, and the quantity of steam required to do it. He is certainly the first person who bas been able to ascertain the resistance to a train with anything like the aecuracy necessary for a calculation of this eort, and has increased the simplicity, if not the accuracy, of his operations by taking it for granted that 700 tons on a certain gradient are equivalent to $\mathbf{3 8} \mathbf{0 4}$ a level. To find the quantity of water required to do the work, the recipe is to "take the area of the cylinders and see what quantity of steam passed through them," bot who but Mr. Bidder could tell a priori bow much that steam was dilated in coming from the boiler, and what was its precise effect when acting oxpansively-in other words, the exact oalore of ite mechanical action? Both problems are, considered separately, s intricate as to baffe all human ingenuity. The first, the resistance offered to the train depends on the wind, concussion at the joints of the raile, friction of the axles of the carriages, and other complicate mectianical actions, varying with every variation of velocity. The second, the mechanical effect of the steam it is equally impossible to predict. The relation of the power of the steam to the quantity of water ared depends on the tempereture and tension in the boiler and the temperatare and tension in she cylinder; the latter varying pot only al every stroke, but (whoo the stemes is used expansively) at almost every part of the stroke. It is therefore quite impossible to take the two problems separately; they must be cosaidered together, as De Pambour has considered them. We havo grite sutilient proof, howover, that Mr. Bidder's calculations were all wroas,

* De Pamboar shown thet of the whole quantity of water consumed, ores-foorth ims at the averate, witled by beling drawn into the cyllaters in a dquald state. So sumet sor there belay 20 priming 1
from his anomalons conclusion that more water was required than was actuelly expended! Ia accounting for this anomaly, he let us into a se-cref;-he confesses that he did not know the pressure in the boiler, which of course should have been an easential ingredieat in his calculation.]

A law seems to exist that the power of produciag steam ls as the velocity, that is, the number of blasts and the valume in the cylinder; that is, as loug as the fire-place will supply jon with combustion to that amonnt; but as you increase the blast the combustion goes on in that ratio; and evea with the Great Western experiments, and those taken with a short boiler, it is found almost invariably as the result, that 1 lb . of coke evaporates 7 lb . of water. With the long boiler we hardly ever get an effect of less than 8 lb . of water to 1 lb . of coke, and in some of these experiments it is as much as 10 lb . And wo get economy in another way. In a comparison of eagine power and of the consumption of coke, you may get a fullacy from not knowing to what extent there may be pilotage in one line or another. If an engine on one line has doable the amonat of engiae piloting which there is of another, her consumption goes into the general mileage; whereas the consomption of coke while ruaniag may be very much less. On the Northern and Eastern, when that line was first opened to Brosbourae, their engines only consumed 20 lb . of coke wbile runaing, and yet the daily raturns sbowed 36 lb ; that was from the quantity burat at the stations, Now a long-boiler engine is economical in that respect, because, no doubt, from the length of tubes, the quantity evaporated while standing and the coke consumed is very much less; in fact, an engine with 13 feat tubes burns only half the coke standiag that is consumed by an engine with 8 feet 6 tobes.
[In the first part of this paragraph the blest is sopposed to increase the evaporation, but to also increase the consumption of coke in the same ratio; so that though more coke is burned in a hour, the effect of each pound of coke is not increased. In other words, the blast is supposed not to increase the rcomomy in the use of the coke. Now, it has always hitherto been supponed that a strong current of air (and, therefore, of oxygen) rendered the combustion not only more rapid but more perfect also, and that where the supply of ozygen was insufficient, a great part of the fuel was wasted and passed aray oncousomed, or without developing its evaporative power. It is, therefore, concluded that the rapidity of the carrent of air (within certain limita, of conree,) increases the actual economy in the consumption of fuel. In the last sentence of the paragraph, the "quastity evaporated while standing" by a long-boiler engine is supposed to be less than by a short boiler engine; and yet the principal argament in favour of the long boilers has always been understood to be their increased amonnt of heating surface, which might be supposed to increase the quantity of water evaporated, whether the engive were standing or in motion.]
"Do jou think any good would result from the use of corrugated metal for fire-boxes $1-1$ do not think there would be any. They get apparently a larger surface; bat I think the effect upon that surface mast be weak. ened to the same extent as you bappen to extend the gauge. With a certain amonnt of combustible matter in a ponnd of coke, if you get the wbole of that out, which we do with a long-tube engine wore effectually than they do with a sborter one, from the fact that we get 8 lb . of water evaporated instead of 7 lb ., I do not see myself how you cad do more than exiract that matter and apply it usefolly; it does not matter whether it is in the fire-box or in the tabe."
[Mr. Bidder does not see any use in jpcreasing the sorface of the firebox, becance "you can do no more than extract the matter and apply it usefully." But, then, that is assoming that all the matter is applied usefully in the long-boiler engines; whereas, he himself bas proved that this is not the case, from the fact that the temperature in the tabes is twice that of the steam.]
There is a great difference of opinion respecting the atmospheric resistance; the fact has come before me from the experiments not oaly with the Jocomolive engines but on the atmospheric railwuy, where I see the power that bas been expended and the resolt, and I cannot account for the ex. peoditure but by etmospheric resistance, or some resistance which is a function of the velocity. For instance, I take a locomotive engine, No. 6, on the Northern and Eastern. I put behind that engine a train of 100 tons, she will travel with that train at the pace of $\mathbf{3 0}$ miles an hour, and the will evaporate at the rate of 80 feet per hour. I reduce those 100 tons to 20, that engine goes at 80 miles an hour and evaporates at the rate of 150 feet per hour; and I find, as nearly as can be, that the same quantity of water is converted into steam per mile with the light train as with the beavy train, showing that the pressure upon the piston is mearly the same, and that tho power has been absorbed by this great augneatation of resistance.
[The blunder mariced by itnlics rivals the celebrated notion etarted in the investigation of the Norfolk railway accident (ante page 51), that an engine can be forced uff the rails by the soddenly shuting off the stem. In the present case, Mr. Bidder evidently disregards the faet that the quantity of water drawn into the cylinder in a liquid state to much greater at high than at low velocities. Otherwise, how could he conclude
that, becance the same quantity of water was consumed during a alow as during a fast journey, the cyliader-pressuro was the same ia both cases? It is impossible to estimate the effective vaporisation by the water consomed; for even the mere circumstance of the boiler being fuller at one time than another will account for an esormons increase of priming. The incoasistency of this paragraph with that in which Mr. Bidder states that he is "well assured there was no priming" is also to be noted. There be was able to calculate the resistance to the traia with the utmont exactores; all language of uncertainty was avoided,-we were told to "see" the resistance of a train in passing over a certain gradient, as if this seciag were the easient process in the world. Here, however, the resistance is treated in quite a different manner-it is some very rague uncertain thing, which Mr. Bidder "cannot account for" but by supposing there is "some" force or another (he knows not whit) functional of the velocity. Here, too, the resistance can only be ascertained from the vaporisation. There It could be calculated independently of the vaporisation-aye, and with that precision that the amonat of priming could be deduced from the cel. culation. It is important to observe that at ordinary boiler pressures, steam oceopies from four to five hwadred times the space of the water from which it is produced. This shows how enormously the evaporation is exaggerated by neglecting the effect of priming.]

The following are extructs from Mr. Bidder's report on the results of the experiments tried with the broad and narrow gange engines :-
"Before calling your attention to the facts shown in these experiments, which cannot be infuenoed by any circumstances, and which, in my opinion, are alone worthy of your notice, I will repeat that the object proposed was to ascertain the truth (and that alone) of statements which had respectively been made by Mr. Gooch and myself, as to the comparative power and economy of engines now in operation on the broad and narrow gange lines, and more especially with respect to the importance of surface oblained by increasing the fire-box, or lengthening the tabes, and that any inference drawn from the results which shall bear on the merits of the two ganges will be foreign to the objects proposed, and false, as the circamstances of the experiments are not fonnd to obtain in practice. Supposing, however, that they were, and that an in increase of power were deemed desirable, I do not hesitate to asy that that which is at present found ample for all purposes might be doubled, or more than doubled, on either gauge.* I shall now proceed to examine the evaporating power of the engines, as well as the relative economy of evaporation and efficient application of the steam evaporated. It will be recollected that on the part of the broad gange, it was elleged (in reforence to the statement that on the narrow gange, not only economy but power was obtained by lengthening the boiler) that the area of the fire-box alone was the test of the power of the locomotive engine, and tbat 2 cubic feet of water per hour per superficial foot of fire-box have the capacity of evaporation of locomotive engines; and thas it was alleged, that the Great W entern engines could evaporato nearly 200 cubic feet per hour, while the narrow gauge engines could only convert into steam 100 cubic feet, the comparative fre-box sarfaces being as 97 feet to 60 feet. In order at once to test this principlo, let us examine the facts shown in the experiments. By reference to the particulars of the experiment with 50 tons with engine A, on December 31 at, 1845, between Darlington and York, a distance of $88 \frac{1}{1}$ miles, it will be found that the water evaporated is $20,520 \mathrm{lb}$., being at the rate of 232 lb . per mile. In the (op) journey the first mile, as well as the last 14, were passed over slowly; as also were the first quarter and last mile on the return trip, in all 3 it miles. In order, therefore, to get at the marimam average rate of evaporation on the trial, I take $20,250 \mathrm{lb}$., less 812 lb . (the water consumed in parsing over the above 81 miles, at the rate of 232 lb . per mile), $\mathbf{1 9 , 7 0 0}$ lb., the weight of water evaporated by the engine in passing over the remaining 86 miles, which was effected in 100 minotes 12 seconds, being at the rate of $11,150 \mathrm{lb}$., 178 cubic feet per hour. I will now compare ihis with the experiment most resembling it in regard to the evaporation tried on the broad gauge. I take the experiment with 00 toas on December 17th. The total water evaporated was $\mathbf{2 4 , 6 4 0} \mathrm{lb}$. on 106 miles, or 289 lb . per mile; deducting from this $1,044 \mathrm{lb}$. for water due to 41 miles passed over slowly, leaves $22,596 \mathrm{lb}$. of water evaporated in 119 minutes and 42 seconds, being at the rate of $11,820 \mathrm{lb}$., 189 cubic feet per hour, that is little more than the evaporation of the narrow gange engine. When, however, we compare the coke, we find in the case of the broad gange engine, that 7.8 lb . of water only were converted into steam by 1 lb . of coke, whilst the narrow gauge engine evaporated 9.6 lb ., being a difference in regard to economy of fuel of 28 per cent. in favour of the narrow gange engine."

* In evidence diven by Mr. Gouch, the average grows welpht of pasenger tralos on noone of the prinefpal raliway is given as follows:-

	Great Western Rallway.	Grand Junetlon Railway.	London and Birming bam Hailway.	Birmingham and Gloater Rallwas:	South Went. ern Rallway.
Average groes weight in tong	67	45	42	38	$3 *$

Fiom the conclnding rentence of this quotation, it is clear that Mr. B部der's only lest of the relative economy of the two engines is-not Which does the greatest quantity of work for a given quantity of cokebut, which gets rid of the greatest quantity of water for a given quantity of coke : and, accordingly, he has drawn up a tabular account of the experimenta, wherein, in the very cases in which the broad gange engine evidently did the most work with a poond of coke, he concludea that becanse it did its work with a small quantity of water, therefore the engine was comparatirely ineconomic! If the table were not actoally printed and pnblished, our readers might perhaps doubt whether we had fairly represeated its contents. The following, however, is an exact copy :-

The finh column gives, according to Mr. Bidder's views, the figures by which the economy of the engines is to be tented. Let ns take the first experiment in each case. In the narrow gauge experiment, No. 1 , the train was 80 tons, and the consomption of coke 31.2 lb . per mile: in the broad gauge experiment the train was 80 tons, and the consumption of coke not 2 1 lb . more per mile. It is obvions that the $2 \frac{1}{\mathbf{l}} \mathrm{lb}$. will aot alone account for the enormous difference between the two loads-namely 30 tons. The ouly conclasion which any rational unprejudiced man conld draw would be that more work wate got out of the coke in the one case than in the other. And this conclusion would be greatly coofirmed by observing what Mr. Bidder omits mentionlng, that the broud gange train moved fowrteen miles an howr faster than the narrow gange train. And yet, becanse the water evaporated was less in one case than the other, we are provided with a fith column of "water evaporated per lb. of coke," from which it is gravely inferred that the narrow gauge trip was performed the most economically! We must protest against this wholesale method of jumping at conclosions which shows a lamentable confusion of ideas respecting the mechanical action of steam

We said that Mr. Bidder's own fgures contradicted his hypothesis that "the quantum of evaporation is a fanction of [i. c. is proportional to] the number of blasts per minote." Taking Nos. 1 and 3 of the broad gange trips, which were respectively the slowest and fastest trips, the quantity of water in the first case was the greatest (viz., 245 lb .) and in the second the least (via., 232 lb .). We get precisely the same result with the fastest and slowest of the narrow gange journeys: mo that if Mr. Bidder's table prove any relation of the evaporation to the blast at all, the conclusion must be the very reverse of his theory. It has been ascertained that if an engine be deprived of its blast pipe, the rate of evaporation will be reduced to about onerfin; but from the few experiments institated under this bead, it wonld appear that nader ordioary circumatances, when the blast in in action, its effect pa the rate of ovaporation varies as the fourth root of the relocity.

Before conclading theme observations, we ought to offor some remarks on the particuiar circumstances under which the narrow gange experiments were made. The following extracts from Mr. Gooch's report are not a littie surprising "The engine aras on eafh occasion placed at Darlington over a powerrful dationary blath for the purpace of getting Dery hot soater in the tender and a bright fire to start with." By theso means, the water in the tender was raised to 180°. In the experiments with goods trains, "the engine was placed ocer the blast, and remained there an howr and a half. 2'he tender contuining warm water was taken from another engine and attached to the regular tender, and men were provided to bucket the zater from one tender to another as the train was moting." Mr. Gooch plajutively obsertes that this contrivance would have been of great pso in the broad genge experiments.

The love of philosophical accuracy displayed by the condnctors of the asrrow geoge experiments precludes the supposition that they mactioned these derices, which must therefore be attributed to the subordjaste officers of the rallway. But, at all ovents, they enficiently account for the cir cometance that the narrow gange engines got rid of more water for each pound of coke (although they generally did lese work for such pound of coke) than the brond gange engiaes. It is, of conrse, more eang in the
dead of winter to boil water previously raised to a tempentore of 180° than water originally at the temperalure of the atmonphere.

We most gaurd ourselver against the suppotition that the experiments prove decislvely the superiority of the broad gauge engines. In fact, they prove nolhing. They were so few and so improperly conducted that no trustworthy couclusion can be derived from them. They ought to have been repeated severul times over, under the superintendence of ditinterested persons, whose object was-not to got up a series of showy results-but to exhibit, as nearly as possible, the ordinary working of either kind of engines. However, the observations here made will have, at least, one good effect: they will anable the reader to appreciate the philowophy given in evidence before public commissions oa engineering questions, and to estimato the ralue of the experiments anthoritatively sanctioned.

ON MASONRY.

(From the Ecclesiologiat.)

The writer of thls paper remembers an incident which pots in a rather striking light a very pazeling question about masonry, that must have often occurred to some or other of our readers. He had just been shown sume of the fanous quarries near Caen, by one of the proprictors; and huviag come out near a little Norman church, claimed bis conductor's admiration for the effect of solid strength and lastingness which Romanesque asblar, particularly when of Caen stone with the hoars grey of seven centaries upon it, alweys presents. The answer was not what he expected. Ioatead of joining in his praises, his guide began tu lament that the apcieois could not do better, because they could not draw stones of any considerable size from the quarries. They had made good use, he allowed, of the small broken bits of stone they could dig out : but our mechanical advan. tages enabled us, with larger blooks, to adopt a more perfect kind of ma. sonry. Now it is difficult to answer this. There is no doubt that eome of the finest buildings of antiquity are constructed of stones of immense size. Tho Pantheon may be quoted for this; and evory one will remember the huge blocks that must have been quarried for atonolith columos. The general decline of art thows itself in this respect perhaps as well as others. There is a great gap between auch a building as the Porta Nigra of Treves, and the best of early Romanesque masonry. Art in all it branches was, it seems, almost to die: in order perhaps that Christian Art might be less a development than a new creation. The Pharos in Dover castle is a fine specimen of Roman oxcellence: its builders could not get hewn stone; hut they so bound their fint rubble with bands of brick, that the tower stands like a rock. Close by ls the desecrated church with a good deal of undoubled British masonry in its shell. Here too, there is "Aoman brick" in the quoins, \&c.; but the general inferiority of the masonry to the real Roman work is very striking. Then, ngain, the fiue Kumanesque ashlar in the chapel of the Norman keep iu the same fortress, is a specimen of the reviving art of masonry; but it is in kind like that of the little parish church near the Caen quarries. \dagger The stonea are all small, though beautifolly and effectively used: there is 00 single stone to trapi you to measure its length and width, and to exclaim at its bulk: which seems to be the general etfect prodoced oo people's minds by modern angsonry. As a matter of fact, it must, we suppose, be granted, that the architects of the Romanesque and Early-Pointed atyles could not procare large stones: they were compelled to use even line building atone, like that (which they so highly ralued) of Normandy, in small masees, as they could inartificially ohtain it from the quarries. So late as 1841 there wes not a single crane at Caen, by which to ship the stone, had it been extracted in very large blocks,-a fact that may assiat os to comprehend the great mechanical disadvantages under which the medisval architects laboured. But though their stone was in such small pieces, how beantifully they used it! Of course, there is a great deal of ancient work that is very bad; although what has atood for six or seven centuries, may seem fairly entitled to entire exemption from any blame. But as a general rule, early masoury-t least after the later Romanesque had auperseded the Argho Saxon kind-is surprisingly excellent : not unly for solidity, bat for keeping and harmong. It suits the style. The eye is catisfied entirely, without knowing or inquiring why. You admire the design, and feel almost moconeciously that it is worthily erobodied in its nuterial exhibition. Yon are oeither induced to exumine and commend the ingenuity with which the difficulties of a bad building stone are overcome, nor are you called oa to join in the volgar admiration of "such big blocks." Io a word, you forget such a mere detail in the whole: bot when you can descend from the whole into particulars, you fiod them all that cun be wished.

There is so much that might be said about masoory, that we are anwilling to open the subject from a coneciousness of oor own igourance. No

[^45]question more deserres stady, and few are less attended to. The Cambridge Camden Society very early called attention in its church-schemes to the nature of masonry and joinling, but with small results. The nature of baildiag stones, and the peculiar treatment of each, particularly as regards monidinga,-in granite for example, where from the hardness of the stone they ara of necessity saperficial, and in Kentish rag, where they are broad and coarse because the stone will scarcely take an edge,-are points for forther investigation. At present, we propose only to make some general remarks, chiefly on the treatment of Kentish rag, whilh seem called for becanue this stone is coming happily into more frequent use in Loodon.

In the beginaing of the present revival of Church Architectare, the masoury, where brick was not used, was quite of the modern kind. Squared stones, as large as could be easily prosured, were laid very neatly and closely, with as much regularity as was possiblo. This kind of maeonry is by itself enough to spoil the effect of a Pointed building; as will be evident to any one comparing the new Pointed work at King's College, Cambridge, with the masonry of the chapel on the opposite side of the quadrangle. The same defect goes through all the modern Pointed work in Cambrige. It is curions to notice how truly small stones seem to be appropriate to the requisites of Pointed architecture. An arch is the Ekilful adjustment of stones not long enough tu go across, so as to span over a space and aupport a weight. Hence a metallic development of architecture would probably reject the arch, becauce a strong metal bar may be of any leogth, and would be sufficiently strong for the top of almost any aperture. Whence it seems to be a gross unreality to cut a whole window-head, with arch and tracery, out of one block of stode large enough to cover the whole wiodow opening. Yet this mockery has been resorted to in the New Honses of Parliament,-to mention a rather conspicuous instance. But without any reference to principles, few will donbt that, for whatever reason, the small masoury of ancient work is far more effective than the finest building on the modern plan with huge stones laid in regular courses. Some have thought that this difference arises from the fact that the smallness of parts gives increased scale to the whole; others, that from the regularity of courses in modern masoory there comes a too great preponderance of the horixontal lines in the boilding. But this question we canoot oow discuss. Suffice it to say, that it is now becoming generally acknowledged that there is a great difference between Pointed and Classical masonry, and that the smaller size of the stones and the irregularity in laying them are main cbaracteristics of the former style. But of the attempts to copy nocient masonry there are fow which are dot great failures. It whs easily seen that the primaess of modern quoining was not ooly tame and dull but atterly onlike old work; but it was not found so easy to remedy the fault. Builders began to try irregolar quoining, and we soon saw prodigies of irregularity. On one side of the eogle there would be three stones of different lengths rannlag into the wall; then two running into it on the other side ; then perhaps one, and again three, on $n 0$ plan or principle whatever. The quoins became dis. treasingly jagged; and after being pained one wonders why it need be so jagged. A more close observation of ancient work would enable us to detect some principle of order in its seeming irregularity. We believe that the very natoral and reasonable alternation of long and short stones,which is seen in its primitive simplicity in Auglo-Saxon masonry, of which judeed it is considered a great characteristic,-was always retained, though not in so harsh and cramped a form. The meson took long and short stones alternately, bot was not carefal to make them all tail into the wall of the same length, nor even to keep them of the same thickness.

Perhaps this is one great reason why brick quoins to a raodom wall are so particularly ugly, as brick can scarcely be used for quoins unless with the strictest ualformity.
So mach for quoina. With respect to walling, the days are happily fast going when people were not satisfied without at least a scored stucco sub. sutote for large ashlar. Architects are beginaing to ventore opon using local stooen, rag and rabble. This is a very great change for the better in all respecte. ; and it is proportionately a matter of regret that these materials should not be righty treated. For oxample, that usefol stove, Kentish rag, has bees already several times used in London; at at St. Michsel's Chester-square, St. John, Charlote street, and Christ Church, Broadway. No one can doubt that this is a great gain over brick or stacco: this ragatope beiag both very durable and of a good colonr. It would also be an economical material if need as the ancient architects used it; but in these charebes it is ased in regular square blocks, producing no better offect that that of bricks of a new colour, and being very coatly to boot. For no stone is less adapted for sqnaring than this, owing to its hardoess and its decided grain. Any one who would visit the quarries near Maidstone and watch the prowess of squaring would be astonished at the waste. The amall pile of squared material contrasts most strikingly with the hage heap of refuse stone, which, being rejected as anfit for building, is ased merely for roded-mending, for which parpose is is transported to great distances. And benides this waste, a good deal of labour has often been spent upon refuse stones, which, when nearly squared, have been shattered by some onlucky crosegrajned blow. Bus to what parpose is this expensive uquaring in a stone which soems ooly adapted for cleavage? In effect, a radom wall, properly treated, is far better than one of squared blocka. All Saints, Maidstone, is built, we are aware, of squared rag; but it is uquared in thinver lagers than is a0w usual. 8t. Poter and St. Paul, Lingteld, it an axample of the extremely bed appearance of very large
asd unwieldy masonry. As for the expensiveness of this squaring process, the reader may judge when he is told that the tone may be drawn from the quarries in a natural way for half-m-crown a ton: the squared stone conts eight shillings and sixpence a ton. It really becomes a duty of chorch-builders to take care that their architects do not waste so much money in a process which is at best to unsuccessful and unsalisfuctury.

There have beed, however, several attempis, particalarly in the neighbourhood of Maidstone, to use Kentish rag properly, that is, as irregular (or random) walling. But bere again we bave to find the same fault as with mont modern attempts at irregular quoining. The irregularity is overstrained. There is not one stone at rest; not one seems to have a bed. They lie at all angles: some even stand on their points, merely propped by the contignous stones. The masonry looks more like an intricate puzzle than angthing else. Instead of this, in ancient random walling we may trace this principle,-always to lay every stone in its beat bed, lifting up ay part of it which may want thickening by means of thinner pieces. Regular conrses are not studiously attempled ; but any stone that comes to hand is laid in, provided it has a good plain bed.
These brief remarks must suffice, upon the use of Kentish rag more particularly, in quuining and walling. Many of them also apply however to other stodes ; for example, to the beautifal Bramley-Fall stone of Yorkshire, which is squared in the new church of St. Saviour, Leeds, for the walling as well as for the dreasiogs.

As a general role then we would give this advice to church-builders :use the material of which the neighbouring churches are mostly built, and in the way in which they are built. If wo stody carefully the method of masoary employed formerly, we shall avoid both needless expense and eccentricity. For example, if fint is the material moat easily procured, let us use fiot; but only as it was used in old churches. We will not now enter on the nature of Gint masonry, but would contrast only the absurd modern plan of using black morthr, from n fear of the wide juints in white, with the old wey of "garretting" diot-work, that is, of joserting small tint-shivers in the momar of the joints. But we purposely keep ourselves more particularly to the use of rag-stone; and upon this we may, in conclosion, remark that, without attemption to solve the general question started at the beginning of this paper, as to the supposed unreality of using small stones for masonry when we can get large ones, we tway surely lay down that it is wrong and absurd to spend much money in aquaring atones, the nature of which does not eatily gield to the process, and which bave lasted so well and with such good effect as osed io random work by ancient builders. What we want for church-work is that the material ahould he good and substantial, and the best that we can afford. We do not object even to brick in a bad stone district, and where the fuods are small. Ooly let the brick be hooestly und intelligenily used. (\%o the other hand we see no objection to importing Caen stone for rich and stately chnrches in any district; though perhaps we shall rather rejoice than lament that the architects of Carlisle uud Chester used the perishing rod sandstone of their neighbourhood. For nothing ran be more fitting than that we should press into the service of God whatever suitable materials His wonderful Creation may offer us. The very difference of material is a sign of the unity of the purpose to which they are consecrated, unaiely, His honour in His sanctuary. We would use fint, granite, sundstoar, and ragstone, each in its proper district, in the spirit of the bymo, "Benedicat terra Dominum: Benedicite montes et corles Domino.".
*All Solnty, Maidatone, la built altogether in a very costly atyle, and han no pretemion to random walling: the quofss and jambs are all in tha sames squared rag. The new churchee whate criticising have their dretaing in Caen slone, and the equared rat in ped an if for rendom work. Thle la a great abonidity. One ought alwaya to quoln with the atroggent stone: Ih, therefore, one cap aford to equare so strong a tone as rag for the malling, it ought to be also uned for the quolos. To use a colt itove like Ceen
for quolas to wrilling of a stront ragatone la preposterous.

BRITISH ASSOCIATION.

Szasion 16ia, held at Southamplon, September, 1846.

Addizes of the Pezbident.

gir R. MURCHISON, arter complimenting the late Presideat for ha diaclagrisbed bolides and eficiens nervices, addreased the apeociation an followe :-
Ladles and Gentlomen, - Aner 16 yeare of micration to rastous cities and tomay io the Uaited Eingdom, you are for the frat tume macmbied in tha South-Eatiers dintitcte of England, tit the colleitation of the authorities and inbabitants of 8outhamptorn. Eanliy ecceasble on all sldes to tha cultyrators of aclence, thls beautiful and sourishing mea-port It situated in a diatrict so rkhly adorned by nature, 00 fall of ubjecta for ectentibe contemplation, that, sapported as we ere by dew friends in Eigiland, and by old Ahends from the farthest region of Europe, wh ghall ludeed be manlog tu ournelres, if our proceed Jugs on tits occasion should mot suitala the high character which the Brifuh Aapuctetion
has hitherto maintaind.
For my own part, though deaply conseions of my tuferiorty to my eminent predecensor in the higher braches of sclepes, I gutl venture to hope that the devotion I have mand fested to this Assoctation from Its origin to the present day, may be viewed hy you as a carantee for the sealoust execotion of my datien. Permit me then, centlemen, to offer yon my wermest acknowtedrmeots for haviog placed site in this honournble poettion: and to atedare you, that I value the approbation whleh it implies as the Migheat hoocor which coald hare been betcowed on mopan honour the more eateemed from the belng conferred in a county endeared to ma by fanily connexlons, and in whion I rejolee to have made my first earay an a geplogint.
The origin, procreas and ohjects of thly our "Parliament of Science" have been so

 made, I shall tat thlit discourge dwell more partulariy oo the recena progrese and present
 been moat connected, whitut ahal aloo hacidentaly merert
which are likely to oceupy our attentlot duripg this meetiog.
No sooner, grentiemen, had this amocintion fully entablished its charneter as a kegitmace representative of the ncience of the United Klaydom, and by the reporta which it had published, the researehes which it had inalituted, and the other subetentian serviceat Which it bad readered to selence, had wecured pibile reapect, shan it proceeded towarda the fulalment of the last of the great otjects which a Brewater and a Hareourt contermplated at its fourdation, by invitu af the attention of the government to important pacional potats of selentific laterent. At the fourth moetag held in Edinburth, the Aseoriation memoraised the government to increase the forsen of the Ondnatore Geographlical Survey by that adminable establishment to the noath of Eariand, Whict and Irelind. From hat to the present it hes not scrupled to cali tbe notlce of the Minincers of the day to every great scleptide menare whleh wemed, ffter due conaliseration, likely to promote the is. terestar or ralee the character of the Brituth pation. Guided int the choice of these appli.
 preseatation of any requeat which did not reat on a rational bayd, and our rulers, far wha when, atter paying large sums from our own funda for the redaction of targe masien of astronomical observalions, we reprasented to the government the neenelty of eanbling the Astronumer Moynl to perform the same wort on the obeervitione of his predecestorn, which had sccomulated in the archives of Oreenwich. our appeal was anwered by arrangements for completing to inpportant a publle object at the pablic expence. Thit it
 knowledge, to be galned by the exploratlon of the Suvth Polar reglons, that we gare the iluence of the Royal Boclety and tis nobis Prealdent, obtuined the full assent of the goo verament, and led to reatite which, through the merite of Sir James Ross and his companions, have shed a hripht lustre on our country, by coploos additions to geography and pantural history, and by affording pumarous data for the developmeat of the lowis that resulate the maguetimon of the carth.
The mention of "Terreatrial Mappeltsm" hringe with it a crowd of recollections creditsble to the British Association from the perspicuous manner In which every portion of freth mowiedice on this important aubject bas been stored ap in our volumes, with a view to geperaliandion, by Colonel Sabine and others ; whilist a wide feld for tite difiualon and combination bis beep seeared hy the consrems held ot our Lat meeting, at which some of the most diatlaguiahed foretgn and Brition magnetietans were amembled under the preatdency of Bir John Berschell. It Is indeed mont astafactory for at to know, that not oniy did all the recommendatlons of the Aceociation on thle salject whleh were pres tented to oar goveroment mept whith mont favourable reception, but that in consequesce of the representations made by Ber Majesty's Secretary of Stete for Yoreign Affalre to the publlc suthortties of other countries which had prefiously taken part in the spatem
 have notliged their Iotention of continulng the
In pasing by other inutances in which publle liberality lias beep directed to chanpelis of knowledge which required opeuing out, I must not omit to notice the grant abtalned from our graclons Sovereign, of the Royal Observatory at Kew, which, previousty dtsmantled of the astronemicali instruments, has been converted by us into patition for obervations purely phyticel, and especially for those detalif of atimonpheric phemomean which arw so minute and vumprora, and require auch unremitting aitention, that they Imperiously call for separate entablishmeati. In realiaing this principle, we can now refer British and forelgn phllosophers to the observator of the Brithat Astioctation at Kew, Where I have the authority of mont adequate judges for atyog they will had that a great amount of electrical and meteorological observaliop has beed made, and a arsiematic inquiry into the intricate subject or atmophone, to which no bigher pralite can be iven than that it has, in fact, furvished the modet of the procenses eonducted at the Royal Obserratory at Grennwich. Thbs establithment to bealdea so unafal through thu faclitien which it ofers for reaearches into the working of ealf-regiatering invinumente which ere there constructed, that I earnestiy bope is may be susinined me heretofore by anpual frants from our funde, particulariy as it is eccomplishing conalderable reatis at very small cost.

Tramsactions of Vol. 1845.-Physical Scisace.

Oor rolume for the lant pear contalas eeveral communceations on phytical rubjecte from enipent forefgo cultivators of eclence, whon we have the pleegure of rewhoding anongst our corrapondiug members, and whose commonications, according to the rage of the Amocialion, anve been printed entire amongat the reporta. In a discagelon of the peculiarities by which the great comet of 1848 was diatinguished, Dr. Von Bogualamsin of Breainu has taten the accanion to announce the probability, reating on caicelations which
nill be pubilahed in Schumacher's "Astronomiache Nathrichten." of the identity of this comet publibhed in schumacher'i "Astronomische Nathichten, of the identity of this with the one described by Aristotie, which appeared in the Fear 87 before out ofs; ahould hie calculations be considered to establish thla fact, Dr. Yon Bogaplawisl propoees that the comat should bereafter be ditingiahed by the nime of "Arintotie"s comete" Thit cummunicstion coacainasiso some highly ingeniousand important
Dr. Paul Erman of Berlio, fatber of the adventurow geographical explortr and magnetlician. Who was one of the active membera of the mignetic congrest at Cambridge, bat commanicated through his son tome interesting exppriments on the " electro.dynamic effects of the friction of conducting aubatapces," and has pointed out the difierences beween thear and normal thermo. electric efects. Baron Von Sentenbert (who in an ad. mirable example of how much may be done by allberal zeal for selence combined with an Independent fortane) has pablished an sccount of the mucceas with which melf-regtetering
meteorological inntraments have bee established at his obervatory at seutenberg, es meteorological inntraments have ber a establit
well as at the netlotial obsivetory at Pregue.
Of our own membert, Mr. Blit bas contributed a cecond report on "Atmopherie Wavel." in continuation of the investigation which orgianted in the discuasion by 8 ir John Herschell, of the meteorological observalions which, as bis sugsention, were mede In varions partit of the globe, at the periods of the equlnotes and solfticet, commencing with the yeat 1813 .
In a communicstion to the meetiof of the Aseociation at Yort, Colonel Sablae traced Fith great clearreas (from the bourly observatlons at Toronto) the efrect of the aingle diarmal and aingle annual "Progrtasions of Temperature"; in producing on the mixed vapours and gesoons elements of the atmosphere, the well-known progreisions of daily
and yearty baroonetrical pretsure. To the conclusions which he then presented, and whict apply, perhapt semeralis, to oltnations not greatly elevaced in the interior of large traets of land, the same suthor has edded, in the lat rolume. s valuable explanation of tbe more complleated phenomena which bappen at potats where hand and aea breezes,
thowing with retalarty, modily pertodically and locally the conatitation and preasure of Aowing with refolartiy, modily periodically and locally the conatitation and preasure of
the atmot phere. Taking tor thin data she two-hourly obeervilions executed at the Obthe atmo phere. Taktig for thin dala she two-houriy observations execnted at the Ob-
servatory of Bombay by Dr. Buatat, Colonet Babine hat eucceeded In demonatrating for thin locality "a double dally progresalon of gaseous prosinge, "In eecordan on with the fow and re.Aow of the sir from fortaces of land eod weter which are usequally aftected Iry beat. And thas the dinnal vardadon of the dully prespare at a polat within the troples, and on the margin of the sers, is explaloed by the pame reasoning which was sugreited by fects observed In the Interior of the vast copupent of North Amerien.
 researchea of the Britinh Associatlon, there is one which calla for marked notice at thit
Une, in the proposal of Mr. Robert Buphenson womry an iron tube or mopended

 With the great progreat recently mede in the trowledse of the girength of matering, and
 the Aptociation has tatensid in till tuing a contpleaous ghare, by the derodion of

 mining with sceuracy the power to be provided for attalalng the "Eigh Veloctites" of inty and aixty miles an hour; and It way found and admitted by the firm engneers, ahat atas very bet date for thly purpose, and indead the only axperlmenta of any pracical wahe, were those which had been prowided for tome yeara ago by a Committee of the Britich Amociatlon, and publithed in our Transections. The Institation of Civil Enginere thot geve tentionony to the practical value of oar resewrehes by adoptang thetr ramith,

However imparfeet my knowledge of such mabjectis miny be, I muti aloo motioe that the lapt volume of our Boports contalas two contributlona to exparimental phllowophy, in Which aubjects of the deepest theoratical and practical hitarrst bave b
That some subatance of a pecchiar Hind every where ealfor, or fo formed in the atono. ophere by "Electical Agency," both natural and artibial, had loag bets serpected, enpecialy irom the pernishacy of the odour develaped by wich abocy, and in tranglerof the muthor of a new practical discovery, is, wowever, the first phllomopher who andertook to Investignte the nature of that subetance; and, thoogh the Inveapigetion if nof yot complete, he hes been enab refined subject of remearch
A request from the Amociation to Profencor Bitmen, of Marbort, and oar comntryman, Dr. Lyon Playfalr, coupled with a contribution of imall amount lowarde the expances in Iron furnaces," whleh in of the produced a raport in On condionos eod procmete of important of our manufhetures, and posaemses, it the eame time, a very high interent to cbemicul sctence in some of the fiews which is devalopa. On the one hand, it anhibits at eatirely new theory of the reduction, by cyanogon gateat the chlef ageat, of from from the ore; on the other, tt ahow that, in addislon to a valt saviog of fun, abotat tro curt of mal-mmoniac may daily be collected at the andite etabliabment of Alfreton, where the expertmentic were made; thus leadidg us to Inter that in the fron iurnaces of Brivaly there may be ob alned from vapong which now pasaes away, an esormong quandty of this valuable oubarance, which woald materially plessen the dependermo of quar afticat turists on fortign guano. It Lt, indeed, mont gracifylng to obterre, that to parmaing this Inquiry inte the gaseous contents of a blasing furnace of great helght, our aseociatet inced out, foot by foot, the most recondite chemical processes, and described the thery productas Whin the same accurtey in H thelr recearches had been made on the table of a iaboratiory. Woighed howrover only in the males of absolnte and immedinte millity, the remariatife reanits of thage arliful and elaborate experiments dwe them a character of national tis-
portance, end justly entlite the anthors and the body which has alded them to the puthe portance.

Natural History.

Atter this glance at the mbjects of purely physical acience treated of lo the late rohare of our Transactlons, let os now consider the domalns of betural hiatory; and as ous of the cultivators of a setence which hat derived ift maln eapport and most of tia nev and enlarged flewif from pataralinta, let me exprete the obligaton which reologists ary ageder to this Aspoctation, for having alded so efrectively in bringing forth the soalogictil as wearches of Owen, Agasals, and Edwand Porbet. These three djetingulahed mesh hin hecaseives announced, that in defiuli of its countenmoce and aseletance, they worid bot Agrandertakes, and pever coajd have completed, some of thetr mast jomportant isaquina Agsatr, for example, bad not otherwive the meane of compariog the lebtbyolltes af the not have applied his profound knowledge of comparative anatemy to Brictah fown matians; and \&dwurd forbes might never have been the erplorer of the depthe of the Bgean, nor have revelied many hitberto unknown lewt of aubmarioe lfe, ff his whe aod auggestlons had not met with the warm support of this body, and been aupported by ite atrongent recommendations to the neval suthoritien.
These allumions to nataralists, whose works have afforded the fiment cupportan tomlogy, might lead me to dliate at length on the recent progroan of this ecience, but at the Lubject has been enplously trented at asceanjve anniversarien of the Geoloptcal Soplety of thet body, who now presides over our Geologleal bection, I shalt reptrein wy "t eapris de corp:" whilat I advert to mome of the prominent edvances which geologhats have made. Whem our ansociate Conybeare reported to ne, at our eecood merting on she metmal atat and ulterior prospecta of what he wall sermed the "archanolony of the glober" be dealt With juatlce on the unmerous researchea in difereat countriea which had clearly eatebHohed the history of a descent, as It rrere, into the boweis of the earth-which led as, in a word, downwards thiengh thooe newrer depoals that connect bigh andqualty uith our hownent, the perspective wha dary and doabtid-
"Rea allt tirll et caligine meran."
Now, however, we have diopersed this gloom, and by researchen frit enoried oot to a do-

 of the overlytng or more receutly formed depoolts. After tolling mang yeare in thin defing, and we have reached the very teneste of animal Me apon the gobe, and thate mo furcher in the great infertorm mase of whlch no vertebrated andmal hen or Lower sillartan group in the great infenor mas the countiess profosion of the lower orders of marine antmatis entombed in it however chit may be, it is certiln that to the lave fev reare all combed in it gat
 France has been eccurately clasifizd and thostrated by the spiendid map of Elie de Beate. mont and Dufreaoy; and whilst, by the laboars of Detheyet and ofhers, its tiritary bese

 monorraph of M. Ngst. Germany, led on by Vom Boch, has oleow that she cen aom ent makerially streagthen the soological and botanlcal froondworkis of the ectence, tas the been brought eo near to eminent in layint thooe mineralogical fovodiationa which bare bect brought so near to perfection by the lobours of meverl living men. So ratavotis in
 the oujects of thils meting, I moger be permitied to atate that the eminent botanict fong pert, whove works, ta comblantion with thoe of Adolphe Broagalert in Yraver hat
 thal 8ectlon, the resulte of tha latast loquirite into the formation of the coal of Sirite-

 ceat been premoted to as in tes frue geatral geolicgienl faclea, through the labours of
 ably dereloped the atructors of thefr reppective 8eales, that our countrmen Lyen has laformed ma, that the excellent map which accompanlet bls wark upon North Ampice to plaply the troppiag together of ditia prepered

If theo the astronomer has, to a vast ezuent, expounded the mechanism of thr hervens If intely, through the great tolescope of our ansoctate the Earl of Roase, he has assigred a firlty and order to bodies which were previously vewed as mare zebulef floutlog in space and hat aloo inferred that the gurtece-carition in our meareat neighbour of the planetsiy -ritem are aaslogous to the voleanlc apertures and depresetons of the earth; the geolo fish, contributing date of enotber order to the great atorehouse of natirral knowledgt, hat detenained, by ibsolute and tangible proots, the prectae manner in which our planet has owen succetsively eaveloped in divere cerements, each teeming fith pecullar forms of datipet life, and hes marted the revolations which have interfered with these succeavive creationg, from the malievt dawn of liring things to the limita of the historic aera. In abort, the famdamental ateps gudned in geology, since the early dajt of the Britioh Aseo chaton, are mo remarkable and so numerous, thet the dme hat now come lor a ecose report upon the progresp of thin elence, which mat I trust be prepared for an approach log, if not for the gext meeting.

Intimately connected with thoee broad views of the progroes of poology la the appearance of the first volume of a national work by 81 r Henry De bit Beche and his associates In the ${ }^{\omega}$ Geological Sarrey of Great Britaln." Pollowing, as it does, upon the fasue of mamerome detalled coloured mape and section, which for beanty of execution and exach peat of detall art anrivalted, I moald speciaily direct your attention to thls new volume e affordiag the clearett eridence that geology is now strictiy hrought within the pale of the Aved actnges. In tit are fornd sraphic deteripdons of the strats in the couth-west of Borgand and South Wales, whone breadth and leagth are accurately meagurad, whone miteral changte art chemically analyaed, and whoee Imbedded remains are compared and datermined by competent palmontologdata. The Very tatistlcs of the acience are thus Isd apen, theary is mede rigouronaly to depead on f

When we know how indmately the Director-Genernl of thls murviy and his amoclates hw been connceted with the meeting? of the British Aspociation, and how they hava Irvely diacosiod with ut many parts of their researches-when we recolloct thet the seo

 -ere from this asoclation to the 8 gean, is the pateontologlat of this marrey; and again When we rettech, that if this anectation had bot repalred to Gieagow, and there discov. ered the merits of the surver of the Itle of Apran by Mr. Ramsay, that young geolodet nould bever have becone s velonble contributor to the rolume under conaideration-1t is obvous from these statements alone, that the anaund fats of our body to different part of the emplry, by tringing together kindred epirits, and in teacion the ontoral eapecity of
 Whlist conddining these laboert of the governmeat seologlats, I chall now specially epent of thove of Profemer B. Forben in the teme volume, becmupe he here mapere him gelf doably welcoms, by bringing to as as it mere apon the apot the Hoing apeciment of mbmarine creataret, which through the prateworthy enthonian of Mr. ScApdrew, on of our mombers, who fited out a lerge yacht for patural-hlatory revearches, have been dredred up this swmmer by themennturallata from the wouthera colett, betwera Land' End and southamplon. As a favourite yechsins port lize Southampton may, it is hoped afford tmitators, I polnt out with pleature the liberal example of Mr. Mcandrew, who bot proftentog to detcribe the speciment he colleets, hat on thls, as on former occelone placed them to the hands of the members beat qualited to do them justice, end to thas a perbetrindal promoter of ectence.

The memolr of Edward Forben in the Government Geological Sarrey is in trath, an exteration of his views respeetlag the cmises of the present dietribution of planta and entomals in the Brideh Itles, Irst cotide known st the lagt mepting of the Britioh Aseocis. thon. As this anthor has not only ohown the applicmtion of thos ldear to the reperches ton. Ahe Britah Geotogical Surver, but aleo to the distribation of animals and plants over the whole etarth, it is evident that theae vewn, in great part original, will introduce a aew elem of inquiries into anturat hietory, which will Inkit on more closely than ever to gee

 Anong the aem points which it contulat, I will now only mention thet it rery ingeninulsty (and I think moot eatdactorly) explalne the orfitn of the pecullar features of the botany (and Briming the theory of the orfing of Alpine Florat disterbuted far apart-the pecullar. thy of the soolony of ireland as compared with that of England - the prusence of the

 Abetribetion of the grets Mediterranean Foga, mod, Lastiy, It appllees the knowiedge we

Ambd the mamerons mofects for rethection which the perasal of this memolr occtions, Imast now retoict mypelf to swo briof comments. Nrit, to exprese my bellef that oven Eumbeds bimert, wo has wrtten so much and eo adroiraly oa alplan Fioras, mil bloct from the pech of botaichat geographers. Secondiy, haring myenf for some yeart bloct from the pech of botanical geographeft. secondiy, haring myelf for some yeart
 been moder the see durtag the digtibution of erretle bloclas, gravel, end boulders, I care gop but coosder it a strong confirmation of that opinion when I find so sound a netural nos but consider it a stroct conarmation of that opinion when 1 ind so sound a nakura. cernion the mifration of piante to isolated cemtres, asd by as sudions examination and
 mifinke not, my hiood Mr. Lyell will find in both the above polnte, atront oridances in amport of his imgendors climatical theoriat Becent an tbe blocke and bouldert to which I heve slladed, may enem to be, sber were homever secomulated under a slacial Ben, Whope bothom wha Arist rained to prodnce that compexion betweed tho Contlaent and BH. cala, by which the had antmale migrated from their parant East to our wentern clinen it tha folation lo each of thene of thow torrestifal races which had been propagoled ta it
 cos the artincs mamarals of Anstrallia bermanated, and atill more ln detailed reference to our lalasds is hif recently published work "On the Extlact Pomall Britah Mammelia"~ a work which ho bas etated la his dedlcation ortginated at the cell of the Britiah Acsocis then Profesor Owte adds, isdend. greaty to the streagth of our premat meedno, by ecting ea the proddent of one of our acetiona, which haviag in its origh been exclutively phyiology. Upder speh a leader, I have a right to anticipate that this remodulied toe. tion will aihiblt evidences of Ereh vigour, and will clearty define the vist progrese that has boen mede in guoptal and comperecive anctomy stace the days of Huat
Aneabiad to a conanty which bas the food fortrise to have been lllastrated by the at
 mection, so whote laboart I woald now rpecialy wivert, will fatd a rich harvet, the more
the Namel Fooptial at Fialar with so many animale from variou partis of the worid, and bas eo arrapged thetn to at to render them objecta well worthy of pour notlee. The me port of Sir John Richardson in the Late rolume, on the Fiahee of China, Japan, and New Zealand, when coupled with his account in former volumes of the Fauna of Norm dica, may be regarded as having completely remodelled our knowledge of the grographuse diatribution of aehes; arit by aciording the data, ant next by expliaing ind canead and in others restricted to limited sreas. We now know, that just as the lony mountaly and in others restricted th in bited areas. We now know, that just an the fith marleties o men, w the deepest sepus are limita which peremptorily check the wide difanlon of certala cenert and spectet of fishes; whilat the interspersion of numerous falands, aod will more the continuance of lands throughont an ocean, ensures the distribution of similar forms orer many degrees of latitude and longitade.
The gecoural atudy, Indeed, both of soolory and bolany, hat been singularly advanced by the Labours of the Section of Natoral Buttory. I cannot have acted for many getr of jour Gemeral becretary, whout observing, that by the split in which tare phllowophl of hata yeara brea eonducted, Britioh naturalita have annualy become more pailonophy cal, and bave given to their inquiries a more phyiological charactir, and have more and mote atudied che bifhar queptioss of stmeture, lawh, and diatribution. This cheering reguli he mainly arisen from the personal inuthecy brought about among various lad and from the matnal encoursemeot jmparted by their loterchange of viemi and theit and from the matual encoursgesseat imparted by their loterchange of viliwis and their comparisons of apecimens. Nany active Britah maturnilate have in fact risen ap anace have mareung thetr meleace directiy apder the enconrage examples wire have fiven them. The have partued thetr actence directiy under the encoaragement we have given them. The
comptation of the enthudaste and phliosophic apirit thus engendered among the naturaltots bus siven poppularty to thatr department of ecience, and thla section, seruming an importanee to which during our carilent meethngi it could ahow comparatively slender ciams, has figouroasly revived the study of natural hlatory, and among other proofi of 4, has givea rise to that excelient publiaing hody, the kay Sociery. Which holds te anare rernary daring oar stange, Any analyais of the numerous ortstal and varable report forbldden by the limits of thits addrens, bnt I cannot omit to advert to the externive aucforbldden by the limits of this addrens, bnt I cannol omit to advert to the exienive aucand circulated by the naturalleta of Prapee, Germany and America, and ateo by those of Italy beaded by the Pince of Cunios. In each of theep conntries the code dramn ap by itw beaded by the Pincee of canioo. In each of theep conntries the code dramn ing the greas adrantage being galaed, of the uitimate aduption of an anlform coological nomen greas simange being glaed
cleture all over the globe.
Whilet Investigutione fato the geographical distributiou of aularis and planta have cempled a larfe share of the attention of our Browns and our Daewins, it Le pleading to see that some of our membert, chicay connected with phyical researches, ere bow bringind thene deti of antural history to bear upun cllmatologr and phytical geography. A committee of our naturaints, to whom the gubject was restriod, the publined in our Int volmme an excellent eerke of instructivas for the obeervalion of the pertadical pirenomens of aplmals and plants, prepared by our fortgn satociate M. Qoetelet, the Astronomer Royal of Helgium. Naturilata have loag been collecting observations on the
 calendar beine loeal, required comparison and concentradon, as ordgally nutgested by
Lanaeus. This has now for the drst tue been ezected by the Belghan Astrooomet, who followed out s plan fuptented by himetif et our Plymonth meedng, has brought to who followed out a plan subsested by bimetif at our Plymouth meedng, has brought toFethar the contribution alad tugsettions of the naturatitit of hit own coantry. When phases of the plant that nouriohes lit that plant feodf betng in ite gradual development phases of the plant that nourishat it ; that plant itwif betng in its gradual davelopaent the prodnct, in coma sort, of all anterior moditentions of the woll and atmosphere, hat comp diarmal and anoung, woald of ltaelf form a science as extended as Inatruedre.
Beferrtag you to M. Quetelet'y report for an explanation of the dependence of the vegetable and andmal tiagdoma on the meteorology and physles of the globe, and hoping that the almultaneous obeervations be lucaicates will be foliowed up la Britaln, inm gisd to be abie to annoance, that the outline of a memoir on phyical seography was mome months ago pat luto my hande by Mr. Cooley, which in a great degree colnciding with the sfitem of M. Quetelet, has uldmataly a very difforeal object. M. Quetelet chleay alms at inventifating the dependence of organised bodiea on laorganised matter, by ob serving the periodical phenomena of the former. Mr. Cooley seette to obtain an acquainh ance with the tame phemomena for the make of learoinc and regtaterint comparatire ch mate ss an alement of sciandbe spicuiture spening to you la a county which is so onalnly dependent on the produce of the 30 . 1 , I cannot hive a more farourable opportuaity

 the amprint of condretion, radistion moletare, end mernedem, the zocceetion of vedous phemes of vegetandion, the. (with their several local correctioni for alevation and sopect) phacea of vegetation, ac. (With thetr several locsal cerrectioni for alevation and spect, munt cortinly prove coaducint mo
A minats hnowied ge of all the circumetances of cllmate ceprot bat be of importasee 10 thoee whoes industry enly aucceede through the co-operation of natiere, and it may there fore be inferred that eneh a report as thel whe which I truat Mr. Cooley will faronr us, If followed up by full and complete tables, will prove to be a most usefal public documeat. Imbibing the ardour of that author, I might almost hoye that such
geograply may enable us to defme, in the lasguase of the poet.
"Et quid quequa ferat regio, it quid quaqua recuset."
At all eve nten, fuch a report will teod to ralee phyaleal geography in Britaln towarde the level it has altadped to Prucia under the aghs of Eumboldt and fulter, and by the betaHfal mep \& of Berghtue.
 comparavie mapi of the lintmentioned Prusetan anthor, mach Indaed still reanalat to b doce in Britain, to place the stendy of phyticel seograpby on a beats worthy of this treat trinalag of the youthrol mind to acquirt an of itht percepllon of the seilence, I commead the
 Fill in the courie of this weot explan to the geographers prectank

Reverting to economicel views and the improvement of Lands, I moald ramiad our egricultarel menbers, that as thelt great practical 8octaty whe fouaded on the modal of tho Britich Arecition, we hope they will alrage come to orar sectiont for the colution of any quetiona relaling to Lholr parcultin to which can be siven a purely scteatic answer cologets and botastits ere read to reply to them. In It a query on the eomparison of foologats and botanime art radit to repty to them. In it a query on the compariepn of
 preatat mre capable of antwaring it. And If, ebove all, they sak ns to colve their doubl respecting the qualiter of wils and the reatit of their mitiures, of the encectiction is in manurea upoa them, our chemisti are at hand. One departonent of our Inaticution is in tect styled the 8ection of Comolatry and Miaeralofy, wht thelr applications to Agrical. ture and the Arts, and ha oflcared in part by the Vir ment, Johnotion, Danbeny, and

 minting by claborate expertmente, the dopendecot of macy species of plandis on toils, air,
and attmalus; whilet the chird hae alraedy been alluded to as ose of oar beat contrybutors.
If in reviewting our provione haboara I have eadeavoured to galn your attentlon by some Incidental allinsions to our present proceedlonit, I have yet to acure you. that the memoirs communlested to our cecretaries are sumeienty nomerous to oceapy our sections durlag the ensuing week with sill the vigour whleh Las marked our opanlag day. Among the topice to whtch onr amermbung at Southampton ifret pecullar Intereat, 1 may still any that forelgn and Englloh geologitan shoald dod much to Intereat them In the Inle of
 maibematucians and the geolugitat, with which i became acequainted to a previous rafit io this place. It is a discovery by Coloned Colby, the Dirvetor of the Trigonomettical sirr. vey, of the existence of a conalderable atiraction of the plumb.live to the nouth, at the zrigonumetrical station calied Dupnose, on Shankiin Down. The detalle of this singular phienomenon, which has beet pertsed by namerons observatone with the beat sealth pectors, will be laid before the soctiona. In the meantloe, we mary well wooder that this low chalk range in the Idie of Wigbt ghould attract, in one paralei at leats, with more than balf the inteasity of the high and crystalline mountala of schehallion to the Bifhlaode of Scothant, whitst nu other chalk hill to the Soath of Eagland exhitite such a phenomenon. Can thoue of our ameoclates, who Hhe Mr. Hopkina have entered the rich iteld of geological dynamica, explain thin remartanie met, ether by the pecultar mitrocture and disuribution of the ridge of uphesved strate which runs as a back-bone from enat to weat througb the faland, or by referring it to dence plutonle massee of rock ranging be peath the sarfece along the line of displacement of the depotits?

The Southampton Well.
Another local mutject-one indeed of positury pracucal interest-othat stande before us for discusalon is, whether, by parsereting In deepening the targe ahan which they have aunk so deep into the chalk near thle sown, the tnhabicants of Southamplon may expere to be eventually repaid, like those of Parts, by a fall eapply of subterropean water, which
shall rlee to the surface of the low plateau on which the wort hes undertaken? On no shall rise to the surface of the low plateau on which the wort has undertaken? On no
occaelon, I muat oberve, could this town be furnilied with a grrater number of olling occaclon, I muat oberrve, could this town be furniolied whit arrater number of whling counsellers of divers nations whose optolone will, it is hoped, ba adeqnately valued by the
ctiy autboriles. The queation whether this work ou hit to be proceeded with or pot, will elty autboriles. The quettiot whether thin work oufht to be proceeded whth or pol, will howerer. I apprehend, be moat effectively anawered by thowe geologiats who are beat ac-
qualnted with the wections ta the interior of thle country, and with the levela at which qualnted with the mections in the interior of this country, and with the lerela at which the upper greensund and nubertaceous strate there crop out and recelve the watern,
Which then fow sonthwarda benenth the whole body of chall of the hilla in the couth of Hampitire.

Naval Architecture.

Considering thet we are now aseembled in the nelghboarhood of out great daval arse-pal-that eome of lit funcluonatios, inclinding the Admiral os the gtation, heve honoured us with their support, add chat, furtber, I am now apeating in a town whoue magnificent new dockn may compete with any for bold and sacceneal engtaceriog, I must maty few Fords on our naval architeeture, the more so as we huve hare a very atrong Mechanical Secton, presided over by that fagenioas mechanictan Professor Willis, aupported by that great dynamical pbllonopher and astronomer Dr. Robindon. Daly impreased with the vatt patloand importance of thts, zubject, and at the same time of ita necessary dependence on mathematical principiet, the Brigh aseociation in ita earilest dayt endearoured to rouse athontion to the state of ship. building to Engiand, and to the history of its progrese in Prance sad other countriet, through a memolr by the late Mr. G. Harrey. It what then contended, that notwithatanding the extrempe perfection to which the interanal mechaniam of reacels had been brougbl, thrir external forms or innes, on which their mallige mo mach dependi, were descient as to adjasment by malhemastical theory. Our amociate Mr. Scott Ruasell has, at yon know, ably developed this view. Expermmentiog npon the remiatace of water, and actertaning with procialon the forms of veacels which Woald pasi through it with the least resialence, and consequenty with the greatest relo-
 ber of diagrams, wo muatrate hin opinions and to athow the dependence of naval architec-
tire on certaln mathematical lines. Employed lo the mennume by merchants on their
 own account, to p'an the construction of cellog shipa and steamorn, Mr. Scott Ruabell his been so succeastulio combining theory with practice, sbat we muat feel saliaied in hariag at cicereat meetiogs heiped bimonwards by several money grate; our onif of diagrams of the I nee prepared by this logenlous author.

Bat howtrer deatrous to promote knowledge on thit polat, the men of science are tur from wishtag not to poy every deference to the nilifol ardicicen of our wooden buimarky, on account of their experience and practical sequalotance with subjecta they have so long arki in suecessuily handied. We are indeed fuly aware thot the paval are"flects of the govi pament, who conitruct vespela carrying a greal weight of metal, and requiring mach
onl dity and capacious atowage, bave to solve many pioblems with which the ornaera of
 trodiog vensein or packets have lithe concern. All tbat we can winh for is, that our navnl arnenuia ahould coalain schoois or puble boards of ship-bailding, in which there might age, veloctly, pitching and rolling, masiting, the effect of galla, and the revistance of fulds. ake, velocity, pitching and rollng, masing, the effect of galif, and the repistance or suidg.
 zemin thia matter, we are, I thing, entitied to expreth a hope, that the dati derived from soond theory prepared Ly approved culuvators of mathemalical and mechanical sele. ence.

Statistics.

I cannot thas touch apon such aseful mubjects Fithout sayligg, that our Statiotical Seetlon has been so well condocted by it former prealdents, that its watijects, linble at sull Imes 20 be diverted int wora coasiderations, and thence lato politics, have been invar ably reaticted wo the branch of the sctence which deals in facts and mumbers: and as no one Individnal bas contrivated more to the storehoase of such raluable knowledge than Mr. Grorge Porter (at ewidenced even by his report in our hat rolume), so may we believe that in tbis town with which he io incmathy connected, he walic contributit to
If in thin discourse I have referred more largely to those branches of acleace which pertala so the general division of antural hatery, in which alone I can veature to juage of the progrees which othern are mating, let me however asy, that po mpmber of thit body can appreclate more highty than I do, the clalma of the matbematieal and experiaivutai parts of philineophy, in which my friend Profentor Beden Poweil, who supprorts me on thit oecablon as a Vice- Proabdent, has takea so diatluguiabed a pert. No one hat wineserd with greater satsinction the ettendance nt our former meetings of men from all
 Hlustrions cor reapondent Beteel, than whom the world hean never produced a more pro-

 In the immenalty of spect, bryond the limita of oar own sidereal aymem, it is 20 Bessel,
 ble hands, becene the base of modern antronomy.

Foreign Contributors.

 Fr of the decrated Prusesen arirosomer, can any one coe with more delight lbat nypelf the briliant concorrepce at our present meetng of naturalmen, seologitht, phyaiologiote,
montal phllowophers in phyilet and in chemistry? Sarely, then, irway he allowed to ingnalise a particular ground of graificalou among so many in the provence bi thits meet-
 by shofing the magnelic propertien of the galvanic current; whllat the outher, our own
 ecience throughout the world, obtaloed the converse proof by sroking electrtaty out of magrels. And if it be pot given to the geologist whom you have hosoared with the chair, to explialn how such arcana have been revended, atill at a worghipper to the outhe portico of the temple of phyilcal science, he may be permitied to pictore to Mimenelf the deligbt which the Daniah philocopher mast hire felt when, on returalng to our shores, after an absepce of a quarter of a century, he found that the grand train of diacovery of
which he to the progenitor, hed jaut recelved tita crowniag acceraion to Ro Which he ta the progenitor, had jant recetved its crowniag accespion in Rogland from his
 own,
And thas nhall we continue to be a true Britinh Ameciation, with commopolite connexlong, so long as we have among nt eminedt men to attract sumb foral min conternpornite to our shoret. If then at the latit aspembiy we experienced the good effects which towed
 diferent Eraropena kiagdome- if then aleo the man (Ar. Everett) of eolld lesalng, whe then represeoted the Ualted Siates of America, and who In now worthlly preadiling over the Cambridge Unlversity of his native soll, apoke to ns with chantened elogueace of the
benefis our lasutation wha conferring ou mankind; jet un refoice that this meetiog is
 honow
Let ne rejofce that we have now among wa men of acleace from Denmark, 8 weden, Buesis, Pruals, Switserland, Belgium, Italy, and France. The King of Deomoukt, himetr personally distingulabed for hla mequaintance ofth several branches of nataral hiselory, and a warm patron of sclence, has honoured us by seding hither, not only the greet dit
coverer Oeruted, who evincligg freat rigour io his mature age, briagi with him nete conpuntcatlons on phyaical ecterce, bat also ny vilued friend, the able geologlat and clecolat Forchhammer, who has producei the Arat geological map of Denmark, aud who hae pre

As thepe eminent men of the north recelved me as the Geveral secretary of the Bridim Aneociaction with their monted cordiallty at the lact tceandianvian Aceembly, I truat we o them in the Firtues of friendahip and bospitallty which 20 diatioguith the difiter wishin the cricle of Odia.
byll advorting to Bcandinavil, we mee here a depaty from the coustry of Lanames in the perwon of Protaneor Svanberg, ascecetand yourg experimenter ta phyilcs, who rupre North of Europe, who Bernabilinhed on a drm bath the lawe of atomic of the aclesee of the proportions, sod who has permonally averred me, that if our miecting hed not boen lized In the month of Beptumber, when the agricultariste of Sweden ansemble not stock holm, he would amoredly have repalred to us. And if the inme cauge has prevented Nimpor from coming hither, and has ebatricted Retalus from us (who was ull whin thewe fow days in England), I caonot mention these dintinguisbed men, Who erraestly deatrod to de prasenk, whitout expresalag the hope that the memolre they comomualcate to us maty dive aclence, which iovealigites the origin of races and ianguaget, to thke the prominent place to our sasambllen to wilch it is justiy eatitied.
The Royal Academy of Berlin, whoee depatiles on former occaplons have been an Ehreaberg, a Buch, and an Erman, hag hoooured us by sending hither M. Renarich Rowe whose work on chemical analyats $h a$ iext book even for the moat leerned chembtetis every country sad whilit hir researebes on the constitution of minuerale, Hike thowe of his eminent trother Gnatave on their form, have obtained for bim so higt a reputation,
he now brings to us the description of a pur metal which he has dicoovered in the Tin. he now brings to
callit of Bavaril.
8wherriand has agaln giren to us that great macter in palsoontology. Agaedz, and aleo our old friend Proteceor Schonbeln, who in addilion to hif repert on oxove, to which I have already referred, has now brougbt to us a discovery of vant practical importaces. The "gun-cotton" of 8cbonbeln, the powers of which he will exhiblt to ain colleagece, it

 Which is as cervicesble after badg diled as in its fint condition. The merre mention of
 sbow lta
blablug.
Proferaor Mattenced of Modena, who jolned wat the York meetiog, and then exphatoed

 correats in exctilog throagh the nerres mechanical force to the muacies, doublien brioge whith such intereatiog contribution as will add great edditional Intereat to the proeedloge of the Phyitological Section.
Inering already spoken of the rapid progreas which the aclences are unaling in Eneidecs, through the labours of our mesoctate Quetolet and others, it is with plesingre I annowerne that M. de Koningl, the palmeontologist, who han malnily contributed to thits adranos and to the solid foundition of the gealogy of hif country by hil ecoelient work on palisoucte foselle, has been tent to us by his own government.
Among then sources of Just pride and gratilication, no one hag aftorded me docerer pleagure than to wricome hither the undanated Siberlan explorer, Profomor vom Middeb-
 thuatious ruler of the emplre of Ruegt, I canoot hut bope thach the prenee to betd by the
 every Engllehmap who is acquadnted with the arduous mature of his travelo. To trevers: Siberia from south to nurth, and from weat to eati; to reach by land the extreme cortitere beedland of Talmyr; to teach us, for the tirtit tome, that even to the latitude of 72 dere. morth, Ireas with stems extend themelves in that meridlan; that crops of rye, more
 aubsoil, the intenglity and minaure of cold in which be hei determioed by thermonetate experiments, to explain, through their langunge and phyajcal form, the ortgin of tibe now iar iemoved fromethelr parrat stock; to explore the far eatern re the ortgin of tibles Obltotis and of the shantar lsies; to define the remotest north-aptern beandary of tween Chlas and Rugaia, and finally to eprich St. Peteraborgh with thern beandary bethons, both fonsil and recent, of all these wild and untrodden lands, re the exploted for which the Royal feograpbicul Society of Loudon has, at ite lant meeting, conferred the Gold Victoria Medal on thin mont muecemful explorer. Profamor Middendorf pow tiater
 In which, by comparienn, be can beat determine the valam of epecific charectern before he completes the description of his copiots accumplations; and I trust that daring hite stay In engtand he mill be treated with at much true hoapliality as i bare mymif recetind at he hande of his tind countrymen.
 You that our alles la acleoce on the Neva, who have previouly mats to ne Es Jacod and

town with that eminent melentife navigetor Admiral Lutke, in whoee gquaroa his lmpertal EIghnest the Grand Duke Constantine was acquirtig a loowledge of hla maritme dutles. Beaidat the marrattve of his former royagt, Lutke han slice published sa meconnt of the periodical idet in the Great Northert Oceln and in the Gracial Bea, which alogrephe" In the White Set, and beias aleo occapled feom time to time io obeervationa In Behring's Straits, the Ragalans will moon beable to provide us with other Important In Behring' 8traits, the Rasaians will moon ba able to provide us with other important Dr. Whewell are from etch other, if is pleasing to see, that the very recommendation Which the lat-mentioned distinguinhed phllosopher of the tides hes recontly suggeated to me, as abject to be encoursged by this Aswocistion, has been sealounly advocated by the former. Lit us hope then that this meeting will pot pars anay withont porrerfully recommending to our own government, as well as to that of hle Imperial Majesty, that recommending to our own government, as wol as o that of his imperin Majeaty, that in the Northern Pacilic, be the object of special expedilions, a anbjent (as Admiral Lathe well observes) which is pot less worthy of the strention of great sclentife bedies than the present inquiries loto terrestrial magnetism ; and oue which, I may add, thit Amoctation will doubleas warmly espouse, since tt has auch atrong grounds for belag atheted with the rerults which fithat lready contributed to obting through lts own grmate, and tr the researches of several of ita aspociates.
lagty, in alluding to our forelgn attendants, let me asy how well our neareat neigh. oours hive responded to our call, who, Imitating the example of their eallghtaned moanch, have proved by their afinence to Soulhmpton, that in the realms of sctence, as in publle afrairs, there is that "entente cordiale" between their grent nation and our own, of wheh, at former meeting, we were personally anured by the profound Arago Mmolf.

Oo sooner was it made known that the chair of chemiatry at thin meting wis to be filed by Michael Farnday, than a compeer worthy of him in the Acaderny of 8cience: of Paris whe anounced in the person of M. Drmas. To this eound phtlosopher it it wel known that we orre. not only the diacovery of that law of eubatitution of types, which hes $t 0$ powerfully added the progrent of organic chemintry, but also the avecesafol appll callon of his science to the arts and useftl porposes of iffe; his great work on that aubjert, "La Chimle eppliquete aux Arte," being as fimiliar io every manufactory in Fingland est is upon the Contivent.
Nor, if we turn from chemistry to geology, can ench of us an work among the rocks be beckward in our expreatons of thankfulness, in witneating the goodly attendance of our brethren of the hammer from France, headed by \mathbf{H}. In our own patural sectlons of the Isle of Wight, the pecullar dovelopment of thedr Part basing the identuty of thetr chalk and onr own; the fine sections of our green sand and of the Wealden formation of Mantell, and to determine with ut "In altu" the atrict rela. sions of thelr Neocomlan rocks with thowe peculiar atratin whlch at Athargeld, in the Isle of Wight, have been so admirably lilustrated by Dr. Fitton and other native geologiets, and of Which euch betutiful and eccurate diagtanis have been made by Captala Ibbot It
It If atterly impoadble that much gathering together of foregn phlowopheri with our own should not be productive of much edvantage; for he must fodeed be a bed statist in sclence who knows not that numerous are the worke of merit which are published in periodicels, of in the polnmee of eocieties of one country, which remaln altogether nn. trown in anothor; and itill leat can be aequalated with the present accelerated march of celeace, who is not awner thist the germs of discovery which are lying ready in the aind of distank contemporariea mant of en be brought tato action by such an laterchange of thought. The colliston of mach thoughis mey indeed be compared to the agency of the ciectrle telegraph of our Wheatstone, which concentrates knowledge from afar, and at once unliew the extremitien of kingdoms in a common circle of intelligence.
But although the distingulahed foredgnern to whom I have edverted, and others, inclading our welcome aseociate M. Wartmann, the founder of the Vaudols Sockety, and M. Prepast, of Geneva, on whose merits I would wrilingly dinte If time permitted It, are now collected around us; many, among whom I must name M. de Camont, the Prealdent of the French Soeiphy for the edrancement of Sctence, bere been prevented trom honouing me with their presence, because the notional meelnge In their geveral countriet alop oceur in the mooth of September. To remedy thl inconvenience, I rentured, when addreagity yod Ax years ago at the Glugom meeting, to express the hope, that each of the ational Europena socfeties might be led to abotin during ona year from assembllint In fis own country, for the purpose of repairing by lie own deputies to a genoral congress, to be held at Frankfort or other central efty under the presidency of the unlverial ium. boldt. Had the preparation of the "Cosmon," and other arocations of that renowned individual permitted him to accept this propealition, which I bave every reason to belleve the Britith Aasoclatlon worsld hare supported, in am convinced that many benofite to cience wrould have reaulted, and that each national body, on reassembllog the following jear in its native land, would have more rigorously reanmed ite rezearchog.
Adbering atll to my project, I beg my countrymen and thelr forelga friende now preeent, to mustain this proposition for centrillaing in a future year the representatives of the vaicons braches of actence of different countries, when they may et once fearn the national progremate reapectively made, and when, at all eventa, they can 80 appolat the perfods of thelr nitionalagemblea as to prevent those almultancous merdnge in Frace, Germany. 8eandinavia, Italy, Switweriand and England, which are 00 much to be depre ceded as interfering with a matual intercourse.
hinally, my fellow. labourers to sclence, if by oar anited exertions we have dona and are doing food public service, let me revert once more to the place in which we are asoembled, and expreas on your part the gratifiction I know you experience in belng on thas ocenalon an well eupported by the noblemen, clertymen, and landad proprition around sorthampton, atioy its lohabitants themeares-an union wh
Seetng near me Her Mont Greplous Majeaty's Becretary of State for Foreigr Arairs, the Speaker of the Elonse of Commons, and other persons of hl fhatatlon and rery great in. Iocnes, who allijagly Indicate by their pretence the enme they entertain of the veluo of our conferences and researches, let ns welcome theee ditiongished individuais as living evidences of thet good oplpion of our countrymen. the posseastion of which will cheer ons onward in onr eareer. And above all, lat us eherth the recollection of the Southampton meting Which will be readered meroorable In Its ananls by the prearoce of the llluatrions Copsort of our beloved Sovereign, who participating in our purnults, in many branches of which his Bopal Bighnese is eo well versed, th us demonstrates that our acsoctation is ctiv, from the bumbleth cultivatore of sereece to the hifhest personagee to the realm.

Royal Napal Stean-yazd, Plymoute-The total acres of ground to be locinded in the eatallishment at Morlce Town, is about 75 actes. The contractors have bew enployed on the works 750 men, 110 horsers, 3 steam-engines, with 12 mbles of rallwiy. 850,000 cublc foet of atone (franite and lime-stone) are on the ground, and they are noding eeven of the priaciple quarries of the cowntry. The morks will go formard whith the gratest repidit, and lits expected that sotesmer wil be admitted into one of the basina within three years and a balf from this time. The coffer dan, Which the enbility, th 2,000 feet lon, within which the seawall of the sacte length is to be bualit. There
 Will be two inmense hasios, the north basin, 800 feet by 628 feet, and the conth basin, h25 fret hy 560 feet, esch baving a depth of 27 feet of water at all thmes, and will allom of 18 Arat-chass vemela to be fitted out, or 26 of all clenser, exchasive of those in the docks.
 ingest steasemers; and the thlod (the sooth dock) su0 feet long by 82 feet wide.

REVTEW.

Experimental Researches on the Strength and other Proportions of Cast Irom By Eaton Hodgkinson, F.R.S. Londod: Weale, 1846. 8vo. pp. 200. Five plates.

The first part of this work which is a new edition of Tredgold's Treatise with additional notes by Mr. Hodgkinson, appeared in 1842; the second part now before us is entirely written by Mr. Hodgkinson, and though it is published as a separate volume, the pagination is continued on from the preceding one. The principal distinction between the two works is that the former treated of the effects produced apon bodies by forces amall compared with those necesary to produce fracture, whereas the present volume referm almost exclasively to the ultimate strength of cast iron, or the capability of resisting fracture.
The subject is divided into four parts, the strength to resist, lst, longitadinal tension; 2ud, longitudinal compression; 3rd, transverse pressure (the case of girders) ; 4th, tension; the course of experiments under each head is explained at length, and the results tabulated: a mathematical 10 vestigation of the theory of the strength of beams is also given.

The first part of the work which considers the tenacity of cast iron occu. pies but a amall space, as the subject offers comparatively little difficulty to the experimenter-the following concluding remarks will anficiently show the aluture of the results.
" With these facts before the reader, he will, I conceive, be unable to see how the mean tensile ntrength of cast iron can properly be assumed at more than 7 or 71 tons per square inch; but some of our best writers have, by calculating the tensile strength from experiments on the transverse, arrived at the conclasion that the streagth of cast iron is 10 , or even 20 tons, or more. Mr. Barlow conceives it to be upwards of 10 tons (Treatise on Strength of Timber, Cast Iron, \&c., p. 222), and Mr. Trecigold makes it at least 20 (art. 72 to 76). The reasoning of Mr. Tredgold, by which he arrives at this errodeous conclasion, with others resulting from it, will be examined at length under the head 'Transverse Strength.' Navier, tno, (Application de la Mécanique, article 4,) ealculates the tensile strength of cat iron from principles somewhat similar to those assumed by Tredgold, and finds it mach too high."

In considering longitudinal compression the experiments are divided into two clases, those upon long and those on short pillars, as the former usually broke by bending, and the latter by crushing ; and consequently the laws for the two cases widely differ. Under this head we find the following interesting results.

The strength of a pillar in the form of the connecting rod of a steam engine was found to be very small; indeed, leas than half the atrength that the same metal would have given if cast in the form of an uniform hollow crlinder. The ratio of the strength, according to my experiments, wat 17578 to 39645 . A pillar irregularly $6 x e d$, so that the pressure would be in the direction of the diagonal, is reduced to one-third of its atrength, the case being nearly similar to that of a pillar with rounded ends, the strength of which has been shown to be only trd of that of a pillar with fat ends. Tredgold, art. 283 of bis work on Cast Iron, and in his Treatise on Carpentry, following the ides of Serlio in his Architectare, recommends ctrcular abntting joints, to lessen the effect of irregularity in the strains upon columas, from settlementa and other causes; bat this, we see, is volantarily throwing away two-thirds of the full strength of the material to prevent what may often be aroided."

The question of tranaverae atrength occupies the greater part of the book. The first point ascertained is how far bars of cast iron will bear the long con. tinued pressure of weights wbich are not snfficient to break them immediately. The effect of temperatore and defect of elasticity are next considered, and lastly the general laws of the transverse strength of beams. The experiments instituted are extremely numerous, the results tabulated are derived from researches extending over a great namber of yeara, and are of course invaluable. The information given with reapect to bers of rectangular section is so full and complete as to almost exhanat the sabject; when however Mr. Hodgkinson investigates the atrength of beame varying in their rectangular section, and endeavoun to ascertain the form of uniform strength, he leaven room for further inquiries. Before commenting on this moat important part \sim f the subject, we muat let our anthor explain for himself the mode of inveacigation which he has adopted.
"The ribe in the model were first made equal, as in the beam of strongent form according to the opinion of Mr. Tredgold (Section IV., art. 37) ; and when acasting had been taken from it, a small portion was taten from the top rib, and atteched to the edge of the bottom one, so as to make the ribs as one to two ; and when another casting had been obtained, a portion more was taken from the top, and attached to the bottom, as before, and a cesting got from it, the ribs being then as one to forr. In these alterations the
only change was in the ratio of the ribs, the depth and every other dimention in the model remaining the amme. Piading that all these beams had boen broken by the bottom rib being torn asunder, and that the atrongth by each change whas increased, I had the bottom rib succestively enlarged, the size of the top rib remalaing the same. The bottom rib still giving way firtit, I had the top rib increased, feeling that it might be too small for the thickness of the middle part between the ribs. The bottom rib was again increased, so that the ratio of the streagthe of the bettom and Lop ribs was greater than before; still the beam broke by the bottom rib failing irat, as before. As the strength continoed to be increased more than the area of the section, thongh the depth of the beam and the distance between the anpports remained the same, 1 pursued, in the future experiments, the same course, increasing by small degrees the size of the ribs, particuiarly that of the bettom one, till such time as that rib became so large that its streagth was as great as that of the top one, or a little greater, since the fracture took place by a wedge separating from the top part of the beam. I bere discontinued the experiments of this class, conceiving that the beams last arrived at, were in form of section nearly the strongest for cast iron."

The form of the strongeat section thus ascartained was, as shown in the adjoined diagram; the ratio of the sectional area of the top and bottom was as $1: 6 ; 60$ greatly does the compressive strength of cast iron exceed its tenacity. The depth of this bean was uniform throughout. but thickness lessened towards each end, so that the plan of each flange was lcna-shaped, the curves being portions of a parabola. This form has been shown theoreticaily to be that which makes a beam of noiform depth equally strong in every part.

The omiacions in Mr. Hodgkinson's inquiry, or rather the robjects in which be has baft room for forther inquiry, appear two-fold. In the frrot phace, the object of his experiment was confined almost entirely to ascertaining the proper proportion of the two tanges to each other; and secondly, the flanges were alway thin, compared with their width, and of a rectangular mection. The proper form and dimensions of the vertical rib, seem to heve been comparatively neglected; and it wes not ascertained whether for a given quantity of material, additional strength might not be attained by making the bottom lienge of greater vertical depth in proportion to ita sidth.

The atrongeat beam is that of uniform trength, or that which when it tends to break has that tendency in every part; consequently the best form is that for which the bean tends to give way in both flanges, and the vertical rib simultaneously. Moreover, the tendency to give way mast be equally exhibited in every part of each of these members: the beam when the lond is placed at ite centre, must not tend to give way sooner in the middle than towards the ends, nor to fail in the fanges sooner than in the rib. Now Mr. Hodgkinson's beams alvays broke in the middle, and the filure was always in one of the flangen.

It is a great miatake to auppose that the vertical rib ought to be as thin a possible. . Where nearly the whole strength is contaiged in the fangen, the rib need not nanally poseses much strength towerds the centre, but it ougbt to be increased in atroogth towards the extremities; and the law of increase has been clearly shown in a former page of this Journal (ante p. 174). The consideration of the exact nature of the forces acting on the vertical rib, seems to have been overlooked in our tbeorelical books; and it ought to be mado the subject of an altogether new class of experiments.

The next question on which it appeart to us further experimente are wanted, relatet to the possibility of improving the aectional form of the finges themaelves. It has been uagally considered that they ought to be two thin wide lamina, and the object for adopting this form in, that the material may have the greatest possible leverage about the neutral aris. Mr. Hodgkineon evidently falls in with this notion, whicb, as we think, ariscs from erroneons conceptions of the action of the vertical rib. We are arongly inclined to pronounce the bottom flange in the section given above, $t 00$ thim for its width, It does not seem very hazardons to predict that, all other things remaining the same, the strength would be greatly increased by doubling the thickness of this flange.

It seems clear that the part of the metal in the immediate neighbourhood of the vertical rib will be more acted upon than the outer or more projecting parts of the fiange. These are comparatively ineficient ; for to suppose that all parts of the fiange, because nearly at the same distance from the nentral line, therefore exert the tame elastic force-what is this but assuming in another form the old exploded notion of the incompressibility or inex.
temalbility of the material? The parts projectiog the greateut detane beyond the vertical rib will be least acted upon, and coasaquentily the groat object ought to be to collect the material of the tanger as clowiy about the upper and lower edgee of the rib as in compatible with other considerationg, Under this head also new experiments might be advantageonenly fortituted.

In the theoretical investigation of the transverse strongth of beame, Mr. Hodgkinon does not adopt the theory of John Bernoalli, Mariotte, Prot. Moseley, and othert, that the elatic forces of the fibres are proportional to their distance from the neutral axia, but representa thoee forees by an expression $a x-\phi(x)$ where $\varphi(x)$ is " a fanction representing the dimiantion of the force in consequence of the defect of elasticity." He is disposed to concinde from experiment that for cant iron this function would be of the form $b \boldsymbol{c}^{\boldsymbol{s}}$.

The present treatise shows clearly enough that the ald assumption leads to erroneous resulte. We may furninh the following proof in addition to those given by him. We recently had the carionity to apply the formale given by Professor Moseley (p. 507 \& 513) for the defection of beams to several cases of the experiments rolative to the Menal Bridge, detailed in thin Joarnal, p. 147, and found the defections so calculated six or seven times as great as thoee actually observed. This scoms to us quite sufficient proof that the old theory is not to be trasted; it is indeed founded on an asumption which it would be very difficult to prove, that the centre of curvature for all the filaments of the beam, and for the bounding anrfaces, coincidet with the centre of carvature of the neatral line.

But although Mr. Hodgkinson hat probably made an improvement in the theory in the particular here allnded to, we by do means ansent to one of the assumptions on which this theory peocends, namely, that the parts of the section will be extended or compressed according to their distance from the nentral. We think that enough bas been said to show that the bottom tange cannot be in a state of uniform tension throughout at equal distances from the neutral axis. At all eventa this ought to be proved before it is asumed.

It should be mentioned that the works before of containa a large portion of the reaults already communieated in reports to the British Aceociation. The theory of the strength of materials is daily asuming a more complete form ; in fact there is scarcely any brauch of the philowophy of engineering of which so much is known. Tha subject is one which has been illoutrated by the aplendid talents of Buler, Bernouilli, and many othen of almont equal celebrity : bat the merit must undoubtediy be awerded to Mr. Hodgtimeon, of having realised the investigations, and of having given to them that certeinty and mothod which alone can reader them aseful to the praction engineer.

WILLIAM OF WYKRHAM.

The annual volume of the Archocological Institute is just pabliahed. It refers almost exclusively to the architecture of Wincheater. The following extract, from a paper by Mr. Cockerell, will ahow that we are not singular in our notions of the necessity of faithfolness in architecture. The oxtract refers to the artistic merits of one who, if worthier notions of the fandmmental principles of art were generally entertained, would be enteemed incomparably the greatest of English architects:-
"The chief exproscion of Wykeham's architecture in ite constructive chsracter; throughout we trace the soond bullder, the able mason, the ingenious carpenter, whone well-desigued operations matiafying the mind, carry with it the fancy, by natural consequence, in harmonions coneent; and as unsought felicity follows as a matter of conrse. He wrought out his denige through the model, and an intimate knowledge of the materiala. and careful consideration of the wants and requiremeats on the spot. His comicon and labels and water tables explain their purposes of carrying of the wet; the buttresses are never for ornament alone, but proportioned to the anpport and durability of the edifice. No paraitical excrescencea obtrade themselven ostentatiously, no parte and prettinesses are indulged which may not be accounted for by a natoral grace and logical Atnes. was one of the frit to recognise the utility of the four-centred arch, to to omploy its depressed form where a superincumbent fioor made it conveajent. It is probabie that he did not encourage that fashionable adoption of t, which introduced it (under Edgington, bis predecestor in the see of Wischester) into the cathedral itself, for we find uniformly the two.centred areh in his halls and chapels; while the four-centred was confined to sitrationa of limited elevation. He was one of the first to condemn the tenuity, elongation, and weakness, real and apparent, of the Lancet and Decorated atyle, and to introduce the so-called Perpendicolar, which, fortifed by its mullions or constructive subdivision of steleton framing, or network, the enormows
openings then demanded by the growing fathion of feneatral decoration; as Chancer says,

richly peint

With lives of many divers seiat.
He abandoned the high-pitched shingle roofs, excluding sun and air, and was one of the first to employ the low pediment, and roof covered with lead; and in his works we first discover the hammer-beam roof in all ita ra-rieties-aystem of the higheat ingenuity and constructive economy, both for space and material, as well as beauty aud power, as exhibited in Westminster Hall, Bltham Palace, Windeor Hall, and our college chapels and halle.

BARKER'S MLLL

Sra-Perhaps through your valuable journal you woald be kind enough to decide the following argument :-Doctor Barker's Mill. One gentleman argues "that the power is obtained by the resiatance of the atmosphere to the egreas of the water, thereby causing a reaction."

The other gentleman denies nuch to be the cause, and says, "that it would revolve with greater power if placed in vacuum." Leaving it for yon to decide, with many apologies. I remain, Sir, your obedient servant,

A Constant Reader.
In Barker's Mill the aupply of water is obtained from a cistern placed at a considerable height above the revolving tabes or arms, which, if the orifices of them were stopped, would austain a hydrostatic pressure acting equally in all directions, and proportioned to the depth below the sarface of the water in the reservoir. When, however, the orifices are opened, there is, is -ach revolving tabe, a predominating pressure on one side of it; for it is clear that the internal area of one side of the tabe exceeds that of the other sides by a quantity equal to the ares of tie orifice.

The motion is in the direction of that side of the tabe which sustains the greatest presence. The external air is a canse rather of retardation than accaleration, on acconnt of its renistance to each arm on the side opposite to the orifice. It may be eanily conceived that if the atmonpheric pressure accelerated the motion, an increase of that presaure would increase the accelerating force. If this view were correct, the arms ought to revolve more rapidly if immeraed in mereory, which certainly would not be the came.

Very similar to Barker's mill in its mode of action is the rocket used in pyrotechny and for military purposes. Here the ignited powder generates an elastic gas, which preases on one end of the chamber containing it, but excapes by the open end; the motion is, of course, in the direction of the end sabjected to the elastic pressure. The external air tends to retard the acape of the $\mathrm{gas}^{\mathrm{s}, ~ a n d, ~ t o ~ a ~ c e r t a i n ~ e x t e n t, ~ i n c r e a s e s ~ i t s ~ p r e s s u r e ~ b y ~ p a r t i a l l y ~}$ confining it; but the accelerating force so gained is far more than compensated for by the resistance which the air acting on the external surface of the rocket offers to the motion-a resistance varying nearly in the square of the velocity.

The revolving steam-machine of Hero, of Alexandris, is another inatance of the application of the same mechanical principles as those of Barker's Mill.

The apology with which our correspondent conclades his note is quite nonecesalry; we know no better way of serving the interests of our sub. acribers than by considering questions like the present as tbey arise, and contributing as far at we can to the solution of them.

ST. MICHAEL HEAVITREE

Ma. Editor-In this month's Journal, at p. 291, under the bead of St. Michael Heavitree, is a small paragraph relative to the new church there, which was designed by me, and executed under miy sole superintendance. The paragraph is altogether erroneous; and how it could have crept into your paper, generally so accurate, I am a lose to think. Who Mr. Alexcoder in I cannot think, no such a person was ever in any way connected with the matter. Will you please in your next aumber to correct this. If you can find, pext month, space for a few concise particulars relative to the church, which is a large one, and estecmed highly in this city, you would oblige, and I would with pleasure send them.

Your very faithful Servant,
Dayid Mackintorh, Architect.
Exeter, Sept. 2, 1846.
For the following additional particulars we are indebted to Mr. Mackintosh, who has forwarded them at our request:-

This church has been rebuilt on an extensive scale, and in a most substantial and permanent manner. The style is that of the Fifteenth Century, and all the peculiar characteristics of the ancient church (a small edifice of early perpendicular date) bave been carefully maintained and restored. The dimensions within the walls are as follows:-chancel $25 \mathrm{ft}, 0 \mathrm{in}$. by 16 ft ; nave 86 ft . by 22 ft . ; north and south aisles each 94 ft . by 13 ft . 6 im, with a sonthern porch in the second bay from the west end. The beight from the stone fooring to the summit of the open roof internally is

44 ft .6 in . The vestry is placed at the eastern end of the north aisle; externally the walla above the plinth are built with lime atone of a blae grey tint, from Chudleigh, and the wiadows, string conrses, battlement, monldiags, asd other dressings are of Caen stone. The plinth is of granite; the walls 3 ft . in thickness, and the gables are surmounted by foriated croases of rich character. The church internally is remarkable for the high pitch of its fine open roof, consisting of 13 pair of grained principals with circular ribs of oak, wrought and moulded, and enriched with carred bosees colonred and gilt after ancient ones in the old chorch; the principals apring from richly carved stone cubals, and the nolumas and arches separation the nave from the ailes, are a restoration in every point as regards detail of those in the old church. They are especially rich and varied in their foliage and capitals, and are carved with much spirit and vigoar-illastrations of these capitals are inteaded to be published by the Exeter Archjtectural Society in their transections. There is a fine chancel arch, richly moulded in Caen stone, on the north side of which is placed the pulpit, heragonel in form, and an elaborate specimen of stone carving, executed by Rowe, of Exeter; it abounds in rich foliage, varied in eavi compartment, and carved in bold relief, having niches surmounted by crocketted canopies over figures of the four Evangelists and St. Michael the Archangel. There is a fine eagle carred in old oak, and an open Litany desk. The eagle wea carved by Mr. Winsor, who is the senior verger of Exeter Cathedral. All the carved works in this edifice are admirably executed, and prove the great advance lately made in the correct execution of wood and atone carving. At the east end of the chancel it was at first intended to have restored the former window, but on inspection, being found much decayed, as well as of a somewhat debased architectural character. The Rev. Dr. Warren, of Portview, liberally presented anew wiadow of four lights, and the Rev. Arthar Atherley (the Vicar) has munificiently filled the same with stained glase at his own expense. The design of this glaes, which has been executed in a mast satisfactory manoer by Mr. Robert Beer, of Exeter, a talented and rising artist, comprises figures of the four Evangelists under storied canopies having scrolis at their fret, on which are texts having reference to the Sapper of our Lord. In the upper tracery are placed the Phoenix and Pelican; the Symbols of the Evangelists ; the Virgin and Infant Jesus ; and St. Michael (the patron Saint of the Church) in conflict with the Dragon. The soath window of the chancel has a fine figure of the Virgis bearing in her hand her emblem, the Lily. In the sonth aisle there is a good specimen of a memorial window of three lights. The first and third are bordered after a specimen in Exeter Cathedral, in a flowing pattern and blue glass, with the "Crown" guarry within, the centre bordered in raby glass with the "Trinity fiower" quarry, the family arms, and badge of the order of the Bath being inserted. At the botton of the window the aamos of the father and his two sons, buried in the adjoining church yard are recorded, and the acripture "blessed are the dead which die in the Lord" rans through the lights. The font is the gift to the chareh by an old parishioner ; it is of Caen stone, large, aud highly onriched; it is placed dear the western entrance. The bowl is octagonal, having each panel filled with ornamental tracery, varied in each compartment; the sides of the shaft are likewise paselled with cinque foil beaded arehes, and springing from the shaft to support the bowl, are a band of angels with expanded wings, beariog shields. For the present the old tower still remains, but it is hoped, ere long, to add an adequate tower and spire, which when complete, will render this one of the largest and finest churches in the county of Devon. Tbe contracter for the wholo of the works was Mr. John Henshole, of Heavitree, who has fulfilled all his obligations in the most satisfuctory manner. The works have been well done and unworthy imitations avoided.

DIFPERENTIAL HYDRAULIC PRESS.

I think it must be evident to all who have thonght on the subject, how much enperior the Hydraulic Press is to the Screw, where enormous prearure is required; bat even in the hydraulic press, as at present mede, if we wish to increase ita power to a great extent there appears but tbree ways of accomplishing it, all of which are liable to objection: the firat plan is to increase the size of the large piaton and cylinder, thus making it more expensive and nowieldy; the second in by diminishing the size of the smaller piston, but if this is carried too far it will be in danger of bending or breaking under the pressure which is applied to it; the third it 10 obtein greater leverage apon the small piston, which if carried too far will also be in deager of injuring it. Bat it appears to me that it is posaible to diminish the actisg part of the piaton to almost any extent, while its strength remaing the amma. by the plan which is given in tbe figure, in which b is the large piston working in the stuling box c, and carrying the prem-board o upon it; $d e$ is the mall piston or forcing pump thicker at the part d, than at e, and workpin the two stuffing bores f and g, and is nearly at the top of its stroke. h in the pump cylinder communicating with a reservoir in this cylinder, the small piston works, descending through a water-tigbt collar into the space s, which is open to the air. k is a pipe communicating with the large cylindar at the
end of which is a valve $/$ opening outwards. Then if we suppose the cylinders to be foll of water, and the piston at the top of its stroke, when it ia puohed down it will force a quantity of water into the large cylinder, nearly equal to

the difference of the solidity of the two parts of the piston $d e$, which will be a very little if the two parta d and e, are nearly alike; thus giving it the advantage of a small piaton while it atill posseases the strength of a large one. I have not marked the handle and other parts as they do not differ from the usatil constraction.

A Woreing Mecranic.

Neweartle-on-Tyne.

[Tbe above suggestion is very ingenious, and appears likely to prove viluable. As the principle of the press in its improved form is to pump into the main cylinder a quantity of water equal in volume to the difference between the solid contents of the two pamp-pistons we have ventured to apply the name Differential Hydraulic Press

During the military operations of the French in Algeria it was necesenty to export from France hay for the cavalry horses, and in order to compress the hay into the smalleat possible compass, it was subjected to the action of the hydraulic press. But it was found that the operation was exceasively slow, as during the flrat part of it a very large quantity of water was pumped in with little or no reaistance from the compression of the hay. A similar diff. colty frequently occurs on less important works than that of maintaining a new colony, and a very simple addition to the pamp here described would probably remedy the evil.

Let the cylinder to be continued down into the space s, and let this lower cylinder communicate by a pipe, having a stop-cock, with the reservoir, and aleo by a pipe similar to k, with the main cylinder. When the pressure at y is amall a large quantity of water may be pamped in at each atroke, and if the stop-cock be open, the upper and lower pump pistons will both draw water. When the pressure at v becomes great, the atop-cock may be closed and water will be forced from the apper pump cylinder only.

By this contrivance two relative rates of working are obtained. Three or more rates of working might be obtained by having three or more sizes of the pump-piston and a corresponding number of cylinders.]

REGISTER OF NEW PATENTS.

If additional information be required reapecting any patent, it may be obtaloed at the ofice of thin Journal.

HEATING BY HYDROGEN.

Josbph Pierre Gillard, of Rue Martignac, Parib, professor of mathematics and philosophy, for "Improvements in the production of Heat in general."-Granted February Ith, 1846 ; Enrolled August 11 th, 1846.

The improvements relate to the application of pure hydrogen for heating apartments, steam engines, furnaces for smelting, and other purposes. The hydrogen is obtained by driving jets of ateam through red hot retorts containing thin iron plates, when the oxygen of the steam forms an oxide on the iron, and the hydrogen of the water is aet free and carried off by pipes to suitable gasometers. Another process for obtaining hydrogen is by injecting steam, with pulverized coal or coke, into red hot retorts, by which means carbonic acid and carburetted bydrogen gases are formed; these gases are carried off by pipes to a purifier containing lime-water, when the carbonic acid is absorbed, and the carburetted hydrogen carried with another jet of steam through a second red-hot retort, when the carbon is decomposed and united with the oxygen of the steam forming carbonic acid, and at the same time the bydrogen of both the steam and the carburetted hydrogen is liberated; thas pure hydrogen is obtained, which is carried off to the gasometer, and at the same time the carbonic acid is passed to a second purifier, where it is absorbed.

For heating apartments two pipes and two gasometers are employed, one furnished with hydrogen, and the other filled with atmospheric air: the pupes ure so conreyed to jets at the spot, that the gases may be mixed before the combustion takes place. Two volumes of air to one of hydrogen will be required for proper combustion.

For locomotive engines, there are to be introduced into the space ocenpied by the fire-box, four or five retorts, as first described, for obtaining bydrogen; and the tender is to have two or three gasometers, to hold the hydrogen and atmospheric air, from which the gases are to be conveyed by pipes to burmers in the engine, for heating the retorts red hot, and at the same time the water in the boiler. When the steam from the engine-boiler has passed through the cylinders, instead of its escaping into the open air, it is to be conducted by pipes to the retorts, where it is decompoeed, and the hydrogen passes from the retorts by pipes to the gasometers in the tender for supplying the engine.

ZINC PAINT.

James Murdoce, of Staples-inn, Middlesex, mechanical draughtaman, for "an Improved process for preparing a cettain material for the parpase of painting." (A commanication).-Granted Febrary 11; Enrolled Aug. 11, 1846.
This invention relates to obtaining pure oxide of sinc, to be used for painting instead of white lead. Zinc, or zinc ore, is put into a fire-clay retort, open at both ends; at one end the charge of zinc or ore is placed and then gealed up; the other end is left open, and communicates with a chamber. When the retort is heated, the zinc passes off in a state of vapour, and as it comes in contact with the atmosphere it unites with the oxygen of the air, and forma the oxide of zinc, the vapour floating in the chamber like a white cloud. For the purpose of collecting the oxide, series of fine wire sieves are placed in a passage leading into anothor chamber; this chamber communicates with the large chimney of the retort furnace, and thereby causes a strong draught of air to pass from one chamber to the other, through the wire sieves; in doing this, the current of air carries with it the fine particles of the oxide of sinc, and deposits them on the wire siever, which are occusionally shaken to preveat their being clogged.

- MOTIVE POWER.

James Nabmyth, of Arundel-street, Middlesex, gentleman, for ${ }^{4}$ cerlais Improcements in engines or machinery for obtaining and applying motion power."-Granted Feb. 16th; Enrolled August 16, 1846. (Reported in Patent Journal.)
These improvements consist in the construction and wrorking of engines in a novel manner, by the agency of ateam or other elastic fuids, or other means, whereby a greater amount of power is obtained than by means ordinarily employed. In this improved plan, two, three, or more cylinders may be employed, as may be required, and the power of the motive agent, Whether it he steam, air, or gases, or any other pressure, is mado to act alternately, first at one end of the train of cylinders, and then at the opposite end, that is to say, if there be two cylinders connected together by a tnbe, the motive agent is admitted altemately above the piston and at the upper end of each cylinder, each being in vacuo alternately. If more than two cylinders are used, they are put in connection with each other by means of tubes, the additioual cylinders, whatever may be their number, ure always in pleno (that is to say), they are flled with air, or some other elastic or non-elastic luid, the pistons of which cylinders move up and down simultaneously with the two end cylinders. The pistons of the two end cylinders or of thone which are altervately io vacuo as before explain-
ed, are actuated alternately by the introduction of the motive agent into Lue cylinders abovo the piston. On the opposite side of the piston the space which intervenes between the pistons of the two steam cylinders, is occupied with air or any other elastic, or non-elastic fuid, not susceptible of condensation. It will be understood that the tubes which connect the cylinder together, as well as the additional crlinders, which are placed between the two end ones, are also kept fnll of air or other elastic or nonelastic tioid, not susceptible of condensation; therefore the power received by the piston of either of the two end cylinders, which are alternately in vacuo, is simultaneonsly transmitted to any other piston or pistons in any other cylinders which may be situated between the two end ones, and these additional cylinders may be placed at any distance or in any position that may be required, always provided that the communication is kept up by means of tubes.
If two cylinders only be emplored, they are connected with each other below tho pinton by a tube, steam only being admitted abore the pistons alternately; therefore when the steam exerts a force to depress the one, the opposite piston is acted on by the exhaustion from the condenser, also by the elastic or non-elastic fluid rushing from one cylinder to the other.

When air compressed, or any other elastic finid, is employed as the motive agebt, it is admitted in the same mannor as steam, and the same effect will result from the same arrangement of cylinders and the connectiug tubes, whether the cylinders be two or more ; with this difference, that the air which has followed the piston must be withdrawn by air-pumps out of the cylinder, in order that there may be a vacuum above the piston.

LOCOMOTIVE ENGINES.

Robert Nisbet, of Lambdon, Esq., for "certain Improvements in Locomotive Engines and Railmays."-Granted February 10; Enrolled August 19, 1846.-Reported in the Patent Jowrmal.
These improvements consist in making such additions to engines and railvays, as to enable a train to ascend, at a very slightly diminished speed, almost any incline. A toothed circle or ring is bolted, or otherwise secured to the rim of each driving wheel of the locomotive engine, or, if necessary, a circlo of teeth may be uttached to each side, tho diameter of which, at the pitch line, must of course be the same as the diameter of the sole or bearing periphery of the wheel. Racks corresponding with these toothed rings are laid down at the inclined portions of the railway, and may either be secured to seats formed in the chairs for their reception, or bedded on separate longitudinal sleepors laid for that purpose; they are continued beyond where the gradient commences, to the distance equal to the leagth of the longest train likely to travel thereon; at the beginning, or where the toothed rings first tako into these racks, the pitch line is placed below the level of the rails, and the teeth at the same poiot are bevelled off on one side to a sharp edge. From this it gradually rises until it altains a proper level, and the teeth at tho same time are bevelled less in proportion as they rise, until they assume a proper shape. This arrangement will facilitate the junction of the rings with the racks, and prevent any possibility of the teeth of the one coming opposite the teeth of the other.

On railways intersected with many crossings, he prefers making nge of only one circle of teeth to each wheel; this he places on the inside, as where the fange passes there will be room for it ; also by cutting a portion of the rail away, through which it may pass freely.

By another arrangement, the toothed rings are secured to the driving wheels by means of four short links, on which they swing, placed at equal distances on the circunference, and will admit of their being raised two or three inches, so as to clear the rails in crossings, or any other obstructions likely to be mot with. The toothed rings, in this case, are acted on by a lever, over which the driver has control, who raises or depresses them accordingly,

Ho states that ho is aware that toothed wheel and racks have before been applied to railways, throughout their entire length, and which method of propulsion he does not claim. But he claims the fixing of toothed circles or rings to the driving wheels of locomotive engines, for the purpose of ascending inclines, and also for retarding in its descent. (This is not new. -Ed. C. E. and A. Journal.)

VENTILATION OF MINES.

William Price Struve, of Swansea, civil engineer, for "Improvements in ventilating mines."-Granted March 11; Enrolled Sept. 11, 1846.

The improvements relate to an apparatua for exhausting the air out of mines, for the purpose of ventilating them and withdrawing explosive gases formed therein. The patentee proposes to effect these objects by an apparatus, that will draw a contioued current of sir through the upcast shaft of the mine, consiating of two large cylindrical tanks built of masonry or other suitable material, partially filled with water; within the tanks are to be suspended two inverted chambers similar to gasometers. From each tank two air-tight enclosed passages are to be formed leading to the upcast shaft, one pasage to lead from the top of the tank above the inverted chamber, and the other passage to lead from the underside of the inverted chamber, just above the water line; each of these pasages are to be furnished with valvea opening inwards, and also with valves opening ontwards to the external air, the valves to be of the same area as the upcast shaft, and are recommended to be mado in compartments of plates of metal faced with leather, bolted on to a framing, the leather forming a hinged joint.

For working the apparatur a horizontal shaft is set in motion by ateam engine, or other power. This shaft passes through the sides of the tanks to the centro, and at each end of the shaft is fixed a crank, attached to a connecting rod; the upper end of the rod is fixed to the centre of the inside of the top of the inverted chamber. When the shaft is set in motion, the cranks, which are set at each end of tbe shaft opposite to each other, are made to rotate, and by them the connecting-rod causes the inverted chambers to be raised and lowered alternately, so that at each stroke of the engine a quantity of air is displaced equivalent to the capacity of the two invertod chambers. By this arrangement the air is withdrawn from the upeast shaft to each tank through the inlet valves, firat under the inverted chamber, then over it, and as the chamber rises the air is expelled ont of the tank above the chamber through the outlet raive, and at the same time the interior of the chamber is being filled with air from the upcant shaft, and when the chamber descends the outlet valve is closed, and air is dramn from the upeat shaft through the inlet valve to the upper part of the tank above the chamber, and at the same time the air is forced out of the interior of the inverted chamber through the outlet valve. Thus a continued carrent of air is being witbdrawn from the mine through each tank.

ELECTRIC TELEGRAPHS.

Hiney Heigeton, m.a., of Rugby, Warwickshire, for "Improvementa in electric telagraphs."—Granted Feb. 3; Eurolled Ang. 3, 1846.

This invention relates to the introduction of an apparatus to supply the place of the maguetic aeedle now ased for electric telegraphs. The apparatus consiats of a glass tube fitted with brase capa at top and bottom, and having a etrip of metallic leaf (gold leaf is recommended as bent) pasaing through the centre of the tube, loosel hang in metallic contect with the brasis caps; the upper extremity of the leaf being fized at right angles to its lower ead, so that the leaf, from whatever direction seen, will present at some part its fiat aprface to the eyo. The brass caps are placed in a circuit suitable for electro-telegraphic communication. Near to the leaf (an on the outside of the glase) is placed either of the poles of a maguet. The effect of this arrangement is, that when a current of voltaic electricity is caused to pass through the circait, and thereby, the metallic leaf, the latter is deflected to one side or the other, according to the direction of the current; and the distinct motion so obtained may be repeated and combined and ased for the parpose of denignating lettern or figures or other conventional signals. One of the apparatus is to be pleced at each terminus of telegraphic communication, and others may be placed at intermediate pointa, each to be provided with a voltaic battery and one of the key-boards used in ningle maguetic-needle electric telegraphs.

NOTES OF THE MONTH.

Bavaria Canal.-This canal, which has been opened for a fow monthe, promises to be of the highest importance to commerce, by it the Rhine and Danube, and consequently the Black and North Seas are united. A vessel can transport its cargo from London or Rotterdam across Bavaria, Austria, Huagary, and Wallachia, an far as Trebizopd and Constantinople, This canal, bearing the uame of Ladroigts Kanal, was executed by the King of Bavaria.

Telegraphic Wires.-A new coating has been applied to the wires of the Munich and Augsburg railway telegraph, the invention of Professor Steinheil, of Munich, it possesses the properties of protecting the wires from lightning.

We are happy to announce, observes the Athencum, that the Budrun Marbles, secured to os by the exertions of Sir Stratford Canning, have arrived from Asia Minor, and are now safoly deposited in the British Museom. The pieces of frieze of which this most interesting collection consists have been removed from the walls of the Turkish fort into which they were built; and where they have, from timo to time, been noticed by Europena travellers-though no very critical account of them has ever been published. Budrun, as is well known, occupies the sito of the ancient Halicarnassus; and it has, with great probability, been supposed that these sculptures formed part of the celebrated mansoleum erected, in that city, by Artemisia, Queen of Caria, to the memory of her husband, Mausolus, b.o. $\mathbf{3 5 0}$-and have, like the frieze of the Temple of Victory, at Athens, been used by the Turiss as the building materials of a fort erected on the site of this monument. If this opinion be correct, these sculptares have an historical value scarcely leas than those of the Parthenon: for wo learn from ancient writers that the frieze of the Mansoleum was the work of four of the nost celebrated artists of the day,-Bryaxis, Leochares, Scopus, Timo-theos,-or, according to Vitruvius, Praxiteles. The Budrun Marbles would thus represent the style of a period in the history of Greek eculpture, of which, from the want of dated monuments, our knowledge is most uncertain,-the century preceding the reign of Alexander the Great, and distinguished in the history of art as the Praxitelian period. We will describe these aculptures as far as a first hasty examination will enable us, The subject, like that of the Phygaliau and Lycian friezes, is a batule with Amazons. At the first glance, we are struck by the masterly composition of the groups, the knowledge and skill which diatinguish the Athenian school. As the eye dwells longer and compares more critically, wo per-
ceive cortain percoliarities distingoisbing the style from that of the older Greek friezes with which we are acquainted. With no trace of the careless, barbaric ignorance so appareat in the Lycian friezes, with more elaborate and akilfal execution than the Phygalian, these sculptures still want the simplicity, repose, and anconscions beanty of the art of Pbidias. Though the general composition is finely conceived, the design and treatment are not without manneriam. The true proportions of the fignres, when compared with those of the Elgin scolptares, appear onnaturally elongated; and the grecefal fow of the draperies is singolary contrasted with the poverty and meagreness of some of the anatomical details and the constraint of the attitades. We are, at once reminded of Pliny's description of the new style introduced by Lysippns;-who, in order to give greater beight to his fgores, subatituted a greater dryness of trealment for the squareness, and full mascular development of the earlier school. With thria change in the type commenced that general decadence in Art which maty be traced atep by step in the coive of the Selencidim, and other suecessors of Alex mander; and which, from the evidence of the Budrun marbles, aceording to their presmmed date, mast have been already iatrodnced B.0. 250. This is ramer an eartier opoch that that from which the deelime of sculpture is usually dated: and in most be confessed that the Budrun friezes, when compared with the reliefs of the choragic monument of Lysicrates, a contemporary work, and otber scolptures considered to be of the same period, exhibit far more atrikingly the characteristic of decadence; and might, in the absence of all bistorical data, be assigred with great probability to the centary anter the death of Alexander, s.c. 329. We will not, however, here asticipate a discastion huvolving the hastorical research and critical knowledge of art which will be requifod to solve the question whether the Bodruil Marbles can be idemstiled with the friesen of the Mmenderim. The surfice of the sealptare is tolerabiy preserved-the marble not of very fine quality.

Lameh of an Iren Steamer at Liverpool, hrilt by Mowrs. Verbon and Co, took place on the 8th of September, she is mamed the Haddfington, and is bain for the Peninsular and Oriental Steam Navlgution Company. Her diarensions are length between propendiculars, 221 foet, over all 240 feet, broedth of beave 35 feet, depth of engine room 91 feet tronage; new mearswroment 200 tons. The engines are of 450 horse, eonatructed on the direct action prineiple by Mesars. Bery, Cartis end Kepredy, of Liverpool.

The Norman Tower af Bury.-Tbe great eastern arch in removed, and the superatructure will be sapported by chores until the incertion of the Dew aret is completed.

Sxecuations in the Aeropokis.-The Arebrologieal Society of Athens are bually porsuing the wort of inveatigation. We truat they rany be enabled to set at rest the dispated points respectiog the architecture of the interior of the Parthenon.

The Electric Telegraphs of the United States extend to 1659 miles.
The Railvoay Monopoly.-A correnpendent of the Times, under the signature "Cato," gives the folloming illustration of the effect of low fares. The charges on the Glaggow and Ayr line are-lat elans, 1-1 fd.; 2nd class, 1 fd ; 3rd clase, $\frac{7}{8} \mathrm{~d}$. per mile. The returnt laat year were ninety thousand poumde, the expensea thirty-six thoonand pounds, lenving a proft of fiftyfoor thousend ponads, or nearly sixty per cont. of the grose retworn!

The London and North Fertern Compatry are about to carry the miil to between London and Liverpool in five bours, inctuding stoppeges.

The Doncaster Station of the Great Northern Raihoay will, with necessary buildings and premises, occupy 35 acres.

Brighton to Hawre.--Great efforts are about to be made to effect rapid commanication between these towns. Under the anapices of the Rouen and Brighton Railway Companies, it is proposed to deepen the harbour at Havre, and to constract a floating breakwater off Brighton Pier. When these works are completed it is expected that pasuengera will be able to em. bark and disembark at all atatea of the tide and wind; and the journey from Paris to London will occupy 12 hours.

The Foltestone Pier progreasea rapidly.

The Portland Breakwoter.-Active preparations are being made for the commencement of the works, and the transmistion of materials.

The Works at Devonport are carried on with great activity. There will be two basins, each 625 feet long; two docka, 309 feet long; another dock, 106 feet long; and a factory, 800 feet by 320 feet.

The Gas Companies af Bristol have reduced the price of gas to 6 s . per 1,000 cubic feet.
Glastonbury Market Cross is completed.
The Manchester Parks appear to bave cest $30,000 \mathrm{~h}$
Rown Rerivivay. - The commission appointed to investigate the accident from the use of liquid hydrogen gas to light the Yost-office carriage bave reported thereon, the continued use of tbat method of lighting will probably lead to frequent explosions.
Draw- Bridge on the Brighton and Hastings Line.-There is a draw-bridge on this line, near Lewes, similar to that over the Arun, deacribed Vol. VIll, p. 269. An engine-driver, a few weeks ago, mistaking, or neglecting the signal to stop, endeavoured to cross the river when the bridge was drawn back, and, consequently, drove the engine into the water. No one was injured.
The Brighton Railway Company intend to ran express trains to Loodon in one hoor and a quarter, instead of one hour and a half, as heretofore.

The New Gmildhall at Bristol is in the late Tudor atyle. The front is built of Bath stone and elaborately ornamented; but the building is caid to be ill-ventilated and ill-lighted. Mr Pope is the arebitect
St. Jamea's, Bristoh, is being restored under the direction of Mr. Fripp, The ancient architecture is chiefl Norman, and the architoct appears to be trating it in a very unceremonions manaer. He bas removed an ancient piscina to make way for an arcade at the east end, of his own design, nod some of the pillars which have swerved from the perpendicular he bee coated with plaster to make them look straight.
Museum of Economic Geology.-A site has been prepared for the new bailding by pulling down some houses in Piecadilly, near SL James's chorch; but there are great complaints of the dilatory manner in which the works procred.
Blackburn Exchange Buildings.-The competing denigns haviag beew examined by Mr. Cockerell, R.A., the firth price han been awarded to Mewrs. Dickson and Brackspear ; the second to Mesars. Bank and Clarke; the third to Mr. Wilcon, of Batb.
The Liverpool Dock Works.-The axpenditure for the year eading Jure 24,1846 , is $£ 321,49$ for new works.
Kemerton Chureh-Archdeacon Thorpe's liberal offer to rebaild the sorth
 contribate $£ 500$, has been accepted by the parishioners after some opposition.

Government Oyfices, Whatehan.-The remains of the ancient chapel of Cardinal Wolsog ure aboat to follow the fate of St. Stephen's Chapel. Is St. Margaret's Charch to be the third macrifice to the "Westminster Improvements"? Verily it becomes an well to meer in the Nineteenth century at the iconoclastic fury of the Puritans! Had we less relf-complacency in comparing our architecture with that of our ancestors, the followisg quotation from a recent number of the Builder, might be listened to.-" The recommendation of a select committee to remore St. Margaret's Church we proteat against strenuonsly ; restore it-improve it-make it itting adjunct to the neighbouring buildings, bat don't think of destroying it.
The Academie doe Beancr-Arts at Paris lately awarded the prinea of architectare. The salject proposed for competition wras the conatruction of a Museam of Natural History. The sacceseful candidates were-fint, M. Normand, 24 yeart ; becond, M. Monge, 25 years ; and, third, M. Ponthiea; 29 years of age.
Manclueder Soireie.-The Manchester annual soirée this month, with Lord Morpeth in the chair, bosets of an attractive phatiorm assenblage. whone names and eloquence will, no doabt, crowd the spacious roomen, mad bring fraitful contribations to encourage the worthily ambitions literature of this populous place.
Wellington Stafme.-Mr. C. R. Cockerell, R.A., the architect, has addrened a ketter to the Times, on the subject of this statue, and added, "one mare voice to the outcry already so jastly raised against the erection of the statue on the arch at Hyde Park corner." He calls it a solecism in art, seriously in volving the honour of the conntry. "The soleciam conaints," he says, "in the proposition to place a statue of colossal dimensions as an ornament to a triumphal arch of disproportionate magnitude, so that the ornament and the principal are in danger of changing places, and the major may become the subordinate of the minor; and again, in proposing to place that ornament on an axis at right angles with that of the arch itself." An noparalleted hero, it is said, may have an unparalleled position; bat in quentions of this nature, he properly observes we naturally turn to classical examples. We : We wish the committee would I All Bellori's examples in his book on the triumphal arches of Rome are against this infatuated sub-committee ; the architect of the arch, Mr. Decimus Burton himself, is agaiast its being there; the artists, the joarnala, and the good sense of the country have denounced it. "Had the sab-committee condescended," hhe says, "to seek the adrice of professional men, the disgrace they are preparing for themselven, and the trouble to the public in replacing this fine work in an accesable and proper site might have been apared.'

New Harbowr at Holyhead.-The obstacles which have bitherto prevented the commeacement of the public works in this harbour, are now, it is semd, entirely removed, and the works are to be immediately begun. Captain Beechey, of the surveying steamer the Pirefy, with the assistance of Mr. Readell, and a number of divers from Portsmouth, made a most minute survey of the sea ground (that is to form the harbour ; which hat proved to be equal to that of any harboar in the kingdom. Hitherto an opinion was entertained by many nantical men that it would alwaya be a dangerous harbour, on account of the sapposed rocky nature of its anchorage; but the present surver has dissipated this idea; for, with the exception of one or two small insignificant rocks, there is excellent holding ground within the entire space to be inclosed for the new harbour.
At the Academie of Sciences, Paris, a paper from M. Jobard was received on the Chinese system of boring wells by means of a rope instead of metallic rods. He states that M. Goublet-Collet has adopted this system with the best results in Chumpagne; and that the cost is only 3 fr. per foot, without any increase according to depth. The whole of the apparatus costa ooly 500 fr .B. Biot, in his own name end in those of Messra. Bahioet nnd Pouillet, read a favourable report on an apparatua, constructed by M. Rumkorff, to facilitate the exhibition of the optical phenomena prodnced by tranaparent bodies when they are placed between the oppoite poles of a magnet of great power.

Pare Acudony of Selment-Sept.14.-A commantantion was received from Mr. Morse siving an accouns of the extent of the telegraphic lines already established in the United States of Americt. It is as follows :-
Abeny to Bufialo 350
New York to Boston 350
220
Do. to Albany 150
Do. to Washington 230
Wasbingten to Baltimore 40
Baltimare to Philadelphis 97
Philadelphis to New York 88
New York to Newhaven 84
Newhaven to Hartford 30
Hartford to 8pringfield 20
Springfield to Boston 98
Albany to Rochestor 252
Total 1659

Mr. Morse states, in his letter, that the electric telegraph is now the chief mode of transmitting all the news of the Government and the inaportant correspondence of merchante and of the public genernily. It infuonce han, he says, been already felt by the press. The journalis of the large towns, which were taken in the country on eccount of their giving the mont recent news, have lost a great number of their subacribars; whilat there has been a very large increase in the circulation of the jonrnals of the small towns near the extreme points of the electric telegrapha.

New Voleano.-A letter, dated Ang. 14th, from Lient. Barter, of the Bast Indin Company's stemmer Victoria, states, that on that day amoke wat obmerved to ianue from the summit of Seddle Isinnd, lat. $15^{\circ} 7^{\prime} \mathrm{N}$., long. 42° 12' m. The account adds: "The weather at the time was very squally, with thonder and lightning; Saddle Ishand is one of a group called Zebayer Islands, in the Red S6e, in the direct track of veseels proceeding up and down, and are all of volcanic origin ; bat there is naither record nor tradition of their having been in active operation. Jibble Seer, in lat. $15^{\circ} 32^{\prime} \mathrm{N}$. , and long. $41^{\circ} 55^{\prime}$ E., wat observed to be amoking when visited by the officers of the Benares during the survey of the Red Sea, but never since. There is a tradition among the Arab pilots of its having been on firesome fifty years ago, and it bears among many of them the name of Jibble Dookhan or Hill of Smoke, and has the appearance of haring been in active operation at a much later period than the Zebayer Islands."

The "Great Western" Locomotive is taken off the line to be repaired, though it has been but a short time in use.

The "Great Brifain" Sleamochip has gone aghore off Ireland. All the peseangens were rescued.

The Marley Twanel, South Devon Live.-Fifty yards have fallen in, and four men have been killed by the accident.

Newcastle and Berwick Railway will consist of six arches of 125 feet span. The quantity of iron required is 6,000 tons.

On the Glasgow and Greomock Raiboay, srd class passengers pay one farthing per mile.

Ipswich and Brry Line.-The embankments on the Btowmarket Marsh have sunk into the morass (which is 80 feet deep), and disappeared.

St. Mary's, Truro.-Some time back, the pillars of the chancel wore restored by the vicar. The effect was so good, that several parishioners endertook to restore each one pillar of the nave. The improvementa are very encouraging.

Au Saints, Wigan.-Very extensive repairs are in progreas. The architecture is Perpendicular.

Holy Trinity, Hull.-This noble church has beed the subject of a costly renovation. The capitals of the pillars are gilded, the ceiling is coloured blee with stars of gold, and new church faraiture has been provided,

St. Johm's Gate, Clerkenwell.-The reparation progresses slowly. All that the fands safice for is the rebuilding the parapets in brickwork, and pointing the ntonework where it is not too much decayed.

Whitfield, in Glosoop.-A new church in the Early English style is monrly completed : it has a lofty enriched steeple.
The New Music Hall, in Liverpool, has been commenced. It is to be in the Italian style, and will contain $\mathbf{8 , 3 0 0}$ people. Mr. Canningham is the architect.
Manchester.-The Infirmary is enlarged. Two large Catholic churches are being built.

The Brusels and Antwerp Telegraph is open to the public. The charges are. for communicating from 1 is 20 merds, five frames; reply, one penny; sending it to the renidence of the inquirer, fioe ponce. In Bngland the charges are from twelve to twenty times dearer. How much better (if the odd remark) do they manage these things on the Continent! But John Boll has plenty of money, and can afford to spend it. On all the lines terminating in London fre shillings is the lowowt charge for a telegraphic mesase; and 8d. per mile is anaily charged for sending a porter to communicate the masage in any part of London.

NOTES ON FOREIGN WORKS.

The Water-cities of Chime.-The Franch oommiscioners lately returwed from that comptry, bave added much to our present knowledge of those curions bebitations of the Chinese. That country is literally paved wish haman boings, bence sreat numbers have ohosen the waters for an abodetheir they are bort, live, and die. Canton, for oxample, has e fonting city on the Tchou-Kiang. Ejighty thousand barges are there at anobor, and form regular districis and streets. Allowing to each barge oaly tea inhabitants, which is suraly not enough in a country where families are very numerous, this river-oity will have a population of nearly a million of souls. The cities in the interior resamble rather ants' neats than any thing else. The woader of all is the oity of Son-tchou, on the Imperial Lake, 180 miles from the cea, with which it commonicates by a marioe canal, accessible to the lacgest vessels M. Hedde, one of the commissioners, has visited it, and states the number of its inhabitants at twoatyGve millions (?) Of these, ten millions live on the waters-viz., in the port and the canals of the city. Up to a certain age, the ohildren in thene wrater-oities have a sort of wooden buoy attached to their shoulder, whioh premerves them if they fall in the water. Not only men, but even enimals live on these bargen, and ducks, to an onormous extont, fill up the decks and holds of barges and vassels.

Panoramas of the Priacipal Citice of Ressia.-The attention of the people of Moseow had been altracted, during the summers of 1844 and 1845, towards a person, who every day established himself on the platform of the steeple of Ivan-Veliki, and remained there until sun-tet. This height commands a viow of the holy city and fifteen lagues aronnd it. They knew, in fine, that this curious personage was M. Acaric Baron, a French artist, who painted a panorame of the old city of the Czars. The higher clasees of Moscow thas took an interest in the artist. Such was the renown of his praverance and akill, that the Emperor wanted to see him, and M. Acaric-Baron received orders, as soon as his beantiful cartoons were completed, to repair to St. Petersburg. His Majesty, afler the inspection of the work, ordered that the padorama of Moncow should be placed in one of the rooms of the Imperial palace. M. Acaric obtaised, moreover, permission to publish his work on stone, and the Emperor and Prince Leuchtenberg headed the list of subscribors. It is now spoken of, that M. Acaric will receive commanda to paint the panorama of St_{t}, Petersburg and the other large cities of Ruseia.

Art in Italy.-The Italian Academien, like those of other conntries, Iny under the imputation (right or wrong, we shall not decide), that the truly vivifying and pregrant apirit has departed from them. It is to be taken into account, however, that while all other instractional institutions aim only at the affording of the current atook of knowledge and acquirements, art-acardemies, on the other hand, are only then praised, if they have produced extraordinary talents. More than ever, Italy is engeged in the exploration of her sobterranean treasures; and soon, the art-specimens of her old inhabitants-the Etruecans and others-will cover the presses and tables of our musenms. As to the general mode of exhibition, we may rejoice at the greater adherence to historical arrangement now generally reeorted to; while, on the other hand, those merely arbitrary shiftioga of The specimens of art in the Vatican, or the pasting of a row of Lickets on them (requiring the constant purchace of new catalagues), as has been done at Naples, are far from being oommendable. Even the, perhaps well-intentioned, transposition of the antiques in the Villa Albani inspires ua with grief, when we think that the former arrangement had originatod with Wiakelmana. The picture galleries of Italy lose, at times, by the circumrotation of men's fortunes, their fairent gems ; and thus that aplendid picture of Francesco Francia, of the Eroolani Palace at Bologon, hes gone to Russia. Others, however, refuse any offer, as for instance, the Duke of Terranuova, in Naples, who praises his Holy Family, by Ra. phael, painted for one of his ancentors, like a family selic. On the other hand, many hitherto forgotten or buried pictorial treasures are brought to light, as, for instance, the paintiogs of Gritto at Florence, in the Bargello, or the Last Sapper of Raphael in the convent of St. Onofrio delle Monache, in the mane city. Collections which, hitherto, were scarcely considered of any note, like the Royal Palece at Turin, are botter known and appreciated, and at Rome new one has aprong ap, which has made a splendid beginaing, with the acquisition of the great Altar piece of Filippo Lippi. In several galleries the lighting from above has been introduced; if, however, this is not done efticiendy, it will always be unsalisfactory, especially were picturea of small siee are to be viewed. Moreover, such a kalf.light from abore will make pictures appear in another light than that in which they ware painted, and in which the artint intended them to be seen.

Late Excanations in Italy.-M. Alessaodro Françoin, known by hia former ancosses in the above enterprise, has begen of late some excavations at Chinsi, in the so-called Nun's bush, and his tact is so correct, that after he had traced his lines, by the work of oaly sir excavators, after the short space of two hours, the veatiges of an ancient tomb were found. Further exertions laid open the row of tombs, which led to the subterranean chamber. To penetrate, however, to thir, fall six days of incessant labour were required, as the Hypogoenm lay at a tremendons depth. This consiats of three rather large rooms, of which the first is adorned with wallpictures. Two, however, only bave been preserved. One represents a chase-two men and a dog pursuing a hare. The other consints of two persons, who are received by another, sitling, with a certain air of solemnity. A fate player stands beside them. The pictures are made in an
exceedingly delicate and free manner. In the middle of the first tomb there are also paiatings-viz., two red tents, whose onds are exteaded by two geaii. The pictores of the ceiling are in a perfect state of preservation, being red cassetons with a dark border. The minor contents of these tombs were also interesting, as besides several palere with charming desigos, fragments of works in bronze and gold, and a very fine vase of Olerite with fine relievo designs, were discovered. The Princess of Ca aino continues to explore the environs of Civita Vechia, the encient city of the Valci. They have been resamed this year near Ponte Rotto, on the banks of the Fiora-the locality where, last year, the fragments of yome aplendid bronze chariots were discovered. The worknen have this time found a large sepalchral chamber, in which two huge sarcophagi were met with. The one is of that rock called nenfro, and the other of marble, or rather alabaster-the latter being ten yards long, and on the lid are two figures of natural size. The main tomb is covered all armand with bessorelievos of fine design, well preserved. They represent seenes of combats, and also some of those figures, often to be met with, where bulls are delaniated by lions and griffins. On the upper rim is an Etruscan inscription! Such sarcophagi have never before been found at Vulci. Very interesting and extraordinary is the following: It has been found here, that in the walls on which sepulcliral vases have been, most probably, placed in the time of the Romans, fragments of vases with very fine designs had been ased as an admixture of the cement or mortar of the walls. It is obvious, that at a period when aucb could have been done, the value and eatimation of these Etruscan vases must, for some reason or other, have been completly exploded.

The Donam-Main Canal.- The Monument. - This great nodertaking, uniting (at least, for smaller cran) the German Ocean with the Black Sea-projected by Charlemagne and carried out by Lewis of Bavaris-has been fully concluded by the erection of a monument at the place where its construction had beea the most difticult and expensive-the Burgberg, near Erlangen. The canal had to pass close to the banks of the Regnitz, between two vertical walls, whose distance is 24 feet, and which are, at some places, 30 feet high. For the sake of widening the space taken up by the Bamberg. Nüremberg road, it bad to be extended in the direction of the canal, part of the Burgberg to be cut, and the considerable terraces protected by walls, rising in several stories. The space between Erlangen and the Burgberg, about 4,000 feet in length, occasioned considerable trouble and expense, as a dyke 2,100 feet long, and of an average height of 15 feet, had to be made up to the banks of the Swabach. This dyke is protected by a wall 1,500 feet long, which, like some Roman structures of the kind, is dressed with hewn stones. On this spor the monument is erected, whose fonadation consists of blocks from the quarries of Kehlheirn, some weighing 25 tons. It is Schwanthaler who made the dosigns, executed by some of his best pupils. The material selected for the four statues is also the splendid Jura-limestone of Kehlbeim, and they were cut out, in their rough state, in the quarrs itself, as the block for the statue of the Danube'alone weighs 40 tons. The two reclining statues are 17 feet, and the two standing ones 14 feet, in length. The execution of this work occupied four years, and it was though tit that they sbould be first objects to be conreyed on the canal, along its whole extent, from Kehlheim to Bamberg. The monument is 48 feet high and 42 feet broad, and its basement bears the following inscription in bronze: "Donau and Main-für die Schiffarth verhunden-ein Werk von Karl dem Grossen versucht, durch Lodwig I., König von Bayern neubegonnen und vollendet." Beside this inscription is a bronge trident and an oar, adoroed with wreatha. At the base, a copious stream of whter issues from a bronze lion's head. The statue of the Rhioe represents a vigorous man, whose upper part is ancovered, and exhihits a powerful, manly chest; the features are atern. and the head, adorned with garlands of vine, is turned towards that of the Danabe, represented under the form of a virgin, reclining in placid repose. Commerce and Ioduntry are reptesented by two other female figures. The whole appearance of the monument, whose backgronnd is formed by a somewhat receding mountain covered with oak trees, is imposing and noble.-And to show, in floe, that it is understood now on all hands, that Iodustry, commerce, and the arts can never exist isolatedly to any perfection, the die-siker of the king, M. Nenss, of Augehurg, has executed a fine medal tn commemoration of the above great acbievement for the commonication of middle Europe.

Panama Canal.-The French Moniteur states, that the proceedings between the French-English Company for the canalizing of the straits of Panama and the government of New Grenada, have arrived at that point, that oothing bat some midur matters remain to be seitled. It was M. Elein, agent to the Company, who had negotiated at Bagote with the President of New Grenada.

Effects of the late Earthquake in Italy.-A great many scaffoldinge yet to be seen in the streets of Leghorn, attest the severity of the shocks; and the damage cansed in that city alone is valued at two millions of livres. In Pisa it wras necensary to demolish whole bouses.

A whole Moumtain of Grecian Andiquities to be Purchased!-A Gorman traveller in Asia Minor seriously puts forth the suggestion, for any friend of antiquities to purchase the mount near Priene, on the banks of the Meander. On the plateau of the hill lay a world of ruins of the old show. bnildings, amongat which are the huge ruins of the famons temple of Athene. Our informant says, that with two thousand dollart, a monntain of, colomns, marble slabs, frieses, sce., could be acquired,

IIET OF MEW PATHETB.

GRanted in mingland trom august 25, 1846, to september $24,1846$.

Sis Months allowed for Enrolment, unless otherwire expressed.

Alfred Krupp. principal of the hoase of Frederick Krupp, of Essen, Prumia, but now of Lelceater-aquare, for "certain Improvements in the manufactare of poons, forkn, and othef nimilar wares, and in the machinery, or apparatus, emplojed therein, parts of which are also applicable to other manufacturlug procensen."-Sealed Anguat 28 .
Thomas Wroughton, of Eitham place, Zenuington, gentleman, for "certaln Improre menta in apparatua and instrumenta for ventulation and respiration."-Augast 2 .
Heary Beasemer, of Baxter-houne, Old St. Pancras-road, engideer, "certaln Improvementa in reilway enginea and cartages, parte of which improvements are applicable to the propelling of ateam vessela, and to motive purposes generally."-Anguat 26 .
Richard Clarke Burielgh, of Bath, gentleman, for "certaln Improvements in artioctil Ught."-August 28.
Arthur Howe Holdaworth, of Brookblll, Dartmouth, Devon, Eiqq., for "Improvements In buoyt and givlog buopancy to boaks."-Augugt 2y.

James Boydell, of Oak-farm-workn, near Dadiey, Ironmarter, for "Improvemerial in applying apparatus to carriages to facillute the dranght."-Auguat 29.
Whillam Air Forater, of Glangow. leather merchant and boot maker, for "an Improsed mode of making beits for driving macbinery, tracen, reins, and other artucles of leather, felt, or parchanent, and for an improved apparatins or machinery for the tame.tAugut 29.
Alexander Debsin, manafectarer, of Parin, France, for "certatn Improvements appll. cable to keyed musical instrumenti."-Auguat 29 .
James Roose, of Darienton, Stafiond, tube manufacturer, for "Improvements in the manafacture of welded tron tubes."-Angun: 29.
Henry Heneon, of Hampatead, Middiesex, gentleman, for "certaln Improvementa in rallways, and in railway carriagea, baviog for thelr object the better accompodation add securlty of the public."-Augut' 31 .
James Warren, of Montague-ferrace, Mile-end-roed, gentleman, for "Improvements to the manufecture of cast screws."-August 31.
Fredertck Henry Weat, of the City-road, Middimex, gentlemen, for "certain Improve menta in aecurtag corks in bottles, Jarn, and other vepsele to contaln uquids and other

Nicholes Harcey, of Rayle Poundry, St. Erih, Cornwalf, for "cortaln Improvemeoth In Altering of mater for steam engines and boliera."-sept. S.
James Coles, of Harlep-street, Cavendish-equare, Middiemex, surgeon, for "Improve. menta to apparatu: for the praventlon and treatment of distortions of the apline and cheat, alioo for treatment of diseases of the spine and other disordert where a recumbent poastion of the patient is required."-September 3 .
George Senior, of Bradford, York, gentleman, for "certaln Improvements in washting cleanalig, ecouring, and bleaching alik, cotion, wool, and sbroas substances generally, almo in dyelng, combing, carding. spinning. felting, milling; or otherwise treating or preparing fibrous substances generally."-September \dot{y}.
Peter Armand Leconte de Fontalnmoreau, of Nes Broad-atreet, London, for "certaln Improvementa in the machines for the manufactare of bricks and othet plasicic producta;" beling a commandeation from a foreigner residing abroad.-September 3.
Charles Ylerf, of Rue St. Latare, Parla, Prance, engineer, for "Improvementa in th certaining and regulating the apeedi and times of railowa traina."-September 10 .
Moses Poole, London, gentleman, for "Improvements in treating vegetable \mathbf{B} bres to render them applicable to the manufteture of paper." (Being a communicition.)-September 10 .

Charies Ruchamson, of Dalaton, Middiesex, gentleman, for "certala Improvemeata la making and refiaing of awgar, and in the machinery and appartue employed theretn." (Beling a communlcatlon.)-September 10.
David Davien, of Wigmore-sireet, Cavendish-square, Middlesex, for "certaln Improrements in teps for carriages and other purposes."- Heptember 17 .
Hichard Ford Sturgen, of Birmingham, Britannia were manufacturer, for " Improremanti in flitering apparatus, and in apparatus for maklag tea-pots, and other vecoels of metal."-September 17.

James Wiliam Bowminn, of Grest Alle-street, Middlesex, for " Improvements in reburuing animal charcoal."-Seplember 17.

William Palmer, of Sution-street, Cierkenwell, mansfacturer, for "Improvements io the mannfacture of lamps and candlesticks, and in gas and other pillars and plpes."September 17.

Henry Franklin, of Marstone Mortalne, Bedfordshire, for "Inprovenenta in the manufacture of bricks, thes, and other Hhe articlea."-September 17.

Prederick Brown, of Lution, Bedfordishire, Ironmonger, for "Improvementa for orem for ritchen-rangea."-September 17.
Willam Edward Newton, of 66, Chancery-lane, for ${ }^{44}$ Improvementa in preserving fruit and vegetables."-September 17.-(A communteation.)

Henry Wrige, of Upper Holloway, Middlesex, cifil engtneer, for "certaln Imprond meass or methodis
Jamer Lamb, of Canal Koad, Kingsland-road, for "Improvementa la the mannfucture of cloges."-September 24.
Alred Vincent Newton, of Chancery-lane, for " Improvemente in the method of hardAltred Vincent Nemton, of Chancery-lane, for "Improvementa in the method of hard-
ening and tempering vartons articles made of ateel, or of iron and steel combined; " belng ening and tempering varions artiel
a commanication.-Septrmber 94
Henry Deacon, of Eccleston, Lancashire, engioetr, for "Improvementa in the constraction of giattening kilos."'September 24.

Charles Fox, of London Works, near Blrmingham, engineer, for "Improved mache nery for shearing, cutNog, and panching metals."-September 24.
Charles Chinnock, of 8fymour-place, Little Chelses, for " Improrements in folding and securlog leiters, eavelopes, and covers."-September 24.

Edmund Nepot, of Lombard-tireet, gentieman, for "Improvements in the manafac. ture of paper, beligg a compunicatlon."-Seftember 24.

Peter Armand Lecomte de Fontanmoreau, of No. 15, New Broad.atreeh, dity, for at
 municatlon.-September 24.

CORRESPONDENTS.
Next month will be noticed "Peschel's Elements of Physics," "Castie's Surveging," "Mollins on Peat Bog, and the conatruction of Roads, Railwast, and Canala in Bog," and a Tract by Sir Howard Douglan, entitled, "A Reply to some Observations in a review of the pamphlet entilled, Metropolitan Bridges and Weatminster Improvements in the Cibil Enginest and Arehitect's Jowrnal, September 1846."

ERRATUM.-The last senteace ob page 306 is editorial, and does not belong to Mr. Roberts'a remarks. It belongs to the next paragraph.

TRABEATE AND ARCUATE ARCHITECTURE.

The adoption of technical terms in any art usually results from a sacrifice of one or other of the two essential requisites of a perfect nomenclatureperspicoity and conciseness. A new compendious term which supplies the place of a long periphrasis affords to the initiated the advantage of brevity-while to the uninitiated it is liable to appear pedantic and obscure. So that the arddition to the list of technicalities of an art already containing a large number of them should not he made except where the new term anpplies the place of long and continually recurring phrases, and is of itself sufficiently significant to be remembered without difficulty.
Now, in developing the principles of conatructive architecture, we are constantly presented with this fact-that the architecture of every age and country of the world is separated as regards mechanical structure intu two classes-that in which the masonry snstains vertical pressures only, and that in which both vertical and lateral pressures are sustained. The former consists of horizontal eatablatures supported by vertical imposts, unjointed blocks or architraves resting at their ends on piers, and rectangular frame-work formed of transverse beams or joists sustained by upright timbers. In the other great divinion are contained all structures in which the intervals betweentwo piers, columus, or abutmenta, or between the sides of an embrasure or other opening in a wall, are spanned by an arch consisting of many stones so shaped and united as to be capable of resisting the pressure of superincumbent weights. In the science of Mechanics the principles of these two methods of construction are distiaguished thas-in the first method-that in which spaces are spanoed by one single block or beam, the material is infuenced by two equal and opposite forcea of tension and compression-in the latter method where epaces are spanoed by more than one block, the internal forces of the material are generally of the nature of compression only, but there are moreover lateral forces exteral to the system, exertiag outward thursts or pressores which must be custained by external appliances.

It is immediately obrious that these different mechanical principles mast, where the decoration is dependent on the constraction, produce altogether diferant architectural forms. Where the embrasures or intercolumpiation are apanoed by a single block, the difficalty of procuring single blocks of great length will render it necessary that the piers or columns should be comparatively close together, and as the pressures are wholly vertical, the only requisite for atrength is that the columas be not crusbed by the weight on them, and no great preseutions need be taken to prevent them from being overtarsed by lateral pressures. Consequently, in the one mode the columns will be of nearly uniform thicknese throughout their height, and the intercolumaistions will be narrow: in the other mode, the intercolumaiation may be increased and the piers will have enlarged bases.

These considerations in their $\mathbf{v t m o s t}$ generality, distingaish all architecture into two grand classes: and when we regard the value and exceeding comprebensiveness of the classification, it does not seem unreasonable to demand that distinctive appellations sbould be appropriated to it , and be received among the recognised terms of architectural nomenclature. For the names of the two classes no words seem more natural than those contained in the title of the present paper, and accordingly we assume that all architecture is divided into two kinds- Trabeate and Arconte.

Trabeate architecture is the most ancient. Very little reflection will show that a syatem of construction, identical with that of the primitive timber hut, would be the earliest adopted, and that the arch, a structure requiring nuch mechanical skill in the workman, and mach theoretical, or at least experimental, knowledge in the architect, would be one of the appliances of later art. The early history of the arch is very obscure; it is however certain that neitber Pelasgic. Babylonian, Egyptian, nor Grecian architecture present any trace of arcuate construction : the earliest examples which have had any important influence on modern art are certainly to be found among the Romans. The nature of this influence is admirably described in the following passages from Professor Willis's Architecture of the Middle Ages.
"After the arch and the vault had enabled the Romans to constract buildings with small materials, it is ourious to observe the struggle by which the arch forced itself into the Decorative coastruction. At first, the arch is used sparingly, and only in cases of necessity. It is either hid arder the plaster, or it is kept subservient and as if the architect were asbamed of it as a clumsy and economical expedient, all the resources of the Decorative coustruction are employed to conceal the important place it
holds in the mechanical strocture of the boilding. Gradually we find the vanlt first, and then the arch, assuming a more prominent place only to produce that discordant effect which must ever result from the attempt to harmonise two contending principles.
"For when the arch is employed, the diagonal straine must be provided for; and as the Decorative system of the Greeks was founded upon a mechanical atructure that only exerts perpeadicalar pressuren, it is clear that the diagonal ones must be concealed by buge rectangular masses, decorated su as to appear as if sustaining vertical pressures only, unless we choose to invent new forms for the diagonal props. The Romas sttempled concealment, and hence introduced discordance between the decoration and mechanism of the structure. The Gothic builders, in later times, more wisely adapted their decoration to the exact direction of the forces required by the vaulted structure."-p. 17.

Every word of this extract demands the most attentive consideration. No other comment is here requisite than the citation of a few inatances of that violation of the princi,les of faithful architecture which the Romans exbibited in their atteopts to combine arcuate with trabeate construction. In the Coliseun the weigbt of each story is in reality sustained by tiers of arches: in addition to these, however, there are entablatures between the stories which, as well the columns between the arches, are merely affixed to the building for show, and have no constructive parpose. The same remark applies to the Triunophal arches, one and all: and these moreover involve the additional solecism of being treated not as members of a building, but as integral buildtogs of themselven-they have all the strength and solidity requisite fur sustaiaing an immedse superatructare, bat like the monumental colunnas known by the names of Putnpey and Trajan, are isolated and sustain nothing but their own mass, or at most that of statues of which the weight is ridiculously disproportionate to the solidity of the supports. This species of solecism has found great farour in our own country, and is exhibited on a large scale in the Barriere de l'Etoile, at Paris.
Much, however, of the architecture of the Romans was free from the incongruity described by Professor Willis, and even where it exists there is frequently discernible in spite of it (not in consequence of it), great beauty and pictorial effect, which cannot be overlooked without an intoleraot adberence to systematic priaciples. It will, however, be our business to show hereafter that the Romans gained nothing by this sacrifice of purity and harmony-that equal vigour, variety, and depth of shadow may be attained without violating the principles of constructive decoration which were observed in Greek and Pointed architoctare.
The opinion of the authority cited above is confirmed (with a modification similar to that which we have just suggested,) by Professor Whewell, who, in his "Notes on German Churches," speaks of "the Roman introduction of the arch into Grecian architecture" as follows :-
"In this manoer, then, were produced two planes of decoration; one consisting of the traditional scheme of the structure; the other, behind it, cootaining the real construction-the arch and the impost monldings. And though this combination is, in reality, incongruous and inevitably transitional, it would be impossible for a genaine artist not to perceive that it disclosed an extraordinary richnens and_depth of effect."-p. 8 .
Again, -
"The introduction of the arch andermined the Grecian aystem of entablature, and iutroduced a double plane of decoration: the ruin of art and taste supervening on this, broke ap still further the Roman traditional arrangement; caprice and the love of novelty introduced new forms of members and orasments into this incoherent mass: arches, of varions shapes, were invented or borrowed; the Byzantine dome was added to the previous forms of Roman vaulting. So far, all is a proof of disorganisation. But then comes in a new principle of connexion first, and unity afterwards. The lines of pressure fare made prominent features; the compounded arches are distributed to their props; the vaults are sapported by ribs; the ribs by vaulting shafts; the upright meetiag of the end and side is allowed ; the structure is distributed into compartments according to such lines, each of these being symmetrical in itself."-p. 15.

If the admirers of Precedent, those who confound antiquity and excellenceas esseftially synonomous, feel anwilling to admit the authority of two eminent writers who characterise a large part of Roman architecture, the one as discordant and fishooest, the other as incongruous and inevitably transitional, let them refiect that the Romans were, until the time of their emperors, so constantly engaged in forcigo or domestic warn, that they had littie opportanity for cultivating the arts of peace, even if they had not lacked the desire and capacity; that they never exhibited that
pure love and vivid perception of the Beautiful which essentially characterised the Greek race; and, above all, that the Fine Arts were not indigenous with them, but imported-inported, moreover, as the exotic prodactions of a tributary province. The previous education of the Romans by no means qualified them for a conprebension of the subtle principles of Greek art ; and when we consider that they appropriated its spiearid results with no patriotic enthusiasm for them-with on higher feeling, indeed, than the love of luxury and the ostentatious magnificence natural to victorious invaders-it is scarcely to be wondered at that they misunderstood the spirit in which their glorious spoils had been designed. In a word, the Romans not only laid no claim to the artistic feeling of the Greeks, but antually boasted of the opposite tendency of their national genins; and the greatest of their poets 50 describes them in a noble passage, in which his evident object is to paint the character of his countrymen in its fairest colours :-
"Others, I know, will more skilfully mould the breathing bronze and shape the life-like marble; others will excel in the arts of eloquence; or, by the aid of philosophy, mark out the pathways of heaven and tell the risings of the stars. Bat, Roman! take thou heed to rule nations by thy might! These shall be thy arts-to dictate terms of peace, to spare the submissive, and sabjugate the proud." ${ }^{\text {e }}$

In pursuing bistorically the development of arcuate construction, the next period of its progress is that subsequent to the destraction of the Roman Empire in the West at the close of the fifth century. The change which architecture now experienced was not one of mere individual form, but one which effected a revolution in its fundamental principles, and led ultimately to the most extraordinary resulta, by entirely destroyiug the old classic forms and substituting altogether new kinds of architectural composition and detail. The changes which followed the fall of the Roman empire, though essentially similar throughout Enrope. assumed two different forms of expresion in the North and South. To the Northern class belong the Norman of our own conntry, the Romanesque of France and Germany ; to the Southern, the Lombardic atyle of Italy and Moresque of Spain. These two classes, though originating in the same type, never amalgamated at any subsequent period of the art. They possess, however, certain grand features in common, which distinguish them from their Roman model, and are especially to be noted as the real causes of the total change of art which ultimately ensued. The grand innovations of the Byzantine period were, then, the ostensible use of butiresses and the employment of columns to support arches sprioging directly from their cepitals. Architecture continued, however, to exhibit the discordance between arcuation and trabeation : the style every where manifests itself as transitional and imperfect-and these evident marks of transition, it may be observed parenthetically, are of themselves sufficient objection to the modern imitalion of Norman or Romanesque architecture. The buttresses of buildings of that period never possessed any' great solidity; the lateral thrusts of the arch were chiefy resisted by the enormous thickness of the walls, Still a new and fruitful principle had been introduced-that of applying nembers for the exclosive purpose of resisting horizontal strains. The springing of the arch, also, directly from the pillars, led to greatly increased freedom of construction; -the architect was thereby enabled to get rid of the straight eotablatore, which had been a source of constant difficulty and restraint by giving to buildings a borizontal regularity, which, combined with the verticality of successive stories, confined the architect to what may be loosely termed a reticulated mode of construction. It is obvious, therefore, that until the arch was allowed to spring immediately from the columns, it would be impossible to build editices possessing the diversity of form exhibited in the Cathedrals of Spires, Mayence, or Petprborongh, or the church of St. Martin, at Cologne.

It will be seen, therefore, that the change introduced into the architeoture of this period was a great step in the progress of arcoate construction towards its complete development; and although the contest between the arch and entablature was not yet won, the casus belli-the real discordance between the two priaciples-had received practically an accurate definition. The entablature still appeared, but was no longer sustained upon columns. Where it existed, it was either supported by arches or else was prrely adscititious-that is, was simply affixed to the building for

[^46]ornament, without any constructive purpose. Nor was it the only member of the architecture of this period which was treated thus inartistically: arches of decoration, corbel-tables, \&c., were frequently introduced, not constructively, but merely as clumsy contrivences for giving variety to the surface of the masonry. It is an important practical observation reapecting all mixed styles such as the Roman, Romanesque, and modern Mongrel Classic, that they necessitate the employment of adscitious orosments to conceal the inechanical structure of the architecture.

Romanesque architecture-taking the term Romanesque in its mont extended sense-may be considered to bave lasted seven huodred gearsthat is, to the end of the 19 th century. At that time, another great change took place in European architecture-the introdnction of the ogival primitif of France and the Early English or Lancet style here. The great formal distinction between this style and the preceding is undonbtedly the introduction of the Pointed arch. But our present object is to trace not eo much the changes of form, as those of construction which characterise successive styles. Restricting ourselves to this branch of the subject, wo find the chief importance of the Pointed arch to consist in the lightuesa and loftiness of the structures in which it is employed. By known mechanical principles it may be shown that, cateris parilus, the lateral thrust of an arch is diminished as the rise, or beight of the crown above the springing, is increased. If, for instance, two arches, which sostain equal loads, are of equal span, and resemble each other in all other respects except their rise, be compared, the flattest arch will exert the greateat borizontal thrust. Now, in the semicircular arch the rise conld not exceed half the apan-in the Pointed arch, the rise was incriased frequently three-fold, and occasionally four-fold. It will be seen, therefore, that in the new style the necessity of resisting lateral pressure would be greally diminished, and accordingly the piers and abutments are found to be much less massive. The facility of sustaining great weights without cumbrous piles of masonry at their bases, lead to the adoption of that glorious characteristic of Christian architecture-the Spire; a member which the perversity of modern debased architecture has applied to buildings in which it necessitates incongruity or concealment of the mechanical construction.

Another important innovation of the Lancet atyle was the increased breadth of the buttresses. This change may at first seem inconsistent with the dimioution of the lateral pressures of the arches; but it is to be remembered that iu the preceding style, these pressures were resisted not by buttresses so mach as by continuous walls of enormon* thickness; and that in this style the thickness of the walls was greatly diminished. So that io the Lancet style, in fact, the appliances tor resisting lateral pressures were not increased, but merely rendered more apparent. In the Norman style the whole wall formed one continuous buttress; in the nev sty le this continuity was broken-the buttresses were put just where they were wanted, and no where else. Moreover, the form of this buttress was greatly improved : instead of being of a uniform height from the base to the summit (like the continuous wall) it became talmated-that is, diminished by stages. To refer again to mechanical principles, we see how great an advantage was here gained. The mechanical requisites of a buttress are that the "line of pressure" should fall within the buttress in every part of it; so that provided the base be sufficiently broad and the diminution of the breadih of the buttress from below upwards be not too rapid, all the strength of a uniform structure is attained. The new form of the buttress, therefore, effects a vast asving of superfinous material, and, therefore, a great increase of architectural beauty.

No generic changes of arcuate constraction were made subsequenty to those described. The succeeding style (the Decorated of this country) introduced great variety and complexity of form, and the traces of the entablature are still fainter than in Early English. Still, considered constructively, the arch and its appliances remained noaltered. In the third style, however, the arch becomes far less acute than before. It is curious to notice in this, as in many other cases, the recurring cycle of variations, wbich seems to be a law of art. The first innovation of Pointed architec. ture was the lofty acute arch-now the arch becomen actually futter than in the old Norman or Roman. As a necessary consequence, the piers and buttresses are increased in magnitude. We have now the piers of the nave of Winchester, the buttresses of King's College Chapel, and the flying buttresses of Westminster Hall.

The later Perpendicular exhibita in form, bat not in reality, a retarn to the Trabeate system. Horizontal lines become more frequent than berewofe: but they are nsually confined to surface-panellugg, transom-bers, and similar details. They dever exhibit themselves in true architravee, or siagle unjointed blocks. On the contrary, the extraordinary width mow
giren to arches and vaultiog tared to the nf most the resonrces of arcuate construction.

Then followed the decline of the arte. Pointed architecture beeame distingaished by conventionalism and over-refinement-the sure precorsor of decay. Artistic feeling grew feebler and at lat absolutely perished. A coaclusive proof that it had periahed, and that caprice had succeeded to itt place was this-that men lost aight of architectural principles and cared only for architectaral forms. There arose a atrange classic mania, and, as might be expected in such an age, the classic forms were employed in biter ignorance or defiance of their right application. Every perversion and groteaque absurdity which empericism could invent or ignorance tolerate received anction during the period styled the Kevival. The confusion of arcuate and trabeate construction exhibited in Roman architecture was renewed in an aggravated form. Columns stilted to give them an undue height, their sbafts deformed by aquare dies disposed at regular intervala, or channelled with sinuoun lines in extravagant imitation of the natural roughnese of unhewn stone were among the minor barbarisma. What shall we sey of semblances of huge gables or pediments attached to the infernal walls of baildinga and ridicalous imitations of amall gables arranged in rows on the external walls? Sometimes we find doable pediments on the outlines of two gablen repreeented in the surface of a wall by triangles set one immediately above the other. And sometimes we find portions of cornices cut away a as to leave a gap in the upper or lower part of the pediment; and at other times the pediment is polygonal or curvilinear, the curves having occesionally a contrast fiexure. No amonnt of precedent would ancion these abases which seemed to have been perpetrated for the expreas purpose of bringing the Classic forms into diagrace. Moreover, the weight of Precedent, if in this case it bave any weight, is on our side, for it was the Revivelists, not we, who rejected its authority by appropiatiog the ancient forms to atrange and novel usen.

It belongs immediately to the aubject to observe that in the history of Art the decadence of constructive arts hes generally been coeval with the advancement of the decorative. At the time when architecture han flourished, painting, aculpture, \&c., bave generally been neglected, and conversely. The noblest, purest, most faithful architecture which the world has seen since the Christian era, belongs undoubtedly to the age of Cologne Cathedral: and yet the uncouth forms of monnmental brassea, wood carvings, and painted glass, of that age, are inartistic in the extreine. They are for the most part incorrect in drawing, shadow, or perspective; inaccurate in the anatomical forms and proportion, and manifeat that stiffaens and ancertainty in the use of the chisel and pencil which infallibly mark the first efforts of rude art. Monumental sculptures did indeed occasionally exbibit great merit, but these works are rare exceptions; and those of them which exist in our country seem to have been the productions of foreign artiats. In proportion however as architecture progremed toward decay, the decorative arts eatablished themselves on its ruins. The Chapel of Henry VII. at Weatminster is filled with the most beautiful carving; and his tomb is one of the last and noblest pro. ductions of medirval art. The painted windowa of King's College Chapel have no parallel tbroughout the worid for magnificence: executed probably after the completion of the building, they exhibit far higher merits than those of gorgeons colouring and minute workmanship. The compoaition and drawing of the east Findow in particular are Fonderful proofs of the excellence to which the decorative arts had atteined.

Of the era of Rapheel it does not lie within the compass of our subject to say more than that the magnificence of ite sculpture and painting presenta a strange contrast to the impurity and incongruity of ite architecture. Once, and once only, in the world's history, a Phidias and Ietinus appeared together.

The clasic Revival affected England more slowly than the rest of Earope. Among a peopie, whose attachment to particular forms and castoms is slowly contracted and long retained, an imported style of architecture would not eanly find favour. Even after Pointed Architecture had died of old age, many of ita forms were retained. The windowa of the Debased Tudor atyle are mollioned and retain their hood moulding. The Elizabethan frequently shows a great deal of constractive faithfolnes and pictureaque effect, and wiere it is tolerably free from clasic detaile, presents mach that is worthy of modern imitation.

There was a trabeate styie which reached ite greatest perfection in the reign of Elizabeth, which is to be noted an especially remarkable for its character and the time in which it appeared. We mean the timber framed architecture of the halle and manor-houses erected in this reigu. This atyle
is frequently exbibited in great magnificence in this country, and in parta of the continent, auch an Belgium and Normandy, where timber is abundant. The cities of Ghent, Bruges, Ronen, \&c, diaplay beautiful specimens of atreet architecture, which put to shame our modern system of showy decoration. It seems singular that a atyle almost purely trabeate should have flourished at a time when great efforts were made to effect an incongrous adaptation of Classic forms to arcuate construction. Nor is it less remarkable that the timber-framed style should be so nearly faithful as it is. The gablea are treated constructively as the ends of roofs, and where columas are uned, they are generally used as aupports. The fashion of affising columns upon the faces of walls, where they appear as mere protuberances, was of later growth.

The Elizabethan aud timber-framed were the lat of the original atyles. The huusea of the period of Queen Anne have indeed a certain degree of character from the conapicuous use of the plate-band or straight arch in doors and windows. Still it may be considered with eufficient securacy that no new apeciea of conatruction was introduced subsequently to the reign of Elizabeth. Since that period architecture bas consisted in the imitation of ancient styles and the reproduction of ancient forms.

We bave therefore arrived at the conclusion of the hiatorical portion of our subject. The application of the principles which distiagaiah arcoate and trabeate constructio to modern architectare, will be the aubject of another paper. These principlea have been so aystematically violated during the last three centurien that great difference of opiuion will exist respecting their importance in architecture. The historical sketch here given may however be useful in indicating a plan for compiling an altogether new kind of History of Architecture. Numerous writers have already chronicled the successive changes of architectural forms-tho history of Architectural Conatraction remaius to be written.

CANDIDUS'S NOTE-BOOK.

 FASCICULUS LXXI."I must have liberty
Withal, as large a charter as the winds, To blow on whom I please."

I. Those who have soggested-altogether prematurely, it now seemsthe Tudor style, for a new metropolitan royal residence in lieu of Buckingham Palace, have overlooked one or two objections that present themselves. In the first place, the Qaeen herself might wish for something altogether different from Windsor Castle,--for a "companion" or " pendant" to it, but distinct from it in character, and affording opportunity for exhibiting quite another mode of embellishment. In the aert, were it to be at all similar in style to the "Palace of Westminster," immediate comparison between the two would be the cousequence, and as it is not at all likely that a second palace would at all rival or approach Mr. Barry's edifice, in luxuriant ornateness, the comparison would hardly be to its advantage. Thirdly, domestic Tudor or Elizabethan are now so frequently employed for huildings, which towever large they may be, are the reverse of palatial in purpose, that owing to the modern application of them those styles are now in some degree identified with hospitals aud other public buildinge of that clags.
II. Surely it must have been said for Wilkie, since he himself could hardly bave uttered such a piece of extraragance as to assert that, "what the toar of Europe is neceseary to see elsewhere is now found congregated in the single city of Edinburgh !"-At any rate he could not have uttered any such arrant claptrap in bis wober moments, for only the influence of " mountain dew" could have enabled bim to find "the bays of Genoa and Naples, the Roman capitol, and the Grecian Acropolis, there realized." Pity ! that he could not fancy Venice there also, and take St. George's church for another St. Merk's. If nature has been somewhat liberal towards the Northern capital by affording it a picturesque site, art has been stiagy enough. The lovality may be called romantic, but the erchitecture is shockingly prosaic. Scarcely a single edifice in the whole city can be quoted as a monument of art or superior taste, least of all those which have been erected for the nonce as " monuments," to wit, the Nelson onea thing so truly contemptible that its architect bas prudently preserved a strict incognito ;-the fragment of the Calton Hill Parthenon that was to
heve been; and the Scott structure, which, sooth to say, is bot a very soeoish specimen of Gothic. Probably some of the more recent buildings may show a little advance in architectoral taste, but bitherto it has teen at a very low ebbindeed, sood deal of the Edinburgh architecture being traly Peekspifian, although it has the advantape of being all of genuioe stone ; yet it would, pertaps, be more correct to call that a disadvantage, aince the durability of the material serves to perpetuate and record the poverty of design exhibited in the buildings themselves, and their utter want of sathetic value. Though the pictoresque of flith and wretchedness may be found in many of the "wyods" and lanes in the older part of the city, the modern architecture of the Northern Athens is almost the reverse of pictorial, -chillingly cold, tame, and insipid; which accounts for the picturesque just mentioned being selected by draftsmen and illustrators in preference. The stooe edifices of Edinburgh reconcile us to the "lath and plaster" ones of London;-as to the matter of the "lath" it happens to be invariably of brickwork, therefore far more sobstantial than it has the oredit of being; and as to "plaster columns," there is no oecasion to rail at what exists only io imagination, anless it has been found that either castiron or brickwork becomes transformed as to mere plaster, as soon as it is plastered over.-To skip back to Edinborgh, its buildings sound much better than they look, which accounts for the architects themselves not ever publishing designs of them, notwithstanding the admiration they seem to excite, if we may judge by the vapoaring made abont then. Drawings are in one respect the best test of architectural design, becanse design is then judged of by its iotrinsic merit and the taste displayed in it, apart from adventitious circamstances, and thuse of material ; the excellence of which last, or the contrary, is oot to be jmpoted to the architect himself. Io drawings, while stone buildings show no better than if they were of meaner material, the merit of tasteful design in " lath and plaster," may be enjoyed without any drawback, and we have the satisfaction of knowing that if the structures themselves are of perishable quality, their beauty is rescued from destruction and preserved by the graver, as is the rase with many antiquities, and also many far distant buildings which we are acquainted with ouly hy means of the representations of them.
111. The Institate is no Society fur the Diffusion of Knowledge either usefnl or aseless. What knowledge it gets it keeps to itself; and truly, knowledge is so valuable a commodity that it ought not to be squandered awny in lavish largesses to the public. The lnstitute is perfectly free from the mania of proselyte-makiog; it has no notion of encouraging archiséctural "education for the people," but leaves the people, or people who would fain understand something of architecture, to instruct themselves as well as they can, or else-which is perhaps better still-to remain in ignorance. Nor, indeed, is it by any means certain that a more general diffusion of taste for the art would at all increase the amount of admiration now beatowed on some of its productions and their authors, or the amount of satisfaction derived frum them to the public. Great truth is there in the maxim of omne ignotum pro magnifico, as there is also in the remark that "familiarity is apt to beget contempt;" and there most assuredly would be danger of its being discovered how very little mind, or talent of any sort there is in many things that have been cried op as wonders. Thanks to their convenient ignorance, there are a good many honest people who have no suspicion whatever that the "fine" and "grand" columns they behold, aud whose "hard names" are to them a mystery, are only copied from patteras got out of books. It would be cruel to undeceive them,-to dissipate the dreamy wonder that now fascinates them; and cruel not only to them, but also towards those whose works now pass with the ignorant for marvels of art. If the pablic is to be liberal with its admiration, it must Dot be clairenyant. On no account should it be suffered to know enough to be able to criticize fairly and justly; so that it can but find words for praise, that is sufficient, and if they are somewhat ill-Rpplied, they are not, on that account, likely to be the less landatory, or less magnificent in sonnd. It is, however, exceedingly dificalt to hit the exact mark, and to keep the public at that convenient point of the thermometer of taste, where ignorance of art is so free from indifference towards it, as to be accompanied by a praiseworthy relish for it. While it is proper, it would seem, that persons in general should not be at all instructed in architecture, it is desirable that they should take great interest in it, and be diaposed to encourage it very liberally. Architects are apt to complain of the obtuseness and obstinacy of employern-of the atopid whims and caprices which have eaused many a fair idea to be marred, but they do not perceive that the only real remedy is to be sought in the better instruction of that class of the community to which architects look for their emplojers.-But I am inter-rupted-
IV.-A packet has this very instant been put into my hands; I open it, and find a book, I open that too, and turniog over its leaves immedialeis alight upon the following very free remarks opon the Inetitute:-
"Their policy, I say, is bad, utterly bad; but I do not say blameable: it is mistaken. They have, I doubt not, as sincere and honrst a desire for the advancement of the art as I could possibly claim; but their policy is a false one, and in manner as well as in matter. The doctrine of the Institute is false; the constitntion of the Inatitute is false likewise. And when I point out (according to my judgmeat) the errors in general faith, I would pont ont also (as equally iuportant), the errors in goverament of our dational ychool of the art. The Royal Institute of Britiah Architects has not a free liberal constitution. It is beneath the level of other institutions of the country. And this ought not to be. Mistaken doctrine is bad, mistaken policy is perhaps worse. The narrownesses, coldnesses, ronghoesees, of much of our social system are expanding, warming, softening, in these days. Year by year the thougbts of meu are wideniug. And the broader basis, the kindlier liberality, the freer liberty, have never failed to be productive of good!
"The curse of the Institute is the constitution of its Conncil, -an Irresponsible and despotic secret government, which, in the circumstances, it would be preposterous to expect to rale otherwise than with narrowness, jeslousy, and pique, wanting in ingenuousuess, weak in disinterestedness, There are cases in which a committeo of the noblest and best could not possibly be otherwise than a clique. The Institute is no represententive of the Architects of Great Britain at all. And it is but natural: to become so (as it ought to be) it must change; -and first its government; its doctrine will come secondly in due course. Its gross exclusiceness geterally is a graud error.-It is too professional, another grand error."-Dr. Verd. "Tell us then, Iriend, what thou wouldst have it to be."-Mr. Newl. "A broad-based. free, disinterested school of arcbitecture;-0pen to all who love the art,-okd and young, professional and non-professional alike;-a free thentre of liberal discourse, -a society of artists and art-honcrs in architerture, for the ends of architecture purely; sly ballot-boxes and secret councils utterly overthrown, as tyrannical, illiberal, aud bad. That is what I wouht have, and what the public of England, and architects especially, are entitled to demand. - Let the Institute change its character, and repudiate al close-fisted and seltish policy,-all prafessionalism,-and hoist the banner of art, free to all, and to all equally."-The Neuleafe Discourses.
V. A capital fellow that Newleafe! and a capital book!-one likely to do a great deal of good, by clearly explaining the character of architecture as a fine art, as which it is now scarcely recognised at all, except merely nominally and by coortesy; Dor have architects themselves much clearer notions of it than those who are not architecte. Not only is its ductrine excellent, and perfectly free from all conventionality, and cant, bat the book itself is so clever and entertaining, so full of original thinking-of shrewd remark and canstic pleasantry, as when once opened to be found irresistibly fascinatiog. Even those who dislike the writer's opinions, and more especially their being attered to the world, eccompanied with so many bome-truthe-and they will not be a few-will be forced to read on in spite of themselves. Speaking as he has done of the Institute, it argars cousiderable boldness in the writer to put his real name on the tille-puge; one which till now has never been before the public, but which is likely to be henceforth more and more distinguished, since it is not to be suppused that one who has made his debut with so much spirit, will now lay down his pen. Some parta of the book are quite dramatir, and the charactere of Mr. Scamozzi-Branelleschi Brick, Dr. Bluebottle Crape, the antiquary, Mr. Cour-de-Lion Mwffe (sic) the eccleaiologist, and Iitule Smug the travelled architect, are admirably hit off characters, with merely the slightest soupgon of caricature. What the Vitruvianists, the archeologists, the Camdenists, and the Ecclesiologists will say of the "Newleafe Discourses," is more doubtfol than what they will think. Probably they will, as the wiser course, asy little or nothing, but that they will think Newleafe a formidable opponent is an assured certainty; -and all the more formidable be cause he will hare the public on his side, and his example may stir up others to continue the assault upon those inveterate-not, it is to be boped, invincible prejudices which beset architecture on avery side. One corrmendable trait of spirit in the writer is that he shows himself perfectly free from funkyism; be is not awed by the authority of names, pays po servile deference to professional rank, but censures erroneous opinions in " a Professor," with just as litue ceremony as be would in any other jndividual. Buth Professor Cockerell and Professor Willis get a fepr rabs from him; and if they deserve them, why should they not? At any rate they are game worth aiming at, whereat some others are hardly wort powder and shot.

FENESTRATION AND WINDOWS.

third article

In returning to our subjeet we shall not porsue any farther our remarks on Fenestration in connection with modern church architecture, becanse we purpose going into the latter subject generally, and inquiring how far it is advireable entirely to repudiate for buildings of that class, the Greco-Roman atyle, inatead of taking it op again with a fresh and better apirit, 80 as to infuse into it resewned vitality. We will, however, just advert bere to one unseemly defect which deforms most of our churches in that style-if, indoed, they can be said to belong to it, very few of them possessing what can fairly be called style at all. We allude to the practice of making a row of amall mezzanioo-looking windows beneath the others, to the great iojury of character, composition, and breadth, and of anity likewise, for such little windows seem to express a division of the building into distinct floors within, and appear to belong to low ground-foor rooms intended for inferior purposes. At any rate such apparent division of the structure most be considered an indefensible solecism by those who make it an objection againgt Sh. Paol's, that its exterior is divided into two orders. In cone ceses, indeed, the practice in question is harmless enough, there being beither beanty nor pretension to it, nor any kind of architectural quality to be injared by it ; but in St. Pancras' church the small lower windows are glaringly and offeosively at variance with the scrupulous-perhaps someWhat over-scrupulone adherence to the original classical pattern, which, onlockily, not going far enongh for the occasion was eked out with some "4 ready cut and dried," but not very classical ideas.

Froon what we have just been saying the transition will not be very abropt, If we now proceed to consider one very material point in Fenestration with regard to composition. We have already said that interfenestral breadth is one great requisite for good fenestration-almost essential for greatneas of manser and dignity of character, and have now to observe that there ought to be " breadth" in both directions-vertically as well as horizontaliy, for if there be not corresponding largeness of spacing between the several fiers of windows or floors of the building, as well as between the windows on each separate floor, the design will so far partake of litlleness and be of the ordinary stamp. Quite contrary to vulgar opinion it may safely be laid down as a mexim that dignity of expression in architecture is in inverse ratio to the number of windows or aggregate superficies of opening compared with the general surface of the huilding or entire elevation. It is not the frequency, but the paucity of windows that condaces to nobleness of physlognomy in architectnre; whereas, on the other band, that quality-the unquestionable aristocratic mark-can hardly be maintained at all where infexible necessity demands closely-gpaced fenestration. No matter what size a building be, without something like greatness of scale,-nobleness of taste of coarse included, 一its greatness will amount to no more than the vulgar quality of mere bigness. And unfortanatels-or rather, fortunately, grandeur of scale is what cannot be mimicked or counterfeited. It is pot to be produced by clubbing a number of ordinary-sized houses together into one elevation, for the individual littleness leavens the whole mass, and the larger the latter is, all the more strongly does the littleness which it is attempted to disguise, contrast with the more than ordinary pretension that is made so indiscreetly and so awkwardly.

The two houses facing each other at the Albert Gate, Hyde Park, seem to have been expresaly intended to make manifest the striking difference of character produced by closely or widely spaced fenestration; for though they are of the same size, and in otber respects alike, while that on the East side is only three windows in breadth, the opposite one is of five, and the very superior appearance of the former must, we think, strike every one who has the sligbtest tincture of architectaral taste." Yet if so far that East house excels as well as differs from the opposite one, in another it resermblea it in regard to fegestration, aud perhaps even to greater disad. vantage, it becoming in consequence of onequal cbaracter, insomuch as it consists of the same number of atories, therefore the verticul interfenestrationt is not so good as the horizontal, owing to there being too many tiers of

- 8tpee it man firt erected, however, the froat of that hoace bas been moet bapbarougy diagared by one of the ground-aoor windows being enlarged, without the allyhteat re.
 gard to mppenrance in a
-We make no apology for colning and employing what some whll object to at "newfangled" wroms: they are sufficiently Intelligible and expreanive, and belng exprevalre are foeful. Well grounded objecton there onay be to the merely diaturblag the turminology of the ert by the revival of obsolete terms to lien of those In general use, or by subsitht. teg fer she laster, others whleh 4 more correct are ouly equivalent to therm; but it in
windows, and they are pot too closely together-or in other words, and te express our meaning by a aingle term, the interfeneatration in that direction is thickeet, or pycno-feneatration; and, as has been already observed by os, although pycno-style columaiation produces richness, pycno-fenestration is generaily attended by an air of littleness, if not of meanness. Except in Gotbic-the Perpendicular and Tudor etyles, also Elizabothan, wherein fenestration may withoot impropriety be carried to any extent, it being, as we have already said, bighly charactoristic and expressive aleo of conatruction,-crowded fenestration produces confusion, and a great deal more than the space properly admits of, seems to be crammed into a front. As an instance of the kind-au example that forcibly illustrates what we have just said, we may point to the group of three tall etone-fronted houses erected a year or two ago in Grosvenor Place: intended to be more than ordinariiy dignified, they are so terribly deficient in amplitode of proportions, as to look compressed and crushed borizontally, while loflineas is obtained not by lofty proportions, hut merely by piling up an unasual number of stories. Another example of the ad eritandum class is the Allas Insurance Office, Cheapside, and a remarikable one it is for mesquineric and tastelesaness boih in regard to fonestration and to columniation also. We will not at present touch upon what some are altogether intolerant of, and peremptorily denounce without further consideration as a barbarous solecism-we mean the application of columns and pediments to the windows themselves,-becanse that is a matter which we shall have to discuss somewhat fully when we reach that part of our subject, but we certainly have nothing to say in favour of that particular apecimen, for besides that the columns to the windows crowd ap the intercolumns of the order, in which they are set, too much, the display affected by means of them is so far from being consistently kept up that their entablatures are even more bare than those usually employed for windows, there being instead of architrave and frieze, or moulded architrave only, a mere black sorface between the capitals of the columps and the cornice, notwithatanding that the capitals themselves are Corinthian. The division of the building into two distinct orders,-one for each floor above the basement; cuts it up very disadvantageously, causing it to appear upon a contracted acale, whereas had the composition been astylar, it might have possessed a greater degree of ornateness as well as simplicity, for at present the details are very crude and common-place.

We now proceed to consider what is a rory important matter in fenestration, whether with or without columaiation, namely, the namber of windows from the ground npwards, or of tiers of them, that can with good effect be introduced in architectural composition. And here again we find that it is pacity, not number, which contributes to noblenens of manner. A front may be prolongedfhorizontally to any extent, without the fenestration itself being thereby in the slightest degree affected, but it cannot be extended upwards ad libitum, by adding story to story. On the contrary, the maximum is very limited, if good composition is to be observed, it boing scarcely possible by any sort of management to introduce more fhan three rows of windows-that is, two besides the ground-floor-into a well-proportioned elevation. The greater the number of stories, the smaller do the windows become in proportion to the general mass; and though if looked at as a mere pile of building, the structure may be striking enougb by its uuasual beight, and perhaps possers even some degree of grandeur when it comes into view as a dibtant object, it will be any thing bat dignified in regard to architectural physiognomy; and littleness of manner will be aggravated is the same ratio as the number of stories is increased. Therefore whatever pretension be affected for them by means of decoration, many-storied houseg-even when combined with others so as to furm a general elevation, well proportioned as to relative height and breadth,-are the reverse of aristocratic in eppearance, juasmuch us they look more like barracks than palaces-or if not exactly like barracks, like large botels and lodging bouses-buildings erected for the accommodation of a number of families upon a limited ground-site.
If orders are employed-and in combination with windows, pseadocolumniation (or attached columns) is preferable to the genuine-considerable difficulties are apt to arise, both as regards fenestration and the order

[^47]itself. Good composition does not admit at the atmost of above two tiers of windown in the intercolumna, and even then it is better if the eocond range of them are eithor mezzanine ones, or very little more in height. Therefore, if two stories are required above the ground-toor, the latter most be treated as basement, and the order be elevated upon it,-the course which Barry was forced to adopt in altering the Board of Trade. That done, an additional range of windows can be obtained only in the form of an ettic story, because to put a second order over one which compriste more than a single floor, and therefore ought, exclusive of other saperstructure than a mere attic, to complete the elevation, is beginaing again, and piling up one bailding on the top of another. Either there ought to be a separate order to every separate floor-no matter how many, -or if the composition be not regulated that way, there ought to be no more lines of windows than will properly come in within a single order. As far, indeed, as precedent to the contrary availa anything, it may casily be foond, as it may for a great many other faults of composition, and we bave now got precedent for poly-fenestratian-so to describe it-in conjonction with an order, where three tiers are inserted into the intercolumns, such being the deaign of the front of the Royal Institution in Albemarle atreet, and the wings of the British Maseam. In one respect, perhaps, such disposition seems to suit colmumniation exceedingly well, because the iotercolumns are kept narrower ; yet that single adventage is considerably outweighed by several inconveniences. While, on the one hand, fedestration preponderates too much in the general composition, owing to the multiplicity of windows; 80 , on the other, does colomniation (columns or pilusters, as may be the case,) make the windows eppear comparatirely insignificant features; nor is it the columns alone that do 50 , for they being nearly as mach in diameter as the width of the windows, the eatablature, proportioned to them, seems quite disproportioned to the height of the floors. The consequence is, the order and the building itself are apon different scales; the former has the look of having been originally intended to form an open colonnade, whose intercolumns have been aflerwards built up and filled in with windows, at was actually the case with the Temple of Antoninus, at Rome, which Bernini (if we mistake not) converted by such process into the Dogana or Custom-house. Thus the temple and bouse.front characters, irreconcileable and repugaant to each other as they are, are brought into immediate contact with each other. The Albemarle-street building is evidently after the Roman one, and the Mnseum wings are not moch behind: all that is not column is window, and pice-versa. If, however, such mode has nothing to recommend it sestbetically, it has the merit of being an exceedingly simple one, and of ovading a great deal of trouble.

RUSTIC MASONRY.

We bave been compelled by the more immediate urgency of other aubjects to defer till now the reply to the paper on Rustication, by Candidas, which appeared in our August number. Free discuasion respecting the principles of architecture is by no means to be discouraged, for during the last three centuries mere conventionalism has so completely usurped the place of troe art, that we may easily foresce the long and obstinate contest which prejudice will wage against the resumption of correct priaciples. Still, the discussion, however necessary it is for ultimate success, mast be restrained withis certain limits; and we therefore feel entitled to protest againat the controversial tone assumed by our opponent. The paper to which we are about to reply, commences with the assumption that our profeasion of willingness "to be set right," was insincere; and thongh there has been no hesitation in bringing thia charge of disingenuonsoess, not the least attempt is made to support it. Bare assertion can only be met by counter-assertion, and it therefore seems sufficient to assare Candidus that our declaration of readiness to listen to temperate reasoning was made in perfectly good fuith, and that we see no reason to repent of having made it.

These preliminary romarks seem the more neceasary because the chief object of the present paper will be not so much to defend our original arguments, as to show that the purport of them bas been generally misnoderatood in the subeequent paper. Passing over, thenefore, the first paragraph, in which the writer atates, whlh singular modesty, his intention of exposing the "futility and one-fidedness" of our objections, we come to the first argment properly so called:-it is, that as this country possesses neither
the marble nor the climate of Greece, our masonry will not retain perfect uniformity of tint and sarface, aod that it is an advantage to obteio a different opecies of regularity by the meane of rostication. This, like most apologetic argament, proves too mach ; for the direct conclusion from it is that rustication should be employed in this country-not occasionally-bnt always. The rule would stand thus that in Greece and all "sonny climes" rustication should never be adopted, but that in all northern or hamid conntries, the joints of masonry ought on all occasions to be bevilled in order to palliate the effect of diversity of " tint and surface." In this case then, unfuted columns, such as those of the portico of the Royal Exchange, should be marked by a series of horizontal annuli at the junction of the blocks composing each shaft. The same argument would apply to Medixal architecture also, and we must conclude that the walls of our cathedrals would be improved in appearance if covered with a rectangular mesh-work of horizontal and vertical lines.
The next paragraph attributes to us a condemnation of all that bas been added to or engrafled upon Grecian architecturo-R condemnation of Roman and Italian architecture. This statement is inaccurate-we would indeed reject the combination of the principles of Greek architecture with otber discordant principles, and readily avow that many (not all) of the innovations of the Roman and Italian styles were inharmonious. This however does not amonat to a total condemnation of those atyles, and we have elsewhere attempted to point out in the paper on "Trabeation and Arcuation," the true method of disorimination. We may bere notice, out of its course, an assertion in another part of the paper now ander discumion, in which we are accused of " fairly damaing modern arebitecture altogether." Twe cbarge is as unfair as it is unfoonded; if the object of it be to onliat the prejudices of the reader against our arguments, it signally fails of its effect. for we have never condemned any modern building in which the canon of architectural faithfulness is tolerably well observed. We have frequently apoken of the superiority of modern architecture to that of the last age, and bave occasionally done even some violence to our opinions, by apeaking in terms of partial admiration of buildings which exhibit little regerd for principles of constructive decoration.

The objection that our views respecting rustic masoary ought for consistency to be extended to the futing of columas seems purrly fections, since it is obvious that parallel liaes of fating contribute to the principal wathetic idea of columne-their verticality; whereas our main argument agajast scoring masonry all over with a vast number of lines ruoniag both perpeadicularly and horicontally was that they distracted the eye and ouggested no asthetic ides whatever. The remarks respecting the Madeieine, must have been written in total misapprebension of our meaning, or else are the result of a basty and careless inspection of that building-if indeed there be not an attempt on the part of the writer to criticise the arohitectare without having seen it. We will venture to say that no comperent ob server, who bas actually inspected the Madeleine, will contradict our assertion thet the horizontal channels indented in the walls of the celia greatly injure the effect of the periptery. The columns do not stand out with that bold relief, which they would bave, were the background left plain, and their rertical character is greatly injured by the horizontal lines roanigg behind then and apparently meeting them at right angles. This is so nom torioualy a matter of fact-of common observation, that it has nover jet been disputed by those who have seen the building. However, we mey perhaps facilitate the proper conception of the argument by referring to analogous instances nearer home. If Candidus will examine the two last plates in this Journal, representing the Board of Trade as it was, and as it is, he will fad in both frepades a number of horizontal lines oxtending the whole length of them, which distract the eye and almost deatroy the vertical character of the columna. In the later edition of the Goverament offices the rastic lines are not contioned quite up to the colamas, but stop against a plaio pasel ; atill the defect is bat liule paliated by this contri-vanco-the mental eye continues the lines, and the nutural oye is consequeatly offended by the incongruity and confusion. The same remark applies to the windons between the columas: the monldings of the aills and architraves range in borizontal lines, and the effect is neurly the anme as if those lines were continued to meet the colamna. This seems the true resson for the axiom laid down by many architectural writere that two reoges or stories of windows ought not to be included within one order of columas, and also for the objection laid down in the articie on Fenestration (p. $\mathbf{2 7 1}$), that where windows are introduced between a colonade "the columas seem as much to encumber as to adorn the front behind them, certaialy not to belong to it by growing out of the general orgacieation." The horizon-
tal lines of the sills and architraves are mentally united by the observer, and have the effect of being continnons: the eye recogaizes the windows, not separately, but colfactively as one range; and the general direction of this range being horizontal, and therefore at right angles to the columns produces inevitably the appearance of disconnection among the component members of the architecture.

The paragraph in which the rusticated masonry of the Madeleine is defeaded, concledes by attributing to us certain opinions on Grecian architeotare which the writer justly treate as absurd. As, however, we never expressed these opinions, we are not called apon to defend them.

Of the Architecture of Newgate it is observed, "had it not been rosticated, it wonld have been comparatively an insipid blaok." Why, yes ; this is true enough, and it brings us precisely to the very giat of the argament. Our real groond of objection to rustic masonry is not so much that it is intolersbly ugly in itself as that it stands in the way of something better-bold and efrective composition. Had tbe architect of Newgate been debarred from the paltry expedient by which he has pallinted the nakedness of his design he must have contented himself with this alteraative-either to let the poverty of his idens manifest itself undisguised, or else to zubatitute a design possess. ing intrinsic and legitimate merit.

On examination fe shall find the same remark applicable to the general employment of rustic masonry. Where the arohitect possesses real geuius and correct principlen of taste, the beanty of his architecture will be attaided by masaive combinations, by effective distribution of light and shadow, by gracefal proportions, by strong contrast between the decorated aod undecorated parts, and by making the mechanical construction of the building a sonrce of heanty. In proportion as bis conceptions are vigorons and effective, he will have the lese necessity to resort to rustication and cher inaipid inexpressive save-trouble expedients. We would deprive architecture of these expedients for the same reason that we would deprive a child of its go-cart-that it may learn to run alone. When these tricks of art are got rid of, good architects will be forced, as it were, to trust is their own streagth, and bad architects will do as they always have donefollow their betters.

If our opponent conld have assigned only one good reason why rustica. tion should be employed in Classic and not in Pointed architecture, we should have been satiafied that he argued on abstract priciples, and that his jadgment had not been (as we siecerely believe it to have been) perverted by custom. This opinion is not uttered invidiousiy, for we know bow hard it is for those who have been long habituated to technical rules, to look beyond them. It is well enough to tell us that "separate styles have, like separate langages, their reapeotive idioms and peculiarities ;" and that Rustication may be considered as a characteriatic peculiarity of one kind of Classio architecture-"as being part of ita costnme, consequently proper to that, though is any other it mixht show as a decided impropriety." But why-for what reason an impropriety in any other style? The only possible answer to this question is to show that the style with which alone ruatication harmonizes, posseases certain distinctive principles which prodnce this harmooy, bat which exist in oo other style. If there be such priaciples iu Classic architectore, it is surely very easy to point them out. We all know what are the main distinctions between Classic and Pointed architecture : the one is horizontal-the other vertical ; the one simple-the other complex; the one rectilineal-the other curvilineal. To which of these or the other diatinctions between the two great archlteetural systems are we to attribute the circumstance that rustication accords with the one, and not with the other? This will, we think, be found on reffection an indisputable position-that either rastication offends against those Catholic principles which apply to all styles alike-or else that (Jassic architecture has certain principles, possessed by no other style, which render rustication applieable to it alone.

Which member of this alternative is to be adopted \boldsymbol{p} If the first, there is an end of the controversy. If the second, our opponents have still to point out the existence of the principles by which their position is defended. Tberefore the whole question may in some sort be said to turn on the canses of the incongruity of rustication with Pointed architecture. Now, as far as we can see, it would be lees incongruous with Pointed than with Classic architecture, for the former delighta in a moltiplicity of lines which is directly antagonistic to the latter.

Onr objection that rastication precludes a contrast between the ornamental and plain parts of the structure bas not yet been answered. To our view, decorations derive their chief grace and fitness from coutrast. If asery part of a buildiag were richly ornamented it cannot be denied that a
daskling and gorgeons effoct might be produced. But the most artistic architecture is not that which is most ornamented, but that in which the decorations and plain surfaces are balanced against each other-in which some parts are purposely left undecorated io order to enhance the beanty of the rest.

The connection between the subject in dispnte and that of mouldiags seems also to have been misonderstood. The asthetic value of monldings seems to consiat in this, that they maric distinctly the mechanical construction of a building. In Classic architecture the cymatiom, \&c., mark the outline of pediments; the antepagmenta of doorways, the tania indicates the super-position of the cross-joists on the architrave and the motule mariss the termination of the inclined rafters of the roof: in Pointed architecture the hood mouldings defines the arch of the windows, the corbel table indicates the manner in which a roof or apper floor is supported: in Italian archttecture also the division of a building into stories is frequently with the ntmost propriety exbibited externally by horizontal mouldings. But without the monldings have thus a logical fitness, they are adecititions and indefensible. It is clear moreover that their value as indications of construction must be nearly anoihilated where the whole surface of the walls is marked with lines like those of rustic masonry. In such cases they oesse to be disfinctive.

Another misapprehension of our meaning reapecting rustication is the supposition that we have insisted "that it is absolately intolerable." This is not the case : on the contrary, we thlok there are many buildings which as they stand are improved by it, or rather would be worse without it. It is not rustication, so much as the aecessity for it, which we wish to get rid of. There are many buildings-the Reform Club for instance-of which the arohitecture is intrinsically too good to need auch embellishments.

The true end of art is to produce the greatest effect with simple means. It is casy ebough to overload a building with mouldinge and sculptare-to do that requires not genius bat money; and the vulgar, canght by the glare, will give to the architect the credit which is in fact due to the workman. Architeoture, except doring its parest periods, has always tonded to degenerate into a system of surface-decorations. It is so now, and ormment usnrpa the place of architecture. Directly the syatem of polyohrome decoration was revived how eagerly was it canght at! It is such an eavy method of making a building look showy! Fresco-painting also, oncanatic tiles, and cbeap imitations of coatly woods will often save the architect a world of trouble-the trouble of thinking. And yet these things are not intrinsically worthless, or to be despised; qulike Roatication, they are valuable accessories of art, bat do more than accessories-excellent servants, but bad maaters.

THE NEW PLANET.

The diecovery of a planet of which the existence, distance, orbit, and rass had been predicted by mathematical cumputation long before its presence in the beavens had been recognised by the telescupe, may justly be considered, as Mr. Hind observes, "one of the greatest triumphs of theoretical astronomy." It cannot but be a matter of regret to find the new planet called Le Verrier's, whereas in fact the first theoretical discovery of it is due to Mr. Adams. who to our certain knowledge completed his in. vestigation, as far as the approximations of the first order, two years ago. Sir John Herschel has addressed the following letter on the subject to the Athenexm.

Collingtrood, Oct. 1.
"In my address to the British Assnciation assembled ut Southampton, on the occasion of my resigning the chair to Sir R. Murchison, I stated, amoog the remarkable astrodomical events of the last twelvemonth, that it had added a new plavet to our list, -adding, "it has done more, it has gived us the probable prospect of the discovery of another. We see it as Columbus saw America from the shores of Spain. Its movements have been felt, trembliag along the far-reaching line of on analysis, with a certainty hardly iuferior to that of ocular demonstration."-These expressions are nut reported in any of the papers which profess to give an acconnt of the proceedinge, but I appeal to all present whether thes were not ased.
"Give me leave to state my reasons for this confidence; and, in so doing, to call allention to some facta which deserve to be put on record in the history of this noble discovery. On the 12th of July, 1842, the late illustrious astronomer, Bessel, honoured me with a visit at my present resideuce. On the evening of that day, conversing on the great work of the planetary redactions undertaken by the Astronomer-Royal-then in progress, and aince published, "-M. Bessel remarked that the wotions of Uranus, as he had
"The expence of this magnificent work was defrayed by Government gianta, obtaised
at che lastace of the Brideh Association, to 1833 .
satisfied himself by careful examination of the recorded observations, conld not be accounted for by the pertarbationa of the known planets; and that the deviations far exceeded any possible linits of error of observation. In reply to the question, Whether the devistions in question might not be due to the action of an unknown planet?-be stated that he considered it highly probable that such was the case,-being systematic, and such as might be produced by an exterior planet. I then inquired whether he had attempted, from the indications afforded by these perturbations, to discover the position of the unknown body, -in order that 'a hue and cry' might be raised for it. From his reply, the words of which I do not call to mind, I collected that he had not then gone into that inquiry ; but proposed to do 80 , having now completed certain works which bad occapied too much of his time. And, accordingly, in a letter which 1 received from him after his return to Königeberg, dated November 14. 1842, be says,- 'In refefence to our conversation at Collingwood, I annownce to you (melde ich Ibnen) that Uranas is not forgotten.' Doubtless, therefore, among bis papers wil be found some researches on the subject.

The remarkable calculations of M. Le Verrier-which have pointed out, as now appears, nearly the true situation of the new planet, by resolving the inverse problem of the pertarbations-if ancorroborated by repetition of the nomerical calcnlations by another hand, or by independent investigation from another quarter, would hardly justify so strong an assurance as that conveyed by my expressions above alluded to. But it was known to me, at that time (I will take the liberty to cite the Astronomer-Royal as my authority), that a similar investigation had been independently entered into, and a conclusion as to the situation of the new planet very nearly coincident with M. Le Verrier's arrived at (in entire igoorance of his conclusions), by a young Cambridge mathematician, Mr. Adams ;-who will, I hope, pardon this mention of bis name (the matter being one of great historical moment). -and who will, donbtless, in his own good time and manner, place bis calculations before the public.
J. F. W. Herschel.

Sir John Ferechel compares the discovery of the new planet to the discovery of the Weatern World : he might have added that America did not take its name from Columbns, but from a later navigator.

Professor Challis, of the Cambridge Observatory, tas pablished a atatement in the Cambridge Chronicle, that, in September and October, 1845, Mr. Adams deposited in the two principal observatories of England, those of Greenwich and Cambridge, calculationg of the heliocentric longitude, mass, longitude of peribelion, and eccentricity of the orbit, of the sapposed planet. M. Le Verrier published a calcalation of the heliocen. tric longitude of the planet last June (eight months later).

To the personal friends of Mr. Adams the dispate must appear a ridicnlons one : seeing that his discoveries have been a subject of common conversation among them for the last two years. And they very well know that modeaty, which characterises profonad acience, alone prevented Mr. Adams from making his investigations known in a more pablic manner than by depositing them in the observatories of Greenwich and Cambridge. His original intention was, we believe, not to take any active steps for the pablication of his inventigations till the planet had been observed by the telescope.

The question seems likely to be made the subject of as "pretty" a quarrel as any in which the savans have ever been engaged. At a recent meeting of the Paris Academy, the announcement that the Engliish astronomers meant to claim for their countryman the bonour of first predicting the place, \&cc., of the new planet was received with manifestatioas of the utmost indignation. It is stated that in the excess of their wrath, they did not refrain from designating Airey and Herschell-impostors! In a letter in the National, which a correspondent of the Literary Gazelte attributes to Arago, Sir J. Herechell and Professors Airey and Challis are said to have entered into a conspiracy to rob M. Le Verrier of his discovery. Herschell in particular is reviled with ingratitade becanse he ts the son of one whose fame M. Arago made known to Europe." This exceeds the usal limits of even French bombust.

Our own journals take ap the question very coldly. Surely this cannot arise from ignorance of the importance of the subject. However, "the trnth is great, and will prevail," and as we happen to know personally that Mr. Adems's clams are indispatable, we do not for an instant doubt that they will soon be established to the perfect astisfaction of the public.

The planet is said to have a ring and a satellite : its distance from the son is three thousand two hondred millions of miles-apwerds of thirty times that of the earth. The distance of Uranus from the rewly discovered source of its pertarbations is one handred and fifty millions of miles. The new planet is the largest in our system, except Jupiter and Salurn: its cubic bulk being $\mathbf{8 6 0}$ times that of the earth.

The Alhencum, speaking of M. Lo Verrier, says incidentally, that " be worked out the problem first'! A more beedless admission was never gade is a scientific journal: if it be, as it appears to be, a mere obiter Nefum, the result of sheer carclemanese, it onght, for truth's sake, to be
withdrawn immediately. We repeat emphatically, that it is notorious to ourselves and to all Mr. Adame's scientific friends, that his discoveries were made long before M. Le Verrier's name was heard of in connection with the subject.

INSTRUMENT FOR TRACING RAILWAY CURVBS.

Sre-The accompanging sketch and description of an instrument which I have found extremely useful for setting out ruilway curves is well adapted for all sitantions, and is very portable and aimple.

ABC' (fg. I) is a permanent frame or square B C' being perpendieular to A B, and B C ia a moveable limb with a vernier to read off the degrees on the quadrant. Instead of making the offects as beretofore perpendicalar to the tangents, they are made by this instrument in the direction of the secante as $b \mathrm{c}, \mathrm{d} f$, and $h \mathrm{~g}$, \&ec. (fig. 2.)

Mg. 1.
Mg. 2.
In order to nse this instrument, it is necessary to calculate by trigonometry the angle abcfig. 9 , and the length of the secant, for the parpoe of finding the leagth of the effect $a b$, the latter is equal to the difference of the radius of the curve and the secant ; in all cases it is requisite first to determine what leagth of tungent is most suitable to the groued, on which the curre is to be set ont.

After this the moveable limb B C, is Axed on the quadrant at the engle to found for $a b c$, and the tangent $a b$ being traced and measured on the ground, the instrument is placed with B of fig. 1 , corresponding to b of tig. 2, and B A in the direction of b, being so pleced the moveable limb B C, fig. 1 , will be in the direction of the required offeet $b \mathrm{c}$, $\mathbf{f g}$. 2 , which is to be measured off accordingly, giving the point c (fig. 2) at the firut point in the curve A B.

For the second and other points $d f_{f}$, and $\boldsymbol{\lambda} g$, and a, the instrument is reversed, laying the fixed limb B C', fig. 1 , on the offset $b c$. B of the instrament correaponding with c, fg. 2, the line A B of the instrument being perpendicular to $b c$, will consequently point on the ground in the direction of the eacond tangent $c d$, and at d the second operation is to be parformed an at b, for the offeet $d f$, and so on.

The circular openings at A B C', and c, are for the parpose of receiving nicely fitted rods to keep the lnstrument in itn proper positions on the ground until the neceatary prolongationa $a b$, and $b c$, and s bave been made.
$\boldsymbol{W} \mathbf{x} . \mathbf{T a s t}^{\text {. }}$
Military Library, 30, Chering Croes.

EARTH WORK ON SIDE-LONG GROUND.

Ву Јонм Huersa, C.E., A.I.C.E.

The corrections to quantity arising from an inclination of the ground surface, in cross sections, are most frequently neglected, when eatimeting the cattings and embankments of a railway or canal. This omission is in general expressly meationed in the engineer's specification, so es to avoid all quention upon the terms of the contract ; it gives rise, therefore, to no positive injustice to any party, whilst a statement of the number of cubic yards to be removed, as ascertained from the heights taken aloog the centre line, is considered sufficiently near the trnth to enable a contrartor to appreciate the means he is required to supply. This practice obtains, because the corrections for excess and defect are assumed as balancing each other, and becanse the process of calculating them has been considered a tedious and troublesume labonr. My parpose is to show that neither of these grounds should be acted upon;-the first is mathematically unsound, and the strength of the second may be materially abated.

If the aronod surface is supposed to be generated by the motion of a atraight line, which is always at right angles with the centre line, its ends resting on the onter edges of the slopes, the direction of such motion being coincident with the centre line, and all positions of the generatrix being parallel, then the correction to the area of a cross aection of any culting or conbankment first compoted on the assomption that this line is horizontal, and that the beight or depth is measured on the centre, will, when it hasany inclination with the horizontal, alwayg be additive. The corrections to widths due to this inclination I will designale by $+x$ on one side, and by $-x^{\prime}$ on the other; the correction to area will then be represented by the expression $\frac{x x^{\prime}}{r} ; r$ being the ratio of the slopes.

If the ground surface is supposed to be generated by the motion of two lines, situated in the same vertical plane, baving their ends resting on the ceptre line and on the outer edges of the alopes, all other circomstances being the same as already deacribed, then the correction to area will be on one side, as anaddition, supposing the groand to rise $(B+r C) \frac{x}{2 r}$; and en the other side, as a doduction, sopposing the ground to fall $(B+r C) \frac{a^{\prime}}{9 r}$ Consequently, the whole correction to the area of the croas eection, anlculated to the height C, in the ordinary way, is $\frac{B+r C}{2 r}(x-x)$.

I take leave, at this point, to refer to the diagrams and charanters employed in a paper on "Setting out Railways," in the Journal for Septem. ber lat (p .277), as explenatory of these I now adopt. Moreover, let $+z$ and -2 represent the corrections to widths in a croas section paraliel to the firat at a diatance from it $=\mathbf{L}$.

Then, in the case firdt named, where the crose sections all exhibit the ground arface as a right line, the solid, which is comatantly to be added, hue for ite value

$$
\frac{\mathrm{L}}{6 r}\left[x\left(2 x^{\prime}+z^{\prime}\right)+x\left(8 x^{\prime}+x^{\prime}\right)\right]
$$

And in the second case
$\frac{L}{s}\left(\frac{\mathrm{~B}+r \mathrm{C}}{r}\right)\left(x-x^{\prime}\right)+\frac{1}{2}\left(x-z^{\prime}\right)+\frac{\mathrm{L}}{6}\left(\frac{\mathrm{~B}+\mathrm{r} \mathrm{C}^{\prime}}{r}\right)\left(\overline{\left.\left.z-z^{\prime}\right)+\frac{1}{\left(x-x^{\prime}\right.}\right) \ldots \mathrm{B} .}\right.$
However complicated thee formala may appear as algehraic expres. siuns, their numerical application is perfectly simple and eary. To compare the two, let os first consider. the increment to the area of one crose section only, which is $\frac{x x^{\prime}}{r}$, and also $\left(\frac{B+r C}{2 r}\right)\left(x-x^{\prime}\right)$; by assigning the following valnes: -

$$
B+r C=31 ; r=2 ; x=5 ; x^{\prime}=378
$$

Then, $\frac{x x^{\prime}}{r}=\frac{5 \times 3.78}{y}=9.43$.
Square foet
and, $\frac{B+r C}{2 r}\left(x-x^{2}\right)=\frac{31 \times 1.22}{2 \times 2}=9.45 \ldots \ldots .$. Square feet. Also, in the other cross section,

$$
\text { if } B+r C^{\prime}=35, r=2, z=7241, z^{\prime}=5 \cdot 122
$$

we have, $\frac{x x^{\prime}}{r}=\frac{7.941 \times 5.1: 22}{2}=18.54$ \qquad
and, $\frac{B+r C}{x r}\left(z-z^{\prime}\right)=\frac{35}{4} \times 2.119=18.54$ \qquad
Upon the choice between these two formulee, it is proper to remark that although the process sccording to ${ }^{\boldsymbol{x}} \boldsymbol{r}$, is the shortest, perfect aceuracy re.
quires that the values of x and x, should be nicely calculated, oven to e third place of decimals, to ensure exact coincideace with the result by the formula $\frac{B+r C}{2 r}\left(x-x^{\prime}\right)$; and more eapecially when $\frac{B+r C}{2 r}$ is large.
In the dext place, let us compare the facillies of the two formula for the increment to the solid due to the side-iong inclioation of the ground with the values above given, the cross sections being 50 feet asunder $=\mathbf{L}$.

With this number eater Table No. I of my Tubles* for calculating earthwork, where 1 find, on the first line of figures,

$$
\begin{aligned}
& \text { opposite } 82 . \\
& 1.0123 \\
& \text { " } 5 \text {.......................... } 00069
\end{aligned}
$$

For 82.5 1-0185
and multiplying this by $\frac{50}{2}=\frac{100}{4}$ we get . . $25 \cdot 46$ cabic yards.
By the second formala for the increment to the solid, the process will be-

and multiplying by $\frac{50}{2} \ldots 26 \cdot 64$ cabic yarda.
A slight examination will enable us to perceive that the last is the preferable process to be adopled in practice; for as an algebraic axpression it involves less trouble, aithough appureutly the contrary; and avoiding the extreme nicety necessary in the values of x, ω^{\prime}, x, and z^{\prime} io the frst ia, even in the hypothesis of the generatrix of the ground surface being one siraight line, the most accurate of the two.

This bypothesis will never be satialled over the most naiform ground, and in this sense also the second formula claims the superiority. Expressed in words, is may be stated as follows :-

1. Take the difference between the additive and subtractive corrections to the widths at each cross section terminating the length of cutting or of embankmeut ander calcuiation.
2. Add together half the width of the railway previonaly divided by the ratio of the slopes to the beight at the centre of each cross section; and call these the mulipliers.
3. To the difference of the corrections to widtha in each cross sectlon add half the difference of the corrections in the adjoining cross eection, and multiply these sums by their respective multipliers.
4. The last two results added together and multiplied by oae-sizth of the distance betwsen the crose sections gives the solid content sought.

The rule thus expressed requires modification according to the sigas attaching to $x, x^{\prime}, z, z^{\prime}$, as will be evident to every one familiar with the Arst priaciples of algebra, and needs no further remark bere.

[^48]The elements for calculating the correctinns to cubsc quantity which bave been previously employed, require that the corrections to widths, due to the inclination of the ground surfuce, should be determined; that is, that The values of x, x^{\prime}, z, and z^{\prime}, should be known; and this process may appear to involve as much troable when preparing a preliminary estimate for ordinary parliamentary purposes. as when the position of the line is absolutely final: and when the more careful and accarate calculations are undertaken. They would appear, in fact, to require that the feld-work should embrace every level and measurement necessary for setting out the eurthwork on the gronnd. It is desirable, therefore, to present a form of calculation which shonld dispenze with so much detail, and which should at the same time enable us to make an estimate that cannot be attacked before a committee of the House of Commons for insnficiency, on the score of a neglect to take info accoant the addition to be made to quantities derived from the central heights, on the supposition that the ground in croas section does not differ materially from a borizontal plane; an addition which is due to the fact that this anpposition cannot be maintained in a mountainous or rough conntry, such as occurred on the various lines projected through Wales in the session of $\mathbf{1 8 4 5}$.0.
Under such circumstances, after the usual deposit of the plans and nections have been made, in accordance with the atnading orders, it should be included amongst the various additional particulars songht by the engineer preparatory to his estimate, to obtain a number of cross sections, over the leugth of each projected cutting or embankment, sufficient for determining the jacrease iu earthwork which may arise from a material inclination of the ground to the horizon. And, norr, the first formula (A) is, on the whole, the most concise in application. Such cross sections can do no more than exhibit the rate at which the ground inclines; in other worda, to what extent it falls or rises in any given horizontal distance, as of 100 feet, or 1000 feet, \&c.

Table for Corrections to Hidthe of Railwaya, \&ce., dme to Sidelong Ground.

	0	1	2	3		5				9
		1.0000	-5000	-333	-2500		16	1429	$\cdot 1250$	
10	-1000	-29091	8333	7692	7143	666	625	588	3356	6263
20	$\cdot 0300$	151	4545	434	41	40	384	37	3571	3148
30	$\checkmark 3333$						2778	2703	2632	2564
10		439	238	2326	227	2222	2174	2128	208	20
50	2000	961	1923	1887	1852	1818	1786	1754	172	1695
60	${ }^{2} 1667$	1639	161	1587	1563	1538	15	1493		
70	1429	1408	1389	1370	1351	1333	1316	1299	128	
8	250	235	1220	1205	1190	1176	1163	1149	113	12
90	1111	1099	1087	1075	1064	1053	10 t2	1031	102	
100	${ }^{2} 100$	90	9804	9709	9615	9 S	943	93	9239	
10	.2e9091	9009	8929	8850	8772	869	8621	85	847	8403
20	833		197		8065		7937	88	781	7752
30	.907692	7634	7576	7519				7299	7246	719
40	7143	092	7042	6993	6944	6897	6849	680	675	6711
50	666					6452	641	636	632	6289
60	. 262	6211	6173	613	6098	6061	602	5988	595	5917
70	58	848	5814	5780	5747	5714	5682	565	5618	5587
80	3556	5525	5495	5464	5435	5405	5376	5348	5319	5291
90	5263	5236	5208	5181	5155	5128	5102	507	505	
200	-293000	4975	4950	4926	4902	4878	485	483		
10	476	4739	17	4695	4673	4651	4630	460	458	4566
20	45			4184			442	d405		
30	-4348	229	4310	4292	427	423	42	4219		
40	4167	149	$41: 32$	4115	4098	4082	4065	4049	403	
	4000					3922				
60	.223846	3831	1817	3802	37	3774	3759	3745	373	3717
70	3704	3690	3676	3603	3650	3636	3623	3610	3597	3584
80	3571	3559	3546	3534	3521	3509	3497	3484	3472	3460
90	3448	343	342	34	340	339	3378	836	335	
,	-333					327	3268	3257	3247	3236
10	3226	3215	3205	3195	318	3175	3165	3155	3145	3135
20	3125	115	3106			30				
30	.203030	3021	3012	3003	2994	2985	2976	296	2959	
40	294	2933	2924	2915	2907	2899	2890	2882	2874	2866
	${ }^{\text {cenz85 }}$	2849	28	2833	2825	281	2809	2801	279	2786
	.22778		2762	2:55	274	2740	2732	2725	2717	2710
70.	2703	2695	2688	2681	2674	2667	2660	2653	2646	2639
80	2632	2625	2619	2611	2604	2597	2591	2584	2577	2571
90	2364	55	2351	25	253	253	2525	251		

Table for Corrections to मFidthe of Railways, \&c.-(Continued.)

	0	1	2	3	4	5	6	7	8	9
400	292500	2494	2488	2481	2475	2469	2463	2437	2451	2145
10	2439	2433	2427	2421	2415	2410	2404	2398	2392	2387
20	2381	2375	2370	2364	2358	2353	2347	2342	2336	2331
30	.082326	2320	2315	2309	2304	2299	2294	2258	2283	2278
40	2273	2268	2262	2257	2252	2247	2242	2237	2232	2227
50	2292	2217	2212	2208	2203	2198	2193	2188	2183	2179
60	.2002174	2169	2165	2160	2155	2131	2146	2141	2137	2132
70	2128	2123	2119	2114	2110	2105	2101	2096	2092	2088
80	2083	2079	2075	2070	2066	2062	2058	2053	2049	2045
90	2041	2037	2033	2028	2024	2020	2016	2012	2008	2004
500	.202000	1996	1992	1988	1984	1980	1976	1972	1969	1965
10	1961	1957	1953	1949	1946	1942	1938	1934	1931	1927
20	1923	1919	1916	1912	1908	1905	1901	1898	189.	1890
80	-1887	1883	1880	1876	1873	1869	1866	1862	1859	1855
40	1852	1848	1845	1848	1838	1835	1832	1828	1825	1821
50	1818	1815	1812	1808	1805	1802	1799	1795	1792	1789
60	.081786	1783	1779	1776	1773	1770	1767	1764	1761	1787
70	1754	1751	1748	1745	1742	1739	1736	1733	1730	1727
80	1724	1721	1718	1715	1712	1709	1706	1704	1701	1698
90	1695	1692	1689	1086	1684	1881	1678	1675	1672	1669
600	. 011667	1664	1661	1658	1656	1653	1650	1647	16,5	1642
10	1639	1637	1634	1631	1629	1626	1623	1621	1618	1616
20	1613	1610	1608	1605	1603	1600	1597	1595	1592	1890
30	.201587	1585	1582	1580	1577	15:5	1572	1570	1567	1565
40	1563	1560	1558	1555	1553	1550	1548	1546	1543	1541
50	1538	1536	1534	1531	1529	1527	1324	1522	1520	9517
60	201515	1513	1511	1508	1506	1504	1502	1499	1497	1495
70	1493	1490	1488	1486	1484	1481	1479	1477	1475	1473
80	1471	1468	1466	1464	1462	1460	1458	1456	1453	1451
90	1449	1447	1445	1443	1441	1439	1437	1435	1433	1431
700	281429	1427	1425	1422	1420	1418	1416	1414	1412	1410
10	1408	1406	1404	1403	1401	1399	1397	1395	1393	1391
20	1389	1387	1385	1383	1381	1379	1377	1376	1374	1372
30	.2e1370	1368	1366	1364	1362	1361	1359	1357	1355	1353
40	1351	1350	1348	1346	1344	1342	1340	1339	1337	1335
50	1333	1332	1330	1328	1326	1325	1323	1321	1319	1318
	. 281316	1314	1312	1311	1309	1307	1305	1304	1302	1300
70	1299	1297	1295	1294	1292	1290	1239	1287	1285	1284
80	1282	1280	1279	1277	1276	1274	1272	1271	1269	1267
90	1266	1264	1263	1261	1259	1258	1256	1255	1253	1259
800	. 1250	1248	1247	1245	1244	1242	1241	1239	1238	1236
10	1235	1233	1232	1230	1229	1227	1225	1224	1222	1221
20	1220	1218	1217	1215	1214	1212	1211	1209	1208	1206
30	. 81205	1203	1202	1200	1199	1198	1196	1195	1193	1192
40	1190	1189	1188	1186	1185	1183	1182	1181	1179	1178
50	1176	1175	1174	1172	1171	1170	1168	1167	1166	1164
60	.021163	1161	1160	1159	1157	1156	1155	1153	1152	1161
70	1149	1148	1147	1145	1144	1143	1142	1140	1139	1138
80	1136	1135	1134	1133	1131	1130	1129	1127	1126	1128
90	1124	1122	1121	1120	1119	1117	1116	1115	1114	1112
900	.881111	1110	1109	1107	1106	1105	1104	1103	1101	1100
10	1099	1098	1096	1095	1094	1093	1092	1091	1089	1088
20	1087	1086	1085	1083	1082	1081	1080	1079	1078	1076
30	.02075	1074	1073	$10 \% 2$	1071	1070	1068	1067	1066	1065
40	1064	1063	1062	1060	1059	1058	1057	1056	1055	1054
50	1053	1052	1050	1049	1048	1047	1046	1045	1044	1043
60	.081042	1041	1040	1038	1037	1036	1035	1034	1033	1032
70	1031	1030	1029	1028	1027	1026	1025	1024	1022	1021
80	1020	1019	1018	1017	1016	1015	1014	1013	1012	1011
90	1010	1009	1008	1007	1006	1005	1004	1003	1002	1001

 $\begin{array}{llllllllllll}10 & \text { ع } 0<9900 & 9891 & 9881 & 9872 & 9862 & 9852 & 9843 & 9833 & 9823 & 9814\end{array}$ $\begin{array}{lllllllllll}20 & 9804 & 9794 & 9785 & 9775 & 9766 & 9756 & 9747 & 9737 & 9728 & 9718\end{array}$ $\begin{array}{lllllllll}9699 & 9690 & 9681 & 9671 & 9662 & 9653 & 9643 & 9634 & 9625\end{array}$

To facilitate the calculation of the correotions to widths, and therefore of the increments to quality, I have arranged a table, available as well when the ground surface is examined in the approximate manner just deacribed, as when the more detailed levels are tuken for setting out the earthworks of the line. This table is annezed, and its use will become familiar from following the stops of an example:-
Taking the measurements from the form of level book attached to the paper on "Setting out Railways," already referred to (see the Jonrnal for September, p. 2T7). We find at the beginning of the first chain'e length, $\mathrm{B}+\mathrm{r} \mathrm{C}=\mathbf{3 0 . 7 5} ; \mathrm{H}=1.9 ;-\mathrm{H}^{\prime}=8.9 ; r=1.5$.
Then $1.5 \times 1.9=\mathbf{8 . 8 5}$; and $1.5 \times 2.5=3.3$.
Entering the table with 2.85 , I find opposite 285 the tabular namber - 903509 ; from which, as there are two decimal places in the number $2 \dot{8} 5$, I cut off two decimals and have for r H $2 \cdot 85$. 3500.
And in the same way, entering the table with $B+r C=308$, I obtain $30 \cdot 8 \ldots . .0324$; and taking the difference of these two tabular numbers, $\cdot 3509-3324=\cdot 3086$, which, found in the table, corresponds to $\mathbf{s . 1 4}$, the value of x, additive.

On the other side, for the value of $-x^{\prime}$.
,

$$
r H^{\prime}=3 \cdot 3 \text { tabular number } 3030
$$

x 30.8 .0324 -3854, whioh corresponds to $2 \cdot 98$.
At the other end of the first chain, $\mathrm{B}+\mathrm{r} \mathrm{C}^{\prime}=\mathbf{2 4 . 4 5 ; ~} \mathrm{H}=\mathbf{3} ; \mathrm{H}^{\prime}=1.9$. $3 \times 1 \frac{1}{1}=4.5$.. Tab, No. .. $92221.9 \times 1 \frac{1}{1}$ Tab. No. for 2.85.. 3509 dedact for, 24•5 do. 0408 add .. 0409
x, additive $=5.51$............ $\cdot 1814 \quad x^{\prime}$ subtractive $=2.55 \ldots . .3917$ These examples show the use of the table in setting out the earthwork.

For ralues of x, x^{\prime}, \&rc., as clements of calculation for correoting the quantity, when the rate of inclination of the ground surface simply is taken in the Geld, this rate of inclination should be expressed so as to indleste e verical height in terms of 1000 parts horizontal :-Thus, if in a chain's length of 50 feet, the inclination of the gronad amonats to 1.25 feet, the ratio expressing the vertical height in terms of 1000 parts horimontal is 25. Also, if in the length of a Gunter's chaia $m 66$ feet, the rise or fall measured $2 \cdot 2$ feet, the ratio in 1000 parts wonld be $33 \cdot 3$. This is a common Rule of Three question, thus:-

$$
10: 1 \cdot 25:: 1000: 25
$$

which, when using a Gunter's chain, and a level-gtaff divided into feet and decimals, is abbreviated by converting the height or difference of level, read off on the latter, into links, and multiplying that equivalent by 10° Let us call this ratio of the inclination of the groond $b ;-r$ the ratio of slopes of cutting and embankwent, as before, as likewise the other characters which follow.

The table should be entered with a number, the resolt of the formula $\frac{r \times b \times(B+r C)}{1000}$, from the tabular number of which we must subtract the tabular number corresponding to the value $(B+r C)$, to obtain the value of x; and, on the other hand, we mast add to get the value of x^{\prime}

Thus, suppose $b=33$ 3; and $B+r C=80.8 ; r=1.5$;
 $35 \cdot 2$............ dedact $\cdot 0284$

$$
\begin{aligned}
& \text { additive } 0.35 \quad \ldots . \\
& x^{\prime} \text { subtractive } 4.67
\end{aligned} \ldots
$$

It is not altogether foreign to the subject of this paper to present some applications of the prismoidal formula, which, as cases of frequent occurrence, are deserving of being noted for their simplicity, and for the brevity of their solution in nombers; especially as they are seldom, if ever, met with in works on unensuration.

1. In a triangular priamoid, of which the area of the base is called \mathbf{B},
and the three beights perpendieular to the plane of that base h, h^{\prime}, and $h^{\prime \prime}$,

$$
\text { the eolidity }=\mathbf{B} \frac{\left(h+h^{\prime}+h^{\prime \prime}\right)}{3} .
$$

2. In a prismoid with a trapezoidal base; divide this base into two triangles, and call one of the parallel sides of the trapezoid as the baso of each triangle; then add together twice the heights above the base of one triangle, to once the beight above the base of the other triangle, and multiply this sum by one-sinth the area of the base of the triangle; this done for each triangle, and the resalts added together will give the solidity of the prismoid. Thus, if h, h^{\prime}, are the beights above the base at the eads of one of the parallel sides of the trapezoid; and $h^{\prime \prime}, h^{\prime \prime \prime}$, the heighte at the ends of the opposite parallel side; B, and B', being the areas of the triangles, having those sides for their bases respectively; then
the solidity $=\mathrm{B} \frac{\left(2 h+2 h^{\prime}+h^{\prime \prime}+h^{\prime \prime \prime}\right)}{6}+\mathrm{B}^{\prime} \frac{\left(2 h^{\prime \prime}+2 h^{\prime \prime}+h+h^{\prime}\right)}{0}$.
This solid may have one, two, three, or four heights, and the formula admits of further simplication according to the relation of the heights to each otber.
3. Wben the four heights, being unequal, the base of the prismoid be. comes a parallelogram of which the area $=B$,

$$
\text { the solidity }=\mathrm{B} \frac{\left(h+h+h^{\prime \prime}+h^{\prime \prime \prime}\right)}{4}
$$

This last formala furnishes the means of determining the solidity of a body of any extent whatever, terminated by an irregular surface, but of which the base is a parallelogram. With this view, we mast suppose it divided by two systerns of equidistant vertical planes, parallel respectively to each other and to the sides of the parallelogram; and if $\ell=$ one of the equel parts, into which one of the sides of the parallelogram is divided,
$h, h_{1}, h_{9}, h_{3}, h_{4}, \& i c .$, the series of vertical dimensions taken through points at the distances l, in the irst vertical plane;
$h^{\prime}, h_{1}^{\prime}, h_{8}^{\prime}, h_{8}^{\prime}, h_{4}^{\prime}, \& c$. , the corrosponding vertical dimeusions in the second vertical plane; and so on.

Then the area of each plane is,

$$
\begin{aligned}
& \mathbf{A}=\frac{l}{2}\left(h+2 h_{1}+2 h_{2}+2 h_{\mathrm{a}}+\ldots \frac{A}{n}\right) \\
& \mathbf{A}^{\prime}=\frac{l}{2}\left(h^{\prime}+2 h_{1}^{\prime}+2 h_{\mathrm{g}}^{\prime}+2 h_{3}^{\prime}+\ldots . \frac{h^{\prime}}{n}\right) ;
\end{aligned}
$$

and 50 on . Then if L represent the perpendicular distance between thä뭉 vertical parallel planes,

$$
\text { the solidlity }=\frac{L}{2}\left(A+2 A^{\prime}+2 A^{\prime \prime}+2 A^{\prime \prime \prime}+\ldots \ldots \ldots \ldots A^{n}\right)
$$

These theorems may readily be deduced as corollaries from the prismoidal theorem, but they are also capable of an independent elementary prouf: -See Pxissant Trateé de Topographic.
4. If a line of slope (of a single slope) turus at right angles to its original direction, the solidity of the angalar portion, when $h=$ height at the angle, and r the ratio of the slope, is

$$
r h \times \frac{h 2}{3}
$$

6. If the direction of a double slope and bottom, as a ditch or treach, turns off at right angles, then b being the width of the bottom, the solidity of the angular portion is $(3 b+6 r h) \frac{b h+r h_{2}}{3}$.

Example.

In erecting some Iron Works, it became necessary to provide a proper foundation for a quantity of ponderous machinery, by removing a considerable depth of cinders, rubbish, and loose ground over the whole site of the proposed buildings, which covered a rectangular space of 150 feet $\times 80$ feet.
To calculate the quantity of eartbwork to be executed:-The parallelogram being set out, each of its long sidea was divided into six equal parts of 25 feet, and each of the short sides into four equal parts of 20 feet. Note,-the calculation is much shortẹned by dividing each side into an EVEN number of equal parts. This is shown on the figure.

The necessary depth was then ascertained by boring, and a series of levels over the sarface of the ground were taken, as shown by the dotted lines, which being reduced to the plane at the intended depth, as a datum,

The usual way, gave the dimensions as fagored in the dianram. The sides of the exceration were to be finished with slopes of 1 tu 1 .

Culculation of Volume.
Fieighta at angles.. $\quad 15+5+22+24=06$. Tab. No.1.. 0.8148
Exteriur heights .. $12+10+9+8+0=45$
$28+42+21+21+28=110$
$18+20+23 \ldots \ldots \ldots=61$
$10+15+21$
$10+15+24 \ldots \ldots \ldots=49$
265. . Tab. No. 2.. 6. 119

Interior beights
$16+14+13+11+9=63$
$19+20+22+21+20=102$
$20+82+23+22+20=107$. 18.3333

SLopes.

 be divised by 2 , to obtala the conicats of ' one ' elope.

It is to be observed that a more rigorous calcalation, with the use of Table s, which would involve just double the number of figuree, gives, as the content of the slopes along the sides, a smaller quantity by $6 t$ cube yards, and of the slopes along the ends a smaller quautity by 42 cube yards and if extreme accuracy is desired, such form of calculation anast be followed, as explained p. 17-19 of the introduction to my tables. It is only, however, when each heightdiffers from being an aritmothical mean between the two adjacent heights, that this more lengthened operation can be required; and such a difference may be eatimated by inspection, to enable the calculator to judge whether it is desirable to iucur the trouble.

Jugn Hugres, A. I. C. B.

1, Lancaster Place.

A NEW MINING SURVEYING INSTRUMENT.

Sir-I beg to offer to your notice, and through your valoable Jouraal to that of practical survegors and engineers, a aketch of a model instrament for taking horimontal angles, which I think is new, and likely to become exceedingly useful, although it is but a modification of the principle upon which the quadrant and sextant are constracted. I have been led to the construction of the model, by constant experience for the last $\mathbf{2 0}$ years, of the difficulty and ancertainty of the use of the dial or compass for nadergroond surveying. Practical meo need no mention of these, but for the information of those not actually conversant with subterraneoos surveying, I may mention briefly the principal dificulties,--there is first the atiraction of the needie by the tram rails (now generally composed of wrought iron) which renders it necessary at each sfation of the instrament, to take them up for a distance (to make sure work) of 5 to 7 yards on each side of it-a laborions operation, and moch impeding the mining operations by obstructlng the wagon-way, besides occupying mach of the time of the surveyor, who has to await the pulling ap and removal of the rails. The next difficulty is the slow but progressive variation of the needle rendering a colliery plan of 9 or 10 years old altogether inaccurate, and therefore making it necessary to alter the meridians (generally numerous on a working colliery plan) or to make allowances in the observations taking daring every survey made after the lapse of such a period of time. The: follow local atiractions in the atratum of the coal itself or in the strata above or below it, often cansing a difference of 8° to 3° between a fore and a back observation on the same line. A oother is the gradual weakening of a needle in conatant use, and its consequent sluggish working cansing great loss of time, and great uncertainty-these are formidable evile, and other minor ones might be adduced if necessary.

It may be gaid with perfect truth that horizontal angles may be readily taken by a common circumferentor, or by a theudolite,-but of these the latter is too bulky, heavy, and complicated an instrument to be admissible into or usable in a coal mine, under ordinary circumstances, and there is a radical defect in the former which completely destroys its efficiency in mine surveging. It consists in the instability of the instrument and its consequent ancertainty during the movement of the upper upon the lower limb,-and if by way of correcting this, the instrument be farnished with a double set of sights, one for the back and the other for the fore observatioo, in the manner of those of early construction-this difficulty occars, that the anrvesor having fixed one pair of sights, must go to the other side of the instrument in a gallery very often leas than three feet high, and than flve feet in width (and this width occupied by the legs and other parts of the instrament itself) to take the other observation, and afterwards he must go back again to take the first observation again to assure bimself that the instrument has not shifted during the adjustuent of the moveable sights for the second observation. If he find, as is most probable, that it has atirred, the observation must be repeated perhaps several times, and this in a space where it is next to impossible to move without disturbing the instrument. Even two operators, one on each side of it, would be ueeless, as they would be in the way in nine cases out of ten of each othera observation, and would obstruct it by intercepting the view of the object.

By the instrument of which the above is a sketch, both objects are brought to the ege, as by a quadrant, at the same vertical line, and seen at the same time, and the aggle indicuted by the vernier, without any of the
incertainty and difficulig 1 bave mentioned as besettiag the ase of the common dial and that of the cireamferentor.

Briely to illustrate ita use, permit me to refer you to the sketch, sup. posing it requisite to take the angle formed by the two lines joining re. spectively A B, B C, the insirunuent is placed at the angle, and the limb x $y:$, which is fat, circular, and divided on the outer edge into 720 or half degrees, each indicating in an obserration a whole degree-this limb is then turned on a joint below, admitting horizontal motion, notil the candle A is reflected from the mirror B, to the eye of the observer placed anywhere opposite the vertical line D E-this mirror B is lixed vertically on the lower limb, with the silvered anface exartly in the centre. Then the upper limb is 10 adjusted that the candle \mathbf{C} is also reflected from the mirror G (which is fised vertically to this limb, and whoec oentre of motion is in the place of the mirror B.) to the eye of the observer on the line $d e$, of the aight D E, during this adjustment if any movement occurs in the instrnmeat, it is inatantly detected and adjusted by the observer without change of place, without dificulty, and in the least imagimable time. The angle required is then indicated by the vernier at either end of the limh q, r, t, t, at y of t. To test the efficiency of the inatrument, I made the subjoined sorvey with it, of a small but very hilly sloping piece of ground, of which 1 subjoin the plotting showing the error, which coasidering the imperfection of the model, will be considered, I think, very amall.

The model is constructed, the lower limb of wood and divided by the hand, and the upper oue of braks, and with the whole fitiog constructed by a workman unaccustomed to instrument making. I propose in the perfect ingtrument to place two levels at right angles on the lower limb, to fix it upon a ball asd socket joiat or parallel plates to facilitate the levelling thereof, and to apply rack-work capable of being easily thrown in and out of geer to the upper limb, and similar racks and a champ screw to the sight 1 E , which is noveable round the lower limb, and which in the modrl is a slip of glass-for this I propose to subatitute an ordinary sight with a vertical thin wire in lieu of the line on the glass. I should mention that the mirrors are marked by vertical lines on the silvered surfaces, and that thece lines are in the axis of motion of the upper wirror. I should mention that in the graduation of the lower limb, there are two opposite poiats marked zero, situated in the line of the silvered surface of mirror B , and marked in the sketch $K \mathrm{~L}$ respectively.

I remain, Sir, your most obedient servant,
Whliam Peace.
Heigh Colliery, Wigan, October 9, 1840.

ENCAUSTIC-PAINTING, WITH WAX, RESIN, AND OH. By Mr. Linton.
 (Communicated to the Commisrioners of Fine Arts.)

Wax wat the most important ingredient in the vehiclea for painting employed by the anciente. Its use is traceable from the early ages of Egypt,* and throughont those of Greek and Roman ert. It wes extenaively and almont exclusively used by the early Chriatian painters, and continued to be commonly employed till a late period in the middle ages. There is also abundant evidence of the use of resina by the ancienta, and the employment of such suhatance: smong the ingredienti for painting, as well as for varnishes, was continued after the invention and improvement of oil-painting. The procest which hat been fonod most astisfactory is that which excluden the fixed oils as much as possible, sulastituting for them wax, resin, and an estential oil. As a frat condition alfecting the durahility and brilliancy of the work, a ground of pure white is recommended. In this. the practice of remote antiquity has been confrmed by the beat modern authorities. The Egyptians, in the preparation of the surface for painting on walls and on manmy cases, have left prooft of the eatimation in which white grounds were held in the earliest times. The practice of the Greeks and Romans is exemplified by the prepared white tablet which was found among the ruins of Herculaneum. Aristotle among the ancienta, and Leonardo da Vinci and Armenini among modern writers, speak of white grounds as essential to the brightneas and darahility of picturea. Caravaggio and others of the "Tene. hrosi" " on the contrary, who were instrumental to the decline of art by employing dark grounds, have proved that the effects of time are accelerated by that practice. Many of the worke of Tintoret have suffered from the same cause.

In the method ahout to be descrihed, wax with reain may be coasidered, as a substitute for a portion of the oil usually employed; " the object being," as arench chemist observes, "to replace an alterable recipient for the colours, anch as oil is, by one whose nature it is to resiat the action of time and the agents of destruction."

The Process.-Secure a stout and well-pumiced canvas, free from size and gummy matter. Pasten it alightly on the stretcber, with the smooth surface undermost. Disoolve any quantity of bleached wax in doubie ita weight of oil of torpentine, and saturate the canvas with the solution while hot, and vear the fire. Then take the canvas off the frame and atretch and fix it properly, the amooth side being now in front for the reception of the ground.

The Vehicle.-Prepare the vebicle, which is to be exclusively employed throughout both ground and picture, in the following proportions :-

3 ounces of essential oil (of turpentine, lavender, or rosemary, ac.)
2 " resin (mastic, Copel, or Damara, \&c.)
1 " bleached bees' wax.
Place them in a glazed pot near the fire, occasionally atirring them with a stick, until the solution is completed. When cool it will be a magylp ready for use.

Procure a quantity of white-lead ground in oil; that of the shops may answer the purpose for the two firat coats, but fiake white is preferable, and is indiapensable in the two last layers. Mix a portion of the vehicle with the lead, and reduce to a creamy consistence by the addition of turpentine essence.

Grownd.-Spread, with a large fat knife or trowel, four coats of this whitelead cream over the chavat as smootbly as possible, allowing several hours to intervene between the lasers.

Picture. -In proceeding with the picture, the usual tube ${ }^{4}$ or bladdercolours of colourmen, ground in oil, may be employed (unlest the painter have this labour performed at home), while the vehicle may be placed on the palette near the colours, in the naual way, to be ready as a diluent. If a rapidly obtained impasto be desired, a portion of the rehicle must he mixed with the colour, which in a very short time will be found to bave obtained a consistence almost fit for modelling. ${ }^{4}$ The vehicle can also be thinned at plessure by additional oil of turpentine, which will enable is co work more freely; or it may be softened and retarded in drying by a slight addition of plain oil; or stiffened by replaring it near the fire to diminish the essence. The most careless or lavish use of it cannot be followed hy any injurious results, aince, after the essential oil has evaporated, the ingredients subside into a firm and unchangeable mass among the colours, without either shrinking or losing the formis into which they have been wrought by the hand of the painter. The essential oil has free egreas, by the agency of the was, through the back of the canvas, as well as through the front of the pictur:.

[^49]Pictures painted with oil only, or with common megylp, consiat of acces-' sion of akins or layers of paint, more or less cut off from mutual intercourse ; but the cero-resinous medium keeps the whole subatance in a constant atste of intercommunicative moisture daring the progrean of the work. The painter can pursue his operstions, without delay, to any stage he may think proper; be may also retum to them at pleanre; and he will find himself relievod from the necessity of sach a preparative as "olling out," an injarioas and disagreeable practice, often called for by the greany oozings through the surface or onter akin of the oil picture. It may also be remarked that the scrapings, glazings in, and rubbinge off for textare, which are sn often resorted to where oil alone has been used, are wholly annecessary in this aystem, which, by homouring the vehicle to the required consistence, yields all the means for a varied manlpulation that can be desired.s

Encauslic.- When the picture is completed, a short time being allowed for the evaporation of any excess of essential oil which may remain in those portions of the work which have been recently loaded with colour, it should be gradually moved towards and held in front of a fire until the surface has obiained an equal gloss. care beiog taken that it does not fry by too sudden or close an approximation; it must then be withdrawn to set and cool; after which it must be rubbed with fine linen cloths or with silk until a polish is produced. If the picture be large, a cauterium, or chafing-dish, may be moved in front of it at a carefnl diotance (from 2 feet to 18 inches or a foot, but not nearer), in order to obtain the required gloss. Should the picture have been painted upon millboard or panel, the evaporation of the cssential oil must necessarily take place from the surface only; the capacity of the picture for retaining heat being thus greatly increased, the latter will act, if the encaustic or "burning in" process, be performed gradually and alowly upon the resin, as well as the wax and oil, and effect a thorough fusion of the whole medium, which will result in a mont brilliant and durable enamel, more resembling a vitrified than a waxed aurface. The more perfect the desiccation, the more perfect and durable will be the glons. The reason Why encaustic surfaces frequently become dull is, that the glose is produced before the essence has entirely evaporated, the after-evaporation through the Fax enamel reproducing the filat and poroun surface. "It lustre," says Professor Tingry, " it equal to that of rarnish, without having any of its inconveniences. A wax surface stands shocks, a varnished one does not. If any accident alters the polish of wax, rub it with a piece of fine cork." To clean an encaustic picture, M. Durosiez gives the following directions:"Remove the dust, wash it well with alcohol and water, then with pure water, dry it, expose it to heat (in the mode descrihed), and polish with cloths as at first." The encaustic surface has more atmosphere than very new varnish, ${ }^{\text {, and }}$ is snficiently tranaparent to diaplay the deepest shadows to advantage; it doen not require periodical additions, like fresh varnishings and it is not subject to chill, like most of the essential oil solutions of the reaina. "Encaustic pictures," says Montabert," "never alter; they can be retouched; they are luminous and transparent, and possess all the excellen. cies of oil-painting, combined with greater durability."

As an addendum to the deacription of the procens, few remarks on the materials of which it consiste may not, perheps, be thought unneceasary. Oil of Tuppenline being the most available essence in this country, and anawering the requisite artistic purposes quite as well as cither rosemary or lavender, it may not be amist to retain it for the procesa. The beat bleached hees-wax that can be procured is another required ingredient. Pure wax from the comb, bleached by exposure to the light, 9 is to be preferred to the shop white wax, as the latter is usually adulterated with callow. Wax is said by many to run when ased in pictaren, and by others to be subject to crack. Professor Brande, however, informs as in his "Chemistry" that this substance will not melt under $154 \frac{1}{2}^{\circ}$ Fabrenheit, a degree of heat scarcely ever altained by the sun in this country: this statement, which differs but slightiy from that of other evinent chemish, ought to satisfy the most auppicions that the confidence placed in wax by tbe Greeka, Romaus, and Egyptiana, deaizens of far hotter climates than ours, was not that of ignorance. Besides, when in combination with other matters, wax is so notorious for its powers of adbesion, that a vastly increased degree of heat would be required to fuse it wben so circumstanced. I have several timas exposed sketches, painted with this cero-resinous vehicle united to coloure ground in oil,'to atove heat of 160° Fahrenheit after the essential oil had entirely evaporated, without the slightest running of the surfaces. And in forcing the heat atill

[^50]higher upon a leyer of white-lead ground in oil added to the vehicie, the white became very slightly tinged with yellow (from the partial combution of the oil, as I afterwards proved) without any other change whatever. ${ }^{\circ}$. As to the disposition of war to crack in pictures, it may be observed that uolese it be employed in some layera and excluded from others, cracking cannot posaibly ensue. Since, however, there are no two substances in the painter's materiel which are cheracterized by similar dispositions to contract and exs pand, extreme caution should be adopted in the juxta-position of differently constituted vehicles in the several layers of a picture. Varnish over unhardened oil, drying oil over the same, or wax over any of the three, would be very likely to produce cracking. Dr. Roux says that "wax does not contract like the unctunns oils;" ${ }^{2}$ and the Iulians consider that new tempera as well as vil-paintings are subject to crack in extremely dry seasuns, hut that wax resti undisturbed. Among the resins suitable to this process there is abundant choice. Damara is a favourite on the continent. It is very clear and bright, and does not creck when spread alone as an easence varnish over a wax picture. Mastic, which has a little more colour, has long heen a favourite with painters, but it is very subject to chill (a failing which has been attributed to nnsound watery tears ${ }^{2}$) mhen made with volatile only. Correggio and the Lombard painters are aid by Armeniai to have distolved it in fixed oil for a glazing vebicle or varniah. Sandrac was a fuvourite with the old masters; but I found it work very harshly withont fixed oil. Blenui is another contiuental favourite. It is slightly colnured, but is said to be tough in varnish. (Aiken.) Anime is difficult to dissolve; "it is more brit. tle and leas solid than copal. (Tingry.) The tuid resins, Venice and Chio turpentinea, with Canade and Capivi baleams, may any of them be used to advantage in this process, due consideration being hed to the exoess of eesential oil which they contain. ${ }^{2}$ The solution of the harder resins seems to have been better understood in furmer times. To dissolve copal effectually has ever been considered a difficult task; and perhape a greater value hat been placed on the resin on that acconnt. The power of wax in consolidating the feeblent resina soems to place every requinite means at our commend without undue labour or difficulty. And yet the superior qualities of copal, its toughness, its brilliancy, its consistence, and its durability, single it out as the most desirable of all resins to bring into subjection. Bonanni, Tingry, \&e., \&e., have deroted much time and still to its solation, and have sueceeded variously. Oil of turpentine, which Tingry proaounces (hecause is is a resinous essence) the most perfect solvent for resinous substances, and especially for copal, requires several months exposure to light in order to imboe it with the requisite powers. The essence baving attined these qualities, will, when made hot, and in warm room, tate up the powdered resin, if carefolly aprinkled into it and stirred up at the anme time. If the essence be new, the solution is almost impracticable. When copal has been fased and thrown into cold water before levigation, it dissolres more readily. It his sometimes been fused a second time before solution, but this is an opera. tion which must hare a powerful effect on ita best qualities, and it is to he hoped that the least injurious mode nicy be generally adopted. The oils of rosemary and lavender hare often been snccessful where oil of turpentine of a sufficient age has not been availahle. If the caoutcbouc portion (so called) of the resin continue to flost in transparent masses after the essence hat cooled, time and light only can perfect the union. The fuid resins readily take ap an eighth of their weight of copal. I could never effect a stronger colution with them; but with three ounces of turpentine oil alone I have completely disolved an ounce of the pale copal unfused; a proportion which is quite atrong enough for any useful parpose. One oance of copal in eight oances of essence is she usual proportion in Tingry; bat one in three or four in necessary to make a good cero-resinous magylp. I may obeerve that the above solution of one to three dried very rapidly; and that it posseseed such a degree of toughness and fexibility that five stout coats of it spread on a brond atrip of lettor paper, and hardened, exhibited not the slighteat aymptom of cracking when closely wrapped round so small an object as a common lead pencil. If erery painter desirons of possessing real copal varnish would place a quart of oil of turpentine in bis window, every three or four musthe, in a clear glass bottic, leaving an interval of one or two inches between the cork and the eusence, removing each bottle as it became fit for use (ia eight or twelve months as it might bappen), he would have every chance of continued aupplies of the varnisb for his studio; since a peatie and mortar, a common brown mug to hold the essence, and an Argand chemiat's latap to receive the mag, constitute all the apparatus requisite to perform the opera. tion both with precioion and afety.

William Linton.

7, Lodge-place, Regent's Park, August, 1846.

10 Cennini and Baldinucel give rempet for cementa of wax and realn ouly for brobee marbles, in which the wax to proportioned to the reain at threx to ode.
11 gee the Third Heport.
22 J. Scheffer's ". Graphiee," NoAmbergo, 1669.

1. In applying these belasms and turpeotines to pletares it hate been adried 10 ero. porate by hent the excess of easential oil which rendern them fuid at she common teat perature of the alr, and to rediasolve them in some more evaporable essence. An an drying priactple may be productive of as much mischief in a resinous as in an oleagicons
vehicie.

CANAL OF THE ISTHMUS OF PANAMA.

The following translation of extracts from the report of Napoleon Gafella, an engineer appointed by the French Government io survey the Isthmos of Panama, is taken from the Joural of the Framklin Inati-tinte:-

The remarkable iathmus which unites the two Americas and extends between the Gulf of Mexico and the Pucifio Ocean, to a length of 1430 giles, in a direction from W.N.W. to E.S.E., presents along this enormons leagth a variable width. From the mouth of the Guazacoalco, its point of junction with North America, where it has a width of 187 miles, it conciuves barrowing regularly enough, with the exception of the two large promontories of Yutacan and Central America, to its other extremity, rowards the Gulf of Dariea, where it is oulted 10 South America. It 10 towards this latter portion, where it is called more particularly the Isth. mus of Panama, that it attains its minimum width. From the month of the Caimito, on the Pacific Ocean, to the embouchare of the Cbagrea on the Atlantic, the distance is but $\mathbf{3 6}$ miles; but the minimum width appears to be a littie more to the eastward, betwren the hay of Mandingo or San Blas,on the Caribloren sea, and the shore of the Pacific Ocean, near the embouchore of the Rio Clepo, where the distance, aocording to the map, is but 31 miles. The chain of mountains which extends in a direction bearly north and south, the whole length of the two Americas, from the icy seas of the north pole to Cape Horn, presents along nearly its whule leagth a considerablo elevation. Its peaks are only surpassed in height by the sammits of the hlghest of the Himalayas, and even its vast plateanx have an elevation superior to that of the highest mountains of the interior of France. This chain exteads, without any discontinoity, the whole leagth of the isthmus, bat then as the breadth of the laud dimimiahes, wo the ridge of the chain sinks considerably, and presents some doprexsions, of which the hright above the ocemo is leas than that overcome by eome of the European canals aiready constructed. One of these remarkuble depressions exists in the neighbourhood of Panama-not at the paint where the isthmus is narrowesh, but a litte to the westward, where, however, it is narrower than at Panama. In examining the configuration of the isthmos from west to east, it will be remarked that, passing from the state of Costa Rica (Central America) into the province of Veraqua (New Ciranada), onder the 85 th degree of west lungitude, $\$$ degrees to the westward ceatral ridge dividing the waters fowing into the two oceans, appears to break off suddenly at the steep and precipitons peaks of the Trinity (Cerro de la Trinidad). There commences the depression of whioh I beve spoken, aod which exteads a distance of 25 miles, to the hills of Or migueros. The ridge then rises by degrees, and altains, opposite Porto Bello, and near the Galf of San Blas, its previous height. Along this distunce there are n number of points whose elevation varies from 425 to $5 \$ 5$ feet, between which the ridge rises but little, and forms billocks, and not praks or elevated masses. This depression of the central chain ls, then, one of the first and wost evident observations which the oxplorer makes; and it has beeo noticed by nearly all those who have surveyed the isthmus; Mr. Lloyd points it out for the line of a canal; and it is there, also, that Mr. Morel, the agent of the Salomon Company, has laid down his roote. It is evidently there that the summit level of the maritinie cormunication to be opened between the two oceans, should be placed. Unfortunately, those who have hitherto visited the isthmus, have only judged approximatively of the height of this portion of the chain, and that by a simple risual observution, made without employing any instrument, and moutly at long distances; and takiog, wibout duubt, as points of comparimon, the elevated mountains of the Trinity, and other mamees of a considerable olevation, situated mure to the eastward; those of the Cerro Cabra, which are 1614 foet high, and thuse of the Cerro Grande of Gorgona, which rise to a height of 1017 feet. Thence, doubtlessly, comes the erroseous opinion apread abroad, on the faith of some navigators, that the central obrin uniting the elevated table land of Mexico with the Andes of Pers, ceases entirely in the portion of the country of which we are Dow speaklag; and is cat by a trapaversal valley, where man will have almost dothing to do to establish a navigable commudicution betweed the iwo oceans. Thence, aleo, without doubt, the extruordinary atsertion advaeced by the Salomon Company, that this depression of the chaia offers a poidt of passage situnted only 87 teet above the menn height of the sea at Paoama, a point which the company naturally chose for curriog across the summit level of the caond which they projected. From the sides of the Cerra de la Trinidad fow three principal streams, of which the moat important, the Caimitu, empties itself into the Pucific 14 miles west of Panamu. The two other streans, which flow towards the Atlantic, are the Canu Quebrado and the Rio Trinidad-risiug al neurly the sume point, they separate as they advance. In the triangular apuce comprised betweon them, the laws of nature, which, throughout Anerica, have placed the ridge of eeparation of the waters flowing into the two oceans, nearer the western side, appears to have been maintained. The wide space which eeperates the bed of the Trinidad from the base of the spur, is occupied by rast and, for the woat part, unbroken plaios, from the midule of which rise some isalated billocks. One does not there neet with the wntercourses which might be expected from their extent, but many swampu, nod even derp lakes, communicating with the 1 lio Trinidad by small natural canals, calied esteros. In thene plains is found the large lake of Vinu cinto observed by Mr. Morel, which is upwards of a lrague in diameter. Here also are fonad, near the anouth of the river, the swampa of Agma

Clare, which beve in anme place, se I have been asmred, a depth of water of 42 feet.

Besides these streams, there is another on the western slopo, fowing dirertly into the Pacific; it is the Rio Grande, situdted between the Caimito and Panama, and having its month $1+$ miles west of that city. It is indeed a stream of no great magnitude, the upper porllons of which are completely dry during some months of the year; but it presente a characteriatic which it has in common with other affluents of the l'meific Ocean, which is, that the lower purtion of its bed has but a slipht descent and great width, so that the ude moonts it to a conslderable dislance, and thue forms an arm of the eea (estero) intruding into the land, with a depth varying from 25 to 33 feet, and sometimes even unore, which offers facilities for navigation, though only during high water, and as far as the tide flows. It is to this characteristic that the lio Grande owes its mame, though in fact it is but a brook. Alongside of the Rio Grande is another little ravine, pouring its waters directly into the sea. This is the Rio Farvad, having, towards its month, a wide and deep bed, which, at this point, is only eeparated from the Rio Grande by a hill, around which its waters are furced by high tides, Howing into the Alvine marshes, through which the road from Panama to Chorera passes, thus mingling the waters of the two creeks.
This featare of a great dimioution of fall near the embouchnre of the atream, is still more perceplible on the Atlantic slope. The Chagres, which is undoubtedly the mout important and most voluminous suream of water of this portion of the isthmus. presents it in a very atriking nuaner. The tide of the Aluntic, which rises but from 18 to 15 inches, ascends the river a distance of 17 miles; and is navigable, but with some difficalty, beyond a distance of 18 miles from its mouth. Thence it can be ascended only by poling, on acoount of the rapidity of the current and the irregularity of the boltom. Laden boats aecead it as far as Gorgona and Crucés, but in the dry seanon (from December to June) they are obliged to unload the larger barques on a beach near the mouth of the Cano Quebrado, and to load aguiu in smuller boats; and oven with theae they have great difficulty in reaching Crucets. With the exception of the Rio Chagres, the other rivers of the isthmas can hardly be suid to be navigable, and none of them can be made aseful for the purposes of navigation.

The waters fowing from the central chain, at its point of depression, are divided, as we have seen, between two hasons: hat of the Calmito upon the Pacitic slope, and that of the Rio Chagres, or rather of the Cano Quebrado, upon the Allantio slope. It is thes between these two basian, that the point for the passage of a canal of commuaiomion between the two oceans, is to be sought. It is along their tributaries that we mast look for the valleys where the canal should pass; and finally, it is in the neighbourhood of the localilies where their waters empty into the seathat is, dear the mouths of the rivers Caimito and the Chagres-that wo must seck the points of communication of the conal itaelf with the two oceans; the hars which always form at the points where the ranning waters of rivers meet the still waters of the ocean, rendering it necesoary, as a general rule, to avoid carrying a great line of anvigation to thoe puints.

The Rio Chagres has, in fuct, at its month, a bar with a depth of water of but 18 feel. Uader these circumstances, the insufticiency of such an entrance for an oceenic canal like that of which wo are treating, mey be easily comprebended; a canal which should admit shipd of the gremtest tonnage, and dernanding at the leust a druft of 28 feet of water. Donbllesaly it would not be impossible to remedy, at least temporarily, this defect; but the ancertainty, proved by experience, of the results of ope. rations carried on at the mouths of rivers oven larger than the Chagres, eapecially when they are for the parpose of opposiog the accumalation of anod, shoald ivduce us to employ such means only in case it should be impossible to tind another suitable entrance; here, however, natore herself appears to have provided one. Five miles to the eastuard of the Rio Chagres, is the large and capacious bay of Limon, 21 miles in width, and 38 miles long. It has a great depth of wutor, which, in the ceutrr, reaches 82 feet. This bay is meparated from the river by m tract of lund in general of but alight elevation, und ollering some low portions, whicb affurd facili tien for excavating a causl of communicution with the river; works simple and easily coastructed, will suffice for the establishment of a vast and sure port at the entrance of the canal, in the bey, which, upening to tbe north, is at prement exposed direotly to the action of the north, noritherest, and oorth-west winds, which reigo almost conslunty in these latulades.

These duwdivantages fougd at the embouchure of Hio Chagres in the Atlantic, are still mere apperent at that of the Rio Caimito in the Pacife. This embouchure is situmted in the middle of a vust beach, which Jow water leaves uncovered; it thas anites a want of depib of water aod the inconvenience of sand bunks. The coust does not offer in this neightourhoud a furourable locality for a good port, with a aufficient depth of water, for to the depth of water necessary for vessels nust be added the beight of the tide. But, fortuustely, the neighbourhuod of the port of Tabuga, and the almont constant tranquility of the Gulf of Papama, at the bottom of which is the mouth of the Caimito, permit us, in establishing the entrance of the cuasl, to take into considerauun ouly the depth of water at high tide.

The place on the coast which appears to me the beat to correspond with the required couditions in this respect, is a little bay with an opening of 382 yards, situmied 21 miles to the rusiward of the mouth of the Caimito. At its ratrance the inemu depth was found to be at least 264 feet at high ude. There would be but little to do at this point to estublish the entrance
lock of the canal with such a depth of water that ships might enter, at leant at high water, during the neap tides, about the frst aod last quarters of the moon.

TANNED CANVAS.

Communicadions from Mr. Hanlet Millett respecting a mode of rendering Cances durable by means of Tan, to the Compmisioners on the Fine Arts.

It may be necessary frst to stale that the procesa of tanaing canvas, altbough easy and expeditious, is altogether differeut from that which is employed by tanners for converting the akins and hides of animais into leather: it varies also from that mode in common use among the Yarmouth herring-fishermen and others for tanning their nets to protect them from premature rottenness, although the process of extracting the tan from the nuk bark is nearly the same as that which is used by the Gishermen for the ahove purpose, namely, by decoction. It will he seed from the following statement that every possible care and attenting has been palil to render the results of the experiments as decisive us could be desired.
Four onprimed $\frac{1}{5}$ canvases were tucked with copper nails fo four atretching franies. The four canvases were cut frow off the same roll of cloth, and the stretchers were all manufactured from the same plank of wod. Two of the four canvasea, after being stretched on their frames, were immersed for three days und nights in a vat of strong tan, made expressly for the occnsina; the canniag liquor being kept, during the whole process, at a temprature of 150°. The two canvases, after being taken from the vat and well dried in the open air, were hung on the side of an undergroand cellar, the walls of which were never free from damp; the foor was often fiooded in wet seasons for months together, and the water, long befure it disappearet, oever failed to become putrid. This circumstance rendered the situation in which the tanned canvases were hang for trial peculiarly well adapted for ascertaining the power of the antiseptic properties of tan. The two untanned canvases, after being tacked with copper nails to their strptchers, were hang op near the two tanned ones. Care being taken to exclude all circnlation of air, the cellar door was locked, and the four cunvases were entombed wiubout once meeing the light fur no less a period than ten years.

Mr. Milleth proceeds to state that when, after the trial, the four canvanes were removed from the cellar into the light for exemination, the two tanned canvasups were found to have completely resisted putrefuction, no aympcom of decomposition appearing in any part of them. Pliers were forcibly applied to the edges, but the cloths were found to be as strong as they were on the day wheu they were tirst placed in the cellar. The stretchers alwo. which were tanned with the canvases, were fonnd to be ao leas cound; they were pierced with a gimlet in several parts, both back and front, and wirre found to have undergone no change. Not so with the votanned canvases and their stretchers; in them decompostion had made very considrrable progress; they were found to be in a hulf state of decay. On using the pliers the canvos proved to be extremely tender, rending with little exertion. The stretchers also were in a state of decay; on piercing them witha gimlet they were observed to be very unsound; and the growth of fungi, one of the evidences of decomposition, showed itself, particularly about the joints of the stretchers. The same two tanned canvases were again placed in the cellar, together with one of the two untanned canvases; the other, after having been cleansed (as well as its atretcher) from the mould that covered ir, I caused to be tanned precisely in the same way in which tha other canvases had been treated. Afler being taken from the vat and dried in the open air, this canvas was also placed in the celinr with the other three, and the door was again closed on them.

Thene experiments, Mr. Millett adds, were contibuel with the same canvases doring a considerable lapse of time. in all whout twenty yenro. When fioally examined, the two tanned canvassees, rogether, with their stretebers, continued, notwithstanding the severe trial thes had experieaced, sonnd in every part; not the emallest aymptom of decay could he discosered ; proving, fir beyond my anticipations, that the antiseptic properties of tan ure sufficieatly potent to resist putrefuction and decompusition in canvas, and even in wood; hence, readeriog them durable even wheu placed in the most trying situations.

The untanned canvas and its atretching.frume were found, on their final inspection, to be cumpletely decomposer; the cunvas dropped from the frame, and the frame itself whs a nase of touchwood. The half decompused canvas and stretcher which I bad caused to be tanned before the second trial took place, as above ataled, had suffered no further decomposition; n atrong proof that tan has abt only the power to prevent but to arreat the progress of decomposition. This latter experiment was expressly on a supposition that, if the resuit should prove successful, the process might be readered available in prolunging the exiatence of the valuable works of the uld masters.

Process for extructing tan from onk bark for tanning canoas.- One hobdred weight of good, stound, and co..rsely-ground onk bark, will make one huudred anlluns of proper tanaing liquor, which is sufficieat to tan mbout sixty square yards of canvas.

To make a rat of ban of any regmired size, -Take acy quantity of grod
coarsely-ground oak bark, aecording to the number of sqaare yards of canvas about to be tanded, and water agreeahly to the foregoing proportions; boil them together for twelve successive hours in a copper vespel (not in en iron one, as the oxide of iron has a tendency to decompose tan), taking care to supply the decoction with fresh water from time to time to make op the losa occasioned by eraporation. When sufificiently boiked. atrain off the tanning liquor from the bark through a hair-sieve, and pat it by for use. The tanning liquor thus made is at least three times an stroag as that made made use of by the herring fishermen, to render their nets durable, aod still stronker than that employed by the Dotch shipowers for tanning the salls of their vessels with the same view.

The copper in which the oak burk has been boiled, will serwe every required purpose as a val, with one tribiag addition, namely, a amall piece of fat oak board, about nine inches in diameter, and one inch thfiek, ret into a circular shape, to be placed at the bottum of the inaide of the eopper. Its use is to prevent the canvas. whilst undergoing the procem of tanning, from tonching the bottom of the vessel.

Process for tamming the cuntas.-Tmke aoy quantity of canvas, may 15 yarde, to tan which 26 gallons of tanning liquor, made as above are required. Pour the tanning liquor into your vat or copper, and heat it by means of a gentle fire under it, to the temperature of 150°, then imerene the canvus therein, and continue the immersion at the anme degrie of temperature, day and night, for 48 hours. A loager period would do the cmavas no harm; a shorter is by no meana recommended. The canvas during the process of the tanning should now and then be moved is the vat, in order that every part of it may be equally tanaed. The tanaed coovas, on being taken from the vat, must be neither wrung nor aquerzed, but bnog up or laid out on a grasb-plot to dry, allowing the air aloue to take up the remaining moisture.

The process for tanning canvas, when strained on stretching frames, is dissimilar to the foregoing, buth as to the constroction of the vat, and ibe mode for regulating and keeping up the gecessary temperature required for carrying on the process of tanning the canvas already strained. The process about to be described might iadeed be dispensed with, as canvas can be as readily atrained on the stretching-framea after as before it bas ondergone the process of tanaing, and much labour and expense woold be saved thereby; but it has been thought that the stretching-frames on which the canvas is strained, onght to receive from the tan the same protection adrantages as the canvas itself, they being equally subject to the causet of decomposition. Stretching framen intended to uadergo the tanaing process, ought to be completely made and atted, but not put tugetber before they underio the process of tanning. It is scarcely neceseary to observe that the stretching-frames here mentioned are those to which caaves is aot yet attached.

To construct a rat for tanning canvas when stretched on its frame, takether with the apparatus for heating the tamning liquor, and kerpragy if at a perper temperature dwring the operation of tanming.-A case made of onk plant. ing, about an inch in thickness, and somewhat resombing a ptctere pect-ing-case, was provided, with one side left open to admolt the straieed ces. vases; thia served as a vat. The case or vat being placed edgetive. a lead worm of a 20 -gallon atill was wound roond the inside of it, and tran from water, constantly kept in a boiling atate in the atill, and foroed thrownt the worm io the vat, kept the tanning liquor at a proper temperatare. The was the sort of vut which was used for tunning the two $\frac{1}{4}$ canpases and their stretchiag frames, before mentioned; it was expresaly made for casrying into effect those experiments.

Mr. Millett prooeeds to offer tome observations the mede of Eaing pictures:-A picture requiring to be mew lined, being spread oet for thas purpose, take a basio of strung tanning liquor, prepared mecordiag to the foregoing process, and in a moderately wurm state; wash the beck of the picture therewith, nsing a soft sponge; when the tanoing liquor so applind shall bave become dry, the smme process abould be repeated, ased to rostidued for three or four times. The use of the tanaing liquer wo empleyed, is to arrest, by the antiseptic properties of tan, the further progrems of the decomposition which may have taken place in the original cuavas en whet the picture is painted. The second precaution to be observed is to apply a well-tanned canvas as a lioing to the picture; and lastly, as a still farther protection to it, it would be well to use a atretching-freme that has wodes gone the process of tanoing also.

A eat or apparatus constructed as follows, will be found well adapted for the purpose of tanning stretching-frames:-A equare trongh of ay roquired leugth, and ubout a foot in beight and breadth, furmed of sise aod lined inside with oak planking, with a lid made to open and shat, is at that is necessary as repards the vat itself. To beat the taunies liqeor therein aud kerp it at a proper temperature, doring the operatios of us. ning, a lead-pipe leadiug from a stemm-builer, and pasoing lhrough the tanning liquor in the vat, is alsu required. The heating procese should the regularly kept up for at least 48 hours. The stretching. fratase shoold be regularly nimde and fitted previously to their being tanued, and they abould be tanned before they are tinally put togetier.

The writer further remurks that fow things are so deatroclive to cana as oil, aud expressers his opinion thmt, in priming canvas for pajatiep, rar should be taken to heve it well sized, wo that it may fully reaist the an is the priming coloar.

BRITISH ASSOCLATION.

Sxssion 161k, held af Sowthamptom, September, 1846. (Continued from page 308.)

8zction A.-Mathimatics.

Sxlf-Rienstiang Inernumants.

Mr. Beooxin stated that be bad applied to the barometer, thermometer, and porchrometer, a new apparatus, by which also he had obtained a registor of varictiose of the declination magnet, a description of which he had transmitted to the Royal Society. This may be briefly explained to consist of two concentric glast cylinders, which enclore between them a piece of photographic paper, and are carried ronnd hy clockwork once in twelve hourn. These are covered by a hlackened case having a nurrow siit parallel to the axis of the cylindera, through which a small point of light, refiected from a apherical concave mirror atteched to the magnet, and then refracted through - colindrical lens, pasees and impresses the paper. Some photographs were eachibiced, and were much approved of by the president, by Dr. Whowell, and other leading members of the committee who were preseopt: from there the ponition of the megnet at any given time might generally be determined within ten seconde, and frequently within ave. The self-registering barometer was described as a syphon barometer, the extremities of which were neariy an inch in diameter, and exactly the ame sire, being adjacent porsiona of the same tobe. A glase halb having a trbalar item reate on the surface of the mereary in the lower end of the tabe, and is maintained in a vertical position hy small friction-rollers. On this atean reats the short arm of a balanced lover, and the barometer in so placed that the long arm of the lever carries a black paper screan between a lamp and the olit in the apparatus above described; the light of the lamp being condensed by a cylindrical leas placed in front of and parallel to the silt in the apparatus. Thin acreen has a narrow alit in it, at right angles to the former; and the amall portion of light, tranamitued through the point at which the two slite cross each other, produces a truce apon the photographic paper. The ratio of the arme of the lever may be determined at pleasare, to as to magnify the varia. tions from two to ten times; and as the line is very sharply defined, when magnified five times the variations may be readily determined to the thouanodth part of an inch. The author otated that he had not had the opportanity of determining the errort of the inatrument, ariang from friction and other caucen, but he believed them to be vory amall. In the telf-registering thermometer and paycbrometer the mercury in a wide fiat bore of the tube intercepta a portion of the focal line of light formed by refrection through a eglindrical lens pleced as above. This doee not require more particular des. cription, as it differs only in deteile from aimilar epperetas, of which a description is in print.
Mr. Y. Ronalds, on presenting bis third amnal volume of obrerrations asd experiments made at the Kew Obvervatory, deseribed bis experimente on the photographic self-registration of the electrometer, the barometer, the thermometer, and the declination magnetometer, explained bis exinting appa. rumus for thete purposes, and exhibited the reanaliag photographo-bat fint briefly adverted to his previous proposala in 1840 and 1841, and experimenta in 1844 relative to the subject. The principal characteristic of his improved aydem is a peculiar adaptation of the lucernal mieroscope. An instrument of this hind was employed in Jaly 1845 to regintor the variations of Volta's atmoupheric electrometer. The pair of otrawi were properly inaulated and sappended within the body of the microseope, and towerds its object end. A condensing lens was placed at the end itaelf, and a good lamp stood beyond it; a atrong light was therefore projected upon those iden of the straws which were toraed towards the condenting lens, and the other sidee were in deop shade. The ligtit also impinged upon a little acreen fitted into the beck of a case about two feet long fixed to the eje end of the microccope, at right angles with it, and rertically; through this mereen was cat a very nasrow curved slit, whone chord was horizontal, and radins equal to the length of the atraws. Between the electrometer and the screen an excellent combination of scbrometer lenses by Rons was accurately adjunted, to produce a good ehemical focus of the electrometer at a distance as much beyond the exteraal surfice of the screen as the thickness of one of the plates of glass to be presently mentioned. In the long vertical case was suspended a frame abont half the length of the case, provided with a rabbet, into which two pieces of plate glana could be dropped, and these broaght into close contact by means of six little bolts and nuts. The frame could be remared at pleaware from the line by which it was auspended, and the line, after passing through a small bole atopped with grease at the top of the loag cave, was attached to a pulley about four inchen in diameter, on the hour arbor of a clock. Lastly, counterpoises, rollera, and apringa were used for insuriag accurate aliding of the frame, \&c. A plece of photographic paper was now placed between the two plates of glass in the movable frame, the long case was closed so as to provent the posibility of daylight entering it, the clock was started, and the time of atarting was noted. All that part of the paper Which wis made to pass over the slit in the screen by the motion of the clock, became now therefore ancceasively exposed to a atrong light, and was consequently brought into a atate which fitted it to receive a dark colour on being again washed with the usaal solution, excepting those small portiona upon which dark imagea of the lower parts of the atraws were projected
throcegt the dit; theoe perts of counce retained the light colour, men formed long carved limes or basde, whoes distances from each other at any given part of the photograph, i. e. at eny given time, indicated the electric tension of that time. Sometimendaylight was aned inatend of the light from alamp, and in that case, during the procen some appearancen of the aky were occasionally noted, by which it was evident that in serene weather, when the sun's light and beat raried, aad the paper became consequently either more or lest darkened, the eloctric tension as shown in the photograph varied also, increasing with the increase of ligtt, de. This fact has not perhape before been observed; bat as the darkening effect on the paper could not alwayt be depended apon, ceparate notea were taken of the intensities of ligtt and the meme reaulte obtained. At the sugseation of the atronomer royal a dist tingainbing electrometer formed on the day pile rytuen was afterwarde employed, which exhibited in the photograph not only the tension but the kind of electricity possessed hy the electrometer at any given time.

The dry thermomeler wes next tried; it was of the borizontal kind, had a fint bore, and it tube was introduced through the side of the microscope; the tube had a diaphram of very narrow aperture fixed upon it, and the alit in the screen at the eye end of the microscope was now of course atraight and horisontal. The imago was a little magnified, and the breadth of the dark bnad or line in the photograph became the measare of temperatare inversely at any time.t. The barometer omployed was of the syphon kind; the microscope was tarned, in order to bring the long case and ita aliding frame into an horicontal position; the clock was placed at one end, and a little weight sufficient to keep the frame steady was anspended by a line parain: over a palley at the other end. The lower leg of the barometer was introduced throngh the now bottom of the microscope, it was provided with a similar kind of diaphram to that on the thermometer, and of course the alit in the cereen was now vertical. A very light blackened pith-ball rested on the aurfece of the mercury, and lta image was slightly magnified, bat will in future be much more 10. The declination magnet was one of two fect, provided with a damper, and its mode of suspention wat essentially similat to that of the Greenwich declinometer. In order to adapt it for aelf.registration, a very light conical brass tabe, projecting six inches beyond its north end, wat affred to the lower side of the spur which carried it, and to the morth ond of that tube a small wire, called the index, was attached at right anglen; this index deacended through little alita in the bottoms of the two cases, onclosed the magnet, sec., and took the place of the electrometer dosaribed above in the lveernal miscroscope, which was pleced below the cases, and was now required to be much longer than before, in order that the image and motion might be auficiently magnitied, yet retaining a flat feld. Bverything was very firmly fixed upon the two pillars which formerly carried the transit instrument of George III.

A great many photographs were obtalned and sent for inspection to Greenwich. Of some termday impressions, Mr. Glaisher, the magnetical and meteorological apperintendent of the Greenwich Ohservatory, mys, in an official note, that "t the beantiful agreement of those resulto with thete at Greenwich is highly setiofactory." This must be gratifying to Mr. Ronalds, who has from the first so ably devised and condacted the experimente and observations at Kew.

Mr. Dollond's atmospherie recorder registern aimnltaneonaly and contina. ovaly on the amo theet of paper every variety of change in the barometer, thermometer, hygrometer, electrometer, pluviometer, and evaporator : it also records the force and direction of the wind.
The barometer is upon the aiphon principle, of a large bore. Upon the sarface of the mercary in the shortent leg is placed a font, very accurately connterpolsed, leaving only suticient weight to compel it to follow the mercury, and in correctly adjusted to that part of the apparatom which moves the indicator, when the presture of the atmosphere is at thirty inches. The convexion of the fast with the indicator is so arranged as to give a scale of three to one.
The thermometrical arrangement consists of ten mercurial thermometers of a peculiar form. These are sarpended apon an extremely delicate and accurate balance. They are placed at the north end of the frame, and are acreened from the effecti of the wind and rain by perforated plates of zinc.

The hygromeler consists of a slip of mahogany cut acrots the grain. This was placed in a cylinder filled with water, and suspended from the npper end with a weight of two pounds at the other end, until it was found by repested eramination to be completely saturated, and mo longer to increase in length. The length was then reforred to an accorate scalo, and the alip of mabogany placed alongside the pipe of a stove, under the same auspension and weight, until ita shortest length was obtained. The difference of the two resnlth being carefully taken, the scale whe formed accordingly. It is placed in a tube, open at both ends for a free pasuge of air, ontaide the observatory. It is anspended and weighted as before, with full power to act upon the arm of the indicator, quite free from the action of the san or rain, and is found to be extremely active and firm in its operation, showing upon an open scale every hondredth of lis extremes in dryness and moistare.
The electrometer for thander-atorms and electric changes is constructed by placing a well insulated conductor upon the highest couventent place, from which a wire is brought down to an insulation on the top of the observatory, and from thence to a standard throagh another iasulation to a metal disc, between which and another Gxed disc there is a movable disc attached

* In order to convert this into the wet buib 'hygrometer' nothiog of course is nevemeary but the application of the usan cup of water and the capillery tureads.
to t glass or insulating arm, for the parpose of connecting it with an ecenrate support upon which it can more with the greatent facility. In connexion with this arm and dise there is a peocil carried forward to the line of indication. The third dise before stated is fixed to a standard at abont three inches from the firat : to this a wire is attached and carried into the earth. By this arrangement the electricity put in motion by a thander-elond is received and registered. The effect during a thunder-storm is extremely interesting. When a cloud charged with the electric faid comes within the ringe of the condactor, the movable diac begias alowly to pass from the frat to the third disc, discharging each time a proportion of the electricity, and increasing in rapidity of motion until the discharge of the cloud by lightning takes place. It then falls back to the firnt disc, and remains perfectly quiet until the next electric cloud approsches. If, in the interim, a cloud charged
with rain only ahould descend or pase over, no movement of the dine tale with rain only should descend or pass over, no movement of the dice takea place.
Por the pluviometer, at a distance from the outaide of the observatory, there is a receiver of one foot square, clear from all surronoding matier that might interfere with the direct fall of the rain opon its iurface. From this receiver a pipe conducts the rain into another receiver inaide the observatory,
directly onder the registering apparatos directly onder the registering apparatus in this there is an air-foat con. nected with a set of inclined planes, each inclined plane being equal to one tnch of rain. These inclined planes, st they pass up, move the indicator across the destined proportion of the paper; showing, as it proceeds, the result of each drop to the bundredth part of an inch in superficies, and con. tinues to advance until it arrives at one inch. It is then instantly discharged, and returns to the zero of the scale, or commencement of another inch. The interasa receirer is calculated to contain six inches of rain.
The evaporator is supplied with water from a veasel which is, in form, an open cabe of one foot square, placed by the tide of the receiver for rain, and filled from a correct gauge to a given number of iuches; it is covered with a plate of glass, elevated suficiently above the edge of the vessel to prevent rein from falling into it, but not so close as to prevent the sir from freely acting upon the surface of the water. A receiver inside the observatory is placed under the arm of the indicator apon the same level as that ontside, connected by a pipe. In this receiver there is a flomt, governed by onte eva, poration from the external veasel, which moves the pencil of indication until an inch of the water has evaporated; it then, is in the rain-gange, returns to the zero. This is repeated for several inches natil the receivers are nearly empty, when they must be refilled from the external vessel.

The power or force of the wind is registered by a combination of suppend. ed weights, acted upon by inclined planes or edges in connexion of sumpendof one foot square to receive the impression; this board is kept in opposi-
tion to the direction of the wiad by a powerful vane, its motion being as tion to the direction of the wind by a powerful vane, its motion being as free from friction as posaible, every part beiog correctly counterpoised. When the board is acted upon by the wind, it raisea the suspended weights by a chain passing over a pulley in a line with the direction of the wind, and well secured from the weather. The suspended weights in connexion with an inclined lever carries the pencil of indication along the acale, and registers the weight lifted in oz. and lb. avoirdapois. The scale having been fonad, by repeated trials, to be correctly equal to the weights recorded upon it. The direction of the wind is also registered at the same time by another pencil, which marks the course upon the paper, throughont the whole circle of the horizon, or that proportion through which it puser.

Section B.-Chemibtry and Mineralogy.

"On the Decomposition of Water into its constituent Gases by Heat." by W. II. Grove.-Prof. Grove, in the first placo, called attention to the fact, proved by Cavendiah and the Freach philosophers, that oxygen and bydrogen beiug exposed to a high temperature, or the electric spark, im-
mediately combined to form water. He then announced his discovery that mediately combined to form water. He then announced bis discovery that all the processes by which water may be formed are capable of decomposing water. He believed that the explosion of the mixed gases by the electric spark was dne only to the heat of the opark, and not at all to eleotrolysis. Yriestley's method for decomposing gases by passing them throngh heated tubes was described, and the advantages of using a forn of Volta's eudiometer, in which incandescent platina was employed, to effect
decomposition, pointed out. By an apparatus of this kind, decomposition, pointed out. By an apparatus of this kind, ammonia, cam. phor, the prot-and per-oxides of nitrogen were readily decomposed. It was stated that hydrogen gas exposed to the ignited wire almuys shows the presence of oxygen; and that it is impossible to pass hydrogen gas throngh water without its taking up so much oxygen, as to acquire the power of giving luminosity to phosphorus in the dark. It was found the if hydrogen and carbonic acid were exposed to the action of the ignited wire, there was a contraction of one volume, leaving a residne of carbonic oxide. 1f, instead of carbonic acid, carbonic oxide was employed, the mired gases expanded in volume; and the carbonic oxide, taking ox ygen from the water, was converted into carbonic acid. Here we have two dissimilar results produced by the same causo-by means of hydrogen we take oxygen from carbonic acid, and by means of hydrogen we take osygen from water. If steam is formed in the eudiometric tube and acted on by the ignited wire on cooling, a small babble of gas is formed, which is found to be oxygen and bydrogen in the exact proportions in which they form water. This is the result of the first action of the heated wire:-in a few seconds a small bubble of gas is formed, but if the action be continoed for a week, it does not increase in quantity. It is, however, easy to remove the bubble as it is formed, and bring a freah quantity of steam onder the
infuence of the beated wire, and thas collect a quantly of gan which should be quite suficient for any endiometric exsmiation. Numerous forms of apparatas were described by which this experlment can be performod. It might be objected that, as the wire was ignited by a voltaic battery, the decompositiva was not due to the heat of the wire, but to an electrolytic action. This objection would not, however, be maintained by those who wrere acquainted with electrical pheoomena. With the vies. bowever, of remoring all doubt, the use of the battery was entirely doose away with, and all the results were obtained by the agency of heat alone, in the following manner. Into a silver tube a capillary tabe of platios is soldered, and this is again connected with a bent tube, which admits of the remoral of any gas formed. The tubes being filled with distilled Water, their ends being immersed in vessels of oil or water, the fame of a spirit lamp, urged by the blow-pipe, is brought to bear upon the capiliary tube of platina, by which it is almost immediately brought to a white heat. The water is, of course, instantly converted into steam; and this stoam is decomposed by the agency of the heat alone. By boiling, we thus courert steam into mixed oxygen and hydrogen gases ; and this operation may be continued for any leagth of time by removing the bubble of gas formed, and bringing a fresh supply of steam onder the influence of the beated platina. If fused globules of platias are dropped into water, there is im. mediately formod a bubble of oxy-hydrugen gas, which may be collected in an inverted tube. Prof. Grove went on to show the probable coanexion between this phenomenon of decomposition and the spheroidal state of fluids when they are projected on capsules of heated plation, which bad beea referred to a repulsive action of a coating of stemm enveloping the spheroid of fuid; but in all probability the revolving drop was unitergoing decomposition by the agency of the heat to which it was exposed.

Dr. L. Playfain remariced that the facts which Mr. Grove had annonnced might possibly be regarded as due to a catalytic action of the platioa, such as had been observed by Dr. Faraday, and such as was evidenced in the action of oxide of copper on the hypochlorites. Many bodies at high temperatures exhibited a great affinity for oxygen, which they did not possoss at lower temperatures, as, for insiance, silver, gold, and even platina itself, which metals absorbed oxygen when inteosely beated, and gave it ont again on cooling. If the erperiments had been tried in tubes of quartz or silica, they would not have been open to the objection which the use of so peculiar a metal as platina appeared to involve.

Dr. Leeson made some remarks, which went to show that in all probebility the bursting of steam boilers might be explained by the discovery of Prof. Grove.

Mr. HONT Explained some experiments of Woolfe on the boilers of some Cornish steam-engines, which appeared to prove the conversion of steam into gas under the influence of the heat to which the water and steam were exposed in the experiments.

Prof. Faraday thonght Mr. Grove's disoovery would not explain the bursting of steam boilers, which might be easily done by Prof. Boatigay's
experiments on the spheroidul condition of fuids. He did not agree with experiments on the spheroidal condition of fuids. He did not agree with Prof. Grove that the repalsion of the steam was insufficient to explain the spheroidal state. He would rather desire, io the presont stage of the inquiry, to discuss the philosophy of the question than the applications of
Mr. Grove's discovery. Was it a decomposition of Mr. Grove's discovery. Was it a decomposition of water by the agency of heat, or was it the action of certain substances when heated ? It appeared to him that the investigation was a great step on wards and towarde a knowledge of the corpuscular action of bodies, and he did not doubt thise some remarkable developments as to the influence of caloric in overcoming the force of aggregation wonld ensue.
On the changes which mercury suffers in glass vessels hermetically soaled.
Prof. Orasted read a paper on this subject. He said that the progreae of these changes is so exceedingly slow, that it seldom becomes seruiblo for years. He had observed them twenty years ago in a glass bult of mercury. At first a yellow powder was formed in the bulb, and after some years a black one. He took up the subject in 1838, experimenting with four bulbs, two of white and two of green glass, carefully weighed, in order to detect any portion of air that may be adonitted throngh tho pores or fissures of the glass. The weight, however, remained unaltered. In July 1839, a small change was visible. At first a feeble riag of yellow powder adbering to the glass was observed, where the mercury bad been a long time in contact with the glass. And again in a new place, onder similar circumstances, a new ring was formed, and so on. The surface itself opon which the mercury had rested some time had a thin covering of yellow adherent powder. In the course of years the yellow powder became black. The mercury had lost a great deal of its fuidity, and it adhered slightly to
the glass. The order in which the two colours follow each other indicate that they are not produced by oxidation. In the green bulbs no change was visible. In 1845, Prof. Oersted procured twolve balbs, aix of which should contain besides the mercury, atmospheric air, the air of the other sir being expelled by boiling the mercury; three of each series beine white, and three green glass. In July last there was no senaible change in the Grst series (namely, mercury mixed with air), but in the eecoad
(from wbich the air had been expelied), change had tuken place al ail bat (from wbich the air had been expelled), change had taken place at ail bat one, Rarefaction of the air had no connexion with the phenomena, but the boiling of the mercury seemed to have some influence upon them. The
Profensor inteads to contiaue the investigation of these phenomena, which, Profesbor inteads to continue the investigation of these phenomena, which,
however, appear to him to depend npon a reaction belween the glamend
the mercary. Analysing the two powders, ealphor was detected. But as - yellow compound of mercury and salphur contains oxygen, and as no orygen was foand in the black powder, it may be questioned whether the fiot compound takes oxygen from the air of the bnlb and returna it in passing to the state of the black one, or that sowe hitherto naknown exchange takes place between the elements of the glass and the mercury.
"On the Corrorion of Iron Raik in and out of woe." By R. Marnutr.The researches on this subject are still in progress, experiments are being made opon aix different lines of railway. The principal facts already ascertained are:-1st. That there is a real difference in the rate of corrocion between the rails in use and out of nse:-that this appears to be connected with their peculiar molecular condition 20 induced. 2nd. The determination of the enmplex conditions ta to magnetiom, which affect rails some time in nse, producing both induced and permanent magnetiam in the rails, each rail being magnotic with polarity, and having from four to oight separate poles each.

Mr. HJNT stated his confirmation of the experiments of Ritter-tbat megmetism had the power of protecting iron from corrosion;-to which he referred the protecting inflnence exerted on the rails in ase on railways.
"Notice of a Gas Fwrnace for Organic Analysir." By Dr. Pency,-This was an ingenious arrangement, by which gan, bornt, mixed with air, through wire gavze, was sabstituted for charcoal. Its advantages are its extreme cleapliness, and the power which the operator possesses of regulating, at will, the heat,-which is not practicable in the ordinary furnace for organic andrais with charcoal.

Section C.-Grologt.

"On the Northeich Salt-Field," by G. W. Onmsnod.-The rock-salt of Northwich is part of the New Red Sandstone series: it forms two strata, the uppermont of which is 76 feet thick, and the lower 105 feet; they are separated by 30 feet of stone, containing veins of salt. Throughort the district, the brine is reached at the same level, about 87 feet below the river Weaver; and varies uniformly in all the shafta when any change eakes place. In this district there are three faults, which have displaced the strata to a considerable a count. The firal fault is a throw-down to the east of 400 yards; it intersects the South Lancashire cosl-field, and passes into Cheshire, along the valley to the west of Bellefeld and Hill Clif, a range of New Red Sandstone (bunter sandstein), capped by the ripplemarked beds denominated "water-stones," in which the foot-marks of the Chefrotherium occnr; the summit is 352 feet above the level of the sea. Near Nortbwich this fault appeara to pass into another, which is an apthrose to the east of 460 feet, and passes also through tho South Lancashire conal fleld, by Wigan Chard, and east of Warrington into Chesbire, when it continars along the valley east of the Bellefeld range. Through the coal district this line is proved by numerous workings; and in the salt diatrict, by the extent to which the workings and the sinking of the land have gone. The third great fault. passing by Northwich, ranges by sonthweat to porth-east, passing near Holt, and running up the valley between the Peckforton Hills and the low range occnpying the east side of the Dee. This valley is cecupied by marl, in which saline springs are frequent. At Northwich the line runs in a north-easterly direction, forming the northweat boundary of the rock-calt. The subsidences already mentioned as taking place ta the salt district are either sudden or gradual, and have been noticed for many years. At the yard of the Weaver Navigation Office the inkiog is at leant six feet; and on the road from that place to Winnington the depressions are shown by cracke in houses and visible sobsidences in the land. From the same cause, a lock and a factory have required to be removed, meadows are laid under water, and the towing•path by the river hat had to be raised. The Whitton Brook has also been made six feet deeper, to enable the navigation to proceed as formerly.

Mr. Prillips observed, that one of these faults laid down in Mr. Orm. erod's map was 50 miles long, and one was in the direction of the magnetic meridian. In the sonth of England, the New Red Sandstone became mach thinner, less complicated, and was deficient in ealt.

Gir H. Dr La Bechy stated that the varlegated tinta of the water-stonea were due to a difference in the amount of onydation of the ores they contained. The decomposition of vegetable matter bad, in some places, redaced the per-oxide to the condition, comparativaly, of a prot-oxide, changing the red colour of the rock to a pale blue.

Mr. Gacenoven remarked, that salt existed below the coal-mensures in Dutbam, as well as in the Now Red Saodstone, whilat the salt beds at the bee of the Carpathians were of tertiary age.
*On certain Deviations of the Plamb-lime frose its Menn Direction, as oberroed in the neighbourhood of Shanklin Down, in the Inke of Wight, dwring the pregrese of the Ordmance Surocy," by Mr. W. Hopining,-The diference of latitnde between Greenwich and the station of the Ordanace sarceyors at Dunnose, on the north side of Bhanklin Down, as determined by tringgulation, was greater by $i \cdot 22$ seconds, than as determined by zemith sector observations. When, however, a new station was chosen on tho anth side of Shanklin Down, the difforence of latitude, as determined by triangulation, was lese by $3 \cdot 99$ seconds than it appeared to be when determined by the zenith sector. These discrepencies woold be accounted for, if the mass intervening between the stations at Shanklia Down were suficient to produce, by its attraction on the plumb-line, the observed deviations. The requisite calculations for proving the adequacy of this canae had not been made; the teadency, however, would necessarily be to
produce effects of the same nature as those observed; and the author thought it probable that the intensity of the attraction of the hill would be found sufficient to account for the phenomena.

Coal oy Ixdia.

Mr. Ansted read an analysis of a report to the Indian Government on the coal of India. - The subject of conl in reference to our Indian territories has for a long time been looked npon as of great practical importance; and the increase of steam navigation, as well as the proposed introduction of railroads into that conntry, renders every matter connected with the subject in the highest degree interesting. I have received, since my arrival at Southampton, through the kindness of Colonel Sykes, a copy of a report recently made to the Indian Government, giving an aperfx of the information at present oblained concerning the various beds of conl chiefy in Northern India, and I cannot belp thinking that an account of the information thas communicated may be geperally useful, especially as much of it is new, and a very large proportion of the remainder, although known to those who have been logg accumulating matter that bore reference to this subject, is little familiar to the great body even of those most interested in Indien affairs.
The coal-districts of India, as determined in this report, may be considered as fivo in number, - three of these are in Northern India, and one in Cutch, while the fift includes the province of Arracan and the coast of the Burman empire near Tennasserjm. Of these the Cutch coal is certainly not of the carboniferous epoch, and it appears to be of little importance at present, and nnpromining. It has also been described by Captain Grant, in the Transactions of the Geological Society, and therefore I will not now allude to it. I shall eadeavour to describe, first, the chief points of importance with reference to the great and contioued series of the North Indian coal-felds, and then allude shortly to the prospects of success in the attempt to obtain coal from the comsts of the Bay of Bengal.

The whole district, extending from the neighbourhood of Hoosangabad on the Nerbudda river (lat. 23 m . long. 78 r .), on the left or south bank of the river, and extending in a north-easterly direction for a distance of about 400 miles to Palamon, thence eastward for 250 miles to Burdwan near Calcutta, and ranning borthward for 150 miles to Rajmahal, exhibits, it would appear, at intervals by no means distant, a continually repeated outcrop of rocks, consisting of sendstones and shales, with occasional limestone; while at intervals a number of beds of coal bave been recognined, of variable thickness and value, but all appeariag to exhibit evidence of the existence there of a great coal-diatrict.

Commencing again on the flanks of the Garrow mountains, near the Burhampooter, and on both banks of that vast river, we find another, or perhaps a continued, outcrop of simitar beds also containing coal, and reaching in a north-easterly direction for nearly 400 miles. The intermediate plains, whose breadth between Rajoahal and Jumalpore is about 100 miles, are chiefy alluvial, and thus it is possible that there exists a vast range of carboniferous strata, reaching for upwards of 1000 miles along the flanks of the Himalaya mountains,-the distance from the monatain chain gradually increasing as we advance westwand, the monntaing tending northwards and the outcrop of the carboniferous bed southwards, until tinally, the distance between them being opwards of 500 miies, the relation is not easily recognised. The whole of the drainage of the Garges and the Burbampooter occurring, however, in this interspace, we are enabled to connect tbe geological phenomena in a very interesting manner. Before, however, considering the relation of the discovery thus made to Indian geology generally, it will be necessary to give some account of the batare of the coal in the various places where it has been worked, and the present state of our knowledge on the sabject.

Neighbourhood of Calcutia.

I. Commencing with the neighbourhood of Calculta, we have first to consider the Burdman coal-district, and with this I shall group the Adji and the Rajmahal felds; all these are on the banks of either the Hooghley or Ganges, or on the tributaries of these rivers. The Burdwan district has been long known, and a good deal worked. The workable beds of coal are nine and seven feet thick rebpectively. They are associnted with sandstone, shale, and a little clay, ironstone, and about eiz other thinner seams of coal, while ouber thick beds are mentioned, but their real existence as separate beds is doubtful. There are now thirteen spots at which this coal is worked, bat most of them are surface working. The deepest sinking is 190 feet. The distance 10 Calcutta is about 90 miles, but the actual transit of coal is nearly 200 miles. There woald seem to be a continoons outcrop of the same tiod of rocks from Burdman up the Adji river, and northwards to Rajmahal. On the Adji river the coal bas been worked in more than one spot, and is found to be of about the same quality as that of Burdwan; but neither of them is considered of ncarly so guod quality as the Englisb coal. Farther on, at Rajmahal, coal is known to exist, but has not yet been moch worked. The quality of that which hae been obtained does not appear good.

Palamon Coal Field.

1I. The Burdman conl-field appears to be connected, by a continoons ontcrop, with a district at Palamon, in wbich coal has been worked in no fewer than four places. The conl here is apparently immediately reposing in a valley enclosed by hills of granite, and is associated with a good deal of iron. There are several beds that are of workhble size, but a good deal of the coal is heavy and of inferior quality, and some of it eppexs to
bo authracitic. Thene conl-beds are pot far from the Sonpe Hiver, a about 100 miles from its confluence with the Ganges, a little ebove Dinapoor and Palna ; but the Soane is not at present navigable. To the weat af Palamon the carboniferons beds are deecribed as appearing along two íregular ines, the one towarde the sorth-weat for 150 miles, reiching beyond Koorbah, and the other more westwand, by Sohagepoor, to the Nerbudda. These beds appear to connect themelven with the Burdwan coal-field; and near Ramgarh, coal has been obtajised in two or three places. This cual is said to be of very good quality and of considerable thickness; but there can be little dorbt that a statement made in the report, of the bed of conl being 200 yards in thickness, must be owing to come misunderstanding of the acconat and sketch originally commonicated. It seems certain, howerer, from the extent of the outcrop, that the soam must be one of considerable magnitude. Westwards, again, from Palamon, and at a distance of about 80 miles, coal has been found in $80-$ veral places in Singrowli, bat the beds at present known aro thin; and again, to the south-weat, the same mineral cocnrs at Sirgoojah, where fine conl has been seen, bat is not used at present. Between the Biagrowli coal and Jubbulpore excelient coal has been fonnd in aeveral places, indioating an exteasive coal-fold; but the nature and thickness of the beds in mot stated.

The Nerbudda district, although from the drainage of the country it belongs to the Bombay side of India, is manifestly more related, so far as the old rocks are concerned, with the Bengal territory. The coal is abont 350 miles from Bombay, and the Nerbudde river is at present not narigable. There soem to be three districts in the Nerbudda valley in which coal is found, but the most important of them is that near Gurrawarra, about midway between Hoosangabed and Jubbulpore. The coel here, indeed, appears to be perhaps the best hitherto found in India, and existe in beds three in anmber, whose thickness respectively is said to be 20 feet, 40 feet, and 251 feet There are also other beds, one of which is fous foet

The discovery of this, the Benar coal-field, promines to be of great importance. It is also very near another basin, where there are beds also of exeellent quality, one of them 6 feet in thickness. At Jubbulpore itself conl has been found at a depth of 70 feet, one bed being nearly 18 foet thick.

Coal Fields East of Calcults.

III. Let us consider now the district east of Calcntta. Wo there find trae carboniferous rocks on both Ganks of the Garrow Monntains, commencing near Jomelpore, and thence continuing north-eastwards for a distance amonnting on the whole to nearly 400 miles throngb Lwwer and Upper Assam. The district nearest Calcutta is Bilhet, oo the sonth tanks of the Garrow, where eleven beds of coal have been determined, whose total thicknese as already accertained is said to amount to 85 feet. This coal is of excellent quality, and can as readily be convejed to the Upper Ganges as the Bardwan coal. The moat remarkabie beds occur at Cherra Ponji ; but these appear irregular, although they are andoubtedly of great thickness in sereral spots, amounting sometimes to nearly 90 feet. There tre also other important beds. They have been known for more than ton years, but have not been worked; and siace their first discovery large quantities of iron have been emelted with charcoal.

After passing the districts in which the coal has been thus clearly exhibited, we proceed nezt to the Assam districts, also more or less continu. cos, and ertending for abont 350 miles chiefly along the south side of the Burhampooter; the whole beiog divided into the two groups of Lower and Upper Assam, separated at Bishenath, 170 miles abeve Calcutta. Six coal-fields are onumerated io the Upper district, and three in the Lower; bat the latter, although it would seem not co promising, are looked on as scaroely leas important in consequence of their greater accessibility.

So far as details are concerned, however, the Lower Asgam coal offars bat little that if in any way positive; the indications consisting rather of rolled fragments drifted, than of distinct aud well-marked beds. It is called lignite in a report from Lient. Vetch; bat both coal and lignite are torms frequently used without reference to any peculiar character of the mineral, or any geological position. Bimilar beds of coal or lignite to those fonnd in Lower Aasafi, south of the Burbsmpooter, are also mentioned as occurring on the north in three of the streams flowing into that river from the Bootan range. The Upper Asmam coal is manifestly of great interest, and likely to prove very important It is associated with gbundance of clay ironstone.

Abont eighty miles above Bishenath other beds, stated to be 6 feet thick, have been worked for the sake of trying the economic value of the coal. It is described by the commander of one of the Asasm Company's steamers, in a letter dated 24th January, 1846, as far the beat he over had on board a sleamer, and far superior to any coal in Calcutta. From the growing importance of the tea-trade from Assem, this is likely, therefors, to be of great value. Still farther ap the country there are geveral im. portant beds, dipping, it would appear, at so high an augle, and placed 80 unfavourably with regard to present means of transport, that it would be difficult to work them. The other beds that appear in this district are exposed to the same difficulty; and the coal throngtiout northern India appears to be in this respect onfavourably placed.

Pasaing on now to the other districts in India, and the East, in which carboniferous rocks and beds of coal have been met with, I have to eonmerate two, the Tenasserim and the Arracan district, wbich, from their sear vicinity to India and their geographical position, are of considerable
importance. The former has been known for some years, and there are said to be four spots at which conl appears; but of thewe one only seeme likely to prove of economic ralne. From the ecconnts given of this coal there is every reason to conclude, that one of the beds is not of the carboniferoas period; and although another (on the Thian Khan) bas been the sabject of a far more favourable report, being called cannel coal, and stated by Mr. Prinsep to be an admirable coal for gas, there is yet much probability of the whole being of the tertiary period. These beds have been described in the Journal of the Asiatic Society for 1838.

In Arracan there are eleven beds of coal, but all of them are thin, and their postion nearly vertical. They are said to be associated with sandstones, limentones, and shales; but it is clear that thes can al present be looked at only an indications, and not of any practical importance.

Such is a geberal acconnt of the cosl-districts of India, so far at I have been able to giean ovidence from the report of the committee for the investigulion of the coal and minpral reaonrees of India for May 1845. This report manifestly contains much detailed information that is of praotioal importance; bat one can hardly help being atrock by the absence of that definito information with regard to associated beds, and the genorad position of the coal, which could alone, under the peculiar circumatances, have given to geologists satimfactory evidence as to the age of this widelyoxtended deposit. Bpeaking now to geologists, and to many who are fully alive to the vast importance of accurute and detailed knowledge of the structure of a country before great mining operations are commenced in it, I need not do more than allnde to the absence of this kind of information; but, having stated its absence, I may perbaps be pormitted to offermy own views of the subject es obtained from the perusal of the documents laid before me.

Geological Position.

Connecting, as I think we cannot help doing, the general geology of Asia with that of Earope, and looking at the wide extension of true conlbearing rocks in the northern homisphore,-traclng these rocks, as we are able to do at jatervals, from our own country eastward through Belgiam, Northern Germany, Bohemia, and Silesia, thence acrose to the rab ley of the Doaetz, watching the development of the older beds of the Devonian period in Armenia, and thence on the northern side of the great Himalayan range,-discovering them in their most characteristio form in the Altai monntaing, and finding them also on the south flanks of these lofty mountains in the neighbonrhood of Calcatta, where the BurdFan bedis have long been known, giving satisfactory evidence of their age; there is certainly no reason for wonder if these carboniferous beds, in theit most typical and valuable form, should be traceable also throughoot Northern India. For what is the geological structere of that country P The Himalayas themselves, the great back-bone of Aaia, aro probably to be looked on as a monntaln chsin much more recent than the Alpa. In India, the great Sewalik tertiaries, where fossils are now being figored and dencribed by Major Cantley and Dr. Falconer ia a monograph, the most magnificent that has yet been attempted, are lifted into hills which eleswhere might well deserve the name of monntains; and whatever the conditions may have beed subsequently to original deposition of the bede, there in no reason why, io a country where the scale is in everything to vast, there should not be a continuous ontcrop of carbonifurous rocke for bundreds of miles together. In consequence of moveanenti of very recest date, vide tracts of India, occapying tens and almost bundreds of thousaands of equare miles to the south, are covered with basalt, and other large tracty of still greater oxtent by modern and almont allurial formatione, providing by their decomposition the most prolific soil in the world. Between and amongst this exteat of modern eruptive movement, and forming, perhaps, barrier to some of the beds, comes in, it would seem, the great range of carboniferons beds, exbibited at intervals through the country, nearly parallel with the great range of disturbance, and also greatly disturbed and elevated, and broken into small basins. So far as the evideaoe goes, it is certainly probable that the coal fourd cear Burdwan to the oorth and west, and apparently continuons with it, is of the same age. If so, analogy would suggest that the similar and similarly situated beds much farther to the west bnt still nearly cootinuous, are of the same age; and the diatrlcts to the eavt contain, it would seem, at least some coal to like the other in quality, that here also we should expect it. Bot aumbgy goes yet farther, and ruoning down the coast of the Birman empire towarti the great island of Borneo, recent investigations seam to show that there also bods of coal of great value, and of the carboniforoas epoch, exiat. I will not croes the great live of elevation in the tropic of Capricorr, aod croes to the eastern coast of A astralia, for a farthor Illustration; but the idea oannot fail to strike avery geologist that to singelar an agociative of similar beds over $t 0$ large a part of the existing land on the earth tame, if true, have its origin in some general cause, the reanlt of a laiv of fie greater universality than any wo now reoug口ise.
But, on the other hand, it is by no aenas imponible, whee we ceacher the extent to which the tertiaries are developed is the great zange of nosglomerates on the fanks of the Himalayas, and the cipilar and alment equally fonsiliferous deposits on the banks of the Iramedidi en the enat and in the Gulf of Cambey on the west, that, after all, these beda ase oot eateboniforous, hut merely oocasional and irregnlar bands of modean or ter tiary lignito. Should this be the cace, it will be moeceery and intureption to determine the point, and recognise, if possible, the aomal extename the Burdwan field, concerving whoeo age the fossily oollected by Dr. flogho leave no doubt. The relation aleo of thene bede fith thene of the Alwi,
mountains by a comparison of fosells is an important and most intereating point.

Economic Value of the Coal Fields.

Speculations of this nature canuot fail to be suggested by the present commonication. A vast and most important subject is presented for our consideration, but, unfortunately, the evidenee is imperfect in a moot important point. These beds of coal, occurring as they do chiefly in granitic basins, and often detached, like the coal of France, may be, as I believe they are, of the carbouiferous age; they may also be oolitic, like the imperfect coal of Cutch, and of some parts of our owa conntry, or they may be tertiary lignites. Now it may seem of little importance to the mere anrreyor what the geological position of these beds may be, provided there is the material he needs; but experience renders it probable that on the mere question of age does, in fact, depend much of their true economic value. Could it be satiafactorily shown that throughout the wide district of nortbern India there is a true outcrop of carboniferous beds, such as occur in England, in Americu, or even in eastern Australia, there can be mo question that the value of a very large part of the poesessions of England in the East might be considered much increased; for the beds would then probably be steady and permanent, and the application of the resources in knowledge and wealth of a great, a rich, and an enterprising people, would very moon bring into operation, in all those diatricts, manufactures and commerce on the grandest ecale. The asigigation of the rivers, the state of the roads, the means of commonicntion by railroads, Fould be immediately establisbed or permanently lomproved; and the result must be improvement in the condition of the country.

Should it, on the other hand, appear that these so callod conl-fielde are merely detached basins of lignite, whether tertiary or colitic, they wonld, in all probability, be of variable and local thickness : their value might appear considerable at the first glance; but it might oven not repay the expense of working: the quantity would be moch lese then was calculated, the quality would not improve in deep workings, and the real and importsot uses of mineral fuel would not be recognised in it. A small amount of strict geological knowledge and a few fossils would havo tended to set at rest, if it did not completely settle, this question, which I think it will be at once seen is of great impurtance. I ought, perhaps, to apologice for laking up the time of the meeting by such remarks as these; but the ab. sence generally of distinct knowledge of the principles of our scieace amnagst gentlemen who on every other account are so admirably adapted for the work they uudertake is too well illustrated in the present case and too generally important not to excuse wy introducing the subject. My own poeition, too, as one of those employed in the education of a lerge aumber of practical men in geological acience; and the fact that I have interrapted a course of geological lectures to the cadets, who will in future years form the great body of the officers of our Indian army, is a natisfuceory proof that this view is now beginning to be understood by those who are, perhaps, most interested in its application. Mucb yet remains to be done in the epplication of science to art, and posaibly the resalt of the present investigation may give additional reason, if any were wanted, fur commeacing some general system of scientific education.
The result of the preseal inquiry will be seen at once to be unsatisfactory, although highly suggestive for future investigation. No value can be tlached to mere stutements of the existence of curbonsocous matter in beds, because many of the important practical conditions are independent of more appearance and experiments on detached fragments.

Col. Syers observed that it was of importance to obtain conl for the proposed railways in ladis, especially as wood was beginning to be scaroc in many parts. The report mentioned the occorrence of coal at 90 locelities,mont of them in a bed between the Nerbudda and Calcutta. With a trilling exception the whole of Indis south of this line wes destitute of conl.

Mr. Lrell stated that ho had lately examined the coal-field of Richmond, in Virginia, -one of the mort valuable in the United States. He had obuined Ashea from that coal-feld, which M. Agassiz reforred to the Oolitic period; and the plante, which had been examined by Mr. Bunbury, presented an amemblage agreeing with thase found at Whitby, in Yorkshire. The condeld was known to be newer than the carboniferona period; and it concaiged one bed of conl, 30 fect thick, from which gas bad been made, -and it was now beooming of great value. No estimate of the probable value of Indian coal could be formed by comparing it with coal of the same age in Ewope.

Btr H. De wa Breze observed that it was incorrect to suppose that, in other countries, the most valuable conl would be found in rocks ngreeing in age with our own conl-menaures. The Burdwan conl appeared to be of the came age with the Anstralian conl, as there were planta common to both.

Mr. Juras pointed out the identity in direction of the granitic hills of North-Eatern Australia with those of the Malay Peainsula; and the occur. reace of ceal, at an intermediate point, in Borneo.

Dr. Falconer conidered the Burdwan coal-field peculiar:-its planta ware all anlike those of Europe; and it contained neither dicoyledonons nor comiferous wood. He thought it might be older than any of our coal-felds.

Mr. W. Sandere exhibited Section made on the line of the Great WetLern Railway, between Bristol and Taunton,-The general section repretented a dintance of 45 miles, on a scale of 33 inches to the mile. It passed firut through the junction beds of red marl and lise ; thea for 6 or 7 miles through new red andstone, touching once upon the upper bed of the carboniferons
limestone. For the next 12 miles there are allavial tracts, separated by cuttings of new red sandstone. At 21 miles, the Uphill cuttiog passea through the new red andstone and lias and then the carboniferous limeatone, at the base of which are some maseas of trappean rock. The railway then proceeds for 17 miles over an alluvial plain, laterrupted only by a cut ting through the new red marl and lias at Puriton. Prom this point to Taunton the course is over a moderately level country of new red anadatono. Four enlarged drawings represented the details of the Ashton, Uphill, and other cattings. In the rection at Pylle, Mr. Sanders discovered remains of Cypria, and a plant (Naiadices lanceolata), in the lower lias marla; and in the Uphill and Puriton sections the representatives of the bone bed occurs. Since there are usually several calcareons beds in the lower marls, containing the same finh-scales, shella, \&c., Mr. Sandera prefers the classification of Mr. Conybeare, who considered these beds the lowest member of the lias to the separation of the bone bed, -which is only a part of this series, into the Triassic aystem, as proposed by M. Agasciz, on account of the nature of its fishes.
"On the Mmatet Band, commonly called the Black-bend Ironstone of the Coal-field of Scotland." By Mr. Bald.-This band of Ironatone was discovered about forty jears ago, by Mr. David Muschet, of the Calder Ironworks, near Glagow. It had been frequently pased through; but wei thrown away at rubbish till Mr. Muschet ascertained its value,-when ex. temsive mines were opened for working it. Two bands of this ironstone are fouad in the great coal-fields of Lanart,-one 14 inches thick; the other, which is 73 fathoms lowor, fa 16 inches thick. The ironstone of the Muschet band is much more easily reducible than the ordinary dry ironstone,-and requires less fnel. In Scotland it appears to be co-extensive with the coal formation. In gouth Wales, aleo, it is foond; but there is little of it in England or Ireland. Fifty years ago there were only fivo iron-works in Scotland, comprising about fifteen blast furnaces which, together, produced 540 tous of iron per week. Tbere are now 100 blatt furnacea in action, which produce 12,000 tons per week, or 624,000 tons in the year,-the value of which, at 36 . per ton, is $1,872,000$. This great increase Mr. Bald attribated to the discovery of the Muachet ironstone, and to the introduction of the hot-blast. He also mentioned that Mr. Muschet, who is now in his eighty-sixth year, has published a volume on the manufacture of iron, containing an analysis of every ironatone and ore be could obtain; and he trusted his labours would, at least, be recognized in ecientific societien, although the pecuniary advantage ariting from his discoveries had fallen intn other hande.

Bection G-Mecbarics.

"On the Sailing Powers of two Yachta, built on the Wave Principle." By Dr. Phipps. -The tirat was built for Dr. Corrigan, of Dublin, in 1844; a mall open boat 24 feet by 6, of 8 tons, which did so well that she was able to beat everything near her own size, and to sail with thoar which oxceed it in some instances as far as four times. She was dry: ${ }^{\text {a seas }}$ where they were wet, was very stiff, sure in slays, and steered well at all tumes. The second is a yacht of 45 tons, O.M., for Samuel Hodder, Eeq., of Ringabella; built from the drawing by Mr. Peasley, of Pasaage Went, io Cort. She appears to have the following qualities: a frat rate performance, attained without eacrifce of any good quality, large accummodation, high atability. She is weatherly, steady and easy, dry in the worat weather, and pitches and asceads less than any vessel I was ever in. She turns so sharply that no 10 ton yncht can do it quicker, and ateers mo woll, scudding in a gale of wind, that notwithstanding an unbalanced stato, from an injudicious shin of must, she neither bruaches to, nor is compelled to lay to-which a companion of larger size (60 tons), and of tried sea qualttles, was forced to do, and, in consequence, arrived from Cork to Dablin 14 hours after the wave-built yacht. In a race at Kingstown for the Railway Cup of 100 guineas, in which she was matcbed ayainst the best boats of the three countries, in a time race, including one fine jacht of 100 tons, athe wran-and did the courso exactly in $4 \mathrm{~h} .27 \mathrm{~m} .58 \mathrm{~s},-\mathrm{it}$ being 46 nautic miles. Making no allowance for tacking or starting from absolute rest, the rete of this is 101 knots per hour. This is a great result for a principle yet in its infancy. The same vessellef Holyhead in a gale of wiad, with storm-mails, main-sail stowed, and everything made onng; with a reefed try-alil, a double-reefed forestail, and third jib. She lay is one stretch to the lrish coant, where she tacked to the southward, beeting down to the Arklow light in 11 hours. Sis persons on board, being sepmrately questioned, agreed that the time from Holyhead to the Irish coast was 41 hours. Making every reasonable allowance, less than 50 nautie miles could not have been done; and this gives a velocity of 11 natitis miles per honr,-an anrecorded speed for ships of any sige, close hauled, but surprising for a vessel of 45 tons, and in a very rough sea. It was, in fact, remarked on board that, as the wind freshened, her pace increased withont limit. This agrees with the fact stated by Oapt. Fishbourae, of the Flambeau stemmer, on wave lines, that she had a speed greatest in the worat weather, as compared with her rival.-It is perbaps posaible to improve sailing vessels greatly, as compared with steamers. When so improved, they might be used where sailing vessele nearly compete with steamers at present. This may be further belped by the dimination of insurance and of the present unneccseary waste of homan life.

Mr. Scott Russeli, after expressing his gratitude to the Associntion for directing lis attention to so important a subject, proceeded to explais the theory of what was known as the wave principle in ohip building; He was first induced to direct his attention to this subject when the oana
companies proposed some years ago to estahlish swift boats that might compete with the mail coaches. On being applied to by them, his first attempt was to baild ode with a spheroidal bow, produced by the revolution of an ellipse; but the resalt was not as successful as was to be wished. The farourite shape of bow among seamen at the time was that called a duck's breast, but the effect was to raise a large wave immediately in front of the vessel, which of course considerably retarded its velocity. He then directed his attention to the motion of the water itself. When a vessel passed through the water at a great velocity a high wave was raised at the head, as high in the old steamers as fonr feet; and this wave on falling back formed a bollow by its pressore immediately behind it, and the water was afterwards sent out with great force on both sides of the bow. All this was a custly and aseless expenditare of force. He thought that, in removing the particles of water to allow the vessel to pass, it was necessary to expend the least force on the whole; and, therefore, the first impulse should be given gently. This force should increase to a certain point, and then decrease as gradually, leaving the particles to rest quielly ut the greatest breadth. In endeavouring to ascertain the least resistance necessary to bring the particles of water out of a state of rest he conceived that there ought to be a similarity between the motion of water and that of a pendulum revolving in a circle according to the curve of the ressel's size; and this led bim to adopt the form known as the wave principle. This is different from a bow formed of two straight lines meeting at an ecute angle, in being gently hollower than such a bow towards the cot-water, and a little ronnder towards the greater breadith. The object to be attained was, he conceived, to remove the particles of water rapidly, and at the same time not to throw them farther aside than the breadth of the vessel amidships. That this object was effected by the wave principle he ascertained in the following manner:-He got his model bost, 75 feet long, to be carried along by high-bred horses at a speed of 17 miles an hour, and made the head pass between two oranges foating on the water, and which he intended to represent two particles of the water to be removed. The oranges merely touched the side of the vessel antil they got amidsbips, and there remained; thus showing that no greater force bad been applied to them than was necessary to remove them out of the way of the vessel. Another phenomenon observed was, that, instead of the high wave at the bow, which sailors thought was a sign of a ship sailing well. or what they called carrying a bone in her teeth, the elovation and subseguent depressson of the water were entirely got rid of. In their place there was a gentle, long elevation. just under the shoulder of the vessel, where all sailors would like her to be sapported. For the olosing of the water at the atern he at first thonght is would be better to have the eame shape behind; and this had the effect of bringing the oranges together again behind in an horizontal direction; bat he found it did not answer at all. It occasioned too high a resistance, and had a maltitude of bad qualities. He discovered, in fact, that the fuller she was bebind, and the fiatter slie lay upon the surface of the water, the quicker she mailed : and that this should be the case is clear, when it is considered that the water, returning to its level, is governed by an entirely different law from that by which it is first separated. The power which sends the water into the wake has nothing to do witb that whicb displaces it before. It is forced apwards by the greatest pressure from below in vertical lines of the cycloidal family. A ran fine below and foll above was attained by many experiments, as the best for good steering and other gaalities. This full water-line above should never exceed a cycloid. The vertical lines, in which the water rises in the secondary wave (which really replaces the displaced water) may be cot off, at any convenient height, close to the stern. These two considerations united led him to the adoption of what in known as the wave principle. In the wave formation the greatest breadth of the ship is not at ibe bows, or even amidships, bat a great way aft, in the ratio of three to two. In the shear plan the bow of this form bas one main cycloid, and all the other bow lines are parts of cycloids. In this form the partictes ascend and descend without shock.

Mr. Vignolles asked if the Admirulty had got vessels built on this principle,-and if not, why not?

Mr. Scott nussbll replied, that he had been moch more desirous for the adoption of the system in other ships than in the Admiralty, because he bad been informed that the Admiralty did not like the introduction of scientafic principles into ship-building, and preferred remaining as they were. He had, therefore, been averse to obtrade the subject on them. He might state, however, that the best informed men at the Admiralty were aware of the existence of the wave principle; and it was not improbable they might adopt it, although be conid not say how soon, nor to what extent.

Professor Owbn's Geological Lecture.
 Extinct Animale of Great Britain.

In one of the evening lectares the Professor commenced by statiog that he proposed to submit to the learned and distinguished assembly which he had the honour of addressing some of the general conclusions which he had deduced trom a study of the fossil remaios of the class mammalia discovered in the soil of Great Britain; and be deemed it fortanate to have this opportunity of showing what enlarged and unexpected views of ancient nature might be obtained from dry comparisons and descriptions of processes of bone and tobercles of teeth, and he boped to make those views intelligible to all, without the obsenration of technical anatomical terms. He proposed, first, briefiy to nolice the priocipal forms or kinds of
mammalian quadrupeds that had been successively introduced into the portion of earth which now constituted our island ; secondly, to coosider the mode of their introduction here, and their relations to existing apecies at present localised in Europe and Asia; and, finally, to point out the correspondence belween the existing and extinct groups of mammalia peculiar to other great natural divisions of dry land.

Animals Preceding the Oolitic Period.

We discern, he said, the earliest trace of the warm-blooded, air-breathing, viviparous quadrapeds at that remote period which immediately preceded the deposition of the colitic group of limeatones. The massive evidence of the operation of the old ocean, from which thowe rocks were gradually precipitated, extends across England, from Yorkshire on the north-east, to Dorsetshire on the south-west, with an average breadth of nearly thirty miles; and from some land which formed the southern shore of this arm of sea, were washed down the remains of small insectivorous, and probably marsupial quadrupeds, distinct in genns and speciea from any now known in the world. With these small mammals there occor elytre of beetles, and debris of cycadeaz and other terrestrial plants. The character of some of these vegetable fossils and of the sasociated shells, as thejtrigonis, and the great abundance, in the colitic ocean, of fishes whose nearest living analogne is the cestracion, recall many of the oharacteristic features of actual organic life in Australia. From the remote period in which the remains of mammals first make their appearance to that in which we again get indubitable evideace of their existence, a lapee of time incalenlably vast has ocoorred. We trace it, though inadequately, by the successive deposition from seas and estuaries of enormous masses of rocks of varions kinds, the graveyards of as various extinct forms of animal and vegetable life. The shelly limestone slate, which contains the bones of the amphitheria and phascolotheria, lies at the base of the inferior oolike. Upon it have been acenmulated the enormons masses of the great oolite, the corabrash, and the forest marble; and upon these have been succeas. ively piled the Oxford clay and coral rag, the Kimmeridge clay and Portland stone. Io the still more enormons masses of Wealden rocks, risiog to the height of eight hondred feet, and deposited after the formation of the Portland sanda by the water of an immense estnary, no true indications of warm-blooded animals have been hitherto discovered. Four hondred feet deep of ganlt and greensand rest upon the Wealden, but reveal no trace of cotacean or olher form of mammalian life. Over these foundations of the present sonth-eastern part of our island the ocean continued to roll, but onder infuencen of heat and light faronrable to the development of corals and microscopic calcareous shells, during a period of time which has permitted the successive accumulation of layers of these skeletons, in a more or less decomposed state, with probable additions from unbmarine calcareous and siliceons springs, to the height of one thousand feet. Bat although amongst the remains of higher organised animals that have become enveloped in the cretaceons deposits there have been recognised birds, pterodactyles, and a land-lizard, probably washed down from some neighbouring uhore, no trace of a mammalian quadruped has yet been discovered in them. The surface of the chalk, after it hud become consolidated was long exposed to the eroding action of waves and currents. Into deep indentationa so formed have been rolled fragments of chalk and fint, with much sand. The perforations of marine animals on that surfece have been filled with fine gand; and there are many other proofs of the lapse of a long interval of time between the completion of the chalk doposits of Britain and the commencement of the next or tertiary era. Of this era our present jaland gives the first indication in traces of mighty rivers, which defled the fair surface of the riaing chalk by pouring over it the debris of the great contineut which they drained, - contineut which has again sank, and probably now lies beneath the Atlantic. The masaes of clay and sand that have been thus deposited upon the chalk ere accu. malated chiefly in two tracts, called the London and Hampahire basian, Which seem to have been two estuaries or mouths of the great river; the one exteads from Cambridgeshire throngh Hertfordsbire aod Suffolk to the North Downs, the other from the South Downs into Dorsetahire.
At the time when these vast but gradual operations were fakiog place, an arm of sea extended from the north to the area called the bacin of Paria, which received the overdow of a chain of lakes extending thither from the highest part of the central mountain group of France. An enormons mass of mixed or alternating marine and fresh-water deposits was mecomulated in this busin, coeval, if we may jadge from the identity of the epecies of shells, with the outpouring of eocene, Loodon, and plastic clays opoo the Engliah chalk.

Eocene Animals.

The proofs of the abuadant mammalian inhabitants of the eocene continent were first obtained by Cuvier from the fossilised remains in the deposits that fill the enormous excavation in the chalk called the Paris beain. But the forms which that great anatomist restored were all bew apd atrange; specifilally, and for the most part geneiricaliy, distinct from an known existing quadrupeda. Long befure any discovery had been made of remains of terrestrial mammals in the contemporary London and plantic clays, the existence of neigtbouring dry land had beeu inferred from the occurrence in those deposits of bones of crocodiles and tartles, and from the immense namber of fossil seeds and froits, resembling those of tropical trees, as pandani, cocou-nuts, \&c.

Scanty as are the eocene manmalia hitherio discovered in the London clay, they are bighly interesting from their identity or close aftinity with

Nome of the peculiar extinct genera of the Paris basio. In the fresh water and marive beds at the north aide of the lale of Wight, and at the opposite const of Hempahire, the united thickness of which beds is about 400 feet, remains of the very same pecaliar quadrupeds of the contemporaneons Parisian formations have been fonod.

One of the rarest and most remarkable of the pachyderms, whose peculiar characters were obscurely indicated by Cuvier from scanty fossils yielded by the Montmartre gypano, has had its claims to generic distinction established, and its nature and affinities fully illustrated, by more perfect specimens from the eocene marls of the Isle of Wight: in no other part of Great Britain has any portion of the chæropotamus been found, except in the above limited locality, which alone corresponds with the formations of the Paris basin in mineral character as well as in date and origin. This discovery becomes, therefore, peculiarly interesting and auggestive. For were the common notion true, that all the fossil remains of quadrupeds not now existing in our island had been brought hither during a single catastropbe, and strewed with the detritus of a general deluge over its surface, what would have been the chance of finding the lower jaw of a chseropotamus in the very apot and in the very limited locality where aloae in all England the same tind of deposits existed as those in which the unique upper jaw of a cheropotamus had been found in France? With the charopotumus are associated, in the Binstead and Seafield quarries, remains of moplotherinm, dichobones, palmotherium, and lophiodon, showing, with the fossils from the London clay, that the same peculiar geoeric forms of the class mammalia prevailed during the eocene epoch in England as in France.

With the last layer of the eocene deposits, we lose in this island every trace of the mammalia of that remote period. What leagth of time elapsed before the foundations of England were again sufficiently settled to serve at the theatre of life to another race of warm-blooded quadrupeds, the imagination strives in vain to form an idea of, commensurate with the cvidence of the intervening operations which continental geology teaches to have gradually and saccessively taken place. Our own islaod yields us but a dim and confused indication of the geological operations that took place between the eocene and pliocene periods, it the wreck of strata that constitute pari of the so-called crag formations on its eastern coast. When the eocene and other fonadations of our present island begin to rise from the deep and become the seat of fresh-water lakes, receiving their tranquil deposits, with the abundant shells of their testaceous colonies, and during the long progress of that slow and unequal elevation which converted chains of lakes intu river courses, an extensive and varied mammalian fauna ranged the banks or swam the waters of those ancient lakes and rivers: of this we have abnodant evidence in the bones and teeth of saccessive generations which have been accumulated in the undisturbed stratified lacustrine and fluviatile formations. The like evidence is given by the existence of similar remains in unstratifled coral drifts, composed of gravel exclusively derived from rocks in the immediate vicinity of such drift, withnut a aingle intermixture of any far transported fragment; equally conclusive and more readily apprecisble proof that the now ex. tinct pliocene and pleistocene mammalia actually lived and died in the country where their remains occur, has been brought to light from the dark recesses of the caves which served as lurking places for the predaceons species, and as charnel houses to their prey.

Gigantic Pliocene Animals.

At the period indicated by these superficial stratified and unstratified deposits the mastodon had probably disappeared from England, but gigantic elephanis of twice the balk of the largest individuala that nuw exist in Coglon and Africa roamed here in herds, if we may judge from the ebundance of their remains. Two-borned rhidoceroses, of at least two species, forced their way through the ancient forests or wallowed in the swamps. Deer, as gigantic in proportion to existing specles, were the contemporaries of the old uri and bisontes, and may bave diaputed with them the pasturage of that ancieot land. The carnivora, organised to eajoy a life of rapine as the expense of the vegetable-feeders, to restrain their andue jnorease and abridge the pangs of the maimed and sickly, were daly adjasted in members, sizo, and ferocity, to the fell task asoigned to them in the organic economy. Beaides a British tiger, of larger size, and with proportionally lager paws than that of Bengal, there existed a stranger felive animal of equal bizo, which, from the great length add sharptese of its sabre-ahaped canines, was probably the most ferocious and destructive of its peculiarly carnivorous family. Of the smaller felines, we recogaise the remains of a leopard or large lyax, and of a wild cat. Troops of savage hyenas, larger than the fierce crocala of Bouth Africa, which they most resembled, devoured what the mobler beasts of prey had left. A species of bear, surpassing the ursus ferox of the Rocky Mountalng, found its hiding place in many of the existing limestone caveras of Eagland. With it was associated a somewhat smaller kind, more like the common European bear, but larger than the present individuals of the ursas arctos. Wolves and fozes, the badger, the otter, the fonmart, and the stont, complete the category of the known pliocene carnivora of Brt. taia.

These animals mative in Great Britain.

The first iden which commonly suggesta itself on the discovery at some depth in the soil of the fossil remains of a large quadruped, now strange to our island, is, that the carcase of such animal had been drifted hither from some distant region. Prof. Owen alluded, in refutation of this idea,
to the evidence which Dr. Buckland had brought forward of the long-continued babitation by hyenas of the Kirkdule cave in Yorkshire; of the remains of young mawmoths, rhinoceroses, and hippopotamuses, that had been dragged into the cave, and their devoured, or their bones tramed, by the byenas. Anongst other phenoneas be particularly adduced the following: it is well known that the antlers of deer are shed and renewed annually, and a male may be reckoned to leave about eight pairs of antlers besides its bones to testify its former existence upon the earth; but as the female has usually do antlers, we may expect to fiod four timen as many pairs of antiers as skeletons in the auperficial deposits of the countries in which such deer have lived and died. The proportion of the fussil antlers of the great extinct species of British pliocene deer, which antlers are proved by the form of their base to bave been shed by the living animals, is somewhat greater than in the above calculation. Although, tberefore, the swollen carcase of a great exotic might be borne along a diluvial wave to a considerable distance, and its bones ultimately deposited far from its native soil, it is not likely that the solid shed antlers of such specien of deer should be carried by the same cause to the tame distance, or rolled for any distance, with other beavy debris of a mighty torrent, without fracture and signs of friction. Hut the shed antlers of the large extinct species of deer found in this island and in Ireland have commonly their points or branches entire, as when they fell; and the fructured apecimens are generaily found in cares, and show marks of the terth of the hyenas, by which they have beed knewed; thus at the same time revealing the mode in which they have become introduced into those caves, and proving the contemporaneous esistence of both kinds of mammalia. The perfect condition, and the sharply defined processes, often in high relief, of many of the bones of the elephanis, fhinoceroses, und hippopotanuses, from our tranquil fresh-water deposits, concur with the nature of their bed to refute the hypothesis of their having been borne hither by a diluvial current from regions of the earth where the same genera of quadrupedsare now limited. The very abundance of their fonsil remains in our island is incompatible with the notion of their forming its share of one generation of tropical beasts drowned and dispersed by a siagle catastrophe of waters. This abundance indicatos, on the contrary, that the deposits containing them formed the grave-yard, as it were, of many successive generations. With regard to the mode of introduction of this latest and most extensive series of quadrupeds, it could hardly be supposed that the ponderous rhivocero. ses, the hyenas, wolves, fuxes, badgers, oxen, horses, hogs, and goats, the smaller deer, hures, rabbita, pikas, or even the aquatic rodents, could have reached this island from the continent, if the present oceanic barrier bad interposed. The idea of a separate creation of the same series of mammalia which existed on the continent in and for a small contiguous island will hardly be ancepted. The zoologist Desmarest deduced an argument in proof that France and England were once united, from the correspondence of their wolves, bears, and other species known to bave existed in this island within the period of history. Prof. Owen deemed the conclasion itresiatible when the sume correspondence was found to extend through the entire series of probotcidian, pachydermal, equide, bovine, cervino, carnivorous, and rodent mammalia, which characterised the two countries during the pliccene and post-pliocene periods of geology. Thus, observed the lecturer, the science of anatomy having revealed the great fact of the former existence in our present island of the same species of quadrupeds, most of which are now extinct, that co-existed on the continent, has become in an anexpected degree auxiliary to geographical science, and throwe light opon the former physical confguration of Europe, and on the changes which it has since undergone.

Geographic Union of England and France.
Prof. Owen then brielly touched upod the parely geological eridence of the former union of Digland with the continent, and to the comparatively modern period of some remarkmble changes which have taken place on our southern coast, and to whith may be attributed the final establishment of the British Chancel. Hut in referring to that event as comparitively recent, the term, he said, must not be judged of in relation to any such insignificant fraction of the world's tume as has been marked down in the records of the present infancy of the human race: we shall better appre. ciato it, perhaps, by recalling the ideas of perpetuity which we attach to our ocean barrier, when, gazing on its waven, we sum up the known changes which they have produced on the coast line within the period of history or tradition. The indications of such changes, mighty in comparienn with any of which buman history tukes cognisance, prepare us to view with less surprise the corresponding changes which have taken place in the mammalian fauna; but we are still ignorant of the cause of the extirpation of so large a proportion of it as has become extinct. It is an important fact, however, that a part, and not the whole, has thas perished, and that the canse bas not been a violent and universal catastrophe, from which none could escape but by miraculous intervention. There is no amall analogy, indeed, betwoen the course of the extirpation of the pliocene mammals and that which history shews to have affected the wild animals of continents and islands in congexion with the progress of man's domin. ion. The largest, most ferocious, and the least useful of the pliocene species have perished ; but the horse, the hog, probably the amaller apecies of wild ax, the goat, and many of the dininutive quadrupeds, remain. There is not, however, any satiafactory evidence that the buman specie: existed when the mammoth, the tichorine and leptorhine rhinoceros, and the great northern hippopolamus, became extinct. It is probable that the horse and ass are descendants of epecies of pliocene antiquity in Europe:
there is no anatomical charecter by which the present wild boar can be listinguished specifically from that which was contemporary with the memmoth. The reindeer has, relatively to Britain, been exterminated, Dor will oor present climate permit its existence here. With the diminution of the great herbivora, which would aaturally follow the limitation of their range when Eagland became an island, that of the carnivora, dependent on them for food, would inevitably follow. And not here only, but likewise on the great continent over which they ranged, which would indicate that the extirpatiog cavee, if it were extrinsic to their own conatitntion, had been due to changes of the earth's configoration and climate much more extensive than could be connected with the insulation of so smalla portion of Earope as Britain.

Thas, continued the Professor, in the endeavonr to trace the origin of unr existing mammalia, I have been led, by long researcbes on the fossils of this island, to view them as descendants of a fraction of a peculiar and extensive mammalian fauna which overspread Europe and Asia at a period geologically recent, yet incalculably remote and long anterior to any evidence no record of the human race. It would appear, indeed, from the comparisous which the present state of palacontology permits to be institated between the receat and oxtinct mammalian faunp of other great nataral divisions of the dry land, that these divisions also severally poseessed a series of mammalia as distinct and peculiar in each during the pliocene period as at the present day.

Comparison with the Extinct Animals of other Conntries.

When such a comparison is restricted to the fanna of a linited locality, especially an insular one like Great Britain, the discrepancy between the pliocene extinct and the existing groops of mammalia appears to be extreme. But if we regard Great Britain in connexion with the rest of Europe, and if we extend our view of the geographical distribotion of extinct mammals beyond the limits of technical geography, -and it needs bat a glance at the map to detect the artificial character of the line which divides Europe from Asia,-we shall then find a close and intereating correspondence between the extinct Europan-Asiatic mammalian fauna of the pliocene period and that of the present day. The very fact of the pliocene fossil mammalia of England being almost as rich in generic and specific forms as those of Europe leads, as already stated, to the inforence that the intersecting branch of the ocean which now divides this island from the continent did not then exist as a barrier to the migration of the mastodons, hippopotamuses, bisons, bears, \&c., whicb have left soch abandant traces of their former existence in the superficial deposits and caves of Gireat Britain. Now it is a most interesting fact, that in the Earopreo-Asiatic expanse of dry land species continue to exist of nearly all those geners which are represented by pliocene and post-pliocene mammalian fossils of the same natural continent and of the immediately adja cent island of Great Britaid.

America.

If we turn our attention to a more distant-natural continenl-South America, for example-we shall find that ut the present day Sonth America alone, is inhabited by species of which no fossil remains have yet been discovered in Europe, Asia, or Africa. In South America not a single fossil is referable to a true old world mus, thougli numbers of the common rat and mouse have been imported into South Americe since its discovery by Europeans.

In North America the most abundant mammalian foasils of the corre. spondiog recent geological epoch belong to a species of mastodon (MI. giganteus) pecaliar to that continent. Since, however, North America borders closely upon Asia at its northern busis, and is connected by its opposite apex with South America, it perfectly accords with the analogies of the geographical relations of the last-extirpated series of mammals of the old world that the Asiatic mammoth and the Sonth American megatherium should have migrated from opposite extremes, aod have met in the temperate latitudes of North America, where, however, their remains are mach more scanty than in their own proper provinces.

Australia.

Anstralia, in like manner, yields evidence of an analogous correspondence between its last extinct and its present aboriginal mammalian fauna, which is the more interesting on account of the very pecnliar organisution of most of the aative quadrupeds of that division of the globe. The first collection of mammalian fossils from the ossiferous caves of Australia brought to ligbt the former existence on that continent of larger species of the same pecnliar marsupial genera; some, as the thylacine, and the dasyurine sub-genus represented by the Das. ursinus, are now extinct on the Australian continent; but one species of each still exists on the adjacent island of Tasmania; the rest of the fospils were extinct wombate, phalan gers, potoroos, and kangaroos-some of the latter being of gigantic stature. Subsequently, and after a brief interval, we obtain a knowledge of the former existence of a type of the marsupial group, exemplified by the generu Diprotodon and Nototherium, wbich represented the pachyderms of the larger continent, and which seems now to have disappeared from the face of the Australasian earth.

The most remarkable local existing fauna, in regard to terrestrial vertebrated animals, is that of the islands of New Zealaud, with which geologists have been made familiar by Mr. Lyell's indication of its close analogy with the state of animal life during the period of the Wealden formation. The only terrestrial mammalian quadruped hitherto discovered in

New Zealand, whose recent introdoction into that islend is at all docibtful, is a small rat. The noequivceally indigenods representatives of the warm-blooded vertebrata are birds, of which the apteryx is the most pecoliar. It is the smallest known species of the struthious or wingless order, has the feeblest rudiments of the anterior members, and not any of its bones are permeated by air-cells. This bird forms the most etriking and characteristic type of the proper or primitive fanna of New Zealand.

Not a trace of a fossil quadruped has been found in New Zealand; bat our present knowledge of the living and the last-oxterminated fanose of the warm-blooded animals of that small bot far-distant and isolated portion of earth, shows that the same close analogy existed betwea them ee has been exemplified in the corresponding fauna of larger nataral divisions of the dry land on the prosent surface of this planet.

These Animals cannot have been derived from a common Asiatic centre.
Thus the facts obtaioed from a study of the fossil remains of mamenlinn quadrupeds, applied to a scientific consideration of the preseat distribution of the highest organised and last-created class of animals, demonatrate that, with extinct as with existing mammalia, particular forms were assigned to particulur provinces, or natural divisions of the dry land of this globe; and what is still more intereating and anggestive, that the eame forms were restricted to the same provinces at the pliocene period as they are at the present day. In porsuing the retrospective comparison of recent mammals to those of the eocene and oolitic strata, in relation to their local distribution, we obtain indications of ertensive changes io the relative position of aea and land during those epochs, in the degree of incongruity between the generic forms of the mammalia which then existed in Europe, and any that are now found on the great natural contioent of which Europe forms part. It would appear, indeed, from our present knowledge, that the further we penetrate into time for the recovery of extinct mammelia, the further we must go into space to find their existing analogues. To match the eocene paleotheres and lophiodons, we must bring tepirs trom Sumatra or South America, -we must travel to the antipodes for myrmecobians and dasyures, the nearest living analogues to the amphitheres and phascolotheres of the ancient oolites. From what ancient centre, if any, the first types of the primary groups of the class mammalia may have radiated, we seem ever destined to remain ignorant, by reason of the epormons alterations of land and sea that have come to pass siace the clase was first introduced into onr planet. We find, however, that from the period when the great masses of dry land assumed the general form and position that they now present, the same peculiar forms of mammalia characterised their respective faonme. If we carry our retrospect no farther back than the pliocene tertiary period, the evideace of the distribution of the recent and extinct mammalia would juatify the conclusion that New Zealand, Australia, South America, and the old world or the geographers had been as many distinct centres of creation. The difficulties that beset the commonly received view are insarmountable. According to the hypothesis that all existiog land-animals radiated from a common Asiatic centre within the historical period, we most be prepared to adonit that the noctornal apteryx, which can neither fly nor swim, migrated across wide seas, and found its aole resting-place in the island of New Zealand, where ahne the remains of similar wingleas birds have been fonod fossil;-that the wombats, dusyures, and kangaroos should have as exclusively travelled to Australia, where only have been found, in pliocene strata and bone cavos, the remains of extinct and gigantic species of the same genern or families of marsupialia; and that the moders sloths, armadillos, and anteaters, should have chosen the route to Sooth America, where only, and in the warmer parts of North America, are to be fond the fossil remains of extinct species of those very peculiar edentate genera. It is not less striking and suggestive, though at first sixht less subversive of the recent-dispersion theory, to find the elepbant, rhinoceros, hippopotamus, hyena, beaver, pika, bare and rabbit, vole and mole, still restricted to that great natural division of dry land to which the fossil remains of the same genera or species appear to be pecoliar.

Mz. Lpell's Lecture on the Miserssippi Delta.

Mr. Lyell delivered an evening discourse on the delta and alluvial deposits of the Misissippi, and other pointa in the geology of North America, observed in the years 1843-6. The delta of the Mississippi may be defined as that part of the great allurinl plain which lies below or to the sooth of the branching off of the bighent arm of the river, called the Atchafalays. This delta is about 13,600 square miles in arrear, ead elerated from a fow inches to ted feet above the level of the sea. The greater part of it protrudes into the Galf of Mexico, beyond the geaeral coast line. The level plain to the north, as far as Cape Girardeat, in Missouri, above the junction of the Ohio, is of the same character, including, according to Mr. Forshay, an erea of about 16,000 equare miles, and is therefore larger than the delta. It is very variable in width from east to west, heing near its nortbern extremity, or at the mouth of the Ohio, 50 miles wide, at Memphis 30, at the mouth of the White River 80, and contracting again farther south, at Graad Gulf, to 33 miles. The delta and allurial plain rise by so gradual a slope from the sea as to attain, at the junction of the Olio, a distance of 800 miles by the river, an elevation of only 200 feet above the Gulf of Mexico.

Mr. Lyell first described the low mud.banks covered with reeds at the mouths of the Mississippi, and the pilot-station called the Balize, then paraed to the qusatity of drift-rood choking up some of the bayons, or chanaels,

internecting the banks, and lastly enlarged on the long narrow promontory formed by the great river and its banks between New Orleans and the Balize. The advance of this aingular tongue of land bas been generally supposed to have been very rapid; but Mr. Lyell and Dr. Carpenter, who accompanied him, arrived at an opposite conclusion. After comparing the present state of this region with the map published by Charlevoix 120 years ago, they doubt whether the land has, on the whole, gained more than a mile in the course of a century. A large excavation, eighteen feet deep, made for the gasworks at New Orleans, and atill in progreas in March 1846, ahows that inuch of the soil there consists of fine clay or mad, containing innumerable atools of trees, buried at various levels, in an erect position, with their roota at tached, implying the former existence there of freah-water awamps, covered with trees, over which the sediment of the Mississippi was spread during inundations, so as slowly to raise the level of the ground. As the site of the excavation is now about nine feet above the sea, the loweat of these upright trees inply that the region whern they grew has sunk down about nine feet below the ses-level. The exposure also in the vertical banks of the Mississippi at low water, for hundreds of miles above the head of the delta, of the atamps of trees baried with their roots in their antural position, three tier being occasionally seen one above the other, thews that the river in its wanderings bas opened a channel through ancient morasses, where trees once grew, and where alluvial matter gradually accumulated. The old deserted bed also of the river, with its banka raised fifteen feet above the adjoining low grounds, bears teatimony to the frequent shifting of the place of the main stream ; and the like inference may be drawn from the occurrence here and there of crescent-shaped lakea, each many miles in leugth, and half a mile or more in breadth, which hare once constituted great curses or bend of the river, but are now often far distant from it. The Mississippi, by the constant undermining of its banks, checks the rise of large commercial towns on its borders, and causes a singular contrast between the wealth and splendour of 800 or more fine steamers, some of which may truly be called loating palaces, and the flat monotonous wilderness of uncleared land which extends for hundreds of miles on both sides of the great navigable stream.

Mr. Lyell risited, in March 1846, the region shaken for three months in $1811-12$ by the earthquake of New Madrid. One portion of it, situated in the atates of Missouri and Arkansas, is now called the sunk country. It ex tends about seventy miles north and south, and thirty east and west, and is. for the most part, aubmerged. Many dead trees are still standing erect in the swamps, and a far greater number lie prostrate. Even on the dry ground in the ricinity all the forest trees which are of prior date to 1811 are leafless ; they are supposed to have heen killed by the loosening of their roots by the repeated abocks of 1811.12 . Numerous rente are also observable in the cround where it opened in 1811, and many "sink holen," or cavities, from cen to thirty yards wide, and twenty feet or more in depth, interrupt the general level of the plain, which were formed by the spouting out of large quantuties of sand and mud daring the earthquake.

Formation of the Della occupied 67,000 years.

In attempting to compate the minimum of time required for the accumn. lation of the allovial matter in the delta and valley of the Mississippi, Mr. Lyell referred to a series of experiments made by Dr. Riddell at New Orleans, showing that the meanannual proportion of sediment in the river was to the water Riss in weight, or about yoro in volume. Prom the observa. tions of the same gentleman, and those of Dr. Carpenter, and of Mr. Porshay an eminent engineer of Louisiana, the average width, depth, and velocity of the Mississippi, and thence the mean annual discharge of water were deduced. In asauming 528 feet, or the 10 th of a mile, as the probable thick. ness of the deponit of mod and sand in the delta, Mr. Lrell found his conjecture on the depth of the Gulf of Mexico between the southern point of Florida and the Belize, which equals on an average 100 fathoms. The area of the delta being about 13,600 square statute miles, and the quantity of colid matter annually brought down by the river, $3,702,758,400$ cnbic feet, it must have taken 67,000 years for the formation of the whole; and if the alluvial matter of the plain above be 264 feet deep, or half that of the delta, it has required 33,500 more years for its aecumulation, even if its ares be estimated as only equal to that of the delte, wherest it is in fact larger. If emine deduction be made from the time here atated in consequence of the fffect of the drift-wond which must have aided in filling up more rapidly the apace above alluded to, a far more important allowance must be made, on the other hand, for the loss of matter, owing to the finer particles of mud not settling at the months of the river, but being swept out far to sea, and even conveyed into the Atlantic by the Gulf atream. Yet the whole period during which the Missiasippi bas tranaported its earthy burden to the ocean, though perhaps far exceeding 100,000 years, must be insignificant in a geological point of view, tince the hluffi, or cliffis, bounding the great ralley, and therefore older in date, and which are from 50 to 250 feet in perpendicular height, consist in great parta of losm containing lend, fluriatile, and lacus. rine shella, or species atill inhabiting the same country. These fossil shells, occuring in a deposit resembling the loest of the Rhine, are asociated with the bones of the mastodun, elephant, tapir, myiodon, and other megathoid aimals; also a species of horse, ox, and other mammalia, most of them ox finct species. The loam rests at Vicksburg and otber places on eocens or lower tertiary strata, which in their turn repose on eretactons rockn. A sece ion from Vicksburg to Darien, through the rtaten of Mincimippi, Alabema, and Georgis, exbibite this superposition, well that of the cretaceous
strata on carboniferous rocks at Tuscaloosa. Mr. Lyell aseertained that the bage fossil cetacean named Zeuglodon by Owen is confined to the cocene deposits. In the cretaceous strata the remains of the mosasaurus and other reptiles occur without any cateces. The conl-fields of Alabams were next alluded to, from which fossil plants have been procurred by Profewsor Bramby and Mr. Lyell, of the genera aphenopteris, neuropteris, calamities, lepidodeadron, sigillarim, atigmaria, and others, most of ther identical in species, as determined by Mr. C. Bunhury, with fosails of Northumberland. This fact is the more worthy of notice, because the coal of Tuscalooss, situsted in latitude $33^{\circ} 10^{\prime}$ north, is farther south than any region in which this ancient fossil flora had previously been stadied, whether in Eumpe or North America; and it affords, therefore, a new proof of the wide extension of a aniform flore in the carboniferous epoch. Mr. Lyell, adverting to the opinion recently adopted by several idle botanists, that the climate of the coal period was re markable for its moisture, equability, and freedom from cold, rather than the intensity of its tropical heat, atated that this conclusion, at well as the oacillations of temperature implied by the glacial period, is confrmatory of the theory first advanced hy him in 1830, to explain the ancient geological changen of climate by geographical revolutions in the position of land and sea.

The lapse of ages implied by the distinctness of the fossils of the eocene, cretaceous, carboniferous, and other strata is such, that were we to endesvour to give an idea of it, we must estimate its duration not hy years, as in the case of the delta, but by such unita as would be conatituted by the interval between the beginning of the delta and our own times.

Doctrine of the earth's antiquity not to be refuted by prejudice.

" It is now fifty years," maid Mr. Lyell, " since Playfair, after studying the rocks in the neighbourbood of Edinburgh in company with Dr. Hutton and Sir James Hall, was so atruck with the evidencea they afforded of the immensity of past time, that he observed, 'How much farther reason may, go than imagination can venture to follow!' These views were common to the most illustrious of bis contemporaries, and since that time have been adopted by all geologists, whether their miads have been formed by the literature of France or of Germany, or of Italy, or Scandinavia, or England; all have ar. rived at the aame conclusion respecting the great antiquity of the globe, and that, too, in opposition to their earlier prepossessions, and to the popalar belief of their age. It must be confessed that while this unanimity is iatisfactory as a remariable teat of truth, it is somewhat melancholy to reflect that at the end of half a century, when so many millions have passed through our achools and colleges aince Playfair wrote that eloquent passage, there should still be so great a discordance between the opinions of scientific men and the great mass of the community. Had there been annual gatheringe such as this, where they who are entitl d to speak with authority addrese themselves to a numerons asembly drawn from the higher classes of society, who, by their cultivation and influence, must direct tbe education and form the opinions of the many of humbler atation, it is impossible that so undesirable and unsound a state of thinga should have now prevailed, as that there should be one creed for the philosopher, and another for the multitude. Had there been meeting like tbis even for a quarter of a century, we should have already gained for geology the aame victory that has been so triumph. antly won by the astronomer. The earth's antiquity, together with the history of successive races of organic beings, would bave been ere this as cheerfully and univerally acknowledged as the earth's motion, or the number, magnitade, and relative distances of the heavenly bodies. 1 am sure it would be superfinous if I were to declare, in an assembly like this, my deep conviction which you-all of yon-share, that the farther we extend our researches into the wonders of creation in time and space, the more do we exalt, refine, and elevate our conceptiona of the Divine Artificer of the aniverse.
Mr. Lyell concluded this disconrte by announcing bls corroboration of the discovery recently made by Dr. King ai Greensburg, thirty miles from Pitteburg in Pennyalvania, of the occurrence of fossil footprints of a large reptilion in the middle of the ancient coal measures. They project in reliof from the lower surface of slabs of sandstone, and are also found impressed on the subjacent layers of fine unctuous clay. This is the firat well.eatablished example of a vertebrated avimal more bighly organised than fishea being met with in a stratnm of such high antiquity.

COMPARISON OF SCREW PROPELLERS AND PADDLE WHEELS.

(Wilh Engravings, see Plate XVI.)

The Board of Engineers of the United Stated Navy having been omicially directed to inquire respecting the merits of different methods of propellisg steam-vessels, presented, at the commencement of the present year two reports (dated in January and May respectively), detailing the result of their enquiries. We are enabled to give the following analysis of these doca. ments.
The firat report contains a comparison of the relative effecte and values
of "Enater's" and "Loper's" propellers, deduced from the performances of a revenue steamer fitted in the first experiment with the former of these propellers, and subsequeatly with the latter of them.

The eecond report compares the effect of Loper's propeller with that of the ordinary paddle-wheel fitted into two vessels of exactly the rame size and dimeasions. The section fig. 1. plate XV1. will show the plan of gearing on board the Spencer (the screw vessel). The steam cylinder is horisontal, and the connecting rod drives a horizontal bevil wheel, which takes into a vertical bevil wheel on the same with the screw-propeller. The propellers are therefore two in number; they project from either quarter of the veasel. The mode of gesring here adopted meems to possess peculiar advantages. It in well known to eagineers that bevil wheels run lighier than the ordinary apur-wheels, and indeed it may be shown theoretically that they have, cateris paribus, less friction; moreover the teeth of the former will geoerally, come in contact more gradoally and consequeady with less concustion and poise. Thia mode of gearing has aleo the advantage of compactness and affurds pecaliar facilities of construction where the cylinders are horizontal.

Tho vertical wheel contained 75 wooden cogs and the horizontal wheel . 60 inon coggs. There seeman alight error of detail in making the nombers of cogs in each wheel bear the relation here stated. In general the respective nomber shoold be prime to each other, that is, should not contain a common measure. The greatest comanon measure of 75 and 60 is 15 , and conseqnently instead of each tooth in the one wheel coming into contact with each tooth in the other during successive revolutions, it happens that by the time one wheel has revolved 4 , and the other 5 times, the coatact of the same teeth commences again. By the contrivance of a " hunt-ing-cog," that is, an additional tooth, in the smaller wheel the numbers (75 and 61) become prime to each other, and this disadvantage is aroided. Cog-wheels driving screw propellers are aubject to 20 much wear and tear that no expedient for diminishing the evil ought to be aeglected.

The plan of gearing on bovid the McLaze, fitted with paddle-wheels, is exhlbited in fig. 2, plate XVI. The cylinder is borisontal es before. On the engine shaft is a pinion of 47 teeth taking into a wheel on the upper shaft of 72 wooden teeth; the wheel and pinion are in diameter 7 feet aod if feet respectively, and concussion or jar is diminished by forming each of two similar wheels 8 inches wide with the teeth off-set. The piaion and the wheel driven by it have therefore each a face 16 inches wide. The following extract from the reports will give the remaining particulars.

Dimensions of Vessels, Engizes, Propellers, foc.-Wessels (irun).
Length between perpendiculars
143 feet.
Beam at knucklo.
Beam at water line
Depth of hold
Displucement at load libe 182
11 " 10 iaches. 460 tons.

Engines-Two, non-condensing; cylinders, 24 inches diameter, by 8 h. utroke of piston; steam, cut off at half stroke; one boiler containing 1,460 square foot of heating surfacs combmation, asthracite coal aided with a blest.
Power. - The horses power of the engines is estimated by the formala$\frac{8 \times(P-f \overline{+14.7})}{33,000}$,
ante. P, means effective preseure upon cylinder piston in ponods, per equare inch; and J, the friction of the engines, equal $\$$ of preasure opon staam gauge.
"Spencer."-Two acrew propellers, 8 feet in diameter, having four blades each, with an area of lit equare feet on each side. Angle of blades at hub, from plane of axis, 30°; at edge of blade, 84°. Revolu. tions of propellers, if for each revolotion of ongines. Draft of water, 9 feet 8 inches.
"Meet 8 inches. "Manc."-Two side whecis, 16 feet 5 inches ln diameter, in trials 1 , 2, s, and 4, and 15 feet 1 inch in trials 8 and 6 ; 14 bnckets in anch wheel, 10 inghes by 5 feet 11 inches each. Immersed aroa of buckets, in euch wheel, 24 square feet. Rerolutione of wheels, 65 for each 100 of engives, Drafi of water, 9 feet $8 \frac{1}{2}$ inches.

The two vessels being almost Ilentical in form, allowed a comparison by means, of simaltaneous experiments which were accordingly commenced in April by Capl. Faasea, ander the supervision of Mr. Habwell, engi-neer-jn-chief of the navy, and Commodore Prazy. From Cept. Fraser's report we make the following extract :-

Great care was taken to trim both vessels as moch alike as possible. Great care was taken to the beal was the beality, anthracite, from the aame mines, (Beaver Meadow).

Beaver Meachow Thing into oomidoration the very defective model of these reacels, and
that the eogines were constrocted for, and particalarly adapted to Euster's submerged wheel, rendering it necemary to use cog wheel geering, ©o proper estimate of the speed attainable by the side wheel or propeller ean be arrived at. Still, their relative value in apeed and consumption of fuel may be very eatiafuctorily determined. It must be borne in mind that the diampter of the propeller, and consequently its effective power, is limited by the draft of water, in order to keep it entirely sobmerged, and at the same time ahove the line of the keel, while the diameter of the side wheel mamy be increased by raising the shaft, thereby increusing the speed.

In the McLane, however, the diameter of the wheeis is as great as dosirable for sea service.

Both vesele, as exhibited in the annexed drawiaga, are precisely similar in model and dimensions, and each is furniahed with two bigh-presanre horizontal engines: diameter of cyliader 24, and length of stroke 26 inches.

A sketch of the balf cross section of the vessels is herennto appended, which will clearly exhibit to pructical men, that speed under steam, or otability onder canvas, are unattainable objects. Plans of the propellers and mode of gearing, are likewise given.
Each vessel is furnished with a singlo boiler, having 1,450 feet fire garface. The Spencer is furnished with two of Loper's propellers, one projecting from each quarter, and the McLane with side wheels, having 14 buckets each. All the dimensions of the propellers and wheels are berelier given, and the draft of water, dip of buckets, \&c., are exhibited in tabular form, with each day's trial. The buckete of the side wheel were, at the cugkestion of Mesara. Haswell and Coney, moved eight inches towards the centre, before making the trial on the last day.
It will be perceived by reference to the drawings, that the relative revoIntions of the engines and wheels of the McLane, are as 1 of the furmer to 6528 , while the relative revolutions of the engines and propellers of the Spencer are as 1 to $1-25$. The greatest care was oxercised in weighing the coal, and the pressure of steam, revolutions, times, \&c., were carefolly noted every fifteen minutes. The distances, set, and velocity of the tides, are given upon the anthority of the apperintendent of the coast earrey, and the time of slack water, noted in each day's work.
The trial on the first day, from New London to Falkner's Island, and returning; was under, as nearly as posible, an oniform pressure of ateare, and the safely valve was loaded with 45 poupds to the square inch. On the second day, the trial was made by confining the number of revolutiona of the engines as dearly as possible to 85 , and roturning under 24 poneds pressure of steam.

On the third day, as before meationed, the buckets of the side wheals were moved eight inches towards the centre, increasing the revolutions onder the same pressure, in order to ascertain whether the iocreased speed attained was commeasurate with the increased consomption of foel, aod as the same time to ascertain whit diatance ench vemel could be propelled with $\mathbf{3 , 0 0 0}$ poands of coal. This portion of the trial we quite interestiogThe second propeller of the 8 peacer did not stop until the steam grage exhibited a pressure of bat two pounds.

On the first day a strong gale prevailed from the westward, with a turbulent head sea, reducing all the sailing vessols in sight, which were working to windward, to donble reefs, and the great differences exhibited in consumption of facl and speed, between the pesage from and retaraiag to the light boat, was donbuless produced by the resistance offered by the wheel-houses of the McLane, when aterming bead to the wiad, and the essistance ufforded when before it, as well as the inetifient operation of wheels of so small diameter in a sea wey, while the propeller being sabWheels of
merged was oxercising the mame offort at all times, and nender all circemstmnces.

A trial of the sailing qualities was not deemed important, for experience has hitherto shown, that by the wiad, this mudel has neither spoed or atebility.

A full and detailed journal of the trials is nert given, bat it is dot meceseary to make an abstract of it, as the general resolts ure incladed in the official reports of the Engineer-in-ahief and Commodoro Perry. The joint report of those gentlemen is a follows

Washingtoa, D. C., May 18th, 184 a.
Sra,-In the execntion of instractions ountained in your letters of the Bith ultimn, the endersigned proceeded to New Lomdon, Conn., for the purpose of witneasing some exporiments that were to be made by order of the pose of Witneasing some exporiments that were to be made by order a Me Leace" the former fitted with two of Loper's propellers (ecrow), the latter with the ordinary side wheels.

Upos our arrival at that place, we were met by Capt. A. V. Praser, temporarily in command of the "Spencer," ander whoee directions the experiments were to be made-and also by Capt. W. A. Howard, in command of the "McLane," who, in conjunction with the former, mforded ws
 asce.

The necesaary preliminary arrangemeats being made, and the two vessels haviug bees brooght to a similur draf of water, and provided with similar fuel (anthracite), it was decided that the trials made, should te to determine the following pointa :
8. The ralative speed of the veseels, and consumption of fael. with equal preasures of stenn, when ruanigg under various ciromastances of wiod and weather.
8. The same points as above, the ongioes of the "8pencer" being reduced in speed to assimilate, as far as practicable in power, to those of the " Mclade."
8. The same points, with the pressures of steam reduced one-half.
4. The offeet of the consumption of an equal quantity of fuel ($2,000 \mathrm{lb}$.) with similer initial pressures.

The elements for a compurison of the two vescels, regarding their form, \&c., are as follows:-

The hulls, eugines, and boilers were conatracted from duplicate drawinge. One vessel had three and the other two mants, adapted for equal surfaces of cesvas. This difference of rig. however, could not in the least have inflonenced the results of the trials; and especially 30 , as the vessels were not tried onder canvass. The instruments of cutting off the stoam differed in some degree, - ihat of the "Spencer" being a slide valve, and that of the "McLane" a puppet. In the spaces between the grate-bars, there was also a vuriance, those of the "Spencer" being the gremtest, and consequently effecting a greater wuste of full. The geering of the engines, propellers, and wheels, was aimilar in its character (coaged wheels), the ooly mechanical difference being that necesaarily doe to the peculiar means of propulsion.

The bottoms of the vemsels, and the engines and boilers, were, as, far as our observation extended, aided with the information received respecting them, in equally good order.

Respecting the proportions of the difforent propellers, it was clearly shown ibat they were of sufficient diameter and surfach for the perpowe intended. There was a point, buwever, connected with their application which in our opinion materially interfered with the apeedis of the vessels, arising from the relative speeds of the engines, and each of their attacbed propellers. Had the engines been geered so as to have worked faster with equal pressures, there wonld have been a material increase of power (an the boilers of the vessels were capable of supplying a greater qumatity of ateam than that they were restricted to in these trials). Had this disadvantuge been similar, it would alone have effected the rate of apeed; but as it occurred, the engines of the "McLane" were geered ao as to preclode the attainment of a power with similar pressure equal to that of the "Spencer." The effect of this, however, is daly considered in determining the resnlta given in stutement C, which was prepared by C. H. Haswell; as a subntitute for which, M. C. Perry submith atatement D; while to those marked A and B, we refer yon for details of the information on variovs points indicated in your letters.
M. C. Perry, Engimecr-in-chief U. S. Navy.
C. H. Habwell,

Obmmodore Charles Morais,
Chief of Bureau of Construction, sco, Washington, D. C.
From the concluding sentence it eppesrs that a differeace of opinion ex. isted as to the conclasiceness of the experiments : the separate statements [C] and [D] refer to those points on which a difference of opinion existed, avd are submitted, the former by the Engineer-in-Chief, the latter by Commodoce Perry.
[C.]
Remults of the Comparisons deduced from the Preceding Elements.
In these the consumption of fuel is not considered, for reasons which will appear obsious when presented.

1. The boilers and engines boing identical in capacities, the amonnt of steam need in the engines is an exact measure of the expenditore of each means of propolsion, which smount is estimated in the calculations of power here given.
y. The ateam required was so mach below the actaal oapacities of the boilers to furnish it, and $t 0$ nearly alike in its quantitiea, that a burried combation of the fuel was unneoescary. Hence the waste consequent upon rapid combastion was not only oot incurred in either vessel, but wus not incurred by either means of propulsion at the risk of its economy compared with the other.
2. The omisaion of this element sets aside the effects of the difference in the grate-bers, and of any difference in firing by different individuals.
The computation then, of the powers of the engines is considered a fair and proper expoaent of the coet of propalsion; while the cubes of the speeds are taken as the measures of the effects produced, which olements, (thone of power and effect) being rednced for each trial, the following deductions are furaished :-
First-In this trial, the application in the "Spencer" was 1.58 to 1 pore efucient than that in the "McLene."

Second.-In this trial, the application in the "Spencer" was 1-14 to 1 more efficient than thut in the "McLane."
Third.-In this trind, the application in the "Mclane" was 1.16 to 1 more eficient than that in the "Spencer."

Pourth. In this trial, the application in the "McInane" was 1 to 89 more oticient then that in the "Spencer"

Fifth. In this trial the application in the "Spencer" was 1.04 to 1 zoore efficient than that in the " Mclace."
Sirth.-In this trial, the application in the "Spencer" was yos to 1 more sfilcient than that in the "McLane."
[D.]
"Havtag atated in the foregoing papera all the particulars connected with the experiticotal trials of the stomers "McLane" and "Spencer," I find

In pessing them in reviow ditionlty is forming any defaite conchnsions apon the subjects under inquiry.

Notwithatanding the care with which the trials were made ander the skilful management of Captaing Fraser and Howard, very little of a satisfactory character was elicited. On the contrary, the resolts tended ratber to confuse than to elocidate: certainly they furaished no criterion by which to determine the relative properties of the propeller and the side wheels, and the caubes may, in my jodgment, be justly ascribed to the defective form of the boltome of the veasels.

It may be assouned by some, that as the models and dimensions of the two vessels were precisely alike, and the steum force ezertod upon their respective propelling power was the seme, the resolls ought to be conclu sive of the superiority of the propeller-but such is not my opinion.

Captains Fraser and Howard both affirmed, and 1 give moch weight to their professiunal opinions, that oeither vessel woold tand op ander canvas, that they would not atay noder ordinary circumatancea, and it was difficult to wear them withio any reasonable space, or to krep them to the wind in heavy weather-that in fresh breezes, on the wind, the lee wherl of the "MoLane" would be immersed almost to its axis: in a word, that they were unmanageable at cea, and in their beliof would bo anaifo if thrown apon a lee shore in a heavy gele, even if assisted by eteam power.

It is plain, therefore, that no application, whether of steam power or tails, or both combined, to veasels of such unnaual model, conld by pomibility produce any eatisfactory resolts, illustrative of the question of relative merits of the two modes of propulsion: and this opinion is strengthened by the fact, that on the occesion of their first day of trial in the Bound, when there was a atrong double-reef topsail breeze from the northward and westward, they were 10 slow in their movements, that all agreed that any fair aciling vescel would have worked from New York to Falkner's Island, aod made the ran back, in a less apace of time than was occupied by the fasteat of the two steamers in accomplishiog it."

The general reenlt of the experiments is given in the following table of the Elementa of Comparison of the varione Trials:-

The distances given are in nantical miles.
Triale 1 and $2 .-8$ peed and consumption of foel with equal presenres, and under varions ciroumstances of wind and weathor.

	OUT.			
	Bpencer.	McLane.	Spence	
veruare prech .. of in in porach, per	42.8	4	45	40.
Average revolation of enfinee per minate	41.6	24.5	48	
Tlue of ruanity, to hours and minates ...	481	642	832	837
Dhatance pun through the water in millea, the effeer of the tide (i) mata) belag enti-				
mated .. $\cdot \bullet$.0.	$24 \cdot 28$	27.75	$22 \cdot 85$	$22 \cdot$
	64	4.14	$6 \cdot 48$	$6 \cdot 6$
Cosaumpulon of fuol in pounde per hour	124	929	800	176
Power	188	129	192	14

Trials 3 and 4.4-Out.-Bpeed and consumption of fnel, the pressore of steam in the "Spencer," being reduced in order to assimilate the power of the engines to those of the "McLane."
Im.-Speed and consumption of fnel, the pressure of steam In both veasels, being equally reduced to $28 \cdot 5 \mathrm{lb}$. per square inch.

	OUT.		IN.	
Avernge promare of ateam per square inch. In pouode				22.5
Average revolutione of eagloee per minute	35	796	82.5	22
Thme of runnigg, in b ars and minutes ..	146	131	27	210
Distasce fuothroupt the whter in milee	11.25	10.25	9.6	
peed in milles per hour	5-36	6.78	4.62	48
Consamption of fuel in poun	360	490	688	172
Power of engion in bormes	150			

Trials 5 and 6.**-Ont.-Speed and duration of operation with similar quantities of fuel- 2000 pounds of coul being allowed to each vesmel.
In.-Speed and consumption of fuel under oqual promares and various circumstances of Find and weather.

It will be observed that these "elemente" do not include the amount of steam evaporated during the experiments. The formola given abuve for

[^51]estimating the power of the engines is similar in form to that of Tredgold, and the cylinder pressure is deduced from the boiler pressure by a method independent of the omitted element: that is, the calculation procceds on the assumption that the boiler pressure and cylinder pressure will bear a constant relation to each other, whatever may be the rate of evaporation. This assnmption, De Pambour, in his Treatise on the Steam Engine, has shown to be erroneous, and he contends therefore that the whole of Tredgold's Theory of the Steam Engioe is incorrect, and that his formula for compoting the power of engines can never be correct, except by an accidental compensation of errors.-The views of De Pambour are now generally adopted by acientific men. We;will venture at the risk of appearing to differ in some measure from the very high authorities by whom the reports before us are sanctioned, to apply De Pambour's method of calculation to one or two of the results of the experiments jast described.

In the report dated January 81 ($p .3$), we find the following comparison of two experiments:-

Total boller prosure per aquare lisch	-	$\begin{gathered} \text { Expt. (1). } \\ \underset{\rho 2 \cdot 2}{ } \text { lb. } \end{gathered}$	$\begin{aligned} & \text { Expt. (2). } \\ & 69.70 \text { lb. } \end{aligned}$
Revolutions of englise per minute	**	, 5	44.45
Fuel consumed yer minate	-	88 lb .	21.86 lb .

It is assumed in the report that until the steam was cut off the cylinderpressure was the same as that of the boiler. On De Pambour's principle, however, the conclosion would be very different. In absence of more ecourate data we may suppose that since the form and dimensions of the boiler, \&c., were identical in the two experiments each pound of coals eviporated effectively the same volome of water (M). Theo
$\begin{array}{cc}\text { Expl. (1). } & \text { Expt (2). } \\ 45 \mathrm{M} & 20 \cdot 16 \mathrm{M}\end{array}$
Cuble feet of water avaporated per minute $\begin{array}{llll} & \text { E. } & 45 \mathrm{M} & 20.16 \mathrm{M}\end{array}$
Now it appears from the table in De Pambour's Treatise on Locomotive Engioes (p. 60), tbat steam at $92 \cdot 2 \mathrm{lb}$. preseure occupies 316 times the volume of the water from which it is produced, and steam at 63.79 lb . pressure occopies about 444 times the space of the water from which it is produced. Therefore in the present case

Cubic feet of steam eraporated per minute

$$
\begin{aligned}
& \text { Expt. (1). Expt. (2). } \\
& \left.\begin{array}{ll}
45 \mathrm{M} \times 816 \\
-14530
\end{array} \quad 20 \cdot 16 \mathrm{M} \times 444\right\}
\end{aligned}
$$

The capacity of the cylioders was the same in buth cases ($=\mathbf{N}$), but in the first experiment the ateam was cut off at one-third of the stroke, in the second at one-half of the stroke, consequently taking the number of revolutione of the engine per minute in each case, we have

$$
\begin{aligned}
& \text { Expt. (1). Expt. (2). }
\end{aligned}
$$

Comparing these quantilies with the volumes of steam generated in the boiler, we see that in experiment (1) 14536 M cubic feet of steam at a pressure 92.2 lb . were dilated to occupy 17.85 N cubic feet: and in experiment (2) 8951 M cubic feet of steam at pressure of 63.79 lb . were dilated to occupy $22 \cdot 225 \mathrm{~N}$ cuble feet. But by Mariote's law the pressure of steam is inversely as the space occupied. Hence

$$
\begin{array}{lcc}
\text { Expt (1). } & \text { Expt. (2). } \\
\frac{\text { Boller preasure }}{\text { Cyilder preasure }} & -\frac{17.88 \mathrm{~N}}{14536 \mathrm{M}} & =-\frac{22.225 \mathrm{~N}}{8251 \mathrm{M}}
\end{array}
$$

Hence we get finally the following relation:

$$
\begin{aligned}
& \begin{array}{l}
\text { Cyllnder pressure (1). } \\
\text { Cyunder preanure (2). }
\end{array}=\begin{array}{l}
\text { Boller premare (1). } \\
\text { Boller preasure (2). }
\end{array} \times \frac{22.226 \times 145 s 6}{17.83 \times 2931} \\
& =\frac{\text { Boller pressare (1). }}{\text { Boiler preseure (}{ }^{(2)}} \times 2 \text { 20200. }
\end{aligned}
$$

Showing that the proportion between the cylinder pressures before the steam is cut off, instead of being equal to the proportion between the boiler prensures will be more than double that proportion. This certainly seems to show the importance of taking into consideration the relative generation of steam in the builer and consumption of it in the cylinder.

Let us take another case-the trials 5 and 6 in the aecond report of which the experimental reaults are given above. Adopting a method of calculation exactly the same as the foregoing, and considering that in the Spencer and McLane the cylinders were of the same size, that the steam in both was cut off at half-stroke, and that by De Pambour's table steam at 68.7 lb . occupies 480 times, and steam at 62.7 lb . occupies 450 times the volume of the water producing it-we have

That is the proportion of the cylinder pressures before the steam is cut off is not that of the boiler pressures, but opwards, of ove-fonrth more.

The actual relation of the boiler pressure to the cylinder pressure in each engine is immediately ascertained by giving M and N their proper values —hat is, by substitutiog the size of the cylinder, and the evaporative effect of each pound of coke. It would howerer generally be more accurate to ascertain the total quantity of water evaporated during the trial, and make a correction for priming according to the method detailed by De Pambour.

We are indebted to the courtesy of an American correspondent for conpies of the reports alluded to. The source from which this favour comes, and the very Gattering mander in which it is conferred, greatly eohunce ita value, and induce us to hope that notwithstanding differences of opinion betweed American and English engineers, we shall bave hereafter further opportunities of recording the investigations of our transallantic fellow labourera in the advancement of practical science.

METROPOLITAN SEWAGE MANURE.

The select committee, which was appointed last session to consider suadry plads for the application of the sewage of the metropolis to agricultural purposes, reported in favour of the Aletropolitan Sewage Manure Conspany Bill, which has since passed into a law, with certain modificutions. They declined to recomnead its posiponement or rejection for the sake of Mr. Wicksted's plan, for cairying off the entire sewage of London, in a tunael of from eight to twelve feet in diameter, and at a depih of froan 40 to $s 0$ feet under the level of the streels, being of upinion that the first ex. periment of dealing with sewage water had better be sried upon a smaller acale and at a less formidable expense; and, as regarded Mr. Higas' plan, they conreived that the public mind was not at present prepared to risk the establishment of any such reservoirs as he proposed to construct, although, by the precautions he contemplated, he would probahly preclode the possibility of any deleterious or offensive consequeuces. It appeared, indeed, that the main ground of complaint against the bill by the owners or occupiers of land was, that power had been taken in it to construct reservoirs or tanks for the reception of stugasat and offensive sewage wuter. That power was, in consequence, relinquished by the promoters. The committee, however, seemed to concur in the propriety of such a step out of deferedce to public feeling only, being of opinion that the loss of such a provision would, in some degree, impair the efficiency of a measare which proposed at all times to remove from the Thames the dails-increasing refuse of Loodon. As explained by Mr. Smith, of Deanstod, the operations of the company are to be limited to the King's Scholars' pond sower-the contents of that gewer to be recoived in a well constructed for the purpose, thence to be raised by steam-engine punps, and carried by a main pipe about eleven miles in the direction of Egham, with branch pipes to the surrounding farms; the distribation of which, however, will depend nuch upon private errangement. When used for irrigation, the liquid is to be discharged from one of these service pipes into the cbannels usaally e m ployed for that purpose; when applied to tillage land the service pipe is to be brought to some convecient distance in the field, there to communicate with a huse made of canvas, and capable of being elongated and conveyed to particolar spots, from whence the water may be thrown by a jet over as extensive a surface as the pressure upon the pipes will udmit-that pressure being derived from a stand-pipe about two feet in diameter, and 150 in height, the entire distribution to be conducted by the servants of the company, with a view to its proper control, aided by an adjustment at the steam-engine, to indicate the quantity of water taken at the extremitien, 20 that the speed of the pumps may be diminished or increased accordingly.

The company expect that the farmers will find it their interest to alfow it to be used exclusively for irrigation duriog the night and during the day by jet and otherwise, so as to equalize the supply in the $\mathbf{2 4}$ honre, and prevent the waste which would otherwise occur in the abseoce of reservoirs. Looking, however, to the difficulties that usually attend a fret experiment, and to provide for extraurdinary foods, means are to be adopted

(2002

$\boldsymbol{x} \boldsymbol{M A I} \boldsymbol{H}$
 $\square 5$

chriena. 5
sowzh

for allowing any surplus to fow into the Thames without going back into the aower; at the arme time that the company confidently antioipate, afer the farmers shall have had experience of the value of the manure, that the damand will be greater then the supply. The supply is calcalated at $60,000,000$ tons annually, producing, at $2 d$. por ton, an income of $\mathbf{5 0 , 0 0 0}$. which would leave above the ontlay a net profit of 13,0001 . on an estimated expenditure of $\mathbf{1 2 0 , 0 0 0}$. It will require 28,000 acres to consume the $\mathbf{6 0 , 0 0 0}, 000$ tons, of which it is expected that two-thirds will be taken for the irrigation of meadow, and oae-third for the enrichment of tillage laad. As the process of pamping will be conducted in a closed bnilding, soconstructed as to carry any foetid exbalations that may arise from the water dering the short period it is exposed to the atmosphere, into the furnace of the steam engine, there to be destroyed, the committee arrived at the conclasion, sot only that this station-honse will be noobjectionable, but that by the proposed means the liquid will be removed in a far less offonsive state than that in which it is now fonnd, when backed in the open sewer by the high tide, and stagnaling for hours together in the immediate vicinity of a thickly inhabited district, to be subsequently poared forth at low tide into the open bed of the river. The only remaining danger or inconvenience to be apprehended was from the breakage of the pipes or the ultimats dise tribntion of the water upon the land; bnt as it had been clearly estublished in evidence, first, that sewage water is not corrosive in its nature or liable to generate explosive gases, and next that its distribution is not attended with an offensive effluvium unless in hot weather, when, owing to its rapid absorption into earth, the napleasantness is of very short duration, the committee had no hesitation in believing that it may be as safely conveyed in iron pipes as the water of the Thames is at present by the several companies who supply the metropolis; and that in its application to the land it will be less offensive than manure in its solid state. The report contains some very interesting evidence from scientific men, supported by that of skilfnl farmers, and showing, that ander an improved system of hasbandry, by the application of the acience of chemistry to that of agricaltare, the soil, no matter what its natare or locality, may be rendered by many degrees more productive and more profitable. A minate chemical analysis of the sewer water of London, besides being unintelligible to the general reader, would be out of place in a mere abstract. All capacities, however, can understand the resalt, as given in the ovidence of Mr. Miller, Professor of Chemistry in King's College. He fonnd in it considerable portions of ammoniacal salts, alkaline salts, and earthy phosphates, substances which are fonnd in the soil in only small quantilies, bat which are nevertheleas absolutely essential to the maintenance of vegetable life. These ingredients are principally derived from the ashes of our bodies, resniting from the food we have digested; and as we have received them either directly from plants, or indirectly through animals from plants, it is evident they must be the food of plants, and that plants receive them from the soil, which they gradually exhaust. Mr. Miller stated also this curious factthat the money value of those ingredients as poured iato the Thames from the King's Scholar's Pond Sewer alone, assuming that the quantity falling from that sewer is 12,000 tons a day, amounts to no less than $62 l$. every twenty-four hoars, or 22,6301 . a year. The report likewise contains much meful information derived from the experiments of practical men in the application of sewage water to land, showing in all ingtances that it posseases a much greater fertilising power than either guano or the ordinary farm-yard manure. A. Mr. Thompson, of Clitheroe, in Lancashire, on applying eight tons of it to one acre, fifteen tons of common manure to another, and three cwt . of guano to a third, found that the grass raised by the sewage water, compared with the quantity produced in the other two cases, was as ffteen tons against eight. The Dnke of Portland is stated by means of the sewage water of Mansfield, and a cost of 30l. an acre for bringing the land into a proper form for irrigation, to have raised its value from 4s. 6d. to 14l. an acre. Mr. Dickinson, an exteasive keeper of horses, by the use of liquid manure derived therefrom, got ten crops of Italian rye grass in twelve monthe, some of them more then three feet high, out of land (on his farm at Willesden, near London), which a Lincolnshire man had previonsly said he would not give 12s. an acre for, if at his own door; and which a Norfolk man declared he wonld not farm as a freehold. Spenking of the present year, Mr. Dickinson stated, that the first crop was cut in January, yielding more than fonr tons an acre, that the second gave about double that, and that the fourth, which had been cut in the month of Juce, had produced at least twelve tons an acre. From his calculations it appeared that one horse supplied sufficient manure for one acre ; and when pressed for a direct opinion apon the subject, he replied, that he had no doubt Whaterer that every animal that lived, by his refuse being economised, would produce more than he could consume. This is an important fact for the agriculturists, especially at the prement moment, and it is to be hoped they will not lose sight of it, but endeavour, like Mr. Dickioson, to make their land more productive, and thereby not only benefit themsolves and the country, bat materially serve the canse of science

Fall of Railuay Bridges, Embankments, \&c. have occurred at numerous places. At Aberdeen, several arches of the inclined plane; between Linton and Dnnbar, three bridges ; on the Tynemouth Extension line, three gaads of tunnel; on the Newbury line, several bridges; fifty yards of cut ting on the Bighton and Hastings line.

PORT OF DUBLIN.
Improvements of tef Gramd Canal Doces at Rimeseate. With an Engraving, Plate XVII.)
Among the chief commercini intereats of the city of Dablin in the extensive trade of the Shannon and the Grand Canal. The enlargemert of the eanal docks has therefore been long considered a subject of great mercantile importance, and from 8 Report of Sir John Macneill, now before ut_{4}, there appears every probability of this great improvement being speedily effected.

The prinaipal featares of the moertaking are the formation of a new Tida basin, the diverion of the river Dodder and the constraction of a new entrance to the Floating and Graving Docks. The task of preparing a denign for effecting these objects bag been confded to Mr. McMullens, and has bean performed in the most simple and satisfactory manner. The plan proposed by Mr. McMallen is made the subject of a warm eulogium in Sir J. Mace neill's report, which epeaks of its extrome " simplicity," and the "extraordinary facilities which every where exist for carrying it into execntion." The following extracts from the Report, and a reference to the Plate XVII. will sufficiently explain the nature of the proposed improvement.

It is impossblic to cast the eye over your Companys splendid Flosting Batin, covering, as I anderstand, tweaty-five atatute acres, with a depth of water which I find is now steadily maintained at 18 feet or thereaboute without a feeling of great regret, that facilities, such as are thas afinorded, hoth for the foreign and cosating trade of the port of Dablin, and the im. portant adjacent districts, should not be as available for the advantage of that trade as they unqueationably can be readered; and for the accomplishment of this most desireble object, I freely admit that I have seen no project or plan at all comparable to that now before me, either as to the extent of the advantages which it is calculated to secure, or the comparatively small cost at which it is capable of being execated.

Of the several operations which the carrying ont of the project involven, there is none the necessity for which is so manifest, or the cost of which would be so trifing, compared with its importance, as the turning out of the Dodder upon the South Bull. An enormons deposit is carried down and lodged in the channel opposite the entrance to the docke. The dredging out of the narrow, and as yet quite inadequate channel, forming the approach to Camden and Buctingham Loaks, and of that partion of the river immediately opposite, bas, this year, an I am informed, occopied the two powerful steam dredgers of the Ballast Corporation, for a period of about two months, at an expense which eannot but be very heary, and which mast recar annually, and inevitably after the winter floods, as long as the river is allowed to remain in its presest counse. The necensity for an improvement so obvious has been long felt. I find that it was recommended by the Irish House of Commons on various occasions, and attached to their pro ceedings of the date of 26 th February, 1785 , there ia a ground plan of the new course into which it was proposed the river should then be turned which scarcely at all differs from that laid down in the present plan. And this was further followed ap by the enactment contained in the ect, creating the present Ballast Corporation, by which the directors of that corporation are anthorized to carry out and complete the measure. In eccomplishing it, there is no actual necessity for the removal of the present weir, although this would render the remults more useful to the adjacent grounds, and in this case a supply of water to the neighbourhood conld be readily obtained from the river above Ball's bridge, and a reaervoir formed on the site of the mill-pond of the old distillery, an sketched on the plan. I have examined the ground which it is proposed the new course should oecupy. In length it is about 600 yards.

An apprehension has, as I am informed, been expressed in some quarter, assnmed to be entitied to attention, and in this way brought under your notice, to the effect that the sand, carried down by the river, and which, in the event of the proposed chmge of its course, wonld be deponited on the sonth strand, might postibly be drifted across the Bay towards the entrance of Kingstown harbour, and prodace inconvenience or obatraction there. Sach a result I consider to be altogether out of the question, and the anticipated suggestion of it, destitute of the slightest rational foundation.

In tarning to the plan for the formation of the Tidal Basin, it is impossible not to be struck with the fact, and it in one of manifest importance, namely, how much of the work hes been already done, and how little, for the realization of the whole project, remains to be accomplished? while of this latter, the entire is of the plainest, every-day character, and quite free from any thing which could be regarded as an engineering difficult:. The whole is in fact comprised in the excavation of the ground, the extention of the present south quay will the lining of the interior with cut-stone facing, well puddled, and the constraction of the entrance gates. The proposed Lock for the admission of ateamers of the largent class to the upper basin does not appear so indispensable to the successful working of the plan, as to call for its being immediately undertaken. It may be prudent to wait the result of the trials of the screw propeller now ia progress, and in the meanWhile the onter basin will afford a very large amount of accommodation to the ordinary class of paddle steamers. In reference to the excavation of the bavin, it is well deserving of notice, that the ground inside of the Queen's
and the other adjecent timber yards, is greatly below the level of the quays, and of high water, and that the material excavated may be not only very beneficially and usefully deposited in these gards, but that the close proximity of anch a place of deposit will be a source of considerable economy in carrying ont this part of the work.

As regards the convenience of the shipping of the port, the portion of the project which, beyond every other, would seem to recommend it to public favour and approval, ia the position of the entrance to the Tidal Basin, in a right line with the direction of the River; a fact so manlfestly important, and calculated to afford facilities both for ingress and egress, so obvious, that it is quite unnecessary to enlarge apon it.

It will be neceasary to continue the main sewer, by which the water is at present discharged from the Gravin Docks, at a sufficient depth under the bed of the Dodder, to the opposite or Ringsend side of it to be carried in a direction parallel with the bank of the river down to the Liffey, east of the Dock entrance, there to diacharge at the level of low water spring-tides, and which sewer can also be made use of for unwatering the low ground, south of the docks.

The last in order of the various points to which, in considering the whole of this question, my attention has been drawn, is one which, especially in an engineering point of view, I regard as not only most important, but highly interesting. It is indicated on Mr. M'Mullen's plan, but not on a acale, in my mind, sufficiently extensive to accomplish the object which I should contemplate. I allude to the Break-water which he proposes should be formed from the point at which, by the new course, the Dodder would be discharged apon the South Ball, across to the graat Sonth Wall, with an opening in the latter for the out-flow of the water retained within this barrier at each ebb of the tide, and through which opening it wonld consequently be discharged into the channel of the river, which forms the sailing courae, and where it would necessarily act as a scour, in regard to that important portion of the entrance to the harbonr. Of the soundness of the principle, and tine beneficial effect which would in this way be produced, tbere can be no doubt; but to render it as effective as the general condition of this portion of the suiling course would appear to require, it must, in my opinion, be carried out on a considerably more extensive scale : the mound to be raised commencing, in any case, ab far eastward as the Pigeon House, and terminsting at or near to the Martello Tower, on the Sandymount atrand. It does not seem necessary that the proposed barrier or mound should be raised to any considerable height, as the effective action of the Scour would occur as the ebb tide approaches to low water. I think that a sufficient mound or harrier could be formed, of such a haight as I contemplate, from the heavy clay and gravel, of which the strand in this part of the bay consists, at a very moderate expense. The bridge to form the opening in the wall for the efflux of the water, of whatever number of archea it may connist, should be at the least, from 200 to 300 feet wide. Of the cost of this part of the work I have not framed nor submitted any estimate. It is plain, however, that, with reference to the importance of carrying out such a project, it would be comparatively speaking hut inconsiderable.

A glance st the present atate of the Bay showa that, as far eastward as the Poolbeg Light, it is divided by the great south wall into two nearly equal portions. The effect of the great north wall, has been to cause the ebb water of the northera division to act upon the bar, andin this respect it abundantly answered the expectations entertained by its projectors. If, in addition to the important and valuable action so obtained from the northern section of the Bay upon the Bar, it shall be practicable, in a similar way, to empound the Tidal Waters of the southern division of it, and, as I confidently contemplate, to produce from their effiux a corresponding beneficial deepening action upon the continuation of the bed of the river, forming the entrance channel to the inner harbour, a resalt will have been obtained of the most decisive character, not alone as regards facilities of access, and the safety of the shipping frequenting the port, but calculated also to diminish, to a very large extent, the cost annually incurred in dredging out of this channel the rast quantity of silt and mud, which under present circumstances is, and muat continue to be deposited in it.

> Setimate of the proposed Course of the River Dodder through Irishfown. Purchase of Land
> Earthwork in excaration. cube jarda, 21,368 ai 9 d . per yard
> Sea-pitching at Irthitown,
> Bea-pitching at Intiontown, ditto So8
> Add 20 per eent. for contiagencien
> Total amount

THE WYATT WELLINGTON.

Sir-On the appearance of Professor Cockerell's Letter in the "Times," I addressed ove to that paper to say that the objections urged by bim against the equestrian statue of the Duke being placed transversely across the arch, instead of in the axis of the archway itself, were brought forward nearly eight years ago in a work where it might be supponed they could hardly have esceped the notice of drehitects, at least not of the architect of the structure, since they were made in the letter-press acconnt givan of it in the second edition of the "Pablic Buildings of London," where
that arch forms one of the new subjects added to the original work, and is illustrated by a ground-plan and elevation. Yet, although the "Times" appeared to take very great intereat in the affair of the statue, having brought it forward more than once in its leader, the Editor did not think proper either to insert or to offer any reason for rejecting my letter; and as it bad then become too late in the month to send to your Joarnal, my comments on the matter conld not possibly appear earlier in it than they do.

The whole affair is a curions one from first to last, and exemplifies more forcibly than favonrably the manner in which matters of the kind are managed in this country-the crooked policy, and that apecias of astutences which is called conning, that are bronght to bear upon them. No deference has been paid to poblic opinion, for concealment has, as far as practicable, been atudiously kept up, as if the public possessed no right of opinion, and therefore the expression of it in ang shape, was no better than unwarrantable interference. Would it then be more becoming in the poblic to observe the neatrality of silence upon such occasions-to manifest an indifforence that would be praiseworthy becanse not at all trovbiesome? If so, those are taking a very wrong course indeed who are advocating and seeking to diffase among the whole community a more familiar acquainiance with art generally, and a more enlightened appreciation of it. On one side, the public are told that they ought to acquire a taste for Art, to take a lively interest in it; and also to watch over its interests; on the other they are told-at least given very significantly to uaderstand, that they have properly no voice in such matters, or their voice no authority, and it may therefore be disregarded as idle clamour.

Those concerned in the management of public works-some people call them jobs-will perhaps say that they do not dispnte onr right of judgment und of freely expressing it; all that they request is that we shoold not express it prematurely, but wait until the work be completed, when it can be judged of fairly. This is very plausible; it seems at first sight, perfeclly reasonable, bot only at first sight, for when looked at more closely, it wili be found to mean that the public ought to be kept as long as possible in the dark as to what is going on, and be bindered from judging rashly and prematurely by being debarred from forming more than random conjectures and vague surmises, until not only the work, bat the mischief that might have been guarded against by a little premature criticism, is completed. The mont ill-timed criticism of all is surely that which comes too late to be of service, because unless it be the bearer of commendation, it brings only reproach and regret,-warning, indeed, for the future, but warning jogt as useless it seems as mere regret itself. We have had our warn-ings-our dearly-bought experiences, and much we profit by them. There is Buckingham Palace, which after costing about a million in the first in-stance-how mach more has been expended upon it since it was occnpied is not so well-known-is spoken of only for nniversal scorn and derision as a positive "disgrace to the nation," -which as far as the nation is concerned is flagrantly unjust, becanse the nation bad no other hand in the matter than paying for that costly piece of architectaral brammagem. It was not the nation that forced that precious bargain upon George IV., but just the reverse : so let the "disgrace" fall where it ought. Not bat that the nation was to blame too, for its negligence and supineness in not inquiring prematurely what was the quality of the commodity-or the incommodiousness as it now turns out to be-which it would have to pay for. Nor is that unhappy edifice the only one, by very many, that bas been pronounced a failore : the National Gallery is another signal instance of mis. management; and the hackneyed idea of a mere column was adopted for the Nelson Monument, in defiance of the atrong wish expressed for something less common-place. When the façade for the British Museum was began about two years ago, no regard was paid to the demand then made, that the model should be produced for public inspection;-on the contrary, such a dogged ailence preserved that a formal refusal would have been almost courtesy in comparison with it.

To what purpose then, it will perhaps be asked, is it to raise clamonrs of the kind when we find that they are altogether unheeded? It certainly is to very litule purpose merely to raise them, if they are dropped afain almoss immediately, as is generally the case, wherefore no dotice is taken of them; those who might else be forced to do so, feeling pretty confident, that after the first firing the press will have exhausted its ammunition or give up the attack in despair. It is not by a forious momentary dischange, but by a constant and well-directed one kept ap determinedly that we can reasonably expect to carry the point on such occasion. Would it not be equal folly and presnmption on the part of any individual writer-of myself, for ia-stance,-to imagine he can effect any thing, unless he be pablicly seconded by others? Bnt people seem to think that if remunstranoes are found to produce no immediate effect, it can be of no use to continue, or to brisg fresh detachments of them into the field. On the contrary, when a harder blow than asual has been given,-one that ought to stagger and confound, instoad of following it up by another still harder, they draw back as if in alarm for the consequences of their own might and valour.

Professor Cockerell appears to be one of the considerate, for he not only considered a very lung while before he could prevail upon himself to step forward and protest against the Wellington statue being placed on the Arch, bnt, lest his interference should derange matters and upset the acheme was so considerate as to keop silence till almost the very last moment, when it was hardly possible that his advice should be followed withont great inconvenience; whereby he himself furnished the committee with a good excuse for not adopting it, conveniently reserving to himself the power of alalng or fancying that it would have been adopted, had it not unjockily
come just too late; still, even the convenience hasits awkwardness, for some people are s inconaiderate that they will be apt to ask why he held back till the very last moment. They may also feel a little astoniahment at the complete silence observed by the other architectural Professors. Are we to understand it to be equivalent to consent-acquiescence in and approval of what has been sovirulently condemued? If so they have been wanting in generonity towards the authors and perpetrators of the scheme. On the other hand, if they agree with Professor Cockerell, they might, without impropricty, have openly sided with him. Or shall we attribute their silence to indifference ?-or if not exactly to indifference to that discretion which prompts steady people to cross over the way, or turn into another street whore they see a fray going furward? Evea if it was no affair of theirs, and they were fcarful that the offering any opinion might be considered busy-body officiousness, it did concern Mr. D. Burton, and as he did not choose to appeal to the public when he was sure that the general opinion would have strongly supported him, it may very fairly be questioned whether he cares at all about what has been done to his build. ing. The inference may not be very charitable, nor particularly fattering to him, but it is certaialy a very natural one.

After all, honever, bis Arch does not suffer more than another huilding does, viz, the house over the way, which now looks more insignificant and undignitied than ever. Strange! that of two Wyatts, oue thought he could not make the Duke look ton big, the other, his house look too little-aud too petite in style.
L.

REGISTER OF NEW PATENTS.

If additional information be required respecting any patent, it may be obtained at the - Eice of thic Journal.

BRICK AND TILE MACHINE.

Alpard Hall, of Coxsackie, in the United States of America, brickmaker, for "certain improvements in machinery or apparatus for making, monding, or manufacturing bricks, tiles, and other articles, from earthy or plastic materials."-Granted October 2, 1845 ; Enrolled April 2, 1846.-Reported in Newton's London Journal.

This invention relates to the coastruction of a machine as shown in the engravings, Plate XVI., for making bricks, tiles, and other articles from clay. Fig. 1 is a side view of part of a pug-mill, and the moulding ap. paratus. Fig. 2 is a plan, and fig. 3 a vertical section through the centre of the moulding apparatus and pug-mill, and fig 4 a front view of the moulding apparatus. A is a pug-mill, set on a brick foundation B and pillar C; in the centre of the mill is a vertical shaft b, supported upon a step at the lower part, and at the upper part by a framing, to whlch is attached a beam for the application of horse-power. On the shafts are fixed a number of horizontal cutters, c, set radially, and at the lower end are 4 plates, d, set horizontally in two lines at right angles to each other, and slightly inclined from the perpendicular, they extend nearly to the sides of the mill, and are for the purpose of sweeping the clay, as the thaft rotates, into the chamber of the moulding epparatus.

The moulding apparatus consists of a charaber, D, with iron plate sides, f, and a cast-iron grating, g, for the bottom (shown separately in fig. 5), consisting of a square frame with cross bars forming as many compartments as there are bricks or tiles to be produced at one working in the mould or box, z, nuder the grating. Above the chamber is a shaft, h, with bearings at each end in the side plates, f, which carries quadrants provided with regmental racks, i, and the cover or pressing plate, k, extending the whole width of the chamber D , for the purpose of forcing the clay into the chamber through the grating g into the mould z below. l is another ahaft with bearings in the side plates f, carrying 2 pinions, m, that take into the segmental racks i, and having a hand-wheel, n, keyed on to the end of the shaft, for giving motion to the quadrant racks. p is a scraper, the whole width of the chanber, fixed on a shaft with bearings at each end in the side plates f; this scraper is for cleaning off the clay from the segmental portion of the pressing plate i.

Below the chamber is the frame work, B, with an adjustable framing, F, suspended thereto by 4 pins, which carry the bearing of a horizontal shaft, q^{\prime}; shaft supports arms at each end, attached to the framing F, and also at each ead a lever, q; there is also a cross-bar, r, to carry the inner end of the framing, P, which is attached to and forms the cast iron tables or grating, a, which support the moolds, z. y^{\prime} are rollers for cerrying the monld immediately beneath the grating of the chamber. The lower parts of the framing, P, are bearings for a horizontal shaft, which carries a vibrating lever, f, with another lever, u, jointed thereto, having forked branches on the end in the form of $a V$, which carry a pair of guide-wheels with flanges, ∞, running in a slot made in the upper face of the framing F, and to the ends of the V lever, a cross bar, x, is bolted, y is a lever fixed on the end of the cross-shaft for actuating the leser t and the parts connected therewith. ant z are moulds which are supplied to the machine by hand as they are required.

The action of the improved machine is produced as follow: - Rotary motion being given to the vertical shaft b, of the pug-mill, the plates d will
force the clay through the opening e, into the chamber D; and, supposing a mould to be placed upon the rollern 9 , in the position shewn at fig. 3 , the hand-wheel n is turned, which giving rotary motion to the pinions m, in gear with the segment-racks, will bring down the preasing plate k, and force the clay into the compartments of the mould. The workman then palls down the lever y (at the same time letting go the hand-wheel), which action will cause the lever t to vibrate and draw forward the lever u, and with it the cross-har x. This bar, gaided in its course by the wheels 20 , will push forward a mould previously placed in front of it, as $I^{1}, \mathrm{fg} .3$, and drive that mould to the position of mould z, now full of clay, from under the grating g. in escaping from which the superfluous clay will be removed by the inner edge of the inclined side of the grating. The full mould will then arrive at the position, on the framing, of the mould x^{2}, from whence it is ready to be carried to the drying ground. By throwing upward the lever y, the bar x will retire to its former station, and another empty mould being placed before it, the same movement will he repeated after the monld last pushed under the grating g is filled with clay, as before described. If, by accident, any stone or other hard substance should get into the clay and stop the proper action of the moulding-machine, it is only necessary to depress the lever 7 , on the shaft 4, which will bring down the framing a sufficient distance for the mould to be released.

The claim is, firstly, for the general arrangement of the apparatua, as described; secondly, the peculiar arrangement and construction of the knives and plates for tempering the plastic composition, and forcing it out from the pug-mill ; thirdly, the construction and application of an adjustable framing for holding the moulds to receive the plastic composition, such framing being capable of instant depression, as above explained; fourthly, the arrangement of apparatus for placing the moulds successively under the grating g, as above described and shewn in the drawings; and lastly, the peculiar arrangement of the grating g, with respect to the compartments of the moulds, whereby perfect bricks, tiles, and other similar articles are produced, as above explained.

DIBBLING APPARATUS.

John Fullea, of Beacham Well, Norfolk, Farmer, for "improvementa in apparatus for sowing corn and other seeds."-Granted March 5, 1846; Earolled September 5, 1846.

This apparatus, formed of sheet tin, is beld in the hand, and used for dropping corn or other seed when dibbling, in place of the fingers. There are three different apparatus described in the speciffication; the annexed figures shew the application of one of them. Figs. 1 and 2 are sections of the apparatus taken transversely to ench other; a is a chamber in which the seed is placed, b a roller with small recesses c in the circumference, of sufflcient capacity to deliver the proper quantity of seed through the hopper or spout d; e is the handle, f a slide to be pressed down by the thumb on the top, the lower end acts apon pins g on the margin of the roller b and forees it round one division; after each pressure the slide io drawn apwards by a self

20ting spring $h . i$, i, are friction plates, actiag againat the ends of the cy linder to provent it turning anless it be forced forward by the alide f, and k is as amall brush.

PAPER STANING.

Hambold Pottis, of Darwen, Lemcahire. Paper Manufacturer, for "imb provemonte th printing or ataining paper."-Grunted April 1, 1846 ; Enrolled September, 1846.

Mg. 1.
Fig. 2.

The improvement relates to the supplying of colour to the surface roller a, for printing or staining paper, as shewn in the annexed engraving, fig. 1, by an endiess blanket or sieve cloth b, stretched over 4 rollera c, and to move at the same surface speed as the roller a, in the direction shewn by the arrow. The variona colonrs are put on the endles cloth b, by a hand-block d, fig. 2, having several rowi of atuds e, which dip into a colour-tray, containing as many compartments as there are to be different colours. For staining the paper the atuds are dipped into the colours, and then placed on to the endless cloth as shewn at d, and the coloar so placed will be spread by the cross-bur g, covered with woollen cloth, and pressed alightly againat the endless sieve; any excess of colour will be acraped off by the bar h.

MANUPACTURE OF TILES.

William Benson, of Allerwash House, Haydon Bridge, Northumberland, Gent., for "certain improvements in machines for the manufacture of tiles and other plastic substances." Granted January 15, 1846; Enrolled July 15, 1846.-Reported in Nevton's London Journal.

The object of this invention is to manofacture tiles, pipes, and other arti clea, by forcing the clay or other suitable material through dies, secored to the side of a mill, similar to an ordinary pug-mill. In Plate XVI., fg. 1 , is an elevation of the machine, furnished with dies for making both drain and ridge-tiles at the amme operation, fig. 2 a horizontal section, and fig. 3 a vertical section. a is the cylinder of the mill, made of cast or wrought iron, and fastened to a cast-iron bed-plate b, by eight screw-bolts c; this bed-plate reate upon two pieces of timber d, d, about six inches square, and secured to the foundation stones by four iron screw-bolts $f ; g$ is the vertical shaft of the mill, with a beril-wheel h, keyed on its upper end, and taking into the teeth of the bevil-pinion i, on the shaft j, which is driven by steam, horse, or other power. The lower end of the shaft g works in a brass step k, placed in a square box, and capable of adjastment by means of screwa. The upper end of the shaft g workg in brass hushes, fitted in the iron carriage n. Near the lower end of the shaft g there io a flange, to which is bolted a cone, a, formed of wood or iron. p, q, are 23 arms or, knives, fixed round the ahaft g, arranged in sir planes, bat there may be a greater or less namber of knives and planes; for instance, a machine which is to be worked by one borse should be of amaller dimensions, and would require a less number of knives and planes, but in no case ought there to be less than three or four knives on the two lower planes, and two on each of the upper planes, and there should not be leas than three or four plaves of knives. In the lower plane 6 curved knives q, are inserted in the shaft g, in the second plane 6 straight knives p, fixed immediately above the curved ones, the third, fourth, and fifth planes 3 blades, and in the sixth plane 2 blades, all set at an angle of 45°. It is necessary that the bottom of the spindle should be conical, to facilitate the passing of the clay to the bottom of the mill, and as mach as possible to the outaide of the lower set of knives q, which, from their peculiar shape and position, prese it through the dies r, r. The dotted circles, ontaide the curved knives, thew the position occupied by the clay when the spindle is in motion, and as the clay descends in the mili, it in pushed towards the dien by these arms, with the annistance of the cone.
 of the cylinder a, thd in the bed.piate b (see fig. 4); the shape of the opeaninge will necestarily vary with the form of the tiles or pipes required to be made; the dies represented in section at F, are for making drin-tiles; and the die at r for ridge-tiles. t, t, are the tables for receiving the tilet or pipes as they come out of the dies, and are farnished with rollers w, w, which cery endless bands or webs of fiannel or other multable ferible matertal. In tig2 the tahles t, t, are shewn in plan view; Nos. 1 and 3 are covered with the flexihle webs, No. 2 is uncovered but with the rollers inserted, and No. 4 shews the top of the frame, without the rollers or web. $w, ~ w$, are the tiles, which traverse the endlems webs by the motion they receive in coming oat from the cylinder a; and as soon as a sufficient length of tile has passed on to the endless web, it is cut off by the instrument x, commonly called the " horse."

In working this machine, tiles or pipes can be made on the four sidea of it at the asme time, or at one, two, or three sides therof, or more, if required; and different sorts of tiles or pipes can be made at the same time.

IRON MANUPACTURE.

James Palmer Budd, of Yslalyfera Iron Works, Swansea, Merchant, for "improvements in the manufactare of iron."-Granted February 11, 1846; Enrolled Angust 11, 1846.

In burning coal, clinken are produced and considered as refuse; these clinkers, it is proposed to apply in the manufacture of iron; they may be obtanied where large qnantities of coal are burned in furnaces, or from amith's fires and waste heaps of small coal, and also from refuse ash hesps of many works which have fired and barned down, lesving a subatration of clinkers near the bottoms of the hespe.

As clinkers are of a light porons nature, of small specific gravity, and contain a large proportion of earthy matter, they will be found peculiarly suithble for use in blast furnaces, with rich oxides of iron, cinders obtained in the manufacture of malleable iron, hemateter iron ores. The clinkers when mired with the rich oxides of iron in the blant furnace will lessen the density of the mass and allow a freer passage for the blast, and aupply the proportion of earthy matters required for the perfect separation of the iron.
In charging the blast furnace the clinkers are generally to be combined with rich iron atone, iron cinder, or ore in proportion to the quality of the clinkers; if rich in iron ore smaller quantity is required than when they are comparatively poor; the proportion of iron in the blast mnat be below 50 per cent-from 40 to 45 per cent is the msual proportion. If the clinkent contain less than 45 per cent. of iron, then a richer material, such as cioders of malleable iron or rich iron ore is to be used therewith. When the farmace is charged the usual fuel and fluxes are to be nsed with the ore and clinkern.

ETVIENOS.

Elementary Teat Book for Young Surveyors and Levellers. By Hexzy James Castle. Simpkin and Co. 1846.

This little work is an abridgement of alarger volume published by the same anthor, and intended principaly for the use of Studeuts at King's College, for which Mr. Castle is the Surveying Profesmor. The book commences in the usual way with a few useful geometrical problems and theoreme, come examplea of mensuration, the description and ate of various surveying instraments, specimens of field hook and general instrnctions for land surveying and levelling.

The description of drawing instruments partakes too much of the old school; no surveyor now wonld ever dream of asing the parallel protractor or scalea engraved therton, on the plea of the circular one being "too expensive." Those who desire to learn the practice of surveying, must not begrudge good instruments, for upon them of course grestly depend the scerracy of the work. The casd-board protractor of Troughtion and Sims, uned by the Ordnamce axveyors, is an excellent one for theodolite service; the ceatre being cat out, all the meridians or bearings are laid down with the parallel rules, without moving the protractor. This for traverring is invelaable, and particularly if all the work be contained within the circle cat out, which being 12° diameter admit of a tolerably sized plan.

The croas-ntafi is alwo deacribed, bat this, as well at the parallel protrector, fs now entircty eschewred by practical surveyort, the "optien square" being an excellent subatitnte; it is made apon tbe reflective principle of the pociet sextent, bat being required merely for right angles is much smaller and leas expensive.

The offrnet staff the author says is a "narrow alip of deal avont $1 \frac{1}{5} \times 1$, and generally 10 linke long, divided into links; and aheald bo furo nished at one end with a mall notch or book to put the chinin therongh
hedget and be mimmbrred on both sides from cifirent ends." This mamberints on both sides is mnocessary, if the stafl be divided into 10 parts, the centre having a doable line : a little practice will make it perfectly familiar withont the figuren. The link-staff in best made of round anh, divided as above with a red hot wires insteed of painting or cutting; it should be shod with iran, and have a small hook and spike attached to the top; the diameter at bottom ahould be about one inch and taper to $\frac{1}{8}$ at the top, and the hook and ahoe should be included in the measurement, namely, within a faction of 6 feat 8 inches for the whole length.

The feld book is likewise deacribed in the ald fashioned manner, having figures merely to the off-seta, without sketchen. It is inveriably the boat way to sketch in the wort on each side of the line as nearly as possible to resemble the objects to be dolineated, and although it may take a little more time in the field, the labour is well spent by its assisting the memory in ploting. His syatem of "raming" the lises by their length, viz., " 685 on 731" is confaning; it should be according to the page npon which the number is found, viz., "685, folio 47," and a circle should be made round the fgures which are intended for stations. It is likewise very serviceable to the memory to sarround thove atations that ran from, or soross, the base line with a triangle, instoad of a circle, which will be found to act as a aseful index.

A chapter apon the reduction of customary to statute measure, and rice cersa, will be found useful,-
"Reduction of Customary to Statute Measure, and vice versi.- The statute length of the percb is 16 and a half feet, but it in different in various conntrica of England.

In Devonshire and Somerietshire, the customary perch, that is, the local measure of the perch, is less, being but 15 feet.

In Cornwall, it is more, 18 feet ; while in Lancashire, it increases to 21 ; and in Staffordshire and Cheshire it is as much an 24 feet.

This in a dineal difference. There is, aloo, in some counties of England, a superficial difference in the measure of an acre; an acre, in Wiltehire, conLainims only 120 square atatote perches, instead of 160.

The Wiltshire customary acre in, therefore, one quarter less than the statute acre, and the rood one quarter leas than the atatute rood.

As property is frequently bought and sold by the customary measure of the county wherein it lies, the surveyor is often called upon to reduce it from one to the other.

Different Values of the Acre--The namber of (atatute) square yards in an acre, will, of course, vary with the length of the customary perch of the county,-(An acre consisting of ten square chains or of 160 square perches.)

In the statute acre, a square perch is 272.25 square feet, and the acre, therefore, is equal to

$$
\begin{aligned}
272.25 \times 160 & =43560 \text { square feet, } \\
& =4880 \text { square jards: }
\end{aligned}
$$

In the acre of Devonsbire or Somersetshire, as the equare perch contains 15×15 square feet, or 225 square feet.
the number of square feet $=225 \times 160=36000$
and of yards $=4000$
In Cornwall, where the perch is 18 feet,
$18 \times 18=324 \times 160$ feet $=51810$ square feet. or 5760 square yards.
Tbe Lancashire perch is 21 feet long; the square perch, therefore, must contai: 21×2) $=441$ square feet, which will make the acre to contain $\mathbf{7 0 , 5 6 0}$ square feat, or 7840 square rards.

The customary acre in Cheshire and Staffordshire is the largest of the whole, each perch being 24 feet; the acre will consist of $24 \times 24 \times 160$ square feet, which is equal to 92160 square feet, or 10240 square yards; while the Wiltshire acre consists only of $\frac{3}{4}$ the statute acre, or 3630 square yards.

To reduce Statnte Measure to Customary, or one Cuntomary to another.
Rule 1.-Bring the acres, rooda, \&c., in every cave, to equave porches; multiply these by the number of square feet in the given perch to bring them into square feet (a foot being the common unit of measurement of both atatute and customary measnre), and divide by the number of square feet in the required perch; this will bring it into perches; raise thene perches to roods and acres and the result is the area in acres, roods, and perches of the customary measure required.

Example 1.- Reduce 25 acres; 2 roods, 16 perches, statute measure, to the customary measare (Derbyshire) of 15 feet to a perch.

25A. 2R. 16P. $=4096$ statute perches,
but the square feet in a statute perch $=272.25$;
-. $4096 \times 272 \cdot 25=1115136$ square feet.
Wheace 11151301115136 cust. perches.

$$
15 \times 15=\frac{225}{}=4956=30 \mathrm{~A} .3 \mathrm{z}, 36 \mathrm{P} .
$$

Ans. 30A. 3R. 36 ${ }^{\text {P }}$. Derbybire measure.
To bring enntomary into statute measure, reverse the preeeding rule.
Example 1.-How many statute acres are there in 28 acres, 8 roods, and 15 perches, of Devonshire meware?

28n. 3R. 15p. $=2884375$ Devonshire acres if the Devonshire acre $=1$; the statate acre $=828447$ atatute acores, whence $28 \cdot 84375 \times 182447=23 \cdot 8378=23 \wedge .85 .14 \mathrm{P}$.

3an. 23A. 3m. 14p.

Scoteh Monemre.-The mere in Scotland consists as in England of 10 aquare chaing, (each chain divided into 100 links,) and is reckoned in acres, roods, and falls, which are equivalent to the English perches; 40 falls making one rood, and 4 roods one mere. The fcotch chain, however, is 8 feet longer than the Bnglish, being 74 feet inctead of 68.

The acre being 10 square chains $=10 \times 74^{4}-54760$ equare feet.
And as 10 square chains $=160$ square perches,
54760 feet
160 =one square perch;
Therefore one square perch or -342-25 square feet.
To bring English Statute Measwre into Scotch.
Rule 1.-Reduce the given area into Boglish perches, and then into square feet by multiplying by $272 \cdot 25$, the number of square feet in an English statute perch; divide this product by the number of aquare feet (342-25) tbere are in a Scotch fall, and you obtein the area in terms of Seotch falis, which briag back to their proper quantitios in roods and acrea.*

* To bring Seotoh measure Into Eaglish, reverse the procediag rule.

Example 1.-Rednce 32A. 3n. 25 p. English statute meacure, into Scoteh measure.

32A. 3g. 25p. $=5265$ square perches.
$272.25 \times 5265=1433396$ square feet in the given area,
And dividing by $\mathbf{3 4 2} \cdot \mathbf{2 5}=4188$ square falls $=26$. 0 R. 28 F .
Ans. 26A. 0R. 28p."
The Triononiry is next described with some examples of its use; then follows the Cizcumprenentoz, another old fashioned instrument, which, by most London surveyorn, is superseded by the theodollte.

Examples are shown for laying down "the varistion of the needle," but unless it can be precisely ascertained at the date of the survey, it is much better to omit it and show the magnetic bearing only-for inasmuch as the variation of the needle is different in different countries, it is safer to put the needle-bearing only, which answers all practical purposer. Many other hints and examplea follow which may be more or less useful to the beginner.

The treatise on levelling is of the usual description, but does not give sufficient examples, omitting for instance, all mention of cross sections, that mostly puzzle the beginner. The author deacribes the ataff-holder as "having considerable responsibility reposed in him." We advise therefore that thit duty be simplified as much as possible, and in order to facilitate the most important part of it, that of keeping the staff upright, there should be attached two amall spirit levels placed at right angles on the staff, one being at the beck and the other on one side, about four feet high from the groond. Some levellers attach a circular bubble at the back, which answers the aame purpose, also a handle for holding the staff without concealing the figures. The staff-holder should also carry amall iron tripod to place under the staff whenever used-this should not be attached to the staff, for it is requisite sometimes to leave it, whilst observations are being made with the same staff, at other plac s. It is alwaya adriseable to level with two staves; when one only is used there is mueh liability to error, for should the instrument be ont of adjustment or bo turned it round, thers it no means of again taking the back set. The babble must always stand in the middle whenever tbe level is turned ronnd or the work will not be correct. We mention this on the knowledge that many levellers neglect it, considering it of no importance so that the bubble is in the centre when the observation is made.

Origin and Reclamation of Peat Bag, with obsernations on the Construc. tion of Roads, Railways, and Conals in Bag. By Bernard Muluns, C.E., Vice-President of the Institute of Ciril Engineers of Ireland, and M. B. Mullins, A.M. C.E. Dublin: Oldoam, 1846 ; 8vo., pp. 48 ; five lithographic platos.

This treatise contains the subject of a paper read before the Institute of Civil Engineers of Ireland, aud the result of long professional experience, makes ite appearance opportunely at the present time, when the axacution of public works in Ireland attract peculiar interest.

Many fallacies are exposed in the present work. It seems to be shown pretty clearly that boge are the cause, not the effect, of the destruction of ancient foresta; that, in fact, the accumulated vegetable matter which covers one-seveath of the area of Ireland (nearly three millions of acres) does not arise from the decay of irees, but from the bog moss, which only flourishes in comparalively cold climates, and entirely different from the vegetation of the morasses of warmer countries.

The abourdity of the recommendation in various Parliamentary Deports not to drain too deep is saccesefully shown, and the ralue of draining by deep drains for porposes of agricultare and also for the construction of solid fonndation of roads and railways is considered at length. Mears.

Mullins show that Smeaton and his successors have entertained erroneous views respecting works constracted in bog lands, and suggests nethods which are recommended by experience and common sense. In addition to the valuable information which it contains, the work has the advantage of being written in a concise and perspicuous style.

Elements of Physics. By C. F. Peschel; translated from the German by E. Weat. Part II. Imponderable Bodies. London: Longman, 1846. 18mo. Vols. 2 and 3. Woodcuts.

The poblication of the second part of this work has been hastened by the rapid sale of the first. This circumstance is gratifying indication that the pablic taste for sound knowledge of physical science is on the increase. The volumes before us are slmilar in plan to that already reviowed (ante Nov. 1845), and treat of light, heat, magnetism, electricity, electro-magnetism, and magneto-electricits. Of all elenentary treatises on the philosophy of what are termed "imponderable bodies" which we have eramined, the present gives by far the clearest and most accurate account of the state of scientific knowledge up to the present time. The anthor, from national prejadices, occasionally assigns too large a share of the merit of important discoveries to the experimentalists of Germany; but even this defect has its compensating advantage, for it enables the English reader to regard science from a new point of vlew, and familiar. ises him with worthy names with which he has hitherto been little acquainted.

The tables of the tension of steam do not seem happily chosen. Sonthern's formula is accurate for a low pressure only, and Tredgold's is not trastworthy, except for pressures ranging between 1 and 4 atmospheren. The experiments of the French Academy apply only to very high pressures. The translator would, we think, have been justified in giving the far more complete tables in De Pambour's treatise on locomotive engines. The theory of the power of ateam engines, developed in the same treatise, might have been substituted for the totally erroneous theory given in $\$ 421$ of the work before us , in which the evaporative power of the boiler is not taken as a numerical ingredient of calculation.

The number of errors is, however, exceedingly small in reference to the extent and variety of the subjects embraced. The author has, in many cases, given practical hlats for the construction of apparatus aud performance of experiments, deduced from his own experience: the collection of the matter contained in this treatise must have cost him much labour and research, and his efforts have been well seconded by the translator, who has produced a very perspicuous version of the original texts.

A Reply to some Obsersations is a Reriew of the Pamphlet entitled Me* t ropolitan Bridges and Westminster Improvements, in the Civil Engineer and Architect's Journal, September, 1846. Addressed to the Editor of that Journul.

Sir Howard Douglas has written a reply to that part of our review of his pamphlet entitled " Metropolitan Bridges, \&c.," in which the accuracy of some of his views respecting the stability of Hungerford Bridge is questioned. The following extracts from the "Reply" will, we trust, fairly represent the arguments brought against us: we had prepared some remarks in answer to these argoments, but are compelled to defer them till next month. The reasons for differing from Sir Howard Douglas were expressed with caution, and remain unchanged; but we have to express onr acknowledgments of the very corteous spirit in which he has addreased to us the present viudications of his opinions:-
The reviewer's first ohjection is, that it is not confirmed by very conclusive reasoning, that the streagth of the suspension chains ought to be greater than three times the strain to wbich they may be exposed. This can only be derived from experience. In rigid or inflexible works, this strength may be sufficient; but in cuspension bridges, anbject to considerable motion, and an increased strain, arising from vibration, undulation, and momentum, it is quite clear that additional strength ought to be given to those parts which support the strains ; and Mr. Davies Gilbert's rule, that the etrain ought not to be greater than one-sirth of the woight which the chains are capable of sustaining, appears to be well founded...
The reviewer's next objection is, that the curve is not, as assumed, a common (simple) catenary. This observation is correct, but no error arises from considering the carve as such. In fact, it has been demonstrated by mathematicians that, when the abscissa or height of the curve bears no greater proportion to its length than that which exists in any suspension bridge which has yet beeu constructed, the horizontal tensions, or strains, whether the curre be a simple or a londed catenary (a sleader chain, or
one from which, for example, a heavy bridge is suspended) will vary directly as the ordinate or span, and the length of the carve, and inversely as the abscissa or height ; it may here be added that, when the height is small, compared with the span, the curve coincles very nearly with the common parabola (and such curve Galileo supposed it to be). In the pamphlet reviewed, the curve was assumed to be the simple cateaary, meraly because precise values could on that supposition be given to the tensions. But whether a catenary be simple, or whether it be considered as such a curve, modified by the weight of a road-way and suspension rods, the values of the horizontal tensions (corresponding to a or a^{\prime}) vary directly with the length of the chain above a given point, and with the apan, or ordinate; therefore the heights, or abscissae, being equal, the term corresponding to a is less than that which corresponds to a, in a higher ratio than y^{\prime} is less than y, which was all that it was intended to express.

The reviewer's third observation is, that, in finding the strains on the curves at the two extremities, "a formula has been applied to a case with which it has no connection :" it is added that "the value of a ' is taken from the tension in a chain at its lowest point, when the lowest point is horizontal ;" and it is observed that " the shorter chain, where it is attached to the abutment, is inclined to the horizon at a considerable angle," implying that there is a differeace between the horizontal strajos in different parti of the length of a chain auspended between two points. In this the reviewer has, however, overlooked the first principles of mechanics, respecting the properties of the catenarian curve; and it may be added, the equilibrinm of an ordinary arch, since it is demonstrated by mathenaticians that, both in the catenary and the equilibrated arch, the tension, estimated horizontally, at every point in the curve is the same. Hence, if a chain suspended from two fired points in a horizontal line be in equilibrio, and if, while the chain remains fized at one of the points, any portion be remored, the lower extremity of the portion which remains being attached to a fired point, that portion will still be in equilibrio. The abutment chains of a snspension bridge, instead of deacending at a considerable angle with the horizon to a point of the abutment much below the platform, as in Hongerford Bridge, should be fixed at points so situated that each of those chains may assume a figure precisoly equal and similar to half the chain betwoen the piers. In Hungerford Bridge, " the chain attached to each of the abutments being shorter than half the chain between the piers," and "descending to the ground at a considerable angle," is precisely the cause that the hotizontal tensions of these chains are less than those of the chains between the piers, and that a power (represented by ($a-a^{\prime}$) is constantly acting at the head of each, to draw it towarde the middle of the river.

The Reviewer appears to doubt this, observing that "if the saddle were acted upon by an accelerating (qy. moving) force as a-a', it would be set iu motion;" and he probably intends to imply that the motion of the saddle would prevent the pier from being disturbed. He asserts, moreover, that " the pressure of the rollers apon the top of the pier is normal to the sarfaces in contact, and is therefore sholly vertical." Now, with respect to this assertion, the use of the rollers is to permit the saddles, to which the chajas are attached, to shift their places, or slide, on the piers with the vibrations of the bridge; and in so far, certainly, they diminish the shaking of the piers ; but, though the shaking is diminished, it is not removed; it exists to a great degree on acconnt of the enormous friction, arising from the woight of the bridge, which takes place both on the suddles and piers, and when, in conseqnence of great straina arising from sudden accessions of weight on the bridge, the saddles are drawn to the limits of their motion on the tops of the piers, they cease to relieve the latter from the effects of such strains. This is a defect which exisis in all suspension bridges; and even the iogenious expedient of the shiftiog saddles is incapable of remore ing it. The evil is, moreover, rather augmented in Hungerford Bridge, in cousequence of the strains introduced by the convex figure which has been giren to the platform, the height of the convexity heing about four feet in the middle of the bridge.

With the suspension bridge, if A B and A C,-or to speak more mathematically, if the tangents to the curves, formed by the chains at the heads of the piers, do not make equal angles with the vertical line $A V$, even if the tensions of A B, A C, were equal (which is not the case in Hungerford

Bridge), the resultant of the strains at A would be in the direction of a line A D, drawn from the point at which the tangents meet, to bisect the angle B A C, and would therefore not be vertical; thas there is an exceas of force acting horizontally towards the middle of the bridge, at the ead of a lever whose length is equal to the height of the pier, by which the pier is continually strained, and the uniformity of pressure, on the foundations of the piers, destroyed, A very considerable error of this description exists in the Hungerford Bridge, " by the shorter chains descendiag
at considerable angles to abutmente greatly beneath the level of the floor of the bridge ;" moreover, the defect, not having, so far as the author is awaro, been previonsly noticed, he deemed it right to call the attention of practical engineers to this important circumstance, in the note, page 7, Sce., of the pamplet; and now finding that a writer in so reapectable and inAluential a periodical as the Civil Engimeer and Arckitect's Jomrnal, asserts " that the conclasions at which the author has arrived upon this sobject, are merely imaginary," assuming that notwithstanding the inequality of the angles formed by the chains with the piers, "the pressure on the piers is acholly rerticul, because it is sormal to the surfaces in contact," the author addresses to the editor a proof of the fallacy of the assumption, and trusts that, in justice to the author, as well as in consideration of the practical importance of the subject, he will not permit his Journal to sanction the repetition of so serious an error.

NOTES ON FOREIGN WORKS.

Triumplal Arch af Munich.-Besides the new portal which is to be erected at the end of the Brienner Strasse, Ludwig-street also will be adorned by a new eatrance hall, which is already up to the architrave. It is to be called the Sieges Pforte (Arch of Victory), and bas been planned after the triumphal arch of Constantine, at Rome. Its details are worked out to an astonishing nicety and beauty by the architect de Gartner. The material used is a marble of a greenish grey colour, and its fine grain admits of a very caroful elaboration. On the attic of this splendid monument there will be placed a statue of "Bavaria," mounted on a pedestal, with victories at the four corners. The models for this statuary have been made by the sculptor de Wagner, at Rome, well known by his large frieze in the Walhalla, and are to be cast in the Goverament brass foundry of Munich.

Latest Architectural Publications of Munich.-One of the most active and deserving authors in the Bavarian capital is G. G. Kallenbach. His work, entitled "Chronology of German Medizeval Architecture," in 43 oblong folio plates, comprises specimens from the beginning of the Romanic style, about the year 1000, to the last fading of the Germanic. It is accompanied by a short text, which, to the great advantage of the student, is placed beneath the engravings. This work is only the nearer explanation of an architectural collection of M. Kallenbach, unique in its kind, brought together by the dint of most zealous exertions, during a number of years, comprising about seventy models of mediaral baildings, eccleastic and private, made on the spot, after an accurate survey of the originals, and finished in their most minute details. They are made to one scale, which much enhances their value. Auother publication by the same artist, entitled "Album of Medisval Art," contains copies of the remains of medieval sculpture in its relation to architecture and all its subordinate branches; most faithfully copied after the originals-and which is intended to dissuade the artisan from a mere repetition of machine-made models, and induce him to the study of real art originals.- 1'rofessor \mathbf{E}. Metager is the anthor of a work of great importance for the technical parts of buildings, entitied "Doctrine of Architectural Construction." It will contain 200 plates of geonetrical plans, with a concise, yet comprehensive text, printed beneath the plates (a plan worthy of general imitation). The first part will treat of the different methods of construction in stone, iron, and wood; the second, of their practical adaptation to the different styles and forms of buildings, as derised from the study of architectural struc-tures.-The Government architects of Munich continue to publish the works, with the execution of which they are intronted. Anongst them is M. de Gärtner's work on the Royal Library and Record Office in Ludwig Street, containing, on the 20 plates hitherto published (some splendidly coloured), the different elevations, ground plans, and longitudinal and transverse sections of this spleadid and extensive structure; and also the detail of the ornaments, and a view of the fine staircase supported by columns, which unites the fronts of the two buildings.-The first part of M. Lange's (the royal building counsellor of Greece) "Works of high Architecture" (howerer Buukunat), contains the plans for a royal residence, which was exhibited at the last Munich Art Exhibition. The same work will contain M. Lange's plans for the completion of the Munich FramenLirche, which has to lose its characteristic, though unhandsome, octagonal cupola, instead of which a Gothic spire is to be raised. - Bailding-inspector Anger has published a work on the remarkable private buildings of the Bavarian capital, and such as serve for public and benevolent parposes.To crown this, even the pupils of the architectural section of the Munich Academy of Fine Arts, publish the plans, made by them according to the programme of the Academy.

Academy of Sciences, Paris.-M. Person made some experiments for determining the necessary beat for fusing alloys of metals, and thioks that it is possible to determine that point, from the knowledge of the temperature which each of the component metals requires for the same process. The solution of this problem confirms perfectuy the results which M. Person had drawn from his experiments on fusion-viz., the law that the lateut heat of the fusion is given by the formule $(160+f) d=l .-\mathrm{M}$. Walchner announced to the Academy a most curious fact, that copper and arsenic were to be met with in all substances and badies - in every sort of iron, in mineral waters, and even in meteoric stones. M. Flandin said he bad analyzed the mineral waters of Passy, but had not found oveo a trace of copper or arsenic, either in following the procedure of M. Walchner or that of Marsh. More inportant is what M. Walchner nays on the copper and arsenic contents of the soil of burial grounds. It has been
a hitherto anresolved question whether the contents of these substances in the bodies of poisoned persons were entirely ascribable to that cause, or to the matural contents of the soil surrounding them. He had found both sabstances in the soll of cemeteries, but in very miaute proportions, and be has collected a nomber of specimens of these soils.-M. Pierre sobmitted to the Society his experiments on the dilitation of fluids. The anthor divides liquids into two categories, and these again into nine gronps. The first division comprises the bodies composed of chluride of bromine and one simple element-phosphorus, arsenic, tin, titanium, and silicium. The second category comprises the compositions of chlorine, iodine, or bromine, with any compound element, ethyle or methyle. The law which results from these experiments is this-two fluids formed by the combination of any common with any isometric element, follow (from the point of their respective temperatares of ebullition) very different degrees of contraction; or, in other terms, equal volames of liquids thus constitated, considered at their respective temperatures of ebullition, will not preserve that equality at degrees equidistant from their temperature of ebullition. The difference, in most cases, is considerable.-M. Blanquard Evrard has forwarded to the Society two samples of photography on paper, obtained by an especial process. The samples surpass everything hitherto seen, even those of M. Bayard.

Prague and Dresden Railway.-This huge undertaking occupies alone, in the neighbourhood of the former city, 3,000 workmen, and the greateat difficulties to be overcome are from the Prague terminus to Kralup, a distance of about 16 miles. The viaduct from the terminus north to Karolinenthal and Bubna will be 580 cubits long, with 35 arches,-certainly one of the largest works hitherto accomplished in Austria. There are three minor water-courses of the Moldau river, a branch between two islands, and the main branch, which muat be bridged over. A number of bridges are required to pass the numerous water-conrses and islands. The bridge over the main arm will be 535 feet long, and consist of 5 arcbes. The arches of the main bridgea will have a span of 78 feet in the clear, and form a aegment, the height equal to one-sixth of the apan, and are to be built of granite. The quantity of granite and sandstone to be conveyed by land and water is astonishing, some of the blocks weighing between six and seven tons. The expenses of this part of the line alone are calculated at 11 million of foring. There will be a small terminus in the Baumgarten (a place of public resort two miles from Prague), winich will afford the humbler classes the sdvantages of country air at a merely nominal price.

Berlin Bresslau Railway.-This most important undertaking has lately been completed, aud is open for traffic. The distance of $4 \boldsymbol{T}_{\frac{7}{18}}$ German miles (nearly 200 English) is performed in 18 hours, including stoppage for dinner, and thas a journey, Which even Frederick the Great could never perform in less than $\mathbf{3 6}$ hours, is made in a few hours at a trifling expense. The chief works of the line are some very long and contly embankments-for instance, that at Prankfort-on-the-Oder, 100 feet high. The great viaduct of Gorlitz, over the Neisse, does not lay on the main, but a branch, line, connecting the lower Silesian and the Saxon.Silesian. Its length is 1500^{\prime}, the beight of the arches 122^{\prime} above the level of the river, and the foundations of the arches are 40^{\prime} lower, making a total of 162'. It has coat between 600,000 and 700,000 dollars, and Europe does not yet possess a work of equal magnitude. The viaduct over the Bober at Bresslau is an equally imposing structure. It is 1650^{\prime} long, and has 35 arches of a height of 76^{\prime} built of blocks of white grit. This is the longest line in the North of Germsny, under the same administration. It is the more important, as being laid out afar from the bitherto commercial road, or the valley of the Oder; it passes a tract of land hitherto little connected with industry and commerce. The renting of this huge line is a matter hitberto unascertainable, which costs $18,000,000$ dollars- 400,000 dollars per German mile. A great drapback is that this line has only one line of rails, by which much delay and trouble are occasioned.

Prague, Anstria. Sculptures.-Excanations of the Archeological Committee of the Bohemian AIuseum.-M. Veith, a iarge propritor in Bohemia, has resolved on the curious, though praiseworthy, plan, of erecting a national Walballa at his own expense. Professor Schwanthaler is the artist entrusted with the execution of the statues, of which twelve are ready in small models, and six in a size above life. Ready for casting are the statues of Kings Ottakar II. and George of Padiebra (the latter a sort of Bohemian Cromwell), and of Elizabeth, wife of King John of Luxembourg. - M. Max, the scalptor, is also executing some large marble statues for public establishments. - M. Raphael has made the bust of Mozart for the public library, and of Dr. Krombholz, the great physician, for the University.-Parson M. Krolmas has been successful in his excavations of heathen tumuli, hitherto very scarce in that country. He has found in the Scharka, dear Pragne, two stone sacrificial tables, several well preserved cinereal vases, bronzes, \&ic. Another heathen sepulchral ground has also been found on excavaling for the Dresden rallway, near Prague.

Australian Mines.-Tbe wages of a good miner in the Borraborra leadworks, in Sonth Australia, are $\mathbf{f 1 7 0}$, per annum. Even those of other artizans, masons, carpenters, wheelwrighte, \&c., are in proportion.

Winter Garden al Berlin.-The King of Prussia bas subsoribed $\mathbf{£ 1 2 0 , 0 0 0}$ for the erection of a covered garden io the centre of the city.

New Pinacotheca.-The King of Bavaria has just laid the first atone of the new Picture Gallery, which will contain paintings of the present cenlury only.

NOTES OF THE MONTH．

The Royal Institute of British Architects，will commence their meetings on Monday evening．November 2，at eight o＇clock，at their Rooms，No．18， Grosvenor－street，Grosvenor－square．

Menai Tubular Bridge．－The experiments have been renewred at Mib－ wall．

Nelson Monument，Trafalgur Square．－The proverb＂a joke is a joke＂ bas its exceptions，and the Nelson monnment is one of them．The man and the boy renewed their operations upon this elegant structure a few weeks ago，bat now seem to have＇again given them ap in despair．

Coast Defences．－The Martello tower，between Hastings and Seaford， are being covered in with stone．

Chinese method of Boring．－The Sonthampton Water Commitee have voted $£ 150$ for trying this method at their Artesian well．

Salford，Manchester．－A now charch has been erected is the Earty English style．Mr．Lane is the architect．
A New Instilution of Mechanical Engineers has been formed at Bir－ mingham for the advancement of various branches of mechanical know－ ledge，which do aot fall within the province of the present Institution of Civil Engineers．

Cemetery at Cambridge．－Nine acres of land have been selected，and will probably be allotted in separate portions to each of the 13 parishes．
The South Devon Railuay．－The sea wall has aguin been greatly in－ jured by the wind and waves．

Public Message Delivery Company．－Of the schemes of the day，one of the most corious is a proposition to establish electro－telegraphic commu－ nication between aumerons stations in every part of London，for the con－ veyance of measages at a low charge．

The Baths and Wash－houses in Manchester since they were opened in September have been attended by 3,000 persons．

New Dock at Honfleur．－The greater part of the wall has been destroyed by the water getting between it and the earth．

Lord Rosse＇s Telescope．－The report that an attempt had been made to idjare this instrument has been formally contradicted．

Gold in Australia．－A valuable auriferous vein has been discovered in one of the copper mines，and the shares have risen 900 per cent．

The Wellington Statue．－Lord Morpeth has addressed a circalar to all the Royal Academicians，requesting their opinion respecting the present position of the statue on the arch．

St．Michael＇s Ottery has been consecrated．The style is Early English； the architect Mr．Wollastor．
St．Alkmund，Derby．－This new parish charch is built entirely of stone， in the late decorated style．The spire rises 112 feet above the tower， which is 92 feet high．Mr．Stevens，of Derby，is the architect．

City Improrements．－The Court of Common Conncil have agreed to a report，presented by Mr．R．L．Jones，recommending the formation of a now street from King William－street to the soath side of St．Paul＇s Churchyard．

Collision of the Prometheus at London Bridge．－Propeller vessels have been very unfortunate of late．The Irish steamer Prometheus，during the month，has saflered severely，by being carried against an abutment of London Bridge．The screw propeller was unable to resist the force of the tide，which was running very strong；the stern bulwarks were crushed in， and the masts and funnel swept away．

Gux Cotton．－There are numerous claimants of this invention．Dr． Otto，Professor of chemistry in Brunswick，states，in the Hanorerian Ga－ zette，that he has invented an exploding cotton，independently of Schonbein and Boettger．His preparation，which was eaggested by an observation of Pelouze，in his Joornal of Chemistry（Vol．I．，page 126），consists in immersing well－cleaned cotton in highly－concentrated nitric acid for half－ a minute，and instantly afterwards soaking it in water，which must be con－ stantly renewed，io order to effectually free the cotton from the acid．The preparation，when dried，is ready for use．It may be exploded with a hammer on an anvil，but is capable of being rammed in a gun，in the ordi－ nary way，without danger．M．Morel，an engineer at Paris，has recently exhibited before General Gourgaud，President of the Committee of Artil－ lery，a fnlminating cotton，which may be burnt on the hand without causing pain．It leaves little residue in a fowling－piece，and is nearly noiseless．M．Chodsko，a Polish refagee，has exhibited another fulminating cotton，which resembles the last，except in that it leaves a residue in the forling－piece．The materials prepared by M．Morel and M．Chodsko both ignite by a blow of iron upon iron，but not of iron upon wood．The Eng－ lish Goverument have instituted experiments with Schonbein＇s gun cotton， which have beea attended with success．

The Drainage of Haarlem Lake is to be continued by three enormons steam enginea，which are to complete the work in 13 months．The Cornish engine already at work discharges a milliou tons of water daily．

The Great Britain．－This luckless ressel still remains a－ground on the Irish coast．She is to be protected by a floating breakwater；and the last accounts atate，that an attempt will be made to rescue her by the method of flatation．Why was not this plan adopted in the first instance，instead
of the violent experimeat of drageing ber of by main sorce？Hied the steema tags sant to the aid of this rescel reached her，and succoeded in drawing her into deep water，she would have boen ia deoger of focmdering． Mr．Marris Dinedale has proposed a method of broying her up by rafte， with Greenland oil casks on either side of the reasol，and compected by chains undernenth it．This method was frat proposed by him for the Primoe Frederick，on Cortion Sand．

LIET OP MEW PATESTES

GRANTID in england prom septambig 24，1846，to oetomez 17， 1846.

Six Months allowed for Ehrolment，unless otherwise expressed．

Thomas Bartlett Simpeon，of Islington，Middieeez，reatlemen，for＂certain Improve． ments in propelling，and In machinery connected therewth．＂－Sealed September 24.
Albert Robert Cunningham，of Sydenham，Kent，gentinman，and Joeeph Ttrelfall． Carter，of the aame place，engineer，for＂certain Improvements in the propellag carriages on rallwhen－October 1 ．
William Wild，of Selford，Lancashtre，moulder，for＂certain Improvemente in machinery or apparatus for manofscturting barrele and other veenels of capaclity．＂－October 2.
Peter Fairbalrn，of Leeds，machine－maker，and Peter Carmaichael，manager for Messis． Baxter，Brothers，and Co．，flax spinnera，Duadee，for＂t Improvemente in machinery for drawing，roping，and spinning fiax，hemp，silk，and other sbroas mbetancen＂Oct． 2.
Pierre Bryere，of Row Bofleau，Nantes，France，for＂Improvemants in the manufac－ ture of boots，shoes，and cloga．＂－Oct． 2 ．
Edm．Morewood，of Steel－yard，Upper Thames－street，merchant，for＂certaln Im－ provements in machinery for separating certaln fibrous rubatances；from seed and other extraneous maspes．＂－Oct． 2.
Willam Wield，of Mancheater，mechanloal draghteman，for＂Improvements in cer－ tain mills for grioding，and is the manufacture of certaln parts of mills．＂－Oct． 2.
Charies Marie Fonillet，engineer，of Paris，for＂Improvemente in ratlways．＂一0ct． 2.
Samuel Eoldsworth，of Norwood，Surrey，geatleman，for＂cartain Improvements to apparatue to be applled to rallway carriages，to prevent accidentar thereon．＂－Oct 2.
Willtam Farthing，of the town and boroagh of Kingiton－upon－Eull，for＂certaln Im－ provements in the manufacture of glase．＂－Oct． 8 ．
Bobert Wilson，of Woodhouses，Lanctster，weaver，for 4 certain Improvements in looms for weaving relvets and other piled goods；and in the machinery or apparatus for cutting the pile or nap of the mame．＂－Oct． 8 ．
Samuel Heseltine，jun．，of Bromley，in the conaty of Mhdiseex，engineer，for ${ }^{4}$ certain Samuel Heseltine，jun．，of Bromley，In the county of Midditesex，
Improvements in the construction of lamps to born oll．＂Oct． 8 ．
Improvementa in the construction of lamps to burn oil．＂－Oct． 8 ．
John Warburton，of Kearsley，Lancaster，tin－amith，for＂certaln Improvemente In ma－ chinery or apparatus，for preparing，slabbing，and roving cotion wool，and other fibrous materlals．＂－Oct． 8.
William Falrbalro，of Manchester，in the county Palative of Limenater，civil eagineer， for＂Improvements in the constraction of Iron beam for the erection of bridges and other structures．＂－Och． 8.
Francis Nalder，of Cheapside，warehoneman，for＂Improvements La the manufacture of gloves．＂－Oct． 8.
Marcel Tean Mllon，of 27 ，Rue Fronches，Paris，gentleman，for＂Improvements in making roads and wrym．＂－Oct． 8 ．
John Bombley，of Sunderiand，engineer，for＂Improvemente in capatans and wind－ Imper．＂－Oct． 8.
George Lowe，of Finsbury Circus，dill englneer，for＂Improvements in the menufac－ tare of and in burning gas，and in the manufacture of fuel．＂一Oct． 8.
Price Struve，of Swanses，engineer，for＂Improvements in rallway tranait，and in mov－ ing or raising weighte．＂－Oct． 8 ．
John Taylor，of the Adelphi，gendeman，for＂Improvements in the manufacture of explosive compounds．＂（A commanication．）－Oci，8．
James Farnsworth，of Sheffieid，In the county of York，engineer，for＂certaln Improved machinery or apparatum for＂the manufacture of bricks and tiles＂＊（A communicalion．） －Oct． 8.
Micbel Loula Fertant，of 361，Oxford－street，gentleman，for ${ }^{4}$ Improvements in treating oile．＂（A communication．）－Oct． 8 ．
George Frederick Muntz，Esq．，M．P．，of Lay Hall，Blrmingham，for＂an Improved manufacture of metal plates for shenting the bottom of ships or other vemels．＂－Oct． 13 ． John Conde，of Glasgow，engineer，for＂Improvements in machinery used in manu－ facturing malleable tron．＂－Oct． 15 ．
Franeols Durand，engineer，and Onesiphore Pecqueur，Engineer，of Paris，for＂Improve． ments in forming leathar into tubem，cyllnders，switcher，casele，sheathe，bits，and other ments in forming le
articles．＂－Oct．
James Kite，of New North Road Sridge，Hoxton，in the country of Middiesex，gencle－ man，for＂certain Improvements in steam engine－chlmney，In furnaces and fuet，in： rent and exhanst pipes，snd in other like amoke and alr conductors，and in the machioery or apparatus connected therewith．＂－Oct． 15.
Arthur Millward，of Birgingbam，gentheman，for certain Improvementiln producing figured surfaces，maken and in relief．＂一Oct．is，
Willam Palmer，of Sutton－street，Clerkenwell，manufacturer，for＂Improvement in the packing of，and In the galning，and the manufacture of producta from fat，or fatty matters．＂－Oct．15．＂
John Hornby Miw，Esq．，of Hagtingn，Susex，for＂Improvements in the manufacture John Hornby MEw
of pens．＂－Oct． 15.
John Donidin，of Grange Road，Bermondsey，clvil englacer，for＂Improvementa in the manufacture of paper，or in she machinery employed therewith，and in the process of bleaching paper，linen，and other manutactures in wblch chlortue of lime is employed．：＊ （A communication．）－Oct． 15.
Ebeneser Sonthworth，of Chorlion－npon－Medlock，newr Menchester，draper，for＂cer． tin Improvementa in engines，to be worked by etesm or other power，and applicable to relsing and forclag water，to the propulsion of vensele，and other simlles purpowes．＂ Oct． 15.
George Winslow，of Binton Crescent，merchant，for＂Improvements In machinery for manufacturing fles and rasp．＂－Oct． 15.
John Ryan，of the Royal Polytechalc Institution，doctor of medlelpe and professor of chemistry，for＂certain Improvemente in the preservation of organte and other sub－ chemistry，for＂cert
stances．＂－Oct． 17 ．

THE INTERIOR OF THE PITZ FTLLLIAM MUSEUM. (With an Engraving, Plate XVIII.)

The accompanying engravings exhibit the internal arrangement of the Museum at Cambridge, of which the fagade is represented in the Journal for May last, page 129. The building is occupied internally by a ground floor, and an upper or principal foor. The latter is approached by a atcircase of moat magnificent dimensions, leading from the hall to the scolptare gallery which extends round threo sides of the hall and staircase. The architectural and sculptural ornaments of this gallery are to be of the richest and most elaborate description, and this part of the building alone will, it is eatimated cont when completed $£ 10,000$. Here will he deposited the valuable collection of statues bequeuthed hy Earl Fitzwilliam and others. Several of theso worka are mater-pieces of the highest class.

The principal foor contains a picture gallery 67 feet long by 39 feet brond ; the beight of the frieze being 27 ft ., and the height of the frieze is 3 ft .6 in ., which in a correct copy of the Elgia Marbles at the British Museum, and from it springa a richly ornamented coved ceiling, which corves inwards from the sides to the centre of the apartment; above the four upper boundaries of this cove rise a vertical lenthern light, between each light are beautifolly draped and winged figures, and above in a borizontal ceiling divided into compertments and most elaborately enriched with open panels, and above which are conical sky-lights; the whole height of the room from the fioor to the conical sky-light is 53 feet. The foor will be of wainscot, with an inlaid border, and all round the apartment there is a scagliola dado of Rowri broceata, with a plinth of hiack and gold marble. The aide pictore gallerien commonicate with that which we have been describing, by arched openiogs, of which the archivoits and pilatess are decorated with varions kinde of scagliola.

The ground loor of the bnilding will be occapied by another scalpture gallery under the long and two end galleries, a library beneath one of the side galleries, and a moseum of terra cottas and vases beneath the other side gallery. There is a large space under the hall and the portico, occupied by vaulta, which we think might be usefully occupied as a sepulchral maceam.
There appears to be some intention to remove the frieze containing a copy of the Elpin Marbles,-we most sincerely truat that this wastefal alteration will be resisted by the Senate. The frieze is thonght to detract from the height of the room; wo think however that wben the walls are filled with paintings, the appearance in the height will be increased, and besides, it is perfectly useless to have paintinge where the frieze now is, which is 27 feet from the floor-for who will be able to see them to appreciate their merit at so great a distance from the eye ?

Mr. Cockerell has obtained permission to substitute real for imitative marhlea in the work yet to be undertaken, and he deserves great praite for having effected this alteration. The earichments and carving are admirably executed, from the designs of the late Mr. Besevi, by Mr. Nichole, of Graf-ton-street, London, whose name deserves to be recorded with great commendation; and wn underatand that it was Mr. Besevi's intention that all the enrichments should be picked out in gold and polychrome.

We are very desirous of seeing the brick fence wall now enclosing the grothd at the back of the Musenm removed, and replaced by a ballustrade similar to that at the froot. This would open the back view to Peterhouse ground, and form a great improvement to the Sculpture gallery, as well as to the College grounds.
When the Museum is finished, we hope there will be a greater liberality shown to the public in allowing them to view the magnificent works of art that will adorn it, than at Oxford, where the Taylor Institute bas all the gates and doors closed, and admittance is only obtained either by an introduction by a member of the University, or by permission of the porter. Of course, as at many other public establishmenta, a fee is expected.

As we were lately strolling through the College grounds of Oxford, we asked a member of the University if permisaion could be oblained for view. ing the interior of Cbristcharch Cathedral, the Taylor Institute, Radeliffe Library, \&c. He said be had no doubt it might by speaking to the attendants ; of course they woald look for a fee to be paid them for their trouble. The jealousy with which Academical and Ecclesiastical corporations guard the edifices committed to their trust is on every account to be regretted.

TRABEATE AND ARCUATE ARCHITECTURE.

second abticle.

In order that any branch of human knowledge may become a science, it most be founded on exact principles which distinguish it from every other science. The mere compilation of facts and opinions, however valuable and accurate in themselves, will not lead to systematic and defnite resulte onless the facts be referred to, and the principles deduced from fundamental axions.
The application of these considerations to architecture is very simple. Facts and dogmas innumerable relating to architecture have been recorded, but we have been too apt to estimate them according to their intrinsic, not their relative, value. Now the most valuable aid to the advancement of architecture will be the syatemizing our prement knowledge of it : it has hitherto been seldom regarded as a aystem. If every critic is to pronounce on the merits of each new edifice as it looks to his eye, it is obvious that his criticism will have no higher than an individual authority, that it may be disregarded by contemporaries and reversed by posterity. But if some great architectural principle be aniversally received by both critics and the criticized as the basis of all criticism, and if this principle be so comprehensive as to iuclude every style of architecture, it is clear that much less will be left, than before, to the fallibility of individual judgment, and that the conclusions obtained will possess the value of being aystematic.

We search in vain for any other principle than that of constructive faithfalness, which receives universal consent. There are, it is true, many architects and architectural writers, who find it their interest to resist the application of this principle, bat none are now bold enoagh to deny its abstract truth. It is curions to observe how completely the general opinion has changed on this point. Now it is conceded on all hands that (theoretically at least) the decoration of an edifice ought to be the exponent of its con-struction-yet it is not a very long period since a doctrine the direct reverse of this was maintained. The Abbà Laugier in his Obsercations sur ${ }^{\text {larchi- }}$ tecixre (Haye 1765) condemns Pointed architecture, because edifices built in that atyle exhibit too evidently their mechanical structure. Some of his remarks are so directly opposed to the doctrines of the best writers of the present day, that the following version of a few sentences may be interesting, if not valuable. All the requirenuents of solidity (sags he) consiat in establishing a proper equilibrium between the arch which thrusts and the abutment which receives the thrust. Buildings, however, ought to be so constructed that no part of them may appear to exert or resisit pressure.... Up to the present time wo have been too mach subject to this grand defect of Gothic churches ; not until it was high time, did a man of genius teach us to do better. The arches of the new church of St. Genevieve are sufficiently supported, bat no one can see how they are so. Nothing external announces resistance and effort. The spectator has no observations to make on the atrength or weakness of the buttresses. Delivered from all anxiety on this point, he gives himself up to undisturbed contemplation of the beauty of the edifice.
Since the Abbe Laugier wrote this curions passage, architectural knowledge has so greatly increased, that it wo uld be superfuous to show here the fallacy of his opinions. They are quoted to prove how ingeniously an error may be disguised, and to show that, in his time at least, it was admitted that the architecture subsequent to the Pointed was inconstructive. This is a most important admisaion, and one which many a modern practitioner woold like to retract.

The importance of distinguishing between entablatere and arch architecture was, we think, first insisted upon by Hope, in the invaluable Architectural Essay, which it may be presumed has by this time been carefully read by every one who professes a knowledge of architectural principles. The onsparing denunciations which Hope commenced againut the showy unreal decoration employed duriag the last three centuries, in consequence of a confusion of the principles of trabeation and arcuation, have been admirably followed up by Professors Willis and Whewell, in the works from which we quoted in the preceding article on the present subject. Until, however, the laws which Hope suggested, and which whewell and Willie oeveloped, be practically applied, they remain almost barren speculations. The object set before as in not so much to elucidate existing architecture as to promote its future advancement. To this end it is requisite to see how far the laws in question tend to facilitate or impede the improvement of modern decorative construction.

It may be objected that in making architectaral decoration immediately dependent on mechanical structure, we restrict the art to purely atilitarian
rules. To this objection two satisfactory replies may be given. In the Arst place, architecture differs from other fine arts, anch as painting or scalpture, in that it is not an imitative or representative art. The ends of painting and sculpture are the gratification of the taste by the representation of beantiful natural forms. But architecture is restricted by the ecruomic parposes of the materials upon which it works. In one sense it stands alone among the fine arts, and is the noblest of them; for while the results of other arts have no value except their beauty, the results of architecture have a two-fold value-beauty and practical utility. The direct and accurate imitation of astare, which in painting or sculpture is the perfection of excellence, in architecture is simply impracticable. And therefore we come to this conclusion, that while other works of art are judged by their beanty alone, the works of architecture are to be judged not merely by their beauty, but by their pitness also. This consideration has been much lost sight of by those who attempt to draw analogies betwreen the laws of architecture and those of painting: the neglect of it led, for instance, to Sir Josbua Regnolds's eulogium of the works of Vanbragb.

But there is another strong defence againgt the charge of utilitarianism; which is, that the restrictions which we would lay upon architecture have been proved experimentally to be aeither oppressive nor unnecessary. If it were fonnd practically impossible to comply with this restriction withcat making the architecture formal and unvarying, a ground of complaint agsinst the strictness of the rule might exist; but, in point of fact, the buildings which have displayed the greatest freedom and variety of form have been those in which the canon of constructive faithfulness bas been most scrupulously obeyed. We observe, moreover, in the works of natare, from which all the principles of beauty must ultimately be derived, that the most graceful forms exbibit a wonderful fitness for the useful purposes to which they are applied. The petals of a flower are not merely beantiful ornaments; they serve effectually for the protection of the reproductive organs of the plant. The slight swelling or catasis of the stalk of corn not only renders its form graceful, bot adds also to the strength necessary for its preservation. Smeaton, in constructing the Eddystone lighthouse, took for his model the truak of the oak, which increases in breadth towards its base, meeting the ground in carved lines which experience bas proved to be the most effectual for resisting the violence of storms. Lasily, auatomy teaches us that those forms and proportions of the haman frame which the scalptor considers most beautiful, are the very same which best eaable the several members to perform their respective functions.

Throughout the whole economy of nature this rule is maintained, of making beauty dependent upon atility. The love of the grotesque, or bixarre -that is, of forms without parpose-is seldom exhibited except in art. It must, therefore, be regarded as a thoroughly artificial taste-a taste, moreover, unknown in the best periods of art. To revert, therefore, to the rules of criticism, it is clear that there are two distinct ways of estimating the merits of a bailding,-one by the eye alone, the other by the eye and judgment. We will not be so intolerant as to assert that all architecture which satisfies the eye alone, and not the judgment also, is to be rejected; but this may be safely set down, that the beauty of such buildings is of a superficial and inferior character, and therefore undeserving of modern imitations. There are, in fact, many buildings, which, from their magnifcent size and gorgeous ornament, produce a dazeling effect which gradually diminishes as the eye becomes familiarized with it. But those glorious piles, which exhibit in every part a logical fitness, derive an inner beauty, a tenfold deeper and purer eloquence, from the gratification of the judgment. They do not appeal grossly to the senses, the eye does not weary of them after the first impressions are faded; for every renewed view serves to discover new meaning, and, therefore, new delight. They satisfy the highest test of works of art-they bear stadying.

Applying these considerations to what is usually considered the most magnificent edifice in London, St. Paul's Cathedral. Can the eye fail to be impressed with the depth of shadow, the proportion and variety of the lines, the graceful contour of the dome, and the apparent boldness and skill by which it has been raised at a vast height above the rest of the structure? But how does the admiration lessen when the judgment comes into exercise; when we find that this boldness in tbe constraction of the dome exists in appearance only? This dome is not the thing it looks to be,-it is a mere juggle, an ingenious delusion of the sight. It looka a massive, ponderous structure, and an integral portion of the building; it is, in fact, a mere frame-work of wood, stuck upon the building, and not belonging to it. It appears to rest firmly upon its base ; but, in reality, derives its support from hidden props and chains, and other delusive contrivances.

The architect has shown vast ingenuity ; but he has, in this instance, mistaken his vocation, and invaded the province of the theatrical machinist. A dome should be vaulted, reating nowbere but apos its abutments; bat this sham dome is not vaulted; it is supported at every part of its concave surface. Had it been made of pasteboard, or canvas stretched on a frame, and painted, it would have looked just as well.

And the upper half of the side walls of the Cathedral are delusions also. They serve only to conceal the fying buttresses behind them. They do not add to the internal capacity of the building; and if they were removed altogether, the alteration would not be visible from the interior. On the outer or conspicuous side, little colorons are affixed midoray in the air-for show. Had these columns, and the walls to which they art attached, been also of painted pasteboard, their present parpose would have been answered fully as well as by more solid materials.

NOTES ON THE HYDRAULIC RAM.

The invention of this singular engine is due entirely to the genias of the celebrated Montgolier, who made it known in 1797 ; the peculiar simplicity of its construction, us well of its mode of action, attracted the attention of hydraulic engineers, and of mathematicians, and in 1804, Eytalwein conducted a series of experiments upon a well digested plan, to develop the power, the proportions, and other relations requisite to its greatest effciency. The oscillatory motion of the water in the ram, and the alternate action of the valves, indicate the physical causes which produce the effect of this machine; they are nevertheless still very far from being anfir ciently understood to furuish the basis of a mathematical theory. The passive resistances, and especially those arising from the shock or blow given by the valves, interpose difficulties in affixing their value, which render any estimate of the whole dynamic effect almost impossible. Experiment alone can instroct us an to the useful effect it is capable of affording.

D'Anbuisson de Voisins has given a succinct account of the researches of Montgolier and of Eytelwein, and these notes are chiefly derived from it.

The parts of a ram are, a pipe connecting a reservoir of whter with a case or chest containing two valves-an air chamber, and a rising or aupply pipe. The pipe attached to the reservoir was by Montgolfier termed the body of the ram, and the valve chest its head. Further description of the construction of the machine and of its mode of action is unnecessary here, as it may be readily found in every modern work on hydraulics.
The largest ram ever erected was put up at Mello, near Clermont anr Oise, by the inventor's son. Its principal dimensions were,

The tail or stop valve consisted of a horizontal metal plate pierced with seven holes, each covered by a hollow ball 1 inch diameter; it beats 60 strokes per minute. This ram worked under a head of water of 37 feet, discharging $31 \frac{1}{\text { g gallons per minute, and raising } 3.85}$ gallons to a height of 195 feet. The ratio of the useful effect to the labouring force expended was 653. The comparisou of effect is made without taking into accoant the velocity of the motion; it is the weight of water raised to a certain height in a determinate time. Calling $p^{\prime \prime}$ this weight, and $\mathrm{H}^{\prime \prime}$ this height, the effect is $p^{\prime \prime} H^{\prime \prime}$.
The corresponding force (P being the weight of fluid furnished by the stream in the same time, and H the height of the fall or head of water), is expressed by P H. The ratio of these is consequently $\frac{p^{\prime \prime} H^{\prime \prime}}{P H}$, or slace $p^{\prime \prime}: P:: q: Q$, the ratio is $\frac{q H^{\prime \prime}}{\mathbf{H} .}$

The following table shows the ratio and the effect of ordinary rams. The first experiment was made upon the ram constructed by Montgaliter himself, at his house at Paris; the second upon that erected by his son, above cited; and the others npon rams in the neighboarhood of Paris, mentioned in the Traite des Machines, p. 101.

Eytelwein made, at Berlin, 1123 experiments, gradually and successively varying the dimensions of the several parts of the bydraulic ram. He coofrmed the effect produced in each case, and deduced rules for the dimensions and arrangement of the parts, suitable to the greateat effect.

The following table contains some of the experiments upon the largest of the rams he employed, in its most advantageous arrangement, vix. :Leagth of body pipe

45 feet 9 inches.
Diameter of ditto . . . 0 2t
Capacity of air chamber . . 1.94 gallons.
Area of opening of tail or escape valve : $\quad \mathbf{~} .74$ aquare inches.
This area in the first experiment was raised to 6.2 square inches.
The valves were clack valves and the escape valve was placed between the air chamber and the reservoir. These experiments may have their recolt expressed by the following formula,

$$
\frac{4 H^{\prime \prime}}{Q H}=1.42-28 \sqrt{\frac{H^{\prime \prime}}{H}}
$$

But as this has been deduced from experiments which in some measure refer to the maximum effect of which the water ram is capable, we may obtain the ordinary results exact enough by reducing the numerical coefficient about f, and we get

$$
p \mathrm{H}^{\prime \prime}=1.2 \mathrm{P}\left(\mathrm{H}-2 \sqrt{\mathrm{HH}^{\prime \prime}} .\right)
$$

See D'Aabaisson, P. 503,-also Taffe, Application de la Mechanique, P. 278.

No. of per Minute.	Belght lo feet of		Ratio.	Gallogs of water per minute.		Ratlo $\frac{q \text { H }^{\prime \prime}}{\text { Q }}$		(ratio
	${ }_{\text {Fal }}^{\text {H }}$	$\left\lvert\, \begin{gathered} \text { Eleration } \\ \mathbf{n}^{\prime} \end{gathered}\right.$	$\frac{R^{\prime \prime}}{H}$	Expended.	Raised.	$\begin{aligned} \text { Experi- } \\ \text { ment } \end{aligned}$	Formul	
66	10	26	$2 \cdot 63$	10.65	$3 \cdot 39$	0.9	0.97	2.92
54	102	32	$3 \cdot 18$	13.97	$3 \cdot 83$	0.873	0.92	3.67
50	911	$\begin{array}{ll}38 & 8\end{array}$	$3 \cdot 9$	12.01	$2 \cdot 622$	0.85	0.87	4.58
62	80	38 38	4.	8.16	1.687	0.847	0.85	4.72
45	8 9 7	$\begin{array}{ll}38 & 8\end{array}$	44	$10 \cdot 85$	2.00	0.845	$0 \cdot 84$	5.2
42	75	398	5.21	992	1.5	0.787	0.78	6.62
86	60	388	$6 \cdot 5$	8.89	1.05	0.754	071	8.62
86	$4{ }^{4} 64$	324	7.2	5.23	0.495	0.672	$0 \cdot 67$	10.7
11	50	387	7.7	$8 \cdot 0.5$	0704	0667	0.65	11.54
93	41	988	9.47	11.11	0649	0.548	0.56	17.2
17	30	322	10.7	$10 \cdot 8$	0.479	0.473	0.51	22.6
15	3 8 	388	119	$12 \cdot 34$	0363	0352	0.45	93.8
14	26	388	15.5	1195	022	0.284	0.32	54.6
10	1114	388	$19 \cdot 3$	9.81	0.088	0.181	0.18	106.6

According to Eytelwein, the length of the body pipe ought not to be less than $\frac{5}{4}$ of the height to which the water is to be raised. Its diameter in inches, (when $Q^{\prime \prime}$ is the number of gallons expended per second) $=4 \frac{1}{\sqrt{ }} \sqrt{Q^{\prime \prime}}$. The diameter of the rising or delivery pipe should be one half of this. The air chamber should be as large as the cube content of the rising pipe. The two vaives should be close to each other, but it is of little moment whether the escape valre is above or below the air chamber, with regard to the atream of water. The opening of the escape or tail valve should not be less than the section of the body of the ram.

Example.

Let it be required to raise 220 gallons of water per hour to a height of 46 feet; the disporable bead of water being 4 feet;-to determine the expenditare of water per second, and the principal dimensions of the smo

220 gallons per hour $=2200 \mathrm{lb} .=86.6 \mathrm{lb}$. per minate ; $16.6 \times 46=1.2 \mathrm{P}(4-2 \sqrt{46 \times 4})$.
or, $\mathrm{P}=\frac{96.6 \times 46}{1.2(4-.2 \sqrt{184})}=\frac{1403}{1.29}=1087.6 \mathrm{lb}$. per minate ;
and 108.76 gallons per minute $=1.81$ gallous per second.
Diameter of boiy pipe $=4 \frac{1}{4} \sqrt{1.81}=4 \frac{1}{2} \times 1.346=6$ inches, nearly.
Length of ditto should not be less than 44 feet,-say 50 feet.
Diameter of rising pipe $=\frac{8}{8}=8$ inches.
Content of ditto $=\frac{8^{9} \times 7854 \times 46}{144}=2 t$ cube feet $=$ capacity of ai_{r} chamber.
Diameter of opening for escape valve $=6$ inches.
If ball valves are used, their weight shoald be twice that of the corresponding bulk of water.
D'Aubuisson, p. 504, makes the following important remarks:-" The bydraulic ram bas only been employed, hitherto, in raising amall quantities of water, and, therefore, in producing small effects. The greatest effect obtained by Eytelwein from 1123 experiments was only 1476 lb ., raised ooe foot in a minute; and the greatest from the rans used in France is but 7500 to 8500 lb ., raised one foot in a minute, or about one balf the work done by a horse, harnessed in a gin."

It is very doubtful whether the ram can be used for, raising large volames of water. The vioient shock of the valves, and the heavy pulsations of the machine, derange the frame and the foundations made to sup. port it. This it bas been attempted to obviate by materially increasing the weight of the ram, and in this way the lons of effect arising from the movement of the machine may be diminished, and the evil remedied up to a certain point.
The strong frame-work and heavy masonry, constructed to sopport large rams, have been entirely destroyed after a certain length of time; and it is much to be feared, that the employment of this engine, in other respects so remarkable, will continue to be restricted, and that its sphere of usefolness will not extend beyond the supply of water to an isolated house or munufactory.

1, Lancaster-place, Nov. 5, 1846.
J. H.

STABILITY AND STRENGTH OF HUNGERFORD BRIDGE.

In our last number (p . 358) wo published extracts* from some remarks addressed by Sir Howard Douglas to the editor of this Journal, respecting the stability and strength of Hungerford Bridge, and promised to reply to the objections raised reapecting the sufficiency of that structure. The objections are chiefly these-that the main chains are not strong enough-that the piers are not sufficiently etable, being liable to horizontal straios at their summits, which the shifting saddies do not entirely remove. The first point which we will consider is

The Instability of the Piers.

It is asserted that, owing to the difference of the form, \&c. of the catenaries on either side of each pier, its head is sabject to a force, tending to overturn it, which is represented by $a-a^{\prime}$, where a and a^{\prime} are the horizoctal tensions of each catenary respectively.

Now this horizontal force $a-a^{\prime}$ acts upon the shifting saddle. Let us consider the object of this contrivance. If it recede (that is, move towards the bank of the river), it increases the span of the centre chain and dimi-

[^52]nishes its deflection:-both these alterations tend to increase the horizontal tension of the middle chain. At the same time it tends to diminish the apan of the side chain and increase its deflection:-both these altorations tend to diminish the horizontal tension of the side chain. So that on the whole, if the borizontal tension of the side chain exceed that of the middle chain and the shifing saddle recedo, there are four causes in operation to eatablish equality of tension. Conversely, if the horizontal tension of the middle chain exceed that of the side chain, and the saddle adeance, there ane fonr canses in operation to establish equality of tension.
But there are two waya by which the establishment of this equality may be prevented. Either the friction of the aaddles on the piers may restrain them from moving, or a sufficiently large range of motion may not have been provided for in the constraction of the bridge.

Let as consider first the effect of friction. By reforence to the last volume of this Journal, p. 105, it will be seen that betwoen the saddle and the top of the pier a oumber of rollers are interposed in such a manner that the friction is wholly of the natare of rolling friction: there is no rubbing friction, soch as that at the axle of a wheel, or the pin of a pulley. It is knowa by exporiment that rolling friction is exceedingly small, almost incoasiderable, compared with rabhing friction.

From experiments by Babbage, it would appear that weights placed on wooden rollers, 3 inches in diameter, can be moved with the of the force required to move them when placed on wooden siedges. The friction of metallic rollers is a subject which, ootwithstanding its importance, seems to have been greatly neglected. Of all the laborious and careful experiments opon friction which have been instituted by oumerous inventigators, comparatively few relate to rolling friction.

The rolling friction of any material depeads not so mach on its amoothness as opon its hardness: for it principally arises from the slight fiatening of the roller where it is in contact with the plane, and the slight depression of the plane itself. Now in the shifing saddles of Hungerford Bridge these causes must operate very slightly, for each saddle rests upon 50 rollers placed almost close together and arranged in an ingenious manner so as to work with the atmost regalarity. As we said, however, little more than a rough estimate of the friction can be arrived at; bat wre think that an inspection of the saddle itself will instandly satisfy any one that the coefficient of friction cannot be nearly so great as in a railway carriage. Now the friction of a railway carriage is about atoth of its weight. This friction consiats of two paris: the rolling friction at the circumferences of the wheels, and the friction of the axles. These axles are about haif the diameter of the rollers at Hungerford, and the rubbing friction of the former must greally exceed the rolling friction of the latter. Moreover, in the railmay earriages the axle friction is only a part of the resistance, and therefore would be represented by a smaller coefficient than ste ; the roller friction of Hongerford Bridge would be represented by a still smaller coefficient. If then we make the friction on each saddle half the friction of railway wheels, or sto of the weight, we probably shall have considerably ov erestimated it. Now the total weight on each pier will be scarcely 800^{*} tons aupposing the passengers packed together as closely as they can stand, (a most improbable supposition.) In this case the utmost resistance to the' motion of the saddle will be less than a ton. Coosequently, if the "power represonted by $a-a^{\prime \prime \prime}$ exceed 1 ton, the saddle will begio to adjust iteelf.
It is impossible to suppose that masses of brickwork such as those which form the piers of Hungerfurd Bridge can be overthrown by a force of one ton. We believe, however, that we bave greatly over.estimated the amount of this force. In addition we must remember that the vertical pressure on the pier has an effect as well as the horizontal, and that the furmer tends to the atability of the pier. In the extracts given, ante p. 35s, there is a diagram in which the line A D represents the magnitude and direction of the resaltant of the forces acting on the head of the pier. Let us suppose the diagram slightly altered, by constructing a parallologram in which the nerical and horizontal pressuren, instead of the tensions of the chains, are represented. Then A D represents the resultant of those pressures, and it is the diagonal of a paralleiogram, of which the sides are in the proportion 1 (ton): 800 (tons). We see then hom extremely oblique is the direction of A D. If when produced it fell with the base of the pier, the pier would be stable, even if it had no weight, and the mortar no cohesion.

To illastrate this important point a little more fally, let us actually conatract the diagram. Let ABCD be the parallelogram of the forces

[^53]
applied by the raddle to the top of the pier, and let AB be the resultant of the eertical preasures exerted by the rollers: this resoltact will always be somewhere near the ceatre of the tower. Let A D represent the horizontal friction of the rollers: then the diagoanl joining \mathbf{A} and \mathbf{C} will reprement the direction and magnitade of the reauliant. Now, B C is only woth part of A B, and therefore, since the pier is 80 feet in height, the diagonal AC will, at the base of the pier, be only the foth of a foot out of the verticul. The bace of the pier is 40 foet wide. If, thenefore, the position of A B be sopposed to be exacoly central, the friction or horisontal force mast be two hundred times what we have supposed it so be, before the resultant can fall beyoud the base. If we take into account the effect of the weighe and cohesion of masonry itself, the horizontal force mast be still farther multiplied, before the stability of the pler can be endangered.

Limits of the Motion of the Shifting Saddle.

The next point to be cousidered is, whether the motion of the shifting saddle has a sufficient range. We think that it may be satisfactorily shown that the saddle has ample room to adjust iteelf to any variation of the horizontal tensions of the chains which is likely to occur. It is diffcult, in a subject so complicated as the theory of catenaries, to work out general solution of the problem; a little attention, however, to the case before us, and an allowable simplicication of it, will furnish all the information required.
Let us first see the effect of a slight dimination of the span of the central chain, everything else remaining unaltered. In the tract on "Metropolitan Bridges," p. 10, the following aseful approximate relations are given:-

$$
\begin{equation*}
2 x^{2}=3 y(8-y) \ldots \ldots(1) \quad a=\frac{8 y^{2}+x^{2}}{6 x} \tag{1}
\end{equation*}
$$

where s is half the length of the chain, y the half-span, x the defiection, and a the length which weasnres the horizontal tension. In the case of the Hungerford Bridge (oupposing the curve to be a common catruary), the values of these quantities aro-

where the first two quantities are found by actual measarement, and the two lauter are those calculated by Sir Howard Douglas from his formale.

Now let us sappose the half.apan to become $\mathbf{3 3 7}$ feet-that is, to be diminished by 1% foot; and the length of the chain being unaltered, iet us nee what will be the new value of a. By equation (1),

$$
\begin{aligned}
& 2 \boldsymbol{x}^{3}=3 \times 337 \times 6 ; \text { or, } x=8 \times \sqrt{337} . \\
& \text { Therefore, by equation }(2), \\
& \\
& \qquad=\frac{8 \times(387)^{3}+9 \times 337}{6 \times 3 \times \sqrt{337}}=\frac{1}{8} 4 \overline{837} \times(387+8)=1054 \text { feet. }
\end{aligned}
$$

It follown, therefore, that by the small dimination of the span here supposed, a very great alteration of the horizontal consion is producednamely, from 1162 to 1054, or in a ratio of about $11: 10$. Tho length a indicates not the actual value of the tension, but its proportion to the weight of the chaid. Hence, whatever proportion the horizontal tension bore to the weight of the chain in the firat case, it would bear $1 f^{\text {ths }}$ of that proportion in the second case. Now, in the construction of the Bridge, provision has been made for giving the saddes on each pier a play or range of three feet. And we have mude the case far too unfavourable for our own view of it; for we have neglected the consideration that, when the sadule mores, the horizontal tension of the side chains is increased at the same time that the horizontal tension of the central chain is diminished. So that the adjustment would take place mach soouer than has beea here supposed.
The adjustment neglected in the above calcaiation is by far the most im. portant in point of magoitude. For a variation of apan would not pearly so much ulter the tension of the main chain as that of the sides chains, of which the curvature is very umail. The latter are aretched almost in a atraight line between their points of attachment, at the banks of the river and the top of the piers. So that it may be doubted whether an ibarense
of their epan much beyond a foot, would be geometrically poasible if the length of these chains be supposed constant. We know that if the chains were abeolately straight, their tension woold be infinite, and as an approximation to the straigbt line mast produce an enormons increase of tension, there need be no fear that the range of the saddles of Hungerford Bridge would be insafficient for the requisite adjustment.
Approximations simllar to those ased above would scarcely be suitable for oalculation of the variations of the side chains, of which the tension alters ω rapidly for slight alterations of span that the approximate expression most be continued to a much greater number of times to he at all satisfactory, This objection does not howerer obtain respecting the main chain, in which the variations of tension are not so rapid.
We have also followed Sir Howard Douglas in assuming the chain to be a common cateary, and the tuad to be diatributed uniformly along the curve. These suppositions might be dangerous, if the strangth of the chain were being discnssed, bot for the purpose of catinating roughly the effect of rariatioss of the span, they seem sufticiently accurate. We may as wel remark that the calculation of the strength of the main chain, which is quoted in the last volume of this Journal, Vol. VIII, p.65, is exceedingly incorrect and unscientific.

In the tract on Metropolitan Bridges, and in the Reply to our remarks, eeveral analytical difficulties have been auggested which cortainly appear to milltate against the conclusions here arrived at. These dificulties aro not however insuperable, as the consideration of the following passage, which we quote from the original pamphlet will show.
" In the case of the Hangerford Bridge, however, the catenaries at the ivo ends when completed, have a considerably less span than the central curve, but they bare the same droop of deflection. Hence if $2 y$ be the curven of the centre arc, $2 y^{\prime}$ the span of the curves at the two exiremities when completed; and a, a^{\prime}, the corresponding tensions at the lowest poinis, we have

$$
a=\frac{3 y^{9}+x^{3}}{6 x} \quad a^{\prime}=\frac{3 y^{7}+x^{3}}{6 x}
$$

And as y^{\prime} is considerably less than y, a^{\prime} will evidently be less than a in a still higher ratio. Hence there will be a constant horizontal strain, equal to ($a-a^{\prime}$) acting at the top of each pier."
The supposition that the side chains "have the same droop or deflection" as the central chain, is a misapprebension as to a point of fact-they have a considerably greater defection. Hence in the second of these equations we must put for x, a larger quantity x^{\prime}. This correction is a satisfactory sulation of the difficulty suggested. The extracts quoted last month from the Reply, contain the following clause in the sentence explaining the dia. gram.
"If the tangents of the curves formed by the beads of the piers do not make equal angles with the vertical line $A V$, even if the tensions of $A B$, A C, were equal (wbich is not the case in Hungerford Bridge), the re. soltant of the atrains at A would be in the direction of a line A D," \&rc.
It seems to have been overlooked that the fact alluded to in the parenthesis, and the fact angested just previously, are of a compensating nature If there be an inequality, not only of the amount of the two teasions, but also of their angles of inclination, the resultant may be vertical-if only one of these inequalities exist, the resultant cannot be vertical.

To Sir Howard Douglas belongs the merit of having anggested for discassion a subject of great interest to engineers and the public generally; and of having considered the question in that purely argumentative maner which always ensures respect in a scientific controversy. He will, we are sure, give us credit for having the same object in view as bimself-that of sacertaining the truth; and if onr reasoning should appea- erroneous, we shall be quite ready to be eet right. Of the strength of the main chains of the bridge we bave not as yet said anything, as we are not in possession of all the data. These however are promised to us, and a separate paper on this part of the subject shall, if possible, appear in our next number.

AMATEUR ENGINEERING.

The English Government is distingnished from those of otber countries by its reluctance in assisting or rewarding the efforts of mechanical inventors. There is no doubt that from the operation of this rule many valuable discoveries are lost to the country, which has a direct interest in promoting those scientific labours which tend to the benefit of the whole community. At the name time, it is certain that an indiscriminate enconragement of inventors would subject the conatry to an operwhelming number of claims on the behalf of futile inmature and valueless schemes.

The restrictive rule observed by our Government is however occasionally relaxed, and it happens, unfortunately, that the occesions chosen for this relaration are those where the least benefit resulte to the country, and the consideration shown to favoured individuals is least deserved. Wo allade to pablic encouragement of amatenr ship-building and marine ongineering. It would be invidions to point ont all the instances in which the public money hes been recently squandered in constructing war steameri apon plane anggeated by persons whone occupations and prerious stadies by no means qualified them for the task undertaken by them. Of courte the inventore themselves stoatly deny the failare of their plans, and can overpower us with proofs of their success; but the profeanional engineer will immediately recall numerons instances in which persons possessed of Parliamentary infaence, or the advantage of titles to the peerage, have been able to wate many thonsands of pounds of public money in the manaer alladed to. We may, however, take one instance where failure has been so obvions that denial would be impossible. The Sidon, the offspring of Sir Charles Napier, was intended to have been a lesson to all future engineers; and anch indeed it has proved-in the way of salutary warning.

If it be determined that the rale of discouraging inventors is to have exceptions, they ought not sarely to be so selected that the possible failores shall be productive of the greates! amonnt of lons. Judging a priori, wo might suppose that neval construction on which the strength of Great Brithin dopends, and of which the operations are necesarily of the most contly kind, would be the very last branch of the industrial arts chosen to be aubjected to the experimente of inexperienced amateurs. We might anppose that the building of steam and other vesacls of war, involving as it does, in every case, a vast expense to the country, would be conducted with the utmost cantion, and would be intrusted solely to carefal and experienced hands. It would seem a matter of common prudence that if amateura must be en. couraged in their taste for practical mechanics, they ought to try their 'prentice hands on some work a little less contly than ship building.

But the Goverament is not alone responsible for the errort in question, which have been largely participated in by companies of private individuala. A clever huay man, with a good deal of intrigue and energy, may often get up a company, which he can coax into an encouragement of his own private schemes, or thone of the clique to which he belongs. The Great Northera, built at Londonderry, by some one who, from modenty (or more probably. from prudence), hat not trampetted forth his name, was to have been a model of Irish steamen for Bnglish eugineers; but alas, turned out hat ill The reatorative applications of London engineerb-Miller, Bavenhill and Co., wore found requisite intus et in cute before the unfortunate victim of mechanical dabblings conld be brought to a atate of vigorons healthy action.
The Great Britain again was a woefnl example of amsteur patchwork. The poblic were invited to lnspect and admire this gigantic specimen of shipbuilding; and attracted by her magnitude and sbowy decorations, they in. spected and admired accordingly. Could a promiscuons crowd of visitors be sapposed likely to scrutinise the proportions of the engines, the size, shape, and arrangement of the small and inconspicnons parts, and all those minatio which, as the professional engincer knows, constitate the excellence or worthlesaness of a marine eagine? The history of this vensel has been a series of anfortanate mistakes from beginning to end. Firat, she was huilt in docke of which the opening was too narrow to permit her exit. The cbrysalia grew and increased in atatare, and when the time came for quitting its wingless state, and going forth freely into the world, was fonnd unable to emerge from its integument. However, these difficulties, the result of groas bungling, were at last got over. But the troubles had only just cemmenced. The engines were found to be-what engines might have been predicted to prove, which were conatructed by men who had never undergone the discipline of an engineer's workshop. Professional engineers were again called to the reacne, and this time, Mr. Field, of the firm of Mandslay and Field, wat the re-operator.

At present, the Great Britain lies npon the coast of Ireland, beaten and buffetted by the wind and tide. No one knows bow she got into her presnet position ; this, like all her previons adventures, has the cbarm of mystery abont ib-a mystery which baflea buman penetration. There is a convenient complexity about the atory, which avert condemnation by pazaling the judgment. Bristol charti not drawn as they onght to be, the Isle of Man appearing where it ougbt not to be, the captain's notions of time and space, the advantages of an ontried course to the north of Ireland, the diroctors complaisance, and barrels of gunpowder placed behlad the resael to blow ber-not up-but off:-these are the materials of the story; of which the only certain part is the event-namely, that the Great Brituin lies ashore in

Dandrum Bay, beaten and buffetted by wiod and tide, at aforeasid, and that she is reserved for further amateur experiments.
As no lives have as yet been lost in these experiments, one would not gramble at their having been carried on with a view to the advancerment of practical acience, if they bad been conducted with some regard to economy. Bat What in chiefly to be complained of is, that experience has been purchaced at so dear a rate. Fifty thousands to a buadred and twenty thousaods of poouds aro not trifing soms to pay in experimenting. Are we to suppose that eogineern like Watt, Maudalay, Miller, Seawards, Peon, or Napier, sequired in a day the experience necessary for the constraction of marine engines of from $\mathbf{5 0 0}$ to 1000 horse power? A man must fitter his inventive talenta most outrageously if he supposes that they can compete againat the cecumulated knowledge of others, who, even if for argoment rake we suppose them greatly inferior in individal capacity, have yet beed working together for years in the same porsuita. It is impossible to imagine that the abilities of one man can ever so greatly surpass those of the rest of mankind as to enable him to contend against the long-continued and co-operating efforts of his fellow labourers. We do not wish to give to experience more than its due share of merit; but it is obvious to every one who knows any thing of marine engines, that the most profound scientific knowledge, and the most brilliant inventive talents, will not alone constitute a practical engineer. Long, laborious, even painful, experience must be superadded.
That every man is to be trusted in his own art-cuique in sua arte credendum est is a proverbial expression, add like other proverbial expressions involves both truth and falsehood. The man who is constantly in practice of the technical rules of his profession, add who trusts to his experience alone, will frequently become the slave of routine. He has got into fixed habits of thought-like the mill-horse he can only go his round : and a valuable idea which woold occur to a mere bystander may be overlooked by him. The extra-professional suggestions of clever amateurs or men of acience are not discouraged : and the professional supercilionsness with which such saggestions are frequently met is destestable. But there is a great differeace between encoaraging the suggestions of inexperienced persons, and suffering such persons to carry out their ideas independentiy of profesional control; eapecially when the works undertakeo are of such magnitude as the Sidon, the Great Northern, or the Great Britain.

THE NEW PLANET.

The dispute respecting the discovery of the new planet is likely to be brought to a satisfactory termination. At a meeting of the Astronomical Society, held during the last month, the Astronomer-Royal read a paper, tracing the investigations from the commencement, and distinctly assigning to Mr. Adans his priority of right and title to the discovery. Profesor Airy has been in correspandence with both M. Le Verrier and Mr. Adams, and bis paper was sapported throughout by original letters and other anthentic documents, of which the dates are indisputable. He allows fully to M. Le Verrier the merit of having performed his investigations independently, and of hariag, in the first instance, announced his results in a more pahlic manner than Mr. Adams. The latter contented bimself with depositing in the Greenwich and Cambridge observatories the calculations neressary to facilitate the search for the planet with the telescope.
It is very important to remark, that the calculations of Mr. Adams were not only the earliest, but by far the most ample and recondite. M. Le Verrier contented himself with publishing last June the heliocentric longitude of the planet. In addition to this, Mr. Adams announced its mass, Longitude of perihelion, and eccentricity - ininitely niore difficult and complicated iovestigations than those to which M. Le Verrier restricted himself. No one would wish to detract from the merit of the latter, but to compare his labours with those of his sciedtific opponent would be ridicalous.

It is very gratifying to learn that the paper read by the AstronomerRoyal, and Mr. Adams's investigations, are about to be published. The world will then have the opportunity of examining the two independent investigations. Men of scieuce will confiue thenselves to the examination of them on their own merits, irrespectively of all considerations of the time when they were made, and we doubt not that even the French philosophers will allow the superiority, in this respect, of the claims of the Englishman. The publication of the paper read by the Astronomer-Royal
will almo confirm, on the highest aothority, the assertion made in these pages last month, that Mr. Adams's claims were prior in point of time, at well as intrinsic merit.
The opponenta of this view of the question are now shifing their mode of attack-a sare sign that they are losing ground. They say that the announcement to the French Academy was more public than that to the English astronomers, and that according to a conventional rule in theae matters, the discovery belonge to him who makes bis annonocement in the most public manaer. But what more conld be required of Mr. Adams then that he should deposit his results in the principal public observatories of Great Britain! He made known his discoveries to the AstronomerRuyal, and through bim to the whole body of English astronomers-Sir John Herschell, for instance, was perfeclly a ware of Mr. Adams's investigation, though the information reached him in no other way than through the Greenwich observatory. Besides, the papers were deposited in the very places where alone the requisite telescopic ubservations could be undertaken. Had Mr. Adanis the least suspicion that any attempt would be made to wrest his rights from him, he might, with the greatest ease, have precluded the attempt effectually. The French Academy may hag their self-conceit, and extol M. Le Verrier for having flattered it by addrensing his communication to them; but let them not accuse Mr. Adams because he has not imitated this course, but acted more soberly and quietly. The publication made by him was quite sufficient for all useful purposes-not quite sufficient, it seems, for show and ostentation.

Many great mathematical discoveries have heretofore been commonicated in a far more private way, and yet the claims of the discoverer remain incontestible. John Bernoulli first announced the general principle of Virtual Velocities in a private letter to Varignoo. Is therefore the merit of his discovery the less because be stated it through the medium of ordinary correspondeace? The different modes of making a discovery koown are comparatively trifing; and certainly if in the case before us a comparison muat be made, it results in favour of Mr. Adams, who chose the method most adrantageous-not to his own fame-but to the interests of science.

There is one consideration however which may perfectly satisfy us in all these disputes. Wbatever discussion may now exist as to the proper conventional method of making known a discovery, posterity will concern itself little in a debate mo trifing and artifical. Future generations of philosophers will be more anxious to know the author of the discovery, than the etiquette which ought to be observed on the occasion. These foolish ephemeral quibles will be forgotten with the authors of them; and the great sterling fact will alone remain, that our countryman was the first man in the history of the world who looked into the firmament with prophetic sight, and discerned there a new world-weighed it, measured it, and traced the course of it, while as yet unseen by human eye.
One of the magazines speaks of Mr. Adams as an under-graduate! It is provoking that these "scientific journals" do not confine themselves to subjects of which they know a litlle. Mr. Adams took his degree as senior wrangler, is fellow and lecturer of St. John's, and the University moderator for next year.
The fullowing may be relied upon as an accurate aketch of the bistory of Mr. Adams's labours. We should not perhaps be justifed in atating the authority for this statemeat, but the reader may be assared of the accaracy of the dates. The resolution of endeavouring to account for the pertarbations of the motion of Uranus by the action of another planet, was first formed by Mr. Adams in the gear 1841; and it appears, from memorada, that Tioding, in the summer of that year, the labour of calculation to be so great, that, if undertaken at that time, it would seriously interfere with bis academical studies, he resolved to defer, until after laking his degree, the investigatiou which was to determine approximatively the place of the disturbing planet, and thus assist astronomers io discovering it by actual observation. In the course of 1843 (three years ago), the first approximation to the place of the planet was arrived at by Mr. Adams, and the calculations, thongh comparatively rough, were sufficiently close to satisfy him that his hypothetical explanation of the anomalies in the motion of Uranus was a correct one. In February, 1944, having obtained from the AstronomerRroyal the observations made at Greenwich since 1781, he renewed the investigation of the problem, and this time rendered it mach more complete than befure. Several solutions were obtained, differing but very slightly from each other; and by successively taking into acconnt more and more terms of the series expressing the perturhations, arst in April, 1845, again in May, and finally in September of that jear, the ac
curate solution of this wonderfol problem was at last obtained, and was immediately communicated to Professor Challis, and in the following month to the Astronomer-Ruyal. Both Professors were therefore in possession of the perfectly complete molution apwards of a year ago.

MOVEABLR JIB CRANES.

Remarke on the utility and defects of the Moveable Jib Crane, aecording to the construction now generally used in Glasgov, with proposed Improvements to obviate its defectr. By William Gale, Glaggow. Read at the Institute of Civil Kngineers. (With Engratinga, Plate XIX.)
The author's attention having been recently drawn to an examination of the causes of numerous accidents (many of them attended with fatal consequences) during the erection of some of the public buildings in Glasgow and the neighbourhood, he found that one of the most fruitful sources of these accidents was the defective constraction and injudicions use of the moveable jib crane. This crane, it may be remarked, has nearly superseded all others used by builders in Glasgow, and is at present employed at most of the public buildings in courne of erection. It has, however, undergoue material alterations since its introduction hy Prancis Watt upon Mr. Stevenson's works, duriag the erection of the Bell Rock Lightho ase; but while undergoing these modifications and changes to suit convenience, the principle of construction has undergone a change, which has increased the atrains to a very considerable extent.
As originally constructed, the post or upright a was from 20 feet to 30 feet long, the jib δ being of about the seme length; the upright was aupported by gye-ropes or chains, similar to the mode asually adopted in quarries ; but at present the post is reduced to 15 feet in height, and the jib is extended to 50 feet in length, whilst the inconvenience or rather impracticability of getting the gyes fastened in many cases, such as in erecting street buildings or quay walls, where there is a great traffic, led to the aubstitution of the two arms c, d, and the framing (Plate XIX. Ag. 1) ; and, in order to prevent it upsetting, the framing is loaded with stones, or other heavy materials, or when placed on the upper stories or roof of a building, which is frequently done, the framing is lashed down with chains to some fixed points beneath. It will at once appear evident that this alteration in the construction, by shortening the post or upright a, and lengthening the jib or derrick b, must have increased the strain on the jib chain to an enormous extent, and in many instances the accidents occurred from the snapping of the chain.
No one who has seen this crane in operation can call in question its great atility to the builder, on account of the expedition and ease with which heary block: can be bedded over a considerable extent of front, without moving the position of the crane after it has been once fixed down; but the point to be objected to, is the great amount of strain thrown on the jib chain, even with moderate weights attached, when the jib is worked at a great inclination from the perpendicular, and when it is considered that a weight of 4 or 5 tons is frequently suspended from it, it is certain that if builders were only made sensible of the risk, they would be more scrupulous in hazarding the liven of those under their charge, and fewer accidents would be beard of.
From what has been stated it will be obvions, that the total strain thrown on the jib cbain depends upon various causes. 1st, The leugth of the jib. 2nd. The height of the post. 3rd, The inclination of the jib. 4th, The weight attached. 5th, The proportion of weight due for the jib itself, with its mountings and chains; and 0th, The friction. Aware of the danger of trusting to theory alone, in making an accurate invertigation into these sources of straio, the author had recourse to variety of experiments, hy model, being at the same time sensible of the fallacious nature of the results deduced therefrom, unless increased size and weight, and consequently increased leverage and friction, were all accurately calculated and allowed for. After numerous experiments, however, it was found, that a near approximate agreement took place betwixt the results brought out by the model and those deduced from theoretical investigation for the full-sized machine.

In the theoretical inveatigation of the question, the weight to be raised being known (which must include the proportion of weight dae for the jib, $8 c_{n}$ along with that due for friction), it is only necemary to apply the paral-
lelogram of forces in the usual way, in order to obtain dets wherehy to ascertain the strains; thus if A B represent the total weight, B D AC gives the atrain on the jib chain, while AD represents the strain on the jib. Or if $C^{\prime} D^{\prime}$ represent the total weight, $A C^{\prime}$ and $A D^{\prime}$ respectively represent the strain on the jib chain, and the jib or derrick.

Keeping in view, that the great utility of this crane, for street erections, consists in its h aving a long jib and ahort pott, it became an object to im. prove the acknowledged defective part of the machine, the jib chain, not by adding atrength to the chain itself, which had already been done by builders, until it was rendered quite inapplicable for winding round a barrel of 8 or 9 inches in diameter, but simply by introducing a pulley between two rods of iron, bolted to the point of the jib b, as shown in Plate XIX., figs. 1 and 2, and haring the end of the chain attached to the top of the pont or upright a, instead of attaching it to the point of the jib. A mechanical advantage was thus gained, and a much lighter chain than had bitherto been used, could with safety be adopted. The loss of speed was more than enmpensated by the increased ease with which the jib could be worked; but speed in this part of the crane was of little importance, as the jib was generally placed at the required angle, or nearly so, before commencing to raise the block. This is the chief improvement, which it is intended to suggest wirere this description of crane may be found suitable. It is preferable also to increase the diameter of the pulleys from 10 or 11 inches to 18 or 20 inches. The importance of using large pulleys does not, however, seem to be sufficiently appreciated by the builders, otherwise they would not allow their machines to be fittod up with amaller ones. Leatly, tine friction caused by the angle of the jib chain, after passing the palley in the post to either side of the barrel of the wheel and axle, may be obviated to a considerable extent, by confining the chain to a barrel of from 20 to 24 inches in length, (fig. 3.)

The strength of chain necessary for working the jib of this crane will depend on the nature of the work, but for general purposes a chain made of the best iron, 亲ths inch or $\frac{1}{2}$ the inch diameter, will be found amply sufficient.
As some buildera might prefer ating a rope instead of a chain for working the jib, the back view of a crane (fig. 3), and the jib head (fg. 4), aro hown. Two pulleys are introduced at the end of the iron rods, the other end being bolted to the end of the jib, as in Ag. 1, and a third pulley is fixed to the top of the post. The rope is fastened to the barrel of the wheel and axle, thence it passes over a pulley fixed on one side of the post, and then over one of the pulleys at the end of the iron roda; it then returas to the palley at the top of the post, and passing over the other pulley at the rode, returns to that fixed on the other side of the post, and is fastened to the barrel of the wheel and axle. Thas tbere is one contiouous rope, equally strained by means of the pulley at the top of the post. By having also the barrel of the wheel and axle dirided into two compartments, as ahown in fig. 3 (back riew), the one compartment being about two inches larger in diameter than the other, the whole of the pulleys will be set in motion when the jib is working. The rope necessary to work this crane may vary from $1 \frac{1}{1}$ to $1 \frac{1}{5}$ inch in diameter, according to the weight of the materials used, and it would be preferable to a chain, where this construction is adopted. Fig. 5 is another view of a jib head, showing tle attachment of the rope and palley to the jib head. The scale of Fig. 1 is drawn to a scale of 10 ft , to $\frac{8}{5}$ of an inch, and the remainder of the figures double the size.

WARPING HAULAGE ON CANALS.

A new system of haulage has been tried for the first time in this conatry on the Regent's-caval, through the tundel under St. John's wood, Paddington. It is the invention of Captain Beadon, and is said to have completely succeeded. We have some impression that a similar syatem has been adopted in America for passing up the rapids. That does not detract from its merits, but otherwise, proves that ihe invention is a practicable one. The plan consists of a ateam tug-boat and ropes, as shown in the annexed engravings. Fig. 1 is a side vifw, and fig. 2 a plan view, of a vessel fitled with steam power and the haulage ropea.

A A engine and boilor, B C two reels or cylinders, carrying wite ropes D and E, passing ont fore and aft of the said boat. These reels bave in front of them guides to regulate the wire ropes in winding up, and paning off such reels, and they are connected with the driving shaft of the eagine by endless chains, shewn in fig. 2, and are placed in the boat fore and an the engine and boiler. Each reel contains six miles of wire rope, whitb is alternately laid down in the bottom of the canal. The ends of these ropen are attached to the reels. and the two other ends of such ropes are fasteaed to posis in the canal banks; and when the one, say tbe rope D, is wonad ap, the entire working end of the other, E. is down in the caasal. The reels aro thrown in and ont of gear by the reversing motion of the en-

Fig. 1.

Fig. 2.

gine. The action of the boat is as follows : the reel \mathbf{C} is thrown out of gear, and the reel \mathbf{B} into gear, the engines are set in motion, and the cylinder or reel B revolves and winds in the rope D, whilst the cylinder or reel C being out of gear with the engine, is free also to revolve, and does so by the traction of the rope E, which is thus gradually delivered down into the canal as the boat proceeds along. As soon as the boat arrives at the and of the rope D, the engine is reversed, the cylinder or reel B is thrown out of gear; this then begins to wind the rope A, and the cylinder B to deliver the rope D; so that, in fact, by simply winding in and out of the two
ropes is the boat propelled along backwards or forwards six miles each time.
To tow barges or boats ulong, they are attached by a tow:rope to this boat, and proceed with it to the end of its rope or station. They are then disconnected from the boat, and attached to another similar one, and taken other six miles, and so on to the end of their jouracy. The canal is thus divided into a series of stations, baving tug-boats to start at appointed limes, so that boats, as they arrive, are forwarded with regularity.

RAILWAY CURVES

Sir,-At the time I haoded you the sketch and description of my instrument for simplifying the tracing of railway curves on the ground, and published in your Journal for November, p. 332, jou called my atiention to a method ungented by your correspondent, "A" Engineer out of Employment," in the Journal for October, p. 300.

Where the extremities of a chord line have been already ascertained and given, and seen. there can be no doabt of the simplicity and accuracy of your correspondent's method, provided the localities be suitable for its exeoution. Indeed, I am mach inclined to think that, onder those circumstances, it is superior, being less complex, to any other method I have met with.

I would aggest that it is better to avoid referring to tabular ioformation but to be as independent of it as possible. The nersed aine of any arc may be readily found, whero the radias and chord are given, by the 47 th problem of the Firat Book of Euclid:-From the square of the radias deduct the square of balf the chord of the arc. and the square root of the difference deducted from the radius, will pive the versed sine, or offset, for any segmeat. After this, the time and troable of chaining the whole length of the
chord of half the are may be saved, for it will be found to be equal to

$$
\sqrt{(\text { (the chord of the arc })^{2}+(\text { versed sine })} \text {, }
$$

so that only the half of it will be required to be measured; and, al thin point, its versed sine may be found as in the whole arc ; that is-From the square of the radius of the whole arc, deduct the square of half the chord of balf the whole arc ; and the square root of the difference, deducted from the radias of the whole arc, will be equal to the veraed sine of half the arc; and so on, ad infinitum.

The chief object I bad in view, in recommending the ase of my instrwment. was its applicability, almost, I may say, under any circumstances. When obstacles occur, for instance, the tangent may eithor be made to work past them, or to stop short of them, Scc.; a new calculation will of course be requisite to be made at each alteration of the tangent, but that can very soon be done. Another advantage is, that it does not require to see farther than the length you choose, or find it couvenient to make the tangent. Wm. Talt.
Military Library, 80, Charing Cross.
N.B.-In the description of my "Curve Tracing Instrument," "b"is used for $c b$, and "effect" for offret.

BARL'S GONIOMBTRICON.
(Regitered by Mm. Gzorom Earl, Sehool of Detign, Peckham.*)

The great recommendation which this inatrament has received from the Pletorial Times induces ua to lay it before our readern. We doubt not it will be found to be a very serviceable appendage to the traveling architact. The following is a description of the inatrument as given in the above journal.

Fig. 1.
"This neat, elegant, and portable delineator has been con. wived to enable persons unskilled in drawing to find the perspective direction of the vanishing or receding lines of objects. This it does with an ease and accuracy which is almost fascinat. ing. All practitioners, and persons in the habit of sketching architectural or other complicated viewt, know the ertreme diff. ealty of getting the leading lines of the pictare projected with accuracy, and how easily the subordinate parts fall into their places when once theac are obtained. This difficulty the goniometricon obviates, and with its assiatance the most uninitiated may hereafter master the art of drawing in correct proportionate perspective. The mode of asing the instrament is thus described by Mr. Earl:-Place the instrument between the eye and the object to be outlined, which is done by holding it with the finger and thumb of the left hand, at a point between the top of the arc and the universal joint. It ia then fixed in that poation at an angle of 60 degrees with the line of viaion, a task sccomplished by taking a small ivory acorn attached to the instrument by a string, and placing it firmly between the teeth, When the connecting atring is stretched to its fulleat tension. This done, the inatrument it moved till one of the indicators (which in the cat looks like the hand of a clock, coincidea with the line whote downward or upward direction is is sought to eceertain. That point diccovered, the instrument is laid fat on
 the drawing-paper with the horizontal bar parallel with its lower line, and gently moved to the reqnired ponition, when the line of direction is miled of from the edge of the indicator. The bottom of the instrument is set with diviaional points, to assint in aketching the proportions of figares, trees, and objects of irregular form or outline.
"We have only to add to our recommendation of the goniometricon, that it in much used by artists and travellers, and recommended to general ase by mo lew a person than the Aatronomar Royal."

The Bngraviag, fig. 1, is a front view of this very ingenions and useful instrument; fg. 2 exemplifes the manner of its application.
Besides the valuable teatimonial referred to, from Profeser Airey, we observe there is one from Mr. Reynolds, of the Kew Observatory, who sayn"Your instrament is precisely what Dr. Priestley, in his valuable work on perspective, hoped some mechanical man would discover, in ordar to make the science of perspective tangibie to the comprehenaion of all."

FIg. 2.

*We are indebted for the une of the wood engravings to our cotemporary, the "Mechanica" Magasines"

BLASTING UNDER WATER.

Paper on the application of Guxpowder as an instrument of engineering operation, exemplified by its use in blasting marl rocks in the River Severn. By George Edwneds. Read at the Intitute of Civil Engineers.

Many plans have been proponed at different times for the improvement of the Severn. It is sufficient, however, for the present purpose to state, that in 1842 an Act was obtained under the advice of Mr. W. Cubitt, V.P. Inst. C.E., for the improvement of 43 miles of its length, from Stourport to Gloncenter; over which diatance, in many places there was not 2 feet dep th of vater during the summer neason. The object of the proposed works i
to increase this depth to 6 feet of navigable water daring all seasons. Ahore Worcenter the additional depth is obtained partly by dredging, bat chiefy by a series of four weirs, varying between 300 and 400 feet in length, with side locks for the the traffic. Between Worceater and Gloucester (a diatance of 29 miles), it is proposed to obtain the required depth, partly by contracting the channel by embankments of fascines, and partly by dredging. Messra. Grissell and Peto having undertaken the entire completion of the works, from Stourport $t \boldsymbol{t}$ Glonceater, the superintendence of the dredging operations was entrasted to the author. The shoal to be removed by dredging are geacrally isolated, varying from 100 yarda to half a mile in length, and they require excavating to a depth of from 3 to 5 feet. A lerge proportion
of these shosls consist of allavial gravel, without 'flinta, but 'principally of quartzose and granitic pebbles, varieties of porphyry and of compact and granular sandstone. This material, although very hard in some places, offered no engineering difficulties. Other shoals consist of denaded beds of hard red marl; this material being found in every instance, when the river impinges upon the eastern or western limits of its valley. In most places it was to hard, as to render its removal by tbe dredging machine quite impracticable; and it is the object of the present communication to describe the method of blasting, or breaking up this material, with gunpowder, no as to render it capable of being dredged up with facility.

That part of the river Severn, above described, travertes nearly north and south the great plain of red marl of the new red sandstone formation, the bed of the river from Stourport to about mile below Holt bridge, near Ombersley, being formed through the upper strate of the new red sandstone; upon this lies the great bed of red marl (in places saliferous), dipping at a imall angle, but irregularly, to the south east. The river traversea the whole of this strata, which is probably more than 1000 feet in thickness, passing through the apper strata, and entering the lian formation above Gloucester.

The red marl is generally considered by gealogista to be formed from the debris of o!der rocks, and it appeara to be totally devoid of organic remains. It lies generally in beds, rarely exceeding 15 inches in deptb, and often mucb less. It is divided occasionally by strats of greenish grey marl, and near the upper part of the formation by thin, but very bard, beds of shaly, or imperfect lias.

It is difficult to describe the comparative bardness of materials, but when it is stated, that in many places it was impossible to cause a steel chiselpointed boring tool to enter it by any ordinary exertion, by hand, from a boat, it will be conceived that it could not be readily raised by dredging. After exposure to the action of the air it breaks up into small fragments, almost like the slaking of lime, so that solid blocka, which could only be broken by the application of considerable force into tharp-edged fragments, would, in the course of a few days, fall to pieces and afford no criterion of its hardness in an undisturbed state.

When the dredging machine was tried npon one of these marl sboals, it was fonnd impossible to raise above 60 or 60 tons per day, and that with constant risk and repeated accidents to the machine; but such rate of pro. gress was totally incompatible witl the required progress of the work. Attempts were first made to break it up by driving iron bars into it, and prizing it up, but this plan did not answer. A second attempt was made to loosen it with a very atrong plough, something like a "subsoil" plough, which was proposed to be pulled through the marl hy powerful crab fired on a barge, the plough being guided by a strong pole; the effect produced was, however, so superficial, and the expense of labour was so great, that thia method was also abandoned, and experiments were made to ascertain the effect and probable cost of using gunpowder. These were so satisfactory, that it was determined to blast all the marl sboals, previous to dredging them. In January, 1845, as soon an the requisite materials and establishment could be prepared, this operation was commenced, and has since been carried on with no other interruptiona than those occasioned by freshes in the river ; the total length of blasting required (about a mile and a half,) being now nearly completed, and a considerable portion of the marl since dredged up, at the rate of 200 or 300 tons per day with perfect facility.

The most economical method of using powder. to break up a depth of rock like that described, would probably be to obtain a face of the required depth at one end of the work, to put in a row of shots at the back of it, and after each discharge to remove the loosened marl; continually repeating the process ; but this method would bave been open to many serious objections. The dredging machine and the blating gang would have been constantly waiting for each other, and having but two dredging machines to perform the work, it was of great importance to economise their time in every possible way. By such proceedings also, a constant obatruction to the navigation would have been created, equal to the whole width of the new channel. The number of men that could bave been employed in blasting would also have been very limited. These objections, in this particular instance, far outbalanced any little asving of ganpowder. It was therefore determined to put in perpendicular shots, throughout the site of the cbandel, at euch distances as experience might prove to be beat, and proceedings were commenced with spaces of 6 feet from centre to centre of the sbot holes.

Sis rafts were used, as stages to work from: they were each formed of four baulks of timber, abont 40 feet long; the baulks, placed in paira, were secured at a distance of 4 feet apart, by cross pieces, 6 inches aquare, well spiked to the haulks at intervals of 6 feet; these were covered with deals 3 inches thick, laid lengthways of the raft, a space of 12 inches in width being left open along the centre. The ends of the rafts were provided with strong ring bolts to moor by . These rafts were confined to one hank of the river by ropes, and retained at the required distance from it by a series of "sets," or booms, abutting against tbe bank. At the up-atream end of the raft was a large barge fitted up as a blacksmith's shop, for the necessary repair of the tools, with dwellings for the watchman, the ganger, \&cc. The bows of the barge were strongly fortified, and a strong olllique boom of large baulks reached from it to the shore, $s 0$ as to protect the whole fieet from the craft coming down the river. At the down-stream end was another barge, fitted up an a powder magazine and as a ahop, furnished with every pecessary for the manufacture of the cartridges and for the storing of their meterial. The
words "powder magazine" in large letters were painted on both sidea of this vessel.

The first operation consisted in placing and securing in their proper positions, the pipes through which the boles were to be bored. Small staken, painted with a series of numbert, were first driven into the benk, parallel to the work, at distancen of 6 feet apart; as far behind them as the slope would allow, was another row of stakes parallel with the first, so that a hine drawn through two stakes would be at right anglen with the river, and a person standing behiad the two stakes conld readily direct the workmen when to lower the charge-pipe, which was then secured in its place, in the opening of the raft, by " timber dog:" driven into the raft on each side of it The pipes were of wrought iron, drawn for the purpose by Messrs. James Ruasell and Sons, of Wednesbury : they were $3 \frac{1}{4}$ inches in diameter, fithe inct thick, and 9 feet long.* Two collars, half inch square, were ahrunk on them near the upper end, for the purpose of retaining a rope, by which they were secured when the charge was fired. When the deplb of the waser increased, these pipes could be lengthened 4 feet by an additional piere, prepared for that purpose; this joint was made by shrinking on a collar, 6 inches long, oser the joint. The pipe being ln it place, was driven through any gravel that might remain and a few inches into the marl. The graved was generally so thick upon the marl, that it was requisite firt to remove it by means of the dredging machine. To protect the thin edges of the pipea whilst being driven, a cast iron cap, or plug, was used, which received the blows from a heavy wooden beetle; the interior of the pipe was nert cleared of any and, or gravel, that might have entered while putting them down. The principal tool uned for this purpose was an iron bocket or cylindrical tube, 2 feet in length, of as large a diameter as would pass dowr the whole; it was furnished at the bottom with a valve opening inwande, and was jointed to a round rod, of the requisite length, half an inch in diameter, and when uaed with a pamping motion, quickly brought up whaterer could not enter at the valve.

The boring then commenced; a gang of three men being atationed a each pipe. The firt operation wat that of the jumper, which wea mode with a single steel edge, a little rounded. The jumpers were of round iron, 1 inch diameter, except 2 feet in length at the lower end, which was 1 ㄴ inch diameter. Por general use they were 15 feet long, and weighed absat 52 lb . each ; after working them till they were nearly set fast, an auger wra inserted to raise the plug of loosened marl and to render the hole true. The shell of the auger was 20 inches long and nearly closed up, the better to retain the loosened boringt.

The shot holes were bored two feet below the proposed bottom of the dredging, as it was expected that each bhot would dislocate, or break into small pieces, a mass of marl of a conical or parabolic form, of which the

Fig. 1.

Horisoatal line thows depth of dretging.

- Whert the marl wat so deep an to require 8 or more poonde of powder, it wat cooch that the cartridgee of ruch diameter ta could be used in these small bores, were mo bom at to lose port of the effect of the gunponder ; tubsequently, pipen of 4 lachea diameter
wure used with edventege.
bore hole would be the centre, and its botiom the aper, so that four adjoining shots would leave between them a pyramidical piece of marl, where the powder would have produced little or no effect. By carrying the shot holes lower than the bottom of the intended dredging, the apex only of this pyrmid was left to be removed, and in practice this wat found to form but a small impediment (6 ga. 1 and 2). A second reason was, that if the removal of the ahoals chould canse the level of the summer water to fall lower than was expected, the marl might still be found sufficiently broken, to enable a greater depth to be obtained without further blasting.

The cartridges, or charges, were formed of strong duck or canvas bags, somewhat tapered at the bottom; these were filled with the required charge of powder, varying from 2 lb . to 4 lb ., according to the depth of the marl; the end of a coil of Bickford'a patent fuse was inserted to the centre of the powder, and the neck of the bag was carefnlly gathered np round the fuse, and well tied with small twine. If the cartridge was mall, it was then dipped into melted pitch, which had about one-fourth of tallow melted with it, or otherwise the melted pitch was ladled over it, till it was uniformly coated; in this state, the cartridges were hang to drain and stiffen. When hard, they were well rubbed over with tallow, and lastly powdered over with dry whiting. The tallow, whilst it insured the atopping of any little cracks in the pitch, facilitated the passage of the cartridge down the hole; the whiting also prevented the pitch from adhering to anything. It bas alread been stated, that the powder was ignited by means of Bickford's petent fuse; but as this material is never made in lengths exceeding 48 feet, it was found expedient, in order to asve waste, to use the whole coil, cutting it off at the requisite length when absolntely in the hole, and asing the remainder in the same way till the whole was used up. \dagger

The charge was carefully pushed down into the bole hy a wooden ramrod of suitable diameter, with the end rounded; the same instrument was used for ramming down the tamping. The material found to answer best for this purpose was the small fragments of hard marl, separated by the action of the weather from the lofty escarpment at each of these shoals; this was gradually filled into the holes, and rammed solidly, till the bore was full up to the surface; the timber dogs which held the pipes were tben removed, the pipes were loosened from the marl, ropes were attached to the pipes and to the raft, or to some loose pieces of timber, and the shota were fired. Generally there was little external effect beyond the pipes being lifted a few inches, though sometimes they would be blown up several feet, and occasionally the water would be forced up through the pipe to a height of 40 or 50 feet. All the gangs commenced their holes in the morning, and they were generally all ready to fire at the same time, which was always done, as it caused least interruption to the work.

It was a rare occurrence for a shot to mins fire-probably not once in a handred shots; the failure arising generally from a leak at the joint between the fuse and the bag. If the leak was not very serious, the shots were often ased by the following somewhat singular expedient. An iron bar, finch in diameter and of sufficient length, pointed at the end, was kept in readiness, and when required the end wan heated red hot, put quickly through the water into the tamping, through which it was driven as rapidly as possibly into the powder, which in nine cases out of ten it was atill hot enough to ignite.

The result of the whole work being invisible, great care was necessary in order to prevent mistakes and omissions. As each shot was ignited, a red mark was laid against its correaponding atake upon the bank; when it had gone off, each shot was carefully examined with a steel chisel-pointed cearcher, to prove that the required effect had been produced to the determined depth; when so found, the red mark was inserted into the top of the take, as a certificate of that shot having passed examination; the numbers eo certified were then transferred to a book kept for that purpose, and if a chot was found ineffective, another was put in the same place.

To afford space for the workmen, every alternate hole was first made, and afterwards those which had been left between them; one line being completed, the whole line of raft was moved 6 feet outwards to the next line, and so on till the required width was obtained. The whole establishment was then dropped down the length of the rafts, and the process was repeated. When the men had become used to the work, each gang would sometimes get down four shots per day, to that with fifteen gangs sixty shots have been Ired per day.

It may be objected to the use of the patent fuse, that the ignition of a number of charges simultaneously by the galvanic battery would have produced better effect, at less cost, and in a more scientifio manner. The author commenced the work under a different impression, and aubsequent experience with tbe battery has not altered his opinion. When it is required to separate a large stone from its bed in the quarry without hreaking it, nothing can be better than the numerous simultaneous discharges, which can only be ohtained by the use of the hattery, but the object in this work, on the con. trary, was to break the mass to pieces as much as possible, which it is concejved would be more likely to be effected liy distinct discharges.

Then as regards cost : the patent fuse No. 3, carriage included, cost $\frac{5}{10}$ ths

[^54]of a penny per foot; if the average length is talen at 15 feet, that is just nine-pence per shot, a sum which would barely pay for making the arrangement of wires necessary for the galvanic ignition. It was also found, from the compressible nature of the canvas cartridges, that the arrangement of the wires was very liable to be disturbed, during the insertion of the cartridge into the hule, or by the subsequent ramming of the tamping. After considerable experience, therefore, and the use of nearly 100,000 feet of the patent fuse, the author feels that he is only doing an act of justice to the Messrs. Bickfords, in stating the perfect sacisfaction which the use of their ingeniously manufactured material has afforded him, in the prosecution of the work now described.
There now only remains to be given the cost of tbe operation above described. The first cost of the establishment or plant, sufficient for 6 months' work, wat $£ 300$. Tbis iscludes the waste and use of timber, in the raft, stages, booms, \&ce., hire of barges, and cost of fitting them up for the work, cost of pipes for boring, iron aud steel for tonls, deducting estimated value When done with, sundry ironmongery, wate and lose of ropes and other amall storen.

More than four thousend shots have already been fired, and in the six months, at a low computation, six thousand will have been fired. This number gives just one shilling per shot, as the proportionate share per shot of the cost of the plant; this would of course be much leas if the work was to be continued.

The cost of labour per shot varies from 2 s .6 d . to 4 s .; this sum, however, must be quderstood to cover the wages of the whole establishment as under: Superintendent of the work.-Poreman and timekeeper.-Bxaminer of the shots.-Maker of cartridge and two assistants.-Carpenter.-Blacksmith and hammer man.-Labourers, some at 3s.; majority at 2s. 6d. and 2s. 9d.-Watchman.-Thus the total cost per shot is as under:-

If, therefore, the shots are 6 feet apart, and an average depth of 3 feet is broken up, 4 cubic yards are prepared for dredging at the cont of one shot; or the cost of the whole operation is 1s. 9 d. per cubic yard. Distances of 5 feet apart were used in some very bard shoals, and space of 7 feet were tried in some that were softer than usual ; apaces of 6 feet ayart, however, appeared to be generally sufficient.

ON THE CORROSION OF METALS.

Paper by R. AdIE, of Liverpool, read at the Institution of Civil Engi-
neers.
This communication is intended to give an experimental proof of the fact, that water saturated with common salt, preserves to a great extent the surface of the oxidizable metals from corrosion by the joiat action of air and water. From sone trials upon metals placed beside water in closed glass tubes, it was shown that water, or water containing a asaline solution, does not act as a corroding agent, without the aid of the oxygen of our atmosphere. The details of some experiments, made to ascertain the quantity of oxygen dissolved by water uoder different circumstances, showed that brise and some other saline solutions contain much less dissolved oxygen than sea or ordivary witer, which was the fact that induced the trial of salt water as a preserver of iron. The object of the last set of experiments was to deternine by trinl, the rates of corrosion of metals in fresh water, sea water, and brine; the results of these show that sea water corrodes the quickest, fresh water less rapidly, and brine very much slower than eitber.

On the rate of action of brine, sea and fresh water, in curroding.
These experiments were made with weighed preces of metal immersed in the three solutions nuder examination. Those which are compared together, were tried in every respect under similar circumstances, as to weight and surface of metal; size and form of vessel ; quantity of water employed; light and tenperature.

The experiments on zinc were made with that metal in connexion with a piece of copper, so as to form a galvanic couple; for zinc, when uncon nected with a less oxidizable metal, is soon covered with a crust of oxide, so that pieces, after a month's immersion in water, are found to be slightly heavier than at the beginning of the experiment. This is not the case when a piece of silver or copper is in metallic connexion with zinc; for then the white oxide of the metal is gradually precipitated to the bottum of the containing vessel.

A plate of zinc, 1 superficial inch in area, immersed
for 60 days in sea water
A similar experiment in fresh water
A plate of zinc, 7 superficial inches in area, immersed
for 96 days in fresh water
lost $1 \cdot 0$ grains. , $1 \cdot 15$
, $4 \cdot 9$

A similar experiment in brine, or the satarated sola. tion of common salt tented as above for dissolved air Wrought iron wire: -
Twenty pieces of iron, weighlog 374 graine, im. mersed for 80 days in freth water
$n 1 \cdot 4$
lost 1.9 graing.
A similar experiment in sea mater
A similar experiment in bride $n^{2.6}$

Cast iron:-
Three rods of cast Iron, woighing 787 graing, Immersed for 69 days in fresh water
lost $1 \cdot 6$ grains.
A similar experiment in sea water
" 9.0
A similar experiment in brine
On comparing together the lose of weight of metal in the fresh water sea water, and brine, it will be observed, that in sea water the corrosion is about one third more than in fresh water; while in brive, the loss of weight is about one-fourth part of the loss in fresh water, and one-fifth part of that experfenced in sea water; showing that brine possegses considerable power for preserving metals from corrosion. The carbonates of potash and soda are still more effectual in arresting oxidation; for in anterated soln. tions of these salts, iron wire remained immersed for sixty days without any amount of corrosion being detected. The surface of the plate of zinc, when taken from the brine, was the same as at the commencement of the experiment, excepting in three spots, where there was deep corrosion. The principal of these being aronnd the point, where the copper wire connected the plate with the negative element. The difference shown between fresh Fater and sea water, in their power of oxidizing metals, is in the reverse order of the quantities of oyygen dissolved by them, as given in the preceding experiments; where the sea water is to the fresh as 78 to 85 . The principle on which the preserving power of alcohol is attempted to be explained may, in like manner, be here applied to pare water. Althongh the ? eperiments on the corrosion of iron were continued for eighty days, the diffrence between the action of common water and brine may be made apparent in one day. In the fresb water, the hydrated peroxide of iron is seen forming; while in the brine, only a slight tinge of a greenish infusion can bo detected, a sure indication of the scarcity of onygen.

The experiments given to determine the respective rates of corrosion in fresh and sea water, are only correct for pieces of melal wholly immersed in them. Where the surfaces are subject to be wet and dry, the corrosive effect of sen water will greatly increase; on the same principle that iron noce coated with rust, decays much faster after tbe rust bas provided a afgment for moisture. Take for example a bar of iron in a feld, and a similar piece on the deck of a ship. On the first, the dew of night deposits water, which corrodes until the return of the sun dries it all off. On the second, on the deck, it deposits spray, which acts like the dew, until the aun dries it off; bat wben dried, there is left a thin deposit of salt, with a powerfal affinity for moisture, which on the retura of evening will attract moisture from the atmosphere, long before the dew weta the metal in the Geld. Thus it is that a coating of salt or rust, keeps metuls much longer in a wet state, than if their surfaces were clean.
Remarks.-The experiments which showed that brine (by which term, he supposed, a saturated solution of compon salt in water wus meant) sbould be found to be less corrosive of iron than sea water, was consistent with the circumstance, that less air was contained in water which was saturated with any solid substance, than was contained in water only slighty impregaated with such substance, and there was no doubt, but that the atmospheric air performed a principal part in the orydation of iron, which was exposed to the weather. Air containing water in solution, corroded iron rapidly; and water containing air in solution did the same; and alternate exposure of iron to water and to air, corroded it still more repidiy; particularly when by the warmith of the sun, and the blowing of the wind, the film of water which was left on the surface of the wetted iron was evaporated, or dried awuy from that surface, before a fresh wetting occurred. Yerfectls dry air was very slighlly, if at all, corrosive of iron, and water completely freed from air by boiling, was not actively corrosive, in the manner that air und water were. Respecting salt, there was nothing corrosive of iron in its own nature; it contained no oxygen, but although it was a great cause of corrosion of iron, the corroded iron was found to be an oxide, not a muriate of iron. The sult when dissolved in water, greatly increased the corroding effect upon irvo which was immersed in the salt water, and still more if the irvo was frequently wefted, or washed with salt water and dried by the sun and the wind, in the intervals hetween successive wettings. The concurrent effect of air, water and salt, was extremely corrosive of iron. It was well known, that dry salt was not at all corrosive of iron, for in stoves for drying salt, the flues were frequently made of iron plates, and the salt in lumps being laid directly upon the iron, did not currude it at all, the iron being always kept hot and dry; in the sume stuves, if they were not used, and allowed to cool, the salt absorbed huwidity from the air, and became very corrosive of the iron work. Iron salt-pans, for boiling brine, did not become oxydated as rapidly as might be expected; indeed, they were scarcely affected at the parts of the upright sides of the interior surface of the pans, which were always beneath the surface of the hot brine and were not exposed to the action of fire. The manner in which salt operated, to increase the oxydation of iron, was pro. bably by an electro-cheinical action, the chief part of the oxygen which the iron absorbed, being derived from the atmospheric air, the other part from the water, and none from the salt. In heaps of old iron exposed to water, it might be observed to lodge in the hollows, and to occasion rapid rusiong
of the iron, attended by a smell of hydrogen, and a thin pellicle floatingon the surface of the water, showing dingy prismatic coloors. The paper which had been read, mentioned abeorption of oxygen from the air by watri; it was generally understood, that when water absorbed air from the atmosphere, the nitrogen of the air, as well as the oxygen, were both absorbed together by the water, in their accustomed proportions, as they existed in the atmosphere, so as to be an absorption of atmospheric air by the water.
Mr. Lows eaid the paper led to the consideration of the change which was induced in cast iron, by continued immersion in various fuids. This had been frequently discussed at the lastitution, and it woold be desirable if Mr. Adie would conisucue bis experiments, with a view to elucidating that question, as the cuaversion of cast-lron into carburet of iron, or graphile, appeared, under certain circumstances, to be so rapid, as to have readered necessary the substitution of other and more expensive metals. In brewories, for instance, the change had been produced so very apeedily, whereover the acid wash came loto contact with motal, that copper gratings hed been of aecessity substituted for cast iron.

Sir John Rennie, President, stated, that the earliest example in his recollection of the change produced by sen water in cast iron, was in some iron gans which were fished up in 1822 off Holyhead. They wore supposed to have belonged to a pirate vessel which was destroyed there aboat 100 years previously. When found they were quite soff, but after exposure to the air for a time, they became so hard, that they were used to fire salutes, when George the IVth passed through Holyhead, on bis way to Dublin, and it was remarked that the report from thom was louder than from any other iron guns of a similar size.

EBVIEMT.

Turaing and Manipulation. By Charlea Holtzappfel, Vol. II. Illos. trated by upwards of 700 woodcuts. Holtzapfel. London: 1846. 8va.

This large octuro volume of apwards of 500 closely printed pages, is only one of a series of six. In which the subject of Mechanical Manipolation is intended to be comprised. The first volume (reviewed, anle, vol. VI, p. 1843), treated of the properties of various materials used in the arts, and their preparation, \&c. The present volume describes the various kinds of cutting tools used by the band, such as boring tools, saws, and planes, and their modification when worked by steam-angine power. The third volume will refer to abrasive processes, sach as grinding and polishing; the fourth to simple hand turning ; the ffth to complex turniog; the sixth to amateur mechanical engineering. It is intended that the first throe volumes shonld form a general preliminary work with an index io common.
The volume before ns is of so thoroughly technical a nature, and afforde the most minute and practical information on the subjects of which it treate; at the same time, it is written and arranged in a very perspicuous manoer, and abounds with interesting accounts of successive improvements of different machines, the extraordinary perseverance aad skill of the mechacicians to whom these improvements are due, and the beautifol accuracy of their final results. While therefore the chief value of this work will be the practical guidance whicb it affords respecting peculiar classes of industrial art, it has alsu an interest for the general reader, and aspecially to the engineer pursuing some branch of his profession collateral to that here considered, because it exhibits to him the important mutual dependence of the arts to each other. The introductory chapter (the 22nd of the work) gives general remarks on cutting tools, the variations of the catting angle of the tool, (that is the inclination of the surfaces meeting at its edge) and the variations of the angle of inclination to the material to be cut, which of course depend on the hardaess of the material.

In the next chapter the plane and planing machine and their modifeations are described, logether with a great deal of mionte information about joiners' benches, beach stops, adjustment of beach planea, and other myateries of the workshop. The subsequent chapter treats of turning tools for hard and soft woods, ivory, brass, iron, and steel, and the manipulation of thes instruments. Next comes a chapter on drills of all tinds, wateh drall, press drills, ratchet and lever drills, corner drilla, differential ecrew drills, \&c. The following chapter is a most interesting one upon cutting mechines, and traces the consiruction of the screw from the simple method invented by Pappus to the most refined procesces of modern art. The foor following chapters are devoted to anws, files, whears, and punches, respecsively, and the application of those instruments on a large acale by steam or otber engine power.

We offer the following extract from the clapter on ecrews, of an acconnt, which we have ouraclves read with great interest, of the successire ise-
provements in the manufacture of the screws. The great difficulty is to make the inclination of the thread uniformly regular, and the extraordinary and microscopical accuracy which bas been altained in this respect may he considered among the most admirable trinmphs of practical science. The ingenuity, skill, and persererance of the mechanicians engaged in this pursuit can be but little known to general readers.
4 The late Mr. Henry Maudslay devoted an almost incredible amount of labour and expense, to the amelioration of ecrews and screwing apparatus; which, as regarded the works of the millwright and engineer, were op to that time in a very imperfect state. With the view of producing screws of exact values, he employed numprous modifications of the chain or band of steel, the inclined knife, the inclined plane, and indeed pach of the known methods, which however be remodelled as addi. tions to the ordinary turning-lathe with a triangular bar; a natural result, as we was then in the frequent habit of consiructing that machine, and which received great improvement at his hands.
" It was noticed at page 581, that of all the methods he gave the preference to the inclined knife, applied againat a cylinder revolving in the lathe, by means of a slide ronning upon the bar of the lathe; which besides being very rapid, reductd the mechanism to its utmost simplicity. This made the process to depend almost alone on the homogeneity of the materials, and on the relation between the diameter of the cylinder and the inclination of the k nife; whereas in a complex machine, every part concerned in the transmission of motion, such as each axis, wheel and slide, estails its risk of individual error, and may depreciate the accuracy of the result; and to these sources of disturbance, must be added those dus to clange of temperature, whether arising from the atmosphere or from friction, especially when different metals are concerned.. The relations between the guide-screw and the copy were varied in all possible ways: the guide was changed end for end, or different parts of it were successively used; sometimes also two guide-screws were goked together with three equal wheels, their auts beit g connected by a bar jointed to each, and the center of ibis link (whose motion thus became the mean of that of the guides) was made to traverse the tool. Steel screws were also cut, and converted into original taps, from which dies were made, to be themselves used in correctiog the minor errors, and render the screvs in all respects as equable as possible. In fact, every scheme that he could devise, which appeared likely to benefit the result, was carefully tried, in order to perfect to the utmost, the belical character and equality of subdivision of the screw.
"Mr. Maudslay succeeded by these means, after great perseverance, in making a very excellent brass screw about seven feet long, and which, compared with standard measure, was less than one-sirteenib of an inch false of its Duminal lengih. Taking the error as the one-thuusandth part of the total length of the screw, which was beyond its real quantity, to make from it a corrected screw by the system of change wheels, would have required one wheel of 1000 teeth, and another of one tooth less, or 999 ; but in reality the error was mucb less, and perhapa nearer the twothonsandith of an inch; then the wheels of 2000 and 1999 teeth would bave been required; consequently the system of change wheels is scarcely applicable to the corrention of very minute errors of length.
"The change of the thousandth part of the total length, was therefore given to the tool as a supplementary motion, which might be added to, or sobtracted from, the total traverse of the tool, in the mode explained by the diagram, fig. 1 , in wbich all details of construction are purposely omitted. The copy C, and the guide-screw G, are supposed to be consected by equal whecls in the usual manner; the guide-screve carries the asis of the bent lever, whose arms are as 10 to 1 , and which moves in a horizontal plane ; the short arm carries the lool, the long arm is jointed to a saddle which alides upon a triangular bar $i i$.

7ig. 1.

«In point of fact, the tool was monated apon the upper of two longimudinal and parallel slides, wbich were collectively traversed by the gaidemirew G. In the lower slide was fixed the axis or fulcrum of the bent lever, the shortarm of which was connected by a link with the upper slide, of that the compensating motion was given to the opper slide relatively to the lower.

4 The triangular bar i i, when placed exactly parallel with the path of the tool, would produce no moveusent on the same, and C and G would be -actly alike; but if $i i$, were placed out of parallelism one inch in the Whale length, the tool, during its traverse to the left by the guide-screw G, would be moved to the right by the shifting of the bent level, one tenth of the dieplacement of the bar, or one-tenth of an inch.
"Therefore whilst the guide-screw G, from being coarser than required, moyed the principal alide the one-thousandth part of the total length in eacess; the bent lever und inclined atraight bar i i, pulled back the opper or compensating slide, the one-thonsandth part, or the quantity in excess;
making the absolate traverse of the tool exactly seven feet, or the length required for the new screw C, instead of seven feet and one-sixteenth of an inch the length of G. To have lengthened the traverse of the tool, the bar i i must bave been inclined the reverse way; in other words, the path of the tool is in the dlagram the difference of the two motions; in the reverse inclination. its path would be the sams of the two motiens, and $i i$ being a straight line, the correction would be evenly distributed at every part of the length."
"Whilst Mr. Maudslay's experiments in perfecting the screw were being carried un, his friend Mr. Bartont, paid frequent visits to his manofactory, and also pursued a similar course. Mr. Barton preferred however, the method of the chain, or fexible band for traveraing the tool the exact quantity ; because the reduction of the diameter of the pulley or drum afforded a ready means of adjustment for total length; and all the wheels of the mechanism being individually as perfect as they could be made, a near approach to general perfection was naturally anticipated on the first trial. This mode, however, is subject to the error introdued by the elasticity or elongation of the chain or band, and wich is at the maximum when the greatest length of chain is uncoiled from the barrel.
"These two individuals baving therefore arrived, by different methods, an near to perfection as they were then respectively capable of; each made a screw of the same pitch, and 15 inches long, and the two when placed side by side were found ezactly to agree throughout their length, and were considered perfect. The two screws were submitted in 1810 to the scrutiny of that celebrated mathematical instrument maker, the late Mr. Edw. Troughton, F.R.S., \&c., who examined them by means of two powerful microscopes with cross wires, such as are used for reading off the graduations of astronomical instruments; applied like a pair of the most refined compasses, to measure the equality of some 20,50 , or 100 threads, taken indiscriminately at different paris of the length of the screws. \ddagger From this severe trial it resulted, that these screws, which to the unassisted sight, and for almost every purpose of mechanism, were unexceptionablr, were found to be full of all kinds of errors, being unequally coarse at different parts, and even irregular in their angles, or "drunk." This rigid scratiny led both parties to fresh and ultimately successfol efforts, but of these our limits will only allow ns to notice one, apparently derived from the use of the tuce microscopes.
"Mr. Barton employed ico pairs of dies upon tho ane screw; the dies were fixed at various distances azunder upon one frame or bar, and the screw was passed through them. This was found to distribute the minute errors so cumpletely, that little remained to be desired; as it is obvions that at those parts where the screw was too course, the outer sides of the threads were cat, and which tended to shorten the screw; and where it was too short, the inner sides were cut, which tended to lengthen the screw; in fact the two parts temporarily situated within the dies, were continually endeavouring to approximate themselveg to the fixed unvarying distance, at which the dies were for the time placed.
"Mr. Barton informed the author that he employed the screw corrected in the above manner. in bis engraving machine, employed for cutting with the diamond, the lines as fine as 2000 in the inch, on the steel dies referred to in the note on page 42, vol. j_{o}; and he said that such was the accuracy of the mechanism, that if a line were missed, the machine conld be set back for its insertion without any difference being perceptible.' The anthor unintentionally ascribed the first application of the diamond to turning steel, to Sir Juhn Barton, whereas it had been used long before by Hamsden in cutting the hardened-steel screw for his rectilinear dividing engine."

These adjustments and corrections, almost perfect we they would seem to be, have been subjected to still further refinement. One of the most beautiful mechanical devices which we have ever met with is described in the subdivision relating to the application of the screw to the graduation of mathematical acales.
"One very important application of the screw, is to the graduation of mathematical scales, the screw is then employed to move a platform, which slides very freely, and carries the scale to be graduated; and the swing frame for the knife or diamund point is attached to some fized part of the framing of the machine. Supposing the screw to be absolutely perfect, and to have tifty threads per iuch, successive movements of fifty revolutions, would move the platform and graduate the scale exactly into true inches; but on cluse examination, some of the graduatiuns will be found to exceed, and others to fall short of the true inch.
"The scales assume, of course, the relative degree of accuracy of the screw employed. No test is more severe; and when these scules are examined by means of two microacopes under a magnifying power of ten or twenty times, the most minate errors become abundantly obvious, from the divisions of the scales failing to intersect the cross wires of the instrument; the result clearly indicates, corresponding irregularities in the coarseness of the screw at the respective parts of its length. An accustomed eye can thus detect, with the microscope, differences not exceeding the one thirty-thousandth part of an inch, the tweoty-five-thousandth part bejog cumparatively of easy observation.

[^55]"From Mr. Donkin's investigation of the subject, he was led to oonclude that it is quite impossible to produce a screw which shall be absolutely free from error, when micrometrically proved; and in 1823, he was in consequence led to consider that as Mr. Maudslay's method of the bent lever and inclined straight bar, would compensate the error of total length in a nearly perfect screw, a similar mode might be applied to all the intermediate errors, by the employment of a curve, experimentally obtained by the method of continual bisection employed in band dividing.
"It having been explained in reference to the diagram," that the inclination given to the bar would reduce the effective leogth of a screw, and the reverse inclination would increase it, Mr. Donkin considered that from the observed fact of one half of the screw (as estimated by counting the number of threads) being generally too coarse, and the other half too fine, the compensation would require the one half of the bar to be inclined to the right, as in the diagram, and the other balf to the left; in fact, thus bending the right line into an obtuse angle.
" Extending this mode, upon the presumption that the quarters, eights, or sirteenths of the screw were also dissimilar, the bar would require many tlexures instead of the one only, giving to it a more or less zig-zag character, or rather that of a gently undulating line. The undulations being proportioned experimentally, to effect such compensations, as should add to the movement of the upper platform or supplementary table, where the screw wha too fine, and subrract from its motion, where the screw was too coarne; so as, from a screm known to be alightly irregular, to produce the divisions of a scale, or the thread of another screw, considerably nearer to equality.
"He carried out this project in 1826, and he hes satisfactorily proved the existence of a correctional method, which is within reach of any clever workman who will devote sufficient patience to the adjustment of the engine, and which latter will be now briefy explained.........To effect the come pensation, the platform or table consists of an npper and lower plate, which are capable of a amall independent motion. The lower plate carries the fulcrum of the bent lever, whone armi are at right angles and as fifty to one, the lever moves in the vertical plane, to that its longer arm lies by gravity alone on the curvilinear odge of the compensation bar; the upper platform is preased endlong against the ahorter arm of tbe bent lever, by a spring which always keeps them in close contact.
"The compensating bar, which is of the length of the screw, or 24 inches, has 48 narrow slips of metal placed like the keys of a piano-forte, each having an appropriate adjusting and fixing screw, by which the ends of the pieces may be placed in a continuous line, or any of them may be placed above or below the line, as required in the following mode of compensation. For change of total length and adjustment for temperatare, the curved bar is more or less inclined, as in the former example, except that it is placed edgeways or vertically; it is attached to the outsido of one of the rails, by a pivot which intersects the one end of its curvilinear edge, and the other end is raised or depressed by a screw, which effects the adjastment for temperature.
"Conceiving the length of the guide-screw divided into 48 equal parta, denoted by the figures 0 to 48, it would be first ascertained by two fixed microscopes, if the halves of the screw, measured from 0 to 24 , and from 24 to 48 , were absolutely equal quantities; if not, the central alip or finger would be raised or lowered until on repeated trials the due correctional movement was applied to the table. The two halves would be similarly bisected and corrected in the points 12 and 36 , and the quartera again bisected in $6,18,30$, and 42 ; and the eighths when also bisected, would extend the examination to the points $0,3,6,9, \& c$. , to 48 . The easiest method is to compare the path of the slide, with the divisions of a superior scale, fixed upon the slide or platform of the machine.
"It would now be needful to divide the whole into three parts, by the comparison of the spaces from 0 to 16 , from 16 to 32 , and from 32 to 48 , the points 16 and 32 being adjusted uatil exactly equal, which is the most difficult part of the work; and then these three distances being bisected four times, every point of the 48 would have been examined, and some of them twice over. These adjustments having been repatedly verified, during which a very frequent recurrence to the total length is imperative the concluding atep is to file off the corners of the 48 slips very carefully, so as to convert them into a line with undulations, slight it is true, but which represent Gifty-fold the actual errors in the guide-screw; and therefore shift the taibe simultaneously with its general traverse, so as to apply the exact corrections for inequality, at every point examined and found to be in error.
"But the term error must be received in a very restricted sense, as it deserves to be noticed that Mr. Donkin first used a screw made by Mr. Maudalay, and the maximum deflection of the curved edge of the compensation bar from a straight line was very nearly the eighth of an inch, indicating the maximum error of the screw to have about the 400 th part of an inch; and as the curve was nearly limited to a single undulation, or a hill at one end, it may be presumed this minute error was in part attributable to a difference in the material, a source of perplexity from which no care is a sufficient protection. The dividing engine was employed as a traversing lathe in cutting a new acrew, and which, although it had the advantage of the compensation, only reduced the error of the new acrew to about onethird the quantity of that of the first; as shown by the new curve assumed by the compersation har, its deflection being of of an inch, when re-adjusted in the tedious and anxious method described.
"In the past year, 1842, Mr. Dookin has made a similar but en-

[^56]larged dividing engine. The length of traverse of the new machine is 42 inches, the screw has 40 threads to the inch, the cumpensation bar is as 60 to 1 , and the value of one single tooth in the countiong wheel is equivalent to the 60,000 th part of an inch; that of the first maschine having been the 30,000 ch part. It is to be boped that Mr. Donkia will complete his labours, by publishing a detailed account of these machines, the latter of which, in particular, exhibits throughout its gtructure a most refined contrivance and execution, of which no adequate ilea can possibly be conveyed within the limits of this slender notice, nor without exact drawings of the details, to the arrangement of which great attention has been bestowed."
The work is in plan one of the most extensive of all those which form the literature of practical science, and forms an invaluable addition to it. We may probably again refer to it. There are two papers by Profescor Willis; we should like to know whether they have been originally commusicated to this work, or are merely reprinted. They are inserted without any introduction.

The Assistant Enginecr's Railway Guide in Boring, ogc., preceded by Practical Memoranda on Specifications. Illustrated by 60 woodcots and plates. By W. Davis Haskoll, Civil Engineer. Williams, Strand, 1646. 8vo. pp. 136.
So many books are now published on varions branches of the practice of railway engineers, that we naturally look to the commencement of each new publication to learn the author's specific object, and how his prodicotion differs from the reat of its class. The present work has not, however, any preface or introduction: it indicates as far however as may be learned from the title of the book, and an examination of its contents, Mr. Haskoll's object has been to set before the assistant engineer a concise, but at the same time, explicit directions for his guidance, in examining the progress. of a railway, and in ascertaining that the contractors' work is astisfactorily performed. The first, and one of the most usefol chapters, gives an abstract of the clauses which onght to be contained in a specification for the construction of a railway, and the general conditions of contracts. The nezt chapter treats of railway borings, and about one-fifth of the whole work is occupied by a full account of the tools and operations requisite in boriag to ascertain the nature of the strata which a railway traverses; this chapter concludes with an account of the economic properties of various kinds of English bnilding stones. The third chapter treats of the methods of setting ont the centre line and curves of a railway. This is followed by minute directions for setting out slopes, making land plans, \&c. The fifh chapter explains the method of setting out foundations, and affords eome hints which will be very valuable to those engaged in over-looking the construction of brick arches and masonry. Mr. Haskoll gives a very bad accoant of bricklayers. They seem a slippery set of fellows, and require as much watching as horse-dealers.

The general directions for securing firm foundations are good in themselves, but not perhaps sufficiently extended: instead of referring to other works, such as Hughes's papers on Foundations, Godwin on Concrete, Vicat on Cements, and papers in the "Civil Engineer and Architect's Journal," the author might have furnished a useful collation of information from those sources. At the end of the book are a table of gradients, and that most valuable appendage-a good inder. The arrangement of the book is very clever; the paragraphs are numbered and reference to them is greatly facilitated by the frequent marginal referencea which occur on every page. The author has aaved the student mach trouble by bringing together a great deal of information, scattered abont different publications, and his task is performed in a successful manner.
The following is, with some omissions, the abstract of the clauses which, onght to be contained in a specification drawn up on the part of railway company, for the direction of contractors. For precedents of the general conditions of contracts, the author refers to those of Stephenson, Branel and other engineers, in Brees' Railway Practice. The perusal of the extract below will give to the student a good general idea of the practice of railway construction, and of the points to be attended to in overlooking the progress of the works.
"Strong general clanses in a specification are unjuat and arbitrary towards a coutractor, where they are ouly intended to abelter an eogineer from neglectful omissions, and from due responsibility, and where foll and particular explanations and instructions are not given, for the construction of the various works, they occur along the differeat contracts. But where they refer to the manner of the work, gencral worknanghip, to the kiads and qualities of materials, unless otherwise specified in particuler place, they cannot be objectionable. General conditions to conlrachs should be added to protect companies from trouble aud annoyance, resulting from the depredations and reckless conduct of wurkmen, times of payment, re-
etrictions from neighbouring lands, and also for the protection of the workmen from fraud and tyranny ; power to increase number of men, or to remove objectionable parties.
" The permanent fencing may consist of a brick wall, of which materials, dimensione, footings should be given, by drawings figured; and whether set in mortar or cement, or in part. Or it may coasist of a rubble wall, set in mothar, with half hammer dressed coping, accerding to drawings and dimensions. Where thorough stones or borders are to be introduced, it should be mentioned, and tbe size of the stones limited, both for the walling and coping. Permanent fencing may also consist of a good set fence and ditch, with a row of posts and railing fixed on the outside, according to dimensions to be given. The posts and railing to be good oak or larch; the posts to be 6 inches square, or 6 by 31 inches, 3 feet 6 inches out of the ground, and 1 foot 0 inches in the ground; that part below the ground to be well charred, and the posts to be from 7 to 9 feet apart.

- The soil underneath the cop must be carefully trenched over 12 inches deep. previously to the cop being formed; the cop must then be formed by a ramparting of sods on each side, and the intervening space filled with good vegetable soil; the cop must be planted in the monthe of October or November, February or March, with good white-thorn plants four years old, having been transplanted from the seed bed three years.
"The ditch to be 4 feet wide at the top, and 2 feet at the bottom, and 1 foot 6 inches deep; the depth of the ditch must be varied, 50 as to carry off all the water flowing from the embankments or adjoining landa, and proper communications must be made with each intersected drain, so as effectually to attain the desired object, and drains mast be formed under the cop, et such intervals as may be requisite to carry of all the water from the foot of the embankments.
"If the engineer should deem it necessary to increase the width of the excavations or embankments, or to flatten the slopes, the contractor will be paid extra for increased quantities, naless it bappeo that there is escess of excavation, which would otherwise have to go to spoil, in which case the engineer may direct the embankment to be increased without the contractor being paid any extra sum, or, unless aide-cutting be required, in which case the engineer may direct the excavation to be increased, and the contractor shall have no claim for so doing.
"At the proper season the slopes must be sown with rye grass or white clover seeds, at the rate of 2 bushels of the former to 6 pounds of the latter per statute acre.
"W Wenever any change is made in the inclination of any of the slopes, it mast be done gradually, and in not less than 25 yards in length, unless it occar at a bridge, in which case the inclination of the slopes may be dif. ferent at each side of the bridge.
"During the progress of ezecution, great care mast be taken to prevent water from settling in the excavations and embankments, and any means deemed fit by the engineer, mast be resorted to in order to prevent it. A ditch or channel, 12 inches wide and 6 inches deep, must be formed along each side of the excavation, at the foot of the slope, to carry off the water; and if, in the opinion of the engineer, it should become necessary or advi. sable, in any one case, to put open drains, formed with rabble pitching and side walls, as shewn on drawing, the contractor shall be paid extra for such increase of work, according to the prices set forth in the achedule.
"In the event of any soaks, springe or streams of water appearing from the face of the slopes or otherwise, the contractor must, at his own expense, effectually drain the same, by means of drains or water courses, of rubble or broshwood, put in such manner, and to such extent, as the engineer shall deem expedient from time to time, to prevent such soak, spring, or stream, from injuring the works during progress, and the whole of sach water shall be conveyed into proper drains.
"Whenever the seat of an embankment occurs on side-long ground, the anme must be cut out in steps, sloping in wards towards the embankment, and the material puaned so as to prevent the embankment from slipping. Should the seat of the embankment be peat or other soft material, deemed by the engineer anfit to bear the weight, the contractor shall, at his own cost, and according to instructions from the engineer, remove the same, or cat out a trench, 10 fcet wide, entirely through the peal, under the foot of each slope, and fill up the same with good dry material, to be approved of, carrying it 6 feet above the surface of the ground previously to the embenkment being tipped on it.
"In bringing an embankment over any bridge, or calvert, the greatest care must be taken to prevent any unequal loading; and any damage cansed by neglecting this precaution must be made good by the contractor at bis own cost. In the case of colverts with side anals, a space of 10 feet on each side, and over the top, mast be punned to a height of 8 feet above the culverta, and no greater height of embankment must, in any case, be allowed to be tipped aguinst or upon the calverts than the height already laid apon the culverts. In the case of crossing of bridges in embankments, the earth must be punned in each case, for anch a space as the engineer may deem requisite, in no case being for a less apace than 10 feet from the abotment or wing wall, and the material must be conveyed across the bridge by means of banlks of timber laid so as to enable each side to be ambanked equally at the same time.
c. Where the bailding of bridges may interfere with the traffic of roads, and previons to any bridge works being commenced, a proper well-made temparary road shall be prepared and made, which must be sufficient for the free passage of carriages of all descriptions. The contractor must take every precantion during the alteration, to erect proper fencing, fix lights, every precantion during the alteration, not mathman to prevent accidents, as the compaoy will not
be liable for any injury arising from any neglect of these precantions on the part of the contractor.

C The bricks made use of shall be hard, sound, well shapen, thoroughly burnt, and of uniform size, and unless made a year before they are used, mast be well saturated with water. No broken bricks will be allewed, except where required as closers; and, in case of backing, the whole must be flushed up perfectly solid with morlar, for which purpose, after the outside course is set, the mortar must be laid on the interior space, and water being poured on must be worked about until every joint is filled perfectly solid. The whole must be built in old English bond, that is, in alternate courses of headers and stretchers, and in case of thick walls, every third and fourth course of the interior, mast be laid a "Herringbone ;" the face work must all be neatly jointed with a trowel, and struck with a straitedge. No face work will be allowed to be built over-handed; no four courses with three joints, must exceed in thickness, when built, threequarters of an inch more thun the same bricks measure when piled on each other withoot mortar.
"No brick work or stone work shall be set in frosty weather.
"All the stone used in the work should be sound, hard stone, free from shakes, clay holes, beds, or fiaws of any description: if desirahle, describe the quarry ; it nust be approved of by the engineer. No stode either in the inside or outside work should break joint less than 18 inches; the stones in the interior work should bood well with each other, and each course well grouted with lime.
"The ashler work shall lay in courses, not less than 12 inches thick, and with stones, not less than 4 feet by 2 on the bed, and laid alternately as headers and stretchers; all joints must overlap at least 12 inches. In all cases where the engineer may deem it advisable, the whole must be dowelled together with dove-tailed hard atone dowells, or cramped with iron. ${ }^{*}$
"The block in course shall be of stone laid in courses, not less than 7 inches tbick, and each stone shall not be less than 12 inches by 18 inches on the bed, laid alternately as beader and stretcher; and one-fourth the length of each course shall consist of stones not less than 30 inches in length, measuring from the face of the work to the interior, laid as nearly equidistant as possible so as to effect a perfect bond with the rubble backing.
"The rubble backing must consist of tat bedded stones, as large as can be obtained. The whole must be carefully pinned and made solid, laid in mortar, and cat to a level surface at every coorse of the face work; and after the next course of the face stones is laid, the interstices must be completely filled with thin mortar, the mortar being mixed with water, and worked about until every crevice is filled perfectly solid.
si When rubble is used for the entire work, both on the face and in the interior, the atones must be laid with great care so as to be perfectly bonded together; no stone must contain less than a cubic foot except when used only for pinning.
" Pier points will consist of flat bedded stones, cut into uniform sises, not being less tban 10 inches by δ inches on the bed, and 8 inches thick; they will be used for turning the smaller arches.
" Where desired by the engineer in foundations, in parts below the surface of the ground, or under water, or parts exposed to wet, to any height desired, the mortar shall be made with bydraulic lime, of a quality that shall meet with the approbation of the engineer. No mortar which has set, or become hard, will be allowed to be used.
"The cement used shall be patent Litbige, or Earle's cement, or any other desired, but whichever be used shall be of the best quality, and shall be approved of by the engineer; it must not bave more than one part of clean sharp sand to two parts of cement, and these proportions shall be accurately measured; the mixture shall be wetted only as required for use, aud noae shall be used tbat bas set or hardened.
"The concrete must be composed of good coarse gravel, or broken stones, either being approved of by the engineer, with an admixiure of good sharp sand. The gravel and sand must be mixed with lime, in the proportion of one part of the latter to six parts of the former.
"Stone arches will be of ashler, block in course, or pier points. The beds and joints of the stones must be worked to accurate planes, and the beds in the direction of the radii of the arch. The greatest care must be taken to cut the stone in the spandrils, so as to fit close on the extrados of the arch.
"In all cases where the arches are built askew, the courses must be in spiral lines, at right angles to the face of the arch.
" Pierpoint arches will be laid similarly to brick arches.
"Counterforts must be worked into the body of the arch, and the courses below the springing of the arch must all be purallel to the radius of the arch at the springing line.
"As soon as the weather will permit, or when the engineer may direct, the arch and backing shall be covered with coal tar. Or asphalte, properly prepared and approved of by the enpiveer, may he used for this purpose, which is to prevent water from sinking into the arch; and the contractor shall be beld responsible that the arches, backing, and spandrils shall be made thas impervious.
"A bove this coating of tar or asphalte, and, when ordered by the engineer, a coating of sand to the depth of 6 inches shall be laid, and above this, the space must be filled with sbivers of stone laid with a regular sur-
*Though iron crampa sre oftem need, they should not be resorted to whout much conalderation, the corrosion of the iron is sure to rend the stone mooner or labir, and Where the tron is anch expoted to atmosphetc influence this will $\mathbf{t o 0 s}$ oecus.
face, and lastly, a good road metalling, of a kind approved, of 8 inches thick, shall he laid, and the stones properly broken.
"Where stoae imposts or springers are ased, they mast be equal to the full thickness of the arch, besides allowing for the projection, and no stone shall be less than 80 inches in length; where there is more than one arch, at least foor stones on every pior shall extend acrose the whole breadich of the pier. In cases of skew arches, the skew back mast be worked out, to suit the oblique direction of the courses.
"Openings must be left through the lower parts of all abutments, wing walls, and retaining walls, and dry rabble drains carried up at the back, in order effectually to prevent any water lodging behind the brick work of masonry.
"Tbe abutments and wing walla shall be filled into and backed with chipping of stone, as far as they can be procured, clean dry gravel, or suitable materlal approved of by the engineer, and to be procured in the meighbourhood; as they are carried up, the filling and backing shall be well rammed with punaing malts, in courses not exceeding elghteen inches thick.
"Culverts, under three feet in length, most be carried to the outside of the fencing. Culverts must be built to the necesnary angle, and each culvert thall be so placed as to give free and uninterrupted pasage to the water ; and whenever the position or direction of a culvert does not coincide with that of the existing course of atream, the course shall be altered to such extent is may be considered requisite by the engineer, to adapt it to the position of the culvert, by the contractor, at bis own cost. They shall be built of materials to be approved of by the engineer, and such as will stand well in water, and shall be set in good hydraulic lime mortar. The site of culverta may be varied by tbe engineer.
"The foundations of viaducts, bridges, culverts, walls, and other works, must be excarated to such depth as the engineer may deem requisite, and no masonry or concrete must be put in until they have been examined and approved of by the engineer. All the water must be effectually kept out during the execution of the works by means of coffer-dams or pumps, or both, and the coffer-dam or pompa, or other machinery, to be provided by the contractor, and approved of by the engineer. If it is required to carry the foundations lower than shown on drawinga, the contractor must erecate such additional masonry, brick work or concrete, or piling and planking, according to the schedule of prices, being paid only for such additional work so pot in.
"The piles to be of red pine timber, 10 inches square, each pile shod with a wrought iron shoe, weighing at least 18 lb ; the piles to be driven well home, and at least 2 feet into a solid material, with waling pieces, 12 inches by 10 , bolted to them by wrought iron bolts, to which 3 inch plenking shall be firmly spiked.
"The whole of the timber used in the bridges shall be of the best St. John's red pine or Baltic timber, and the deals from Dantzig, of such lengths as may be required, free from heart shakes, sap, dead knoth, dry rot, or any other defects whatanever, and thoroughly seasoned, having been felled at lesst two years, and aix months out of water. All the trenaila used in the bridges shall be of sound English oak. It must be stacked as soon as brought on the ground, and preserved from wet until used. All the timber most be painted with throe coats of good oil paint, at such timea as the engineer may direct. In measuring timber, no allowsoce to be made for mortices, tenons, \&cc., but only the net measurement taken; and the workmanahip throughont to be good, sound, and firm, and such as ahall be approted of by the engineer.
"All casting" shall be monlded of a true form, and free from air holes or other defects, and shall be of correct measured dimeusions when ready to be fitted in place. All cast iron shall be of the best No. 2 iron, re-melted in the furasce, and shall be of a quatity approved by the engineer; no hot blast iron will be allowed.
"Girders shall be subject to be proved by the hydraulic preas, under the inspection of the enginecr, and at the expense of the contractor, according to what the substance aud form are calculated to bear, and each girder sball be teated by at least oue half the calculated breaking weight. Or the iron thail be of such strengtb, that an inch square bar, of 36 inches in length, between supports, shall bear a weight of 500 lb . suspeuded in the centre. And, ahould any castinga be injured by testing, or prove anequal to the test, others, that shall be satisfactory to the ougineer, shall be provided by the contractor.
"All joints shall be made to fit perfectly close and tight, and no cement stopping or plogging shall be introduced ; and in all cases where iron reats apon stone, a milled pad must intervene, and the whole must be put together in the best and most workmanlike manner.
"Wrought iron must be of the best scrap, or No. 3 bar iron, approved of by the engineer, and of sufficient strength to bear, without injury, 15 tons per square inch of sectional area
"No wrought iron straps, bolte, or other work, must on any account be hammered when cold, without being afterwards annealed. The bolts to be made so to to the holes correctly, after they are seasoned to receive them. All iron work must be painted with three coats of good oil paint, without being allowed to rust.

Engineer's Manual of Mineralogy and Geology. By Mrs. Varley. London: Weale. 1846.

This is a very clever little work, well written, lacid in its descriptions, and we think fully carries out the intention of its talented authoress. Mineralogy is a aubject of growing interest, both as a pure science, aad in its applications to the arts; and a work, divested of technicalities, and the intricacies of nomenclature, is a desideratum. No science bas undergone more revolution in this respect, as we find many minerals have no leap than four or five ammes in different books. A knowledge of the laws, and the relations of cryatalline forms, which obtain in the mlneral kingdom is valuable, not only as a subject of philosophic speculation, but also in its applications to geology, chemistry, and especially to engineering puranits. Few men have more frequent opportunities of studying practically the sciences of geology and mineralogy than engineers; for at the present time, when railwags are being carried on, and the surface of the eartb penetrated in almost every direction, the different strata, and the mineralogical character of the conntry must be constantly under their notice, and in the words of our authoress, "They ongbt in such operstions to compare and combine an accurate observation of whatever comes under their cognizance with facts already established; and every now incideat however trifing it may at first appear, if recorded with precision, will become valuable an an addition to the geological knowledge we already possess."

As an illastration of the necassity of paying due attention to the internal structure of the materials used in macbinery, and more particularly to thone parts which are subject to a long continuous vibration, we may instance the alterationof structure to which the iron axles of railway carriages ere li. able from the perpetual vibrations to which they are exposed. The tougheot and most fibrous wrought iron is always selected for the constroction of these axles, and from this continnons vibration the particles assume a dow crystalline arrangement, assimilating to the construction of cast iron, and eventually becoming brittle. We understand this important point is usder careful examination. Some very interesting specimens of Iron avles which have undergone the molecular changes in question, may be seen at the Maseam of Economic Geology.

We will now give a brief sketch of the subject in the work, and the manner in which they are handled. The first 42 pages give a short acoonet of the rocke of Devon and Cornwall ; the anstratified rocks, granite, syenite, greenstone, basalt, porphyry; all of which belong to the trap formation with the axception of granite; liso the places at which they most abaodantly occur: then follow the stratified rocks, gneiss, micm-slate, clay-slate, the ald and new red sandstone formations, carboniferous and oolitic syateme, creter ceous and tertiary systems, with the minerals which are fonnd in themwith a short account of the analysis of them, by that invaluable little isstrament, the blow-pipe. Although we agree with the authoress that "ia the greater number of cases, if a specimen of ore be characteristic, an accurate observation of its external character will enable us to recognise is without having recourse to chemical process;" yet we would strongly recommend students who wish to acquire a knowledge of mineralogieni science, first to obtain some acquaintance with chemical analysis. A few tests or re-agents, combined with the application of tbe blow pipe, will enable them to perform a qualitative analysis of an ore, and thereby obtain e much more intimate kuowledge of the composition and nature of the ore than could possibly be acquired by the simple observance of its exteraal characters: again, according to Mitscherlich's law of isomorphiam, there are minerals whose crystalline forms are identical, bat whose chemion composition is different.

The different ores of gold, silver, copper, iron, \&cc. are next broaght under consideration, their characters are succinctly given, and the richeat ores for smelting stated. The tables of snalysis of silver and cupper ores are valuable, as showing the amount of metal which can be extracted from each one: we should have liked to have seen the same carried out for some of the other metals. The next part of the work treats of the mineral rocke and earths, and closes with the phyaical characters of minerals, embrecing a brief account of the doctrines of crystallography. We would notice the only errur which we have observed while perusing the work, and that for the purpose of having it corrected in a subsequeat edition. It is atated, page 46, that gold is soluble in hydrochloric acid, which is a mixture of nitric and muriatic acids; now, bydrochloric acid is the new name for muriatic acid, and as such, gold is insoluble in it. Guld is not dissolred in any of the pure acids; its best solvents are chlorine and nitro-hydrocbloric acid, and the latter only when it gives rise to the formation of chlorine. We might observe that fuorine also combines directly with gold. In every other respeot the work merits our most cordial approbation, and our thanks are dae to the lady who has produced a book which we feel asaured will be useful.

The Nefleafe Discovrses on Fine Art Architecture. An attempt to talk rationally on the subject. By Robert Kere, Architect. Weale, 12mo. pp. 2u8. [No date.]

The adthor of this book ought to be condemaed to write his own review of it: bis principles are so!indefinite, and are expressed in such diffuse langoage that no one but himself could give a fair analysis of them.

Trusting to the table of contents more than to an examination of the book itself, we may state that the subjects considered are mainly these :The definition of architecture, considered as a fine art, comes first. Then follows a contrast between an orthodox, well-fed, alderman-architect, distingaished principally by a sedulous regerd for the main chance, and a heterodox, visicnary, artist-architect, distinguished (as we should say) by having, as times go, no chance at all. Next, the several pursuits of tro such architects are distinguished, and are illustrated, moreover, by some stories which are meant to be very fungy, and are in fact very puerile. Archæology, the history of architecture, Ecclesiologism, architectural atudy, \&c., are subsequently considered. The concluding topic is the Rosal Institute of British Architects.

We quite agree with the opinion pablished by Candidus last month (ante p. 328), that the book is clever and entertaining, and the doctrine (what litte there is of $i t$) excellent. We think also that the writer has displayed a generons courage in defence of his art by boldly-and without respect of persons-denouncing all attempts to degrade it. But what we chiefy object to in these Discourses is, that they are overladen with verbiage. The reader plods on-and on-and on-page after page, expecting eyery moment to arrive at the gist of the argoment, but never reaching it till he be fairly tired out. You are perpetaally reminded of eating omeletta soufft; or quote mentally Polonius's question to Hamlet, with the reply-

$$
\begin{aligned}
& \text { "What do you read, my lord p" } \\
& \text { " Worda, worda, words." }
\end{aligned}
$$

The question of Precedent, which occupies our anthor a good deal, seema capable of being so easily stated, as to be scarcely worth discuss. tog. Antiquity affords a presumptive, but not a final, proof of excellence. There are precedents for error as well as for trath, for bad architecture as well as for good; but still we may presume that, on the whole, good architectare would be the most carefully preserved. The noblest monuments of ancient art are old becanse they are good-not good because they are old. That is to say, their long preservation is the effect, not the cause, of their excellence.
Both good and bad precedents bave their value, however : the former teach us what to emulate (not imitate), the latter what to aroid. It is well enough to say that all art must be ultimately criticised by the priuciples of beanty observed in nature; bat this canon, invaluable as it is as a fundamental truth, is of that abstract nature, that its full value can be learned ooly from its examples. Two architects may both agree as to its accuracy and importance, and differ toto celo as to the methods of upplying it. The right-hhinking student, therefore, will not refuse to benefit himself by the efforts of his predecessors, which enable him to compare actual examples of these different methods.

Or, to view the subject a little more metaphysically, is it not clear that the principles of beauty observed in nature, are applied in nature in a manner in which they cannot be applied in art ? What the architect wants to avail himself of are, not so much natoral forms as natural principles. Now the precess of separating the one from the otber is too difficult to be effected by a single trial-it mast be tentative. It is ouly after many trials and many failures that we shall be able to combine masses of masonry into forms aseful for artificial parposes, and yet strictly restrained by ${ }^{2}$ the modeaty of nature." That a man may have sufficient genins to do this at once is possible, though not probable ; but for men of ordinarily constituted minds the bare knowledge of principles is insufficient ; expertnese in the correct use of them is the resalt of actual practice. An accurate knowledge of hydrostatics, for example, does not necessarily lead to dexterity in the art of swimming; and a man may be thoroughly versed in the theoretic rules of horsemanship, and yet break his neck in the first attempt to apply them.
The attack upon the Archaologists and Camdenists is ingenious enough, bat not aufficiently diseriminating. Archaologists no doubt have their follies like other people, and are especially apt to consider that the most estimable parts of antiquity are its dust and rust. Still the Archroologists wre our fellow labourers, and useful in their way. They have ofien preserved or discovered monameats of the Beantifal which had else been lost -and the Beautiful is ever to be renerated whaterer be its date or the cip-
aignation of its gaardians. The Camdeniste are a still more valuable body, for they openly avow the ductrine of progression. It is true that they are slightly touched on the subject of symbols, and are apt to wander and talk wildly when the topic is introduced. They display also a nogt lady-like punctiliousness on the subject of dress. But take them from their idiosyncracies and they show an honest generoas enthusiam for artistic arohitecture-talk like men who observe diligently, and yet are capable of reasoning for themselves; reason for themseives, and yet are not above confirming their judgwent by observation.
The atrictures upon the Institute of British Architects are, we fear, too correct. It were difficult to say what the Institute has done, since its foundation to advance the art which it professes. It is clear that the collection of editions of Vitruvius and prize essays on slates does not forward architecture a single step. Can the most zealous member of the Institute inform us of any one fact or opinion elucidated during the last sessions which will tend to the advancement of architecture? We know of noneexcept it be the ingenious investigatiou by Mr. Penrose,* tending to show that the Greeks observed in their works one of the sources of beanty which has been overlooked by the moderns. There were discussions usque ad nauseam about plaster imitations of stone, and the Five Orders, and prizes for architectural designs in which the canons of constructive fidelity were systematically violated. But efforts such as these are not progressive, but retrograde.
The troth is that the Institute is too orthodox-too big.wigged-too donnish, to use a Cambridge word. The individual members have, we believe, a sincere love of architecture, and are actuated by the best intentions; bat they are infirm of purpose, fear to speak unless they can quote chapter and verse for their authority, and shut their eyes to the fact that the whole system of architecture has grown debased by the lapse of time, and wants reforming.
Mr. Kerr's talents are certainly above mediocrity, and his denunciations are courageous, if not the most prodent. At all events he shall not have cause to complain that we are opponents of his efforts to purify architecture. We are urong the malcontents ourselves. The reform of abuses which Pugin advocated in the Pointed style must in spite of opposition be extended to all styles, and if Mr. Kerr will but write a little less diffusely, and lay down more definite and tangible principles, he may become an invaluable labourer in the good cause.

We had nearly forgotten to state that a considerable part of these Discourses is a republication of letters addressed to The Builder. This fact, in courtesy to our contemporary, ought to hure been stated in the present volume. The pervading fault seems to be an over-anxiety to be facetious. We do not mean to say that there is no real original wit in the book, bat simply that we have been too dull to perceive it.
A Manual of Gothic Architecture. By F. Paley, M.A., with nearly seventy illustrations. London : Van Vourst, 1846. 12mo. pp. 304.

AD ingtructor should always know more than he teaches. It might appear at first sight that the writer of an elementary treatise need possess no more than elemeatary knowledge; yet it is a matter of experience that those who have not advanced beyood first principles caonot teach first pribciples correctly. Profound erudition has never been more worthily displajed than in smoothing the palbs which lead to the gate of knowledge.

Architecture is at present in a state of transition from a crude code of dugmas to a systematic science. Some of the simplest principles are at this moment the subjects of warm controversy, and until those priuciples have been definitely agreed upon, it is evideutly impossible to write a complete elementary treatise upon architecture. Such a work may fitly teach all that has been strictly ascertained, but the dehated points must be reserved for those who are competent for the discussion.
It follows from these considerations that there are two qualifications requisite in a Manual of Gothic Architecture-profound knowledge on the part of the author, and the exclusion of ancertain speculations. The firat of these requisites is perfectly, the second generally, satisfied in the work before ua. The object profeseed is simply to teach the uuinitiated to dia tinguish and classify architectural details, but many of those who deem their knowledge sofficient to qualify them for the practice of the art would Gind their errors tacitly demonatrated in this unpretending treatise. Mr. Paley however considers the present imperfect state of church architecture neither acrimoniously nor angenerously : he sets out by acknowledging
that u we aro all too ready to disparage oujustly the works of modern urchitecte, who more froquently wat the means than the power to produce Gothlo works equal to those of antiquity. It is next to impoesible to jadge of modera desigus with striot impartiality; and oritics are seldom fully aware, or disposed to admit, how mach their judgment is warped and hinssed by that atterly false and unjast notion, that every medinoval work is good, and every modarn imitative design is a failure."

The firat chaptor traces in general terms the history of church architeotare from the fall of the Roman empire to the present time. Respecting the word Gothic it is observed that "the term is in itself abourd and calumaions; but it has now become so general that it arails little to endearoar to supersede it by aoother." We cannot assent to this conclusion. The word Pointed is now popularly nuderatood to refer to all styles in which the arch is angular at its vertex, and has been so generally adopted by architectural writers that the revival of the word Gothic seems like a retrograde step. Moreover, Mr. Paley does not adhere consistently to his own argument, for he proposes to distarb the present tormlaology of English Pointed architecture and to substitate new eppellatioos for those which at present are used withont inconvenience, and being descriptive are easily remembered. The term "Third Puinted" would confoand the Perpendicular of Eugland with an altogether diferent style-the Flamboyant of France : a similar objection applies to the term "First Polated." On the other hand the term "Early British," or "Anglo Saxon,"-the first on Mr. Paley's list-refers to our own architecture exclusively. His nomenclature seems therefore unsystematic ; in one case his desire of generalizing leads him to overlook national peculiarities of style; in another he disregerds his own generalizatlon.

The second ohapter treats principally of round-arch archlteoture. In the following ertract, the first atatement is contrary to koown mechanicel priaciplea, and appears saticiently refuted by what follows it.
"The pressure of Norman vaalting is straight downwerds on the walls, that of Pointed vaulting oblique, or lateral (See Hupe, p. 312). Yet, from had conatruation, or other causes, Norman vaults have a great tendency to push ontwards the supporting walls. The aisle of SL. Sepulchre's, Cambridge, actaslly fell down from this cause jast before its lato restoration. Thus some resistance has been proved by the result to be wanting, though the want might not be known or suspected at the time."

In the third chapter the successive developmont of the three Pointed alyles is admirably treated, and the engraved illustration possesses singular boauty.

A subsequent ohapter is devoted to "the uniformity and progressive cheracter of the Gothic styles." The following extract is a long one, bat the subject is so interesting, that we have made but fow omissions.
«No architect of the present day is fettered by any other rules or conditions than those imposed hy his employers, in regard to the choice of a etyle. He may copy that of any nation and any period, and be may alter, combine, detract from, or add to it, as he pleases. Indeed he mast do so more or less, becaase no one recognised and distinctive national arohitectare, either ecclesiastical or secular, exists at the prosent dey. It is all copied, and none of it is, properly speaklag, original or eeli-developed. It has coased to be inventire, at loast in any favourable sense.
u But the case was very different in the Middle Ages, when freemasonry Fas a craft in the bunds of a corporate ecclesiastical confraternity, the members of which seem to have been bound down to certain rules, and jet to have had almost uulimiled license in carrying those rules into effect ; precisely in the same way as if the alphabet of a language were given to any one, and be were allowed to combine the letters inco words as be pleased, but not to introduce any new forms or aymbols. This seems exactly to illustrate the position in which the ancient freenasons stood. Thes had certain kinds of mouldings, foliage, window tracery, \&c, which were, with comparatively trifling modifications and exceptions, repeated in all buildings of the same era, only very arbitrarily combined, arranged, or applied. For example, in the age of the Complete Gothic or Flowing Decorated, all window tracery was designed on one fixed principle; it was neither geometric, nor rigidly vertical, as in the next style; but it was, with surprisingly few exceptions, of wary and curved lines. Yet each architect seems to have had full liberty to adapt this principle to his own taste; and thus wo find thousands of different patterns. Again in mouldings ; some ten or a dozen forms being employod by all with infexible exactitude, their grouping, or positions in relation to each other, as well as their application, soems to hare been the rosult of iadividual caprice (See Hope's Essay, p. 213). And herein is the glory of the Gothic stgles, that they attajued by these means perfect wiformity combined with almost infinite variety. There is no monotony, no wearisome repetition; overy detail has some freshness; yet all aro strictly subjected to cortain laws of composition. Bence thit charm of oever-ceaning interent created by perpetal novelty; for this in reality is a moch more endaring gratificatson than either the magnificent offoct or the osceoding aggrogeto beanty of some buildings,
both which impressions are rather those of first sight, While the miavte detail of any one building might engage the attention for months, or eveo years.
"Little or nothing has ever transpired of the secret system which the freemacons adopted in building, nor of the organisation of their body, arcept that it was ecolesiastical, and under the jarisdiction and benedistion of the Pope. It is certain that they were a very aumerous, energetio, and talented class, whose genins was chastened and eanobled by all the enthusiasm of a grand religion, and whose efforts were aided by the sappls of almost unlimited resources. They must have had the entire monopoly of both domestic and ecclesiatical architecture; though perhaps the distiaction is vain, for evergthing in the Middle Ages was ecclesiastionh Constant communication must have been kept up between An the members of this namerous and widely-extended hody. For if wo consider the lmmense number of churches built in overy roign from the Conquest to the overthrow of the ancient religlon, and the perfect uniformity of style in all of the same periud, we shall perceive how complete the Intercourse must of necessity have been. Perhaps the following is a plansible scheme of their constitntion. Those whom we now oall architects seem to have been designated 'Masters,' as wo read that 'the Mas ter' did so andso, in ancient accounts, where it is clearly equivalont to 'the Architect.' These 'Masters' mast have been trained in one and the same school, just as our clergy are trained in the universities, and they seem oither to have been sent about to differeat atations, or to have beea attached to some mother church or cathedral, or eren to have takea up their permaneut residence in certain localities, since we often find sevepal churches in a particular neighbourhood which clearly exhibit the eame hand in their design.
"Though we may in most of the arts attribate a good deal to mero fashion, which might formerly (it may be said) admit of as little variety in architecture as it now does in the shapes and materials of costame, etill this is quite insufficient to account for the positive identity of coëral capjtals, bases, foliage, windows, \&c., in the two opposite extremitios of the kingdom. We suppose therefore there was either some central school whence all such details emanated, or, which is the same thing, the Masters went about as so many missionaries, dissemlasting what thoy had learat or developed together. How this adherence to rule for a long period can be reconciled with the phenomena of sadden changes in, and oventually complete revolutions of, style, or who had the holdness to suggest, or the authority to enforce, novelties in the masonic art, must be matters of mere conjecture. In England, indeed, the employment of foreiga artists will account for many now introductions; bat the question remains the same, -whence did these foreign artists themselves derive them? Howover such changes were first introduced, they were quickly adopted ain. per, abique, et ab ornibus.
"William of Sens is the first known master mason whose works are extant. The masons were not incorporated in England till the thirteenth century; yet there is at least as mach aniformity of detuil observable to the Norman and (as before observed) oven in the Baxon styles. An oath of secrecy is said to have been tendered to all novitiates. ${ }^{2}$ They appear to have been conroned and held secret meelings at cortain time and places. The name Free-masons is a corruption of Frires maçons, or fram teraity. A presumptive proof how exclasively the details of the at were in their keeping may be derived from the blandering attempts at drawing them, which are always found in MSS., stained gines, brasess, and frewco paintings. The master masons were generally foroigrers, iocorporated by royal authority. When a large building was contemplated, the masons removed in great numbers to the spot; hence they have been well described as a kind of 'nomado race.'s How they were paid, or how maintained daring their nojourn, is not certainly known. Perhepa the masters did not so much design, as carry out the designs of powerfal and munificent ecclesiastics. ${ }^{4}$ A good deal, too, of actual handy-wart was done by the ecclesiastics ${ }^{5}$ themselves, which will account for any of those tauches of the satirical in the why of droll portraits, which seem so pointedly directed against rival clerics. But when we read of repairs and buildings executed by abbats, bishops, or monks, we mast generslly anderstand the expression to mean that they promoted them, bat that masons were employed in carrying them ont.?
"، The old builders possessed nothing but the sonad Intelligenoe of ensible men, and an aptaess in practice exercised from oarliest youth. They lived more at the building place than at home; thonght of little olse and did little else; and thas thoy ovidently succeeded mnoh better than our well-grounded eages, who often bring into the world their lot-haeded productions, or tamely written pamphlets, and would fain saperiatead the erection of buildings from their writing-desk.' ${ }^{\text {a }}$
"One thing is quite clear, and admitted by all; that the masons of the time being were absolutely restricted to one style. They never thought of going backwards, under any circumstances whatever, and seom to have contemned the very idea of copying older work, however inooagrepth

[^57]

would be the reanlt of the new, in additions to, or alterations of, a prearisting edifice. In fact, they thonght they could improve upoo it Of thin principle many of the most interesting illustrations might very easily be adduced, did apace allow their insertion. Scarcely ever did they compose a single detail even with a view of suiting the older work; for in trath they had a thorough contempt for uniformity. Thes placed traceried windows of many lights in jnyia-position with single lancets, pointed with aemicircular arches, and complex Gotbic colums with plain and heavy Bomabesque piers.It is very possible that the musons themselves, in alwags using the style of their day, desired to stamp an imperishable evidence of date upon the works they were executing. In alkering churches, the parts most generally preserved were doorways, pave piers ad arches, porth-west aisle windows (for some noexplained reason), medilia, piecina, fonts. The parts mont commonly innovated were windows, siale walls, clerestories, roofs, porches, chantry chapels.
${ }^{4}$ It is very singuiar to observe how even the slighteat changea and tornings of atyle were regularly adopted in the progress of such large baildings as required a great number of years for their completion. For exumple, the west elevation of York Cathedral exhibits early Middle Pointed work in its lower part, while the belfry windows, battlemente, and pinnades are finished of pure Third Pointed detail ${ }^{\text {e }}$ These changes we may uttribote to the succession of new manter masons, each of whom conld or would design oaly in the detaila of his day.
a Every master mason must have been able at all times to command the anvices of workmen well acquainted with and accustomed to the working. Perhaps these operatives (confreres) accompanied him from place to place; certainly they must generaily bave devoted their lives to the work; for the eqquisite chiselliog of the boas, and floriated capital, or the statuary and canops work of such a place as the Lady Chapel at Ely, conld never heve been attained withont intense and zealous application, aided by great taste and artietic feeling, and long practice. Probably the few modern architects to whose lot it has fallen to carry out work of this description, would verify this from their own experieoce. It is one thing to design, another to find workmen capable of executing accurately the more minate and dificult details. That anch workmen did anciently exist, and in great oumbers too, is proved by the works they have ieft behind them as monuments of their ikill. It is probable that they worked by drawings, as at present; or the plans were laid out for them by the master's hand, as ocrasion required; of which perhaps the diagrams and geometric marks sometimes fonnd on the atones of disjointed buildings may be taken as examples. Yet there are parts occanionally to be met with which mast be calied 'botches,' and which are cleurly the results of extemporary condructive ingennity without any pre-arranged plan............There must bave been, for centuries previous to the change of religion, a constant, ontiring, incessent zeal for church building, a zeal which is more striking, when contrasted with the dead apathy, or at least the almost exclusive pinadering and demolishing, which from frst to last has characterised the Dew ayatem. Only let the reader contemplate the vast quantity of ancient ecclesiastical work we still have left, taking into account the enonmom destruction of the sixteenth and seventeenth centuries, and the unceasing havoc of the combined causes of neglect, avarice, and profanation, which have been in active operation for three hundred years! When we think of wome towns having anciently had forty or fifty great churches, where not anore than ted or a dosen now appear, all the rest having long ago been razed to their very fonndations; of a thousand abboys and religious honses, of which scarcely one handred shattered ruins now remain, thongh come of them were fully as large and aplendid as onr first-rate Cathedrals, -Glastonbury, Headiug, Bury 8t. Edmand's ; when we know fully what we have lost, in comparison with whut we have left,-we shall be indeed amazed at the almost superhuman effurts of the medieval church! It has been compnted that each one of these vast Cathedrala or conventual edifices woold cost, in onr times and with our much greater facilities, frow five to eight houdred thonsand pounds. A million of money must have been expended on the fabric of some of our greatest churches; and if we may credit the acconnts of the vast wealth stolen by Henry VIII. Irom Cancerbury and Linculn Cathedrals, and include all the vestments, plate, and other furnitures, the stained glass, pictures, tombs, silver atatues, and shrines, we are juatified in doubling that sum. How inadeqnate a dotion do our present bare, dilapidated, and rifled structures afford, of the amount which religion once bestowed on the Charch, and which irreligion has marilegiously taten from ber !'"
There are many other parts of the work from which we shonld like to mike extracts, but our limits prevent us from extending them. We must therefore refer the reader to the work itself: we cannot bowever omit the fullowing quotation in which the ancient and modern principles of church bailding are bappily contrasted.
a Let us now observe how completely every one of these priaciples has been InYEatED in modern practice, and we shall have oblained sume clue in tracing the causes of modern failures.

- Modern pridciples are:
ω 1. To make buildings uniform by eqnal and similar wings, correspondieg doorways, windows of the same size and kind, level aud regular elevations, not broken up into parts of greater or less prominence and belght. Every Gothic nem building in Cambridge exhibits these fanlls, which are

[^58]the certain resalt of the rame hasd composing in two contradiotory stylem, Classic and Gothic.

4 2. To add unnecessary and unmeaning ormament in conspicuons podtions to attract the oje and prodnce a abowy appearance, leaving the lees exposed parts bare and naked in the contrast.
" 3. To place effect before ntility, as by building an inconvenient or upnecessary feature becanse it is supposed to look well. Hence wo have doors which afford no entrance, turrets with no arailable interior, and chimneys which do not emit smoke.
"4. To erect buildtags whose primary ides is that of a large mabroken aree, without colvmas and arches, with wide roofs, and without distinct component parts. Such were the great majority of the modera churchee, Which ofteo had neither battress, nor atring conrse, nor arch in the whole design ; in short, nothing Gothic about them except the minor details.
"5. To use usque ad nawseam a few hackneyed Gothic details, copied from celebrated churches or cathedrals, or borrowed from books; and to apply these without anfficient regard to difference in the kinde and charaster of buildings.
"6. To sacrifice solidity and strength to nanecesasy and adventitions. oroament, and to impoverish the fabric to obtain the greatest possible amonnt of conspicuous but needless decoration.
${ }^{6}$ 7. To arrange oxterior elevations withont regard to the mature of the interior, or to force the latter to suit the former; as to give the outward appearance of asve and aisles where there are no columas or arches inside; of three gabled roufs where there is bat one lat ceiling within; of pionacles or gable-crosees which are but chimneys. Hence the custom of building masks either to hide necessary parts which do exist, or to give the iden of those which do not.
*8. To be satisfied with actual weakness without even apparent lights ness, as by the nse of plaistered timber to imitate atone, and by the omission of essential constructive details, such as shafts, mouldings, and the visible resistances of lateral thrusts.
"All mighi be summed np in a very few words. The ancient church. men built for God, not for man ; for the church, not for private interest; for religion, not for fame; for endurance, not by contract; for derotion, not in a spirit of economy ; pro salute caima, son pro crumene."

There are of course many opinions incidentally expressed by our anthor, which might be disputed-such as the indiscriminate intolerance of Classic architecture, \&uc., but it is not necesaary to discuss bere topics which have been fully treated in other parts of this Journal. The atudent who desires to learn the elementa of Christian architecture accurately, may be con5dently referred to this work. Our criticism however relates exclugively to the arcbitectural information: respecting the religious dogmas wbich the anthor briefy propounds, or rather alludes to, it is not within our province to offer an opinion, beyond arc expression of regret that Mr. Paley has suffered his name to be involved in the religioes dissengions which unhappily exist in our Universities. These dispates are in any case deplorable, but the evil of them is greaty increased when they tend to diminisb the poblic eateem of our academic institations as "seminaries of sonnd learning and religious education."

STEAM NAVIGATION.-GUN STEAMERS.

(With Engravings, Plate XIX.)

We are indebted for the following judicions remarks on a better adaptation of the light classes of stemmers to the objects of the naval service, to a letter from Mr. Redfield to the Navy Commissioners of the United States, published in the Franklin Jomrnal. It is a sequel to the report given in this Journal in September last, p. 207.

1st. The proportion of length to breadth in these steamern should never be leas than the average of class \mathbf{C}-the length being equal to wine breadehs or diameters; and, If extended to nine and a half, or oven ten diameters, this will perhaps be within the limits of maximum advantage. Theee ratios of length are especially required for objects yet to be noticed. The proportion of depth, however, may be slightly increasod, if sufficient care be taken to restrict the top weight.

2nd. The extreme horizontal ontline of the deck and guards should be brought withim an angle of fourteen degrees from the midship line ut the bow and atern ; in order not only to ease of motion, but to favconr the deflectlon of the shot of an onemy from the bull when engaged head or sterm on. The bow and stern angles at the water line will necessarily be much finer-say within the semi-angle of eight or ten degrees. The stem and stern port should be nearly vertical, and the floor frames, or at least their rudimentary forms, blould be extended forward and aft to the joinings of the stem and atera post; dispensing altogether with the common "dead wood" of the stern. Suitable provision should also be made for ateering in opposite directions, with either atem or stern foremost.
srd. The deck frame should consist of plank-samed and deep-moulded scantlings, one to each frame of the vessel, and screw-bolted to the same in crossing to the guerd or fender line. The common deak knees ohoald
be dispensed with, and snug knees of hackmatack be applied externally, at proper intervals, where the projection of the guards will permit.

4th. There shoald be a very light hurricane-deck over the central portions of the hull, and extending to a length equal to two or three diameters of the vessel. All the constractions above deck shoald be of the very lightest description, and be comprised, if possible, within the rame limit. Thus the forward and after ends, each to the extent of about three diameters of the ressel, would be left free of incumbrances; excepting the ganfixtures and other indispensable attachments.

6th. The engine should be so placed below deck as to act directly upon the cranks, as in the steam frigate Missouri, if the midship body of the vessel will allow of this arrangement ; otherwise, a half beam arrangement may be resorted to. The paddle-wheels should spread less on the shaft than is common in American steamers, and the paddle be extended to a point at its centre in a trapezoidal or triangular form. This form will admit of a greater immersion, and thus obtain a better resistance, than the common paddles, especially in a sea-way. The crank and chimney openings in the deck should be comprised in a narrow enclosure, with upright sides, extending fore-and-afl-wise to a point, so as to present an acute angle of defection, for the protection of the crank and lower part of the chimney from shot when end on with an enemy. The main shafts, which must be above the deck, should also be protected by deflecting planes, covered with iron and slightly inclined from horizontal.

Much apprehension has been sometimes manifested for the safety of the wheels and paddles when under fire; but those who have employed steamers day after day, for successive seasons, in encountering ice from four to fuurteen inches in thickness, and who bave witnessed the apeed of a steam vessel when one half or more of the wheel arms and paddles have been disabled in this service, will think more lightly of this hazard; to avoid which, almost every quality valuable for a war steamer has sometimes been sacrificed.

Gth. To sustain the guns, the scantlings bepeath them sbould be someWhat enlarged in thickness, and secnrely stanchioned and screw bolted. The gun pivots should be of strong timber, adequately secured to the deck-frame, and extending to the keelsons. The deck, where exposed to the action of the guns, should be etrongly sheathed, and the whule be secured, if needful, by transverse bars, sirongly bolted or clamped to the deck-frame; and, if necessary, connected by vertical bolts and stanchions with the floor-timber. When about to engage, sand bags, or other equivalent weights, mas also be ased for covering that portion of the dects exposed to injury from the explosion of the guns.

To illustrate my views of the proper form of constraction of these vesmels, I annex an approximate sketch of the Jeck plan and guards. This outline has, for its base, the elongated rhomb $a n, b b$, (fig. 1 , Plate XIX.) and presents at the deck a guard line of the bow and stern, a a, the maximum semi-angle of fourteen degrees; which is only equal to that which has been already adopted in some well-proportioned steamers for coast ervice. It also contemplates a length which is equal to nine diameters of the vessel ; each of these diameters being visibly set off on the plan, fig.

It will be found, practicully, that this proportion of length is sufficiently limited ; for the engine, if placed as proposed, will require mach length, and the necessary weight must. alsu, for a light draft, be extensively dis. tributed. Moreover, the first diameter at each extremity, the fotation of which can properly support little more than itself, may be viewed as subatituted for the cutwater, bowsprit and other fixture, which is commonly attached to heavy steamers and sailing vessels; while the second diameter thus set off, answers practicully to the usual bow and stern in other vessels; thus leaving five dianeters for the proper body of the vessel and the necessury wachinery and storage.
7th. The armament of each steamer, 1 apprehend, should consist of six traversing guns. Two of these, of teu iaches calibre, should be worked each on a strong pivot, placed on the line of the keel, at the distance severally of abont one and a half or two diameters of the vessel from the stem and steru post. The four remaining guns, each of eight inches calibre, may be worked oo like pivots, placed near the sides of the vessel, and as much pearer to the main shafts as will avoid interference with the two larger guns. When engaged with an enemy, the line of fire should always, when practicable, be in the line of the keel. The above mentioned ordnance constitutes the armament of the recently constructed war steamers of England; and, so far as 1 can perceive, is the most appropriato and effective for a steam vessel : the peculiar vocatiou and advantages of which ought to be rapid motion and effective fire.

Perhaps some persons may entertain apprehensions of the jnability of these light steam vessels to carry and sustain the action of the gans above mentioned. But these apprehensions are without any just foundatious, as will appear from the following facts and considerations:-(1.) The points at which the guns are placed, require an access of weight equal to this armament. in order properly to equalise the load throughont the body of the vessel. (2.) The weight merely of these guns is no more formidable or destructive to a vessel than a like concentrated weight of other heavy articles, of which vastly greater amounts are safely carried in all weathera on lighter decks than I propose for these vessels. (3.) Owing to their large capacity- and their great superficial bearing upon the water, these vessels are better able to bear the addition of the above weight than any vessels now in the naval service.
This may uppear from the following facts: First, the average load-line area, or bearing superficies, of class \mathbf{C} is nearly thrce-fifihs of that of the Brandy wine frigate; while, if we allow $50,000 \mathrm{lb}$, for the guns and
carriages of the steam ressel, and $48,000 \mathrm{lb}$. for the ammunition and other accessaries, it will then equal but one-ffith of the weight of the armamaat and its accessories of the Brandywioe; and will require to sustain it oaly a draft of $4 \frac{1}{\text { i }}$ inches from the light load-line. Again, this average superficial bearing of the steam veseels is more than four-winths that of the Ohio ship of the line: while the above weight of guns, ammunition, \&xc., is less than one-elecenth the weight of the military outfit of the Ohio. Once more, the average height of the decks of these steamers above the water at midahips, exceeds six fect, with an arerage bearing surface of near 7 t feet pur ton of the ressel and its conteots; while the height of the portsills of the Brandywine and Ohio are but 5 f feet above water, with an average hearing superficies of nearly 21 feet per ton. This shows an immense proportion in favour of these steamers, in the ability to carry accessory weight. Hence, this class of steamers may not only carry this armament, but, in addition, may also trasport, when occasion requires, from five to eight hundred troops.

It may be well to notice here the apparent chances of this class of steam vessels when opposed to heavy war ships of the rates above meationed.

1. The choice of action and position will always belong to the steamers. This is important when opposed to any force whatover; for the most favorable time and circumstunces for combat may thus be commanded, or, if it should be proper and advantageous, the action may for the time be easily avoided. While, on the other hand, an equal or inferior force need not be allowed to escape.
2. The target surface presented by the Ohio when la chase, below the hammock rails, is probably equal to 1450 square feet; and in broadside about 5000 square feet. The cross area of the Brandy wioe presented in chase is probably equal to 940 feet, and that of her broadside area near $\mathbf{3 8 0 0}$ feel; while the average cross area of the hulls of the steamers of class C exposed above water, to a height of aeven feet above the deck, is ooly 340 feet. Now, as the steamers will probably engage chiefly at long shot, and end on, we may here perceive how great will be the advantage for the steamers, with equal skill in gannery, whether or not a sulficient number of steamers to match the bruadsides in weight, be taken into the account.

I say nothing here of the extraneous exposure of the wheels and smokepipes on one hand, nor of the spars and rigging of the ships on the other: believing that these chances, with proper precautions, are not unfarourable to the steamers.
From the great stability and superior steadiness of these steamers when in motion, particularly on the line of the keel, and from the accuracy with which they may be made to bead on or off an object, by means of a marking point sabtended above the bow, to guide the helmsman, they will affird to skilful gonoers greater accoracy of fire than is usually oblained in ships, unless the latter be lying in snoooth water.
In comparing the weigbt of metal opposed, if we reckon to the steamera the full weight which is due to the increused calibre of their guas (and considering the greater destructiveness of shells to a ship, this appears not improper), we shall find that four of these steamers, each with three guas engaged, will exceed, at each round, tbe weight of shot thrown by the broadside of the Brandywine; and that the fire of seven steamers will equal, in like manner, the broadside of the Ohio. While, in chase, thero would be an overwhelming advantage in favour of the steamers. In these estimates the weight of shot thrown by the broadside of the Uhio is taken at 1600 lb ., and that of the Brandywine at 804 lb ., as by adpisement; and the shot of the eight and ten incb gons at 68 lb . and 98 lb ., respectively.
As regards the relative power of endurance, if shells are used, as thes doubtless will be, this power in a vessel cannot be in proportion to the weight and massiveness of the stractare; and may prove quite the contrary. But, if the form of model and position in actiou, which is here recommended, can be made efficacious in some degree for the protection of the eagine and boilers below deck, which seeuns practicable, the steamera, with equal gunnery, must clearly have greater advantages for the endurance of fire to the aggregate than will belong to the ahips. Besides, if we may estimate-hhe aggregate power of endurance to be in proportion to the bearing area or superficial extent of the vessels, as appears nut wholly jmproper, this adpantage will be proportionally in favour of the steamers. Moreover, in shell-tiring a single shot may prove fatal to a ship; while even a like result to one or more of its alert antagonists need not canse a discontiouance of the combat.
However impurtant it may be to maintain a powerful and well orderod navy, consisting of ships of the eatablished classes, it can hardly be in onf power, or within the scope of our policy, to muintain a numerical superiority as agaiost England, even on our own coasts. And without such superiority, or at least a near equality, effectual blockades may not horeafler be prevented; to say nothing here of the chances of losing our ships and naval arseauls, by the ouset of a powerful and well upponted expedition, supported by a numerous fleat of slips and war steacners.
With the aid of her nuinerons and heavy arined steam ships, Euglend might effectually blockade not ouly our ships, hut our war steamers of the beavy and medium classes. For our steamers of these classes could hanily put to sea, or return to port, in the face of a superior force of the same character; and it would be quite in vain to attempt gaining a superiority of this force by new constructions of like kiad, for the present means of England, both mechanical and financial, are sufficient to outdo us in this elfurt, more than three to one. It is therefure indispensable to our superiority, that we should be prepared with fuster steumers, of lighter drajl.
and equal ureight of metal, wilh those of England. These stemmers, being of the classes which I propose, could never be blockaded in our ports hy the existing naval means of any country. Moreover, if maintained in sufficient numbers, so as to be readily ussembled in large squadrons at the points where the exiget cies or demands of the service might require, the most powerful flepts would be unable to maintain a blockade, or to carry out with success a military expetition agajast our shores.

The same classes of steamers are also of essensial importance on our frontier lakes, where armed steamers of the heavy classes and draft of water hitherto adopted, woald be of greatly inferior value; and where all the strategetical advantages will be in favour of the classes proposed.

The greater value and adaptation of light built steam vessels, tenaciounly constructed-not less in lengti and size, nor exceediug in weight and draft, the average of the classes C aud D, may be now reviewed, or mure summarily considered.*
I. Their facility of movement and surpassing speed, exceeding that of existing war steamers from three to six miles an hour, must necessarily afford, as above mentioned, the choice of action and position; and excepting accidents, no enemy can either escape or overtake them, except at the will of their conmauders.
II. Owing to the light draft of water aud greater speed of these vessels, they may shelter themselves from a superior force in shoal positions, or attack and anooy the enemy from such positions on a vast extent of coast and inoer waters, where heary ships or steamers cannot approach. When the elaborate survey of our coast, now in progress, shall have been completed, aud our officers shall also have become familiar with these shallow grounds by active coast service, in proper steam vessels, these facilities may become of great value.

By this means, not only may the exposed positions at Key West and Cther points be maiutained in war, and made available for the annoyance of as enemy, but the strait of Florida, if not the other outlets of the Caribbean Sea and Gulf of Mexico, may be effectually and securely blociaded by sqnadrons of these steaners.

By means of these active steam vessels, and a suitable and skilful force of marines and marine artillery, trained for both land and sea service, Which, I trust, may shortly be provided, an enemy's colonial posts may be captured, and his nilitary resources laid uader contribution. By like means, in case of a war with England, night the coal furoishing ports, and other outposts near our eastern frontier, be taken intu our pussession, and retained, or abandoned, as occasion might reyuire.

It is chiefly by these means that we mny expect to command, in such emergency, the more hazardous coasts of Maine, Nuva Scotia, and the Gulf of St . Lawreace; thus cutting off the communication and military supplies of an enemy, and virtually blockading his American culonies. Un these rocky coasts, as elsewbere, any general degree of safety which might be supposed to result from solid built bottums and heary structures, may be far more than compeosated by lightness of draft and tenacity of structure, and facility of movement; while in security against attack from a superior steam force, the heavy built steaun vessels could maintain no equality with the light footed classes. The coust of Maine alfords all necessary ohelter and resoarces for this service; and this description of force, if matured by timely preparation, and put forth in our strength, might generally cuinmand the coasts and shores, from Quebec to Nantucket. Two or three vessels of the proposed class would doubtleas prove more than a mutch for one of the heariest Euglish steam ships; and, for reasons already noted, the latter might fiud it difficult to escape.

By proper arraugements, and, if npedful, with the associated aid of one of the steam frigates, these lighter built stearners may be sent tu auy part of the world, where their services may be desired, and where friendly or neutral ports can be fuund to afford the necessary shelter and supplies of fuel. Their great speed and efticiency might thas be employed with great effect on an eneny's commerce and resources.

I heve been led, by the request of the cummissioners, thus to explain, to some extent, my views on this essential branch of public defeuce, and to urge the adoption of a class of mueasures on which I consider the future safety of the country nay largely depend; being fully persuaded that it is bot so much on the magnitude, as on the arailable quatities of our uaval furce, that we must rely for success in any futurecuatict with the great mistress of the seas.

* I consider the Gladiator as belog the proper type of the chase D; except an veing silghig debicieat in leagth, which would be belter at 200 freh.

EXPANSION OF STEAM.

Obserrations on the effect of using Steam expansively under different pressures, and when cut off at different points. Heported in the American Journal of the Franklin Institute.
I was led to the following calcolations respectiog steam, by a notice poblished some time sance in the Franklin Journal, of the operation of the Cornish Eugines. The writer of that uutice intimates, that the "duty," said to be performed by the engines, is greater than the calculated puwer, to be derived from the fuel, and that a new theory has been propused to eecount for it, by the "momentum" of the percussion of the stean upon the piston. Ho states that in some of the engruest the steaus is let into the
cylinder at a pressure of 45 lb . to the lach, and "cut off" at one fourteenth of the stroke. As I could find no table showing the effeot of the expansion of steam when carried so far, I prepared the following :-

Steam let on daring the	Effect produced by expanaion.	Total effoct of the steam nsed.	Averape efeet throughout the cylluder.
Full Stroke.	0.000000	1.000000	$1 \cdot 000000$
1 do.	0.693151	$1 \cdot 693151$	-840575
1 du.	1.093610	2098616	-690538
i do.	1.386303	$2 \cdot 986303$	-506575
t do.	1-609448	2.609448	-521889
1 do.	1.791768	$2 \cdot 791768$	- $\$ 65204$
I du.	1.045927	$2 \cdot 045927$	-420846
t do.	$2 \cdot 079455$	3.079455	-384932
1 do.	$2 \cdot 197233$	$3 \cdot 197233$	-355243
to do.	2-302600	3.302600	- 330260
1. do.	$2 \cdot 397904$	3.397904	- 308900
in do.	$2 \cdot 484919$	3.484919	-290401
$\frac{1}{15}$ do.	2.564958	8.664958	-271227
$1 /$ do.	$2 \cdot 639078$	3.699078	-259219
is do.	$2 \cdot 708064$	8708064	-247204
1 do.	2995751	8.995751	-199787
35 do.	$3 \cdot 918896$	4.218806	-168755
do do.	3.912048	4.912018	$\cdot 098240$
160 do.	$4 \cdot 605200$	$5 \cdot 605200$	-056051

From the above table it appears that one per cent. of a cylinder full of steam, if suffered to expand, will give an average pressare throughout the cylinder equal to 5.6 per cent. of the pressure it exerted when entering the cylinder; or that the same quantity of steam, if suffered to expand to 100 times its volume, will do $5^{\circ} 6$ times as much work as if used, without ex. pansion, through the whole strake of the cylinder. And when cut uff at If of the stroke, as in the Cornish engines, the average pressure will be more than one fourth of what it would have been, if fourteen times as much steam of the same pressure bad been used. This sufficiently explains the cause of the superiurity of the "daty" performed by the Coryish engines over those in which expansion is not carried to so great an extent ; for it requires less water to be raised into steam to work expansively than would be required to work with steam of the same average pressure, and full cylinders. In the case of the Cornish engine the steani was used at 45 lb . pressure for of the atroke, giving an average pressure, ugreeably to the table, of $259219 \times 45 \mathrm{lb}=11.605 \mathrm{lb}$., and to perform the saine work, with the full stroke, would have required steam of at least this average pressure. Now to determine the quantity of water required. Dalion says that steam obeys the saine law as the gases with respect to pressure, and they have expangive force in the ratio in which they arn compressed. Then steam of double pressure should contain a double quantity of water. The published tables of the specitic gruvities of steum give an addition of weight of only about 87 per cent. to steam of double pressure, which would coatradict Dalton'』 pusition. Supposing, however, that Daltun's law is correct, and that atmospheric steaul cuntains 253 grains of water to the cubic foot, then steam having the above pressure of 11.665 lb . would contan 435 g rains; and steam of 45 lb . pressure would contain 1012 grains of water per cubic foot. But, with this last, it requires but f_{1} of the quantity, or ($1 \rho 1^{2}=$) 72 grains to give the same average poiver, When ased expansively, as the 435 grains on the full cyliuder plan. The fuel required should be in propirtion to the water to be evaporated. Watts's experiment with the open and closed boiler, each subjected fur an equal time to an equal heat, showed that the same quantity of water had escaped, in steam, from the open boiler, as flew off from the cluse one, opun opening the valve at the end of the operatiun; thins pruving that equal weights of water require equal quautitios of heat to raise them into steum, irrespective of pressure. On this principle, then, the Corossh engine should require but 73 or about of the fuel that would have been required to work them ou full steam, which very nearly corresponds with the "duty" performed by the present Cornish engines compared with that done by the engines formerly constracted by Bolton and Watl in the same loculity.

Another principle comes in play, in working expansively, which is lost sight of when working with equal steam throughout the struke-viz., that matter in mution would never cease to move unless retarded by external causes, and would require, to stop it, a power equal to its weight multiplied by its velocity. Now, in working expansively, the steam is applied at a pressure sufficient to start the load at a certaiu velocity, to continue which, it is only uecessary that the additional quantities of power should equal the retarding furces of gravity, friction, and resistance of air, until the commencement of the next stroke. Now, in the Curnish engine, where the steam is cut of at f of the stroke, the increments of power beyund that poiut, or that portiun of the power gained by expansion, amount to nearly 2.64 times the direct power of the steam applied, and which gave uriginal velocity. This velocity must therefore be contioued untll the gravity, friclion, and resistance of air, amonnt to 201 tines the original power, applied before cutting off the steam. The whule weight of the machinery and load thus uperates, on tbe fly-wheel principle, to cuatinue the motion, as the velocity given to them forma one of the facturd of
their momentum, which is cousteracted only by the other factor, the gravity.

It is thus readily seen that the weight of the load raised by an engine working expansively, may exceed the average pressure of the steam on the pistun, for it only requires the steam to be at a high initial pressure, so as to give the necessary velocity, and of course monentum, w the load at the commencement of the stroke; it may then expand so as to bring dowa the average presance and leave sufficient power, to be derived from the momentum and the expansion, to carry forward the work. This reserved power will of coarse be applied in a decreasing progression, while the retarding powera would be constant. It will be a useful exercise of the akill of some of your mathematical friends to calculate how far the load may exceed the average pressure upon the piston.
It appears from the table that the advantage to be derived from expansion, increases with the expansion. It becomen therefore important to ascertain the extent to which it may be carried. I noticed that in the Cornish engine they use a "steam jacket" to their cylinder to prevent condenastion. This led me to inquire into the heat of the steam, and how it would be affected by its expansion. Will steam ex pand in a cylinder from any given pressure down to that of the atmosphere? Pressure or condenmation of air prodaces heat, and the release of it from pressure, cold. If steam be affected in the same way, and you suffer it to expand to 100 times its bulk, will not its heat be divided by 100 , and be reduced below the freezing point 9 The cut-off stesm can take up no heat from the boiler, and its inherent heat is stated to be about 1212° divided into portions, sensible and latent, according to its pressure. As each particle of steam mast be supposed to contain an equal portion of hear, the heut must necesserily be divided with the expansion of the stean. Then if it contain but 1212°, and this be divided by the expansion, it is evident that before the atbam can have expanded 40 times, its heat would be reduced below the freezing point, even if the latent heal all became sensible, unless it could take up heat from the cylindler, which is not of a nature to conduct it with cufficient rapidity. That the heat is divided by the expansion, any one may satisfy himself by placing his hand in the steam issuing from a highpressure boiler. He will in ihe same way be conrinced that sleam is not frozen by ex panding from 150 lb . to the pressore of the atmosphere. Now it is impossible that in this case it should take up from the atmosphere cufficient heat to prevent freezing, if the heat, originally in it, did not exceed 1212°, as indicated by our bouks. To account for the pbenomenon, I suppose we may asame that the heat in atmospheric steam is correctly lated at 1212°, of which 212° are sensible, and 1000° latent-a second volume of water, rising in the form of steans in the boiler, takes up an additional 1212° of heat; and now the steam contains twice as much water, and twice as much heat, as atmosphrric steam, shows 15 lb . presanre by the mercurial gauge, and about 242° of heat by thermometer, the remaining 2182° being latent; and Bo, for each individual 15 lb . of presenre, another volume of atmospheric steam would be compressed into the original space, a less portion of its heat each time becoming latent. On this theory, steam of 150 lb . pressure will contain 11 times as much water ts atmospheric steam, and 13332° of heat, while the thermometer would show but about 360°. And the temperature of such steam, when expanded to the atnosphere, should be 88°. It would therefure rush into the air and immediately assume the form of water, which, judging merely from the sensation, is near the fact. The advantage of the "steam jacket," therefore, is obvious. It is also obvious, that steam of any pressure many be used, on the plan of expansion, in a condensing engine, as the heat may always be reduced, by expeusion, to the point at which it may be condensed. The following calculations seem to show, that the mont economical engine would be built upon this plaa.
Steam at 180 lb . preasure, cut off at 1 lo of the stroke, by the table, will tre an average presace of 10 lb . to the whole cylinder, and, by adding The vacuum and air pump, 10 lb . wore may readily be obtained. Such an engine would therefore give a power equal to two of Boltun and Watt's, of the aame size, worked with atmospheric steam. Proceeding on the data, that equal quantities of water are to be evaporated for each lb . pressure of sueam, at the same expense of fuel, on both plans, wo have two cylindersfull of atmospheric steam, weighing $\mathbf{2 6 3}$ grains per cubic foot on the Bolton and Watt plan, and only tho of one cylinder-full of steam at $180 \mathrm{lb} .$, woighing 3289 graiss per cubic foot, in the other. The water to be evaporated to prodace the same power in both will then compare as 253 to 48, or, the Bolton and Watt engine will require 1 s$\}$ times as much water to be evaporated as the other, and fuel and boiler in the same proportion. The 180 lb . ateam, by the theory, would cuntain 15626° of heat, which, divided by the rxpansion 100 , would be reduced to 156°, while in the atmospherio seam, there would be 1212°, or nearly 8 tines as much. Of course, the condenser, air pump, and condensing water, need only be th of what the two Bolton and Watt cylinders would require for the condensing procem.

If Dalton be correct in the opinion that steam, like gas, has expapsive power in proportion to its compression or density, we have data tu calcuinte the maxinum poner of stemm. Water is found to expand nearly 1800 times into steum of atnospheric pressure, or 15 lb . to the inch. Then, by compressing such strum to 1 tov of its bulk, we should get it back fato water, and multiply its elastic force in the same degree, $1800 \times 15=$ $8_{27000} \mathrm{lb}$. per square inch, the maximam. In following the same law of

- Brean thas compressed fnto water, would instantly give out all its beat, and produce

elastio power in proportion to densliy, we fiod, that each expension of etean to twice its volume, in a steam cylinder, gives precisely the same increment of power to the piston, which must move each time double the distance. Thus the distances moved by the piston for each expansion, form the serie 1, 8, 4, 8, \&cc., and the increment of power for each diatance ia "693151 of the power applied before the steam is cut off.

Ersitine Hazsid.
Philadelphia, July 20, 1846.

REGISTER OF NEW PATENTS,
If addillotal information be required respecting any patent, it may be obtained at an Fen of this Joural.

MANUFACTURE OP IRON.

Giorge Hinton Bovill, of Mill-mall, Poplar, Middlesex, engineer, for "Improvements in the manufacture of Irom."-Granted Jan. 31 ; Enrolled July \$1, 1846. (With Engrarings, Plate XIX.) Reported in the Repertory.
The improvements relate, lat, to an arrangement of apparatus for heating the blast from the flames passlag off from the top or funcel head of blast furnaces; 2nd, to en improved mode of heating the air or blast, by blowing the same partly through and party over a tire in a closed retort or Gire-proof chamber; 8rd, to the working of blast farnaces by exhaustion or suction, in contra-distinction to the present method of blowing air into them at a greuter preasure than the atmosphere: 4 th, to the introduction of steam above the boshes of blast furnaces; 5 th, to an improved method of puddling iron by the application of the water fornace, commonly known as Kymer and Leighton's furance, the ame being worked by air blown into a closed ash pit, and the introduction of air over the fire to consame the gases generated; 6th, to a preparation to assiat the working of iron in the podilling furoace, and its further application to facilitate the combinstion of steel with iron; 7th, 10 a mode of calcining iron ore by combining the use of furnaces with heaps of ore; 8th, to a mode of constracting furnaces for heating or re healing iron.

Plate XIX., fig. 1 is a side elevation, 6 g .2 a section, and 6 g .3 a plan of apparatus placed at the top of a blast furuace, the cold air from the blast main passing through the sume, and beag heated by the gaseous fame passing off from the furnace top, is blown in at the tuyeres of the furnaom in the ordinary manner. a is the top or stage of a blast furnace; b the brick tundel head of the furance, showing the doorway c, through which the furnace is charged, and to which doors are bugg, confining the gaseons fame to pass through the heating cells; d the cold air main and branches from the blowing engine connected to the three chambers e, provided with doors or bonnets f, secured by bolts and nuts, air tight: the object of these doors is to get access to the socket joiats, by which the connection is mad with g, lat cells or chambers (shown in enlaryed section, fig. 4), exteuding across the tunuel head b, and connected, as above-nuentioned, to the cold air chambers e on one side, and to h, three similar chambers, on the other side, from which the heated air is conveyed by the three pipes i, to their respective tuyeres and blown in at the bottom of the furnace. j, spaces between the air-cells, g, through which all the gaseous lames from the furnace ascend, the cold air being divided into thin currents, aboorbs heat in its passage through the cells g, from the fame of the furnace, and obtains sufficient temperuture to be blown into the furnace. By this arrangement the air, being divided into thin currents, is brought into contact with greater heating surface, and consequently absorbs the heat therefrom more rapidly than when pipes of considerable diameter are employed: it is in. portant to keep the heating cells for each tuyere distinct, and by the arrangement here shown, it is clear either of the sections may be repaired without any interference or stoppage of the others ; the arrows indicats the direction of the currents. The great object of this part of the invention is to use apparatus at the tunnel head of a blast furnace of such a description, that the heated compartments through which the air paseen shall offer considerable depth as compared with the width, and so that the air may be said to be in a series of very thin sheeta or currents of coesiderable depth.

Fig. 5 is a section of an improved hot air store for heating the air used for the blast. A a tight iron cuse, lined with fro-brick, and provided with a Kymer and Leighton's patent water grate, i, supplied with fuel by weans of a hopper, j, provided with a horizontal sliding door at the ead nemr the furnace, and at the opposite end with a piston door, l, that will move freely along the hopper; m ash pit, closed by the door m, and supplind with air from the blowing engine; o air pipe, furnished with a vaive to regulate the quantity of air to be admited from the cold air main p, to which also is applied the nozzles q, to admit the cold air into the spece abore the fire on the water grate, where it mixes with the products of combustion and vapour of water, supplied from the water troagha of the fire-bars, and passes awuy througb the pipes r, to the tuyeres of the furnace; the admission of air and consequens regulation of heat of the blact are governed by the slide valve s. The mode of applying the blart poesesses a grest advantage in giving a command over the working of the fan nace: when the cinder from the furnace has a glassy appearace, indicas. ing the presence of unreduced oxide of iron, the admimion of air over the are should be reduced or the quantity throngh the fro increased; an the

Other huod, should the faroace be working alaggishly, the quantity of air over the fire shonld be increased; by the application of the $\mathbf{K} y$ mer and Leighton's water grate, the fire bars of the furnace are preserved.

Fig. 6 represents a blast forance, with a double hopper, a, the slides of Which, b, are worked by gear from the handles c, on the top of the furpace; the furnce is cbarged by the farnace man opening the top olide and alling the hopper, which, when closed, and the lower one being opened, the charge descends into the furnace. d, suction pipe from furnace connected to the exhansting engine, by which is worked the furnace, instead of blow. ing or forcing air into furnaces at a greater pressure than the atmosphere, by whicb means is obtained a more perfect distribution and circulation of atr through the red hot mass of matorials in the body of the furnace with a smaller exertion of power; the unconsumed gases drawn off from the farnace may be profinbly applied to various purpeses connected with the manufacture of iron; either hot or cold blast may be used with this as well -s the system at present adoptod ; if the former, the air may be heated by the plan already described, or otherwise. It is well known iron is frequently mach iojured by the presence of sulphar in the materiala in the Bast farasce (of which the fuel contains the largest purtion), at the point of fusion this enters into combination with the iron. The object therefore for that parpose, is to upply an injection of steam and distribute it through the mass of materials in the furance, above the point where any fusiun takes place, at the upper part or above the boshes of the furnace.

Fig. 7 represeats a poddling furnace, with one of Kymer and Leighton's patent water grates (Gg. 2 is one of the water tronghs and a bar, in large eection); a hearth of furnace; b patent water furnace ; c double fire door; d air pipe through which the air is blown from a blowing machine botween the plates of the fire door, and distributed over the farnace combining with the gases of the furnace, more particularly produced from the decomposition of the water, and producing an intensely hot fame; cash pit, with closed door g, and air valve f, for regulating the supply of eir from the blast pipe through the fire. In commencing the operation of paddling, it is preferred to introduce a portion of some carbonaceous sabstance mixed with the iron.

The sisth part of the Improvements has for its object the preparation of What the patentee calls a cinder, to be used in the puddling furnace, when puddling iron and also when piling iron, or iron and steel, in order to facilitate and improve the welding of these matters. In preparing this cinder, tate Camberland ore, or oxide of iron, such as hammer scale from the fron forge, and charge the same into a cupola or other blast furnace, with the slack of anthracite coal or other suitable fuel, and cause the same to be melted by the blast, and tap the furnace from time to time, and allow the melted cinder to run out and become cold, or it may be used by being conveyed at once to the puddling furnace. In charging the furnace, the Comberland ore or other rich oxide of iron is firat nixed with a like quantity of the slack or culm of anthracite coal, and the charge is continued as it descends into the furnace. The cinder for puddling is to be broken into small lumps; and when the iron has been brought to the metallic state in the pudding furnace, is to be stirred in about 20 per cent. by weight of the cioder to the iron in the furace, and thea the balling process is to be completed as usual. In using the cinder when piling iron, or iron and steel, the cinder is reduced to powder, and dusted over and anongst the surfaces to be welded, by which the process will be facilitated and in. proved.

The seventh part of the invention consists of a mode of calcining iron cre, by combining the ase of furnaces with heaps of ore, in place of combiniag the ore and fuel in heaps and igniting the whole mase. Fig. 8 shows a section of a furnace and a heap of ort; and fig. 9 a front view thereof. The furnace is so arranged that a blast of air may be applied below the fire bars as well as over the ignited fuel above, the ashpit being closed. The fame and products of combustion are thus forced througb the heap of ore, and the same becomes calcined by the passage of the products from the farnace.
The eighth part of the invention relates to a mode of constructing furances for heating or re-heating iron, and the improvements consist of so forming a reverberatory furnace, that, in place of the flame and beat paseing off at the end of the fornace, it is caused to deacend through the bed of the furnace, which is made open for that purpose. Fig. 10 represents a eection of the furnace. The genersl construction is similar to an ordinary reverberatory furnace, and is provided with a passage at the end into the chimney, for the purpoee, whon first lighting the fire, to get ap the heat to dlow the working to take place in the same way as if it were an ordinary mererberatory furaace; but on the slide being closed, the bottom of the farnace is so openly formed, that the heat and fiame pass through the bed into the chimney. The bottom of the farnace is preferred to be constracted of a series of brick arches, a, leaving a space of about two inches between the peighbouring arches, or, jastead of the brick arches, a Water grate may be nsed as the hearth; and to facilitate the draft of the chimpey, in steam jet is applied at b, or other convenient means may be used. In working wish this furaace, the bottom is covered with coal or coke of auch size, that it will not pass through, and on soch bed is placed the iron to be beated. By such oonstruction of furnace it will be found that the reheating of iron will be facilitated and the cost reduced.

STEAM ENGINE CONDENSERS.

Tromas Howard, of King and Queen Iron Works, Rotherhithe, Sarrey, engineer, fur "Imprurements in steam engine condensers."-Granted March 25 ; Enrolled September 25, 1846. (With Engraving s, Plate XIX.)

This invention applies to such condenxing stenm-engives as have their boilers supplied with water of condensation, und wherein the stean is coodensed by injecting water properly cooled down. A tank a, is placed in any convenient situation, and supplied with cold water by pumps or otherwise at b, and which having its course governed by plates c, c, within the tank, eacapes at d, as further shown by the arrows. The ends of the tank are closed by plates which are recommended to be of brass, c, c, pierced with holes, iu which are secured, water tight, the ends of tubes of copper or other appropriate metal, f, f, f, a section of one row in height only being shown in the drawing, but which extend through the breadth of the tank. Bonnets g, g, are fixed over the plates and open ends of the tubes, (and so us to be removeable if access be required to the tubes.) and are divided into compartments, which in either bonot alternate in position with those in the opposite one at the other end of the tuben, as shown in the drawing. A nozzle, h, on one bonnet is connected by a pipe or otherwise with the hot cistern, and a nozzle i, on the other is connected with the injection cock of the steamengine. Within the nozzle h, is a plate h^{\prime}, perforated with small holes. A quantity of water being introduced into the hot cistern (by first starting the engine with the ordinary injection, which it is recommended to be attached or otherwise) sufficient to fill the tubes, and properly effect the circulation, the injection cock connected with the nozzle, at i, is opened, when the warm water in the hot cistern will pass by the atmospheric pressure through the opposite nozzle at h, and to and fro along each series of tubes determined by the divisions in each bonnet (and as shown by small arrows), and will be reduced to nearly the same temperature as the external water, supplied at b, aud will, after passing through the nozzle i, and effecting the condensation by its iujoction, be withdrawn by the air-pump of the engine in the ordinary way into the bot cistern, from whence it will again circulate, through the tubes, being cooled and reinjected contioually, as before described. Any waste which takes place is made good by the ordioary injection, which the inventor prefers to the use of atills; but the latter may be employed upon any ordiaary plan if required. He does not confine bimself to the precise arnagements heroinbefore described.

The injection water and the external refrigerating water may be made to change positions, the former to pass without and the latter within the tabes. The cold waier may be supplied by any known means. It is recom. mended that the refrigerating surface be about ten square feet per nominal horse power, when the stean is so employed as to leave the cylinder of the engines at 10 lb . per square inch pressure, irrespective of the atmosphere, and be more or less accordingly, and that the supply of external or cold water be cot less than twice the quantity of the injection water.

The inventor states that patents were granted to him, dated isth October 1825, and 80th November, 1832, in both of which was included a process of condensation by the reinjection of the amme water or other liquid, which he does not bereby claim.

But he claims the so arranging apparatus, that the water for condensation shall be subdivided into many streams iu its progresa to be cooled and used as injection water, as herein described.

RAILWAY LIFTING APPARATUS.

Thomas Popz, of Kidbroke, Kent, gentleman, for "Improvements is apparatus for moving railway carriages on to railucays, and in machinery for iffing and moring heary bodies.' Giranted March i5; Enrulled September 25, 1846. With Engravings, Hlate XIX.
The invention relatee firstly, to an apparatus for moving railvay carriages on to or from a line of reilvay in came of accidents or otherwise; and, secondly, to apparatus for lifting and moving heavy bodies. Fig. 1, Plate XIX. shows a aide viow of the apparatus for moving railway carriages; a is a frame with a screw shaft b, turning in bearings at each end; on on end of the shaft is fixed a pinion e, which takes into another pinion d, whlth - winch handle e, and on the shaft is a female sorew with a travelling aus f, with a pin that passes through the groove or opening in the top of the frame a, and sacured in a hole to the plate g; the two plates g, g^{\prime}, carry portions of two rails $h h$, and the plates are connected together by the rod i and rest on friction rollers j, which run on the frame a. When the apparatus is to be nsed, the carringe, supposing it to be off the rails, is raieed at one ond by a screw-jeck or lever, then the apparatos is placed under the carriage with the rails $h \boldsymbol{h}$ under the wheels, and if the carriage be not far off the rails, one ond of the frame a is placed on the line, and then by tarning the handle, the end of the carriage is gradually brought over the live or part of the way, then it is either lowered on the rails or allowed to reat, and the appuratus applied to the other end of the carriage and shifted, and so on shifting the apparatus from end to end antil the carringe is correctly over the line, or in place of one apparatus two may be nsed to shift both ends at once.
The rod i is mado moveable 50 as to adopt the apparatus to different ganges of railway, and inutead of the pinions on the shaft b, the shaft may be made to ravolve by a screw wheel taking into a screw wheal b. The
inventor does not confine himself to the apparatus, he says in some cases a simple ratchet-wheel may be placed on one of the rollers takiog into a rack on the frume a, as shown in fiy. 2. The frame a may be dispensed with, and any planks of wood used to form a bed for the plates i to run anon.

The second improvement is for an apparatus for lifting parposes, consisting of a case with a acrew inside, and a female screw workiag up or down with a bracket thereon, and passing through the side of the case. On the top of the screw shaft is fixed a toolbed wheel which takes in and is driven by a worm wheel turned by a handle.

STAINING AND ETCHING GLASS.

Ibacc Haprer Bedford, of Birmingham, for "Improfements in the manufucture of window and other glass."-Granted June 12; Enrolled September 12, 1846.-(Partly invented and partly communicated from abroad.)

The improvements relate to staining and etching glass. The staining is effected by the use of copper to produce a red colour either before or after cutting and polishing the glass, aud the wbole or any part of the surface may be stained ; the invention is most successfully performed with glass made without the use of soda. The glass is to be well cleaned, and treated in the following manner :-take oue part by weight of aulphuret of copper; two parts of the scales of iron from a smith's forge; three parts of sulphate of copper burned to whiteness; and four parts of calcined yellow ochre, all ground as fine as possible with the essence of turpentine, which has become rather thicy by exposure to the atmosphere. The mixture being of the consistency of cream is laid on the surface of the slass to be atained by a brush, and allowed to dry; the glass is tten placed in a stainer's muffle and heated to as high a degree of heat as it will allow withont melting. The fire is then drawn off, and the glass allowed to cool down slowly, and washed when cold, when the appearance of the glass should, on looking in a direction edgewise of the glass, offer a greenish yellow if lead has been used in the making of the glass; the colour obtained will, however, difer according to the composition of the glass. The glass is again placed in a muffle, and beated as before; when the fire is withdrawn a quantity of small coal is introduced into the lower part of the muffle; (4 lb . of conl is the quantity for a mufte 24 inches in diameter and 30 inches in length). The muffle is then completely closed and luted, by which the products of the coal will be prevented escaping. The muffle and the glass are to be allowed to cool down, and when the glass is taken out, it will generally be found to ufler a brownish-red colour. Those articles which offer such colour are then to be placed in another muffle which has been lime-washed, and again heated and cooled down as before.

The second part of the invention relates to ornamenting of glass by a peculiar process of etching. For ornamenting window glass take live parts of puce-coloured oxide of lead (peroxide) to one part of lux, (the lux employed is 17 parts of glass of boraz and 13 parts of red lead fused together); the oxide of lead and the fux is ground with turpentine, and with this composition the artist paiots the desired devices or designs on the surface of glass to be etched: when coloured glass is to be etched, acetate of lead is preferred in place of the oxide of lead; the sume are then allowed to dry, and the articles are to be fired in the same manner as when gilding on glass, and allowed to cool; and when cold they are dipped in a weak solution of nitric acid in water, and the surfaces cleansed by rubbing off the preparation above mentioned. -The claim is fratly, for the manufacturing stained window or other glass, by applying copper for producing a red colour for staining the same on the surfaces, sa herein explained; and, secondly, for the mode of manufacturing window and other glass, by etching on the surfaces thereof by means of lead acted on by acid.

STEAM ENGINES.

Mark Rollinson, of Brierly Hill, near Dudley, engineer, for "Improvements in steam engines."-Granted May 7; Enrolled Novenber 7, 1816.

The improvements relate to obtaining additional power by admitting steam in the upper part of the air pump of steam engines during the down stroke, simultaneously with the admission of steam in the ateam cylinder. The air pump has a solid packed piston, and valves and pasages communicating with the condenser.

COKING ARTIFICIAL FUEL.

Ferdinand Charles Warlici, of Deptford, Kent, gentleman, for "Improcements in the manwacture of Juel."-Granted April 7 ; Enrolled Oct. 7. 1846.

The improvements relate to the subjecting of moulded fuel to the process of coking ; for this purpose the patentee prefers the manufactured fuel, consisting of the small of anthracite coal, of free burning coal, and of bithminous cual, mixed with pitch or bituminous matter moulded into bricks; to be beated in reforts or ovens to drive of the volatile products (as described in a patent grauted October 5, 1343, to the present patentet). The bricks are then placed one upon another with a small space between the sides, in a coke oven, (a square one is preferred), when they are conierted iuto cule by the ordinaly process.

PUNCHING AND SHEARING.

Charlea May, of Ipswich, Suffolk, civil engideer, for "Improeemente in mackinery for punching, rivelting, and shearing metal plates."-Granted April 15; Eurolled October 15, 1846. (Keported in the Patent Journal.)

This invention consists of the application of different modifications of the principle of the hydrostatic press.
It consists first in its application to the punching of metals, used for boat building, boiler making, \&x. Fig. 1 represents a side view of this improved machine, which is partly exhibited in section. It is a strong iron frame a, in the shape of a horse shoe, the upper arm of which is fasnished with a die b, the size of the hole in which corresponds with the size of the hole desired to be perforated in the plate or plates of metal ; it is affixed to the arm by means of a pinching screw c, which admits of its being changed for a new one, or one of a different size. The extremity of the lower arm is cast hollow and fited with a ram or cylinder d, similar to the ram of a hydraulic press ; this rain d, carries the punch e, used to foroa out the hole in the metul plates. It is placed directly opposite the bole in the die b, into which it is received when forced upwards. Another external or annular cylinder f, which is bored to suit the external diameter of the rani d, and the exterior is turned to fit the hollow in the arm; both these cylinders have cap-leathers $g h$, placed in recesses turned to receive them, which prevent the water escaping between the surfaces of the cylinders when the pressure is applied. Attacbed to the centre cylinder is a rod i, which prases through a stuffing box in the bottom, and has attached to the other end a spiral spring, which withdraws the punch from the plates after the hole is punched. k is the aperture to which the tube is attuched to form the connection between the pumps and the press.

The frame a may be of any other convenient form, but the patentere prefers the forproing, as it may be easily suspended by the rings from a traversing crane, and moved about in any direction where it may be required; the pumps being placed on the platform of the crane, and connected by means of a flexible tube, the best for which purpose being of metal, and coiled round in the shape of a spiral, having a sufticient nomber of turam to give it the requisite fiexibility.
The action of this apparatus is as follows :-The plates l, m, baving been introduced between the punch and die, water is forced in below the mma by means of pumps, one of which should be considerably larger than the other, in order to take up the slack, and the small oue to produce the pressure. The water being thus forced in, will raise both cylinders d and f, until they meet with some resistance from the plates; the exteral cylioder f forcing them close together, and the pressure being continned, the internal cylinder or ram will rise still further, and force the punch cthrough the plates; and on the water being allowed to escape, the cylindera will be withdrawn by the action of the apiral spring, twith of which cylinders are furnished with suitahle collars, so as to prevent either of them being forced or depressed beyuad a proper raage.

The second part of this invention relates to the rivetting together plates of metal by the same means as before described for punching; the only difference in the machine being, that rivet sets are adjusted in the same position as the punch and die; to receive and form the rivet heads, it is not necessary that it should be furnished with a double ram or cylinder.

The third part relates to the shearing and cutting of metal plates, the machines for which, are modifications of that already described, oue being exactly similar to the common form of Bramah's press, but furdished with a double ram. The patentee proposes to use this for cntting such articles as railway axle guards. A punch, of the shape of the article desired to be cut, is fixed on the head of the ram, and a corresponding die in the cross head; the ram, on being forced up hy the means already explained, will cut the metal plate the shape required.

Fig. 2-Catting Shears.

Fig. 2. represents a front elevation of a machine of shearing; a, a, is a strong iron frame, supported in a vertical position by means of dovetail guides, in which it moves freely up and down; b, b, is a knife or shear, attached to the frame $a ; c, c, c$, are a series of bydraulic rams, by which pressure is applied directly on the knife or cutting shear; the corresponding shear d, is stationary, and a fixture to the frame of the machine.

Having described the manner of applying the invention to the different purposes for which it is intended, the patentee wishes it to be noderstood, that he lays no clain to the details as herein described and carried ont, nor to the application of water for the same purposes; but claims, first, the application of the pressure of a fluid, caused by means of pumps, for the punching of metals. Second, the application of the pressure of a fluid, caused by means of a pump or pumps, for the rivetting together plates of metal, as hereinhefore described. Third, the arrangement of a series of hydraulic rams, for the parposes of sbearing metal plates, as hereinbefore described.

APPARATUS FOR PREPARING FIBROUS MATERIALS.

William Newton, of Chancery Lane, Middlesex, civil engineer, for "Improved modifications and novel application of known machinery and process to the purpose of cleaning, softening, dividing and preparing flax, hemp, and other regetable fibrous materials." (Being a commanication.)Granted August 14, 1845 ; Enrolled February 14, 1846.

The invention relates to the employment of an apparatus similar to the ordinary falling-stock, for beating, breaking, or operating upon textile plants of all descriptions, and for constructing the beaters and trough or bed of the ztocks in the manner bereinafter described.

Fig. 1 is a vertical section, and 6g. 2 a plan of the apparatus; the bed or trough may be made of cast iron, copper, or other suitable metal, the internal surface is formed of three curves; the first curve is the front of a radius of 10 feet and 2 feet in length, which is the length of the arms of the beaters; the bottom curve is 10 inches in length and 10 inches radius, and the back curve 19 inches in length and 24 inches radius; the trough is about 24 inches wide on the top. The wooden beaters are of equal size, and lifted by rotary tappots e, falling alternately on the sabstances in the trough, they are about 400 lb . in weight, and have a fall of 2 feet, (the weights and fall may be varied according to the degree of hardness and resiatance of the plant). The beatera have 5 teeth, the front tooth is 21 in. thick, and projects half an inch beyond the two following or intermediate teeth $b b$, which are 2 inches thick, forming an arc of an inch radius, and the foarth tooth c is $1+$ iach thick, and 21 inches longer than the first, and the fifth and last tooth d is $4 \frac{1}{y}$ inches thick, and projects nearly 7 inches; a apace of $2 \frac{1}{3}$ inches is left between the 4th and 5th tooth. The opper surface of the beater is perpendicalar to the firat tooth, and carved to the shape of the trongt. The teeth are covered with sheet copper, and the arme of the
beaters are monnted so as to vibrate in an arc concentric with the front carve of the trough.

The operation is performed in the following manoer :-the plants are firmly twisted together in bundles of abont a pound each, and theo cleansed and deprived of all gummy and other extrancous matters, and softened by being beaten or pressed. About 80 lb . of the plant is then laid on the trough and submitted to the action of the two beaters, acting alternately for about four hours.

This alternate action of the beaters turns the plant over and over, in a regular and udiform manner, compressing it forcibly against the sides of the bed, and causing the fibres to rub against each other at every stroke of the beaters. The outer covering or woody portion of the plant is first broken and then removed by the peculiar shape of the teeth of the beaters. Alter a time the outer covering and ligneous matter being broken off, the filaments are separated and the plant gently hoated, which facilitates the removal of the gummy matters, and all the parts become softened. After this operation, and a cleansing in water, the fibres are operated upon in the ordinary matter.

METALLIC PISTONS.

William Mather and Colin Mather, of Salford, near Mancheater, millwriphts and engineers, for "Improvements in metalic pistons."Granted April 28 ; Earolled October 21, 1846.

The improvements relate to the mode of packing pistons by a combina tion of two helical springs, one within the other, as shown in the annezed figare, one-balf of which shows the onter apring a, and the other half the inaer one b, which surround a groove or channel formed round the body of the piston e; they are compressed and held in their places by the top plate or cover d of the piston when fxed down by three screwse; at the two ends of the outer spring, there are filling or stopping bite f, placed across the two openings in recesses formed in the outer spring in order to stop the steam pacaing down or up through the oplits.
The two springs a and b are made by first forming a cylinder by casting and then catting out a portion of the metal in an inclined direction, a vertical cut being made at the points a^{\prime}, d^{\prime} : when the oprings are put togee

Sher, the two ends of the outer spring are made to come at the opposite side of the piston to the two ends of the inner spring. The outer spring n is formed with an inner flange, and the inner spring b comes between the flanges, and causes by its elastic force, to open out and press the top and bottom surfaces of the outer spriog a, against the top and bottom plates of the piston. As the two springs require to be compressed when the piston is introduced jato the cylinder, they will when in exert an expanaive force and fill up the cylinder in which it is working, notwithstanding any wear either in the cylinder or the packing.

The claim is for packing of pistons by the use of helical springs a in combination with spring b.

MARINE ELECTRIC TELEGRAPH.

Arthor Philip Perceval, of East Horsles, Surrey, Clerk, for "Improvements in communicating between places separated by water."-Granted April 23; Eorolled October 23, 1840.

These improvements consist-First, when the electric wires have been effectually secured from water, by thread and gum or caoutchouc, they are to be enclosed io a "necklace of iron rings in consact with each other, or of iron sockets dove-tailing one into the other. Cuil it on the deck like aoy other cable, and throw it overboard in transit." Secondly, where this means of communication is onavailable, transfer a semaphore apparatus on land, to hulls, fixed at proper distances and secured by anchors, sufficiently spacious for the accommodation of men to work the signals.

AMERICAN PATENTS.

Granted in August, 1845, reported in the American Franklin Journal.

For "an Improred method of making matrices for casting printers' type.", Thos. W. Starr, Philadelphia.

This is for forming matrices on types by the electrotype process, which afterwards are properly fitted up to give the necessary strength and durability. Claim.-"Having thus fully described my method of forming matrices for casting the face of prioters' type, and other articles therein, what I claim as new, and desire to secure by letters patent, is the manner of forming the same by means of a common type or cut, and a metallic plate with an opening, with slanting sides, the two arranged and prepared in the manner described, and placed in a solution of sulphate of copper, and connected with the pole of a galvanic battery, in the same manner nsually practised in electrotyping; and after receiving a snfficient deposit of copper, to be fitted up for use, in the manuer set forth."

For "an Improsed method of lessening friction in clocks, \&c. Eli Terry, Plyamouth, Connecticut.

The claim is for "the employment of a suspension piece, arranged and operating substantially in the manner of that which I have denominated the friction-preventor, for sustaining the weight of the balance wheel and its arbor. The arbor of the balance wheel is supported by a stirrup which vibrates as the balance rotates, so as to relieve the journals or pivots from the friction due to the weight of the halance."

For "a composition of matter for remneing acids from cloth, \&c. Solo. mod Guess, Hoston.

This compound consists of 4 lh . of fucus vesiculosus (sea or bladder wrack) boiled in 3 pints of water until reduced to one, mixed with one quart ox gall, 1 lb . of carbonate of ammonia, $\frac{1}{c} \mathrm{lb}$. of alum, and 24 lb . of common white soap; the whole is properly melted and mixed together.

For "un Improcement in the propeller." John Ericsson, New York City, N. Y.

The claim is for constructing the hub with perforated projections, and the combination of the same with elliptic braces, for the propose of sustaining and strengthening spiral propeller blades. The projections from the hub to which the blades are attached are made hollow for the passage of the water in the direction of the plane of the face to which the blade is attacled. And the elliptic braces are segments of hoops made oblique to the axis, and therefore elliptical-they are used to brace together the blades about midway between the hub and tips.

Machine for folding sheet metal. Henry A.jRoe, Erie, Pennsylvania.
The patentee says :-" The nature of my invention consists, first, in attaching what I term the folding plate, that is to say, a plate which gripet
the edge of the sheet of metal, and on which the folding is effected by the folder, to a bed placed below it and hinged to the bed of the machine, so that the sheet of metal can be folded entirely over, instead of gripiog the sheet by a square jaw extending above and forming a stock above the plane of the bed of the machine, as heretofore. which prevents the sheet from being folded entirely over, and therefore requiring a secondary operation to complete the folds. Secondly : In supporting the said folding bed, to which the folding plate is attached, in the middle of its length by a joint bolt, the head of which lies in a semicircular recess in the folding bed and as near as practicable in a line with the axis of motion, and secured in the bed of the machine. Thirdly: In the omployment of a side plate below the folding bed and back of ita journals, provided with ioclined planes on which projections from the back of the folding bed rest, so that by the working of the side plate by a lever at the end of the machine, the folding plate can be made to gripe and liberate the sheet of metal."

For "an Improvement in the propellcr. Leonard Phleger, Wilmington, Delaware.

The invention consists in making the wings of the propeller in the precise form of such a portion of the convex surface of a regular cone as would be cut ont by a plane or planes passing through its axis, and comprebedding about half of its surface, each wing being attached, along one of its straight edges, to the shaft.

GUN COTTON.

It will be remembered that Dr. Otto, of Brunswick, claims to be considered one of the inventors of guu cotton, and states that he was led to the discovery by a remark published by Pelouze, in the Journal de Chemie. M. Pelouze, at the Academy, on the 2nd November, says, on the sobject of guncotton: "Aithongh M. Schönbein has not published the asture or mode of preparation of his cotton, it is evident that the properties which he assigos to it can only apply to xyloidine. Reasoning on the bypothesia that the poudre-coton is nothing else than xyloidine, I may be permitted to say a few words with respect to its history, and of some of its properties. Xyloidine was discovered in 1833 by M. Braconnet, of Nanoy. Ho prepared it by dissolving starch and some other organic substances in nitric acid, and precipetating these solations in water. In a note inserted in the Comptes render de l'Académie des Sciences, in 1838, I showed that the xyloidine resulted from the union of the elemente of the nitric acid with those of starch, and explained, by this composition, the exceasive combustibility of the aubstance produced. I ascertained-and this I think is a very important result in the history of the applications of syloidine-that instead of preparing it by dissolving the celluloce, it might be obtained with infinitely greater facility and economy by simply impregaating paper, cotton, and hemp with concentrated nitric acid; and that these organic matters thus treated look fire at 180 degrees, and hurat almost without residuum, and with excestive energy : bat I think it right to add, tbat I never for an instant had an ides of their use as a substitute for gunpowder. The merit of this application belongs entirely to M. Schönbein. Eight years ago, however, I prepared an infammable paper by plunging iuto concentrated nitric acid, a sheet of paper known in commerce by the name of papier miniatrl. After leaving it there for twenty minates, I wasbed it in a large quantity of water, and dried it in a gentle heat. I have recently tried this paper in a pistol, and with abont three grains pierced a plank two centimetres in thickness (about three quarters of an inch), at a distance of twenty-five metres." The results of experiments at Paris, under authority, were communicated to the Academy on the 9th inst. The proved advantages of tbe gun-cotton appear to be, cleandinest, rapid combustion without solid residue, tbe absence of bad smell, lightness, no duat possible, and tberefore no sifting necessary, an indisputable force, and valued at present as triple that of an equal weight of guopowder. The disadvantages are-volume, and hence a difficulty in making up, and in the tranaport of ammunition; and the production of a large quantity of watery vapour withim the guns, which is, perhaps, more inconvenient than the dirt of ordinary powder. Of five specimens tried, one fired the fourth time without the gun having been sponged, was projected with the grentest part of the cotion unburnt, and this was so moint that it would not take fire in the open air.

Test of quality.-M. Pelouze announced au important discovery by two of his laboratory pupils; it is, that when xyloidine has reached its greateat degree of explotive power, thon it is completely soluble in ether. Hence e test of quality, and a proof of the best make.

At a meeting of the Chemical Society of London, the same day, a paper was read On the Gun Cotton, by Mr. E. F. Teschemacher. The author stated that he entered on this subject with a view of obtaining some data as to how far the possible iotroduction of this substance in the place of gonpowder was likely to affect the consumption of altpetre and nitrate of soda. The gun cotton examined was made by Mr. Taylor's procesas Finy grains of South American cotton were dried over a water.bath, and lost 3.40 grains. It was steeped in the mixed acids, washed, dried, aod found to bave increased to 79 grains. The acids used were then examined, by saturating with carbonate of soda, and it was found that the cottoa had taken acid equivalent to 261 grajus of soda; or 48 grains of dry nitric ecid
had combined with the 46.60 grains of cotton, forming the 79 grains of gun cotton. The synthetical composition was stated as
46.60 cotton, less
15.60 water taken away by the sulphuric and nltric aclds, leaving
81.00 cotton deprived of a portion of ita constitnent water,
$\left.\begin{array}{l}36 \cdot 55 \text { oxygen } \\ 12 \cdot 45 \text { nitrogen }\end{array}\right\}$ equal to 48 nitric acid.
79 parts, or
$39 \cdot 26$ cotton deprived of a portion of water,
$\left.\begin{array}{l}\mathbf{4 5} \cdot 00 \text { oxygen } \\ 15.76 \text { nitrogen }\end{array}\right\}$ equal to $\mathbf{0 0 . 7 5}$ nitric acid.

100 parts.

Thns it would require 114.75 parts of saltpetre, or 99.10 parts of nitrate of soda, to form 100 parts of gun cotton. Mr. Teachemacher directed attention to the large quantity of oxygen-viz., 45 parts in every 100 -which must be derived for combination with the cotton. He stated that he had also experimented upon other vegetable substances, such as fax, sawdust, \&ic. He found 50 grains of flax to increase in weight to 72 grains, but that the combustion of this substance was less perfect and less rapid than that of gun cotton.

The gun cotton does not ignite when violently struck. It may occasionally be made to decrepitate-not explode-by percusaion. The King of Prussia has issued a decree extending all the safeguards for the manufacture, keeping, and selling of guopowder to this new explosive material.

Professor Schönbein, in a letter to the Times, denles the identity of the zyloldine of M. Yelouze with his gun cotton, as believed by some chemists and as stated in the Academy of Sciences at Paris. The difference between them, he says, will be made known at the proper time. Until then, also, we may here remark, the several experiments and thelr results that have been made pablic can be received only as the performances and effects of certain explosive materials, concocted by sundry individuals, and not as proofs of the properties or capabilities of the gun cotton.

WESTMINSTER BRIDGE.

Our attention has been drawn to the following announcement in the daily journals :-
"Demolition of Westminster Bridee and Constauction of a New Ont.-It is definitively arranged by the Westmingter Bridge Commissloners, that the present bridge shall be removed. It is intended to apply pext session for an act to pull down the old bridge and erect a new bridge, from the eastern end of Whitehall-place, to Sution-street, in the York-road, Lambeth. Powers are to be taken in the act to allow the commissioners to make the following new streets in connexion with the bridge:-lst. A new street from tbe south side of Charing-cross by the south-west side of Northumberiand-bouse to the north bank of the Thames, near the end of Whitehall-place, passiog over Angel-conrt, Craigs-court, the eastern ends of Great Bcotand-yard, and Whitehall-place. On the Snrrey side of the bridge there will be a new street in a direct line to the east side of the Westminster-roud, to Mason-street, Lambeth. On each side of the bridge it is intended to cunstract large and commodious piers for the use of the steamers plying on the river. The bridge will, it is said, be constracted of granite."

We fear the construction of this new bridge will be mont detrimental to existing interests, and canse the greatest inconvenience to the inhabitants of Westminster. It will not only destroy the direct line of thoroughfare from Pinlico turough the Park and Great George-street, over West-minster-bridge to the Elephant and Castle and the Surrey roads, but it will be the cause of increasing the traftic through the miready over-crowded thoroughiares from Charing cross to the City, as it is now far nearer and quicker to go from the Law Courts and Parliament-street over Westminsterbridge to the City, the Brighton and Dover Railways, and ultimately to the new station of the South. Western Railway; and consequently this traffic, if this uew bridge be constructed, will be directed along the Strand; and besides, there will be a distance of a mile through Weatminster from Vanx. ball-bridge to the site of the proposed vew bridge that will be entirely cut off from the surrey side, excepting by the circuitous ronte over tbose two bridges. By a reference to the map of London, it will be seen that if this gew bridge be carried over the river at right angles to the shore at White-hall-place, the ead un the Surrey side will almost come in contact with the foot of Hungerford-bridge!. Surely the direct communication frum Charingcross over this last bridge is ample accommodation for the public, without intruding another within a stone's throw.

Why the new bridge should be removed from the present site of Westminster bridge we cannot devise. A new bridge might be constructed on the eastern ade of the present bridge, and the latter pulled down when the Dew one is erected, as was done watb Old London Hridge. By removing Weatminster-bridge, the only land-view from which a perapective view can be obtained of the new Houses of Parliament will be lost, and, as we before stated, all the elaborate and minute sculpture and decorations will not be
seen. To get a view of the grand facade, we shall be obliged to go in one of the river steamers, and catch a transient glimpse as the vessel passes along.

Can it be supposed that Parliament wlll sanction such a scheme, to the destruction and despoilation of all the valuable interesta connected with the trade and property in Westminster and Lambeth? and ultinuately cause another bridge to be constracted, at the expense of the public, somewhere above the new Parliament Houses, which must follow if Westminster-bridge be removed from the present site.

MaChine for printing twelve thousand sheets PER HOUR.

We have been shown the model of a printing machine, which we have little hesitation in designating a stride in the already wonderful progress that has been made in the printing art during the last five and twenty years. The steam press by which the Daily News is printed is, we believe, the fastest-because the newest, and, consequently, provided with the latest improrements-at present in existence; yet the average number of copies it produces whithin the bour is 5,000 . The improved machine is calculated to print 12,000 per hour; and after a carefnl examination of the model, we have every reason to believe that the calculation is correct. To persons nuacquainted with the details of printing machinery jt will be next to impossible to convey a complete idea of the improvement, simple as is the principle on which it has been effected : a general notion may, how. ever, be given. For the beoefit of the uninitiated, we must premise that the present prlnting machines consist of two principal parts; 6 ist, of a sliding table, the middle of which is occupied by the type, each end having a surface on which the ink is distributed, and from which it is taken up by soft elastlc rollers, and imparted to the type, secondly, of cylinders constandy revolving, to which the sheets are conveyed by tapes, Impressed by the periodical sinking of the cylinders upon the type, and conveyed away again by the tapes. By the present plan, as the impressing cylinders revolve in one direction, an impression can only be taken at each forward transit of the type; the cylinders being lifted, to clear the type as it travels back agaln. In other words, the type passes under each cylinder twice to produce one impression. The rew, or, as it is aptly termed, "The Double-action Machine," takes advantage of both passages of the type under its cylinder, printing a sheet as the type passes backward as well as when it goes forward. This is managed by reversing the revolutions of the cylinders at each stroke, simply by means of straight racks placed upon the long edges of the table, in which work cog-wheels attached to the axles of the cylinders. In this double action resides the main feature of improvement. It not only allows of two shects being printed for one, but-by disencumbering the steam-press of the machinery necessary for lifting the cylinders that they may clear the table at each return-admits of the introduction of eight cylinders into the machine instead of four, the present maximum number. By this accession seven sheets are printed in the time of four-the natural sapposition would be eight sheets; but a peculiarity it would be impossible to explain in this paragrapb prevents the double action being inparted to the two outside cylinders, which constantly revolve as of old, in the sume direction, and which reduces the ratio of production one sheet per stroke of the macbine. There are many minor advantages derived from the application of the new principle, that would, if described, involve the general reader in a maze of technicalities which would not be, to hitn, very interesting. The inventor and patentee is Mr. William Little, publisher of the Illustrated London News. We are tuld that his first draught of the invention was so correct, that in making the model not the minutest alteration was found necessary-a proof of the sounduess of the mechanical principle from which he started.-Duily Nieu's.

PROOEEDEEGS OF BCIERTEFIO BOCIETIES.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

Noo. 2.-The Prfsident, Earl De Grey, in the Chair.
Mr. G. Allen and Mr. C. Mayhew were elected Fellows, and Mr. C. Barty, jun., ad Associate.

A paper was read by Mr. Malr, "On an Ancieat Structure exisling at Al Hather, in Mesopotamia, and on some Antiguities recently discorered ly A. H. Layard, Esq., at Nimroud;"-the description and drawinge having been forwarded by that gentleman. Of the building at Al Huther, which appears to have veen both a palace and a temple, considerable remains appll exist. They were visited by Mr. Ross, the surgeon to the Britisb Residency at Bagdad, in the year 1837 ; and again by Messrs. Ainsworth, Mitford, and Layard, in 1840 , - When the latter geotleman took the dimensions and made the drawings exhibited by Mr. Mair. As to the precise date of the origin of this building, there is a difierence of opinion; but Mr. Layard conceives that it owes its origin to the Sassanian dyaasty of Persian tiogs. At the time of Jovian's retreat, the city was deserted; bat, as the character of the ruins in question is that of a later date, it is proba-
ble that, after the treaty of Dura, the Persians, seeing the importance of Hatra or Al Hather, rebuilt and strongly fortified it. By an inscription repeated more than once upon the walls of the palace, it appears that that building was restored in the year of the Hejira 586 (A,D. 1190). The period of its tinal desertion is not known. The resemblance of these ruins to those at Ctesiphon is atriking. Tu this day, the mode of coastruction adopted by the Sassanian Kings of Per:ia has been preserved in most parts of that country:-the centre of the edifice being usaally occupied by a hall of large dimensions, which extends the whole depth of the building, and is open only at one end. It is called the Aiwam; and is flanked by a num. ber of smaller rooms, generally forming two stories. The whole structure usually stands in the midst of a large court-yard, ornamented with gardens, fountaias, and reservoirs. The palace at Al Hather has three aivams (two of which are 98 fett long by 48 feet wide); but in other respects it closely resembles, in arradgements of the apartments, the modern houses of Shuster and Dizful, in Western Persia. The arches over the entrances are richly adorned with human busts; the head-dresses of which are extremely varied and peculiar,-but generally resemble those found in Peraia on monuments of the Sassanian dyasty. The stone of which the building is composed ia a very fossiliferous limestone. The blocks are well cat, neatly fitted, and firmly united by a fine and tenaceous cement. On each of them is found a peculiar mark, to which some have ascribed a mysterious meaning; but Layad appears convinced of their having been used solely in connexion with building purposes-as they occur also on those stones which could not have been exposed when the building was perfect. Mr. Mair then read a letter from Mr. Layard, respecting his discoveries at Nimroud. The mode of construction is described as pecaliar. Slabs of marble, higbly aculptured, are placed against intervening walls of sunbaked bricks. The roof was, probubly, fiat, and constructed entirely of umber. Ornaments and rings of ivory, copper, and porcelain are found among the ruins. The rooms are paved with either slabs of marble, layers of bitumen, or bricks. In some parts of the building, glazed and painted bricks occur; -the ornaments of which are extremely elegant, and the colours very brilliant. They are still in perfect preservation. Mr. Mair exhibited to the meeting drawings of one of the bas-reliefs representing chariots and warriors, and of one of the winged buman-headed lions,which excited considerable attention und curiosity.-It was stated that Government had lent its aid in promoting these researches; and that eight bns-reliefs and other scolptured fragments were on their way to this country.

> Nov. 16.-S. Anoell, Esq. V.P., in the Chair.

John Haviland, Esq., of Philadelphia, was elected as honorary and corresponding member.

The following paper was read:-" Remarks on the Art of the Marbles from Halicarnaseus," by Charles Newton, Esq., M.A. (of the British Museum) ; and Drawings of the Bas-Reliefs, by Joseph Bonomi, Esq., were exhibited to the Meeting.

Mr. Newton proposed to consider whether these marbles really formed part of the celebrated Mausoleum of Artemesia. He stated that the description of Halicaraassus left by Vitruvius is far more minute than that of most cities of antiquity; but uofortanately the interpretation of some expresions made use of bs that autbor are so doubtful as to leave the question of the site of the principal buildings mentioned by him still open to much difference of opinion. Mr. Newton then explained, by reference to an enlarged copy of an Admirally claart of that part of the coast, bis arrangement of the various buildings surrounding the port-which was ooly a partial adoption of Vitruvius's description, and would make the spot now occupied by the fortress the site of the palace of Mausolus; while that of the mausoleum itself would appear to bave been situated where the modern street of the town now exists. Still, there are no remains which would justify any positive conclasion on this point. Adopting, however, this arrangenent, the marbles in question must then either have formed part of the palace, und have been used in the construction of the furt as materials lying "in situ,"-or, if fragments of the mausoleum, they must bave been brought for that purpose from the higher ground.
Mr. Newton then proceeded to consider whether the style of these acalptured fragments is that of the period at whicb the celebrated mausoleum was constructed (B.c. 350); and whether they are worthy of the great reputation of the artigts employed in the adornnuent of that monument. With respect to the subject represented-a Combat between Amazons and Greek Warriors-Mr. Newton entered at some length into its connexion with tbe mythical history of Caria, or of the house of Mausolus. These figures appear on the coins of several cities of Caria, and other parts of Asia Minor; and the myth was, without doubt, sufticiently national to account for its being chosen as the subject for the decoration of so important a monument as the nausoleum.

Lastly, Mr. Newton referred to the structure of this monument itself, giving interisting extracts from Pliny, from the Comte de Caylus, and from several ancient MSS. Few of the conjectural restorations of the monument estirely agree: the data-particularly the dimeasions on which they have been made-being slender and equivocal ; the question of the relative size and position of the substructure or basement, and the consequent arrangement of the steps, being doubtful. The description given by Pliny is too duubtful to enable us to adjust the measurement of the frieze to any of his dimensions. In default, then, of more direct evidence of the site which these marbles originally occapied, their dimensions considered architecturally, or the character of their execution and subject, wo mast re.
main contented with the positive declaration of Fontanus-that the fortress of the Knights of Rhodes was built out of the ruins of the sepalchre of Mausolus; and, on the faith of this declaration, consider that in these marbles we possess fragments of one of the seven wonders of the world.

Professor Donaldson offered some remarkg on the Debign of the Manaoleum erected at Halicarnassus by Artemesia, and read some extracts from his journal, in illustration of the description given by Vitruvins of the site of the ancient city; and in describing the existing antiquities there, alluded to mang fragments of the Ionic order, lying about the modern town, now called Boodroom. Mr. Donaldson exhibited his restoration of the Mausoleum, and also drawings of the details of a Doric temple and other antiquities, from measurements taken by himself on the spot.
Professor Cocrerell, R.A., stated his intention of devoting two Lectures, in January next, at the Royal Academy, to the subject of this and other similar Mausolea, and invited the attendance of such Members as felt interested in the subject.

The following resolution of the Council respecting the Halicarnassian marbles was announced :-
"That the circumstance of the opening to pnblic view, in the British Museum, during the vacation of the Inatitute, the sculptured marbles recently obtained from Boodroom (the ancient Halicarnassus), demands special notice and record ; and the Council therefore avail themseives of the opportunity afforded them by this, the first meeting of the session, to express the gratification they feel, that these inportant and interesting relics of antiquity are now secured for the general advantage of artists, and for the promotion of art, in this kingdom.-The Council reflect with satisfaction, that the acquisition of these valuable monuments of ancient art has been effected through the soggestions offered to her Majesty's Government, by the arcbitects of this country, in the year 1841, and they desire to express the acknowledgmente of the Members of the Institute for the courteous attention given to the representations then made to her Majesty's principal Secretary of State for Foreign Affairs, the Viscount Palmerston, through whose instrumentality so desirable an addition has been made to the National Cullection.

The Chalrman announced, that since the last meeting, an application on the part of her Majesty's government had been made to the Council, for their opinion relative to the position of the equestrian statue of the Duke of Wellington, on the arch at the entrance to the Green Park ; in conaequeace of which, a report had been prepared and forwarded to Lord Morpeth, and the Council bad reason to believe that the recommendations therein would be adopted by her Majesty's Government. The report mas read as follows :-
"That the effect of the equestrian statue of the Duke o! Wellington, on the top of the arch at the entrance to the Green Park, is unsatisfactory, and its position there most objectionable.
"The Council in the first place deem it proper to observe, that the follow. ing opinions are given as those of the Council only, there not being time sufficient to submit the question to a general meeting of the lnstitute; but a well grounded impression prevails, that few, if any dissentient voices would be found among the members to the judgment of the Council in this matter.
"The Council next refer to the strong opinion expressed by the architect who designed the arch, and who has supported his objections with much of sound and excellent reasoning ; and they consider it a recognized principle amongst artists, that the architect who designs a successful work is by far the most competent authority upon a question as to the propriety, size, and cbaracter of any sculptural adjuncts or decorations proposed to be applied to his own design.
" Independently of the valuable opinion referred to, the Council feel, tbat the statue is by far too large for the mass it was intended to decorate, and discordant with that harmony of proportion which in indispensable between the structure and its sculptural embellinhments. The sice of the arch is apparently diminished by the colossal dimensions of the statue; the elegant screen of columns towards Hyde Park, and indeed all the contigaous buiddings are alike affected, and the grandeur and imyortance of the principal approach to the metropolis is thus lessened by Use false scale produced by the colossal size of the statue.
"The most celebrated statues of colossal or heroic size were all placed on suitable plinths or pedestals on the ground, and not applied as crowaing ornaments to buildings. The Jupiter at Elis, the Minerva at Attens, the Marcus Aurelius in the Roman Capitol, and the Groop on the Qairinal, may be cited among many other ancient statues; and of modern times, the statues in the Square and Loggia at Florence, of San Carlo Borromeo at Arona, Peter the Great al St. Petersburg, and George the Third in the Long Walk at Windsor, may be instanced.
"In conclusion, the Council feel, that if the statue were removed to an approved site, and the arch enriched with approprinte sculplural decoration, under the superintendence of its architect, such decorations being accessorial and subordinate, it would then no longer be subject to the severe criticism of artists, foreign visitors, and persons of ackuowledged taste."

NOTES OF THE MONTH.

A correspondent of the Athenaum writes from Freiburg, that in the architecture and jnternal decorations of almost sll the buildings lately erected, we see the most gratifying displays of taste and skill io adaptation. Some of the new railway stations exhibit extraordinary elegance in design and fertility of inveation. I would particalarly refer to all the buildinge erected in connexion with the line of railway extending from Mannbein to Frelburg, onder the direction of the architect of the Grand Duke. From the policeman's cottage to the grand central station, all have been designed with a view to otility and ornmment. The smaller buildiogs have a good deal the style of S wiss cottages, with overhanging roofs, quaintly carved. The central stations are distinguished by a clock tower, and have something of an Elizabethan character. A great deal of ornament is expended in the roofs of the sheds over the platforms. An arched portico, the ceiling of white and red brick, covers the approach to the pay windows and post office. At each extremity of the building devoted 10 waiting rooms, clerks, offices, \&c., rise two pavilions, or square turrets, inhabited by the super. intending officers of the railway. It is easy to imagine that, with snch arrangements, a very imposing facade may be produced. In its conatruction, white bricks with stone dressinge have been employed, and a profusion of carved wood; the roofs, which are steep and visible from all sides, are composed of tiles of three colours, light brown, dark brown, and green, arranged in diagonal patterns. The intorual decorations of tbe waiting rooms and the fiower frescoes of the walls and ceiling are all designed by the architect. A good effect is produced on the platforms by red and white tiles laid in ornamental patterns.

Burnettizino Timber and Marine Inercts.-Sir W. Burnett, the head of the Naval Medical Department, paid his annual official visit to Sheerness, on Saturday, 7 th November last. About 18 months ago a series of small loga of ash, elm, pine, teak, "condie", or New Zealand ir, beech, and oak, after having been duly immersed in bis solution, were deposited at neap tide at the mouth of the harbonr, with another series of the same kinds of wood in their nalural state. On being taken up and laid out for inspection on Saturday, externally Sir William's series exhibited the smoothest surface ; but, on being split open, with certain exceptions like the series which had not been immersed in his solntion, they exhibited one living masa of "pholades," the generic name, we believe, of the worm in queation, encased, where not broken, in their testaceous coverings. The Malabar teak, in both cases, was riddled like a sieve, as were the ash, the elm, and the beech; the pine was in rather better condition; the oak was not much affected; the "condie" was as perfect as when at first laid down, with the exception of one single worm, who had found his way into one of the extromities of the \log which had not been immersed in the solution. The exterior of all the kinds of wood was considerably injured by a smaller insect, particularly the pine and the teak. As has been stated, the exterior of Sir William's series was not so much decayed, but, as to the interior, there was little difference from that of the other. Some of the worms inhabiting the interior were 8 or 9 inches long, while few were ghorter than 2 inches; all were about the circumference of a mediom-sized quill, and each possessed a testaceous covering and cell for itself. Deriviag its sustenance through the pin-bend opening in the exterior of the wood, it keeps the smaller extremity constantly there, while witb the other, gradually enlarging, it bores for itself with its treble-sbelled proboscis a cavity in many instances sufficiantly large to admit the little finger.

Another Bridge over the Thames.-Parliamentary notices have been given to apply to Parliament in the next session to bring io a bill for constructing a bridge across the river Thames, from near Essex-street, Strand, to the opposite shore, near to Dowson's-wharf, in the Marsh and Wall liberty. Also for making and maintaining a market, at the south end of the proposed bridge.

Railfay Station at London Bridge.-The London and Brighton and South Coast and South Eastern Railiray Companies are making preparations for the erection of a large and elegaut station, to supersede the present incoumodious building. It is designed to extend from Joiner-street and New-street on the west, Maze-pund and Woils-street on the south and south-west, to the London and Greenwich Railway on the North of Cruci-fix-lane. The streets at present passing under the station are to be blocked up.

Metropolitan Improrements.-It is reported that the following extensire improvements in the vicinity of Leicester-square are to be made. The whole of Upper St. Martiu's-lane is to be demolished, and a strect, 101 feet wide to be formed, to be ultimately carried through the heart of the Seven Dials to Tottenham-court-road. A uew street, to be formed at the juaction of St. Martin's -lane, Cranbourn-street, Newport-street, and Longacre, in a line through to King-street, Covent Garden, and the Strand, the south end of St. Martin's-lane, near the church, will also be widened by throwing back the houses at the corner of Hemming's-row, and a counmunication opened between Coveutry-street and Oxford-street, by throwing down the pile of buildings separating Rupert-street and Berwick. street. The cost of these undertakings will, it is stated, be $\mathbf{1 2 0 , 0 0 0}$.

The Birkenhead Docks are now progressing very rapidly, and it is expected tbat one of them will be ready to be opened for business at the beginning of the new year.

St. James's Chapel, Morpeth, is built of stone, in the Norman style; the architect is Mr. Terry, of London.
Liverpool.-In consequence of the great increase of trafic on the North Weatern line, the company contemplate palling down the prenent termina
at Lime-street, with all its appendages, and erecting another upon a scale of magnitude equal to the requirements of this leviathian establishment. To effect this object it has become requisite to remove about 450 feet of the Edge-hill tunnel, at the extremity adjoining the station, ad to excavate the solid rock for a considerable distance at either side. Even the space thus cleared has proved inadequate; and it is contemplated to remove the church near Rupert-street, London-road, and on its aite erect carriage-sheds, and other appropriate buildings. The church, which is a handsome edifice of recent construction, will be replaced by snother to bo built at the expense of the company, in the most suitable position that can be found for the purpose. The architect of the company has been requested to furnish plans and eftimates for the dew station, with a view to the immediate prosecution of the works apon the necessary act having obtained the sanction of parliament. It is supposed that npwards of two years must elapse before the works can be completed, and that the cost will exceed $300,000 l$. It is also proposed to constract a tunnel from Lime-street to Wapping, for the purpose of conveying goods from the docks.

It is reported that the Wellington Statue will be placed in the open space between the Horse Guards and the enclosure in St. James's-park.

The Great Britain.-The attempt to construct a break water to defend this vessel have totally failed, and she has recently suffered such additional injuries that the engines and masts are at length about to be taken out.

Sewers.-It is stated that there are 50 miles of sewerage in London.
Electric Telegraphs in Londom.-Pipes contsining wires, communicating with the Southampton Railway telegraph, are in the course of being lajd down in the Kenaington-road. These pipes are put about 18 inches below gronad, and run beside the foot pavement. They will be continued to Charing-cross and the Royal Exchange.

Brighton.-A new infirmary has been erected at Brighton, for diseases of the eye. The architect appears to have been afflicted with an opthalmic disease himself, or else to have been desirous of bringing custom to the institution. The architectore (!) follows the approved fashion of sticking the imitation of the portico of a Greek temple on to the front of a modern square-built dwelling-house.
Sherborme Abbey Church is to be restored under the superintendence of Mr. Farey, who proposes to remove the galleries, \&c.

Croydon Atmospheric Railway.-A correspondent of Heparath's Railway Jowrnal states that this railway will be converted into an entirely locomotive line.

South Devon Line.-It is said that the repairs of the breaches made by the sea, and the defences against futare injuries, will cost $\mathbf{£ 1 0 0 , 0 0 0}$.

The North British Line has again been seriously injured by the sea. An embankment at Lamberton, within a few yards of the sea, has fallen.

On the Chester and Holyhead line also great injury has been done by the sea; a great part of the sea-wall at Penmaenmawr has been wasbed away. Why are railways built close to the sea? The engineer must have somewhat of King Lear's madness, who
"Contending with the fretrul elements,
Bids with the wind blow the earth tnto
Bids with the wind blow the earth tinto the cee."
The Barrentin Viaduct of the Rouen and Havre Railway has been rebuilt in a substantial manner. It is 100 feet high, and 1,500 feet long, and has been completed in the short space of six months.

Glasgow Cathedral.- It is very gratifying to learn that this edifice is being restored. The Scotch possess so little good architecture that they should take care of what they have.

According to the Edinburgh Register, a corps of surveyors is now engaged in the trigonometrical survey on Hen Nevis in Scotland, where they have a theodolite, constructed by Ramsdon, 3 feet in diameter, with 8 mi croscopes, reading to tenths of seconds; and by whicb, with the aid of sun mirrors on distant mountain tops, it is expected that observations may be taken at a distance of 120 to 150 miles.

Eton Cullege Chapel.-The great east window is being filled with stained glass. The Marchioness of Lothian has contributed the glass for one compartment, and the boys for three other compartments.

The Cambridge Botanic Gardens.-The vice-chancllor planted the first tree on the 2nd ultimo. The Cambridge Chronicle says: "Twenty men are actively engaged in deeply trenching and leveling about seven acres of the ground, intended for the immediate reception of as many of the principal groups of the larger descriptions of trees as can be procured before winter. The curator, who is zealously superintending the work, has found both the depth add quality of the soil much superior to what he had anticipated: and he considers even the poorest portions, towards the southwest angle, perfectly suitable to certain tribes. The gentle undulations over the whole twenty acres, and the iutroduction of a large sheet of water, where the depression is greateat, will tend greatly to break whatever of formality it may be necessary to observe in the scientific grouping of the various objects that are cultivated in a botanic garden."

Covent Garden Theafre.-The wbole of the interior of this theatre boe fore the curtaia, from the ceiling to the foundations js to be taken down, and the area of the pit considerably enlarged, consequently a larger number of boxes will be obtained, of which there will be five tier, the grester part of them being private. The stage will also be adranced considerably before the cartain; there will likewise be soveral other alterations for tho
convenience and comfort of the public who patronise the Italian Opera, one will be to make a carriage drive under the grand portico in Bowatreet. When finished the interior wlll have a magnificent appearance. These extenslve alterations are entrusted to the directions of Benedict Albano, Esq.

NOTES ON FOREIGN WORKS.

The Royal Foundry and Machine Manufactory of Munich.-Amongat the great works executed of late at this establishment, are the statues for the great fonntain on the Freiong-square, at Vienna. The middle part of the fountain, constructed of large-grained granite, will be surrounded by five statues, 8 feet high,- the Danube, represented by a female, which, with a far-reaching look and placid counte nance, seems to contemplate the expanse of that river; the Po, as the guardian of Italy, is represented with a key io her hand; the Elbe, and the Vistola. On the summit of the work appears the figure of Austria, a prond, sublime, stately figure, bot unfortnately represented with the attributes of strife and contention-the spear and shield.-The four statues for the Jubilee column at Stuttgart, representing allegorically the four estates of empires - warriors, teachers, traders, and producers, have been cast from the models of Professor Wagner, at Stuttgard, whose thoughtful and delicate style is generally admired.-The Huskisson statue at Liverpool, and that of Charles John, King of Sweden, for Norkorssing, have given general satiafaction. The prepartions for the casting of another portion of the statue of "Bavaria" causes great excitement; it is the largest ever executed in ancient or modern times. The upper part is already cast. -The plaster of Paris model of the statue of Bavaria, for the triumphal arch in the Ludwig Strasse, is now exhibited in the royal foundry, previous to being cast. With flowing garments and an onward look, she firmly grasps the reins of the four lions which draw the quadriga. This work was designed by M. de Wagner at Rome, by whom, assisted by his pupils, the model has been made. Beside the royal establishment, the iron foundry and nachine manofactory of M. Maffei is next to be adverted to. Here, on a most extensive acale, the forging and casting of large works of art and utility are carried on, amongst which, some huge staircases and sepulchral monuments of Gothic style are conspicuous, The ornamented pieces for the inner roof-work of the round arches of the Munich campo santo (cemetery) are also cast here.

The Munich Art Union seems to have fallen into an egregions error. As many persons of the middle classes have joined it lately, the committee, thinking, probably, to do them a piece of courtesy, have made the subject of the members' plate, as general and every-day a thing as possible. It is not the aim of Art Unions to keep art continually on the sane level, still less to debase it ; on the contrary, it is the elevation of art and public taste which is their chief and legitimate province. So, after all, the above may be considered anything but a compliment, for which, at least, it seems to have been intended. The subject, therefore, for bext year's prize plate is yet onder contention.

Mountain-Relieco Exhibition at Munich. -The well-known engineer and geographer, M. Stolta, has lately exhibited his relievo of Hohenachwangau in the conservatoriam of the Topographical Bureau. It renders one of the most interesting parts of the mountains of South Bavaria with a correctness, which only repeated burometical admeasurements and the surveying of every detail could effect. The relievo of Tegernsee made by M. Stoltz previously, and on a larger scale, is equally interesting to the geographer and geologist.

Restoration of Ancient Canals in Russiun-Caucasia.-The Russian Government have very praiseworthily begun the restoration of those canals of irrigation, which furrow the whole south-eastern portion of the trans-Caucasian provinces. Most of these canals were constructed by the kings of Armenia, and subsequently by the shabs of Perail and the sirdars of Erivan. The origin of some is even ascribed to the great historical monarch of ancient Asia, Semiramis, amongst which is one called Shamiram. What must have been the fertility of these countries-of which, however, hiatory has preserved no record-may be guessed from the fact, that in one district of Eriven alone, there are to be seen 148 canals of great extent, Which were the source for the further finding of 384 secondary branches. But the greatest part, and amongst them the very largest, present but a heap of ruins: which, however, by their stapendous development, attest the fertility and population of these now almost deserted steppes. All this, war, rebellion, and oppression, have swept away. Governor-General Prince Woronzoff is said to consider the re-construction of these ancient canals as a favoarite iden, which would do an immense good to the inhabitants of Russian.Caucasia.

The new Haren of Sucinemiunde on the Bullic.-The Prassian Government is using great exertions formaking this the "Harre of the North." The Oder has been corrected and regolated, and the harbour laid out and enlarged with great judgment, and at a great expense. The situation is very felicitons, as Berlin can now be reached in 9 hours, Copenhagen in 18, and St. Petersburg in 48. The number of ressels frequenting the harbour has increased during the last jear to 1600 , mostly English, with coals, \&c.

Ancient Roman Canals.-The ingenuity and sucess of the Romans, not only in works of art, but also in objects of general utility, has lately become
more apparent by the discovery of sonse canals in the famons Pontine 5 wamps, used in ancient times for the drainage of this now onhealthy and barren country. According to the opinion of experienced enginers, it will require but hittle trouble to put them in complete repair, and make them again available for the purpose which they served 2000 years ago.

The Coal Mines of Hungary.-Coal has lately risen into great importance in Hungary, by the introdaction of extensive steam commonication in that country. The quality of coal in the Banat is said to be equal to the best English. For the purpose of properly opuning the coal mines of Oravitz, Gerlista, \&c., an under-shaft is to be conatructed, which will extend to the great length of 2,600 fathoms. For ensuring a proper rentilation, this tuanel will be 18 feet high, and occasion an expense of halfot million of fiorins: but, when finished, will yield a yearly produce of two millions of chaldrons of coal. Bat for ascertaining ponitively, whether the seams of coal retain their size and quality down to the required depth, gigantic pits will be sunk in the Steprendorf mine, and coal and rock raised by steam engines of proportionate magnitude. For obtaining an easy outlet for such a mass of mineral, a railway will be constructed from Oravitz to the Danabe. The iron works in these distant parts of Eastern Europe will receive a great impnlse, as an astonishing nomber of rails is now in demand. Forges and tilt-hammers on a large acale will enliven those hitherto inactive and unproductive countries.

Restoration of the Harbowr of Marsala, Sicily.-This barbonr, one of the finest and best situated in that island, is to undergo a thorough restora. tion, by the voluntary contributions of the inhabitants of Marsala and some of the English houses engaged in the wine trade. An engineer has lately arrived to make the necessary surveys. The harboor is so fine, that the Arabs called it Mors-Allah (God's-haren), but John of Austria had it filled up after the battle of Lepanto. These obstructions removed, Mar. sale will double its commerce.

New Syatem of Bridge Construction.-At the late Exhibition of French Industry, at Paris, M. Neville's model of a bridge, upoo a new aystem, attracted much attention. The Belgian government has since taken up the subject, and experiments were made on the North Line. Two locomotives and their tenders were placed at the dispoal of M. Neville, of the enormous weight of from $\mathbf{3 0 , 0 0 0}$ to 82,000 kilogrammes. They were made to pass the bridge, side by side, first at a slow and then at a rapid speed. The experiments, several times repeated, afforded the greatest satisfaction, as theso heary masses produced very little fexion in this comparatively slight structare; indeed, the fexions of the bridge, with an opening of 72 feet, did not exceed, even at the greatest speed of the engines, more than $\frac{7}{4}$ inch in the middle. M. Van Esschen, engineer of the government railways, was under the bridge, to measure the fexion; and the persons on the bridge stated that the vibrations daring the speediest tranait were nearly imperceptible.

Steamers on the Caspian Sea.-Since July last, two iron steamers, of 100 horse power each, perform twice a month the jonrney between. Astrachan and Baka, which occupies only two deys. Thus, a person may now go from the Caspian to St Petersburg in 15 days. A railway, only for horse power, has also been opened between the Don and the Wolga.

Castle Wartburg, Saxe Gotha.-This castle, once the abode of Martin Luther, is undergoing a thorough renovation by order of the hereditary grand duke of Saxe Weimar. It is, after all, no easy task to restore such a huge building, erected at varions periods of remote date- 10 pitch at the right ideas of the original builders, to omit nothing essential, and to produce a harmonic whole. This difficult task has been confided to M. de Quant, architect to the court of Prussia. For the sake of obtaining a correct idea of all the structures which bave existed on the spot, the various foundations and walls have been laid open by extengive excavations. What bas been already found is of great value and beauty. The middle façade of the court or square of the castle preseuts three atories of arcades, in the Byzantine style. A large quantity of rubbish and ashes of former conflagrations bas also beed removed, and several rows of Byzantine colomns of good proportions, have been discovered on the eastern wing, and which will, when restored, exhibit a finer uppearance than the more modern ones, as they are higher and of more slender modoles. All the buildings which surround the large court are now exposed, and present a very different front and position than bas been hitherto supposed. A staircase, hewn in the main rock, has also been discovered, leading to the baths of the ancient landgraves. The apartments of the landgravines appear to have been under ground, but are of large and fne proportions, each supported in the middle by a column, with a very fantastic capital, like those in the Remter, at Mareinbarg. Some parts of the castle still appear as they did in olden times, as, for instance, the banqueting hall, which is adorned with portraits of former markgraves and landgraves. Close to it is the armonry, filled with figures of knights, on foot aod on horseback. It is to be remarked, that permission has been given to inspect the castle at all times, so that visitors are even occasionally admitted to the rooms which the bereditary grand doke and bis guests occupy-a liberality, after all, only possible in a small and not over-crowded towo of Germany.

Kaubach's Cartoon for the Berlix MInseum.-This latest work of the great master has been exhibited at Mnnich, and is of the size of the picture of the Destruction of Jerusalem, by the same artist; but the work itself will be still larger. It is the first of a series of six pictures for the same royal establisboneot, and represents the ". Division of nations af the building of the Tower of Babel." German periodicala expatiate much os the coincidence of the ideas of the artist with those of the modern German school of philosophy, and quote Schilling to prove the beauty of a caf-
toon. So far English art-criticism has not yet provided, and we can merely state that Kaulbach has represented Nimrod as failing in his overreaching tendencies, that the people are driven forth from their unholy occupation-the tribes of Shem, Ham, and Japeth each powerfully and originally characterised by a splendid force of the crayon. Besides this force of the composition, that particular naiveté and sweetness of Kaulbach's works is also diffused over the whole cartoon-making the beholder long after the coluor-execation of such sublime thought.

The Enrthquake in Italy. -This phenomenon has now ceased to exert its ravages, terminatiog with a few slight sbocks. According to all experience, such ondulations of the soil following a great earthquake, are the last throbbings of the volcaic powers, acting at an astuunding depth. Tuscany bad been, for ages past, free from such awful catastrophes as bave lately visited it, and those formerly perceived were only the last eradica. tions of the earthquakes of Sicily or Calabria, whose effects are always felt at great distances. The Gazetta di Firenze has given, of late, an accurate acconnt of this phenomenon, by which it appears that the centre of the movement was the Colline, where it extended over a upace of about 100 square leagues. In the former locality, the large villages of Lorcazana and Orciano resemble places demolisbed by the battering of cannon. The opinion generally receired by geologists since the times of Dolomieu and Bertrand, that earthquakes and volcanic eraptions are contingent on very rainy seasons-the waters penetrating to the lower parts of the earth's strata, being there converted into steam-has not been confirmed in this case, the season having been a very dry one.

Acadenty of Sciences of Paris.-M. Lerebour the younger, one of the principal mathematical instrument makers of France, bas forwarded to the Academy a volume, "On the chemical and apparent area of the objectives of the Dauguerreotype." M. L. states that he has succeeded in making these two areas coincide, and that the instrumente which he has invented completely obviate the bitherto defnitive coincidence. The Academy considered this a great improvement of the Danguerreotype.-M. Faye, astronomer of the Paris Observatory, has also sent a memoir, entitled "Determination of the" parallax or distance of the Argelander (the star 1,830 of Groombridge's catalogne) from the earth. In this fine esaay, M. Faye has well combined theory and practice, and united elevation of mind with minutise of detail and correctness of observation. The result of his observations makes this star of the magnitude of $1^{\prime \prime} 06$, and at a distance from the sun of 190,000 middle distances of the earth from the sun ; and, at the rate of 75,000 leagues par second, the light would require three years to arrive from the Argelander to ut.

Difusion of Sulpher orer the Surface of the Globe.-M. Dumas men. tioned in his memoir, the cascade which the Rio Vinagre forms not far from the volcano of Yareci, in Popanja. The observations of Homboldt and Bousaingault have proved that this water contains free sulphuric and hydrochloric acids. An analogons phenomenon are the Lagoni of Tug-cany-those open spiracles of the ground, where aqueous vapours constantly issue, and which contains, besides boracic acid, a considerable portion of sulphuretted hydrogen. Other phenomena of the kind are to be met with all over the globe. Sulphur also holds a great importance in the formation of all nitrogenous substances, animal and vegetable-constituting about the ifoth part of their weight. Thus 10 kilogrammes of dried nitrogen matter (which is about the weight of an ordinary sized person) contain 100 grammes. The quantity of sulphur, therefore, which is scattered over the globe, be it in a mineral or orgauic form, is very great. Messrs. Bel-field-Lefevre, and Foucault have presented to the Academy an essay on their improvements of the Dauguererotype. "Hitherto-they say-the merely iodized plates have not been efficient whenever the diverse portions of the object to be represented possess notably different intensities of illumination; and thus, by the process hitherto pursued, the different portions of the plate could not appear with the tone corresponding to the respective intensity of illumination." The process consists in polishing and iodizing the plate as usual, and then to make it absorb vapours of bromine, three times the amount which has been hitherto considered the maximum of the susceptibility of the plate.

NEW CHURCHES.

St. Thomas, Winchester.-This church is nearly completed externally on a scale of great magnificence. The style is Decorated, and the eastern elevation exhibits a chancel and chancel aisles under separa-e gables. The new church has been built upon high ground, and its spire will have a very striking effect. The old church of St. Thomas baving been found inadegoate for the wants of the parishioners, the new edifice is to supply its place.

Christ Churoh, Portsocood, Southampton.-Messrs. Brandon are the ar* chiterts of this charch, which is in the Decorated style, and consists of a chancel without aisles, and a nave with aisles, and a clerentory of quatrefoil windows.
St. Mark's, Sicindon.-The Great Western Railway Company have built and endowed a handsome new Church. The architectanare Messrs. Scott and Moffatt. It is gratifying to find a work like this entrasted to architecls, who, we know, generally prefer real to showy architecture, and
are incapable of using papier mache, or stucco, in the decoration of churches. The present edifice consists of a chancel and sacristy on its soath side, a nave with aisles, a porch on the south side, and E tower and a tower and spire on the opposite side.

Wallingford.-The Chapel of St. John the Erangelist has been consecrated by the Bishop of Oxford.

Scer-Grem, Bucks.--The receatly consecrated church has been built by Mr. Deerson, in the early English stgle. The ertreme length including the chancel, is 80 feet, the bell-turret is 60 feat high. The church is fitted with open seats throughout, and will accommodate 200 persons.

Chantrey, Somerset.-The Church of the Holy Trinity is another of the works of Messrs. Scott and Moffat, and comprises a nave with a porch on its south side, a chancel, sacristy, and bell-tower. The style is deeorated All the windows are glazed with palnted glass, by Mr. Wailes. Th seats are of oak, uncontaminated by varoish, the pulpit is of stone, the chancel is paved with ornamental tiles. There are stalls erected, not merely for ornament, but for actual uae by the choir. This church ha been built at tue cost of a benefactor recently deceased.

St. Edmurd's, Vobstor, Walls, is built by Mr. Ferrey in the Decorated style, and consists of nave, chancel, and sacristy, with lean-to roof. There will be neither galleries nor pows in this chapel.

St. Michael, Bisage, Gloucestershire, is a small structure built by Mr. Harrison in the Decorated style. The western tower will hereafter be orowned by a spire. The chancel is paved with encaustic tiles, and containe returned stalls. The polpit is of stone and stands in the nave.

Darueston, Blandford.-Mr. Hardwick has rebuilt the church here at the expense of Lord Portman. There is a spacious chancel with an ela* borate timber roof : the pulpit is of carved oak.

Stert Church having been almost rebuilt has been opened by the Bishop of Salisbury.

St. Mary's Flint. We regret to learn that this very ancient church is to be pulled down to make way for a modern structure.

St. Giles, Petsuorth is being rebuilt from designs by Mr. Billing in the early English style. The total length including the chancel is 90 feet. Over the porch is the south aisle is a low tower, the roofs internally are open.

St. Mary'a Torquay a very five Church, by Mr. Salvin. The nave has aisles and clerestory, and the chancel is terminated by an apse. On the south side of the nave is a tower. The effect of the interior is very im posing, and is not marred by an ostentatious redundancy of ornament. The west window consists of five lancets of which two only are pierced all the glass will be stained.

St. Paul, Alnwick is another spacious stracture, by Mr. Salvin, and is built and eadowed by the Duke Northumberland. The etyle is decorated. The plan comprises a lofty nave with clerestory and aisles, a chancel with aisles, and a high tower on west side. The cast windowi filled with flowing Decorated tracery. The stalls in the chancel acarcely deserve their name as they are not appropriated to their apparent use, but are simply superior pews for the Duke of Northumberland's family. When will dukes doff their digaities and privileges at the churchdoors?

Tbere appear to be about 400 churches in progress throughout the country, and almost every one is built in the style of our national architecture.

BHEANE NAVIGATION.

The Oriental and Peninsular Steam Navigation Company,-The two new versels which have been Lately added to the Fieet of this Company, the Pottloger and tha Ripan, have been fitted with steam eogines on the oxellatipg principle, the larguat we beliere that have been as yet constructed; they are 76 inches diameter and 7 fl . strake. Letters from the captaln and eagineer of the Pottlogor bave been received, the one from Glbraltar, the other from Malta: they speak in high termis of the performance of the anGidez, the paseed through some very bad weather between England and Gibraltar. The Ripon went to sea without any trial of the englines, and although exposed to the most adverse circnastunces for new eagines, and having had her rudder-boad washed of in the late heary galez, there 18 not noder all the trying ctrcumstances to which they bave been exposed, any fault to be found with her machlney, for, with the ship labouring in an unmanagrable state in the grough of a heavy een for some hours, the englines were never brought up, and continued to do their work all the time admirably. These aatisfactory reaulas prove that oeciliating enginet of any power many be uned for marine natigation, by thich there will be a soviog in epence and wetgit.
The Capriand the Vesuvius.-These two new steamers have been built for the Neapolitan Steam Narigtion Company, by Measg. Ditchbarm and Mare; they are constructed of iron, and are 189 freet loug, and feet beam, and 600 tobs bruthen, with steame engines of 220 horie-power-double cylinder by Memin. Maudilay and Yield. At the trial of the Caprl down the river Thamea, at Long keach, it is siated that she attalued aspeed of 17 miles per bour. The reanel is cleganty fited up, and promises to be a cllpper.

The Sphynx Steam Frigate．－This war steamer is a ressel of 1200 tons， atted with a patr of oncllating ateam enginet of 500 horse power，by Meaprs．Penn and Co．；the cylinders are 824 inches diameter，and 6 feet stroke，and 6 tited with double alide valies．When she made her experimental trial down the river Thames lant month ohe wait leden with 350 tons of coal，and all her whres for 12 months，and provinions for 3 months； her draugbt of water was it feet 1 inch forward，and 15 feet 1 inch art．It in atated that the ran an average speed of 13 miles an hour，and made $14 \frac{1}{2}$ revolutiona pur minute，with the gouts of the paddle－wheelis deeply immersed．The great auccess which those exginem have attained，as well as thoee of the Pottinger and Ripon，also fited with oscillating en－ ginea，by Meserm．Miller and Ravenhill，and of about the same power as the Sphynx， clearly show that oscllatiog enginea of any powrer may be as eadly constructed and adopted for marine parposes as fixed cylloders．
New Holyhead Packets．－The Admiralty have contracted for four new aleam packeta for the Holybead station．One to be built by Mesarra．Ditchburn and Mere，It la underatood，on the lines of the Sarreyor of the Navy，engines by Mestrs． Seaward and Co．；one of wood，on the lines of Mr．O．W．Lang，wth Penn＇s engines； ginean by Forester，of Liverpool．Thay are to be called the Caradoc，Llewellyn，the Kath－ leen，and the Banthee．
The Janus，steam－sloop，Lord Dondonald，will be ready by the beginning of the year to make a final tral，the Admiralty bating granted 10001 ，to make the neces－ enry alierationt．

The Meder，steam－sloop，on the 6th ult．，proceeded down the River Thames to teat the engines，at the mille in Long Reach．Ber speed on the first tral was $8 \cdot 889$ knoth agatnat the tide，and 13.094 with it，giving an average of 10.991 ，but on aub－ mequent triala she made more then eleven knots．She had on brard abont 190 tora of coal．Her draught of water was 13 feet forward，and 13 feet 5 inches afl．Her engives， which were supplled by Messrn．Mandslay and Field，were in excelient working order， and made $\frac{2}{4}$ revoltions a minute．
Screw Prepeller．－A series of interesting experiments on the powers of the various screw－propellers，and the beat mode of ixing them in ateamers，hare been cartied on and are still in progrew with the Dwarf，steamer，which has been set apart for these experiments．The first trial was made with the common Archlmedian ecrew（Smith＇s patent），and the results were as farourable sis those exhibited by any wubrequent inven． Hon．The next trial was made with Renine＇s screw，but the resulto，in this Instance， were not 10 satiofactory．A third trial－wai made with Hodgmon＇a parabolic propeller， and，up to the present time（for this in rention it to be again teated）the success was equal to that of the common propeller．A fourth trial will zoon be made with Wood－ crof＇s patent，conatricted upon a new plan of shining the angles of the screw to the moat favourable position，with the rew of determining the best angle of impingement． Some trials have also been made by alterling the dead wood of the Dwarf，so as to resem－ ble the square sterns of the old block ships；but in this case it was foond that the screw conld acarcely give the rensel tideway．
The Teazer，a small iron steamer，with engines of 100 horse power，and fitted with the acrew．propeller，wan thed again on Nor．16，at the mille in Long Reach； her enginelf，which are on the ribrating principle，by Miller and Ravenhill，attalned a maximum number of nearly sixty revolutions，bat the did not make rery rapld progreat， the stern of．the Teazerbeing square，which is apparenuly the worst form for the action of the serew propeller．
It is the intention of the Lords Commissioners of the Admiralty that，in future，the engineers in steamers shall be conoldered as ward．room officers．The altera－ tion is most credtable to tbe board．

The Effects of Shot on Iron Vessels．－The information received from the oficeri of the Gorgop steam ressel，which han laetly artived from La Plata，gives a very alarming acconnt of the effect produced on the huils of the Harpy and Lizard lron stenm vessels ly the shot from the batterles of Rosas．It was expected，from the natura of tbe material，that any breach made by shot would leave a clean fracture，merrly curling up the lips of the orifice，as is umal when fractures are cansed in Iron by the application of an ordinary force．＇The results，however，are quite different．Inatead of a clean fracture， large splinters of lron few about in all directions on the hull beliog atruck，rendering the danper from this cause tenfold more lmminent than that produced by the shot tiself． Several sollinters of this kind，struck from the hull of the Harpy，have been brought home by the officera of the Gorgon，and，amongst the reat，the aplinter from the angle tron which cauned the death of noor Mr．Barnes，the clerk in charge，proving that the tendency to splinter is not confined to the thin sheet Iron of the hull，but to the beavier masses which compose the vessel．Thene resnilt are lo accordance with those obsprred In the experinuental trials on board the Excelient，and they conatitute a sad drawback agalnat the general ube of ironas a material for vessels of war．Whether the iron fa question la not so malleable as it ought to be，or might be if better wrought，Is another question；for the prement，honever，the men are alarmed，and those who have witnessed the uffects produced on board the Harpy，dectare that they will never go to aes in an lron vessel．

HIST OP NEW PATBNTB．

GRanted in england from october 22,1846 ，to novemaba $21,1846$.

Six Months allowed for Enrolment，unless otherwise expressed．

Etienne Abraham Maccuud，of No．1，place de la Madelelne，Paris，mechan！ctan，fot ＂Improvements in lanp and gan burners．＂－Sealed Oct． 22 ．
John Jamea Aloxander Maccaruhy，of Sldney－terrace，Brompion，pentieman，for＂cer－ taln Improvements in anchors and ide for masts of reasela．＂一Oct． 22.
Wiliam Aoderwon，of CHitheroe，Lancaster，for＂certaln Improvements in machinery or apparatus，for prepaing and splnulag cotion，and other fibrous substances．＂－Oct． 2 ． John Paterton Roid，of the city of Glasgow，and Thoman Johnson，mechanle，for＂cer－ taln Improvements in machlnery for wearing，and for producing patterns in weaving，as aleo in machlnery，for falahing certain woven fabricn．＂－Oct． 22.
James Thomas Jullion，of Stratford，chemist，for＂Improvements in the manufactare of certaln acida，also improvements in decomponing certain acids，and applying the pro－ of certain acili，atio mprovementa
ducts resulting therefrom，to the prodection of ceratn，chemleal compoundm．＂－October
James Lynander Hale，of Rackney，Middlenex，civil engliseer，for＂certaln Improve－ ments in tewerage and drainage，and apparatus connected therewith，parts of which are upplicable to uteam engines．＂－Oct． 22.
Jobn Hution，of Commercial－road，East，chronometer－maker，for＂certala Improve－ meate in chronometern and other tlme keepern．＂－Oct．22．
Heary Mapple，of Child＇s－hill，Hendon，Middlewex，machinalat，for＂Improvements in apparatue for trapmaliting electricity betwoen distant places，and ti electre telegraphs．＂

Whllam Crane Wilkins，of Long Acre，Middlepex，for＂certaln Improrements in Lempes and apparatus connected therewith，parts of which are also applicable to the raising of water．＂－Oct． 29.
Wiliam Reid，of Saint Pancras，Middiesex，engineer，for＂Improvements in the mani－ facture of wire．＂－Oct． 29.
Noel Etieane Alme Paret，of Lyons，in the RIngdom of France，gentleman，for＂Im－ provementi in finishing sili，cotton，and other fabrics，and in beating aparimenta．＂－ Norember 2.
Henry Headley Portsh，of Chesham．atreet，Middiesex，Buq．，and Samuel Rootecy，of Portiand－gquare，Bristol，Enq．：F．L．S．，for＂Improvementa in supplying and purffing water．＂－November is．
George W．Eddy，of Waterford，in the State of New York，of the United States of America，for＂an Improvement in the manufactare of cast metal wheels for rallway and various other carriagen．＂－November 8.
Barou Charien Wetteritedt，of Rhoden Well Road，Limehonse，MIddiesex，for＂Im－ provements in the manufacture of sheet metal，for sheathlag and other purposes，in pre－ provements in the manufacture of sheet metal，for sheationg and other purposes，in pre－
renting the corrosion of metal，and in the preservation of wood and other materials．＂－ November 3 ．
William Exall，of Reading，in the county of Berks，engineer，for＂Improvementa is the construction of wheela，and in certaln tmplement or tools employed therein，and in the mode of forming and manufacturing the tyres of wheels，which mode if applicable to making metallic rings，bands，hoopa，cyliaders，and other almilar articles．＂一Nov． 3.
Alfred Vincont Newton，of Chancery．Lane，mechanical draughtaman，for＂certain Im－ provernents in the manufacture of driving bands，part of which improvements are atso applicable to the manufacture of other fabrics．＂（ A communication．）－N ovember 3 ．
Gaetan Bonelll，of Milan，engineer，for＂Improvementa in briges，viaducts，aqueducts， and other similar erections．＂－Norember 3 ．
Mathew Lealnv，of Great George－street，Weatmingter，civil eagineer，for＂certain Im． provementa in steam eagines．＂一November 5.
Robert Teagle，of Hammerrmith，plasterer，for＂Improvements in chlmaney pota，and In apparatus for cleanalng chimneya．＂- November 5.
Darid Barnett，of Blrmlogham，merchant，for＂new or improved Inatruments or ma－ chines，for eflecting or faclitititig certaln arthmethcal processes or computations．＂（A commuplcation．）－Norember S^{2} ．
Frederick Herbert Maberly，of Stowmarket，clerk，Thomas Branwhite，of Eattlesdera， millurighl，and Dennla Lusher，of Great Tinborougb，farmer，for＂Improremente in machinery for obtaining and applying，and for acceleratiog and for retarding motive macher，and for giving notice of alarm in expectavion of，or in actual danger．＂一Nov． 5 ．
Henry Henson，of Hampstead，in the county of Middlesex，gentieman，for＂a neat fabic suitable for gooda，wrappers，waron covers，and other like purposes，and certala

Thomas Yates，of Preston，Lancenter，watchmaker，for＂Improvementil in time keepern．＂－November 12.
John McBrde，of the firm of McBride and Company，cotton apinnert and power loom cloth manufacturers，Allyn Works，Glargov，for＂Improvements in weavigg．＂ ber 12.
Wiliam Bidger Adams，of Old Ford Lane，in the connty of Middlesex，engineer，for ＂Improvements in the conatruction of wheel carriages and engines moved or retarded by anlmal or meechanical agency，parte of which improvementa are applicable to other like purposes．＂－November 12 ．
Louis Hypolite Piaget，and Pbllip Henry Du Bois，of Wynyatt－ntreet，Clerkenwell，for ＂Improvements in producing omamental surfaces．＂－Norembar 12.
George Smith，of Camborne，in＇the county of Cornwall，safety fase manufucturer，for ＂a new safety fuze．＂－November 12.
Edward Staite，of Peckham，in the county of Surrey，gentleman，for＂certain Improve－ ments in lighting．＂－November 12.
Grorge Willuam Jacob，of Hoxton，in the county of Middienex，printer，for＂a new manufacture of printed，patterned，ornamented，coloured，embosed，and moulded sur－ faces．＂－November 12.
John Healey，of Bolton，In the county of Lancaster，machine maker，for＂a nem and improved woven fabile，and also certain improvementa in machinery for producing the ame．＂－November 17 ．
Themas Manters，of Upper Charlotte Street，Flizroy－square，Mlddesex，confectioder， for＂Improvements in apparatus and means for cooling liquids and matters，and Altering and prevenung liquids freezing．＂－November 17 ．
Bartholomew Benlowski，of Bow－street，Covent Garden，Middlesex，Eentiemab，for ＂certain limprovementa lu the appraratus for，and procese of，printing．＂－November $1 \overline{7}$ ．
William Eaton，of Nawington，in the county of Sarrey，engineer，for＂certain Im－ provements in obtaining motive power．＂－Noveraber 17.
Rolert Brett Schenck，of the elty of New York，In the United Staten of A werich，gen－ tleman，for＂certain Improvementa in the preparation of hemp and fax．＂（A commani－ catlon．）．－November 17.
Christopher Robson，of Newcastie－upon－Tyne，grocer，for＂Improvements in ma－ chinery for dreasing frult．＂－November 21.
James Denton，of Greenacres Moor，Oldham，Lancaster，mechanic，for＂Improvements in certaln parts of machlnes used in the preparation for the aplnning of cotton，wool and other fbrous subutances．＂－Norember 21 ．
James Baraham，of Bow，Middleaex，manufacturer，for＂Improvements in manufac． turing brooms and brushei．＇－November 21 ．
William Pldding，of North Creacent，Bedford－Equare，Middiepex，gentleman，for＂Im－ provements in carriages．＂－November 21.

TO CORRESPONDENTS．

Prne on＂Perspective，＂＂City，Town，and County Arcbitecture，＂ ＂Railways for the many－not for the few，＂－Received．
＂Six Years＇Subscriber．＂－Perhaps the best account of the details of the Steam Engine is to be found in the Treatise of the Artizan Club，but a systematic and satisfactory work on the Steam Engine remains anoog the desiderata of Engineering Literature．
-

[^0]:

[^1]: \qquad

[^2]:[^3]: © A model of the bridpe, upon a larce scab, may be reen at Mr. Lapldge's onices, Durby-atroph, Watcolinter.

[^4]: - At ismat Bremen fa called Premia and Premen in contemporary conmographiea: but it may be that there prients were of Parma, and that Parmenses was altered into Premenses for the joke's sake.

[^5]: - By the observation we do not fotend the sitghteat cenrure of the actual arrangemeat of the windown, which ts perfectly unobjectionable, consldering the purpose and ette of the buildiogs ; we state the slmple facts of the case to shew the fdiculous and finorant absurdity of the chillism. From a rough admetarement which we have made, we are gulte certidn that the space for glass occupies upmards of two-thirds of the fround lrontege-which is, in fuct, no more than e condaud serlen of glated arcades!

[^6]: * Part 92, page 335.

[^7]: * Aboat ev, 000l. Evglinh. The metre is rather more than 8 feet 8 tocheen-Ed

[^8]: * M. Vlcat, sppolpted divislonary Inspector under Mf. Dufaure, has requeated to remala with his rank of engipeer in chief to contloue the iaventigetion which he has eo felleltonity

[^9]: - Note.-(Prom Col. Lenke's Work, rol. L. page 324, Second Edition.)-In the ceattern chamber of the Partheoon, a corintionin capitul bai been fond of such dimemaiona tel lededs to the bellier that the columas were of that order. The smallinete of thatr tim
 Oiympla, and an still exemplifed to ove of the templet at Puatum. In the tatimior of the temple of Phy ilis are two new varietes of the ionic order, one of which ty tos
 thine. It proves. therefore, chil order wan employed in the time of Perclest to tome,

 + This reptoration, Iawood himgelf eaph, is merely idea. He oboerves, that theot in a pecullarity in the finting, being different on different sides of the volnte. Thila pecumarity exisit aleo, according to Mr. Cockrerell, in the Iragmente of Corlnthian capital ha
 the Tomple of Apollo Epicanus, al Phygala, which was bult or Ind, even if they did, there it
 no argument for range of Corinchian columon in (that of Apollo, at Phygalin, the Corinthian colnmn was isolitary ope. In

[^10]: - The fint expmasents were made lo the mbdole of Docember lest on the Orest

[^11]: * We had formerly understood that these galieries did not interaect the plers.

[^12]: Votrue or chatere of the atylobate of the Parthenon is brielfy noticed to the Sevanth Votume of thin Journal, p. 16.
 No. 103.-Vom, IX_-AP2IL, 1846.

[^13]: - That wemay sot appear olingular th this crilitam, we quote the following from the - That we may not appear inguiar in tha crinian, we quotetue . "We must here deserption of this charoh in Gwilt's Encyclopedia of Arebilecture. When thus arere mention one of the most unpardonable detecte or rsther abuses which the church wat bibith.... The unormous expence of the necond or upper of det all mround the caurch wed

[^14]: *There is a alight amblguity here. It the the total amount of peasure on the vertical Iden of the tant which varies an the aquare of the depth-the presuare on anv one polat varies as the depth simply.
 We are wold further on, in the text, that the resiatance of the wave doet not follow the laws of imp pact of so ids, but raries as the square of the velocity. Vieva to vague as these ought nut to be es presmed by a oriter who takes upon him to condermn the phillowo. phy of others. It is indeed usually ansumed that the rectatance of dutds varies as the extent of surface and the square of the velocity conjofntly. But this Inw in only approxiexate, and "a littie reflectiou will" not "coarluce us" of tha truth, as that can only be mate, and an bitiect experiment and cansot be proved by ladependent reamoning,-[Ed. E. B. \& A. Journal.]

[^15]: io see Beymolds, Pourth Diecomrer, and the Idler, No. 79.
 1 i Poultion to added by Professor Whewell (Bridgewater Treatise, p. 180). Abstract aproltode may be altowed to form a meparate class, an apheres (for exmmple) of different is the be sald to difer rathor in magnitude than in torm.
 12 The term ' real magnitude,' in painting, is rentricted so such superictal dimenaiona whave a permasent relition to each other. Under this category mey be clanged proporan or tymmetry.
 is The tyje of baco-ytiero, at generally practined ty the ltalians, wat not strictly in conforaily with thit defrition, at they infadicionaly endearoured to represent in it the verete of perspoetion.

[^16]: 14 The geacral predilection for all the modee of cecoration which belong to ithe "re. aminance" may be an excuse for here brifly reconstering the clams ot the gilt ground in teeelf, and with reference to pecultat conditions lu represediation.
 is It may st dist appear that all pletures refiect ilght from thefr mere surfsce, bat this Is not, atrietly speaking, the case. One great eharm of oli-painting ta ita powar to redect Usht from an interan surface, enrough superposed subatmoces more or tont diaphsnous.
 apartmeat, were deatroyed to make soom for the auperior worka of Raphorl, Vamari mentlons Pietro delle Pranceacn. This artat was remarkable for bia study of chiaro-lcuro, and in that depar trient of art bad probsbly considerable infuence on his roatempoiatire aod sueceseurs. The mabject of his work here referred to hat unknown, but supponfog it to Lave exhiblerd a strikiog effect of light (hike his Vislon of Constantine), it in quite con. retrubte that Raphaet sborald atm at similhe qualitias in anbatituting for it a work of hia ofra.-See Varart, Vian di Plero delle Prancetca, and. Vita di Bafratio, and Pamavent,

[^17]: sa The same llberty is ohservable in cculptured armour as treated by the ancientif

 eimilar principle, protably, the inscripllone on the inestantique merialiare radely formed; for it cannot be oupposed that the artista who could treat the figarea and b
 ergutaicely could bave burn at a lose to execute mechanical detaile with prectalon. exquisicely could bave buxn at a loss to execute mechanical detifis with prectaion. otance and space if more or leas fncomplete, the literal truth of the mere outine, itance and spuce is more or leas incomplete, the literal truth of the mere ouline, whea
 present is in no danger of confoundiog the worl with nature. present, is in no danger of confounding the work with nalurt.

 3 I The differences of degree which all rifille qualities and thelr 'forms' may exhibth,
 reprwacniatives of mere gradallon. Poaitlon comprehends angmenting or diminifilog Is
 tervala. Coloor, degrees of warmth and coldneas, tranopareney and opactiy, purlty and

[^18]: e Prom the acurcly of the works of this great artiat, Menge hestates to belleve that he wat the invencor of the deep and glowing styie of colour which his Itaijan eulogista hetribute to blen; the latier sere, however, sater gulden. The early pictures of Tliten, and the worke of Aebastian del Phombo, especially his portrate, attent the lifiuence of Giorthe wort

[^19]: es A anall picture may contala portions of large or even colonsal Bgres, in which can the distance of the apectator from the work in no longer regulaced by the dimensions of the frame, but by these of the objects represented. A disinnce corresponding with we everege limits of most dintimet vision is here purpoedy moumed.

[^20]: It ts to be wished that this inner front wall were refsced and subjected to such "refacciamento" as wuld bring it into something like seeping with the charater ladicated of the order of the portio: the centru! doormay mhich alshough arched is not loftur than the others, looks quite depresard in cutsequebie, as compored with them, and alto gether evidencel mont vie and barbarous taste.

[^21]: 1\%4.

[^22]: - We do not lay ang cinim to originality ln offerigg this suggention, for we have in ear

[^23]:

[^24]:
 formeeing such E case. It may be as well to allude here to to an tnatince where s lavit able wort of rectoration halikely to be marred by lndiferetion lo the particalis poticed th the tert, One of the proponed allarations of Jeans College Chapel, at Cambridge, to the gubatitution of an Rarly pogisk emas onindow for that of anctent Ferpendicular nrehitecture, it present exifiting in the cholr. On what principle this demoniton to commenced it in not very enay to nee: It it not eren pretended that it will be poeaible to sdopt lancet architectare througtoat the entire bedidilag, for the Perpendiculet wiodown in the trapmepie and nave are not to be removed. In fact, a dentructlon of all the chapel except the lanctst architecture would almont Involve the rebuilding of the whole edifice. Besides, there is no more resson to retuln parts antertor thun those posterior to the lancet pertod, and, to be conalatent, the plactna and the Norman gallery to the north cransept ougbt to be do-atroyed-or zathors, if the princtple be to carry ont the origlagi iden of the edifice, then the forman oaght alone to be retalned. If the great eat wlodow be, as we belleve, the work of Blahop Alcock, the founder of the coltege, to n bom the present institution is chiely indebted for ise exiscence, respect for tha memory should be in additional motive for presertidg 000, and not the leath or the resards of bit mualscence.

[^25]: *We are bere, of course, apeabling of medent Polpted archicetara. Is come of the atarred moders specimens the wall ant so thla, that they do mot adnut of my splay.

[^26]: - One of the Fery fow good quallites of the architectere of Bucldifibam Palace, it that the columps of the pedimenti at the winge stand out in this manoer. The only otber merits, and they are but pegitive anerits, of this building, are that the pedimento at chit homp are tranted as gables, that the builidig has pot a show side, and thint the materiats of the masonry ary all reth.

[^27]: - The charch at Sacrow, ahown la our prowent number, exemplition arch comporud applicatlon of columa nod arch.

[^28]:

[^29]: - This paper in an abstract of on Esnay for which the frst prize was awarded by the Boctety "D'Enconiagenent pour Itaduatrie matiuntie." The anthor of the prise ement is M. Yandoyer, government architect.
 - From experimente made on the powers of absorption of different tinds of otope, it

 work. See the C. E. and A. Journal for Pebruary hart

[^30]: ERRATA．－Ia the paper on the Anst Pasage Bridge，
 Page 122，column 1，line 10 from bottom，dele the full etop．
 －columa 2，line 90 and 81 from bettom for $(\$+1)$ ，nes（ +4
 n column 2，line 85 from bottom for（holight）s read（vitim）＂

[^31]: - Froce 8 meatoo's experimenta (Pill. Traps. 1750) it appersis that is ordianry overshos aner-mbele, peariy 80 per cent. of the oristinal moviaf force to usefully applied; end
 mormed. C.E. esed A, Jourgal

[^32]: We bave alruedy moticed the circumatapee that the witura bere quoted do pot conLur in almpe forperndve to obverve the ordinary rale of Engith compoeition. In the

[^33]:

[^34]: Tubbetese plum ecoplene di Vereain.

[^35]: is ciear that if the proportion hetweet the depth and width of the constituent eloments remalis anaitered, the proportion between the depth and widh of the whole beam nuth be unaltered. If the apper surfice of the beam buteed ont, the depth of the upper ath menta would be diminisbed and the width increated-If we anaume the denalty to remalis conatant. Bet thle ampumption also Is contrier to oar kpowlecige of elantic bodite and to Hooke'm Law, - Id.

[^36]: *We presume that there are few people who think at all on the mbject obp wad - We presume that there are few people who think at all on the mbject word in got
 advocate the employment of ruitic dies in columa. The Prepch apply the word
 sage," the derivative of which ignlies a tumpur or hump, to projecting stomen left topap
 \&c.e corbel stones or croctets meraly boasted out in the frat hastance and waipiont afterwards when bulft inlo their placen. There is no doubt that rustic diki orfing ind
 co think of the taste which would have the Irregnar lumpt of fiooc now io be mith fotite?

[^37]: -The appication of the abore priscipie will be found in the spectacation of a patent

[^38]: - At the time of the Revolation, many of the paiated windown ln our cathedrala ware takea down and packed awny in blding plecen, to be secared from ene follence of the quenthy conided to thove who wers loperrectly acquainted with the original deangu, nad quepoloce embla to reproduce it securatal.

[^39]: - The rasder will exrease the alogalar or can rabatitate the plural namber for if

[^40]: - There wan a sigbature atrached to the wecond article on the Pitarillismo Mugeam,

[^41]: - Of a great name mach remains

[^42]: - Aa fofasion of the saraceale ntyle la seen in many parta on the continedt-from Vectce, traces of it aloag the roed to Bresela, and in other directions. The border orasvesict so comanon in the Venetion paicces is roand the windowi of st. Peter's calthedra),
 Matis, see the worme of Cleognara, Zapoth, Ereutser, Canaleth, fec.

[^43]: Trant, Roy, Soc. Edin. vol. xvl.

[^44]: *The Editor has felt it his daty to append to this evidence some commente, which will

[^45]: - Thas efreet may be partly Judged of from en examination of the drantoge of Than cherch, in the elder Pugta's "Normandy."
 + Not nearly enough attention has been pald to the anbleet of anaopry, If coly 20 Acermine dates. Let ony ope conpare the excellent ahlar of shis chapel, and the wretebed White chapet in the Torer of Loodon.

[^46]: - Excudent alit epirantia mollius mera,

 Excudent alit apirantia molilus ara,
 Credo equldem : vivos ducent de mermore valtus s
 Credo equldem: vivos docent de marmore
 Orabunt causad mellus ; collque meatus
 Descrbint radio, et surgentia sideri dicent:
 Ti regre faperio popalos, Romane, memento.

[^47]: arely rather deadrable than the contrary that the defletenctea in our present architectaral vocabulary should be tlled up, which can te done in no other mancer than by toveoung cuftictently ifgutitemt terms for tbe retpective occasions; and of courne when they Ant come up they are Inble to be called "uew-fangled": - a bat then i-to giand in eme of the reproach of "new-fangled" is downrigbe "Old Ladyism." The Germans, we tiad have begun to edops from us-at least adopt into thelr Art-lesicons, the terms Liprostyle Triprostyle, \&c.; yet we have heard theon, if not positively objected to, attempted to be: depreciated, because- O what in excellent and sagaclous "B Becauedet -because any one acyuainted with the Greek pumerals mixbt have formed them-and we suppose aleo becaus tehey mre so exceedingly simple, clear, and intelugtble, wben once explalned, thist a chlld may naderitend them.

[^48]: * Concise Table to facilitale the Calculation of Farthwork and Land required in the Construction of Ratiwnys, Cansia, and other Public Worts; adepted to the Practice ef the Eogtpeer, Architeet, and Durveyor." By John Duphes, englectr. Loadoo : Edereham Whaon, Royal Exchante.

[^49]: 1 See, among other examples, No. 31 In the British Muwem-a small funerea group of painted wcalpture.
 8 Duroitet, it. p. 12.-I tonk a qnantity of the best anke while ground in oll, and thiuntig to with nut oll, I put eeveral layer on a prepared millisoard. from the rame parcel of oil a bite had 1 wook another portion, and wiluting it to a workitig conaitence whe whx cream (wux and oit of turpentinc) 1 put the adme number of part of the millboard. In a few wreks the portiun which wes diluted with additional of, had become of a dectiledly yellow lint, while that which wet mized with the wax crenus rematned us purely white as at dirat.

 Biadder-colouri beconie fat and rantd fmm the accers of alr in the course of time, and many of the coours in tubers oxidite ur blacken in atrw montha; anomg the lattur 1 have tound white lead, Naples sellow, yellow ochre, saw sictum, \&c., go effected.

 * It may be as well to remurk that an excossive applitation of moxpthiof in palati:g has a tenriency to injure the ten cilty of the pu:nt, as mat we sren in what hunse. pumtera trin lad " Asting." The ripid evaporation of the esseme trom the nore molistatiad materials with which it io cumbined breaks up, in soist degres, their cohesivenese.

[^50]: s If the add'tion of a litile oll or extri turpentine easence be required, and the magylpmy property be operpowered, recourse must be hed to the palette uins.
 Dr. Bachoffner, in allualon to Bir Hamphry Davs's having found the colerrat of the ancients (at Pompeif) to be similar to those now ia use, thloks "that modern vehicles are at faull."-"Chemiatry applied to the Arts."
 6 8ee Boschini's remarks on varalah giare, and the aversion in which the Vepetians held it, in the "Third Report of Comminion of Fine Arts."

 7 "Trulté complet de la Pefatare."
 a Por a waz vorulah: "Take three parts white war aod one part reatn; melt toge ther; apply over the picture, and poltah with cloths."-A Antologia Romana."

 - The blocks of yellow ofta may be bleached as follow: Cut them into shavingt upon earpenter's piane laverted, and theo expone them to the sun In an unsmoky atmoaphere, occasionally tnraing orer and molstening them with clean water. It the ateady and potent ifght of Italy, the blenching operation is completed in three or four days, as have many times witneased; but in our variaule cllmate It cannot be effected without more tme and trouble. The brown wax of commerte is frequentip adulterated with common resin. The dark.coloured old combs are amost unbleschable, sud theis sub Btance to of a loas lenaclous or wary characler, as it fo mixed with be bread sod other impurties, Pine been-way may alwaya be obtalned of Mr. Mllton, the eminent aplarian,

[^51]: EIn theoe triall, the critor of the starboard ongime of the " Epeocer" man not uned, the ereet of which, however, to eatimated, and the concomption of fuel divo io in ac. cordanee Fith if.
 T The throtties of the "Epenceris" engiven mere constantly eloeed, to ruduce the revoIvtions in the rus ouf. The effect of thil it fally entranted, as the rovolutions of the
 soine ft.
 In this silal the dietencee run, and the thes of running (equal distances), were very contlaued Forking for several mlaute aner all the other hid stopped, which fricreteed the tume of rasning of that ramed beyond the othar.

 2 While conl listed 960 lb .
 1 While coel hated 8sulb.

[^52]: - In order to make the extructs more complete, the following worda ougbt to bave been inserted, after the word "deatroyed," wbich concludes the sentence refering to the dlagram, "And these neequal atraine which exiat even when the bridge is at reat, are greatly fucreased by the vibrations to which it is mubject, and particularly by the action of stormis of wind. Unless the error be extreme, these unequal strains may not be productive of Immediate dianter, but they are constantly actiog, and by wo much they aggravate the defects which bave been pointed out as attaching more or leas to all suapeacion bridges. Applying the above diagram to an acearate elevation of the bridge, and produciog A D tul it meet the horizontal lise at the base of the pler, we may tee to what extent the stability is endangered, and it is evident that beyond a certaln point, the straln at the bead of the pier would cease to be supported in the direction of the resultant A D. Seeing that this error has in point of fact been committed on several oceacions, In constrectlog sumpenalon bridges-that insecority and falliare have enaved-that to one lastance which proved fatal, the error was of such magritude as to mate the angle on one aide of a pler $71^{\circ} 28^{\prime}$, and on the other $56^{\circ} 50^{\prime}$, and that a very conaldersble error of thls dencriytion exlats in Hangerford Brldge," dec.

[^53]: *The rotal welght of the centre chaln when loaded is 1000 tons. One-half of that weighi preseen esch mbutment, and 300 tons more may be added for the alde chalo.

[^54]: - The weights of powder used for depths of 4 feet, 4 feet 6 inches, and 5 feet, were repectively about $2 \mathrm{lb} ., 3 \mathrm{lb} .$, and 4 lb .
 + The short remaining ends, though neeful for lees deptha, were of Iftle value, from the dificulty of splicing them togkther. This operstion, though troublesome, wat reeorted to with success on one occasion whint waiting the arriva of a parcel of fise. On retarafog the ahort ende to Mears. Bickford they allowed halr the length of new fune in exchnoge.

[^55]: *The apparatus waf fitted to the second screw-lathe of thone dencribed, and the tocllned bar was placed on temporary wooden standards.
 ned bar was placed ou temporary wooden utandards.
 \dagger subsequenty bir J. Barton, Comptroller of the Mint, ac.
 : The microwiope had been long uned in the procesis of graduanting inatraments, Dat this tavaluable mode of employing two mleoscopes in comblandion, wist tint aucceafuly practiped by Mr, 2rooghion.

[^56]: * Ulren in the bath entracto

[^57]: pp. 200-220.

 - Dallaway, p. 484.
 a Blants HLatory of the Reformation p. 88.
 4 Dallaway; ${ }^{p}$. 1 S8.
 S. Madiland y Dart Ages, p. 88.

 Norfolt. are good apectmenis la the beantiful midele Polated ohmocel at suantupith Norfolk.

 YWilla's Canterbury, p. 120.

 - Whewell's Notes, ix., is. 89.

[^58]: - Exoter Colbedral was, bowover, carried out on a anform plan tor afty years by macop Outris.

