

CIVIL ENGINEER AND ARCHITECT'S

J 0 U R NAL,

SCIENTIFIC AND RAILWAY GAZETTE.

VOLUME 11.-1839.

PUBLLSHED FOR THE PROPRIETOR, 57, KING STREET, WESTMINSTER;
H. HOOPER, PALL MALL EAST; GROOMBRIDGE, PANYER ALLEY, PATERNOSTER ROW ; J. WEALE, 59, HIGH HOLBORN; J. TAYLOR 1, WELLINGTON STREET, STRAND ; J. WILLLAMS, 106, GREAT RUSSELL STREET, BLOOMSBURY;

JACKSON, NEW YORK.

LONDON :

THOMAS BURROWS, 57. KING STREET, WESTMINSTER.

PREFACE.

Another year has been added to our labours, and it is again a pleasant duty to lay before our readers a brief account of the progress of the two professions, to the service of which we are devoted. It will naturally be expected that in a year of severe financial embarrassment, succeeding also to one so fertile in importint results as was the last, there must necessarily be a falling off in the amount of what would otherwise have been effected, and a delay in the execution of many works, the completion of which is thereby retarded. Our own exertions, however, we have not suffered to flag under circumstances so dispiriting, but trust that so far as las depended on us, the present volume is worthy of its predecessor, and of the patronage with which our endeavours have been crowned.

In considering the general features of architecture, we find that the invasion of the Renaissance style, which we announced last year, has actually occurred, but has singularly been accompanied with, or rather smothered by, a resuscitated taste for Elizabethan extermal and internal decoration. Considerable attention has also been devoted to the early antiquities of Moresque architecture. Our own ecelesiastical antiquities, we are happy to mention with praise, have been chosen as the special object of enquiry by a Society of Clergymen at Oxford, and thus we are led to hope for an improvement in taste, in a quarter which hitherto has had but too great a part in producing the present degeneracy.

A striking and interesting circumstance to every well wisher of the arts, is the great zeal with which both associated bodies and individual members of the profession have engaged in the struggle for maintaining the true principles of competition. Among these cases have been the Nelson Testimonial, St. George's Hall Liverpool, and the Royal Exchange, in the still pending contest respecting which latter, we believe we may say with truth, "Quorum pars maxuma fui." On leaming tbe extraordinary attempt to impose a tax of it guinea on applicants, for copies of the Instructions of the Committee, we immediately obtained copies both of the instructions and the plans, and left them at our office for the free use of any applicant-a course of conduct for which we feel an abundant reward, in the vote of thanks unanimously bestowed on us by the Manchester Architectural Society. From these exertions hitherto, no iminediate fruit has resulted, but much has been already attained from the influence which they have had in awakening the public mind from its lethargy, and calling its power to a subject so importantly affecting the national glory and the general taste.

Great progress has been made this year in bringing the accessary science of geology to bear upon architectural pursuits, and with a success which must have an influence on the future progress of each respectively. Government issued a commission, composed of geologists and arclitects, to examine the quarries of England, for the purpose of ascertaining the stone best fitted for the construction of the new Houses of Parlianent. This commission has produced a report which must long be a standard of information to the profession, and a valuable model in future enquiries. The Goverment has also formed a Museum of Economic Geology, attached to the department of Woods and Forests, in which the commissioners specimens are collected, and to which future accessions will be made. Special courses of lectures on the connection of these two subjects have been delivered by eminent geologists: at the Royal Institute of British Architects by G. F. Richardson, (reported in our Joumal), and at the Architectural Society, by E. W. Brayley, jun. Great attention is also paid to these subjects in the several faculties of civil engineering. Although not yet brought into immediate connection with architecture, we feel it our duty to allude to the discoveries in photograpy by Daguerre and Fox Talbot, and to those in engraving by veltaic electricity made at Liverpool. In the British Museum great improvements have been effected, and a Museum of Antiquities las been formed by the city authorities, in Guildhall. We regret, however, that the Soane Museurn, the proper Museum of Architecture, as yet manifests no progress. The elementary drawing and professional schools throughout the country have exhibited a remarkable improvement, as have the schools of design, and the class of decorative artists appears to have attained a higher standard than it ever before reachech. An act has been passed for giving protection to the copyright of manufacturing designs, and it is to be hoped that this symptom of a better system of legislation for art, may be pursued successfully. We may mention here as another legislative aet, aldiough not in perfect regularity, that an amendment has been made in the Brick Duties Act.

Great mmbers of churches have this year been crected, and more are in progress, but of works of a high class few have been completed. We may however mention the Reform Cluh; the Club Chambers Association; the Athenæum and Unitarian Chapel, Manchester; the Highgate Cemetery; a Conservatory at Chatsworth for the Duke of Devonshire, one of the largest in the world; and a Colossal Monument in Scotland, to the Duke of Gordon. Many elegant commercial buildings lave been erected; and an increased taste has manifested itself for public gardens, cemeteries, and other branches of landscape gardening. It is with regret that we are still obliged to complain of the little regard that is paid to the maintenanoe of the public taste, by the managers of the funds for the new churches. As to the other arts they are totally neglected, and architects have generally to complain of the niggardliness and inefficiency of the means placed at their disposal. In fact the advocates for new churches, like the fitters out of emigrant ships, seem to think that plenty of stowage is of much more importance than either convenience or safety. The members of the establishment have a rich inheritance of artistical wealth left to them by our ancestors, and they are morally bound to maintain its dignity, yet so far from doing so, they make little provision for the future, and take little care for the prescrvation of what they have in hand. We have to regret this year the demolition from such neglect of the nave of st. Saviour's, Sou fhwark, a shrine rich in its antiquarian and historical associations, and the injury by a most terrific hurricaue in the early part of the year of the Cathedrals of York, Chester, amd St. Patrick's Dublin, and of the Town Hall, Birmingham, and subsequently of the Cathedral of Ripon. Repairs and restoritions have been effected of Wolverhampton, Collegiate Cluurch, Madley Church, the Pilgrim's Chapel Maidstone, St. Mary's Redcliffe, the east ent of Guidhall, and many of our Cathedrals. A Govermment grant has been made for the restoration of the Cathedral of Glasgow, a work meritorious in itself, but an act of local faveuritism, which has been vainly solicited for other parts of the empire. But a small grant would have preserved St. Saviours. Some slight improvements have been made in Whitehall, but no measure has been taken to render more worthy of the public a line of communication which possesses many interesting monuments, and recalls many historical scenes. The palaces of Whitehall and Northumberland House, both lave a back view upon this site, and here also are situated the statue of James 2d, the United Service Muscum, and the Water Gate. The principal foreign edifice completed this year, has been the Winter Pulace of St. Petersburg, a work of great splendour and of rapid execution, a wonder of power if it were not an emblern of the weakness of the Russian empire. While this monument of selfish barbarism has been erected, what has been done for the temporary and permanent welfare of that immense reakn? Camala have been projected a hundred years, and the only railway is that leading to the palace.

We have to deplore the loss of two members of the profession, each of whom has left a name, which must long live in its history. William Wilkins was the architect of Downing and University Colleges, of the University Clab, St. George's Hospital, and the National Gallery ; Rudolph Cabanel most distinguished himself as a theatrical architect, and by the improvements he introdueed in many of the teclenical branches of architecture. Mr. Hardwicke has succeeded Wilkins as a Member of the Royal Academy, and Mr. Charles Cockerell as Professor of Architecture. Architects lave as usual been lax in the literary career, but many valuable works have been produced, among which we may mention the new edition of the Public Buildings of London, by W. H. Leeds; the Public Buildings of the West of England, by John Foulston; the Traveller's Club, by W. H. Leeds; the Apcient Half-timbered Houses of Englamd, by M. Habershou; the Suburban Gardener, by J. O. Loudon; the Architectural Remains of the Reigns of Elizabeth and James 1st, by C. J. Richardson; and the new edition of Repton's Landscape Gardening, by J. O. Loudon.

When we come to coutemplate the governnent measures affecting the engineering interest, we are at once struck by a combination of jobbery, such as no year has hitherto so abundantly produced. Defeated in the House of Commons on the Irish Railway business, they managed to perpetrate the Shannon Navigation job; and again repulsed by the public voice on the Steam Vessels Accidents Conmission, liydra-like they bring out a new report on Railways, teeming with all the elements of fertile mischief, at the very period when their own officers had exposed in the case of the Caledomian Canul, the consummated evils of a long process of ignorance and mismanagement. One. of their last acts has been the appointment of a commission, to investigate the Harbours on the south coast of England, and another to decide on the competing railway lines to Scotland and Irelind. The results of these two measures the experience of their predecessors las taught us to look to with dreall, and we have little hope from their origin of any error in our proguostic. It is to us a matter of consolation that we have not been remiss in opposing so far as in us lay, measures so fraught wilh iniquity, and we believe we may say with some little effect, but it depends neither on our temporary exertions, nor on those of others to combat this growing evil, it requires the united energy of every person interested, to resist a series of measures which are confined to no party and to no set of men, but are part of a system taken up with the robes of oflice and uniformly pursued by the most opposite in opinion. The civil engineers have an inamediate interest iu excring themselves for this object, as the certain result of government success in this system must be to reduce the members of the profession here as abroad, to be the liverice sycophants of the government, instead of the iadependent officers of the public at large. To resist these attempts on the part of the government authorities, a Railway Society has been formed, allhough, we believe, mot conducted with the spirit neceasiry to ensure success.

A circumstance greatly affecting the mechanical members of the profession, is the great development given to public taste for subjects, by the successful results of the Leeds and other Mechanics' Exhibitions. Some experiments, intereating to the profersion generally, have been made on the explosion of mines, and charges of powder under water by voltaic electricity.

The agitation in the early part of the year respecting the Great Western Railway enquiry, subsided on the decision of the proprietors of that undertaking, to coutinue the plans of Mr. Brunel. The second Report of the Committee on Railways is only valuable from its statistical facts, which show indisputably the necessity for lowering the present high fares. Above one liundred and fifty miles of railway have this year been opened, of which the London and Croydon, and Aylesbury brancla have been opened throughout, and the following partially, the Eastern Conuties to Romford; the York and North Midland from York, to the Leeds and Selby Railway; the southamptou from Itartley Row to Basingstoke, and from Winchester to Southampton; the Great Western from Maidenhead to T'wyforl; the Manchester and Leeds, from Manchester to Littleborough; Birmingham and Derby; Midland Counties; and Glasgow;

Painley and Ayr, from Ayr to Irvine. The system of gulvanic telegraphs on the Great Westem Railway, estublished by Professor Wheatstone, has completely succeeded. Several foreign railways have been opened, among which are the Versailles, Amsterdam and Utrecht, Tawns, and Emperor Ferdinand's from Vienna to Brunn. For ordinary roads active exertions are now being made to introduce wood pavements.

We have already mentioned that a commission has been directed, to examine the harbours between the Thames and Portsmouth, and we may farther state that the hydraulic department of engineering has this year effected many important improvements, and shows an energy which promises much more. The works in the Wash are continued with success, and active measures have been taken for the improvement of the north west coast. The Mersey, Ribble and Wyre have been deepened, and important plans are in agitation for effecting the remaining objects. After many suggestions from diferent quarters, actual experiments have at last been made on the propelling of vessels on canals by locomotive engines on the banks, and with such success as to leave little doubt of the pernanent establishment of this mode of transit. Experiments have also been made on the use of steam vessels on cauals. At Cardiff, extemsive docks have been formed at the expense of the Marquis of Bute. One of the finest hydraulic works of the year, has been the river wall for the new Houses of Purliament. In France much attention has been directed towards the improvement of their harbours, and a preliminary grant of nearly two millions sterling has been made for this purpose.

Steam navigation maintains the interest which it excited last year, and lias received many importint accessions.-A vigorous attempt bas been made by government to establish over it a spy and jub system, but it is to be hoped that the miserably trilling results of their intrigues, will induce them to give up this barefaced attack; no exertion must however be omitted by all parties steadily to resist the obnoxious measure. The utility of iron sterm vessels seems to have been fully established, and they have been most extensively used, particularly for river navigation.-Many also have been sent to distant parts of the empire, and to foreign countrics. Their success has led to the employment of iron as a general material for ship building, and the example of the Ironsides has been followed by the building of many other iron sailing vessels. The experinents on the Archimedes and other vessels have been continued, but have led to no permanent results, the French steamer Veloce was unfortunately burned, but a sailing vessel called the Vermon, is making a voyage to the East Indies, provided with a new kind of propeller. Professor Jacobi has made some experiments on the Neva, with a boat propelled by electric apparatus, but these like the previous attempts of the Americans have been hitherto inefficient. The steam navy has been greatly increased, and the dockyards improved, at Woolwich a central establishment has been formed. Among the vessels launched are the Cyclops (the largest steam frigate in the world), the Hecla, the Stromboli, and the Prometheus. For the East Indian navy have been built the Sesostris and the Queen. The adoption of large hollow shot as an armament for this class of shipping las greatly increased its efficiency. Sweden, Russia, and Holland, are among the foreign powers who have shown attention to their steam navy, to which our English vessels have served as models. Transatlantic steam navigation has been increased by the accession of the British Queen steamer, and government has entered into a contract for the conveyance of the mails by steam from Liverpool to Halifax, Boston and Quebec. The company for steam navigation to India by the Cape, has been discontinued, and their large class steamer sold; for the line by the Red Sea, however, the East India merchants have raised a hundred thousand pounds. Dunkirk and Rotterdam may be mentioned as rising steam ports, and Hull has by this mode of communication, successfully increased her eastland trade. The French have made their steam voyages to Russia productive of great commercial advantages in the sale of articles of luxury, and they have greatly extended their steam commercial marine.

Engineering literature has been increased by the production of many raluable works, most of whicl, even in the present progressing age of science, must remain standard works in the library. The mental labours of the profession have not indeed been of less inportance than those in the field, and as great care has been shown to leave our successors good instructions asgood examples. We may enumerate : Sections of English Railways, by George Bradshaw; the London and Birmingham Railway, by Thomas Roscoe and Peter Lecount; Inustrations of Mechanics, by the Rev. T. Moseley; the Practical Treatise on Bridge Building, by E. Cresy; on Steam Boilers, by Josiah Parkes; the Theory, Practice and Architecture of Bridges, by James Hann and William Hosking; On Oblique Bridges, by George Buck; On Arithmetical Perspective, by C. E. Bernard; On Steam Engine Boilers, by R. Armstrong; On the Construction and Formation of Railways, by James Day; and on the Construction of Oblique Arches, by John Hart.

The faculties of Civil Engineering, established in different Universities during the last year have gone on with success, and that at King's College, London, has particularly distinguished itself by improvements in instruction, and by the zeal of its professors. The University of London has announced its intention of granting diplomas for attainments in Civil Engineering, but on what basis they proceed we have not get been able to leam. If the previous course required for this be similar to that required for their other degrees, it may be very difficult, and very useless; an engineer would rather have in his employment a working man than a college diplomatist. Attempts are now being made to establish a College for Civil Engineers, which it is to be hoped may be conducted on such principles is to render it useful.

A monument to Telford, has been completed, and p!aced in Westminster Abbey, and a handsome testimonial has been presented to a living engineer, Robert Stephenson, for whom also a statue is contemplated. Biographies and memoirs have been published of Watt, Telford, Trevithick, and James.

The proceedings of the several professional societies, this year, have been such as to maintaiu their previous high reputation. The several architectural bodies, the Royal Institute, the Architectural Society, and that at Manchester lave applied themselves with vigour to obtain a fair system of competition, and have shown every atteution to the improvement of their members, by courses of lectures on the collateral sciences, and by the distribution of prizes. The Royal Institute of British Architects has conferred a testimony of esteem on
one of its officers, Thomas Leverton Donaldson, whose services have been long and publicly known. To the Manchester Architectural Society we feel indebted for a tribute of praise to which we have already referred. In Ireland an Institute of the Architects of that country, is in a promising state of progress, but we regret that the efforts for the establishment of a similar one in the United States, have proved abortive. The Institute of Civil Engineers has maintained a high rank, and the president has worthily followed the example of his brother president, the noble Eirl De Grey, in his sedulous attention to the duties of his office and the interests of the society. The Military Engineers have published the Third Volume of their Transactions, which well keeps up the reputation of its predecessors. In the United States an attempt is now being made to establish an Institute of Civil Engineers, which we earnestly hope may be crowned with success.

Having dismissed the generul interests of the two professions, we believe we may refer to our exertions with some complacency. We announced last year that the pressure of matter would oblige us to increase the size of the Journal, and we have accordingly, with the exception of one number, issued daring this year an enlarged edition at one shilling and sixpence. That this was called for by the wants of cur subscribers has been proved by the successful results of this measure, and we trust that we may appeal to our columns whether we have exerted ourselves in a manner worthy of this support. In the present volume will be found nearly five hundred closely printed pages, and above two hundred wood engravings, among which are those of the Synagogue in Great St. Helen's, the Athenæum Derby, the Pont du Carrousel, Bow Bridge, the Arc de l'Etoile, the Nelson Column, and the Club Chambers Association. There will also be found the Reports on the Great Western Railway Enquiry, on Steam Vessel Accidents, on the Caledonian Canal, and on the Stone for the New Houses of Parliament; a series of papers by Ralph Redivivus, Candidus, and on the Theory of the Steam Engine, by A. Aristides Mornay; on Railway Curves, and on Harbours, a Memoir of Trevithick, the Designs for the Nelson Memorial; and translations from the French of Arago's Life of Watt, and De Clairac's Ancient Marbles.

To our correspondents we have been much indebted for their valuable contributions on many occasions, and we can assure them, sincerely, that nuthing shall be wanting on our part, at all times to show every attention to their communications. The Journal has always been open to every thing of merit, and, we trust, we shall never be found remiss in doing justice to any subject committed to our charge.

THE

CIVIL ENGINEER AND ARCHITECT'S • JOURNAL.

THE NEW SYNAGOGUE,
great st. helen's, bishopsgate-street.
J. DAVIES, ESQ., ARCHITECT.

SECTION.

On turning to the Index of our last, or we should say our first volume, our readers will there find the pages referred to, where we have already spoken of this building. To the second account there given of it we have now litlle more to add, except that the cuts will supply information as to varions particulars not pointed out at page 339.
The section shows the geaeral style of the interior, and the design of that end at which the ark is placed, also the arrangement of the lamps, and of some of the candelabra; but it conveys no idea of the efiect, either as regards splendour of colour or perspective appearance. Mont of our readers, however, will, so far from requiring to be reminded of this, be able to complete the picture for themselyes, from

the sketch here given ; or should they not have done so before, they will now most likely take an opportunity of visiting the building itself. We ourselves have not seen it since it was opened for service, but should judge that it must look particularly rich when lit up; though at such times the effect of the painted windows within the ark must be lost-not, however, necessarily so, because a few gasburners placed before them on the outside would show to perhaps even greater advantage than by day, and would diffuse a brilliancy and glow over the upper part of that recess. We cannot conclude without congratulating Mr. Davies both on the opportunity he has had for displaying his taste, and the able manner with which he has turned it to account.

The references to the plan of the ground-floor of the front building and lower part of the synagogue are as follow:-
A. Open vestibule or loggia, with arches on coupled Tuscan columns; $29 \times 14.6^{\prime}$.
B. Inner vestibule or corridor, communicating aith J. J., the staircasea to the galleries.
C. The open area or floor of aynagogue, 23 feet wide, between the lower sittings, F. F.
D. The readers' platiorm.-G. G. Waterclosets.-H. Office.I. Strong closet.-K. K. Staircases in the private residences.L. Secretary's residence.-M. Warder's residence.

In the other plan is the committee-room, 46×22 feet, and 0.0 .0 . the ladies' galleries.

PLAN OF UPPER FLOOR.

PLAN OF GROUND FLOOR.

	Scale of Fett.						
	10	20	30	40	50	60	

REVIEWG.

A Treatise on the Law of Dilapidations and Nuisances. By David Gibron, Esa., of the Middle Temple, Special Pleader. London: J. Weale, 1838.

Architecture has its jurisprudence as well as medicine, and equally as connected with the rights of property, as a matter of police, it has been necessarily the subject of extensive legislation, Coming more within the province of the lawyerthan of the builder, and being a subject in which the latter is not tam Marte quam Mercurio, we derive the greater pleasure from seeing it in the hands of one who is best capable of doing justice to its technicalities. The utility of its study is so evident, that there is indeed scarcely a day in which its necessity is not impressed. Its extent, too, is so great, that almost every branch requires a separate treatise, and it comprehends the laws of contracts, awards, fixtures, dilapidations, nuisances, brildings, sewers, drainage, prescriptive right, highways, \&c.

Mr. Gibbon has already obliged the profession with a work on the law of fixtures, and we are now indebted to him for one on dilapidations. It does not diminish the confidence derived from its predecessors, and is written in a plain and intelligible style, and supported by numerous legal authorities.
In the introduction, the author has given a general view of the law on this subject, and then enters into the detail of its branches in the subsequent chapters. In the first chapter we find the law of dilapidation as it affects ecclesiastical structures and lands. The second exhibits, with equal skill, this law as it regards leases, either for life or during a term of years. From this chapter we shall make a few extracts, and show our readers with what ability Mr. Gibbon has treated his subject, although we must necessarily omit the references to the notes. These, indeed, form a most valuable and extensive portion of the work, and illustrate, by various authorities, the law as explained by the author.

For the natural decty of buildings, which is the inevitable effect of time or for fair and ordinary wear, a tenant for years is not, genesally speaking chargeable; but for extraordinary decay, caused by suffering the premisee to be exposed to the elements, or for accidents bappening during the term, the tenant is liable. Suffering bouses to be uncovered, whereby the spars or rafters, planchers, or other timbers, become rotten, is waste ; but barely suffering them to bo uncovered, without rotting the timber, is not waste. Where, after the determination of a yearly tenancy, the landlord had an entimate made of the sten necessary to put the house into complete and tenantable repair, and brought his action for that snm, Lord Kenyon said, "That it wat not to be permitted to go for the damages so claimed. A tenant from yoar to your was bound to commit no weste, and to make fair and tenantable repairs, such as putting in windows or doors that have been broken by him, so as to prevent waste and decay of the premites; but that, in the present case, the plaintiff claimed a sum for putting a new roof on an old worn-out house." Ia another case, where plaintiff declared on a contract by defendant to deliver up premises in same state as he received them, and merely proved a tenancy from year to year, Gibbe, C. J., nonsuited the pleintiff, saying, " That the obligation was rtated too largely. Can it be contended," ho continued, "that a yearly tenant would be boumd to rebuild if the premises were destroyed by accidental fire, or if they became ruinous by any other accident? He is only to use them in a husbend-like manner;" that is, with ordinary care. In Anworth v. John. son, an action against a jearly tenant, it appeared that the stairs of the house were worn out, new enshes were wanted, the doors were rotten and falling to pieces from decay, latches, keys, and locks, were broken and damaged, and a panel of a door was broken, Lord Tenterden, in summing up, said, "It appears this wan a very dilapidated house, when the defendants took it, and they have had a very considerable quantity of work done upon it. The first question is, what are the things an occupier of a house from year to year is bound to do? He is oaly bound to keep the premises wind and water tight. A tenant, who covenants to repair, is to sustain and uphold the premises, but that is not the case with a tenant from jear to year. A great part of what is claimed by plaintiff consists of new materials, where the old were actually worn out; for that the defendants are clearly not lisble. But if you think that defendants have done all that tenants from year to year ought to do, considering the state of the premises when they took them, the defendants are entitled to your verdict."

The covenant to repair must be construed with reference to the nature and condition of the building as to age, \&e., thougb it must be concluded that the house was in proper and durable repsir at the time of the demise. If it appear that the covenants have beon substantially complied with, and the buildings are in as good condition as, considering their nge, they might ronsonably be expected to be, the landlord will have no right to complain of dilapidations. For this we have the high authority of Tindal, C. J., in three several casea. In Harris v. Jones, the covenant was to leare the premises in good and substantial condition. It appeared, on the part of the landlerd, that glass in the skylight was broken to the amomat of 40s., that iron rails, tiling. and coping, were dilapidated. On the part of the tenant it was proved, that he bad laid out considerable sums in repairs during the term, and that the premises were, in the whole, in tenantable repair, and in a better state than when demised. The Lord Chief Justice seid-" The question is, whether the
covenant bas been substantially complied with? The defendant was only bound to keep up the house as an old bouse, not to give the plaintiff the benefit of new work." The Jury found for the defendant. Aguin, in Gutteridge F. Manyard, the same erudite Judge remarked-" Wherever an old building is demised, and the lessee enters into a covenant to repair, it is not meant that the old bailding is to be restored, in a renewed form, at the end of the term, or of greater value than it was at the commencement. What the natural ope. ration of time, flowing on effects, and all that the elements bring abont in diminishing the value, constitute a loss, which, se far as it resule from time and uteture, fallis upon the landlord. But the tenant is to take care that the tenements do nor muffer more than the operation of time and natare would effect. He is bound, by seasonable applications of labour, to keep the house, as nearly as posaible, in the same condition as when it was demised. If it appear that he has made tbese applications, and laid out money from time to time upon the premiaes, it wuuld not, perhaps, be fair to judge him very rigorously by the reports of a survejor, who is sent on the premises for the very purpose of find. ing fault."

Again, in Stanley v. Twogood, where the covenant was to preserre, kecp, and have tho hoose in good and tenantable order and repair, Tindal, C. J., beld that the question was, whether the house was in a substantial state of repair, as opposed to mere fancied injuries, such as a mere crack ln a pane of glas, or the like. That although tha state of repair at the time of the demise wat not to be taken into consideration, yet it would make a difference whetber the house were new or old at the time of the demise.

In Marke v. Noges, Abbott, C. J., held that under a covenant gubstantially to repair, uphold, and sustain, the tenant was bound to kcep up the inside pain:ing. This, it will be perceived, is requiring such a tenant to do more than the incumbent of a benefice. The decision does not appear to have been very doliberate, and is not altogether consistent with those subsequent judgments of Tindal, C. J., and therefore I think cannot be safely relied on. It is usual in leases specially to provide for painting at atated intervals.

From these cases it will be seen, that principles of law are not strictly enforced in cotaidering what aro dilapidations; that of minute defects the law takes no notice, "de minimis non curat lex." Thercfore, unless the premises have been mach neglected or misused, and are in a much worse condition than they ougbt to be, it will not be safe for a landlord to take legal measures againut his tenant: although, where there are substantial dilapidations, these minate defects may and should all be taken into account.

The following explanation of the law, with regard to the manner in which the tenant is bound to repair dilapidations or restore their value, does not appear to be supported by any legal decision of the jadges, and this we regret, for it is a point of great moment to the profession. Certainly, most of the decisions of Tindal (Chief Juterice, have a tendency this way; and there is very little doubt that if the question wus to come before that judge, he would take the same view of the law as laid down by Mr. Gibbon.

Where any part bas fallen away, the tenant is not bound to replace it with new materials, but only with materials of the same value and in the same condition as those deffient ought to have been, had they only been subject to ordinary decay and wear, except from accident or exposure to the weather. In determining this, reference must be had to the age of the building at the time of the lease granted, and to the duration of the lease, and so much ought to be deducted from the cost of new materials as it may be supposed they would be depreciated in value by ordinary wear during the period the materials to be supplied have formed part of the building. Mr. Woods thinks, that in bardly any case could the lardlord require more than three-fourths of the new Yalue, and none would occur in which one-fourth ought not fairly to be demanded.

Chapter III. explains the law regarding dilapidation by tenant, without impeachment of waste.

Chapters IV. and V. point out the law when the property is mortgaged, and held by joint tenants and tenants in common.

Cbapter YI. relates to party-walls and fences. The author explains namerous points of law concerning the Building Act, which probably has caused more misunderstanding and litigation than any other Act of Parliament ; several attempts liave been made to amend it, but all to no purpose. We shall give one extract from this chapter, to point out an error regarding the time at which it is imperative to deliver accounts concerning the re-building of party-walls:-

Within ten days after the party wall is built, or se soon aiter as conveniently may be, the builder is to leave at the adjoining house, \&cc., a true account of the number of rods in the party wall, \&c., for which the owner of the adjoining building is liable to pay, of the deductions to which he is entitled, and an account of nll other expenses and costs.

The express directions of the Act are-that the account shall be delivered within ten doys after the party-wnll shall be luilt; it says nothing abont " or so soon as conveniently can be." This ought to be impressed upon the minds of every architect or surveyor, for we know instances in which parties have failed in recovering the value, in consequence of the omission to deliver the account within the ren days.

Chepter VII. explains the law relative to churches; Chapters VIII. and IX. highways, bridges, sewers, sea walls, sic.; and

Chapter X. is one of considersble importance; it explains the law touching nuisances, in which the author has taken considerable pains and trouble to collect numerous decisions as to what may be considered a nuisance. We shall give two or three extracts to show the able manner Mr. Gibbon has treated the subject.

In determining what acts are noisances, we mast ascertain the extent of the possessions of our neighbour; and bere we may refer to the maxim of law, that he to whom the soil belongs is entitled to all the space of air above to thesky, and of the earth below to the centre. His rights extend perpendicularly above and below bis own land, and not laterally, so as to ciaim any use from the earth beneath or the air above the adjoining land. It is, therefore, not only a nuisance to cause an encroacbment or injury to the soil of a neighbour, as if John build a house overhanging the land of Thomas, whereby the rain falls upon Thomas's land, and iujures it; but also if John corrupt or annoy the air over Thomas's land by noisome smells or deafening noises, it is a nuisance. But if John, by building or otherwise, exclude from the land of Thomas the air flowing over his own land, and the light which comes through that medium, he does nu more than he has a right to do.

It is not esery disagreeable smell or noise which I cause on my land, and which the wind wafts to my neighbour's, that will give him a right of action 1 it must alise, it would seem, from some permanent caase, and occasion him continual annoyance and discomfort; and that to a degreo suffeient to depreciate the value of his dwelling-house, and render it less eligible in consequence of the neighbourhood. I cannot be restricted in the fair and reasonable use of my land by any delicacy of sense or peculiarity of habit of my neigbbour. A swiue-sty, limekiln, privy, smith's forge, tobacco-mill, tallow furnace, and glassbouse, set up near a private residence, have respectively been beld nuisances. And so a mill for steeping sheep-skins, by which the air was corrupted; a building for manufacturing acid apirit of sulphur, which occasioned noisome and offensive smells; a place for slaughtering horses. It is not essential thet the stench raised sbould be unwholesome; it is sufficient if it renders the enjoyment of life and property uncomfortable.

Easements over a neighbour's land can only be acquired by grant or by prescription, which raises the presumption of a grant. Grants of easeraents are eitber express or implied. An express grant needs not observation; a grant of an easement is implied in the following case. Where a man, having built a house upon his own land, conveys tbat house to another, he thereby impliedly grants the easement of light over his own land to the windows of the bouse, as it then stands, and neither he, vor any person claiming under him, will be permitted to derogate from bis grant, and build upon the adjoining land to the obstruction of the light. And, in like manner, where an unfinished bouse is granted with openings for the windows, or ground is leased upon condition that the lessee shall build thercon in a specified situation accoriting to a certain plan, the gantor or lessor, or thote claiming under him, cannot build upon the ground adjoining, so as to darken the windows of the house, when finished according to the plan. And where a house and the land adjoining are conveyed at the same time to different persons, and the land is described as building land, the purchaser of the land cannot build so as to obstruct the windows of the house, because it most be presumed that the easement of light was conveged as appurtebant to the bouse, and the land was conveyed subject to that easement.
The prescriptive period of twenty or of forty years must be the period next before the commencement of the action or suit in which the claim is brought into question. And, therefore, where a party brings an action for the obstruction of his light, be must prove that he bas had the uninterrupted use of the light for the twenty years immediately preceding the action.

The usage must have been uninterrupted, but no act or matter is deemed an interruption, unless it has been subnaitted to, and acquiesced in, for one year after the party interrupted has had notice thereof, and of the party making or authorising the same to be made. Thus, if windows have existed for twenty years, an occasional obstruction will not affect the prescription; but if any such obstruction bas continued unabated for a year, the prescription will be wholly destroved. In like manner, if the owner of the house has pulled down bis house, and not rebuilt it witb windows in the same situation within a gear, or has blocked up the windows for a year, his right will be gone. Thongh disuse of the right for a shorter period would not, I apprehend, be deemed an abandonment thereof, so as to interrupt or destroy the prescription.

A prescription for the use of light may bo destroyed by an alteration of the manner in which it is enjoyed, as by altering the size or situation of the apertures through which it is received. Thus, where a party, having the right to light, carried out the wall of his houme, and made a bow window in the new wall, in the atme eleration as the former one, it was beld that the easement was gone, since he had no right to receive the light through the new window. But it bas been eonsidered that the enlargement of an ancient window will not of itself destroy the prescription, so as to entitle the owner of adjaining land to obetruct the passage of light into any part of the space occupied by the ancient window. And where a building, which had been a malt-house, x converted into a dreelling.house, Macdonald, C. B., ruled that it was atillintitled to so much light as was suficient for the purpose of making malt, though not to any greater quantity. And where a party was entitled to lights by means of blinds fronting a garden, and took away the blinds, and thereby opened an uninterrupted view into the garden, Lord Kenyon held that the proprietor of the garden was not justified in making an erection which diminished the light heretofore coming into the housc through the blinds. From the modern decision of Garritt v. Sharpe, it would seem that, in all these cases, it ought to be left to the jary to say whether the natare of the aperture is essentially changed. Where thero is a right to pen back water by means of a dan, and the dam is deatroyed, the party bes no tight to erect another dasm in
a difereat situation. And where one has a right to ancient pits by the side of a rivulet, for the watering his meadows and catrle, and they arc choked with mud, he may cleanse, but cannot enlarge thent, or dig other pits.

We have made several extracts, to show the value of the book to the architect and surveyor; it has our entire approbation, and we are encouraged by Mr. Gibbon's existing contributions, in the hope that he will again devote his ability to the elucidation of some other branch of architectural jurisprudence.

Companion to the Almanac, for 1839. Knight and Co.

By this time, most probably, the greater part of our readers will have provided themselves with this little work, and could we be assured that such were really the ease, we should not return to it. Yet, as our conjecture is grounded chiefly upon the belief that they would procure it if aware of the highly interesting arehitectural notices it contains, we shall make a few extracts from it, more especially as there is nothing whatever either on the title or in the advertisements of the publication to point out that it affords the kind of information just alluded to.

The "Companion" may be truly characterised as an exceedingly valuable annual multum in parvo, for, besides many scientific articles and statistical reports, it gives abstracts of Parliamentary documents and acts of Parliament, a chronicle of the session of Parliament, a list of public petitions, and a chronicle of occurrences. Another very useful feature, though a minor one, is the necrological table of literary men and artists, both foreign and English. After this mention of the usual contents in general, we shall particularise those alone in the present volume which are akin to the character of our own Journal ; we, therefore, point out the two articles on "Steam Navigation" and the "Railways of Great Britain."

The buildings most fully described are the Synagogue, Great St. Helen's; the interior of the Fitzwilliam Museum; the Eastern Institution; the Railwas Terminus, Euston-square; the London and Westminster Bank; the Athenæum, \&e., at Derby; and the Victoria Rooms, Bristol. Many others, however, are spoken of or commented upon, including those at the Highgate and Norwood Cemeteries. Referring for these to the publication itself, we slunll extract only what is said of Hıgh Clifff, Hants :-
The splendid mansion of Lord Stuart de Rothesay, which, after baving been in progreas for many years, has now so far advanced towards completion that many of the apartments are fitted up. The style adopted for the exterior is not a little remarkable, being formed upon continental models of domestic Gothic, contemporaneous with our English Tudor, and, independently of its novelty in this country, highly mtriking for the richness and variety of the detnils, and the care and precision with which they are wrought. The principal fronts are entirely of stone, and that facing the sea has, in addition to a profusion of other decorations, a parapet à juur, or of open work, forming mottoes and inscriptions in Gothic characters. On this side subordinate ranges of building branch out from the body of the mansion, so as partinlly to form a kind of court, enclosed by three sides of aut octagon, whose elerations, although somewhat different in design, all agree in being elaborately enriched. Among other distinguishing features is a magnificent oriel, forming an open tribune or balcony gallery on the level of the upper floor. The north, or ntber principal front has a spacious arched carriage porch, flanked by lofty octagonal turrets, which latter are crowned by ogive dome roofs and finials; and between them is the splendid window, and decorated gable, which form that end of the entrance hall. This hall, which is about sixty feet in length, by neariy forty in height, has also a range of windows in the upper part of each of its sides, the wall beneath them being wainscotted, and panelled with relliefa in stone. The pavement in inlaid somewhat after the fashion of momic, in patterned compartments, variegated with numerous badges and devices; and the ceiling, or roof, is of oak timber, carved. At the north, or entrance end, is a handeome atone acreen, with a gallery above it, immediately under the great window, which is entirely filled with compartments of painting represanting the genealogy of Jease. At the opposite end is the staircase, consisting of an ascent on each side, in a single fight, with a superb railing of wrought metal highly gilt. Between these fights of staira is the door leading into the ante-saloon, a spacious octagon fitted up in the Louis Quatorze style, in carved oak and gold, and with costly marble doorcases. This room communicates with the principal apartmente-viz., the state draw-ing-room, library, dining-room, \&c.

Dibdin's Northern Tour-(continued).

We now resume our notice of Dr. Dibdin's Tour, and proceed to cull from it the chief information it contains as to the modern buildings and architects of Scotland. Most of the latter, who are noticed. by him at all-for we have not met with the name of Mr. Burn, although we have heard him spoken of as a man of very high abilities and attainments, and zealously devoted to his art-are spoken of in terms of unqualified praise: we hope justly so, for to say the truth the Doctor deals so largely in puff that bis praise goes for very little.

Of the wholesale puff we have a choice specimen, when he calls "Auld Reekie," or the "Modern Athens," as it has heretofore been styled, "a City of Palaces, the Genon of the North." Both the italics and the capitals are his own, and are, no doubt, intended to give all possible emphasis and energy to the compliment. Yet one more mal-a-propos could hardly have been stumbled upon; since, so far from looking like a city of palaces, Edinburgh has far more the appearance of city of barracks; nor can anything be moredissimilar than the style of its architecture and that of Genoa, the one being as naked and frigid as the other is exuberant and pompous. What could have caused the Doctor to utter such rhodomontade? Was it the effect of one of those sympasia which he chronicles with so much gusto? Very possibly it might; since, otherwise, it is perfectly unaccoantable. One thing is certain, that there is nothing whatever in the book to bear out this assertion; whereas he might very well have cut short some of his gossip, and employed himself in pointing out and describing some of the architectural features that entitle Edinburgh to the epithet of the Genoa of the North. Or else, instead of giving views of its most dismal and downfally holes and hovels, and such exceedingly, uninteresting, as well as hackneyed subjects, as the Regent Murray's house, he might have favoured our eyes with some specimens of its magnificence. Without perplexing ourselves any further by questions and remarks that mast be rather perplexing to the Doctor himself, we will begin quoting at once.
With all its architectural attractions, the New Town of Edinburgh in defective in two material points. It wants a fine church, and a noble square. The church of St. George, at the western extremity, is a dwarilsh representa. tion of St. Paul's at a distance, if its dome only be considered. At hand it shrinks into insignificance, and is flat and tame. There is no bold projecting portico, and the quantity of dull surface above the entrance, to the springing of the dome, is a sad and striking failure. The church of St. Andrew, at nearly the eastern extremity of George-street, is a most inconceivable failure.

This, it must be owned, carries something to the debit side of the account, though by no means so much as ought to be, for a great many more deficiencies, defects, and failures, might be pointed out, while there is scarcely a modern building that rises above mediocrits of design, or of which more can be said than that it is endurable. In venturing, however, to find fault, and that, too, in the most unqualified manner, with St. Andrew's, the Doctor quite upsets Mr. Britton's opinion; for if we may rely upon the taste and critical acumen of the latter antiquary, "it is distinguished by its fine tapering spire, and a hold Corinthian portico." For our part, we greatly incline to the Doctor's opinion, and even Britton's own plate of it quite confirms it, since at all events it there looks like "an almost inconceivable failure." In likening St. George's church to St. Paul's, the man of "Bokes" seems to speak by the book, and after the fashion of that which tells us St. Paul's at Liverpool is a miniature imitation of St. Paul's at London. To be sure a dome is a dome all the world over; but the man, and much more the critic, who can perceive any semblance between that at Edinburgh and the one in London, is in great danger of mistaking his wife's bonnet for his own beaver.

That the Doctor did not bestow the epithet he has chosen for Edinburgh unadvisedly, is evident enough from the first sentence in the following quotation, where he speaks of some of the living Scotch architects.

I have more than once called Edinburgh a City of Palaces. Of course architecture is the sole means of achieving this splendid result; but if the materials for building were not at once abundant and lasting, as well as picturesque in tint, such an effect would with difficulty be produced. Where to begin $?$ How to describe? Hic labor-hoc opus ext."

This, it must be confessed, is exquisitely naive : how to eulogisethere seems to have been the puzzle.

But it cannot be done successfully -at least to my own tants. Here is James Gillespie Graham, Esq., with a genius all over Gothic; rich, original, tasteful. * Would that be were employed to case the whole of the Castle in a coat, cat according to the fashion of the early part of the fiftemth century. Then, again, I would beve him put an ecclesiastical restment over the whole of St . Gifes's, or the mother-church, in the fashion of the fourteenth century. He would do it con amore; nor would he diaplease his own times or posterity if he raised the tower a good fifty feet, and reconstructed the "imperial crown" thereupon, as it is called, upon more intelligible principles of Gothic art.

In Grecian and Roman architecture a love of taste, and yet more of truth, induces me to place Mr. Playfair at the head; aimply bectuse he has not oaly

[^0]had the opportnnity of doing great things, but of doiag them well. His Academy of Painting, \&eo, is doubtless his masterpiece ; but for just proportion, it shoald lose just one-fourth of its length. But the pride and glory of Mr. Playfair's interior, is the Library-room in the University of Edinburgb. It is at once lofty, brond, and commodious, and of a very singular construction in the arrapkement of the shelves for the books. There is a point where you may stand, and although the room be one hundred and nimety feet long in the clear (longer than any library at Oxford), yot you shall not obtain the sight of a single volume. The ceiling is lofty and gilded; but why does good Mr. Playfair consider burnished gold to be a heresy ? In such a magnificent intorior you can hardly be too brave and saucy in the upper ornaments.
"Saucy" is a rather queer-certainly not very tasteful expression, except as it may serve to denote that poignancy of flavour so greatly studied by artists of a different class.

Having got among the books in the library, the worthy Doctor flies off in a tangent, without bestowing another syllable upon either " good Mr. Playfair," or any other architect ; nor does he touch on the subject of arclitecture again until he reaches Glasgow, when he sueats of the Exchange as

One of the noblest commercial rooms in Europe, whether we consider its interior or exterior design, its facilities for carrying into effect all the objects for which it was built, or its spacionsness, lightsomeness, and beauty. I was infinitely strack and gratifed with it. The architect is no less a personage then David Hamurion, Esq., who without scruple or flattery may be called the Vitruvius of the North.

Scruple he certainly has none, but we suspect that our Doctor does administer flattery in very large doses, weighed out, not by apothecarier' scruples, but in pounds avoirdupoise weight. With him, almost every person he names is of supcrlative merit, therefore he mates his pradse so dog-cheap, that those who really merit it find it hardly worth having. Of this we have proof in the very next page, where he goes on to say-

Here, as at Edinbargh, the late Robert Adam has done a considerable atroke of work, in the architectural department; and some things, especially in the Asembly Rooms, and the Andersonian University, are execnted with more than his ordinary skill. Of churches there is no proud or particular display ; but one or two recent ones, from the desigas of Mr. Hamilton, show a great improvement in the department of ecclesiastical architecturc. The two principal squares of Glasgow, are those of St. George and Blythawood. The former is in the heart of the city, the lattor at its western extremity. Within the former are erected the bronze statues of Sir John Moore and Wets; and at this moment the foundation stone has just been laid for the erection of a lofty triumphal pillar to the memory of Sir Walter Scolt. To ree the tante of it is perfect. The Spartans have hero shot a-bead of the Athenians.

Judging from the plate given of it, which is said to le an " accurate representation," we mist totally dissent from the praise bestowed on this column ; for it is nothing more than a meagre fluted Doric columa, with a capital of most insignificant proportions and character, and with a base whose tori are enriched with guilloches and other carving! What degree of invention is shown, may be inferred When we say that, like others of its kind, this column also has square abacus to its capital, as if intended to support an architrave. The only recommendation such pillars have is, that any thing like a human figure will do on the top of thens; yet they always look topheary. We trust that we shall have no such pherile enormity perpetrated in the centre of Trafalgar-square.

Of the cementing in the same city the Doctor says-
The very entrance, over a bridge across a river bastud by one of the most elegant arches of stono over witnessed, is full of classical feelings; adding in a note, " David Hamilton, Esq., is the architect. He cannot for the soul of him commit a blunder. Mr. Bryce, an architect of Glasgow, has arceted a factede of the time of our Jamer I., of which the opposite plate is a hithful copy; and it must be allowed that he has been singularly happy in all its compopont parts." This last sentence is also accompanied by a very curious note, vis.-"I recommeud Mr. John Bryco firgt to bo the architect of every park entrence in Scotland, and afterwards in England. But let it not be supposed that be is confined to the period of $1600-1650$. His Tudorian elevations are fraught with the most felicitous features and effects."

What Mr. Jolm Bryce's "Tudorian elevations" may be we know not, haring never seen any specimens of them; and with us the Doctor's prescriptions-i.e., his recommendations-obtain very little credit. As a sample of what he can tolerate, if not very culogistically extol, he presents us with a view of the mansion at Abbotsford, to which, if the original bears any resemblance, it must be perfectly detestable-one of the most hideous specimens of architectural bulderdash and bathos ever perpetrated. Happy would it be for the memory of Sir Walter's taste were it razed to the ground.

Sface this article was in type, we have received some information relacive to Mr. Gregory's splendid mansion at Harlaston, correcting the Doctor's errors and misstatements respecting it. But we must now defer communicating it till next month.

Illustrations of the Public Buildings of London, with Historical and Descriptive Accounts of each Edifice. By Puarn and Beitron. Second Edition, greatly enlarged, by W. H. Leeds. In 2 vols. London. Joln Weale, 1838.
In our last number we informed our readers of the object of this work, and presented some extracts from the preface; we now, therefore, avail ourselves of the opportunity of taking a more general view of the subject. We cannot, howerer, dismiss the preface without requesting the attention of the reader to the admirable remarks on criticism given by the editor. They point out with force and truth the advantages which the profession must derive from extended investigation, and the necessity of freeing ourselves from the trammels of superanuated pedantry. In this age of steam, we have a right to distrust whatever is old, and particularly when the Elgin marbles have produced a new style of art, and the study of the true antique given a different impulse to architecture.

To the general reader this work must afford many points of interest, but to the architect it presents a double attraction; first, that he coutemplates the glories of the metropolis of the empire, and next that he himself may become a contributor to its splendour.-" Io ancha son pittore" is a remarl well to be expected from the profesyional spectator of St. Paul's or the new London Bridge. The metropolis has, indeed, in this century attained a grandeur which our fellow citizens may admire, and of which our artists may be prond. It las, as it were, been so created that the extent of its limits are not yet ascertained; we flutter still between the recollections of the past and the existencies of the present day. We are too apt to think of the old city, or to contemplate the vast mass in its political divisions, and thus lose the conception of the immense ensemble.

With no superior in the Asiatic world, and none but iuferiors in this, an Englishmain may look down upon the modern queen of the world and prize it as one of the plienomena of that empire, which is the greatest that has been established. But it is nut on immensity alone, or on artistical riches that this supremacy is bnsed; the historical associations which it reculls are so entwined with the annals of our race as to ched a brighter lustre on its crown. It is well for those who can do no honour to the present day to exaggerate the glories of the past; but to the thinking mind the splendour of an illustrious name is not reckoned by centuries of homage, but by the depth of genius and the strengul of thought. We can resuscitate the Attic theatre, or in innagination hear Cicero's eloquence wake the ruined foruua froms the sleep of ages; but we, who lave such susceptibilities, and such a burst of sentiment, can leave the tombs of native bards unhonoured and unsouglit. If the arts are to be inspired from sources so sublime as the poet's song and the warrior's deeds, we want no Athenian to teach us what is great, nor a Roman to precede us in the art of copying ; but we have it here in the streets trod by the busy crowds, in the halls devoted to the national laws, and in the temples consecrated to the public worship. Here the greatest of the modern bards have first seen light-here has been the theatre of their exploits; and in Westminster Abbey nore honoured names repose than in any shrine in Christendom. To repeat all these localities, to tell over the sacred ground, would be a task as inexhanstible as the glory of its subject; but we cannot refrain from calling the attention of the reader to some anong the many great nen who lad liere their birth-place. Among the poets, artists, and musicians, areChancer, Spenser, Ben Jonson, Fletcher, Milton, Cowley, Pope, and Gray; De Foc, the immortal author of Robinson Crusoe, Bolingbroke, Gibbon, and Lillo ; Lord Bacon and Barror ; Hogarth, Bacou, Banks, aud Nollekens; Arnc, Arnold, Boyce, Aldrich, and Greene ; Hampden, Howard, and Willian Penn.

These are names to which lie who can attach no associations should never add the disgrace of belonging to a kindred profession. We think, lowever, they are such, of which, while no city can boast the equal, so any might feel justly prond. They have left us their inmortality, and if we cannot equal then in our works, at least we can decorate that metropolis on which they have conferred the lustre of their names. This is a duty which, we feel happy to say, has been in no way yet neglected, and which every day is meeting with a greater fulfilment, and we may justly feel proud in reflecting that we have not in our days been remiss in fulfiling that service to posterity which our ancestors bequeathed to us. Since the year eighteen hundred so much has been done that it has almost effaced what previously existed, and to such a degrec, that a person of the last century would justly feel astonishment at the new world, in which all his former recollections would be lost.

The metropolis, on the east, has been exteoded into Essex and Kent; on the south it has adranced to the tops of those bills from which it is perhaps again to make farther encroachments ; on the west it extends to Harmarsmith, and has thrown numerous suburbs to the opposite bank of the Thames; while on the north, again, other vil. lages have been drawn into the vortex, and sacrificed their raral cha-
racter. These new districts include Pimlico, the several branches of Chelsea, the whole space from Kentish and Camden Towns through the Regent's-park to Bayswater, great part of Clerkenwell and Islington, another section at Hackney and Kingsland, on the east, besides the snburban accessions, the greater portion of the docks, and on the south large tracts from Greenwich to Wandsworth. The whole of this district has been supplied with light and water by new means, and increased facilities of communfeation by canal and railway afforded with the whole of England. It forms, indeed, a mass extending at least twelve miles in length and eight in breadth, with two millions of inhabitants.

The new lines of street which have been erected are not of less importance. On the south a grand cotrance from the continental road leads over London-bridge, through King William and Moorgatestreets to the New-road. Another crosses Biackfriars into Farring. don-street, and a third over Waterloo-bridge into Wellington-street. On the north are the Edgeware-road and Regent-street, while Pallmall and the Strand have been re-constructed. and two magnificent lines of road branch off through Poplar and Mile-end to the eastern counties. Over the river new bridges have been thrown of various ennstructions, and include New London Bridge, Southwark, Waterloo, all by Rennie; Vauxhall, by Walker; and Hammersmith, by Tierney Clarke. Our squares and public places, which are justly the admiration of Europe, have been equally increased, and include Trafalgarsquare, the place before the Mansion-house, Eaton-square, Belgravesquare, Park-square, Euston-square, and above twenty others.

Nor have the isolated buildings been less numerous: in every department works of importance have been executed. Buckinghampalace, by Nash; the Council Office, State Paper Office, Bank of England, Law courts, by Sir John Soane ; the Post-office and Judges' Chambers by Sir Robert Smirke ; the National Gallery and University College, by Wilkins; the British Museum and King's College, by Smirke; there are also the Colleges of Surgeons and Physicians, City School, Blind School, \&c. The charitable institutions are extensive, Bethlehem Hospital, Christ's, St. George's, Westminster, and others. The municipal buildings have attained great splendour, and include Fishmongers and Goldsmiths Halls. The churches are too numerous to admit of any lengthened enumeration; among ihem-are Marylebone, by Hardwick; St. Pancras, by Inwood; St. Luke's, Chelsea, by Savage; and St. Dunstan's, by Shaw. The theatres include Covent-garden and Drury-lane, by Wyatt; the Haymarket, by Naslı; the English Opera and St. James's, by Beazley; and the Colosseum, by Burton. Commercial buildings and clubs have also increased to an extent unprecedented, and greatly contribute to the ornament of the eity.

Public monuments and statues have been erected to the Duke of York, to George the Third, Pitt, Fox, Duke of Bedford, and Canning, while those which are in progress assure the splendour of this branch of decoration.

All the Parks have been improved, and an addition made to them in the Regent's-park, which presents a unique feature in this world of novelty. The Regent's-park and Surrey Zoulogical Gardens have been formed, and Botanic Gardens are in progress, while the number of Cemeteries must greatly contribute to the health of the inhabitants.
Former edifices have been improved, or placed in better points of view, and made to promote more powerfully the adornment of the metropolis: among these have been St. Martin's, St. Bride's, St. Seviour's, ard the Monument.

All these improvements necessarily call for a history in themselves, and to the volumes of Pugin and Britton the profession are greatly indebted for the information conveyed. The rapid growth of the metropolis, however, and the increase of novelties, had long since called for an addition to this work, but until the present period without success. The public spirited publisher now having the property of this work, has, however, supplied this want, and we are happy to say in a manner worthy of himself, and of the object concerned. The editor, too, in taking upon himself the task of producing this work, found that his efforts must not be confined merely to chronieling what is now, but that it might be heneficially exerted in remedying some defects which existed in the labours of his predecessors. He found that in many cases extraneous matter might be removed, which, however interesting to the general reader, was by no means useful to the professional student, and in doing this he availed himself of the opportunity of introlucing the new matter without increasing the expense and consequently the bulk of the volume. At the same time he has amended the old subjects, by introducing some further professional information, and rectifying some of the errors which are inseparable from a work of such discursive character.

The fubjoined extract relates to St. Pancras Church, and while it canot fail to prove interesting to the reader, will afford him a fair
proof of the manner in which Mr . Leeds has acquitted bimselt ofthe task which has devolved upon him:-

Whatever may be alleged against some of the combinations it preseara, this church stands unrivalled as a correct example of the richest and mort graceful variety of the Hellenic lonic style; we say shyle, in preference to order, because it embraces so many distant modes, some of which have litle else in common than their family characteristic, the voluted capital, and even that marked by striking differences, both in ite mass and details. Previously to the erection of this building we had, with the exception of that at the India Housc, bardly a singlo Ionic portico of any note in the whole metropolis+certainly no instance of one applied to a church-since for such purpose preceding architects seem invariably to have bad recourse to the Doric or Corinthian, is which, perhaps, they showed their judgment; for the Ionic knoun to us before that from Greece was introduced here, was the most insipid and inelegant of the orders, Although complimented with the epithet duc only to that from which it proved its descent, by its egregious falling off from it. But were it on no other account, this church would stand pre-eminent among its predeceston and contemporaries for the classical sir of its portico, in which no quotidasa features are allowed to obtrude themselves; while the three doors are of ouch exquisite design and admirable execution, that they serve an a climax to the beauty of the whole façade. They are, in fact, specimens of the most refined taste in detail and embellishment. Would that a tithe of the praise could be extended to the side elevations, where, bad there been no more than the upper range of windowa, that might have been tolerated; but the small oblong onet beneath thom are decidedly injurious to the design, marring its Grecian physiognomy. The east end presents both a pleasing and appropriate deviation from the ancient temple plan, and the roof of the projecting hemicycle combine agreeably with the pediment; still the effect would have been all the better bad there been only the three centre windows. The low square winga, attached at the angles, give play and variety both to the plan and elevation; at the same time, they do not interfere with the outline of the principle mass. In themselves, these features are exceedingly beautiful, and a very commendable adaptation of one of the choicest architectural relics of classical antiquity. The chief thing to be objected against them is, that the architect has not connected them with the body of the edifice, by carrying on the monidiog: of their antze as a sort of string-courne along the side elevations, and resting the wiudows upon it, which would have required these latter to be raised but a very little bigher than what they now are.

The article of theatres has been retrenched in what related to matter of purely general tendency, and its place has been supplied with some judicious comments on the plan and construction of these edifices, which we know cannot fail to be gratifying to whoever has considered the subject. It also contains a well-digested table, exhibiting the relative dimensions of various great theatres.

It must be confessed that our theatres are susceptible of much improvernent, being so planned at present that many of the audience can neither hear nor see properly. This has been erroneously attributed to the large size of some of our houses, for in the very largest of them, all might both see and hear distinctly, were it not that accommodation in the way of mere sitting is made for a far greater number than can possibly be accommodated in regard to the purpose for which, it is to be presumed, they come thither-nannely, to enjoy the performance. Mauy are placed, not at too great a distance, but much too near -thrust quite close upon the proscenium and up to the actors themselves; somo directly on one side, so that they can see the stage only obliquely; while others are elevated so much above it, both in front and on the sides, as to look quite down upon it, and obtain almost a bird's-eye view of it. These inconveniences are increased, when, as is the case at Covent-Garden and in many foreigu theatres, the house expands from, or in other words, contracts towards, the stage, so that those in the side boxes cannot obtain even a side view without turning very considerably to the right or left. Besides which, every variety of such form, the oval, or elliptic, is architecturally disagreeable in itself. being attended with a degree of irregularity offensively perceptible to the eye.

The semicircle is unquestionably the best figure, because it brings all the spectators, even those placed at the extremities of its chord, facing towards, though not exactly in front of, the stage; for it in fact cuts nff what can properly be terned side boxes, or auch as are at right angles, to the diameter or chord. Yet a simple semicircle would be objectionable on more than one account, because the stage would then be placed on the longer side of the area of the spectstory; consequently, as the diameter would give the width of the proscenium (wbich would be double the depth of the house, measured from the orcbestra to the front of the centre box), either the latter must be very great in regard to breadib, or the house itself of small dimensions, or even if not small in itself, yet confined and contractod in comparison with the proscenium and opening of the stage; which inconveniences would bring others along with them, since, were the height of the bouse to be proportioned to the width of the proscenium, it would become excessive, in comparison with the dimensions in the other direction, and cause the spectatory to appear still more contracted and squeesed up. On the contrary, were it to be regulated by the depth of the house, or semi-diameter, the proscenium would be nendered much too low. This will be apparent to any one, if he turns to ang of the plans of theatres here given; by applying his comparces_to that of Covent. Garden, for instance, and taking the line separating the orchestra from the pit, for a diameter-he will perccive it would be reduced to half ite presens depth, whereby, as he would see on consulting the section also, the height would become preposterous in comparison with such a contracted area.

Still, as the semicircle is by far the most advantageous, it ougbt to be retained for them, as might easily be done, should the house itself be equal to an entire circle, or momewhat more (as is the case at Drury Lane); and to effect this, nothing more would be requisite than to omit bries entirely between the chord of the semicircle and the proscenium. Were this done, there would hardly be a seat in any of the bores that would not command a sufficiently favourable view of the stage; while, in an architeotural point of riem, all the space so given up or lost, as perhaps it will be considered, would be a docided gain, because it would afford ample field for decoration in connevion with and continuation of the proscenium, so that the whole might be made to furm a rich architectural framing to the stage; whereas, according to ine present mode, the connexion between the boxes and proscenium is too abrupt, and can rarely be well managed; and whenever the bozes adjoining the stage aro comparatively emptr, they present a forlorn appearance, which does not at all reconcile us the better to their being in themselves a drawback on the general design. There would be another advantago arising from the system berc recummended, namely, that as far as tho boxes are concemed, there would be a sort of neutral territory between the audience and the stage, highly favourable to scenie effect and illusion. Every one in the boses would then be seated where be would behold the stage and performance, not ouly conveniently, but from a proper diatance station. The stage ought to be considered as a picture upon a large scale, and when a man looks at a picture of any dimensions, be neither pokes bis nose againat it nor does be place himself on one side, so as to view it askew, but in such a manner that he can distinctly bebold it. In regard to the stage, however, such certainly is not the case with a very large proportion of the spectators in the boxes. Many of tham are obliged to take up with places where they cannot possibly see the scene or fat, as it is technically termed, at all, let them twist their necks as mach as they will, though en recanche they see a great deal more between the wings and side scenes than is either necessary or proper. **

We shall here put together a fer particulars relative to some of the principal theatres bitherto erected; not with the expectation of satisfying the reader, but rather of inducing bim to prosecute the object further by his own researches; and the following table, it is presumed, will be found both interesting and useful, as exbibiting a comparative and synoptical viem of several of the most important structures of this class:-

						d 0 0 0 8
	Peet.	Peet.	Feet.	Feet.	Feet.	Feet.
Inadour-Opera Houso	102	75	40	35		
Corent Garden	73	63	32	. 59	54	56×19
Drary Lane	70	70	32	48	60	90×26
. ' Iom English Opera	57	55	32			
Frinciopers	78	52	40	-•	52	96
- Imostre Frydean	52	64	48			
"' Otrque Olympique	86.6	83	44			
	64	62.6.	39.6	70	57.6	
M-7e-L Soals	94	78	44	\cdots	75	100×24
NTiytarim Cario.	90	76	49	76	80	82×20
	72	67	42	45	49	56×32
8) , \%margh	102	96	. 52	99	92	125×30
	61	68	38	.	43	
Efanturgh	69	68	39	\cdots	56	
	65	58	38	\cdots	13	
	73	71	41	\cdots	60	129×26
Dinim:	64	62	33			
	44	45	28			
T	66.6	. 52	40	98		.
Ontat .	68	G)	37	82×40

From this it will be seen that the London Opera House, alathough of the asme extent as the Great Theatre at St. Petersburgh, measured on a line from the curtain to the back of the boxes, is considerably less in its other dimensions, and consequently very different in ite proportions; it being narrow in comparison with its average breadsh, owing to which, and to the contraction towards the stage, the greater part of the persons in the boxes are not placed even at right angles to, but actunlly turned obliquely from, the stage; as will be seen by the plan of it, and atill more palpably by the section, which shows a considersble extent of the side boxes, whose fronts would not be visible in such represenkation"wore they at right angles with the curtain. Another great defect is the absence of prosceuium. the boxes cominy quite up to the opening of the stage, in consequence of which prepooterousness in the plan, all architectural ospression and propricty are destroyed, and a disagreeable fimainen takes place, giving to the whole bnuse the appearance of having been hurriedly fitted up for some tomporary purpose. Besides which, this immediate contact of suge and bozes would render it almost impossible to cut off the flames from communicating to every part, should a fre break out among tho scenery. In Sehinkel's new thearre, at Berlin, the proscenium is formed by excecdingly masive wells; and the apectatory itself has the advantage of not being exteadad greaty beyond a mamicircle. Covent Garder partakes in some degree of the ficilty plas adopted in the Opers Honse, is the bores betweop the somio
circular portion and the stage are carried, not at right angles to the latter, bat sloping towards, and consequently inclined from it. Had the boxes been con. tiaued on the sides for no more than a third of their present extent, this would have been of comparatively litule moment; but as these sloping sides are protracted to such a distance that an entire circle might be descrihed between the centre box and tbe proscenium, the spectators in the bores nearest the stage are better stationed for rcconnoitering the audience, than for viewing the scenery or the performance. Therefore, at least three of the boxes on eech side should hare heen shallower than the rest. The plan of Drury Lane is dacidedly preferable in every respect to that of (Covent Garden, as well in the arrangement of the vestibule, staircases, and approaches, as in the form of the spectatory itself. It would indeed have been better had it not arceeded a petr fect circle, that is, had the distance from the centre box to the curtain been no more than the diameter of the pit. Yet, notwi bs anding that the general form itself is good, it exbibits an adherence to the erroncous practice of con. tinuing the boxes beyond the somicircle facing the atage. We wrill not be we rigorous as to insist that they should in no degree be suffered to eatend beyand that diameter or line, but most assuredly, the leas they wore ω do 50 the belter.

We have now extracted at some length from this admirable work; but wo only fear that, although at some extent for our columns, nos sufficiently to gratify the wishes of the reader. We know, indeed, that although ancient knowledge may be useful as the basis of our studies, we shall only be able to carry them on effectively by attention to the progress of the present. To all those, therefore, who ate desirous of ascertaining the actual state of art in the metropolis, and of availing themselves of it , we can only refer them to thls vork, which will not only give them food for their observation, but teach. them how to exert it.

It has thus been our lot to criticise a work devoted to critlism, but such is the fate of all publications, and to which our own must subs mit. Criticism must take its food from everything like desth, for, fa the words of Horace--" Pallida mors equo pulsat pede regum turret, pauperas que tubernas."

We feel happy, however, that, as brethren, it has not been our fate to disagree; but that on the other hand we are enabled to bear testimony to the correctness with which the editor has carried out the principles declared in his preface. Publishers are but too little looked upon in these things, but we must bear in mind that they are estitlad to somee thing more than the organ-blower's meed. There is much judgrent to be exerted in the choice of a work, and often much boldness in the manner in which expense is incurred, and he who well carries out a grest work is as well entitled to praise for his discrimination and public spirit as the author or editor himself. We are happy, there fore, in affording our tribute to the manner in which the publlsher has complied with his duty, and not the lese so that he has chosen In Mr. Leeds, one whose exertions deserve to merit the confidence of the publie as much as his own.

Collection des principaux Monumens at Archileelure Binantine, Gothique, \$c., de la Prance. Paris, folio, 11 th number.

Ornemens Classiques executées d'apres les Peintures Originalos do Jules Romain et de ses Eleves. Paris, 4to.

These publications are the fruits of our Parisian neighbourn' rage for the Renaissance. The first is the introductory number of a worte on the early architeeture of France, and inclades the Byzantine, a style of which we know little in England. The second is a collection of the arabesques of Guilio Romano and his pupils; and thay ape both works of reference of which we have a deficieney here.

Herculanum und Pomperi Pollatandige Sasmmlung der Pot suften neutigen Tag dasellat entdeckten Malereien, Bronzen, u. s. w. Enthaltend sanmetiche in der Antichita di Ercolano, dem Museo Borbonica und dem ubrigen bisher erschieuen Werken, mit Neurrn noch unedirten Aegenslanden vermehrt. Von H. Roux et Ad. Bouchot. Deutsh Vearbeilet von Dr. A. Kaiser. (Complete Collection of all the Herculaneum and Pompeian Paintings, Bronzes, Mosaics, \&c., described in the Antiquities of Herculaneum, the Bourbon Museum, and the latest Works. Translated into German from the Freneh of H. Roux, sen., and Ad. Bouchet, by Dr. A. Keiser.) Hamburg: Meissner.
This splendid work is to be completed in two hundred numbers of four plates each, great octavo, six of which have already appenred. The first division of the work, containing the painting in, is to consist of architectural ornaments, groups of figures, single figures, friezew, landscapes, and mosaics. The seeond diviaion includes statues, busta, lamps, \&e. The work is eheap and vell got up, and cannot fail to promote the knowledge of these elegant styleu.

Le fabbriche e i Monamenti cospicui di Vonezia di Leopoldo Cicognara. A. Diedie G. Selva. Venice : Folio (in Parts).
A work on the arts from songless Venice, and where but a few years ago even painting was extinct, is an unexpected occurrence in these days, and we hail with pleasure this promise of new life in the countrymen of Canova. It is needless to say that the public buildings of Venice possess an interest which is not local, but one which speaks to all European associations.

Polytechnicchen Journals. Edited by Andeew Rombera, of Ham.
burgh. (lst Quarterly Part.) Altona : Hammer.
This is a new weekly German periodical, devoted to the different arts and sciences, and contains, besides accounts of improvements in arts, machinery, and manufactures, articles on architecture, and particularly on practical building. It is indeed a kind of extended Mechanics Magazine, and shows an anxious disposition on the part of our German brethren to profit by our progress, it being the avowed object of the public to talse advantage of those opportunities of obtrining information from the manufacturing countries which are afforded by the extent of steam navigation at Hamburgh.

Nowallas Exporiences sur ${ }^{[}$'Adherence des Pierres et de Brigues, Par M. Morin. Paris, 4to.

This work gives an account of several experiments made by M. Morin, at Metz, in 1834, on the adhesive power of stones and bricks placed in a bed of mortar or cement. These experiments were exccuted by means of windlasses or ropes affixed to the stones and bricks; and the work further describes the tension which was exerted on these motive powers. As M. Morin gives nothing beyond the recent experiments at London, we have not thought it necessary to go at greater extent into the work, although the minutixe are treated very elaborately.

LITERARY NOTICES.

Te have examined the article on Railway chain in Crelle's Berlin Architectural Journal, Bd. 11, p. 100, but we have not observed anything of which to avail ourselves. The improvernents suggested are of doubtful utility, and great labour has been bestowed in establithing a comparison with other modes of construction. We do not concur in this comparison, and perticularly as while the American plan is founded for temporary purposes, and the Belgian anited to a level and sandy country, they can afford no criterion upon which to decide for other circumstances.
The Churches of Lomdon, by Georas Godwin, jud., F.S.A., assisted by Jorn Berrion, Eeq., F.s.A., \&c. Parts 21 to 24.-This work continues to Five the same interming historical deacriptions of the eccleniastical edifices of the Metropolis as the former numbers we have previously noticed. It would add comaderable intereat to the work if a fow more interior views were given, and likeries plans of the churches. The latter might be given in an appendix to the present volume.
A Course of Military Surceying, including Instructions for Sketching in the Field, Plam Drawing, Leveliug, Mititary Reconnoissance, \&c., by Major Basm Jacrion.-A very useful elamentary work, suitable for the stadent; it contains several valanble hints for military surveying, and description of various instruments, she latter principally borrowed, as acknowledged by the suthor, from Mr. Simms' work on the use of instruments.

Treetise on Isometrical Draving as applicable to Geological and Mining Plens. Second Edition, with thirty-five Engravings. By T. Sopwrit, F.G.S. -We heve no thme to spare for noticing this worf in the present number. We will eedeavour to devote our attention to it next month. It having arrived co a meond edition, shows that the work in juntly appreciated by the profession.
The Life of Telford shall be noticed in the next Jowrnal.
The Improved Builders' Price-book, containing wnwards of 8,000 Prices and 2,000 uceful and important Memorcosdume and Tables, by W.. Laxton, Surveyor and Civil Engineer. Twellh Editfon-This work has been revised and corrected throngheut, and published in a new form, a size adapted for the pocket, which will be a great convenience. It contains a larger number of prices than any other book of the like description.

Mr. Foolston's work on the public buildings in the went of Eaglend ereoted from his designs, will be noticed in the next Journal.

We have great pleasure in announcing that Mr. Wyld has deternined upon milargiog his hibhly weffal work the Irdex to the Tinces. It is to be published abofore, monttly fand at the sume price of ope shilling, and will give above three thonsend reforemees, to the five morning papers, the Times, Aforriay Cirmich, Morming Ferald, Morxing Poat, and Morning Advertiver, sbowing the day of the month, number of the paper, and of the page and column in whech the article is to be format

Among the new periodicals to be started with the new year is the Gybin, a monthly publicalion of literature, philosophy, and the fine arts.
Mr. Timothy Claston, who is well knowa by his azertioss for the calighth enment of the working clames, has now in the prese a book, cetlod Hinte for Mechanics on Self.Educalion and Mutual Instruction. Appended to this in some of the most valuable matter relating to Mechanice lactitutions wheh bes yet been pablished.

ORIGDAAL PAPpRs, COMMONICATIONB, \&e.

RALPH REDIVIVUS.-No. 12.

THE PANTHEON, OXFORD-BTEEET.
Perhaps it is a most fortunate circumstance for the reputation of the original structure, and for the credit of the taste of its applauders, that no record of it remains in engravings, save in a few, which are such excessively trumpery ones as to be palpably graphic libels. Neverthelesa, making all allowance for most execrably bad drawing and execution, I have never seen anything to warrant one tithe of the praise bestowed on the building, or that could be taken as an indication of either masterly invention or excellence of other kind. On the contrary, supposing any of those representations to have been tolerably correct in regard to general design, I should say that while the whole manifested a littleness, not to say paltriness of taste, there were also numerous improprieties and faults for which much better taste in decoration would hardly have atoned. Such is the impression made upon me by the few riews I have seen of theinterior, and which I ought therefore perhaps, to take for granted must have very grossly falsified it, it being else next to impossible to account for the unqualified terms of admiration in which it was eulogised. There is indeed one way of solving the myatery, namely, by presuming that for the encomiums bestowed upon it, it was indebted far more to the want of discemment on the part of the public, which blinded them to its defects, than to their discriminating perception of the beauties so liberally ascribed to it. I am all the more inclined to adopt this hypothesis, because I have never seen it critically appreciated anywhere, but merely spoken of in general terms of pompous rhetoric and panegyric. Nothing is easier than to bandy about a set of superlatives and fine-sounding epithets; but in nine instance: out of ten it is exceedingly difficult indeed to particularise any one of the excellent qualities attributed to the thing itself by wholesale. In matters of art, if in nothing else, the vox populi is not at all to be trusted. It is apt to make up in noise for deficiency in sense. In regard to architecture more especially, this same vox was least of all to be relied upon during the seventies of the last century, at which period the Pantheon had just risen, and was hailed as a marvel and eighth wonder of the world, at any rate of the London world. It was quite a novelty as a place of amusement, and completely verified the adage of "Omne ignotum pro magniflco." Highly fortunate was it, we repeat, both for its own reputation and that of its admirers, that the flrst edifice was burnt to the ground; for had not such event occurred, in all likelihood the wonder it would nuw hare excited would have been of a very different kind from that it first produced.

Should we, for want of satisfactory evidence as to what it really was, have formed a too unfavourable and an unjust opinion of it, we can only regret that James Wyatt himself should have behaved with such indifference towards this his first production-certainly not his last in point of celebrity-as not to publish a series of architectural drawings of it on a liberal scale. Had he done so, we should now be at no loss to understand what his Pantheon really was. In neglecting to do so, he was either highly imprudent, or the reverse; most likely the latter, unless we are willing to believe, that the Pantheon greatly eclipsed every thing else he designed in the same style. Without going quite so far as the author of the "Contrasts," who very summarily terms him "James Wyatt, of execrable memory," I cannot help thinking that the architect of the Pantbeon was praised greatly beyond his deserts. Had he been less criod up in his day, his name would, in all probability, have stood rery much ligher than it now does at the present moment. He who is certain of applause before. hand, will seldom exert himself to deserve it ; while the flatteries of his contemporaries persuade him that there cannot possibly be any hises in store for him from posterity-that is, supposing him to bestow a single thought on posterity, which is scarcely ever done by any of the petted minions of fashinnable patronage. To be sure, there are persons in the world who profess a most philosophic contempt for posthumous reputation. James Wyatt appears to be one of them; his merits seem to have been chiefly negative: he avoided the groser errors of his predecessors. His generally bald and frigid style of decigo, which the public of that day were good-matured enough to accept as
chasical simplicity, afforded no room for grotesqueness and eccentricity, for heaviness and exaggeration. The women had laid aside their formal stomachers and long ruffies, and put themselves in the array, "arm-pit waista," and clear muslin è la Adam Buck: in like ramner did Wyatt strip architecture of much of its cumbrous oldfashioned finery, till he almost cut off the very hem of its robe.

With the exception of one or two designs for Gothic buildings, all the rest appear to have been put together upon the "save-trouble" principle. They exhibit no study, no con amore feeling, no attempt at character; nor do 1 know of any epithet which would describe them so appropriately as that of "lack-a-daisical." As buildings, indeed, they may be perfectly unexceptionable, but as productions of art they are absolutely nouglit ; nor can I call to recollection one that deserves to be rescued from this sweeping censure. Of the exterior of the Pantheon an adequate idea may be formed from what it was previously to the late alterations, for when the edifice was rebuilt after the fire, the front was restored, with only some trifing alterations from the first design ; consequently, it could never have possessed much architectura pretension externally. Whether the porch was erected in strict conformity with the original, I am unable to say; but it certainly was a most contemptible specimen of architecture, with its ugly sham pediment, like a triangular board stuck upon it ; and mean iron rails, that seem intended for no other purpose than to afford a stay to the pediment, and prevent its being blown away. This bit of trumpery Las been removed by Mr. Sydney Smirke, who has further improved the general appearance by adding four more columns in front to the porch, fluting them, puting them in pairs, and thereby reducing the excessive width of the intercolumns. Even those who are decidedly opposed to the practice of coupling columns nust admit, that in this case, there was hardly any other alternative ; because, to have reduced the width of the intercolumns by merely dividing them, by inserting a column in each, would not only have rendered them as nuch too narrow as they were originally too wide, but would have occasioned one of the columns to he in the centre; while the addition of only two columns, so as to convert the tetrastyle into an hexastyle, would not have sufficiently remedied the defect. One defect, to which no remedy has been applied-probably because the architect was not allowed to devise any-consists in the great disparity between the front and lateral clevations of this porch. - The Venetian window above the porch remains as before, and certainly conveys no very favourable idea of the great Wyatt's taste.

As rebuilt by Mr. S. Smirke, the interior of the Panthoon displays much invention, and several good points of design, not only in the lerge hall or bazaar, but in other parts of it, and not least of all in the conservatory or in-door garden, which forms the approach from Great Marlborough-street. Much more, indeed, might hare been made of it, but we ought to be thankfill for the practical example of a highly pleasing novelty, instead of objecting to it, that the idea is capable of being greatly improred upon. The idea itself was probably derived from the conservatories at the Colosscum ; but that circumstance in no degrec detracts from this particular application of it , as Mr. Smirke has produced a design of quite a different character, and in a situation where a garden of this description is most desirable, and where such a one would add materially to the agrémens of a house in town; because, while it would present a highly agreeable scene in itself, and might, if lit up, be enjoyed of an evening as well as by day-if not otherwise, at least from the ground-floor windows looking out upon it-it would also serve to exclude the sight of dull brick walls, and other disngreeable objects.

THE ORIGIN AND USE OF THE STEAM DREDGING MACHINE.

comblinicatid by thomas hughes, esq., cifil enginebr.
The honour of having first applied steam power to the purposes of drodging has been asigned to various engineers at differeut times, but is will be found on examination that the greater part of those who have hitharto lad claim to be considered the contrivers of this great addition to the resources of the engineer, have no other foundation for their chims than that of having at periods not long subsequent to the erection of the first steam dredging machine, constructed engines on the same principle.
From the evidence of living witnesses, who are no other than the very men who first worked the dredging machine by steam power, as

[^1]well as from documents in my poseassion, I can prove beyond the potsibility of doubt, that the firtst steam dredging machine ever used was constructed by my own father, the late John liughes, in the execution of several contracts which he undertook for the Corporation of the Trinity House.

The following extracts, from a report by my late father, details the necessity which gave rise to the introduction of this new powar, and goes on to show the difficulties he met with in the practical application, and how at length they were all overcome by the production of a dredging engine, which may almost be denominated perfect, when we consider the trifing value and importance which can be attached to any improvements made up to the present time.

When the docks at Blackwall were being formed for the East India Dock Company, it was found necessary to doepen the bed of the river Thames at the moorings opposite the dock gates. With this view the Corporation of the Trinity House were employed for nearly two years, at the expense of the Port of London Committee; but at the end of that period they abandoned their pursuit, as being impracticable, after incurring an expense of from sirty to eighty thousand pounds, because their ballest spoons and other implements were not sufficiently powerful nor properly constructed to penetrate the strata, which, at this part of the river, consint of atrong blue clunchy clay, intermixed with laycrs of rock. Well knowing that these atrata were impenetrable to all the ballest-liting implements of that day, and that the Corporation of the Trinity House had, at the suggestion of the House of Commons, advertised for engineers and others to (arnish plans for raising ballast upon an improved pria. ciple, I immediately, in the abrence of my well.known and respectable partner, Mr. Wulliam Bough, then attending to a large contrect we bad at the Dartmoor prison, wrote and suggested to him a mode or prisciple of a toating ateam engine, to work a dredging machinc, that I thought would fully answer the intended purpose; to this he readily agreed. I immediately rot abont proparing it, which I was able to do in about three montha ; and as toon as it was ready, I proposed to the Port of London Committee to deepen and faxist the East India moorings. They accapted my proposele, and I became the coatractor. When I was ready to commence operations, the Port Commitee came down to see the working of the engine, and were excoedingly sanguino about the success of this (at that uime) novel and singular contrivance. Several trials were made in their presence, and I had the mortification to see many parts of the engine, which had cost me much expense and intenve thought, torn to atoms, and links of chain, one and a half inch square, broken and suepped off, just as easy as the stalte of so many tobacco pipes, by the expansive power of the steams finally, the machine was almont torn to pieces, and rendered useless, which was a great disappointment to me as well as to the Port Committee. Haring, however, been bound under a penalty to executc the work, it wes of no use to reflect on the disasters of this day's trial, which, after all, gave me an opportunity of seeing that the engine had sufficiont power to penetrate the strata; but at the same time many improvements were wanting to make the mechine equal to its talk, it was therefore luid up in Mr. Perry's Dock at Blackwall, and in the courree of a few weeka I had many additional friction blocks fixed to provent breakage, and neveral other improvements made, which, on the next trial, proved ancoessful, to the greatest degree of per. fection, and enabled mee effectually to accomplish and complate my contract, to the entire satisfaction of my employerr.
About this time Mensrs. Milne, Huddarh, and Reanie, civil engincort, were employed by the Navy Board to inquire into the cause and asture of the accumulation and deposit of mud, regetable, and marine subutances, at his Ma. jesty's mooringe at Woolwich. They werc engaged a long time in making the necessary observations, and obtaining the desired informalion; and rubsequantly rade a long report thereon, which stated that the deposit of mud, \&e. in the river at Woolwich, had so incremed of late yoars, as to render the Dockyard useless, and unfit for Government; and where there was a depth of 15 or 20 feet of water, 12 or 14 years ago, there was now no more than six or oight feet. This report ended by submitting to the Navy Board the propriety of allowing them moro time to make an actual aurvey and soundiggs of the river, which was granted. Messrs. Giles, then eminent land survegors, were actively employed for nearly twelve months on this tedioas and expensive survey. I had by this time conatructed, at an expense of eight thousand pounda, a large nad powerful foating oteam dredging enginc exectly on the same principle as the first, on board the Plywouth bomb vessel, which was parchased from Government for this purpose. It was far superior in power to the first, that being only a six horse power, and this one a thirty horse power. I therefore made a propoant to the Board to remove all the depocit at the King's moorings, off Woolvich, and offered not only to reinstate chem, but to deepen the river several feet below the original champel. At the request of Charles Cuuningham, Esq., the Commiasioner at Woolwich, I brongt my new dredging machine from Mr. Perry's Dock, where she had been erected, to make trial of the strata and deposit at Woolwich; the trialu were continued nearly a fortaights during atich time it was clearly proved, to the satisfaction of the officers of the Dockyard, that the engine was not only capable of removing gravel and sediment, but was actually competeat to penetrate several feet into the original bed of the river, which in this situation is an cecumalatioa of mud, grevel, fims, and obelk. In one day we actanlly ercarated and lifted the incrodible and astonishing quantity of two thoucand tona from an average depth of 30 fient of water, which can be proved by the Government acocunts hept by the memer attendmet and other officere at Wool. wich Dockyerd. Hariats so fre encoseded we tried mo other oxpmimentu, but mado further proposals to reingtato the dophth of the mosiagh \&o., which
eemed (with the anction of the officers) to meet with the ontire approval of the Board: but by this time the ciril ongineers beforementioned had brought in their voluminous and conclusive report, atating, that Woolwich was unfit for the purpose of his Majesty's Ordinary, and that the sediment off Woolwich Dockyard had so accumulated of late years, that it nould take a period of five years to remove it, and that at an outlay of at least 152,0001 .; and after all it would be go uncertain in its effects, that they declined enterimg into any further particulars, but recommended its being abandoned altogether, and that the Naval Dockyard stould be established at Northfleet.

It is well known to every member in both houses of Parliament, at that period, with what violence the propriety of this immense work Was agitated, which was estimated at the vast sum of seven millions sterling, or upwards. Pamphlets were written on the subject and circulated in all directions; one, I believe, by the late Lord Melville; another by the late George Rose, Esq.; und several others. We had, however, the satisfaction of being addressed officially, by the Navy Board, request. ing us to send them our report to have it compared in all its bearings with the detailed reports of the engineers beforementioned; with this we of course complied, and offered, in open contradiction to our opponents, to reingtate tbe harbour in eighteen months. This proposition and statement (so much at variwith those of the other engineers) astouished the Navy Board, and they finally declined to decide on the eligibility of one report or the utility of the other; and with this impression, I believe, they laid the whole business before the Admiralty Board. I ought to add, that the plan of the new Dockyard and naval arsenal at Northfleet, was in such a state of forwardness, that the land at Northfieet for the intended docks was actually purchased by Government, and it was at one time fully expected that the works were to commence. But, notwithatanding all these preparations, the Board of Admiralty decided in farour of the mud engineers, with which name we were honoured in some of the pamphlets of that date. The grand work at Northfeet was consequently abandoned, and we, in the end, entered into a contract with the Navy Board, whereby we undertook to restore the Woolwich moorings to their former state. How far this has been accomplished may be easily ascertained by application to Mr. Cunningham, who, l believe, at one time, much to his credit, stood alone unsupported against the opinion of those engineers who advocated the abandonment of the Dockyard at Woolwich.

Joun Hugres.
The preceding extract will show that the first steam dredging engine with frames, links, and buckets, was used by my father in the year 1804, in a contract under the Corporation of the Trinity House, at the moorings opposite the East India Dock gates.

Of the advantages that have been derived by the Government and shipping interests of this kingdom, from the means afforded by the steam dredging machine, of deepening and clearing the various liarbours, I am quite unable to give anything like an adequatc idea. With respect, however, to its application by the civil engineer to the numerous operations connected with the improvement of navigation, it is quite certain, according to the experience of upwards of thirty years, since its first introduction, that a more effective and necessary machine has never been placed under his command.

I propose now to notice the further improvements that were made in the steam dredging engine under my own inspection, whilst managing the dredging operations on the Caledonian Canal, under my late uncle, Mr. William Hughes. In order to convey a proper idea of the great value of the system of steam dredging, as practised on this important work, it will be necessary to give some description of the nature of the country througla which the canal is carried, from which it will be seen that difficulties almost insurmountable would have occurred to impede the execution of the canal, had not the dredging proved effectual to the full extent of the mast sanguine anticipation.

The line of country which had been fixed on for the course of the canal, comprised three deep and extensive lochs or lakes, extending longitudinally with the canal for the length of thirty-seven miles and a half, whilst a distauce of about twenty-three miles intervened between the lakes. Thus it was necessary, in order to complete the communication between the eastern and western shores of Scotland, to excavate between one lake and the other, and afterwards to deepen all the shallows that occurred in the direction through which the canal was to be carried.
'Whe metbod of dredging which had been pursued by my father, as before described, on the river Thames, and subsequently by Mr. Renvie at the Hall docks, was found perfectly successful in every situstion where the machine could float above the spot at which the dredging was required. The position of the buckets, however, required considerable alteration before the engine could be rendered capable of cutting her way across a neck of land, or through the various shoals which occurred on many parts of the lakes. It was accordingly found necessary so to construct and fix the ladder or bucket frame, that when lowered to the working position it projected several feet beyond the hows or stem of the vessel-an experiment, of which the ultimate succese was at the time considered very doubtful, and concerning which great anxiety was felt by all those interested in the proceedings. It, therefore, aforded universal and infinite satisfaction
to find that the engine worked with the most perfect ease, cutting a passage on the very first trial out of a piece of the canal (which bad previously been flled with water for the purpose of floating her) through a neck of land into the castern end of Loch Doch Four. This work having been accomplished, the engine was successfully employed in removing several extensive shoals which occurred in the lake. At the eastern end of Loch Doch Four where the water from Loch Ness fulls into it, close to the ruins of Old Ness Castle, occurred perhaps the most difficult case of dredging that can well be imagined. This was occasioned by the necessity of carrying the canal along the bed of the river Ness, which discharges the water from Loch Ness into the lower level of Loch Doch Four. The bed of the river was composed of an exceedingly hard stratification known by the term mountain-clay; and it would be difficult to conceive anything more calculated to resist all efforts to remove it than this very compact and almost impenetrable substance. It occurs in great nasses almost without any appearance of stratification, and entirely free from vertical cracks or fissures. Gunpowder applied in the ordinary mode of blasting was found to produce little or no effect on this clay, as it blew ont of the orifice made to receive it without loosening any quantity of the mass.

The river Ness flowing over this primitive and litherto undisturbed bed, falls into Loch Doch Four with rather a rapid current, and against this the engine liad to fight her way, while the duty to be performed was the excavation of the river-bed, to a depth varying from four to twelve feet, and very often the sides lad to be widencd, and in places where considerable bends occurred in the course of the river, a new channel had to be formed with a breadth at bottom of tifty feet according to the regular section of the canal. It was soon evident when the engine was set to work against the current, and required to tear up the hard bed of the river, that the exercisc of every possible contrivance was necessary in order to the fulfilment of this difficult task.

It was at first found impossible to keep the vessel, containing the engine, steadily moored against the current, in consequence of the slipping and giving way of chains, cables, and anchors. The machinery, which was of the very best description, and constructed by the Mesars. Donkin, was quite unable to withstand the immense force applied to it, in order to make the buckets cut into and bring up the excavated clay. All the ground tackle, comprising a fill complement of anchors, cables, and hawsers, was first-rate, both in workmanship and materials; the links were of the best Swedishiron; all the bolt-holes were steelbushed; while the bolts themselves were of the best tempered steel, and case-hardened.
The whole of the buckets were not only made of the best Swedish plate-iron, but had strong pieces of tempered steel-plate riveted to their edges. The friction-blocks throughout the engine were manufactured and fixed with most surpassing care, and could always be adjusted to act with the greatest nicety. Notwithstanding, however, all the perfection of this engine, and the constant care with which every operation was performed, the most vexatious and apparently insurmountable inefficiency, was the result of her first labours in the situation above described. It was no uncommon occurrence to witness, in rapid succession, the tearing away of the buckets, the stripping of the cogs from off the wheels, the snapping of the claains, breaking of bolts, and giving way of the anchors and cables, while on more than one occasion the whole string of chain, buckets, and bolts, was carried overboard.

No sooner were the necessary repairs executed upon the sliattered machinery than it was again torn to pieces, and after all no impresion was made, no effect produced, on the solid and obstinately resisting mass, against which the engine was contending. Without dwelling upon the various unsurcessful contrivances which were introduced, it will be sufficient to mention at once, that none of these proved effectual until the expedient was tried of removing every alternate bucket from off the chain, and fixing, instead of it, two cutters formed of plates of iron and hardened with ateel, which projected at right angles to the line of the chain, and, as this revolved, cut vertically into the ground below. Each pair of cutters, therefure, effected two simultaneous incisions longitudinally in the direction of the vessel, and the lip of the succeeding bucket descending immediately afterwards, scoops up the mass separated by the cutters, and carries it to the top of the frame. After this alteration the work of the engine was performed with much greater efficiency than before; but, in consequeuce of the hard and incompressible nature of the clay above described, the counter resistance offered to the buckets and cutters would liave been sufficient to tear them off and otherwise derange the machinery, had this not been prevented by the action of the fricion-blocks. By means of these, whenever a visible tighteuing and straining of the chain throughout its whole length, denoted that some extraordinary resistance was opposed to the motion of the buckets, the engine continued to Fork and the wheols to revolpe, while the chain and bucketi ree
mained stationary. The dredging-vessel was then allowed to drop back with the stream, in order to loosen the bucket, which, being thus extricated from the incision made in the ground, passes back without resistance.

Tho vessel is then hove up to her original position, and the next descending cutters render the previous incision more perfect, and the bucket immediately following these cutters commonly succeeded in tearing up the obstinate mass. Sometimes, however, it happened that the vessel had to be dropped from her work, and hove to it again several times before this effect could be produced.

These operations, tedious and difficult as they were, succeeded in forming the complete communication between the two lakes in the course of about four months. The distance thus dredged was abont 800 yards, and the total quantity removed about 20,000 yards. It must, however, be noticed, that the returns of the work done did not oxhibit so large an amount as the above, and this is accounted for by the flet, that a great deal of the material loosened and dislodged by the cuttors and buckets was carried down by the stream into deep Water, instead of being raised in the buckets to the top of the frame. The excavated earth being in this way as effectually disposed of as if it had all been hauled up by the buckets, it may not appear surprising to learo that the current of the river, although seeming, at first sight, sn obviously an obstacle te the process of effective dredging, proved in the way described a great auxiliary to the power of the engine.

Another instance of the immense advantage which may be derived In some situations from the employment of the dredging engine occurred at the west end of Loch Ness. In this part of its course for a short distance out of the lake the canal runs side by side with the river, which descends from Loch Oich, the summit lake, to Loch Ness. The canal attains the level of Loch Oich by means of six locks, five of which are situate above Fort Augustus, about half a mile from Loch Ness, and the sixth at Kytra, about balf way between the two lakes. The locks were founded and carried up beyond the resch of water before the canal was excavated on either side of them; and here it will be useful to observe the difficulties which would have presented themselves had not the power of dredging been applicable to this work.

In the first place, any attempt to excavate in the ordinary way between Loch Ness and the ascending locks would have heen immediately fullowed by a deluge of water from the river, and it was certain, on account of the open and inadhesive nature of the strata between the river and the canal, that the water penetrating into the excavation made for the latter would have stood at least as high as the level of Loch Ness, which is the lowest drainage it could possibly obtain. Thus the operatioss of excavating must have been carried on under a depth of twenty feet of water-a case in which manual labour could not possibly be employed.

On the other hand the expedient of carrying the canal on a higher level, by building two of the locks immediately at the end of Loch Ness, and in this way obtaining drainage into the lake, would have been attended with almost equal objections, for the immense cofferdams which would have been required in getting down the foundations in such a situation would have seriously increased both the time and the cost of execution. As it was, however, by means of the dredging engine the canal was easily excavated to its full depth and breadth, from the end of Loch Ness to the tail of the first ascending lock.
The application of the dredging engine in the case just described leads us to consider one of far greater importance, where a most difficult and extensive work would have been entirely aroided, had the power of the dredging machine been as well known at that time as it has since become. Every history of the Caledonian canal dwells with groat minuteness upon the difficulties experienced in building the sea lock at the eastern end of the canal where it terminates in the Beauly Frith, a part of the Eastern Sea. At this place an embankment was actually carried out into deep water, and after safficient time had been allowed for its consolidation, the excavation for the lock was formed in the middle of it. This expedient, ingenious at it certainly was, would have been quite unnecessary if the lock had been built on the solid ground inland, and a passage had been dredged out into deep water. Although it is probsble, considering the state of engineering knowledge at that time, that the plan adopted was the best that could then be devised, it is certain that a much better work could have been constructed in the solid ground before entering the Beauly Frith, and in corroboration of this it may be mentioned, that the sea lock at this day has a considerable dip or inelination towards the sea, an effeet no doubt occasioned by the after settlement of the artificial mound in which it was placed.

With respect to the dredging on the Caledonlan canal very little more remains to be said. In various places on the west side of Loch Oich its powens were brought into requisition, but to describe the cir-
cumstances of its application at length would be merely to repeat what has already been told, with reference to Loch Doch Four, and Loch Ness.

Withont any disposition to disguise the fact that dificulties serious and annoying occasionally presented themselves, I am quite safe in asserting that in every case a persevering and determined application of the dredging engine, in the capability of which every one engaged placed the most implicit reliance, succeeded without exception in a complete fulfilment of the duties expected and required. As it may be interesting to know the quantities of work performed by the engines on this canal, the following numerical statement may safely be depended on. The total quantity of dredging on the Caledonian canal exceeded one million of cubic yards, and the engines employed were only two in number, a six and a ten-horse power. The former of these was employed in the dredging out of Loch Ness up to the first ascending lock, in which district the quantity dredged amounted to 170,000 cubic yards and occupied eight months. This engine was also employed in dredging through the shoals of Loch Doch Four, and between this lake and Loch Ness. The ten-horse-power engine was built at Loch Oich, in the year 1816, and was employed in dredging into the lake, through the shallows, and between the summit level and Loch Lochy descending westward. The greatest quantity raised in one day by the ten-horse-power engine on the Caledonian canal was 1500 tons.

In reviewing the extraordinary performance of the dredging engine in every situation where it has hitherto been employed, it appears to afford to the engineer means of the most powerful aud extensive capability in the construction of a clase of works which must ever bold a place of great importance in the rank of engineering operations. I allude to docks and harbours, in the construction of which, during late years, the greatest acquirements, both practical and scientific, have been called into action. The well-attested performances of the dredging engine clearly establish the fact that this macline, being set to float in a basin or a channel of water, is capable not only of tearing up and deepening the bed, however hard or solid, but also of cutting away the adjacent land, and extending either the length or breadth of the body of water in any required direction. In the same way the engine would be quite competent, when placed out at sea, to work inland, either to clear out the embouchure of old rivers, docks, or harbours, or, as a still bolder undertaking, to excavate new channels where the old ones from any cause have been impeded and rendered useless. The design of constructing docks, harbours, and basins of any kind in sheltered situations, at any convenient distance from the sea, may be safely carried into effect, relying on the power of the dredging engine to perfect the communication with the sea, at an expense not exceeding that of ordinary excavation.

To enter into details respecting the cost of dredging in various situations would be out of place in a paper of this kind, which professes to be a mere outline of its advantages. But I shall at any time feel great pleasure in affording to any individual, or public body, who may think proper to communicate with me on the subject, the benefit of my experience and practical acquaintance from earliest youth, with every particular relating to the practice of dredging by steam power.

4, Acre-lane, West Brixton.
THOMAS HUGHES.
Dncember 15, 1838.

ON CONSTRUCTION, AND THE USE OF IRON.

Read before the Architectural Society, on Tuerday, Dec. 4, 1838, by R. E. Philips, Esq., Member.

The great end of all the arts is that of making an impressiorion the imagination and feeling. That imitation of nature frequently does this I believe will be readily admitted; but that on some occasions it fails, I conceive will also be conceded; the true tests of the arts, therefore, does not rest solely upon the production of a true copy of nature, but whether it answers the end of art, which is to produce a pleasing effect on the mind. Architecture does not rank itself under the banners of an imitative art; but, like music and poetry, appeals directly to the imagination. There is in architecture an inferior branch of art, in which the imagination has no concern; it does not lay claim to its appellation as a polite and liberal art from its usefulness, or as an accessory to our wants and necessities ; but from higher and loftier principles, we are convinced that a man of genius would render it capable of inspiring sentiment, nnd of filling the mind with great and sublime ideas. The influence of the fine arts upon the intellectual and moral character of a people, their utility and their value, as conferring upon a state in which they are justly appreciated as the highest proof of civilization, are considerations which cannot be too much entertained. Persons are too apt to regard the art of design as a mere elegance, as the sign of wealth
rather than the production of wiodom, and as more the effect of pleasure than utility. It may be well for the members of our profession to consider what means and materials are in their hands, that may prove conducive to these ends, and whether this art has not in its power to address itself to the imagination by more ways than those usually adopted by architects. That the mere theoretical architect combines those qualifications, has not, I think, been proved in the buildings of the ancients, for I imagine that many of the deformities observable in the buildings of Greece and. Rome have arisen from their ignorance of construction, and the modes adopted to supply that deficiency, some of which have been contrary to every rule of beauty and convenience. The strength and duration of their erections may, I think, be attributed to the goodness of the materials, and the quantity used, rather than any practical display of mechanical skill : and, at the same time, I cannot help regretting that at the present day, when the flourishing appearance of the arts would lead us to look for a display both of the one and the other, a sad deficiency exhibits itself; and especially when we are continually hearing the former decried, the latter so much commended.

To the Gothic architects we are considerably indebted for the unity of both, for in their works they exhibit a lightness, an art and boldness of execution, clearly proving that neither the singly practical or theoretical architect will ever exhibit to the mind a pleasing object for its contemplation, unless the union of the two becomes apparent to the imagination by the working of its effects.

England, perhaps, exhibits more than any other nation magnificent examples of these qualifications, equally admirable for the art with which they are executed, and the taste and ingenuity with which they are composed. I cannot here refrain from expresising a feeling of regret, that these structures, sacred to the soil, arc not more considered, better understood, and held in higher estimation, and more encouragement given to our antiquarians in that peculiar branch, to undertake a correct publication of our ecclesiastical and domestic architecture, before ruin spreads its extending mantle, and preserve to after ages the remembrance of an extraordinary style, now fast sinking into oblivion, at the same time publishing to the world the riches of a great nation in the splendour of her ancient structures, and rendering a real scrvice to the art of design.

That some of our modern architects have developed great skill and considerable knowledge in their erections, I candidly and joyfully confess; for instance, St. Paul's, and many other works of Sir Christopher Wren, present us with a display of numerous examples of admirable works, executed with so much art, that they are and ever will be studied and admired by all intelligent and researching observers.

Those massy columns in a circle rise,
O'er which a pompous dome invades the skies;
scarce to the top 1 stretched my aching sight.
So large it spread, and swelled to such a hetght."
To him and many others we owe great improvements in practice, especially in carpentry, which has been carricd to a much higher state of perfection than by any other nation; and we are considerably indebted to many of our countrymen for several valuable books, which have been published, explaining the various modes of conducting the several;works, and enumerating the apparatus used, together uith the properties and nature of inaterials adopted; and let me here bear an humble tribute to the periodicals which now monthly add to our store; to these, then, the various structures to be found in the United Kingdom, and elsewhere, must the architect devote much of his attention, in order to acquire and collect the rudiments of construction, and other branches of his profession, which practice, experience, and attentive observation alone will render him consummately skilled in.

Perhaps there is no material so much in requisition in buildings as iron; but yct so little attention is devoted to the parts thereof, that although capable of being converted to the most ornanuental purposes, at the same time uniting stability with utility, it is made an eyesore, or, in many instances, a severe reproach on the skill and ingenuity of the architect. The use and advantage of a thorough knowledge of the material will be best appreciated by those who seriously consider the dread effects of a failure in its applicetion, as it would happen most likely when the consequences would be most serious ; and, perhaps, there is no material which requires more the aid and assistance of science in its use, therefore the greater necessity for a constant study of its properties and capabilities. That very great improvements have been made in its application is every day unore apparemt, and which may be chiefly attributed to its great acquisition in manufacturing districts, and thereby produces additional reasons. for a more minute cultivation of a thorough knowledge of its utility: and value. Another reason for its adoption is on the score of economy, for although the opulence of the mation might werrent a
supposition of prodigality in its public buildings, yet where thousends and tens of thousands are squandered in the most trifling, contemptible, and ridiculous modes, yet, in respect to the arts, especially architecture, the public liberality has yet been seen only to extend to almost a merc nothing, a foundation certainly much too weak to sustain an edifice either creditable to the national taste or native genius.

The existence of pure iron was formerly questioned; of the fact that such pieces have been found, I believe there remains little doubt, indeed none at all, if we rely on highly respectable authorities. A large piece of native iron was found in South America in 1783, by a Spaniard, which was found to be pure and soft iron, easily cat, and capable of being wrought without difficulty when heated, sonse portions of which are deposited in the British Muscum, as specimens of the block. It has been likewise a matter of doubt whether the ancient Greeks, towards whom we generally look for authorities as to the early progress in the arts, were acquainted with the use of irou.

In the description of the games instituted by Achilles on the death of Patroclus, translated by Cowper, we find the following :-

> "The hero next an iron clod produced
> Tough from the forge, and wont to task the might
> Of Ning Etion; but when him he slew
> Yelides" glorious chief, with other spoiln,
> From Thebes convered it in his fleet to Troy."-I that.

If iron had been common among the Greeks, we may assume that a lump of the metal of the size described by the poct or his translstor would have been no unworthy prize of heroic contention; but as it is by no means clear that the knowledge of iron for military purposes really existed, much less that the art of subjugating so stubborm a material, was at that time known.

At what period the smelting of iron ore, so abundant in this country, was first undertaken, does not, I believe, appear. It will be readily admitted by those conversant in early history, as well as by those who respect traditional probability, that the earliest uses to which it was devoted were probably weapons of warfare. Although a considerable degree of perfection appears to have been attained at a very early period in the working of iron, the art of casting articles in sand from the metal in its crude state seems to have been either unknown or not practised till a comparatively late period. That it is fitted for ceery purpose ib building is not asserted, especially considering the climate of England; but its usefulnes: for the support of great weights exposed in situations subject to rapid decay, and for the prevention of fire, must be self-evident, as, in the latter case, we lave seen several instances lately, which fully bear testimony to the correctness of this observation, where there is every reason to suppose, that, had not the brestumner supporting the front wall of the house been of iron, the ssme would have been precipitated into the strect, and thereby, perhaps, a sacrifice of many lives. There have been instances of failures in the use of this material, which, perhaps, has much prejudiced the public nind against its adoption more generally in buildings; but yet these may have been cases where it has arisen from a want of a proper knowledge of its propertics, and not from any defect in the material itself.

Persons are too apt to imagine that a large piece of iron must possess infinite strength, and the dimensious of the most important parts of structures are frequently fixed upon by guess, and from such causes ensues unpleasant consequences. The chief and principal object is to regard the fitness, strength, and durability, at the same time endeavouring to produce, with those qualifications, a pleasing effect, corrcctness of design, and lightness of parts, yet at no sacrifice to the stability of the erection. When it is considered that the parts of a building should assume any particular form or position, as well as stress, it will become obvious that something more than mere resistance to fracture should be calculated. In the evidence given before the jury on the failure of the Royal Brunswick Theatre, the architects examined on that occasion differed materially as to the application of iron for the purposes of roofs; yet there are many recent instances. where iron roofs have been udopted with complete success. I might mention the roof over the fruit market at Coventgarden, where it is composed of iron and wood, that has a very liglit and agreeable effect; the fish-market at the Hungerford-market is wholly of iron, with sheet-iron (? zinc) covering. In chapels lately erected, the cluster-columns have been made of iron, six inches diameter, cast hollow, with a stonc core for their reception, and the height of which, 1 belicve, are 25 feet; but yet, for the want of a little attention to these matters, every body must regret thic bad effect which is produced by the introduction of iron girders, in chapels and elsewherc, without combining a spirit of design with that of utility, and perhaps economy; little or no attention is paid to the adoption of iron columns in shop windows where they become neceseary for the stability of the building, which, if properly considered,
instead of forming a blot in the design, might be made conducive to its general good effect, and that without detriment to its stability or usefulness.

As regards the qualities of iron, we find the following recom-mendations:-White cast iron is less subject to be destroyed by rusting than the gray kind; and it is alsoless soluble in acids; therefore it may be usefully employed where hardness is necessary, and where its brittleness is not a defect; but it should not be chosen for purposes where strength is necessary. When cast smooth, it makes excellent bearings for gudgeons or pivots to run upon, and is very durable, having little friction; white cast iron, in a recent fracture, has a white and radiated appearance, indicating a crystalline structure, it is very brittle and hard; gray cast iron has a granulated fractare of a gray colour, with some metallic lustre; it is much softer and tougher than the white cast iron, but between these kinds there are varieties of cast iron having various shades of these qualities, those should be esteemed the best which approach nearest to the gray cast iron. Gray cast iron is used for artillery, and is sometimes termed gun-metal.

The utmost care should be employed to render the iron in each casting of an uniform quality, because, in iron of different qualities the contraction is different, which causes an unequal tension among the parts of the metal, impairs its strength, and renders it liable to sudden and unexpected failures. When the texture is not uniform, the surface of the casting is usually uneven where it ought to have been even. This unevenness, or the irregular swells and hollows on the surface of a casting, is caused by the unequal contraction of the iron of different qualities.

Too much attention cannot be paid by the architect to the fact of ascertaining the capabilities of every portion used, by the necessary proofs, the importance of which has been frequently proved, the castings having been, to the eye, good and sound, but, under the necessary proots, were failures, but which reflects no discredit either on the architect or founder, but only shows the high necessity for the before-mentioned caution.

I have been led to make these few remarks from a wish that sone more able hand, and well-stored mind would, some evening, instruct us with a better and more elucidated detail of so interesting a topic.

The architect who has his mind thus filled with ideas, and made expert by practice, will work with ease and readiness, whilst he who would have you believe he is waiting for inspirations of genius, is, in reality, at a loss how to begin: whereas the well-grounded architect in theory and practice has only maturely to weigh his subject, and all the mechanical parts of his art follow; without conceiving the smallest jealousy against others, he is content that all shall be as great as himself, who have undergone the same fatigue, confirming the importance of the fine arts, and drawing forth a strong response from the generous hearts of all classes, ere a nation may wear that high intellectual honour which the production of masterpieces in painting, sculpture, and architecture has ever conferred.
May we not trust and be persuaded that we shall have the gratification, at no distant period, of adding a new page of lustre to the Engliwh history, there being nothing of glory left to achieve, we may still snatch the only remaining laurel in the midst of the enjoyment of peace and plenty ; we may, after a long and severe struggle, enjoy those enchanting, fragrant, and ever-blooming laurels of painting, sculpture, and architecture, entwine them round our country's brow, stamp the age in which we live, and, by the patronage and encouragement given to the mass of talent in all the branches of the arts now in this country, if to the glorious names of Augustus, Pericles, and Leo, we may add that of Victoria, as the most enlightened and liberal patromess of the arts since the bygone days of Italian splendour, and make those days in which she ruled the golden age of England's pride.

RAILWAY CURVES.

Sus,-I have recently been engaged in staking out the line of one of the principal railways now in progress of formation, and in the course of my operations met with some difficulty, in consequence of being compelled to cross several roads and rivers, and certain lands, at fixed points. To accomplish this, I was obliged to make use of curpes of different radii for shorter distances than usually adopted.

Now, although it is, doubtless, an object in laying the rails, to make the resistapce equal by continuing a good working curve, or gradient, as far as poasible, yet I think it would be an improvement upon the gystem of running directly from a straight line to a curve of $1, \frac{1}{2}, 2$ or If miles radius, if a curve of 3,4 , or 5 miles radius for a short distance
(Bay 5 or 10 chains, or any distance which the locality would make convenient) were made use of to connect.them.

I would add, that projectiles (where the resistance is equal) assume the parabolic curve, to which the plan I propose is an approximation.

If any of your more experienced readers would correct any error I may have fallen into, they would much oblige

Your obedient servant,
Dec. 14, 1838.
" A SUB."

THE SOANEAN MUSEUM.

Under the head of "Weekly Gossip," in its number for December 18t, the Athencum has made the following remarks respecting this socalled public establishment:-"Whilst upon the subject of Museums, let us ask, are the Soanean trustees still nodding 'in the pleasant land of Drowsihood,' as well as their great prototypes abovementioned? (viz. those of the British Museum). How long is the Public Inheritance in Lincoln's-idn-fields to remain a close borough for Mr. So-and-so, the curator, and Mrs. So-and-so, the housekeeper? A rich Architectural Library was left, we submit, to be devoured by something else than the dry-rot. When shall we have the use and enjoyment of our heritage? Or has the entrance been removed to terra incognita? Two years almost has the testator been dead, yet the British people must still be satisfied with pernission to visit their own property some few months (rather some few days) during the fashionable season! Let us hope that by next spring such arrangements will have been made, as may render a recurrence to this gubject unnecessary."

It affords us great pleasure to find the matter so strongly taken up in such a quarter; for were we solitary in our condemnation of the system of nominal access to, but virtual exclusion from, the Soanean Museum, we might be thought to pleed rather for our own convenience, than for the right of the public generally. So long as it continues upon its present footing, the whole is a monstrous piece of humbug-an absolute dog-in-the-manger affair, and as such cannot be too strongly reprobated. As far, too, as the liberal donar's memory is concerned, it would be infinitely more charitable towards him, to pay no regard to his childish freaks and whims, but throw the Museum open to the public," every day and all day long," than, by adhering to them, to remind the public perpetually of his stingy disposition, which induced him to tie up the property in such manner that no one-neither the public nor liis own framily, can enjoy it; the only parties who can really be said to be in actual possession, being Mr. Curator and Mrs. Housekeeper-the servants of the public-who, no doubt, have full leisure to perform "high life below stairs," or, for the matter of that, upstairs, too. If there be a rich Architectural Library, which, after what we have heard, we very much doubt, let all those who can benefit by it have free access to it. The only respect in which the Soanean Musenm can now be considered a pro bono publico, is, that it seems likely to be a bone of public contention. Let us, therefore, Gight for it manfully-no, not manfully, but doggedly, until one party or the other get the day. At all events, it is a case wherein the next best thing to a decisive victory would be an equally decisive defeat.

SCHOOLS OF ENGINEERING, MINING, AND SURVEYING.

As very great ignorance seems to exist among the would-be political economists as to the state and progress of the schools for engineering, mining, and surveying, we are induced to publish the following remarks:-The Government have the departments at Sandhurst, Woolwich, and Chatham; the East India Company have also a college; the Royal Dublin Society have long given regular courses of lectures and instruction, under the superintendence of Mr. Griffiths; and surveying has been so effectively taught at the Agricultural School of Templemoyle, that the Ordnance Surveying Department there has received considerable assistance from it. Surveying is one of the regular branches of instruction at Elizabeth College, Guernsey; and we believe also at King William College, in the Isle of Man.

But if any deficiency of these institutions exists, it will be fully supplied by the faculties established at Durham, and in University and King's Colleges, London. In the college in progress at Bath, professional instruction is part of the course proposed, and we have no doubt that it will soon be adopted in Ireland or Scotland. The southern mines will also have a school founded by means of the Dunstanville subscription.

We wonder that the admirers of the Polytechnic School had not pointed out the deficiency of agricultural schools in England, while
there are shoals in foreign countries, and there are establishmenta even in Ireland and Scotland. This would be about on a par with their other reasoning, for although the Irish and Scotch may want agricultural schools, the English do not. "It is not the healthy who want a physician, but the sick."

IRISH RAILWAY COMMISSION.

"Having thus endeavoured to explain, that the construction of the best lines of Railray between London and Dublin, and between Dublin and Cork, the latter being established as the fixed port of embarkation, a more certaiu, expeditious, and convenient, if not mesper, communication would be effected with America, than from anly port of Great Britain directly, unleas nith partial advantages from Bristol only; and that even from Bristol, circumstances are likely to induce many vessels to tonch at Cort. We may, then, safely urge the construction of these Railwaya as a consideration of national importance, quite independent of the amount of direct profit from increased business which the intercourse thas created is likely to pro-dace.-Page 66, Irish Commiszioners' Railway Report:

I shall now endeavour to examine and investigate the general utility of this plan recommended by the Irish Railway Commissioners, as its main object is put forward on merely assumed data, evidently for the purpose to induce the Government of the country, either to embark in the project, or to advance public money to carry it into execution; and as it is an undertaking not only gigantic, but of a very formidable kind, it ought to be subjected to the test of the stern scrutiny of reason and discussion; because it appears to involve the making of 140 miles of railway through Wales, and also 316 miles through the south of Ireland, and a consequent expenditure of more than ten millions sterling. I shall, therefore, be brief, and approach the subject at once by calling public attention to the time of travelling from London to Cork by railway, as compared to the sea voyage by steam to the same port. The merits of the direct voyage from London to New York-the superior advantages of the route from London to New York, by the Western railway to Bristol, and then direct by steam across the Alantic - the central position of Liverpool, in the' British empire- its great American trade, and the many advantages it possesses as a point of general departure for America, and its becoming the great emporiun of steam intercourse with the states of the new continent. To the nautical and geograplical statements to illustrate and show that the recommendations of the Irish Railway Commissioners, as to Cork being established as the fixed port for embarkatiou, would be productive of no benefit, either as to general convenience, economy of time, or expense to passengers departing from the port of London, Bristol, or Liverpool, bound to America; and that even the making of 456 miles of railway through Wales and Irehand, would neither lessen the time nor the expense of steam navigation intercourse between the principal ports of Great Britain and those of North America; but on the contrary, if viewed on the basis of national ntility, would be attended with immense trouble, inconvenience, and expense, not only in general to the travellers of England and Scotland, but also as to the transmission of packages by that route from Great Britain to America.

It is stated in the Irish Commissioners' Railwry Report, that if the line of railway they recommend be made from Dublin to Cork, "and the most rapid possible communication opened between London and Dublin, persons or packages might then reach Cork from London in about twenty-nine hours, allowing twenty miles per hour for railway travelling." "The Railway Commissioners have not given any detail of the calculations regarding how the journey from London to Cork by railway could be performed in twenty-nine hours, it may therefore be worth while to examine that statement put forth by them.

$$
\begin{aligned}
& \text { Railway conveyance from London to the Irish Channel } \\
& \text { Steaming across to Dublin } \\
& \text { Travelling from Kingstown to the Cove of Cork. } \\
& \text {. } \\
& \hline
\end{aligned}
$$

The Railway Commissioners mention that a saving of two or three days would be made in going by railway from London to Cork, as compared with performing the same voyage going by sea. This, upon inrestigation, does not appear to be the case, for the distance from London to Cork straight through the Enghish Channel is about 595 English miles, which a powerful steamer could perform in about fifty hours in favourable weather, and which would only be a saving by the railway of about eighteen hours instead of two or three days; so that this statement of the Commissioners does not even appear to stand investigation When compared to the circuitous route of touching at Cork.

Looking into this question, and viewing it in another way; supposing passengers and packages leaving London in a steam vessel bound direct for New York in America, they would reach it even sooner than if they were to travel by railway to Cork, and then embark for America; because Cork lies 230 miles north-West of the
middle entrance of the English Channel : and again, a stip steaming from London bound for New York, and calling at Cork, incurs an immense loss in running from the Land's-end to that port, her couse then requiring to be changed from W. by S. to N. W. $4 t$ west for a distance of about one hundred and eighty miles, and in place of making southing, which she ought to do if sailing in a direct course, she would be making northing to the amount of not less than 190 miles, taking it from the centre of the mouth of the English Channel te the harbour of Cork. The direct voyage from London to New York would, therefore, possess many advantages in lessening the time compared to the same voyage being performed by going round the Land's-end and calling at Cork ; or even going by railway through Dublin to that port, and then embarking for New York. Let it be further observed, that besides the great expense of this railway land journey from London to Cork, that the embarkation to cross the Irish Channel, the disembarkation at Kingstown, arrival at Cork, and again, the re-embarkation at the Cove, would entail much more trouble, loss of time, expense, and inconvenience to passengers and packages taking this ronte, than the Irish Railway Commissioners appear to be aware of. But let any one acquainted with travelling just examine for a moment this plan recommended by the Commissioners, and it will appear, that there is neither reason for it, nor any kind of advantage to be derived from its adoption, and much less to the interests of the state; that there sloould be 456 miles of railway made, costing more than ten millions sterling, at the public, expense, upon such a senseless project, and which could never be of any national benefit whatever in accelerating the communication between London and New York, or the other ports in North America.

Can this favourite project of the Irish Railway Commissioners, so strongly advocated and put forward by them, of London passenger and parcels going througlı Dublin to Cork, and embarking for America, stand one moment in competition with the route from London by the Great Western Railway to Bristol, and then direct by steam to New York. A glance at the map of Great Britain and the chart of the Atlantic, will show the very great superiority of this line of communication between London and New York, as compared to any other that has yet been laid before the public, and which is now working practically to a great extent, with the most triumphant success. The Great Western Railway from London to Bristol, is wide and level, which will ensure to it a very considerable velocity per hour. The time of travelling on it from London to Bristol may be taken at about four or tive hours, and then 28 hours steaming \mathbf{W}. by \mathbf{S}. towards New York, would place the passengers on board of the steamer at the end of 82 hours after departing from London, not less than 150 miles S. by W. of Cork. I ask, what is the Royal Commissioners' London, Dublin, and Cork project, requiring 456 miles of railway to be made, and costing more than ten millions sterling, compared to this plan, which is now, to a great eztent, in full operation.

The Railway Commissioners' reasonings as to the advantages of Cork, compared to Liverpool, are equally fallacious as those which they have expressed regarding London and Bristol. As Liverpool is the largest commercial port on the west of Great Britain, and posseses a very large A merican trade, I shall offer a few observations in comparing it with Cork, as a fixed point of departure for America, and which the Commissioners very erroneously think will become the grest port of commusication with the states in the new continent.

Passengers crossing from Liverpool to Dublin, say . . . 11
From Kingstown to the Cove of Cork $\quad . \quad$. 9 Houn.

Amount of time from Liverpool to Cork

A powerful steamer departing from Liverpool and bound for New York would, in 26 or 27 bours, with moderate weather, reach the same longitude as Cork, but with a favourable wind 50 miles more southerly; 80 all that would be gained in point of time would be about six or seven hours, and as to the expenditure of fiel it would only be about 25 or 26 tons. But on the other luand, looking to the many eminent advantages which Liverpool possesses, and above all to her central position in the British Isles; united already to London and Hull by a railway, and also will be with Glasgow shortly-possessing a steam navigation intercourse with Dublin, Belfast, Glasgow, and all the principal ports on the west of Great Britain, and those on the shores of Ireland, her immeriate connection with all those great manufacturing districts within the interior of England, the work-shop of the world, and justly exciting the admiration of people from every region of the globe. Looking at her wealth, the extent of her cominercial activity, her rapidly growing trade, points ont Liverpool, without requaning 456 miles of railatay, and a ten million expenditure, to be destined to become the emporium of Britain, for steam navigation intercourse with all the rising states of America. The writer of this is as thoroughly
convinced that such will be the case as any mathematician can be of any of the Ixioms of geometry.

The recommendations and assumptions of the Irish Railway Commissioners as to this important question tend eminently to mislead, not only the government of the country, but also the various companies, and the public. But if they had taken the trouble of examining with the least attention the chart of the Atlantic, exhibiting the eastern and western shores of America and Europe, and the map of the British Isles, they never could have fallen into such a gross misconception regarding the best and post direct routes of communicating by steam between London and New Yopls, and also between Bristol and New York.

Are the Railway Commissioners not aware, that by the chart the course from the middle of the western eutrance of the English Channel to New York is about W. by S.? and from Cape Clear, in Ireland, it is about W.S.W. 63 west? and further, that the middle of the Atlantic entrance of the British Clannel, is north of the parallel of New York about 585 miles, Bristol 743 miles, and Cork 775 miles? and that any northing made in sailing from London or Bristol to New York, by calling at Cork, is a dead loss equivalent to double that amount, because a ship has as much sonthing again to make by such a deflection from the true and direct course? As to a London, is Bristol, or a Liverpool steamer getting business at Cork to compensate them for such a deriation and delay, is altogether out of the question, particularly looking at the state of the present existing trade in Ireland. The additional supply of fuel which the Commissioners think the Atlantic steamers outward-bound from London would require, and which they recommend should be procured at Cork, it may be observed, in reply, that the steam ships even from London can carry quite enough of fuel to carry them from that port to New York, withont incurring a loss in northing of nearly 200 miles, by calling at Cork; and that Falmouth, in this respect, pould afford tive sapply much better, if required, and without loss of time or lengthening of the voyage. Looking at the geographical position of both Liverpool and Bristol, steamers from those ports would stand less need than those of London in calling at Cork for fuel.
It is presumed these observations show there can be no beneficial results from the making of 456 miles of railway through Wales and Ireland, costing more than ten millions sterling, in lessening either the time or expense in going from London or Bristol to New York, by making Cork the port of departure; unless it be to involve the unfortonate existing executive of Britain in an expense of more than ten millions sterling, and to support one of the most extraordinary projects or jobs that ever was proposed, or even ventured to be recommended to the government of any free country. Fet it has been so far countenanced by those in power, that augmented salaries and honours have been bestowed, marking their approbation of the measure.

In justice I deem it right to give the following quotation:-" The Viocount Melbourne and the Chancellor of the Exchequer state to the Board, that whilst they consider the importance of 2 asfe and expeditious line of communication between London and Dubliu to be such as to justify the interference of the public, they are by no means prepared to recommend any survey of a line of railroad. Several private bills have passed, and works are either in contemplation, or are actually undertaken, upon the successful completion of which a direct line of railroad from Dublin to London must depend. They therefore consider that any interposition on the part of the state, even if it were limited to the single object of a survey, would have a tendency of interfering with private enterprise, and discouraging the application of capital, when it may be required for the general improvement of the country." -Report on Liverpool, Holyhead, and Port Dymllaen Harbowre, 21 st. Feb, 1837.
W.

NATIONAL MONUMENTS.

Sis,-No one who knew London fifteen years ago but will see with pleasure how much it has been improved since then, especially near Charing-cross, and that truly noble structare, London-bridge. It would, however, puzzle a foreigner (and it puzzles me who am not one) to account for the incongruity which exists in the names of the principal streets and squares, and of the buildings and monuments that are placed near one another. For instance, how comes it that we are to bave a monument of Nelson and Trafalgar-square in front of the National Gallery? Had the building been an Admiralty-offlce, nothing could be more appropriate; but a name bearing reference to the tiae arts, aud a mouument of Hogarth, of Reynolds, or of some other of our famous artists, would have been more fitly applicable to a gallery of paintings. If brodze statues should (as they generally do) reprevens none but princes, Warriors, or statesmen, King Charles's
statue might have been removed further from the scene of his disastrous death, and turned towards the immortal works of the painters he so liberally patronized.

However, I suppose that, in spite of all that can now be said, Tra-falgar-square will retain its name, and Nelson's statue will be placed there-at the risk of strangers to our history who have visited our chief towns (Edinburgh, Dublin, Liverpool, Birmingham, \&rc.) supposing England to have produced so few great men that we have been coliged, in order to have statues enough, to make a dozen for each of them. With the Greeks and Romans, our masters in architecture and sculpture, bravery only was virtue, and warriors the greatest of men; but are we Christians of the same opinion? Why have we not statues of Bacon, of Locke, of Newton, of Howard, or of King Alfred, in our squares and public places? or, if we must have soldiers and sailors, why not one of the great and virtuous Collingwood-of that warrior who, as a husband, a father, a commander, a patriot, and a subject, merits the unalloyed admiration of posterity, and whose whole character and conduct may well be held up as a pattern worthy of all imitation? Surely the monument in Trafalgar-square should be dedicated to botb the admirals and to their brave companions also-to the men whose patriotism was not excited by the hope of immortalizing their names, as well as to those whose names were in the mouths of friends and enemies, and will be hauded down with those of Cæsar, of Hannibal, and of Napoleon.

With régard to the form of the monument, 1 would protest against sticking a statue on the top of a column at such a height that it is not to be seen with comfort-unless it be the statue of a cocked-hat, a wig, or a pigtail, for then the farther frons sight the better. More especially would I protest against a column with an unornamented shaft, with a detestable iron railing above the abacus, and this supporting a roundtopped sentry-box ; from the inside of which the half-naked sentinel appears to have emerged in a fit of melancholy madness, with the intention of falling on the parement below; when the wind blowing on his shivering carcass and on the clothes that lung about his legs, shall overcome his endeavours to stand upon the sifppery convexity, and take his feet from under him. If the Nelson monument is to be a statue on a column-18t, let the shaft be ornamented; 2nd, let it not be heavy Doric (alias English); 3rd, let the abacus itself form a stone parapet instead of a railing ; and, 4th, let the statue stand or appear to stand (from the best points of view) almost immediately above the column, and on a flat surface not much raised from the absens. Not that I approve of any Stylitic monuments, unless in honour of Simon himself. The Greek column is perfectly unfit for an isolated monument, and I do not know that the Greeks themselves ever made such use of it; nor yet the Romans, until the time of Trajan, when the arts began to decline. A column has an abacus as a preparation for a great weight to be placed above. Without this superincumbent mass it is incomplete and useless; bat an isolated monument should be complete in itself, and it should terminate in a point or something nearly approaching one. Prejudice apart, how much more beautiful is the Turkish minaret, the Egyptian obelisk, or a Gothic spire, than a solitary Greek column! For my part, I prefer a well-built factory chimney when the smoke curls from its top, and gradually mixing with the air above it, leaves one with nothing to expect. It only wants a well-imagined railing to carry the eye gradually from the solidity of the edifice to the lightness of the vapour.

While so much has been done for the ornament of the city of London, it is to be lamented that Sir Christopher Wren's monument shonld still retain its pot of brass flames-the disgrace of English taste-the laughing-stock of all foreigners. It would be infinitely better with a statue; and whose would be more fitly placed there than that of Wren himself? There would be something like justice in that, and the great builder's ghost could not grumble, even though in another world he has improved his taste, which in this was certainly far inferior to his science and his skill.

Yoars obediently,
B.

IMPROVEMENTS AT AUGSBURG.

Great activity bas prevailed bere in improvements, and it shows that in cultivating the fine arts, King Louis does not neglect the useful. An important slacice has been constructed on the river Lech, supplying a thousand feet of water in a second, for the use of the factorics. The Protestant and Catholic cemeterios have both been enlarged, and the dcad houses omamented with Doric fasades. The great cotton factory begun in April is roofed in, and will contain 30,000 spindles and 800 looms, and is to be worked by water by means of two of Fourneyron's newly invented Turbines, which will give 200
bic fect of water per second at 15 feet fall. To carry off the water, a cut is to be mide a mile long, 42 feet broad, and 12 feet deep. A yew streat has been formed to communicate with the Jakober subarb, and the railway to Munich is in a very advanced state.

PLAN OF A PROPOSED NEW DOCK AT KINGSTON.UPON-HULL.

Dagranrd ay Jamrs Oldhan, Cifil Enadnrir,
To be called the Quern's Docx ; ahowing its connexion with the Rivert, and the present Docke of the Port.

(Rlefence to the Plan).
A, River Humber.-B, the Old Herbour, or River Hull.-C, Entrance Bnsin to the present Docks.-D, Humber Dock, Area 7a. Or. 24p.-E, Juac. tion Area, 6a. Or. 5p.-F, Old Dock Arai, 7a. Or. 24p-G, Entrance to River Hull.-H, the Market Place.-J, the Church.-K, the Citadel.-L, Moat. -M. Basin to the proposed Dock.-N, proposed new Dock.-O, Eatrance to River.-P, Church.

The convenience for trade afforded by the extensive system of docks, has perhaps more contributed than its local situation to the prosperity of Liverpool, while it has fully counterbalanced the difficult entrance of the harbour. Bristol, too, has equally found it necessary to extend its attention towards these entrepots, and it is only, perhaps, owing to the want of a corporation as rich as those two cities, that Huli has not taken advantage of such indispensable adjuncts to trade.

The present Dock Company was established in 1774. Their capital is 90,0001 . divided into shares of 5001 . each. They have constructed three docks, occupying twenty-three acres, with quays and warehouses, all out of the profits, at a cost exceeding 450,000 ., and they pay a dividend of twelve per cent., besides reserving the like sum to pay off a debt of about 70.000 l., contracted to make their last dock.

It is not surprising that the accommodation supplied by this company should be considered insufficient, when at Liverpool alone there are one hundred and eleven acres of dock roon and eight miles of quays. The increasing trade of Hull, and its position as the great midland outlet, evidently point out the deficiency, and we need not be surprised if, from the consequent inconvenience, loss of trade has ensued; for Hull does not, like Liverpool or Bristol, bear no rival near the thone, but has at her very doors two powerful competitors, in Grimsby and Goole, which not only attract much of the growing traffic, but threaten the usurpation of the whole.

Here, as Bristol, the existing institutions are attended by defects that tend still farther to aggravate the deficiencies they cannot supply, and like the case of the Great Western, the largest class of steam vessels are unable to enter the present Docks at all, though taxed to an immense amount for benefits which they nipyer receive; for other large ships the accommodation is glaringly insufficient, and the notorious want of quay room is entailing upon shipowners and merchants a delay and expense to which they will not longer submit.

Under these circumstances it has been determined to apply to Parlia. ment in the next session for the eatablishment of a Company, to be incorporated uuder the name of "The Queen's Dock Company," with power to construct a new Dock or Docks, thereby putting an end to the mischiefs complained of, and at the same time affording to the promoters every prospect of a handsome remuneration : the capital to be 180,0001 ., in shares of 1001 . each.

The intended site is a piece of grouhd of about 30 acres, chiefly extro-parochial, lying to the entof the garrisop, und extending down
to low-water mark in the Humber. The water in front is, at low water, in spring tides, of the depth of four fathoms, and the works will be so far carried out as to give the entrance to the proposed Dock the full beneft of that depth of water. In this situation a sufficient quantity of land can be obtained to afford the amplest quay room, with every other necessary appendage for landing, storing, and loading merchandise of every description. A communication will be made between the river Hull and the proposed Dock.

The Dock will contain about twelve acres; the principal entrance will be through a spacious basin extending into the Humber, to a line drawn parallel to the extremities of the piers of the Humber Dock. The basin will communicate with the proposed Dock by a lock of the width of 65 feet, the depth of 35 feet, and the length between the gateof 300 feet, capable of admitting the largest men-of-war or steam ships. The Dock will be excavated to the depth of 35 feet. It will communicate with the Old Harbour at its northern extremity by a short canal and lock of the ordinary dimensions. The quays on the eastern and western sides will be 210 feet wide, affording ample space for ware houses and sheds. There will also be sufficient space on the south side of the Dock for Graving Docks communicating with the Dock for ship-building upon the most extensive scale. The Dock and Quays will be surrounded by a lofty wall, rendering them in every way adapted for the bonding system.

It is not our business to point out advantages, or to lead the opinions of capitalists, but it is a necessary professional duty to see that a project is required or that it is likely to be remunerated ; and we certainly consider that in this instance, as the plan is justifled by the most urgent necessity, that so it is likely to meet with the happiest results. The income of the present Docks has increased from 24,7891., in 1832, to $\mathbf{3 7 , 8 0 8 1}$. in 1837 ; and this latter year was by no means distinguished for its commercial prosperity. The situation of Hull is certainly of the highest importance, for it occupies with the Thames that position on the west of the North Sea, which Hamburgh and Bremen do on the east. With this advantage in position, by its river communication and by the railways, which on one side of the Humber will unite it to Liver. pool and the Atlantic, and on the other, by the intended Hull and Nottingham Railway, give it through a rich agricultural country the monopoly of the midland manufacturing district, Hull wants but enery and spirit in its merchants to become the mart of the Baltic und the German Osean,

THE NEW MODE OF PRODUCING WROUGHT OR MAL. LEABLE IRON DIRECT FROM THE ORE.

Patented by Mr. William N. Clay.
Pig. 1.-LONGITUDINAL section of balling and piling FURNACE, WITH RETORTS.

The retorts are covered with a layer of sand.

Fig. 3.-TRANSVERSE SECTION OF RETORTS AND|HORIZONTAL FLUES.

The \mathbf{O} are small apertures to allow a portion of the llame to pass over the top of the retorts. The retorts may be increased or diminished, as the waste heat is greater or less.

hemarks by the patenteg.

Iron is popularly divided into two descriptions, cast and wrought.
Cast, or pig iron, is principally a combination of the metal with carbon, which it absorbs from the coke or charcoal of the blast furnace. Wrought iron has been hitherto produced by freeing cast iron from the carbon, \&c., with which it is combined: the nearer it approaches to a state of purity, the better wrought or malleable iron will it be.
The richer ores of iron contain the metal combined with oxygen; if that oxygen were separated, the metal would be in its malleable state as wrought iron.

And yet, the advance of science has left this great branch of our national prosperity so far behind, as to suffer the manufacturer still to continue the prectice of impregnating the iron with carbon in the first instance, which carbon must afterwards be separated, by tedious and expensive processes, to produce wrought iron of good quality.
Bat there are other evils in the common mode. It is necessary for the manufacturer to have a sort of glass floating on the molten iron at the bottom of his furnace, to prevent the oxydation of the recently produced metal by the blast. This glass is formed from the earths with which the ores of iron are mixed, and limestone to flux those earths: so that, ores of a very superior quality cannot be used by themselves, but only in part, to enrich such poor ores as have more earths combined with them than are necessary for their own fusion. Thuis it is , that the Hematites, and other rich ores, found abundantly in Lancashire, Cumberland, Cornwall, \&c., reach no higher a marketable value at the plaee of their production than the common earthy ores of the coal districts, although they contain twice as much iron, and that iron of a very superior quality.
Again, English iron is, from its mode of reduction, almost certain to be injured to a greater or less extent by combination with sulphur; the earthy ores, which form nine-tenths of those generally used, are impregnated with that deletcrious mineral to a great extent; the coals from which the coke is formed are likewise more or less sulphurous; and this gives the ligh eatimation and value to charcoal inom, or such as has been reduced in the several processes by the agency of wood instead of coal.
It is the object of the patent taken out by Mr. William Clay, to produce wrought iron of best quality, direct from the rich ores
hitherto so little used from the causes beforenamed, by a process simple, rapid, and cconomical.
To make wrought iron of such quality, for instance, as chain cables are made from, five several operations are necessary, besides the preliminary one of making the coke for the blast furnace, namely-

1. Roasting the ore.
2. Smelting in the blast furnace.*
3. Refining.
4. Puddling, balling, hammering, and rolling.
5. Cutting up, piling, and rolling.

All these processes requiring a separate application of heat.
It is stated in the article on iron, the 106th number of the "Library of Useful Knowledge," a work written with great clearness, and an intimate knowledge of the subject, that 8 tons 17 cwt . 3qrs. 3lbs. of coals are required for the production of one ton of finished bar iron; doubtless, the introduction of the hot blest has reduced the consumption of fuel in the smelting operation considerably, and the adoption of anthracite coal may decrease it still further. It seems, however, yet doubtful, whether the best bar iron can be produced from "hot blast pig:" at all events, very small proportions of that description are as yet used in the fabrication of iron of superior quality.
On the patent plan, the operations are reduced to three; namely-

1. Reducing, or preparing the ore in retorts, or other close vessels.
2. Balling, hammering, and rolling.
3. Cutting, piling, and rolling.

The first of these processes is accomplished by the otherwise waste heat of the two latter, so that only two separate applications of heat are required; and the second operation on this plan commences with the iron in as forward a state as the fourth of the old mode, whereby the cost of fuel and labour, and the enormous ontlay of capital in land, blast furnaces, and machinery required to bring iron on the old mode to the third stage, are all avoided.

It is now necessary to state how this is to be accomplished.
Referring to the plan, it will be scen that between a reverberatory furnace of the common construction employed in "puddling," "balling," or "piling" iron, and the chimney, a range of retorts are placed, which are heated on their exterior by the otherwise waste heat of the furnace. \dagger
Into these retorts are thrown 100 parts of Ulverstone, or other rich ore, and 20 parts of coke dust, ground charcoal, antluracite, or other carbonaceous matter, well mixed together. The retort is closed, and the vapours generated escape as gas. In the course of from thirty to forty-eight lours, as the heat is greater or less, the carbon will carry off the oxygen, and leave the iron in a metallic state.
It has then to be taken to the balling furnace, where it welds up, like scrap iron, and in fifteen minutes is ready for the hammer; thence it undergoes the customary process of rolling.

It is then cut up, piled, and rolled, and the operation terminates with the production of bar iron of superior and extrnordinary quality.

The fourth operation of the old process, "pudlling," takes from one and a half to two hours to perform ; the second operation of the patent, only fifteen minutes; consequently, the consumption of fuel will be much less than if refined iron were used. It would be idle to compare the simplicity and economy of the first stage of the patent process, with the cost of the three stages required to make the ironstone into retined iron on the old mode, when we find by referring to page 23 of the work alluded to, that of the 8.839 tons of coul consumed in the whole process, 6.989 tons are used up to the refining, so that the 1.9 tons required for the subsequent operations, may be culculated on as more than sufficient for the patent plan-to which may be added (if the furnaces themselves do not supply sufficient cinders), the one-fifth part of the weight of the ore used, to mix therewith, as carbonaceous matter.
An oujectiva way be made by an iron master that the mode is not wholesale enough-that the retorts con'uin ouly hundred weigh:s, while his mighy tower furnaces hold tons. If the question were the productionof pig, or cast iron, there m:ght be some weight in this; but the superiority of the patent mode refurs more particularly to the production of wrought iron ; and here, the largest maker in the kingdom must await the laborious and teclious operation of the puddlerhim he can only supply with a few hundred pounds of iron every two hours; so that, the retorts hare only to furnish the same quantity, to keep up with the puddling furnace of the present system; if necessary, it might be shown that a balling furnace, on this plan, will produce considerably more than a puddling furnace on the old one.

[^2]Ma I.-Jartant, 1839,-VoL. II.

It now only remains to notice the quality of the iron. In no one respect is it inferior to "best common," and in many of its properties it is equal to Swedish or charcoal iron; its tenacity is so gieat, that of four trials made with patent iron (I inch chain), at the corporation testing machine, Liverpool, not one broke with a less strain than 26 tons, and one link required 28 tons $12 \frac{1}{\mathrm{c}} \mathrm{cwt}$. to break it, the standard test for that size being 16 tons.
Experiment ou Mr. Clay's method of making bar iron.-l 1501 bs . of Ulverstone ore and $40 \frac{1}{4} \mathrm{bs}$. of wet coke (losing $12 \frac{1}{2}$ per cent. in drying) were put into one of the gas retorts in Dale-street, on Saturday, Nov. 24, at five in the morning, and remained in till ten on Tuesday evening, or sixty-five hours. The heat was maintained at a full red, or common gas-making heat. The above quantity reduced at the Mersey forge (two miles distant) produced in thirty-four minutes two balls of iron-one of 32lbs., and one of $261 \mathrm{lbs} .-58 \mathrm{lbs}$. The former rolled to $1 \nmid$ inch puddled bar, weighed 301 bs ., and was then brought down under the tilt to $\frac{8}{3}$ inch square, and samples taken when broken. The yield 38 㝵 per cent.
Comparative result of melting iron in a cupola with a mixture of anthracite coal and coke, and with coke alone, obtained from repeated trials :-

Old method of filling and working the cupola with coke alone.	New method of filling and uorking the cupole, with a mirture of coke and anthracite raw conl.
Ditto limestone . . . 0220	Ditto snthracite raw
Ditto iron 5000	coel 220
Ditto coke 0120	Ditto limestone . . 0200
Ditto iron 320	Ditto iron 15000
	Ditto coke 0 l 0
	Ditto anthracite raw coal 0 1 0
	Ditto iron 8000
And continue filling $\frac{1}{4} \mathrm{cwt}$. 20lb. of coke to every $3 \frac{1}{2} \mathrm{cwt}$. of iron, as long as necessary.	And continue filling \downarrow cwt. of coke, and $\frac{f}{4}$ cwt. of anthracite raw coal, and 8 cwt of iron, as long as necessary.

The cost of coke fuel for melting each ton of iron, reckoning the coke at 30 s . per ton, is 3 s . 8 d . The cost of the mixed fuel, reckoning the coke at 30 s . per ton, and the anthracite coal at 25 s . per ton, is only 1 s . 8 d . per ton, causing a saving of upwards of 50 per cent.; and the antliracite coal being almost pure carbon, has the further effect of improving the quality of the iron.

This experiment was tried at Messrs. Weber's foundry, Liverpool. The anthracite coal was obtained from the Ystalyfera Iron Works, near Swansea, now erecting under the direction of Mr. E. O. Manby; civil engineer.
N.B. The cupola which is now at work, according to the improved method above described, is 2 feet 2 inches wide inside, 8 feet high, and is blown by a fan blast through a twyere 6f inches in diameter. The blast was not heated. The quality of the iron was decidedly improved by remelting with anthracite.

FURTHER REMARKS ON THE SLOPES OF EXCAVATIONS Λ ND EMBANKMENTS ON SIDELONG GROUND.

Sus,-Having carefully read Mr. Bowman's contribution to your number for this month, on the above subject, I am induced again to address you. Mr. Bowman having stated the method he lias described as being more expeditious and more accurate than that described by me in your Journal for November, in reply to his statement, that it is more expeditious, it could only have arisen from Mr. Bowman's not having practised the method I described; as instead of planting the instrument at each estimated width from the centre, as in the method described by him, I set up the spirit level in such a pasition as to command the ground backwards and forwards for several hundred feet, in which distance there would necessarily be several widths in set out; but this can be done only on moderately hilly ground. The method I adopt, where the ground is very abrupt and sidelong, is to plant my level so as to command the centre stakes, and as many of the upper widths as possible, which I rectify in the manner I have previously described; I then remove my instrument so as to command the centres and as many of the lower widths as possible, which I alter in a similar manner ; in this way the widths on sloping ground, however rapid the fall may be, can be set out with great facility.
It must be very apparent to your readers that once planting the spirit level can be done much more expeditiously than(I speak within composs) half a dozen times with the theodolite-not taking into account the much longer time requisite in plauting the latter instrument than the former,

As to the greater accuracy, if Mr. Bowman does not impugn the method I think there is no doubt but that with the spirit level is infinitel? superior, bearing in mind that the calculations with the latter in the field (simple as they are) is not trusted to the head only, but the readings of the staff, registered (on a waste sheet), and the necessary deductions or additions made; but without this latter precaution I cannot understand why a mistake would be less likely to occur in first reading the level staff, then setting the instrument to the angle of the slope and again reading the staff, than it would be to simply note the differeric of level, multiply it by the slope, and correct the distance accordingly In conclusion, although I would be sorry to be thought discourteons towards Mr. Bowman, whose method I highly appreciate, and in some localities would undoubtedly practise it, yet 1 much doubt its nseful application in the majority of instances.

Charlotte-street, Bloomsbury, December, 1838.

MOMENTUM OF FALLING BODIES.

Sir,-Oblige me by allowing your Journal to be my meiiium for submitting the following remarks to the perusal of your corresponden C. E. C., and your other, I hope, numerous readers.

Mathematical works tell us that the momentum of a body in motion is proportional to its weight multiplied by its velocity. I doubt this, and the following is my reason for so extraordinary a scepticism : -

The velocity of a body at rest (or, to avoid a contradiction, of a body all but at rest) is evidently $=\frac{1}{\text { infinity }}=0$. If m were as $b \mathrm{r}$. the force or pressure of a body just moving from a state of rest wouk be 0 ; for, as we have already seen, v then $=0$, and $b \times 0=0$, whereas in fact it is b.

I believe that the momentum of a body can never be less than its mass, and tbat it is equal to the body's mass added to the product of a
certain function of the body multiplied by the velocity-or, algebraically expressed, that $m=b+M^{i r}$.

I have some years ago endeavoured to measure the ratio of the monentum to the relocity per second of time. I repeated an experiment after reading your correspondent C. E. C.'s letter, and the following is an account of it and the results I deduce from it :-

Having attached one end of a cord to a weight of half a-pound, I tied the other end to the hook of an accurate improved spring balance, by Salter, and having made the distances from the hook to the weight successively 16 feet, 8 feet, 4 feet, 3 feet, 2 feet, and 1 foot, let the weight fall these distances, and observed that the scale marked nearly $24 \mathrm{lbs}, 19 \mathrm{lbs}, 14 \mathrm{ibs}, 12 \mathrm{lbs}, 10 \mathrm{lbs}$, and 6.1 lbs , so that the power acquired io falling the distances was for a velocity of 32 feet per second $=4 y_{y}+1 b^{\circ}$ fur $22 \frac{5}{6}$ feet $=18 \frac{1}{2}$; for 16 feet $=13 \frac{1}{2} ;$ for $13 \frac{3}{3}$ feet $=11 \frac{1}{2}$; for $11!$ feet $=9 \frac{1}{2}$; and for a velocity of 8 feet per second $=6$ lbs. Dividir: the velocities by the weights, we find that a body falling (or a body in motion) at the rate of one foot per second acquires a force equal to 10-7ths and 13-8ths of its mass, or, perhaps, very nearly once and a half its mass or weight. The momentum, then, is equal to the sum of the weight and the product of the weight multiplied by once and a hall the velocity per second, or $m=b+\frac{3 b v}{2}=b+\frac{\sqrt{b}}{2} \sqrt{32 s}$, where s $=$ the space fallen through.

A monkey of 2001 bs. weiglt falling 25 feet on a pile head will, therefore, strike it with a force equal to the weight of 200lbs. + कimilas. $\sqrt{800}$
$\overline{2}-\sqrt{8} 00=8,6851 \mathrm{bs}$. vearly; and a weight of $10 \mathrm{~J}, 000 \mathrm{lbs}$. falling one-hundredth of a fuot would strike with a force equal to a pressure of $100,000 \mathrm{lbs}+\stackrel{300,(\mathrm{tan}, \mathrm{bs} .}{2} \sqrt{0.01 \times \overline{32}}=184,840 \mathrm{lbs}$: or it will require a force of $184,840 \mathrm{lbs}$. to lif $100,000 \mathrm{lbs}$. one-hundredth of a foot, vith the velocity of fifty-six-hundredths of a foot in a secoud. Hy the old formula of $m=b v$, which has been erroneously applied fur m is as $b v$, this weight would be moved at the above rate by a dead weight of' $56,000 \mathrm{lbs}, 44,0001 \mathrm{bs}$. less than its weight.

I remain, yours obediently,
B.

COI. C. W. PASLEY, C.B., F.R.S., \&c., AND MR. GEORGF GODWIN, JUN., F.S.A.
[We have been requested to incert the following letter, addressed to Col. Pasley, in reference to the disputed point touching the firm use of concrete in Finglamt.]

Sin,-l'ernit me, althoagh personally a stranger, to claim your attention for a few minntes.

In your recently published and most valuable work, "Observations on Limes," you have honoured me by referring to an essay on concrete, for which the Institute of British Architects awarded their first medal in 1836: and in the course of your remarks have taken occasion to contradict a statement showing (if true) that concretc whs nsed by the late Ralph Walker, Esq., at the East India Docks, in the year 1800, and to complain of the omission of the name of Sir Robert Smirke, to whom you, perhaps justly, aserive the credit of having introduced the use of concrete in its present shape to this country.

When I commenced the essay in question, which was in 1835, I found materials for the attempt exceedingly scant and meagre. I was unacquaninted with any modern work containing useful reference to the subject (at that time I liad not met with your lithographed "Course of Practical Architecture"), and found few persons able to give me authentic information. Two or three distinguished architects, to whom I applied, and who since then have extended to me the farour of their acquaintance, declined affording me any particulara ; and Mr. Ranger, known to have knowledge on the matter, refused positively, although with great politeness and some show of reason, to give me the slightest explanation of his own system, or the least item of information generally, so that I was compelled to trast for the most part to my own resources and observations. Under these circumstances I did not attempt to give to any one individual merit for its introduction, but, recording briefly such pointe in connection with this question as fell under my notice, passed on at once to treat of its composition and its uses, with an impression that what was said, would elicit such other information as might enable us hereafter to arrive at truth and fill the hiatus.

The assertion that concrete was used by Mr. H. Walker in 1800, was made, as you have seen in the essay, on the authority of Mr. Macintosh, the contractor, who, at the time I applied to him, was engaged in the construction of the Greenwich Railway. On the day that he related the circumstance (Oct. 5 th, 1835), we were together directing the composition of concrete for the foundation of the archway over the Grange-roed, Bermondsey, and the matter was so fresh in his recollection-was so far from a thing of doubt-that he allowed me to make notes as he proceeded with the conversstion. These notes, Sir, I have sought for and found, and from them I see that Mr. M. said more upon the subject than I have printed-quite sufficient, indeed, to show that there was no misunderstanding on my part; and I beg leave, therefore, to copy for you one or two of his sentences, in order that you may judge for yourself. "I executed concrete," said he, "thirty-six years ago at the Rast India Docks. The ground was a mud bank, with here and there gravel and sand, affording, therefore, most unequal bearing; but the concrete has, nevertheless, answeredadmirably. I think this was the first time concrete was used in England, indeed I know it was. Trenches for outer walls were merely filed in with gravel, sand, and water, no lime, and this has stood well;" and he then went on to speak of the quantity of lime which he considered best, \&c., \&c. Upon this, then, Sir, my statement rests. I had no wish, nor the slightest motive to add to the reputation of Mr. Walker, still less, if possible, to withhold credit from Sir Robert Smirke, for whose talents (in common, I believe, with the profession generally) I entertain the bigheat respect and admiration. The information which has been furnished you, and which is set forth in your book, seems to show that Mr. Macintosh was mistaken, unless, indeed, the measure was determined on after the specifications were issued, and was adopted merely in some particular places by way of experiment; but as I lave nothing farther to add on this head, 1 must content myself with affording the above explanation, and leave time to reconcile the apparently conflicting evidence.

In regard to the omission altogether of Sir Robert Smirke's name, of which you justly complain, 1 am boond to confess that I was not a ware, at the time of writing the essay, that Sir Robert Smirke was more intimately connected with the subject than were several other architects also not referred to, although I knew well that he had used concrete in several places; in excuse for which want of information, I can only offer the circumstances mentioned at the commencement of this letter. Immedintely after the publication of the "Transactions of the Institute," wherein the essay appeared, I learnt that Sir Robert Smirke had paid particular attention to concrete; and in a second edition, which closely followed the first, I introduced his name in a paragraph concerning the foundation of the Custom House; and later stillnamely, in the second of a serics of papers published in the "Architectural Magazine," and headed "Hints on Construction," I appended the following note to a remark, that "Ralph Walker, Esq., and Sir Bobert Smirke, were among the first, if they were not the first, who emploged concrete, and adrocated its use in England," serving, I
rust, to show my desire to correct the omission so soon as it was discovered. This is the note:-" The name of this distinguished architect (Sir Robert Smirke), in connection with the re-introduction of concrete, was omitted, through want of positive information in the essay on that subject, printed in the 'Transactions of the Institute of British Architects, and the author of it seizes the opportunity here offered to rectify the error."
Here, Sir, I should have left the subject, as I felt it would be impertinent to thrust myself forward to state that on which, perhaps, no one might care to have my opinion, and knew that nothing which I could say, or omit to say, would increase or lessen the high reputation of Sir Robert Smirke. As, however, you have been pleased to draw attention to the circumstance in a book, which probably will be read universally, I feel called upon not only to render you this explanation, but to make it as public as circumstances may permit, lest any should imagine, were I silent, that I still saw no reason for connecting Sir Robert Smirke's name with the first use of concrete in its present shape in England.

I trust, Sir, that under these circumstances you will not deen me wrong or rude, for intruding at this length on your valuable time, but that you will accept my profound respect, and believe me, Sir, your faithful humble servant,
Brompton, Nov. 26, 1839.
THE LONDON AND BIRMINGHAM RAILWAY.
The folluwing account of the construction of the works in the neighbourlhood of Blisworth, we have extracted from the fourth part of "Roscoe and Lecount's History and Descriptiou of the Railway," which we have before favourably noticed. Besides the ustual illustrations, the present part contains a very useful map of the line of the country through which the railway passes, reduced from "Cheffin's Official Map."
This eutuing is one of the largest on the line, and according to the original eatimate, would bave contained 800,000 cubbic yards; in consequence, however, of the neccasity which was found of adding to the length of the wide part of it, which was considered to be essentillly requisite daring the execution of the work, together with the materials arising from numerous slips in the upper part, the total quantity removed approximated to $1,000,000$ cubic yards.
The greatest depth is about 55 feet, and the length a mile and a half. The materials excavated consisted of clay and limestone. The clay and rock may be described geverally as runaing into strata nearly on a paralicel with the lino of rails, which rise from cach end of the cutuing towards its centre, at an inclination of 16 feet in 2 mile.
The different beds of rock in the excavation abound with fossil shells, in a cood state of preservation, consisting of nautilus, terebratula, oysters, \&c. Tbere were also two or three fosesils of very considerable magnitude discovered, which were of the Saurian tribe, and were found embedded in a stravemen immediately on the top of the rock. This rock is a species of halffformed tone, of considerable hardness when dry, but becoming soon softened when oxpoced to the air and damp.
The quantity of stone excavated wes about one-third of the contents of the cutuing, and considerable difficulties occurred at this point of the linc. The rock was found not to reach to the depth of the excavation, and underneath it lay a deep bed of clay, in some parts to the thickness of 20 feet, through which the rails had to be carried. To secure this from bulging out, it was neccssary to build retaining walls of considerable thickness along the sides of the excaration, which are inclined at two slopes; that portion which reaches from the railway to the top of the rock is at one quarter to one, and for that above the rock the inclination is at two to one, a ledge or benching, of aize feet in width, being formed where the two slopes meet. Tho object of the benching is to catch any loose portions of the clay which might be detached from above; hey have also been found very useful in affording foundations for walls of pebble-stone, which it has been found necessary to erect upon them in many places, to retain the numerous slips of the clay above.

Immediately below the solid roct, in some parts of the excavation, is a bed of loose shale, mixed with a considerable quantity of water, and to such an extent, that pumps had to be constantly emploged to allow the work to progrens. The shale has been taken out, and the rock underset several feet, to allow retaining wells of stone to be built in its place; these walls, in fact, support the rock above, and as a further security, an inverted arch has been built beneath the railway to the opponite side, in a similar manner to the inverts of tannels. As soon as the retaining walls were built, a drift was formed behind them tbree feet six inches high by three feet wide, forming a culvert to receive the water, which still keepa abundantly flowing out of this strata; and at intervals there are openings left in the retaining walls to conduct the water to the side drains of the railway, where it is carried off.
During the frat ycar and a half, the progress of this excavation was exremely alow, owing to the want of proper energy on the part of the contractor, combined with general bad management. The time was frittered away without anything like a proper quantity of work being done; and if this was evident at the commencement, when there were no particular difficulties to grapple with, what might be expected towards the end, when nothing but the mons energetic measures could insure success? At last the Company were obliged to get rid of the contractor of the Blisworth excavation.

From the moment it came into the Company's hands, no trouble or expense was gpared to remedy he evil of the previnus alow progress; and nothing could exceed the animation of the scene which the works presented when in their most active state. From 700 to 800 workmen in vigorous employnient, numerous harrows and waggon runs in continual motion, a steam engine in constant activity pumping out the water, locomotive engines at either end, drag. ging long trains of waggons full of earth, or bringing the empty ones back, and blasts of the rock continually deafening the ear. In fact, the whole cutting seemed alive; and the busy hum of labour, resonnding from the one end to the other, gave :mple testimony to the zenlops exertions of the engincer. Of course the expense was considerable. The article of gunpowder alone was, in many caues, 25 barrels, of 100 lbs . cach, per week; enormous quantities being used before the rock could be removed.

The mode of blasting made uae of was by drilling a hole in the stone, abont one inch in dinmeter, the depth being determined by the thickness of the bed This was done by munns of a roundir,n har shod with ateel, which was lifted up and then struck down. in the hole, water being used with it to cquse the ato in tn cut more readily, till the thle wis drilled to the requisite depth. When sufficion ly deep it was driod nat; a piece of fuse of the requisito length was theil purin, and the gunpowder pourud all round it., and secured by a covering of pounded brick or atme. Several ehhrges bring thus prenared, the enda of the fuges wire lizhter, and the work nen rewrested to a sufficient distance for sccurity. In a few mintes the whole explolud, rending up large mastes of rock. and sending the lighrer pieces high irto the nir.

This excavation is crossed by five hridgess. some of which are of considerable span. And presen's a fine appraruncef from the rilway. They are composed of a mixture of the stone of the cut-ing and bri.k.work. It was nriginally in tented that the while of the mutterinta which come nut of the excavation should b. uset in the form viin of the emburnents at .wach end of it ; but ow. ing to the slowness with which the work advancurd while under the e ntractor's bands. it was fou 1 l n ceespary to throw thout 150030 cabic ywrds into spoil. The land for reeriving his, tosether with that necessary to make up the corresponding fefriency in the erubank nents, of course still further increased the expense of the work.

The s one. urivel, and clay which were taken from the sorth ent, had to ber conviged an aserage di-tance of sbiat a mile and a hatf, and considerable diffi culty was fiund in the form virn of the embank nent near the village of Ashion, owing to th - unwound state of the valley which formed its base. Immense quantities of materinls were themed dai' y, which, as in the cave of the Wniver. ton embank nert, torally dissppeared, and the na ural curface of the ground actu illy burst up outside the imits of the railw iv, in consequ-nce of the ennrmous pressure. A culvert near the spot was entirely dextroyed from this cause.

The embankment at the north, or Birminghnm end of the excavation, has m re earih in it tban the other; hut the suhstratum on which its deepest part routs is of n better deacription, and no slip of nny importance tonk place in that pnrtion of the works; but a culvert of considerable length was in great danger of being crushed in; the expedient, however, of com; letely filling it with peb. ble stnne was resorted to ; notrithstanding this precaution, it was carried considerably out of is straight dire ction, so much sn, that the light can but jast be perceived when it is looked though. It may, perhaps, he thought uninteresting to mention works of so smilla magnitude as culverts; but no person, who bas any knowledge of the dificulty of their erection, when they have to sustain the weight of an embankment of 40 or 50 feet in height, could feel otherwise than nervous during the process of placing the material over them. An engineer could be wished no worse fortune than to be required to construct culverts upon a soft foundation under a deep embankment.

From this view of the nature and extent of th's contract, and the means which were resorted to, in order to make up for the serious delay which occurred while the work was under the contractor's hands, every body will be prepared to expect that a sum of nearly 100,0001 . has been expended beyond the original estimate ; and be n expended wiselr, tno, as the losa would have been considerably greater if these exertions had not been made. Viewing the work altogether, it affords one of the finest specimens of engineering this country can boast of. It is a spot beset with difficulties of overy kind, and the bold and effective mauner in which it has been executed, is a bright example of the talents of the Engineer-in. Chief.

PaPIER M.iChe ornaments,

For the Acteon, Livu rpool and Glasgow Steam Ship.

We have been furoured, within the laat few days, with an inspection, at the manu'actory of Mesars. Jenncus and Bettridge, of a set of panels, in papier maché, intended fur the drcorat in of the Actron, Liverpool and Glagoon steamer: which, as worka of art, tave not. we believe, been surpassed by anything of the kind ever produced at this cele rated es ablishment. The panels are 28 in number, four of which aro vory large, and consist of historical aubjrcts, kome orisinal, and others copies from the works of relebrated masters. The first represents, the triumphal entry of Alexander into Babylon ; the second exh bits a view of a Grecian sen-port, and the arrival of a victorious fleet; the third describes the Olympic games, the comhats of gladiators, \&c.; the fourth gives a representation of the Hippondrome, the temple of Victory. and chariot races. Ench of thme subjects is depicted by the artist with the vividness and freshness of life. The various groupe of Grecian, Eayptian, and Persiun Gifures, the richness and brilliancy of the contumes, the coloselal statues, temples, and columas, in their architectural grandear and beataty, furnish a vivid ropres
smaller panels are divided into the classes, devoted to the flastation of pror. ticular subjecta. The first sories represents full-length figures, emblematic of Victory, Comanerce, and the Arta and Sciences, aurrounded with beautifa ornamental work, drawn in imitation of allo-relievo; the whole sarmounted with the arms of Liverpool snd Glasgow. The second embraces mythologial subjects, representing the triumph of Neptune, Juno, and the Graces, Actaxa, \&c.; the whole adorned with an emblematic framework. The third comprize mosaic beads, and emblems o namented with arabesque foliage, birds, fower, and furntains. Viewed separately, each of these paintings is an exquisite pos cimen f the advanced state of this department of our m nufuctures and ibe fine arts ; and, as a whole, they form unquestionably one of the most unique and splendid collecrions of the sind ever produced. The panels will not, we believe, be removed for a few days frum the show.ronma of the manufactory, where artiate and other visitors may have an opportunity of iaspecting them.Birmingham Hea alu.

PRUSSIAN RAILWAY.

The Prussian Slate Gnzette publishes the text of a lav for the requlation of ra-houy compunies in the Prussian dominions. It consists of 49 articles, and is framed in such a manner as to gunrd the public as much as possible from the speculation and jobbing to which u dertakings of this nature are so lisb'e w give rice. Anong the more essential stipulations which it makes with thi ohject in view, it provides, that while the shares ma be made payablete bearer and free from stamp duty, no promises of shares befure the undertakiag of a rail ay is authorised, nor provisional acknowledkments are to be isaued. Every sub-criber for shares in to be bound personally to pry 40 per cent. af the numinal capital subseribed for by him, nnd he cannot get rid of this obit. gatiou in faviul of a third person or of the compuny, under any pretena whatever. In case of a ruilway not being terminated within the time bxed in the grant of privilege, the government is to have the power, after a delar of six minthi, of ordering the rnad to be finished by public contract, at the cbarge of the c.mpany. The privilegea of the post eatablichment may be exercised by railway compasies under certain condit ons. Railways are to be cha'ged with an impost proportioned to the amount of the reserved fuod α. the company, but only after the railway shall have been opened three yeurs. nad that the state of its rrturns admits of it, and no other taxes are to be hid upon it. This impost is to indemnify the state for the diminution of revenus caused hy the railway in the post department, and to form a sinking fund fot the paying off the capital employed in the conarruction of the rome. The state reserves to itself the right of purchasing the railway aflet a lapse of 30 years, on PNying to tbe company 25 times the amount of the mean annui divideud received by it duriag the last five years of the 30 , the state at be same time taking upon itself the liabilities of the company, but becominf absolute owners of all its propeity, including the reserred fund. No grant of a rival line can be made for the first 30 years; but after the first three yeas other companies may acquire the right from the state of convering passengon and merchandise by the same line, on paying a fixed rate of charge to the original company. One of the concluding stipulations of this law is, that oo damage occasioned to the railway by measures adopted, even by order of government in time of war, is to be paid for by the state. This law affects $i d$ grants of railways already made, as well as those to come.

OXFORD-STREET EXPERIMENTAL PAVEMENT.

The importance of ascertaining the best species of pavement for the ar. riage-ronds of the metropolis is some excuse for the confusion, accompanied by the smokeand offensive odours from the cauldrons, which have prevaited at the east end of Oxford-street for the last two months. The inhabitans have, however, been great sufferers thereby; but we may now congratulate them that, at last, all the ground is assigned and set out for the differeat varieties, while many of them are completed, and the reat are in progreas Commencing at Cbarles-street are the arphalu um blocks of Robineon, one batis laid straight, the other diagonally. This is followed by granite pademest nine inches deep, jointed with Claridge's asphaltum; then is to succeed : granite pavement ofstones only $4 \frac{1}{2}$ inches deep, also to Fe joined with the same substance, Mr. Claridge being of opinion, and desirous of proving, that his cement is sufficiently strong to bind even these shallow stones into one solid mass. To this succeeds the Bastenne Company's portion; the blocks in tha part are in the form of bricks, but somewhat larger; they bave been latd hoth ways, straight and diagonally. Next follows the granite pavement, laid by the parish, which is undoubtedly one of the finest apecimens of work of its kind to be found in London. It consists of three parts:-1. Stones laid in the ordinary way, on a well-formed bed of concrete. 2. Similar stones haid diagonally on a bed of the same material; the joints of both these portions are filled with a grouting of lime, anad, zc. 3. Stones laid in the uand manner, but on the enrth without any offici-l bed, and the joints are flled in with fine gravel. The whole of this work has a good curved surface, add the regular tbickness of the s'ones has evidentir been carefully attended to. The next experiment, going towards Tottenham-court-rond, is what is called the Scolch asphaltum giantte (said to be a patented article). This composition bas the appearance of stone, and the blocks are about aix inches thick nine inches broad, and 18 inches long on one face, while the other is only 19 inches long. In laying thein (which is done with Parker's re' ment), every alternate block is reversed, so that evegify second boek meas solid on its base, or lopgent face, whille the othyin at in betwen

Then as keytones, and, Fhen joined, each may be said to support be other. The next division is the wood pavernent, composed of slocks of Gne timber Kyanized, they are of a bexagonal form, 7 inches diameter and 15 inches deep, part is laid on a bed of $1 \frac{1}{2}$ inch planks. Then follows be Valde Traorrs Asphatie, which will occupy the remaining portion of the street devoted to the experimental pavement. This last article consists of blocks, about 10 inches square and five inches thick, formed of a bitumen hickly studded by broken pieces of granite; so that, when laid, it may be looked upon as a sort of Macadamised road, where, in lieu of earth for filling the interstices between the broken granite, and making the whole of a solid mass, a atrong binding composition has been employed.

MONUMENT TO DR. VALPY.

A committee of the papils and friends of the eminent classical scholar, Dr. Falpy, baing dearovs of testifying their esteem for his memory, ba7e employed Mr. Semuel Niron to execute a statue of h'm. The statue is of stone, from Lhe quarries of Roche Abbey, Yorkshire, and represents the Doctor, the size of lifo, in a standing postare, and draped in the robes of a doctor of divinity. The scalptor had not the advantage of seeing the Doctor during his life, but be has been able to avail bimself of a bust by one of the Westmacotts, and of a portrait by Opie, so as to give a satiffactory likeness. At the same time be bas been frced from those conventional and habitual trammels by which friends and relations too often distress the artist. The figure and drapery sre formed with ease, and their details are carefully executed, and altogether it is a work by which the subscribers may feel gratifed, and Mr. Niron honoured. It is entended to be placed in the parochial church of St. Lawrence, at Reading; but this site seems by no means to meet with the approbation of the press, so that the subscriben may, perhaps, be induced to give it a more pablic destination.

STEAM SHIP "LIVERPOOL."
The royage of this steam vessel to New York appears likely to throw some ligbt on the subject of the mont judicious means of economising fuel. In the first unsuccessful attempt of that vessel, she appears to have consumed honrly a very large quantity of coal beyoud what had been the estimate of the engipeen; and to which circumstance was attributed her return to Cork. The canse of this extreordinary expenditure of fuel will be hereafter worthy of consideration, as it may lead to some valuable information.

On her voyage from Cork to New York the following facts have been elicited. The rojage occupied 16 days $17 \frac{1}{2}$ houra, during which time 464 tons 17 cwt . of coals were consumed, being about 294 cwt . per bour, and which was leas than the engineers'had, in the first instance, calcnlated on. On ber first starting from Liverpool she had, it appears, 568 tous on board, of which 850 remainad when she put back for Cork. One remarkable feature in the economy of atean, and of course, of fuel, appears to have been the use of the expanionvalves, and which varied from 42 to 24 inches. The application of these expan. sion-ralves, from some bitherto unexplained cause, were not brought into operation on the first unsuccessful voyage on any occasion. The following eatract from the log wil show what an importani feature these valves, and the means of using steam expans.vely. present on long voyiges:-

The engines of the Liverpool are of the largest power get in use, being 467 boree power, diameter of cylinder 75 inches, and length of stroke 7 feet or 84 mobes; considering that the greater part of the royage was under circum. stances of tremendous bead seas and gales of wind, the daily consumption appeare a fir oes.
Since writing the above the Liverpool hat retaraed to England. She deFared troe New York on the 6th, and arrived at Liverpool on the 21at of December, She ateamed 8239 miles in 348 h hours, and consumed 445 tons 2 outh of tral, and had remaining, when the reached Liverpool, sufficient fuel os boand fer 11 day more, or 2456 mile additional distance,

THE BANN RESERVOIRS, COUNTY OF DOWN, IRELAND.

MR. BATEAAK, ENGINEER.

The river called the Upper Bann, is peculiarly liable th great irregularity in the quantity of water; presenting, sometimes almost udsy bed, while, at others, floods are pouring down with destructive violence.

The principal mills and bleach woiks are situated oear the town of Banbridge, where the river is closely occupied, above and below the town, for about ten Engliah miles.

Very considerable inconvenience was occasioned, during the summer months, and other dry seasons of the year, by the inadequate supply of the river; and, to remedy this inconvenience, it was propesed to construct reservoirs.

The greater part of the merchants and land proprietors connected with the district, having formed themselves into a body, in the spring of 1835, instructed Mr. Fairbairn, of Manchester, to examine and report on the most favourable sites. Tbree sites were, consequently, fixed upoz-Lough Jsiand Reavy, near Castlewelian and the Deurs' Meadow, near Hilitown, as impounding reservoirs; and Corbet Lougb, a few miles above Banbridge, as an auniliary reservoir. A bill was brought into Parlinment, which received the Royal assent, on the 4th of July, 1836, empowering the company to raise 40,0001 ., in 501 . shares, and to levy a rate on each foot of occupied fall, not exceeding 10l. per annum, the interest of the money expended being limited for the protection of the fall-bolders, to $7 \frac{1}{2}$ per cent. per annum.

The construction of the Lough Island Reavy reservoir, the largest and most important of the three, has been carried on with visour, and is now nearly completed. This, before the construction of these works, was a natural lake of about $92 \frac{1}{3}$ statute acres ; but the area of the reservoir will be about 253 statute acres, the surface of the water 35 feet above the level of the old lake, and the average depth of the whole abont 27 feet. It will be capable of containing upwards of 290 millions of cubic feet of water, and will keep up the water of the river, during the whole year, at about six or seren borses' power to each foot of fall. The construction of the Corbet Lougb reservoir, by saving the night water from Lougb Island Reavy, or that portion which would be running past the mills, when they were not working, would increase the power of the river to nine or ten horses' power, upon each foot of fall, belcw the outlet, from Corbet Lough.

The land, for the Lough Island Reavy reservoir, including the value of some chief rents, payable by the company, has cost about $6,000 l$; and the expense of construeting the variuus works-viz., embenkments, feeders, raads, te., will amount io bet ween 14,0001. and 15,000 .

There are four embankments to retain the water in the resurvoir, measuring together about 1,560 yards in length, and containing about 219,000 cubic yards of earth and stone work. The principal bank is $\% 00$ yards long, and coarains about 112,000 cubic yards. The inside slopes are faced with stone pitching, varying from two to three feet in thicknexs, according to the sheltered or expozed situalina of the banks. They are formed in concave borizontal layers, about tbree feet thick, with an upright " $\mu u d d l e$ wall" in the centre.

Tbe water is discharged by two cant-iron pipen, of eighteen iaches in diame er, within an ashlar granite culvert, extending under the principal embankrnent, the valves being at the outer end, and enclosed in a handsowe vault or building of the Egyptian style of arebitecture.

To supply theresurvir, the river Muddock is directed ints it by a ferrier, or new river course, 1 mile 550 yarda in length, 4 remt 6 inclues deep, 19 feet 6 inche wide at the top, witb stop-gates and was:e weirs to regulate the quantity of waters. The surplus walets of the Moneyscalp brow, and of the Slievenalargy brook, are also taken into the res. rvoir; the first oy a feteder of 1,060 yards long, ald 3 yads wide; and the latter by a draius of about a quarter of a mile in length

To conves the water from the reservoir to the river, the old drain from the Longh to the Muddock, abouta mile in length, has been mude 5 yards wide

The reservoir, when full, will be one and a quarter English miles in lengtb, half a mile across in the broadest part, and near a quarter of a mile in the narrowest and, with the assiatance of a little judicious planting, will prement one of the most interesting objects in that part of the cuuntry.

PROCEDDNGGS OF SCIENTIFIC SOCIETIES.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

The first meecing for the present session was held on Monday evening, 3rd
December, Earl de Grcy, president, in the chair.
The noble president, on taking the chair, expressed his satisfaction at meeting the members on that occasion, and briefly alluded to the circumstances which had transpired since the last session. During the recess an attempt had been mads to consolidate this society along with another formed for the prosecution of similar objects, but without success. Since they had lest met the profession of architecture had lost one of its most distinguished members in M. Passier, a foreign corresponding member. To show the reciprocity of feeling and spirit wbich existed between the architects of our own and foreign countries, it was stated that the intimation of his deatb was officially communicated to the rociety. Another instance of the growing interest and importance attached to the institute was gleo recently shown in the case of the yisit to this country of M. Zant, a foreige professor, who made it his deposi-
tory. During the recess the council have made arrangements for the delivery of lectures on acoustics and geology, two important objects connected with architecture, and which will soon be delivered. It is also intended to enlarge the benefits of the institute by cstablishing a new class, to be called the students' class, for the instruction of those who are not forward enough for associates.

Mr. Donaldson announced the list of presents received since the last session, and stated that the noble president had communicated with the Rajah of Tanjore, to whom the institute is under so many obligations, to continue an intercourse which has already been so beneficial.

Mr. Barry exhibited varions medals taken out of the excavations for a sewer near the site of the new Houses of Parliament, a description of which was promised on an early occrsion.

Mr. Fowler read a highly intereating paper on the art of glass painting, by Mr. Shaw, member, entering at length into its antiquity, general divisions, classification, different styles, and proper employment.

Messrs. Hoadley and Oldfeld, of the Hampstead-road, exhibited some beau. tiful specimens of stained glass.

Mr. Godwin, jun., presented to the meeting an engraving of Girard College, Philadelphia, now in progress of execution, together with the original drawing, which had been left with bim by the architect, T. Q. Walters, Esq., for that purpose. Mr. Godwin did this personally, in order that be might inform the meeting of the great respect with which the Institute was regarded by the American architects, and of the endeavours which bad been made to form a similar society there. Widely separated as the States are, circulars wiero addressed to the chief architects in each, inviting them to attend in New York on a certain day, for the parpose of organizing an association; and several of the instigators of the attempt travelled a hundred miles to keep the appointment. Tho meeting was more numerous than could have been expected. Resolutions were passed, rules drawn up, and then, heving first arranged an annusl re-union, they each departed to their widely-separated homes. The second meeting, it need hardly be said, when the difficulties are considered, was less numerously attended. The chief members of the society, who were much engaged, found the sacrifice of time too great, and the attempt was ultimately given up, although not before much goed feeling had been promoted, and some other good results effected- As Mr. Godwin observed, the whole transaction was so creditable to our Trans-Atlantic colleagues that it was worthy of mention at the Institute of Architects.

The second meeting for the session was held Monday evening, 11 th December, Mr. Robinson, V. P., in the chair.
Mr. Godwin, jun., read a letter in explanation of some publisbed views of his upon concrete, and in reply to some remarks on the subject by Colonel Pasley.

The donations to the library contained eeveral works of rare archaiological and architectural interest; and amongst various novel objects exhibited were some drawings of the Cathedral of Carlisle, and in particular of the circular roof, from Mr. Billings; some very superior embellishments and designs in paper-hangings, from Mr. Clark; and a French work from Mr. Bobn, on the antiquities of Mexico, being a continuation of the aplendid work of Lord Kingsborough on the mane subject.

Mr. Donaldson, the secretary, read a memoir of the late Mr. Thomas lee, architect, who died in 1834, and who was one of the founders of this institute. He was engaged in the construction of a great many public works, the most prominent of which was the column to his Grace the Duke of Wellington, erected on Wellington-hill, one mile and a half from Blackdown, in Somersetshire, and near the place from which the title is derived. After a very successful and eminent course, this deserving nrchitect was found dead on the shore, near which he had been bathing, $1:: r$ Exter, meeting an untinely death at the age of 40 years.

An interesting conversation ensued , it the subject of the various combinations of the different orders of archit .thre, on which the probable opinion was given of the formation of an English style, of which there are now wo many proofs.

ARCHITECTURAL SOCIETY.

At an ordinary montily meeting of the society, held at their rooms, No. 35, Lincoln's-inn-ficlds, on Tuesday erening, Dec. 4, 1838, William Tite, Esq. F.R.S., President, in the chair, a letter was read from Mr. Sims, on various uses of asphalte, which the writer did not, however, consider applicable to ornamental structures, from the ease with which it was affected by beat, from the sun, and other causes. A notice was given that the naxt subject for a sketch was a design for an entrance to a railwey station, without offices. Mr. Phillips read an interesting essay or some esential points comented with strncture, which we have inserted in another part of our jownal.
The folloring letfer was imedvertently omitted to be forvorded last mowth, but which was received some time since from the Architectural Union at Berbin, and read at the opening meeting.

TO THE ARCHITECTURAI, SOCIETY, LONDON.

The Architectural Society have reccived our friendly greeting, which Mr. Aleasader andertook to deliver. We herewith beg to repeat the same, and likewise to express the wish that, by means of interchange of information, with a view to tbe promotion of our art, we may coment an intimate connexion between the two societies.

We observe by the laws of the Architectural sooiety, which Mr. A. presented to us, that, with some variation in form, the soniety has the saroe object in view, and consiste of omilar mumber to our 0 wi. Wo boliove, therefore,
that each society may be benefted by reciprocal communications, and sccordingly beg that we may be enfrasted with inquirics and cosaminsion within the sphere of our profession, and that me may be permitted to trse the same free. dom.

With the lawe of our society wo beg herowith to present the inst number of the Architectural Album, which is not the work of the members of or society alone, like the architectural designs, but of German archlteets geme. rally, and which, by means of details, individual buildings, and constraction. may be also useful to the workmen.

We purpose sending the continuation of this work, as well as the dexips from the collection of the Architectural Union, together with the appertainity lettcr-press, and we beg your friendly acceptance of the same.

With high respect,
the councll of the architrctural union, beritn.

SOCIETY OF ARTS.

The ordinary meeting was hold on Wednesday erening, 19ih Decenber, David Pollock, Esq., vice-president, in the chair. The silver medal wras balloted for, and awarded to Mr. J. Gray, for an improved instrument for taking out teeth and stumps from their sockets. The arrangements allowed of a greater facility for its introduction, and upon extra claws which allowed α freer parchase upon the stump. A letter was read from the secretary of the Eant India Company, accompanying a ample of tea from Aaman for the opinion of the society. A silver modal was neat voled to Mr. H. Page, for at improved, easier, and more durable method of lettering marble. A comme nication was reed from Mr. George Aikin, on the recent agricultural improre ments in the fens of Cambridgeshire. The natural soil of these parts is dart, being almost gray, and is mixed with a quantity of silt, below being a spoug pcat, and great part being on a stratura of blue caloareous clay. The Bedfor level, comprising 300,000 acres, was formerly very subject to overflows, and is was only ponsible to work the land in spring and summer. Tbe greaves quantity of oats that conld be procured was from four to five quarters per acre, and the crops were often loat by the floods, but now, owing to improved agriculture, principally resulting from the application of ateam power for windmilb in drainage, the produce was from five to eight quarters. One greet inaprome ment was in the introduction of clay or marl, and where formerly only bed ans grew there could now be obtained excellent crope of good wheat and oets The proportion and succeasion of crops were stated, and the thanks of the society were voted for the communication. Communications were next read from Mr. Roberts and Mr. Hickson on the growth of a new variety of potaso, submitted to them by the society in Jasuary last, but which were referred back for further experiments. Tho meeting then adjourned over the recess to the 9 th of Jenuary.

ARTISTB' AND AMATEURS' CONVERSAZIONE.

The firsticonversazione for the season of this valuable society took place oa the 5th Dec. last, at the Freemasons' Tavern. We cannot expect many visitants a this carly period of the season, but we were pleased to see it mo well attended There were perhaps not so many publishers present as on ordinary oceasiom, and fewer novelties, as to engravings ; but this defieiency was well applied by the general interest in the proceedings which secmed to animate the company. A mong the engravings was one in the line style, by Robert Graves, A.R. A., from the picture of Shakspeare, taken before Justice Lucy for deer stoaling. It does equal honour to the engraver, and to Mr . Greorge Harvey the painter. An additional point of interest attached to this work is that the room and it furniture are studies, by permiasion of the descendants of the Mides judge from the objects now in their possession. The picture and engraving bod belong to the Sootch Aspociation. There was also a pioture by Allen, d Whittington and his cat, and another by Cooper, and also an engraving of the Battle of the Covementeri at Drumclog. Stanfield contributed several drawingy, and among the minor objects were a portrait of Mise Roberts by Mr. John Wood, a miniature, copied from Gainsborough, by Miss Auguata Cote, and nantical sketches by D. Serres, \&c. We were glad to see the ledies come forvard to support thoeo elegant arts which instead of meriting the desigratioc of Pling, "Solatia servitutis," ought more properly to be oonaidered as ornaments of the bousebold, and handmaids of the domeatic virtoes. As the season advances these conversacioni will, no doubt, be more fully attended by the numerous members; but even at the present early poriod they afforded full evidence of the pleasare they wero capablo of communicating, and the good they are likely to effect. It ia, indeed, through such meens that artiets must hope to promote the progress of the Arts, which are no myaterios to be kept secluded, nor objects of dificult comprehension, but sa they appeal atrongly to the human mind, so by that they must be judged, and to be admired they must first be known.

HORTICULTURAL SOCIETY.

At the ordinary meeting on the 4 th instant, Dr. Henderson in the chair, Dr. Lindley read a lengthened report of the effects of the late froet of 1897-8. The intensity of the cold was much greater than in many provious years. It had been proved, notwithstanding the assertion that the ground had been frozen to a depth of two feet, that aluhough on the surface the thermometer was four degrees and a half below tero, it was never frosen for a foot below the surface. In the kitchen ground the froat was not found at more than nine inches, in ordidary soil at ten inches, and in an arboretum of moss not below fivo inchex The concleding part of the paper was devoted to an examination of the mechanical and ofter eflects of front upen plante.

MEETINGS OF SCIENTIFIC SOCIETIES.
Royal Society, Sornerset House, Thuradayg, at 8, P.M., 10, 17, 24, and 30. Society of Andiquaries, Somerset House, Thursdays, at 81 P.w., 10, 17, and 24.

Institation of Civil Engineers, 25, Great Georgestreet, Wertminster, Tuetdeys, at 8 r.as., 8, 15, and 29.

Royal Institute of British Architects, 16, Lower Grosvenor-street, Mondays, at 8 P.M., 7 , and 21.

Architectural Society, 35, Lincoln's-inn-fields, Tuesday, at 8 r.M., 1.
Society of Arts, Adelphi, Wednesdays, at 8 p.m., $0,16,23$, and 30.

LAW PROCEDDINGE.

alleged breach of cuntract.
The following case, relative to contracts, is so important to the profession, liat we recommend it to their especial notice :-

VICE-CHANCELLOR'S COURT-Dec. $7,8$.

ranger \boldsymbol{v}. great wegtgrn railway company

Mr. K. Brace, Mr. Jacob, and Mr. Stevens appeared on behulf of the Great Westers hailtray Company, in support of a dennurrer put into a bill, which the plaintift, who is a large contractor with the company, had filed aguinst them, to obtain relief under cerlain contructs he had cntered into with thenn, principally with reference to ceorks at the Bristol end of the line. The learned counsel said tbe demurrer had been tiled on two grounds-multifariousness and want of equity. Before reading the prayer, Lowever, it would be necessary to give the court a short outline of the case on which it was founded, as well as to make the alternatives it contaised intelligible to the court. The plaintiff, William Ranger, had entered into four contracts with the company for the prosecution of works on various parts of the line. The contracts known in the pleadings by the letters B 1 and B 2, and the supplenuental or extension contract, all related to portions of the works on the Bristol end of the line. Tbey were not connected together, but all had reference to a neighbouring district of the country. The fourth contract, distinguished in the pleadings as L 8, from its relating to the London end of the line, referred to works in the neigbbourhood of Reading, and was materially distinguished fron the other three. In the course of making these contracts the plaintiff found it wecessary to obtain suretien to join with him in lis contracts with the company. The surcties to the three first contracts were James Cordy and Richard Ranger only, and to the last James Cordy, Richard Ranger, and George Ranger. These sureties and the company were the defendants to the sait. The contracts contained provisions similat to those which were familiar to the court, frora having occurred in the Popish chapel case at Hereford," where the contracting parties submitted to refer every dispute as to the sufficiency of the work to the decision of the architect. The only difference in thin case was that the superinterding engineer, instead of the architect, was to be the aboolute judge of the fituess of the work, and as to the paymenta to be made from time to time on certificates under his own hand. Nothing could be more absolute than the powers given by these provisions; they were, nevertheless, generally adopted in contracts of this description, and though it might excite some wonder how parties would willingly submit themselves to them, still they bad not yet been found in practice to be ordiuarily attended with inconvenience. Iadependently of this power the contract conrained a stipulation that the company should be empowered to resume possession of the works, in case the plaintif made any default in its execution. Under the provisions of this contract the works had proceeded from time to time to a very considerable extent, when, after various disputes and defaulth. (as the company alleged) on the part of the plaintiff, the company at length, in exercise of their powert, had taked possession of the plants, works, materials, acc., which were situate in that part of the Bristol end of the line comprethended in the contracts B 1, B 2, and the extension contract. Of the works comprised in the other contract in the neigbbourhood of Reading possemion had not been taken, but they were now in progress and diligent prosecution by the pleintiff. This brief abstract of the case would enable the coort sufficiendy to understand the prayer of the bill, with this additional obmervation. In the course of the works the company, at Ranger's request, made payments to him which, as they represented, exceeded the amount of What whan juetly due to him, whereon they took certain security on the plant, materials, acc., as a kind of mortgage, without taking possession, and of the reserved fands of 20 per cent. in the hande of the company. These matters being all fulty uet out, the principal portions of the prayer were that the company might elect whether they would permit the plaintiff to continue and complete the sereral works which on the 2nd of July last he was in the course of completing, or whether they would discharge the plaintiff from the further execution of thetn, the plaintiff offering to accept either alternative, on being paid the amount justly due to him on the footing of his contracts and agreesnents, or otherwise on such terms as the court should think fit to direct. And in case the company should elect to permit the plaintiff to continue and complete the works, then that they might be directed to reinatate the plaintiff in the pomension of such of the works and of the plant and materials thereon, of whicb tbey had taken poreession, and to pay bim sach amount an, upon a joue account to be uken as after prayed, should be found to be justly due to
moneys paid to him or for his use, and all moneys which the company should be entitled to deduct or retain by way of a reserve fund or under their mortgage deeds or otherwise, during the progress of the works, and that all proper accounts might be taken for ascertaining such balance, and that all proper directions might be given for ascertaining the quantity and price of the contract works. And in case the company should elect to discharge the plaintiff, then that he might be wholly and completely exonerated from all future liability to see to the execution of the works, and from all responsibility to arise therefrom; and that thereupon all accounts in relation to the contract and works, or such of them from which the plaintiff should be discharged, might be taken, and that the company might pay the balance, deducting therefrom the amount due on the footing of their mortgage securities, the plaintiff offering, in case a balance should be found due from him, to pay the same, and that the company might be decreed to deliver up to him the plant, engines, \&c., of which they had taken possession, and permit bim to remove that portion of which they had not taken posseasion; and that it might be declared the plaintiff was not subject to or was entitled to be relieved in equity against any penalties or forfeitures under his contracts; and that the company might be restrained from retaining or withholding from the plaintiff the possession of his plant, \&c., of which they had taken possession, and from doing any act whereby he might be prevented from completing the works or from removing off the ground, or otherwise altering the situation of the plant and materials already upon the ground. The court would thus sec the relief praged turned upon the rigbt of the company to make their election which course they would take, no offer being made to redeem the mortgages, nor any question of account raised, except on this imaginary right to have an election. He should now proceed more in detail with the case made upon the bill. It set out with a statement of the act of Parliament of the Gth of the late King, incorporating the company. and setting forth their powers, under which any three directors might enter into written contracts, which would be binding on the conppany. It then stated subsequent acts under the several provisions of which, taken together, they had entered into the four contracts with the plaintiff, which it was alleged were signed by the plaintiff, and under the common seal of the company, or otherwise executed on behalf of and assented to by them. The first contract (B1), dated March, 1833, related to the erection of earth work, tunnelling, building a bridge over the siver Avon, sec., stipulated the works should be done to the satisfaction of the company, and of their principal and resident engineer, clerk of works, surveyor, and inspector, and declared that all disputes were to be referred to the exclusive arbitration of the principal engineer for the time being, and the instalments for works done were only to be paid on a certificate under his handwriting. It then contained the usual powers to the company, requiring a sufficient number of workmen to be employed, and preventing sub-contracts without the consent of five directors. Then followed a clause, that in case the contractor should becone bankrupt or insolvent, or should neglect or otherwise become incapable to proceed with the works, the company should have power to give hiun notice in writing to proceed, and if default was made for seven days after such notice, the company were at liberty to employ otbers to proceed with the works, and any previous payments were to be considered as the full value of any works already done.

With reference to the uature of the engagement into which the defendants had entered, they were found to exist in all trades and professions. The direction being absolute, the company bad taken possession on a breach of the contract, and, if they had taken wrongful possession, an action of trover or ejectuyent was the proper proceeding. The learned counsel concluded by observing that no fraud was allcged either against Mr. Brunel or the company. The plaintiff only disagreed with Mr. Brunel on questions of time and other calculations: he only attacked his skill, or accused him of negligence, but nowhire complained of fraud. In one place he said be was unfairly dealt with; and, as it bad been decided in the Hereford case a charge of fraud was necessary, and was nowhere to be found in the present, it could not be relieved against in a conrt of equity. On all these grounds, therefore, the demurrer must prevail.

Mr. Sergeant Wilde, Mr. Wakefield, and Mr. Girdlestone, severally addressed the court in support of the bill. The learned counsel dwelt upon the importance of the case to the plaintiff, whose property, to the value of 100,0001 ., was arbitrarily seized by the company, and himself len to the mercy of his crediton, whose money he had expended in purchasing that property. The contract, it was contended, was so manifesily unrighteous, and the use made of it was so unjust, that the court was bound to interfere. The plaintiff contended there was no forfeiture. The company, it was charged, was labouring to create one by incquitable means, and this manner of acting, both prior and subsequently to the notice, bore out the imputation of the frandulent motives which dictated the notice; and when the plaintiff was earnestly praying for some specific information as to the causes of complaints, the defendants were as cautious in concealing them. Upon the point of multifariousness, the decisions of the present Lord Chancellor showed that was a question of convenience, and the company, at least in this instance, had no reason to complain that one bill, rather than four, had been filed against them.
During the discussion, which occupied the whole day, his Honour asked Whether the validity of such contracts of forfeiture as these had been dis. cussed in courts of law?
Mr. Sergeant Wide did not recollect any instance in which the question had been tried.
him, under the contracts or otherwise in respect of the contract works and extre additional altered works and extennion workn, after deducting all

Hia Honour said this was a case very much parallel to that of the Roman Ca linlic clapel at lie eford, where the whote works were scized, and the con:racturs wert left to get what redress they could; and certainly they gnt non - in this crourt. It was a cnse of lueart-brinking hardship, but his Honour Dever heard there was an appeal from his decision.

Mr. Sergeant Wilde-Probably the men became bankrupt.
W en it was uiged by Mr. Wrkefeld that the principle of lnw would not permit the parties to coristitu'e Mr. Brunel a judge without opreal,

His Honnur asked. It en what nould become of the case of Heap v. the Areh i-hop of Cantetbury?
Mr. Wakefield relied on the well-known rule as to athitration clauses.
His Honour, without calling for a reply, delsered judginent, and zaid he must allow the demurrer fur want of equity. He did wit think the obje tion for multifuriousness was well founded, or the contrarts, though not nue and the anme, wrre yet in pari materit; and if the colrt bad jurisdiction at all. it could only exercise that jurisdiction upon the centracts altogether, and the parties had, in their dealings under the contracts, blended them together, according to the allegations in the bill. One observation, however, occurred to bim: the suit was $s 0$ framed that if any other parties should make the objection, it enn hardly be made witl out producing that objection to the bill for want of parties which the plaintifi had already submitted to as insuperable. It was impossible not to see that George Ranger had notburg to do with the three first contracts, and if be objects, his name must be struck out of the record; and if he is off the record, the objection for want of parties revives, and thus the bill is placed between Scylla and Charybuis. With respect to the general point, he could not but himself think it was the intention of the company that they should bave, in a very great degree, an nebitrary power to dismiss the contractor if they should feel dissatisfed with him; and, to his mind, the language of the clause which related to the notice of dismissal proved it. The clause was thus:-"In case William Ranger sbould become insolvent, or be declared a bankrupt, or from any cause whatever other than the act of the company, their engineer, or agent, should be prevented from, or delayed in, proceeding with and completing the work nccording to the contract, or should not commence or proceed with the work to the satisfaction of the company, then it should be lawful for the company to give him Dotice, requiring him to enter upon and regularly proceed with the work; and in case he should, within seven days afier the notice, make default, it should he lawful for the company to employ another respectable workman," and so on. His Honour observed upon the generality of the second member of the sentence, namely, "in case the contractor shoould not commence or proceed with the work to the satisfaction of the company," and said it ap. peared to him that the parties in frrming the clause were sensible if they allowed it to stand in the spirit of the first member of the sentence they would have taken away from the company their arbitrary power; and if they meant to guard against a despotic and arbitrary exercise of power or whim, how came it that none of the exceptive words in the first branch found their way inio that sentence? And it appeared to him that there was very great reason for the company to stipulate for that power, for these works must be performed in a particular time, and it would never do for the company to enter into bickerings with the contractor from time to time whether be was going on with the wolks in a proper manner; and, therefore, in his opinion very wisely, and with the full knowledge of the contractor, they stipulated for anarbitiary power to give notice; and he could not but think the only reasunable metbod of construing the words "make default" was to read them with reference to the preceding sentence, so as to make the dismissal to depend simply upon lis not going on to the satisfaction of the company. Any other interpretation would be nonsense; for, suppose the company gave notice, and the contractor went on to their dissntisfaction, they must, it is said, give notice again ; and so on you have a succession of notices, and the company in a perpetual state of dissutisfaction with the contrector. That could not be the menning of the parties. It was evidently tbeir intention that that the company should linve liberty to exercise the arbitrary power of ejecting the contractor. His Honour then refurred to the case of Heap v. the Archbishop cf Cunterbury, in which, if he recollected aright, a party contracted with the commissioners for building churches that a contract should be performed to the satisfation of certain individuals. Upon a question of forieitur. for breach of contract, it was urged that the stipulation was arbitrary and unjust; but the answer was, it was quite lmpossible for the persons on whone belarlf the work was done, themselves to form a fair opinion upon it, and they were perfectly justified in stipulating that it should be performed to the sutisfuction of some g.ven individua on whom he had reliance, and, if he wus not satisfied, thes meant, as the contractor was awarg, that there should be no at peal. He could not for the, lifg of him think but that the compuny meani to reserve, and did reservento thamselves an arbitrary right to dismiss the plaintiff; and althougb it was,atated in the bill that the company had dismisaed $h \mathrm{~m}$ with a view to get hold of his property, and so on, that may be true; yet, if they liave diamissed blom, they have only exercised the right u hich il.ey possessed, and the exercese of that right was followed with consequencer wh ch they did not contrmplate, and which were mereaccretions is exercise of the right. Jus' consider the power of arbitratily dismissing persons in their mployment, which purtiés possess, in many instances, under the aw of Eng bnd. Put the case of conimun day labourers or servants. You muy go hun e, a complaint may be made, and you dismiss your servant, and refuse to give $h \mathrm{~m}$ a clarncter, y et he has no redreas. If you give a false ch 4 recter, that is a different matter. Bus supposing the power of dismissal in this case were not arbitiary, be could sot see how the court could interfere. If the foifeture was legal, there mat no redrem at law. A party
applying for equity must do equity. And how was a court of equity to relieve against the forfeiture without providing for the execution of the contract? And if the court will not execute a building contract, a forliori, it will not execute such 2 contract as this. Thus the court was dianbled fiom giving any equity to the plaintiff, because it was disabled from giving that reciprocal equity to the defendant of effectually providing at once for the completion of the railroad without interruption, in which he was entitled. And if the court cannot relieve the plaintiff becouse it cannot relieve the defendant, tbere is an portion of the bill on which it cas be sustained. The case was nothing more than that the company had illegally, and without warrant, seized the plaintiff's spades, wheelbarrows, \&c., and tberefore the bill was filed. There was no case for an acc unt. The paymenis were all on one side for work, and labour on the other. If there was a question of trespass, or if there was a question upon a qwantum merrit, a court of law was the place where that should be decided; but 801 ng as the work was in progress this court could not interfere. He should therefore alow the demurrer.
This decision, of course, disposed of the motion for the injunction.
Against this decision the plaintiff appealed to the Court of Chancery, the appeal uas argued before the Lord Chancellor on the 23rd of Aurnat Last, and follusing day. On Thesday, December 4th last, the Lord Chancellar delivered the following judyment, reversing the decision of the Vice Chancellor:-
This was a demurrer which came befote him during the long vacation. He had been induced to hear $1 t$, although the sitings were terminated, because it was represented as necersary that the demurrer should be disposed of in order to give the parts an opportunity of moving for an injunction; but be was so satisfied from the discussion which took place on the case made by the bill that it was not one in which be should interfere, that he had delayed pronouncing his opinion till now. The demurrer was a general demurrer by the Great Western Railway Company, on account of multifariousness; but he saw no reason for entertaining it on that ground, the company being immediately interested in the uhole matter introduced in the bill. It remained to be considered whether the general demurrer for want of equity could prevail. It could not of course prevail, if there was any part of the relief prayed to which the plaintiff was entitled. The bill was certainly singular in its form, because it prayed that the defendants might elect whether they would restore the plaintiff to the situation in which he was in possession of the work, so as to enable him to complete the works he had contructed to perform, or if not, that they should consider the contract at an end ; but in either alternative the prayer was, that the necounts which subsisted between the plaintiff and defendnnts might le taken. In was not deceasary to go into the very detailed circumstances laid before him at the bearing, because if any part wes capable of giving an equity, of course the demurrer could not prevail. But for the purpose of explaining the view he took of the case on the bill, it was sufficient to state, that the plaintiff alleged be bad entered into contracts to do certain works on the railway; that it was part of the provisions of those contracts that the surveyor and engineer of the company should every fortnight ascertain the quantity, or rather the value of the work done according to ceitain stipulated rates of charge; that the contractor, the plaintiff, should be paid four-fifths, 801., out of every 1001, for the amount of work so ascertained to be done, the 201. per cent unpaid being to remain in the hands of the company until it had accumulated to n certain sum, 4,0001 ., and on attaining that amount, the engineer having satisfird himself tiat the work was well done, the contractor whs to be paid tre who'e that was due. In these contracts there were certain conditions imposing great penalties nnd giving great fowers to the railway company. Among others there was this condition-if the engineer should not be satiafied with the mode in which the works were conducted and the progress made, the company were to give notice to the contractor to prosecute the works, and if he did not within seven days prosecute the works, they should be at liberty to enter upon the works in progress. Upon that taking place, not only all the plant, machinery, utensils, \&c., employed by the contractor was to become forfeited to the company, but the plaintiff was also to forfeit all that remained unpaid on the work previously done-i. e., that the money actually paid should be considered in full satisfaction of the work up to that time. If the engineer had done that which the contracts required-if he had provided for the payment, according to the contracts, of 801 . per cent. on all the work done every fortnight, the forfeiture would bave operated on the 201. per cent. remaining unpaid; but the case made by the bill wat, that this had not been done, and that in fact the engineer, favouring the company and acting oppiessively towards the contractor, did not estimate the work done so as to give the contractor 801. per cent. According to the statement in the bill, a very much larger sum was due to the contractor than 201. per cent. on the previous estimates, yet the penalty was sought to be onforced on all that was due, not only to exclude the contractor from the 20 . per cent. not phid, but also from a very large proportion of the 801 , per cent. Which he ought to have received. How was this, then, to be ascertained? Only by nn investigation of the work done, and the mode in which the engineer had est mated it. But that was not the whole case stated in the bill. Indef enden ly of the works carried on onder these several contracts, which were in writing, there were other contracts not in writing; there was also what was called the extension contract for carrying on the line, which was not in writing, but to be carried on at certain stipulated prices. Under that contract, the bill alleged payments had been made, but very large sums still remained unpaid. The bill stated that apwards of 30,0001 . remained due on works actually completed by the contractor; so that if the company were right in doling what they bad done, and eaforcing
he contracta for forfeiture, they were in possession of a Jarge sum of money, which, even in that case, must be coming to the plaintiff, while the amount could only be ascertained by the quantity of work done, and the mode in which payment had been calculated-an investigation obviously which could only take place under the superintendence of a court of equity, for it was utterly impossible such an account could be taken in any court of law. The case, however. went atill further than that. The bill tated, that the plaintiff being pressed for money to carry on the works, applied to the company for an advance on loan; they consented, and tbree everal sdvances were made, secured on the property of the contractormamely, on the plant, utensils, and tools employed in carying on the works, and by a mortgage on what remained due to him, the 201 . per cent. for work previously done, but that the bill alleged applied only to the plant implements, and tools for the works under the written contracts: it did not apply to the plant, utensils, and tonls employed on the contract not in writing The company, however, had taken possession of the whole; they claimed all under the penalty as forfeited. Now, the bill contained a statement which If true, showed that the company had no title under that clause of forfeiture. The forfeiture could only be enforced if the contractor disregarded the monition after seven days; and the bill alleged that within the meven days, taking up the very words of the contract, the plaintiff had put himself in that situation, which, if true, would have prevented a forfeiture. The company therefore had no title under that clause of forfeiture; but if they had no title under that clause of forfeiture, they were in postession of large property, atated in the bill to amount to 70,0001., on which they nadoubtedly had a lien for the repayment of the aums advanced to the contractor. The bill also stated that the eugineer of the company declared that in making the certificates he should consider what was the state of the account upon all the contracts. The result, therefore, would be, according to the allegations in the bill, that the defendants had illegally and without authority possessed themselves of property which they contracted to leave iu the hands of the plaintif, and an unsettled account remained between them. It was impossible to say, if such a case were made out, that the Court would not administer sume relief; it was impossible to say the plaintiff had no equity, and the demurrer could not be supported.

The Vice-Chancellor's decision allowing the demurrer was accordingly averruled.

PRIVI COUNCIL, Wednesday, Dec. 12
The petition of James Russell, Esg., of Ilandsworth, came on for hearing before the Privy Council this day. The lords present were Lord Brougham, Mr. Justice Parke, Mr. Justice Bosanquet, Sir Stephen Lushington, and the Hon. Mr. Erskine.
The petitioner prayed for the renewal of a patent "for cartain improvements in manufactaring tnbes for gas and other purposes," assigned to him by Cornelins Whitehotese, a workman employed by him for the purpose of carrying into efrect the manafacture of tubes by machinery.

Mr, Creaswell (in the abeence of Sir William Follett) detailed the history of gas-tubing from the period of the application of old gun-berrels for that purpose. The present javention hed arisen in consequence of the petitioner haring been prevented by the combination of his workmen from meeting the demands of the Gas Companies for tubes, the supply afforded by manipulation being limited, and too dependent upon the caprice of his workmen to allow him to entor into contracts. The great demand for the patent tubing, and ita great superiority over the hammered tube, had led to numarons infringements, which, coupled with the enormous extent of litigation consequent on such piracies, had deprived the petitioner of the fair and adequate reanneration he ought to have obtained for so valuable an invention, withont wbich gas-lighting could not have been carried on to its present extent, and which hid led to several inventions of great utility.

Angier March Perkins, Esq., Civil Engineer, proved that he was the incentor of an improved melhod of heating baildings, which had been adopted in the British Museam, Milbank Penitentiary, and in many churches, housea, and other baildings, both public and private, to a great extent, and that his patent wat entirely dependent upon the patent tubing of Mr. Russell, without which he conld not have carried ons hit invention.

Pramets Brimah, Esq., Civil Engipeer, proved that he had isspected Mr. Russell's works, and was delighted with the beanty of the invontion; that he had for some years med the patent tabing, and had subraited it to a pressure of 3 tons upon the equare inch. Mr. Bramah also opoke to the great reduccion in price efiected by the patent, and ite ntility for hollow axlea, spindlea for machinery, and a variety of mechanical purposes, independent of ita valoe for tranomititig heat, gas, or fluids.

The Lords of the Council having intimated their opinion that the value of the pateat was in some degree proved by the namerous decisions of the Courts of Law in its farour, the sacounts wore put in and verified.

Mr. Fletcher, of Dudley, as solicitor to the petitioner, produced the original patents and other documents, and proved that he had complied with the reguLetione gro gated by the Privy Council.

The Ath ey General theu addressed their Lordshipe on behalf of the Crown, and as'ed that he was fully acquainted with Mr. Russoll's patent, having been employed in opposition to it in different Courts of Law. He could, however, fully attest the value and atility of the invention; and if their lordahips should be of opinion that sufileient remoneration had not been a. .onded, te shonld, moder the peculiar circumatences of the case, rejoica if thery larlipe would grant an oxtemsion, is onder that edequate rewand might be civen to an invulion of grots palic bueft

Lord Brougham: Their lordehipt having taken the whole of this matter into account, retain the opinion which thay have had impressed upon their minds from the very beginaing-that this is an invention of extraordinary merit, doing the greatest honow to the inventor, conferring great benelit on the community; fonnding in this eminent merit not merely the application of a known principle embodying it in new machinery, and applying it io practical purpones, but involving the discovery of a new, curioun, and moot important principle, and, at the same time, applying that principle to a most important porpose. Their lordships have on the same side of the queation triken into sccount (which it is materisl to meation) Mr. Ruseell's merit in patronising the ingenious and deaerving author of this invention, in expending money till be was enabled to complete this invention, and in liberally sapplying the funds which were requinite for the purpose of carrging this invention into oxerution. On the otber hand, their lordahips have tifen into mature considaration (which they always do in auch cases) the profit made by the patentee, Mr. Ruseell, manding in the place of the inventor. They find that it is not a case, an in claims of other inventions of great ingenuity and certainly of great public bemefit, of actual low in some, and of very scanty if any profit at all realised in others, bot that a considerable proft has been realised, and upon the whole no loss. It is to be observed that the profit is not, perhapa, very much greeter, if at all greater than the ordinery profte on atock to that amount employed without the privileges and extra profits of a monopoly. It is proper to consider that one great item of deduction from those profite also involves great pain and anziety and suffering to the party, namoy, the litigation to which he has been subjected, and which is generally found to be in proportion to the merit and the uefulness of a patent, namely, the tempta. tion to infringe it, and to set at nought the right of the patentee, both in the Court of Chancery, when he applies for protection by injunction, and afterwards in a Court of Lew, when he comes to claim compenation for damages; the temptation being! as I have stated, in proportion to the benefit and the demand for the invention. That is an item which hat, to a conaiderable degree, attracted the attention of their lordships in this profit and loes meconnt which has been laid before them in the course of these transaction. Taking the whole of the matter into consideration-the merits of the patentee, the merits of Mr. Russell, and the loas that has been sastained in the litigation-and aetting againat thove, on the olhor hend, the profis which have been made, their lardehipe were of opinion that the term ougbt 10 be extended, and upon due execution being givan to the modertaking, which has beon jut given by Mr. Fletaher on behalf of the inventor, that the term ought to be extended for the period of six years.

syman mavigation.

An iron steam veacel, of 50 tons barden, 71 feet in lengh, and 10 feet of beam, with wheole at her storn, comatructed on the sculling principle, aulled the Robert J. Stockton, came round from Liverpool to London upon an experimental rip, daring the late tremendous weather, and arived in the river in safety on Monday ovening, Doc. 8. The superiority of the wheel introduced into this veasel, in comparison with What is called the Archimedean screw, and other contrivances, whe sativfactorily ahown, and no doabt whatever is entertained of its extensive adoption. The Robert J. Stockton will in a few days proceed on a voyage acrons the Athantic.- Ecening paper.
Sleamer.-On Thuraday morning some curionity was meited at Blackwall, and below, towards Grevesend, by the novel spectacle of a large beary-laden ship proceeding down the river propolled by a steann apparatus. Her appearance weat that of on ordinary vemeol, with the exception of a few bars of iron on her sides, crosed in different directions, to which the propellers appeared to bo atteched. No paddleboxes were visible, nor wha the weter thrown up, as in the case of the paddle-wheala -the action seamed to be amooth and equable. This is the firat attempt, as far as we know, to adapt the nse of ateam power to propel a vessel of the ordinary constric. tion; and it certainly does, on reflection, seam axtraordinaty that some plen for ffecting this object abould not have been, before now, brought into beneficial use, the mormons expense attomding the comatant conaumption of ficl in steam vesels belag the great obatecle to the epplicution of steam power to distant vorecos. The ahip above alladed to is the Marie, going to Indie; her mechinery, inclading the boilars, ocenpies comparatiroly little spece.-Daily paper.
Nenofoundland Starm Navigation.-The Hoase of Aseembly of Newfoandiend hare rotad 6001. for the promotion of stewn compunication between Newformaland and Great Britain and cralend.
Bordeaur amd New Fork Steam Navigation-an public meeting, autended by eighty aine of the moet respectable marchants, was held at Bordenux on the 29ib of 'Not., and appointod a committiee to taine preparatory measures.-Commerce.
North America.-The important tople of steam-narigatina to the Briting North Amoricen colonies is engeging mrach atteotion in Halinx and St. John's. Mr. Howe who hed been adroceting in Enghand the oxpediemoy of a change in the prement rystem, hes roturned to Halifar,-Iforming Adzertiser.

Wres India Iolande.-We have seen, within the lest fow leya, a circular containing a prospectas of a plan for opening and maintaining a regular commanication by stean betrixt Liverpoof and the differtut Weat India Islands.-Liocrpaol Albion.

Brarilian Sleam Navigation. - The Bahia people were looking forward with impatience for the arrival of sorne of the steamars which the Bahis Bay Stenm Navigation Company propoced to put into operation in that quartar, and there seemed to be every dispondtion on the part of the readents to give all the encouragoment in their power to the andertaking-Morning Poth.

French Raprimental Slom-Boat-Tha stoamar Veloce lean reocived ardars to bold
 adopted by her commender, M. Bechmoiel. The quatign whether toons and wivd can be combined fill thos be upedily molred-Arierigain:

Sloam Cutter, The United States discorery ship in the South Seak, the Maccdonian, has an eight-hurse steam engine to put intw the cutter of the frigate, to ply up the varions rivara in New Zealand.
Adriatic Stcans Nuvigation. -The Austrian Loyd's Compang havo entabliahed steam vessels betreen Aucons and Trieste.

The Royal Williaut started on the 15 th ultimo fron Liverpool for America. She was provided with forl sufficient for 27 days, of which 30 tous 9 cwt . were of Mr. Williams' patont peat stone fuel.

PROGRBES OF RATLWAYS.

Raibvay to Lewes and Hastings.-The plan comprehends a line of railway, commencing from the line of the London and Brighton Roilway, at St. John's Common, and running in nearly a straight line to Lewes, where it crosses the river a short distauce below the bridge; it is then carried on through the levels of Laughton, acroses the Cuckmere river near Selmeston, and from thenco through the Eastbourne and Pevenmey levels, passing to the north of Eastbourne, and in front of the Castle at Pevensey, and thence in nearly astraight line to St. Leonard's aud Hastinges. The line selected parsee througt wo level a country, that the works required for its construction are scarcely of greater maguitude than those of ordinary turnpike rosds, which is a circumstance of the most matarial importance, as diminishing the cost of the line far below the usual average cost of other railways. The gradients are also peculiarly fevourable. In connexion with this line of railway, it is proposed to construct a ship canal from Newhaven Harbour to Lewes, with a wet-dock and basiu at Iawes, a litule below Lewes bridge; the canal will contain twenty feet depth of water, and by reason of aroiding the intricate windings of tho river, will reduce the distance from Newhaven bridge to Lewes to five miles and a half. By this canal, therefore, Lewes will become, as of ohd, a port, and the wholo of the trade and coms werce of the district be brought to the merchant's own door.-Sussex Express
Brandling Junction Railway.-Every exertion is boing made to open this line of rallwuy for publio conveyance at emrly as January next. Four splendid locomotive enginem, from the tactory of Meass. Longriage and Co., at the Bedlingion Irou Works, have this weel boen forwarded through this town for the Brandling Company ; snd, from what we can learn, those engiues called the Brandling, Newcastlo (nang; being tried on the Nowcastle and Carlisle line), Bedlington, and Gateshead, are of a very superior coustruction, and reflect much credit upon the manufacturers of them.-Newcastle Journal.
A Contrast.-Great Western Railuay.--The works on the Great Weatern Railway, near Reeding, continue to be at a total stand-sill. Some of the labourere are begging about the mereets of that town, and othern havelef, to obtain work elsewhere.Reading Mercury. The morks on the Great Western Ruilway, between Reading und Didcot, are progressing with a rapidity and punctinality exceeding that on eny other portion of the line. There is a report that a temporary station will be erected other portion of the line. There is a report that a temporary station will be erected
between this town (Reading) end Twford in April, but we do not believe it will be required so soon.-Berkshire Chronicle.
We understund that the eastarn arch of the Maidenhead bridge has been taken down, for the purpose of rebuilding it: this wo were afrud would be the case when we surveyed the bridge in June last.

London and Southampton Raitoay.-Part of an ombankmeut on this line, near Weybridge, gava way, and blocked up the roed so at to oblige the passengers by the five oclock train to leave the carriages.
Lomdon and Brighion Railway. The workn on the London and Brighton Railway are proceeding in the most eatisfactory manner. There are 1,600 men now employed on the line. Mesara. Thornton are making rapid progress in the Long embankuent north of Clayton-hill: and the tunnel shafts at Meratham, Clayton, and Balcombe, are neerly completed. In order to expedite the execution of the works in the Shoreham branch, it is underntood that a double eet of man arc engaged for the outting on Mr. Puller's farm at Aldrington, the work being by these means carried on night aud day without interninaion.-Brighton Gacette.
London and Greentoich Railouy.-On Tuesday, the 4th of. December, the renaining portion of the London and Greenwich Reilway, extending from Deptiord to the Prince of Orange public-house, is Greenwich, was privately opened, under the superintendence of the directors, who were accempenied by Colonel Landman, the engineer. The new pert of the line is laid upon longitadiaal wood bearers, supported npon transverse wood sleepers spon a bed of ballast. The top of the arches have been coated with Claridge's asphalto. On the 24th December it was opened to the public.

Great North of England Raihoay.--The workmen have now commenced laying the foundation of the fifth and last bridge of the Great Narth of Eugiond Railway, near Northallerton, a little to the south of the town, which will cross over the bigh road leading to Boroughbridge, near to the 220th milestone from Londan,-Newcastie Journal.
Tamworth and Rugby Raitway,-So confident are the partias angaged in this undertaking of obtaining their act for carrying the Mancheater Railway through Tamworth to Rugby, that a legal gentleman in the neighbourhood of Nuncaton hes received anthority to contract for the purchase of any land which may be required in that district.-Birmingham Adeveriver.
Manchcater and Leeds Raihoay.-The portion of thde extensive undertaking which lies betwixt this town and Rochdalo is in a very setiefactory state of forwerdness, and will, in all probabilty, be opened $\frac{1}{}$ May of June neat of the part becwixt Mills Hill and Rochdale, which was the most heavy mand difficult, about three perts in the lundred only romained antiniahed in the mittule of November. The cuttinga and embankments, the latter including the important one of Mills Hill and Casdioton Clough, were nearly perfected, and persanent raibs will be laid in good time on the whole of those works. The bridges (from a difficulty in obtaining stone) were the only works not in a corresponding state of forwardneas. The tunnelling at the summit is proceeding as fast as human akill and activity can promote it, and at Gauxholme a large muster of workmen ape daily employed in sinking foundations and cutting stone for the orection of warehonsen and other reyuisite buildings.Wakefield Journal. The line of railway from Menchestor to Litthoberough is advancing so rapidly towerds completion, that, if the severity of the woether do not matarially protrect opermions, it will corrinily bo ready for openiag, between theot two ploces, in the apring of nost gean About half of the purmandit ruils have, we

Manchester and Birningham Railicay.-A deputation of thedirectors, aceompanied by G. W. Buck, Esq., the eugineor, mot the committee appointed by the town council of Macelenfield, in order to communicate to them the plan for a diversion of the proposed branch to Maccleatield. Mr. Buck's report was read; it stated that the Macclesfield branch enters the mainline in a cutting, on a curve, aud ut the fuot of an inclined plane which is upwards of a mile in length. Under sach circumstances, approaching trains would be invisible to each other, aud, therefore, to prevent accidents from collision, it would be absolutely necessary that the trains conning from Macclestield should stop before entering upon the main line; but stopping hera would be impracticable, on account of the momentun acquirod in descending the inclined plane. Again, although no trains might be approaching on the main line, sill the Macclesfiold trains ahould enter the main line at a slow apeed, which would be impracticable for the same reason. It is obvious that these defects are such as would constantly give rise to serious accidents, and, therefore, ought, if passible, to be obviated; with that viow, Mr. Buck recommends that the Macclesfield liue shall branch off near the sevonth mile, on the Parliamentary plan, at Cheadle Hulme, and thence proceed in a direction nearly south, pussing by the Siddall honses, then gradnally bearing eastward to Hollingworth smithy, where it should pass under the road to Adlington Hall, nid fall into the Parliamentary line a short diatance beyond, from which place to Macclesfield the Parliamentary line will be retained. By diverting the turnpike rosd near the Millhouse, no crossing of it will be required in the whole distance, except at lieech bridge. The length of this deviation will be sbout $0 \frac{1}{2}$ miles, of which tuse first 28 chains adjoining the main liue may be level, and the remaining distance will have an ascent of 20 feet in a mile, or 1.204 . From Hollingworth smithy to Macclesfield, the railway may be constructed of oue gradient of 1-232, or about 23 feet in a mile. The advantages which will accrue from adopting the proposed line are the following:-The leugth to construpt will be about one mile leas. The junction takes place where the main line is straight, upon a level, and upon a sruall embankmeut. The maximum gradient will be 1-232, or about 28 feet per mile, whereas on the Parliamentary plan, it is $1-160$, or 35 feet per mile. The proposed line will be cheaper to execute and cheaper to work.
Manchester and Birminghan Railway. - The oxtensive viaduct meross the Mersey and ralley at Stockport, has been left to Measrs. Toukinson and Messra. Holne, of Liverpool, at a little below $\mathbf{f 7 0 , 0 0 0}$. It will have twenty-two arches of Hotween sixty and seventy feet span, the contre arch crossing the river at a height of 100 feet. The lowest estimate was about $£ 02,000$, and the highest was about $\pm 100,000$.-Macclesfield Courier.
Sheffeld and Rotherham Railtcay.-The station and its vicinity still coutinue the great scone of attraction. On Sunday the number of passongars conveyed amounted to 3,600 . The number of passengers who have travelled on the railway since it was opened for businesa, bave averaged 1,350 daily. A geutlemun has made a Frager that 800,000 persons will be conveyed in the railway carriages during the first twelve months.-Shefficld Iris.
Birmingham and Gloucesfer Railway.-The Gloncester portion of the line is rapidly approaching to completion. The carthwork is remarkably light, os is also the masoury, of which the whole is being executed at prices hitherto unbownt to railway proprietors. Workmen are eugaged all aloug the live, which is let in sinall contracts. At Tewkesbury the depot is comunenced, and the Lansdown depot will be immediately proceeded with-the drawiugs being already in the builder's hand. A plain but elegant skew bridge, under the Arle road, is now waiting for the iron work; and wo observe the workmen vary busy on the large bridge which is iron work; and wo observe the workmen very busy on the large briage
to carry the old Gloucester roeal orer the railway. -Chelicnham Looker. On.

Chcstcr and Birkenhead Railway.-We understand that Mesars. Clements and Heary, the contructors for the Cheater ond of the Birkenhead and Chester Railway, are progressing satisfactorily in the heaviest portion of their work-viz., the filling up of the valley, and the erection of the bridge over the Dee and Marsey Canal at Mollingion. They are preparing an inclined road, and fiting up a stationary eugine at grcat expense, in order to expelite the couverance of the earth iuto the valley. Great progress has been made at the other end of their contracts, near 8ntton; a great quantity of earth has iven removed, and through the deepest portion of the cutting great preparations of material are now being made, in order to prosecute vigoronaly the wholo line next year; combining the lighter portions of the work between Mollington and Chester, ax also on the other ema, betwecn Sutton and
 line.-Chester Gasette.
Glasgow ard Ayr Rutilocy. - We are cnalled to iufom the public that this great national undertnkiug is carried ou most satisfictorily, and that the whole expenses yot incurred have not exceeded the parliamentary estimates-a circumatance as unprecedented as creditable to Mr. Millcr, the engincer. The same may be said of the tirst part of the line as far as Paisley, which is executed by Mr. Locke, for tho Arrshire aud Greenock Companies jointly. The whule line, we are assurcd, will the completed by the time the Glasgow end is ready, which will be in the spring of 1840. -The Earl of Eglinton has, we understand, determined on completing the harbour and docks at Arirossan, and making the necessary arrangements for goods and parsengers; whilst the inhabitants of Ayr are also bestirring thomsalves to render their river harbour as good as it is capable of becoming, and a company in alreedy formed to establish a steam navigation from Troon to Belfast.-Glaegow Couricr.

Glasgow and Greenock Railuay.-The directors, at thoir last meeting, let the two remaining contracts on this line, Mr. Brassay baving gained the Walkinslaw, and Mr. M'Kenzis the Finlayson. Judging from the rapid progreas already mado by those gentlemen at Arkleston and Bishopton, there is nu doubt bat the opening of the railway to the public in the early part of the summer of 1840 is secured. - We undorstand that at the lishopton ridge nearly 100,000 cubic yards have been excavated, that one stean engine is already at work, for pumping the water and hauling the rock from the tunnols, and that another engine is preparing here at Mesars, Johnton's worke.At Arkleston the same rapid progress has been nowle, the tunnel shaft is completed, and the tunnel coramenced. About 90,000 cubic yards have been excavaled, aud ballast of a very superior quadity has been found in groat abundance. - In this town the masonry for carrying the railway over the otrects is proceeding rapidly for tho season; four arches are turnod, screral others in haud, and a length of wall is built.-The works arc equally stirring at lort.Glasgow, where, for nearly half the leugth of the lown, the masonry is in progress. - In Paisley, the large bridgo over the river Cart is built nbovo flood water, which is vary creditable to the contractor, Mr. Lyon, who only commenced work late in tire sesson. The bridges over Gilmour-street and Greenlawetreet, together with the retainigg walis, are aloo con-

Edinburgh, Loith, and Newhaonn Railcay:-An elegant and substantial bridge, of thirty fret span, under tho Qieensferry road, sbout one mile from the city of Edinbargh, has been finimhel, under the superintendance and design of Mr. Jaines Adam, jorn, the assiatant engineer, for 1,400 . The lowest offer by contract was 1,0001 . The contract from this uridge to the Water of Leith is now nearly completen. It consinta of embankments and excavations of thirty-four feet in beight and depth, and has an interesting appearance frown the city. The contract at Tribity is also far andvanced. The principal depot in situated at this terminus; and Prom this it is intended to carry the branches to the pier at Granton, and the harbour at Leith. It in also expected that the tannel will be commenced immediately, at the principal dopot at Canal-treet. The Edinburgh and Glaegow, as well an the great Nerrcastle and London line, will terminate at the same spot, which is in the very centre of the city.Railsay Times.
Weal Cumberland Railway.-Another source of distrust towsids the coant line scheme is that the parties do not look for obtaluing the general support and concarrence of the residents in the districts through which the line is to pass. This may eccount for the ceralierness of the cornrilttee, but it also suggesta that some jobbing interest is at the bottom.-Kiendal Mercury.

Raibay to Glampow.-The people of Glasgow have already begun to evince their anriety to onite with Carksle, to communicate with the south, either by Mr. Hyde Clarke's Morecombe Bay Line, or that over Shap. - Dumfries Courier.

Srotch Railway.-The Duntries people aro anxious to form a junction with Carlige, and to give every acaistance for this object. It Fould be worse than superfluous in us to add one word of argument in support of the ellgibility of Mr. Hyde Clarke's West Cumberland railway communication with Scotland.-Dumfries Times.

Pranton and Lancaster Railuray.-The operations on this line of ralway are procceding with great activity, and, so far as the work has proceeded, overything has bern highly favouruble. A great number of men are at work, and the respective coustraciors are aparing no pains to advance the works with all possible repidity.Manchenter Guardian.

Eastern Cownties Railoay.-The following is a statement of the progress of the works on this line between London and Romford:-Works completed in Brickurork, Mawnry, and Iron-A bridge over the Regent's Canal, of iron, 56 feet span; bridge over the river Lea, 70 feet span; Stratford viaduct, of five arches, 36 fees span aach: Mill Pond bridge, 40 feet apan; Slent's bridge, of four arches; Abbey bridge, 82 foet apan; Aldersbrook bridge, 40 feet apan ; Roding bridge, 40 feet span; Romford river bridge, 30 feet span, in 34 feat embankment; Easex turnpike-roed bridge, carried over railway on cast ircon girders for a distance of 164 feet; besides 11 bridges over pablic roads, and six occupation bridges; six other romd bridges are in progress, and also the vinduct betwceu Cambridge row and Devonshire-street-Earthyork-Embankment over Regentis Cand to Hatfield's archway, nearly ready for bellasting and permedent way; from Grove-road bridge to Tredegar-square, the embankment up to the ballant line; Coborn-road to Fairfielchplace, embankmont partially formed; from the west culvert to Forestgate, the cutting and embankionent complete, and the permanent way laid for nearly two miles ; from East Ham up to and beyond Iford, the cutting and embankment crossing the Ilford valley completo, and the permanent way lid for more than a mile.

The portions of cutting and embankment not yet begun amount to not quite a mile and three quartars. Abont a mile and a quarter consists of a cutting only eight feet in depth, is very favourable soil; a quarter of a mile is embankment, not averaging aix feet in height, and the remaining quarter of a mile is that portion of the embankment over the Stratford marmhes, where the ground for a depth of eight feet is inctined to "apew up." Considerable difficulty and delay might have arisen by the consequent aubaidence of the embanknent, but this has been completely obviated by carrying a frame work of timber, supported upon piles, in alvance of the operations A cortain proof of this, is the fact, that between the 11 th of Septernber and the 23 rd of October, the embankenent was carried from the east side of the Carpenters' Compens's oecupation archway over Stont's Mill bridge, a distance containing 44,680 cabic yards, although the lead was one mile and e half.

In order to insure ats earty opening of the line tu io Romford, four locomotive engines are working night aud day in the formation of the embankments.-Extracted frim the Raiduay Timics.

1 Ruitray Warmer.-There ix an ingenions coutrifance by which accidents may be ffiectually preventect. It consists of a bar of iron fixed in front of the engino, at a smand distance nbove the rails, crossing the whole breadth of the road, which puatus auy olstrucuing body before it, aud, whon so obstructed, rings a bell, which give notice ω the enginecr. The benevolent inventor allows the use of bis contrivance gratis.-Moruing Allverliser.

Raikeray Missionarics.-The Bishop of Bath and Wells has appointed the Rev. F. Campbell, M.A., an a miasionary among the navigators employed on the Bristol and Exetor Railway. The Railway Directors, and the Church Pastoral Aid Socicty, have liberally contributed, and it is hoped that the same well-judged efforts will be made elsowhere to rechim them from their present heathen state.-Bath paper.

FOREIGN RAILWAYS.

Raitoay from Brunacick to Haysburg.-The first section from Brunswick to Wolfenbutiol was opened on the 802 of November. Tho duke himself wes present on the occasion, and the train, consisting of fire carriages, set ont of twelra o'clock, and reached Wolsonbutuel (seren English miles) in twenty minates. The duke, the ministers of state, and other distinguished persons, wete hisply plessed with the result of this crial, which whs londly cheered by the crowd that had amembled to witness the norel sight. On the retum, It was resolved to divide the train between two machines, in order to try their power and the goodness of the rond. Their progress was accelerated as mach as possible, and the seven miles wete passed in ten minutes. The road was openced to the publle on the lat instant, and in the first seven days there were 6,527 passengers, and the number wnull have beeu much greater, did not the shortnens of the days prevent the trains from going more thmo forur timas In the day, backwards and forwards,-Hanorer Gasette, Dec. 11 .

Nurrobery and Furth Raiway. - The number of passengers on this line in threo perra hea been 1867,280 , and the receipto 173,443 forins. During this period no fore of life hat been incurredunGlobe.

Have Railway. - Two important mcasares were mdopted at the recent meeting of the Council of Administration of the Harre Railway Company, which decided that a new surrey whall be made of tho whole line from Paris to the nes by the engineers of the compeny, and has also named froinamongat its members a committee charged to discuss with the Government the modifications which it may be necesaary to introduce into the coutract, in consequence of the estimates and plans to which the inventigations above alluded to may leed. Till the expeuses of the railway shall be laid down with accuracy and procision, the Council of Administration, it adds, has suspended the works which were commenced according to the estimate of the Govenment engineers, but Which might have compromised the capital of the thareboldars in an updertaining impossible to be terminated with the funde at the disponal of the company.-Commerce.
Harre Railway.-The committee have determined to have the whole line re-surveyed by their owon engineors, not beiny able to place any dependewoe on the government engineers. M. Lebobe has becn appointed temparary rannaging director in the plece of Count Janbert.-Commarce.
The German liet, before it broke up, took a resolntion which has asused great joy at Mayence. It consented that the iron railroed of the Taunus should have its cerminum in the foderal fortress of that city, and even that one of the beations should be plerced, if necessary, for that purpowe. It seems that the Bavarian ambassador declared that he had orders to oppose whatever might, in the moellest degree, affect the security of that inportant fortress. The Austrian and Prusaian enginears dechared that there whas not the smallest danger in complying with the wishem of the citixens of Mayoace; and an eminent Danith engineer clearly demonstrated it.-Morning Chronicle.
Austria. - The atetates of the company for the Milan and Venice Railrond have been approved of by the Austrian government, and the works are to be commenced next spring. The journey will be mecomplished in aight houre, and the fares are to be exceedingly moderate

America.-The late accounts from the United States present some intereating dethils of the progrems of the improvements in the free states of the federal union. The state of Pennsylvania has completed the survery of the route of the raikond to con. nect Pittsburgh with Miladelphia, and the state was about to make an immediate appropriation for makiug on its own account a railrosd to connect it with the Herrid. burgh and Lancaster road, by which the Ohio and other great sivers will be reachas in 24 hours. The same state has also made a railway to Lancaster, and will pontinue it from Harrinburg.

ENGINRERTNG WORTS.

Forlification of Shecrness.-A aurvey of the Isles of Sheppy and Grain has been going on for mone months past by ordar of Government, with a view of immediately fortifying her Majexty's Dockyard, which is at present without almost tho slightest power of resisting an invading foc. Several plans have been laid before the Lords of the Admiralty, but the oue that is most likely to be brought before the houso naxt session propones a line of fortifaction acrose the range of hills extending from Minster church to the Swale. A range of batteries herc, it is said, will cover the whole island, and would at any time prevent all enemy from landing at the southeastarn extreanity. The Dockyard and Miletown are to be coverod by strong batteries, and martello towars will be also erected along the shores at given distauces. The Isle of Grain is to be fortified with strong batteries, exteuding in the shape of a half-moon. These will not ouly cover the eutrance of the Thames, but also the Med. way. The escimated expense is nearly a million and a half of money.-Greenvich Alderiser.
London Docks.-A great improvement has been lately mede in these docka, by tho erection of a magnificent jetty, supported on manaive piles, extending from the southwest quay, eight hundred feat acrose the large banin, afforling a quay frontage on both sulas for the loeding of outward-bound ships of 1,000 feet. The jetty is 62 fcet in width, and three lofty sheds, each 208 feat long by 48 feet wide, for the recoptiou of goods and merchandise for exportation, are in the cousre of erection; one of these storehousen is already completed. There will be a spece of seven feet clear ou cach side of the wareLouses. The erection of the jetty is sail to have cost the London Dock Company not less than $00,000 \%$., and it will aflord great accommodation to the shipping, and particularly to the Sydney and Hobart Town ships. There are now eight large veesels bound to those places lying alongside the new jetty. They will all carry out a great number of emigrents. There is suficient depth of water for tho largest shipe in tho jetty, and at spring tides there is twenty-tluree feet of water. Tho whole work reffecte great credit on the akill and enterprise of the reapectable commorcial body by whom it was domigued. A capital of one million aterling has been expended during the last twelve years in enlarging and inuproving the London Docks, including the excavation of the cestern bacon and entrance, and wo understand further improvements are in contomplation. The dock, with the rarious rows of lofty warehousen and venlte, is the firmt establishment of the kind in the world.
The Eddystone.- We feel greel pleasure in stating chat, on axamination by the competent suthorivies sent here from the Triuity Board, it is ascernined that tho Eddystone Lightbouse has not sutained the slighteat injury during the lato severe storm. The report forwarded from this port to London, that it was fearod luat the lighthoase had been severely demaged, created, as might be imagined, great seusution ; and an aminent eugineer (Mr. Burgess), and a member of the Trinity Doard, wore immetiately dispatched to acertan the extent of the injuries, and preparations were made to place a floating light near the rock, if it Ahould be found necessary. On the arivel of the depalation hove they ptoceeded to the rock end commonced their maryey, making the mott caraful exatninution thronghont the structure. They repeated heir vinit a fer days after, accompaniod, we anderstand, by two efficient public officers of the port, and wo are enabled to state, from what we consider undoubted authority, that it has been found that the noble structure has not received tho slighteast danuage, unless the washing of the paint from a portion of the upper part of the building, which exhibits a crevice in the paintwork about a yard in length, and larnaging two of the panes of gless in the lantern to the extant of a quartar of an ixch, be culled injuries. The result of the survey will, no doubt, be made public, in order to restore contidence an to the atability of the edifice after the alarming roports which have been mede. It may be fairly presured thet the extreme violence of the storm, and its condpuacion for so many days, created fiears in the minde of the man in the light. house for their tafery, mod this, no doubt, gave rise to the romour that the building

Plymouth Breahroater. - The utility of thit great national work has been fully demonstrated in the lete storms. All the veasels in the Sound rode out the gate, though at high wetar there was a heary wein rolling over the Broeirwator. It is ferered, intheed, that it will be mach injured; all the cranem ent wewt ead have been makhed down by the violence of the sech.
Port Carliste.-The wet and dry docke and pier are in aotive progress under the ouperintendence of Mr. Boyd. The contract for the pier has beon taken by Mr. Nelenn.
Fortsfying the Coad.-Surveys are being made on the eest conat of this connty and the river Hunber for the moat eligible aites on which may be arected batteries, in the ovent of hostilliea with Rusia. Whether a war now take place or not it is intended to recure the ground in the event of any future occasion. A site at High Peull and the opporite coant will be again occapied at military establishmente for the defence of the Homber.-Hull paper.
Andglase Pier.-The lighthouse and part of the piar at Ardglass, in the Bay of Dundram, which hed been nearly comploted at an experes of $26,000 \mathrm{t}$., were dewtroyed by the violence of the late ntormb.-Morning Parl.
Semaphore on Shooterishill.-The onginoers bave been surveying the pround botween Sbooter'mill and Woolwich, for the purpose of erecting a memaphore, and perhaps a fort, upon that apot. Should a batitery be erected there, it would be fonnd that one or two traveralog guna will command the river below the Royal AreonalRochester Gaselte.
Dangerous State of the South Cocut.-During the late serere gales, upwards of 100 lives were lont on the Dornotahire coash hetween the adjoining ports of Bridport and Weymouth-Times. [Surely this calls for some remedy. Why are not ports of refuge antablinhed in different parts of our coast, as recommended by the Committee of the House of Commons? The utility of Racrggate and Plymouth has now bese fully establishol, but doubtless the absurd standing orders impede this branch of public enterprize, as they do others.]
Common Road Steam Carriages.-Sir James Anderson, an Irimb barocet of pecaliar ingonuity and extapive fortupe, hes completed a vehicle of this clase, which will be pleced, ebont ton days heace, apon one of the Londen roedy, and is warranted to porform fitwen ailes within the hour. Sir Jamesis experimeuts to accomplish this object have leen so costly, that uppards of 80,0001 . were aunk on them some monthe ago,-Iriah paper.
Waterloo Bridge--A general amembly of the proprietors of Wetarloo-bridge was held at the Crown and Anchor, Strand. Mr. Bredell, the secrotary, read the last lalf.yearly report to the 28nd of Auguat. The roport stated that the seloct committee appointed, oo the motion of Sir M. Wood, Bart, M.P., to consider the interests of the Waterloa-bridge proprietary at regerded the City Improvement Bill, had not come to eay decision on which they could report. The monndinge of the bed of the river had, since 1885, suffered but trivial variations, not exceeding six inches in any direction connected with the bridge, and the latter structure continued Fithout the least defoct. A gradual improvement has taken place in the receipts of the bridge Mr. Plews observed that the approaches to the bridge contained an accumulution of water which had aatursted the embenkment, and would nitimately reach the ebatments and wall of the bridge, if a remedy was not immediately applied. The chairman, in reply, said that the drectors had arranged to abate the evil complained of in the early part of next tpring.
Sea Ordnance. At Woolwich Dockyard the workmen are busily engaged in onlerging the bores of 24 -pouvdera for the purpose of lespening the weight of orlannee between four aud five cwt., and at the seme time enabling them to discharge e 32 pound shot and sholl of the same calibre. This is in secordance with a pian some time since recommended by the late Lieat.-Goneral W. Miller, R.A., and which will thus enable the guns to bo worked with greater fecility. - Morning Adectiser.

Hollow Shot. - The Prince George, which has been used to ascertain the effect of the hollow ahot and shell fired from the Excellent, bas beon taken into the South Dock to be broken up. Her appearance anficiently indicates the tremendous effect of these projectiles, an well as the akill and proceision with which the mientific and practical course of instruction pursued on board the Excellent is arming our officers and sesmen.

NEW CEURCHES.

Catholic. Cathedral,-It is stated in a provincial journal to be the Intention of the Roman Catholics to erect a magnificent cathedral in London, and that 100 wealthy peess and commoners are expected to subscribe $1,000 l$. each towards it.

Foneeder.- It is in contesaplation to baild e charch on the site of old St. Clement's, in the city of Worceater, to be called the Watermen's Church. This will, it is hoped, prove a great blesing to this hitherto mach-negiected people.-Mbid.

New Chureh, Mellham Milte, near Hudderafield -This charch, dedicated to St. James, was opened on the 2nd inatant. It is brilt upon a pilan recommended by the bdshop of Sodor and Man, and will meat 250 pertons; and eljoining it is a ectionl for 000 children, which, by means of aliding shatters, may bo thrown open and form part of the chnseh. It is in the Gothic atyle, by Mr. J. P. Pritchett, York.-It in hand. nomely finished inside, lighted with gat, and has an exceilent organ, by Ward, of York The expense, which was 4,000l., was defrayed by Mr. James Broot, the mill. owner.-Leeds Intelligencer.

Trinily Church, Gray's Inn Road.-This chtrich wita consecrated on Thursday December 18th, by the Blahop of London.

Astbury Church Spire.-This venerable structure (which was struek by lightning in August lase) the pride of the surrounding district, has been raised to its former beanty and elovation by Mr. Thomas Wall worth, architect and builder, of Congleton.
Brighton.-The new chorch of St. John the Erangelist, which, through the praisewrorthy exertions end liberality of the rev. vicer, is now in course of erectimn onCarltou-hill, is alreedy nearly roofed in; anul, as the works proceed very rapidly, it is expectel to be completed for divine wonhip in six monthe from the present time.-Brighton Gasette.

Preston.-The first ctone of a new Cathollc chapel was laid on the 8 rd ult.
Birwingham.-A new church, nemed Bishop' Ryder's Church, was consecrated on the I8th December. It whe erectod under the direction of Mesrss. Rickman and Hutehing, architects. It containe 1,574 ittinge, 818 of which are free. The whole

PUBLIC BUILDINGS AND IICPROVEMFNTS.

Statue to Fuskison, - At the meeting of the Lrerpool Town Council, on the 6th, a lotter from Mrs. Huntision to the Mayor was reed, requesting perniscion to place s statue to her late husband nuder the dome of the large hall of the new Custom Honse. A resolution was unalmoasly agroed to, acceding to Mrs. Hankisson'a re-quest.-Morning Herald.
Couttis Banking House.-Vest improvementa are now going on at Couts's benk. ing-house, in the Strand, nonder the direction of Mr. Hopper. Great altitode has been given to several of the offices, by the removal of the floors of the rooms abore; iron otaircases have been constructed, and the adjoining house, westward, has beeu thrown into the former extensive premises. Meanra. Price and Manby hare fitted up their spparatur for warning the various officen.
Hounslow.- In consequence of the dark state of that portion of the Great Westernroad which parses through the town of Hounslow, a pablic meeting of the inhabitanta unanimously resolved to light the town with gas, the expen to be defrayed by a private sulecription.

Buckingham Palace is filled with workmen, employed in the repair and improremonts now in progreas. A portion of the wall extending from the Mowt to the conservatory will be rebuile.

Kensington Palace.-Considerable repairs sre going on in this palace.
Heatern Literary and Scieutific Insfitution.-A new lecture theatre is to be bait at the back of the premises in Leicester-square, under the direction of Mr. Godwiu, jun. The eatimated expense is 1,0001 .

Carlisk.-The progrees of the spacious public baildings is most satisfactory ; the lecture room, for 800 persons, is uearly completed, and over it an exhibition room 68 feet 6 inches by 46 feet 6 inches, is now being constructed.-Carlisle Journah.
New Custom-house, Liverpool.-The long pending question of the warming and ventilatingthe Long-Romn of the New Custom-House, is set at rest by an order from the Treanury to Messrs. Price and Manby, to apply their patent apparatos, a detcription of which we gave in No. 10 of our Journal. The great extent of thif room, and the approaches to it haring together a cubic content of upwards of
621,000 feet will require considershle promer 621,000 feet will require considersble porwer to raise the teraperature nufficiently, and at the same time insare perfect rentilation; but jadping from the very snccessful applicetion of the aystem to the Elgin and Egpptian Galleries of the Britisl2 Museum, the work-rooms of the Indigent Blind School, and other buildings of eqnal extent, there cau be little doubt of the desired end being obtained.

Taymouth Caste. - Workmen hare boen busy during the last summer and antum in bnilding a wing to this magnificent seat of the Marguis of Breadalbane, to ecrireapond with that ou the cast side, which formed part of the original building. It is gonerally understood that the cause of the completion of the building at the preseat time is to be referred to no less than an oxpected vinit of royalty. Rumour says that it is fixed, so far at loast as such movements can be so, that our young Queen is to risit her ancient lingdom of Scotland next year; and in the list of noblemen's retidences to be honnured by her presence Taymouth Castle occupies a distinguisbed place_Perth Courier.
Improvements in Westminsler.-Notices have been served upon the tradesmen and other parsons occupying tenaments between Westminster Abbey and Grosvenorplace, Pimlicu, at the instance of the Westminster Improvement Compsany, who state in such notice that it is their intention to apply to Parliament in the ensuing seaxino for leave to bring in a bill for forming certhin new squares, streets, terracos, tec. within the said district, and requiring the person upon Whom such notice is served to give his or her assent or dissent to the propesed proceediugs on or before the list dey of January, 1889.
A marble bust of Sheriden Knowlos has just been sculptured by Mr. Tate, an artist of Newcastle, for some spirited friends in the north.

FOREICN INTMLITGFNOE.

Danube and Black Sea Canal.-The negotiations between Anstria and Turkey are going on with rigour. Anstria andertakes the direction of this important work, which is to commence a little below Rawsowa on the Danube, close to C orwaroda, snd will proceod thence in a straight line to Lake Lornzn, falling ultimately into the Black Sea at Kustendji, Where e port is to be entablished. - Franconian Mercury.
Public Works, Egypl.- Mehemet Ali has held a divan, iu which it is said that the continnation of the dams on the Nile was deferred for want of money. For the same reason the railway from Cairo to Suez was postpoued, but its place was resolved to be supplied by a canal.-Journal dea Debats.
Gat in the Orkneys.-The town of Kirkwall, in Orkney, is now lighted with ges, Which now burns in the Uluima Thule-Morning Chronicle.

Restoration of St. Ouen.-The municipal council of Ronen hare just approved of the plans tor the completion and restoration of the church of St . Ouen, one of the Gouhic chef d'ourres. The eatimate is $1,400,000 \mathrm{fr}$. or 10,0001 . - Morning Pierald.
Ruaria.-The rebuilding of the Winter Palace, on which several thoukind worls. men have been employed during the sammer, proceeds rapicly, and externally it is nearly finishod. The Emperor, who viewed it a few days ago, expresed himelf
fully matisfied with the progress of the work. It is said that the stato aparments of fully setisfied with the progress of the work. It is asid that the stato apartmenta of
the pelece will be ready for uee next Easter. The commision Fhich wes emp et ohe the pelece will be reedy Gor use next Easter. The commision Which was semt at the
beginning of the year 1887 to Toflin, the ohject of which Fee to dre of a reform in the several branches of the adroinistration to draw up the scbeme provinces, appeara to hare terminatod its labours. Baron Von Hahn, the president, and some other members of the commisaion, have lately arrived here from Tetlis, At the ond of last month the Cleopatra frigate, Captain Grey, arrived here from Cronstadt, hering on board the Marquis of Clanricarde, the British Ambesseador. Count Strogonoff has returned from lis extraordinary mission to London.
To-day there is to be a brilliant parade of the Imperial Guarda, and the newly erected trinmphal gate at the barriar on the Noscow roed vill be inangurated. Their Imperial Majestios, and the members of the Imperial Family, arrived yesterdes frose Zarakojeselo, to be prosent at both,

Haarlens Leer-In the second chamber of the States Geueral at the Hagas, an the $12 t h$ inst, \& Royal mesaage was brought ap with a project of Cour, for raising a loen to defras the expense of draining the Lake of Luarlem. Wourndel de Cons. merce d'Anvers.

The Governosent hae hately purchased in Encland tro irou stoan boath-cthe Inkermann and the Newka. The first is intended to ply between Constantinople and Odema. It arrivel at Odeasa on the $9 t h$ of this month, having performed the royage trom London in 38 days. The Alexandria steam boat, which ought to have errived here ont Monday, is not here. Todiay it ought to set' ont on its return to Labeck. We learn here that it han been compelled by a storm at see to pat into Bellischport.Hambwryh paper.
Ficman.-The church of St. Stephen's is to be wholly repaired, and ne are happy to find the Fienna Architectural Journal contradict the report ourrent in Germany that part of the apire was to betaken down on sccount of the inclination in the upper part boing 3 deg. 8 min. This we believe was caused in the siege by the Turks, and we beliere is no more productive of danger than the mettling of Salibbury apire, or the vibration of our Monument. The Town Houre, at Prague, as interesting as a work of art as it is from its historical associations, is also to bo fully restored and beautifiod. The Emperor Ferdinand has at his own cost repaired the romantic castle of Karistein in Bohemia, one of the betworks of the Cinque cento; and insteed of being used as a powder magatine, it is to be converted into a musetm or national Valhulia, like that at Munich
Bridge at Presburg.-The engineers have chosen the locality for the perma naxt stone bridge over the Dannbe at Presburg, which is to form part of the Vienua and Racher rililway
Enginering Prizes in Hungary. - The recent devestation of the city of Pesth by inumdation has cauned the public spirited Count George Anarassy, to offer munificent prises for the best treatices on the history of these overfinws of the Danubn, and the meens of averting them, and with a generovity worthy of their donor, they are thrown open to foreign conspetition.
Texas.-A cumpany has been formed to establish a road for waggons, and to carry on trade from Galveston Ialaud through Chihushws to Montery on the apper part of th, Orilf of California. -New Orleans paper.
Egyptian Dock - M. Mongel, a French ongiueer, has arrived at Alexandria. The pecha has sent for him to confide to his care the construction of the ropairing dock which Sehir Effendi commenced, but could not tuinh. M. Mongel's reputation leares no doabt of his muccess. The viceroy has granted him $\mathbf{3 8 , 0 0 0}$ francs a year, and 2,000 for his lodging. If, as he has promised, M. Mongel terminsten this work before three yeara, he is to have benidea a grauity of 00,000 francs.
F'rreailles Waterteorks. - The ling has appointed a Commisaion of engineers to inapect the waterworks at Marly, and to draw np plans for the bettor sapply of Fermailles with water.-Galignani's Messenger.
Suspenrion Bridgec, Contlamtinople.-A French peinter and architect, M. Heetor Horean, has drewr up the plan of a suspensi n-bridge, which is to open a now communication between Constantinople and Galats. It is to have several suapensions, and that of the centre is to be uufficienty high to ad nit of the patasge of the largest veasele. The principle edvantage of the construction will be to conciliate the naval movements with the pnblic circnlation. The plan, which is a sort of revival of that conceived by Micheel Angelo for the rame spot, is to be presented to the Sultan.
French Jail Coaches:-A decres has been iseued authorising the Minister of Finance to pas 400,000 francs, or $£ 16,000$, for the ustablishment of the now madl coaches on the grest ronds of France. - Moniteur.
Quickiliver Minc.-We ant iuformed by Mr. Cooper, that in boring near thin place through the soft stone upon whirh this region of conntry is besed, his auger, at the diatance of mereral hundred feet from the surface, dropped into a lake of quicksilver, Sourteen feet and some inches deep.一Marengo Ala. Gaselte.

Paria.-The clearing away of the small houses surrounding the fine Tower of Saint Jacques is Boucherie appesss to here been sirspended. On the site of one of the porchea of the church a reservoir is now forming for supplying the inhabitant of the edjacent quarters with filtered water.-In consequence of the front nearly all kind, of memonry work has been suspended at Paris, and more than 16,000 workmen are, now out of employment in the capital-Galignani.

Calais.-It is in contemplation to orect a new lighthoase at Calais, 200 foet bigh in the room of the Tour du Guet, which stands only 120 feet above the level of the sen. The precise spot of the now buildiag is not yet decided upon, bat a commission hes been appointed to select the most eligible position.

The Journal de Cherbourg announces that the Miniwer of War intended to call for a credit of $10,000,000$. for the completion of the fortifications of Cherbourg and the establishment of a new powder magaxine.

Greece.-The ling has laid the foundation of a monument to Marco Bozzaris, at Mrsoolonghi.-Times.

Presch Portifications,-There are 121 fortified places in France, of which 21 are of the first clats, 48 of the second, and 52 of the third.-Times.
Duted Engineerr.-The minister of the colonies, th the requent of the governorgenersl of the French Indies, has pablished in the Staats Courant an invitation to The young officers of the Watorsteat who are unmarried, and if possible not abova 28 yeurs of age, to be employed in the colonial possensions, whither they will be sent, and in the firat three years with walaries of 2 to 900 forins per month (201 . to $\$ 01$.), excluaire of othar emoluments.- Times.
Austratia. - The entimstes of colonial expenditure for tho year 1838 are, for roeds, bridgem, and streets, 25,0701. 24. Od.
The King of Buvaria has recoived, es a present from the Emperor of Ruasia, a ree of malachite, of extraordinery beeuty and sise, being twelve feet high with the
pedestal. pedeatal.

Profestional Press in Rusaia.-The government publishes the following :-Mining Jonral, Engiueering Memoirs, and Journal of Wuys of Commanication (roade and bridgen). Thare is besides a Gezette of the Artu, published 48 times a year, wilh 100 engraving Mout of these are in French or German. Juternal dea Debats.

Slapp on Railroads. The following notice of an invention of accommodation "to sleep." as if at home, while travelling on railroads, appears in a recent number of the Ballimore Ammrican:-" The introduction of the newly.invented sleeping cars on our milroads makes that hind of travelling almost perfect-all that is wanting now is a dining car. The alerping cars will soon be placed on the railroad between this and Philedolphis, so that travellers learing here in the soven oclock train may go to tleop in this city, and not be disturbed till they reach Philadel phia. Theso cars are finy foet to lengih, and the ments, which are sideways, can, by a simple mavement, be comperted into berths; in each car forty-eight pasoengers call be accomonodetod with berthe"

ANTIQUITITES.

Carthage, Sis Grenville Tunpie has employed sis months in executing excavations in the neighbourhood of the wite of Carthage, and his laborars have been rewaried by a variety of intwenting discoverien. In the ruins of the teanple Juno Calestis, at Ganath, the protecting divinity of Carthage, he found about 700 coing, dificrent artioles of ginew, and earthenwre utemsile. Bat the moat remarkablo and unoxpected of his discorveries hes been that of a ville on the sea shore, and fiftem foet under ground. Dight chembers here been entiraly cleared, and their form and decorations prove thet the house belonged to come diatinguiched personnge. The walle are pointed, and the restibule is paved in anperb moseie, in the tame atyle an thone of Pompaii and Herculaneum, and representing a variety of objects, wuch as marine divinities of both sexen, finbes of diflorent species, marine planth, a reuel with womea lanoing on the deck, and sarrocanded by mertial miminers, liona, horten, leopards, tigers, zebras, bears, gaselles, herons, and other birds. In the different chmoperse Fere loond several human thelotons, supposed to be the remeins of warriars lilled durting the storaing of the villa. In another house Str Greaville Temple has aloo dincovered rarious interesting monics, reprenenting giadistors combeting wild animala in the arons, with the name of each combatant writtan over his heal. In anothor part ane represented horse-races and men breaking in young horses.-Galignamite Mesumper.

A Roman Mosaic Pavewent.-It will be remembered that Dr. Allnatt pablinhed a statement a few weaks since, which appeared in mont of the public joumals, of mome ancient relice which had been discovered at Pangbourn, Barkn, by the labourers amployed on the Great Weatera Risilway, and which were mapposed to be of Roman origin. This supposition has received within the last fow days farther confrmation by the exhumetion of an slonont perfoct floor of temellated pevement, situated in a beautiful valley near the Thames, about two milea from the ecene of the formar dif covery. It in conjectured to hare been the floor in the chamber of a Romen villa. The parement is formed of "quarries," or tho small, irregularly equare, detached teaserw, so charactertatto of Greek and Homan manufacture, and the figures are of the most elaborate and beantiful design. The ornamontal portion, conatinuting the centre of the floor, is eight feet equart, of fonr diseinct cotorrs, ris., red, gray, brown, and White. The colour appeare to be farmed of a apecion of firehardebed ewmet laid upon the surface of the temarre, for it is superficial, and does uot parvade tes whole structure The diccorery has excited much interest: s great many persons from distant parts of the country, artists, and scientific geaulomen, having riafted the spot; thoy ere ananimous in declaring the floor to be a beantiful and interesting speciment of ancient art. The dite of the house (or, as some imagine it to hevo been, a military tent) can be treced with tolerable socurecy by the lines of mortar, charcoal, aud flinta, used in the foundation. Two haman akeletons were lying exterior to the walls, near one of which a Roman coin wes fround, and by the side of the other a curious apecies of broadsword; which antiquariame suppone to be identical wi h that uned by the auxiliery legions. Orders have been given by Mr. Branol, the angineer, for the whole to be preserved entire. - Times.- It is with great regret that we have miuce learned that Mr. Brunel has directed this interesting relic to be braker up. Mensen. Grimed and Peto, however, have had a drewing made, which is intended to be lithographed. We are sorry to see this disrospect for objects which are of nowrerral
interent to overy man of education and refinement. Such doeds of barbarism hare interent to overy man of education and refinement. Such deeds of barbarism have been but too frequent, and geologists have repeatedly cormplained of the ravages Which have been commiked through the negligence of the enginoern Very hitule expenne would have restored this pavement, and it would have formed an intereating object in the writing.room of the station. Wie do not see, indeed, why museums shoald not be farmed at every station, illuatrative of the geology of the line.Eiltor C. E. \& A. Joon.]
Irish Canoes.-A short time ago, when the weter was drawn off, for the parpoee of deepening a part of Lough Reary, nearest the discharge pipes, three old canoes, of rery antique appearance and construction, being appaready hollowed out of a aingle tree, were discovered imbedded in the mud. Oae has been conveyed to Lord Downshire's seat at Hillisborough; another in at Castlo. Wand, the seat of the Bangor fanily; and the third is in the poseomaion of Lord Roden at Tullymore.
The fine remains of the ebbey of Savigny, near Mortain, in Normandy, hare juat been purchased by M. do Caumont, the woll-known entiquarian, and will thus be preserred to the country.-Galignani.

MTSCBLTANTA

Zincography.-The Ballimore American states, that a mothod has been invented of drawing on zinc, said to be very saperior in effect to lithography. The mode of preparing the metal so as to fit it for the purpose is maid to be a secret nnknown but to one person in the country. In the procese of ntamping, a delieale pink int is conveyed to the paper, by which the engraving is made to assume the appearance of drewing on chalk.

Sculplure. The Duke of Devonshire, who was so liberal a patron of Canore han, during his preserit nojourn in Italy, sdded several fine prodactions of the chisel of Thorwaleden, Marchesi, and other living artists, to him already lerge and valuable collection of marbles.
Brighton Pavilion.-In the storn on the 2nd instant, at a quarter before twolve, a flach of lighting strick thapipipcte over the north getaway of the grounds, and carried a portion of it away, and shattered several panes of atined gisat.-Morning Posl.

Cheap Repairs.-A society has beon formed at Paris for prewerving and describing the Prench historical monaments of the midule agos. The economical labours of this patriotic ansociation are well worth the attention of ruch an may be atruggling to resist the baroc of time and man. In their accounts, which wo have before us, we find that with a sum of only 88 . they congratulate themselves upon having, in aix montha, repaired the churches of the Lat and Auvergne, those of Montrezor, Br. Louds, dn Pré, and Beaulieu, the Chatasu of Langeais, tho Priory of Morlange, the combs of Oiron, and stained glass of Pont-Andemer.
iron, and stained glass of Pont-Andemer.
The tolle of the Andover and Basingatoke turnike have been Lot at an inarease of upwerde of two hundrod poands per annam, in consequence of the additional travelling through Andover, occasioned by the partiel opening of the Jondon and Southunopton Eillway.-Wilts Indegendent.

Seysel Asphalle.-The Seyssel Asphalte property is occupying the gentlemen of the long robe in France, and it appears doubtful from what has transpired whether there existed any right to transfer it to a company. It is rery unfortumate that this was uot found ont earlier, an, whatever may be its other applications, the asphalte hase paved the way to much gambling and serious minfortane to the shareholders. No mines of gold, silver, nor copper, over excital more sauguine speculation.-Ibid.
Heart of Oak.-One of the pilee used in the foundation of the old bridge at Lancaster was taken out a sbort time since, and found to be "as sound as an acom," although it must have been onder water at least 900 years.
Presprration of Sculphure.-Experiments are in progress at the Ecole des Beaux Arts at Paris, with some oily suhstance to be need for the preservation of marblen and works of art, which suffer so much in the wear and tear of a great metropolis.Galignanis Mescenger. [We do not know whether this is one of onr neighbmiss' reinventions of old English inventions ane"; but some years ago Henning, the acnlptor usal a coating of wax on the triumphal arch in the Park, and hitherto with complete success]

The newly invenled light of M. Gaudin, on which exporimente were recently mado at Paris, is an improved modification of the well-known invention of Lieutenant Drummond. While Drummond porrs a stream of oxygen gas through spirita of wine upon nnalaked lime, Gandin makes use of a more ethereal lind of oxygen, which he conducts through burning essence of turpentine. The Drummond light is fifeen hundred times stronger than that of burning gas ; the Gaudin light is, wa aro ansared, by the inventor, as strong as that of the sun, or fifteen thousand times stronger than gas, and of course ten times more so than the Drammond. The methol by which M. Gaudin proposes to turn the new invention into nse is singularly striking. Hc proposes to ereet, in the island of the Pont Ncuf, in the middle of the Seine and centre of Paris, a lighthouse five hundred feet high, in which is to be placed a light from a hundred thousand to a million gas pipes strong, the power to be variad as the nights are light or dark. Paris will thas exjoy a sort of perpetual dar; and as soon as the sun of the hearens is set, the sun of Pont Neuf will rise.-Mfechanics' Magazine.

NEW PATENTS.

LIST OF ENGLISH PATENTS GRANTED BETWEEN THE 26tif NOVEMBER, $\triangle N D$ THE 24TH DECEMBER, 1838.

Johi Smail, of Old Jewty, Merchant, for "Improvements in the Manufacture of Threed or Yaro, and Paper, by the Application of certain fibrous Materiols not hitherto so employed." - Ist December ; fimonths to specify.

Prife Taylof, of Birching Bower, in the County of Lancaster, Rope Malcor and Slate Merchant, for "Improvemente in Machinery for propelling Veseels Carriagen, and Machinery, Parts of which Improvements are ayplicable to roising of Water."-1st December; 6 month.

Ambiosy Bowden Johns, of Mymouth, Artiat, for "Improvements in colowing or painting Walls and other 8nrfaces."一lat Decamber: 6 months.
James Hartley, of Bishop Wearmonth, Glam Manufacturet, for "Impruvements in the Manufacture of Glans."-1st December ; 6 months.
Theodorr Cotrlle, of the Haymarkat, Civil Enginear, for " Improvementa in Estracting the Salt from See or Salt Water, and reudering it pure or drinkable, and in Parifying other Water."-lat December; 6 montiss.
John Playen, the younger, of Longhor, near Swansea, Glamorgan, for "Improvernents in Furnaces and Fire-places, for Consuming Anthracite and other Fual for penerating Staam, Eraporation, Smelting and Heating Iron and other Metals."lat December ; 6 months.
William Pontipex, of shoe Lane, in the City of London, Coppersmith, for "Improremonts in Apparatus and Matorials employed in Filteriug and Clarifying Waters and other Liquids."-l st December; 6 months.
Jonn McCordy, of 'ronbridge 11ace, New Road, Esquire, for "An Improved Method or Methods of Generating Steame and applying the same to the Evaporation and Boiling of Fluids, which Method or Methods is or are applicable to Steam Engines and other Purposes where Steam is or may be applied." -lat December; 6 months.
Stanislals Dabtiez, of Austin Friars, in the City of London, Merchant, for "Certais Improvements in the Coustruction aml in Arrangement of Axles, Asletreew, and the Naves of Wheels for Carriages."-lst December; 6 months.

John Seaw, of Glossop, Braks Worker, for "Certain Improvements in the Arrangement and Construction of Wind Musical Instruments."-lat December; 6 nonths.

Lukr Hebert, of Camden Tomm, Civil Engineer, for "An improved Moule or Modes of Fastening Trowsers and other l'arts of Dress or Apparel." Commnnicated by a Foreigner residing abroad.- Ist December; 0 montha.

Danirl Chaniler Hefitt, of StoreStreet, Hedford Spinare, Profensor of Music, for "Certain Improvements in Musical Iustruments."- oth December; 6 months.
John Chinhois ond Marin Hippolity Belignoin, of Pomemy Street, Old Keut Rosd, Manufacturing Chemists, for "Improvements in treating Massicott, Litharge, and other Componnds of Lead, for the Purpose of obtnining therefrom Silver and certain other I'roducts."- 6 hi December ; 6 montls.

Gonproy Capainnac, of Tavistock Row, Covent Giarden, Gentleman, for "Improvements in Apparatus for transporting Materials sor tarious l'urpeses from one Place to another, particulariy applicable to Road Cutting and other Enibanknents." -6th December; 6 months.
Thomas Sifextaprle, of Cotteshall Mill, Godalming, Iapernaker, for "An Improvement or Improvemonts in the Machinery for Maling Paper."-Oth Decernber; 8 months.
Fredericy Nevirile, of Papcras Lane, in the City of Iondon, Gentleman, for "An improved Method or Process of Manufactaring Coke, whereby the Salammoniac, Hitumen, G amen, and other remident lroducts of Coal are, at the ame time, separately collected, and the Heat employed in the Process is applial to rarious other useful Purposes."-Bth Decepiber; 6 months.

Mises Beagy, of Chancery Lane, Patent Agent, for "Improvements in the Means of, and Apparatus for, Manufacturing Gareons Liguidn, and for filling Bottles and otbop Vessols usel for holding the seme, and retsining the contents therefn, and applying the same when required." Communicated by a Porelgner rosiding abroad." -6th December; 6 month.

James Cagion, of Liverpool, Doetor of Medicine, for "A new Mode of Slaughter ing Animals intended for human Fooil"-1214 December; 6 months.
Tiomas Robinson Willians, of 61, Charpaide, Civil Engineer, for "Certain Inprorements in Mechinery for Spinning, Twisting, or Curling, and Wearing Horsehair, and other Hairs, as well as varions fibrous Substancea."-18th December; 2 montha.
Heney Count Dr Croey, of Picariy, in the Kingdom of Prance, now reaiding at 14, Cambridge-street, Edgeware Roed, for "Certain Improvements in Filtration." Communicutel by a Foreigner residing abroad.-12th December: 2 months.
Joun Atrexandre Elgazar Drggrand, of the Boulerart dn Temple, Paris, now residing in Paul's Chain, iu the City of London, Civil Engineer, for Improvements in the Production of Motive Power, and in Machinery, lor applying the name to useful Purposes. "- 12 th December; 8 monthes.
Janrs Gardner, of Ranbury, Ironmonger, for "Improvenuents in cutcing Swedish Turnipa, Mangel Worzel, and other Roots usel for Food for Sheep, horned Cattle, and other Animals."-12th December; 6 months.
Thomas Vaux, of Woodford, Land Surreyor, for "Improvementa in Tilling and Fertilising Land." -16 th December; 6 months.
Critising Landilian Mont, Putney, for *An improved Mode of applying Horse Power to Carriages on ordinary Rosds "-17th December; 6 months.
Barclay Farqularson Watson, of Lincoln's Inm Fields, Sohcitor, for atm. provements in Cruahing pr Preparing New Zealand Flax."-17th December; 6 months.
Empins Enfard Cassell, of Millwall, Poplar, for "Improvements in Lampa. -17 th December; 6 months.
Jos Curter, of Lady Poole Lane, Birmingham, Gentleman, for "Improrements in Combinations of Mctals appllicable to the making of Tubes or Pipes, and to other Purposes, and in the Method of Making Tubes or Fipes therefrom, which improved Mehod is applicable to the Making of Tubes or Mipes from Certain other Metals and Combination of Metals."-17th December ; 6 months.
James Lexs, of Salem, near Oldham, in the County of Lancaster, Cotion Spinner, for " An Improrement in the Machinery for Spinning, Twisting, and Doubling Cotton, Silk, Wool, Hamp. Flax, and other fibrous Materials."-17th December: 6 months.
John Hawnshaw, of Manchester, Civil Engineer, for "Certain Improvements in Mechanism or Apparatus applicable to Railways, and also to Carriages to be used thereon. "-17th December; 6 months.
Benjanis Goodpellow; of Hyde, in the County of Chester, Mechanic, for "Certain Improvamente in Machivery or Apparatus for Maning or Cntting Metala. - 18th December ; 0 months.

John Rosrrts, of Manchester, Machine Maker, for "Certain Improvements in Machinery or Apparatus for llaning or Cutting Metals."-184 December: 6 months.
Juan Radclipfe, of Stockport, Mechine Agent, for "The Application of an improved Corering for the Rollers used in the seteral Processes of Preparinp Drawing, Slubbing, Roving, Spinning, Twistiug, and Donbling of Wool, Cottoo Wool, Flax, Silk, Mohair, or any other fibrous Material or Sabstance, or co many, of such Rollers as require, or are deemed to require corering for sach several Pro. ceases, or any of them."-19th December; 6 months.
Joseph Zambeat, of St. Paul's Churchyard, Chemist, for " Improvements in Rotatory Engines." Communicated by a Foreigner refiding abroad.-1 Pth December; 6 months.
Andatw Smitil of Princes Street, Leicester Square, Engineer, for "Certain Improvements in Apparatus for Heating Fluids and Generating Steam."-20th De. cember; 6 month.
Samubl Parasid, of Argyle Mace, Lamp Maket, for "Improvements on Stoves." -20th December; 6 months.
Carl Augubty Hols, of Mincing Lane, Engineer, and Johy Bariettr, of Vaxhall, Printer, for "Certain Improvements in Printing."-20th December: 6 months.
 man, for "Certain linprovements on Carriages, being an extension for the term of seven years, from the 21th day of December."-21at December.

ERRATA:

In the last number, page 403, in the description of Roo's patent water closet basin there is an orror in lines 10 and 11 ; it states that "this chamber is ulurays kept charged wilh water;" it should read, "the chamber is only charged with water when the haudle is lined, the water at the same time bring discharged all round the basin.'

Page 405 , in the rule for converting French measure, line 9 , describing the methot of relucing francs into pounds, instead of "add two figures," read "cut off two figures."

TO CORRESPONDENTS.

Our correaponilent respecting Dover Harbour, will hear from na by post.
Our correspondent at Carmarthen is infurmed that there is no defived dimenaion firr slating called "Queen's"-both Qneen's and Kagin vary in size from two to fomr feet in length, and from 18 inches to three feet in width; the arerage nixe is $\mathbf{3 0}$ iuchen by 21 inches; they are sold by weight, and not by the thousand.
"One of the Public" will be noticed next month.
We caunot notice I'rospectuses of Compnnies at length, unless paid for as. ndyorizements.
Subscribers are particularly requested to completo their wets of numbers for the first volume immediately.
We shall feel obliged to the profersion if they will formard ns accounts of works in progress, now inventions and discorerios; and particularly if ons country mulscribers will send us any nerspaper containing nny mater relative to the objects of our Joumal.
Hooks for review must be sent early in the month; commulicaing prior to the 20th; end advertisements beforo the 26 h iustant.
** The first rolume may be had boand in cloth, and lettared in gold, price 17 .

THE ATHENAEM, AT DERBY. ascuitect, m. Wallact, 88Q.

ELEVATION.

PLAN OF THE GROUND PLOOR.

Scale of Drawings, 20 Feet to the Inch.

THE ATHEN AUM, \&c., AT DERBY.

The "Companion to the Almanac" has already given a general view of the four buildings of which the Athenreum forms one, and a tolerably full description of them; yet although we have so far been anticipated by that publication, what is there said rather invites us to give further particulars retpecting those gpirited inprovements than not, more especially as we are enabled, through the kindness of the architect, Mr. R. Wallace, to exhibit an elefation and plans of that portion of the design which has most architectural pretension and character, namely, the Athencum.

As our wood-cnt renders verbal description unnecemary, all that we need explain in regard to it in, that the blank space or opening in the lower part of the right-hand pavilion or aing is the covered gateway leading to the inn-yard at the rear of the building (as is shown in the ground plan), where is seen one of the entrances into the Hotel. Hardly, therefore, nced we observe that the latter building immediately adjoins the Athenaum on that side, being divided from it below only by the covered passage or gateway between the two; but we should explain that both entablatures of the scparate fagade here shown are continued through the two fronts of the Hotel, solts to keep up a certain general unfformity of appearance, although the Athenmum forms a distinct composition. Indeed, further than the regularity thus produced by the continuation of the principal horizontal lines and mouldings, and that of the style adopted, there is little similarity; the elevations of the hotel presenting two ranges of windows above, the lowermost of which, or those of the first floor, rest upon a socle immediately above the cornice to the bascment. Besides which, there is a serics of smaller windows in the attic, which is somewhat lower than that in centre of the elevation here given. Consequently that portion of the entire line, or the south side facing Brook-strect, has more of the dwelling-house appearance, while the Atheneum distinguishes itself by presenting what our French neighbours term a monumental character; to which both the disposition of the windows and the great proportion of solid wall contribute in no small degree. In this respect alone the design exhibits some novel'y and piguancy, particularly in the centre compartment, where the thice openings below and the Give above them produce a good arehitectural contrast; though the effect would bave been better atill could the width of the two lower windows have been limited to that of their middle openings, because at present they cxtend too closely to the angles, where the adjoining antæat the breaks indicate an inner wall, although, in regard to the rooms within, the windows are unexceptionably placed, as is apparent from the ground plan. The upper part of this centre compartment is well imagined-solid and unbroken, yet without either blankness or heaviness. The chief objection to be made to it is, that the comice of the upper order is too poor and scanty -in fact, is only a repetition of that to the basement floor, whercas greater richness was here demanded, if only to bring it into keeping whth the architrave beneath it, more especially as the depth of this latter is considernbly increased by the mouldings of the antre being continued immediately beneath ft . We are bound to observe, however, that the projection of the upper facia and cymatium of this architrave have been greatly exaggerated by our wood engraver. The two pavilions or extreme compartments are pleasingly treated, and these features bear some general resemblance to the similar ones of the new Corn Excliange, Mark-lane, but by no means to such degree as to incur the charge of plagiarism. The tripods at their angles, through which the chimney-flues are brought, produce an excellent effect.
In the plan of the ground floor, a a, are the separate entrance vestibule and staircase leading to the Athenoum Hall above; b, the vestibule, to the library c, and news-room o. The former of these, which measures 36 feet by 16 , or 21 at the widest end, opens into a smaller room d, appropriated as a reading room. The news-room e is 30 feet by 19.

The upper floor is, with the exception of the room b, which serves both as a committce-room and a cloak-room for ladies, entirely occupied by the Athenreum Hall, which extends over the giteway, whereby its total length becomes 69 feet by a width of 30 feet 6 inches and 23 feet in leight.

While the general symmetry is well preserved, the apartment acquires not only much pleasing architectural variety in its plan, but apparent, as well as real, extension, by the addition of the division over the gateway. At the same time we are of opinion that it would have been an improvement had there been four columns at that end instead of two, so as to form four lesser intercolumns (of the width of those between the columns and antre on each side) and a wider one in the centre. Such a screen of pillars would have made the two divisions more distinct to the eye, fet would by no means have sepprated them too much, or vecasioned a crowded appearance,
or obstructed the view of the fireplace at that end; for the centre intercolumn would have been 7 feet 6 inches wide, and the others nearly 5; whereas the distance from column to column is now 19 feet, which must be cqual to the height of the columns themselves, if not more. Another thing that would have been an improvement would have been to remove the doors at that end of the hall further from the fireplace, putting them into the cxtreme interpilasters, so that one would have opened immediately into the cardroom, the other (as at present) into the sapper-room.

Judging from the plan, the back front of the Athenoum, appears to be of architectaral design, although it only faces the inn-yard of the Hotel : at leat the pilasters between the windows seem to indicate that such is the case; and, if it really be so, we think the cost so bestowed might have been better applied; more especially as that aide of the building appears to be quite shut out from view by other buildinge abutting on that angle of the Λ thenæum, where the staircase is placed, and in consequence of which the architect has been compelled to adopt a very irregular and inconvenient form for the staircase; whereas only four or five feet more at that angle would have greatly improved that approach to the Athenaum Hall. Above the hall is another room of the same dimensions, although considerably lower, which is lighted from above, and intended to be fitted up as a museum.

BRVITW8

Observations on Limes, Calcarcous Cements, Mortars, Stuccos, and Concrete; and an Puzzolanas, Natural and Artificial; together with Rules deduced from mumerous experiments for making an Artificial Water Cement, ge. By C. W. Pasley, C.B., Colonel in the Corps of Royal Engineers, F.R.S., \&c. London: John Weale, 1838.

We are indebted to Col. Pasley for this practical work, and for an adnirable example of how theory may be applied as the assistant of praclice. Cement bas long since attracted a greater attention than stone Itseli, and many have longed for that power which enabled the Romans to make such durable works from materials so fragile. Col. Pasley has devoted himself to his task with an energy and application which have secured equal honour to himself and value to his admirable work. Few men immerred in professional labour have the time to follow up such subjects in a proper manner, for it is only from a connected series of experiments that success can be obtained.

The work now before us is the result ot many yenrs' labour and study, and enters elaborately into the examination of materials employed in building, and the cements used to unite them. He gives at great length his experiments on their strength and durability, and also on the quality of substances for forming limes and cements. He thus throws'great light on the princfples of construction, and enables us to ascertain the pro. perties of the materials, the components of the mortars and cements, and the proportions in which they should be amalgamated. This is an important service rendered to the Architect and the Engineer, and gives the work a character of interest which we doubt not will be appreciated by our readers.

We make our first selection from the dissertation on limes, which conveys some judicious remarks on mortars :-

We formd by repeated experiments at Chatham, that one cubic foot of Halling lime weighed ncarly the same when fresh from the kiln, and by the gradual addition of water that it dilated to the same increased bulk, in the slate of quick-lime powder, but when worked up into mortar not too short for . use, that it would not bear quite to large a proportion of sand as the common chalk lime lad done. 1 his experiment leading to a result in opposition to a common opinion amongst tie bullders of the metropotis, which is that the Dorking and Halling limes, as being stronger limes, will, when made into mortir, bear more sand than common chalk lime, I was induced to examine the principle upon which they found this opinion, which on consideration appears to me to be erroneous; because these two limes and all the other bydruulic limes are undoubtedly in an intermediate state between pure lime which is the weakest, and the water cements which are the strongest, of all calcareons cements : and every one will acknowledge that the proportion of sand, which will make good mortar with chalk lime, would entirely ruin cement. which if scarcely capable of bearing one third of that quantity. Hence it follows that the bydranlic limes ought not to admit of so much sand as chalk, but that they will bear more than cement, without being injured.

Accordingly I conceive that three cubic feet of sand to one of Dorking or Halling lime, will be a good proportion for making mortar with those lines, which approach very nearly to pure lime. The water required will be nearly one cubic foot, and the quantity of mortar produced will be about two cubic feet and nine-tenths, being rather less than the original space occupied by the rand alone:

Bot the blue Lias lime will got make good monter if mixed with more than twe ouble feet of sand to one of lime. This opinion first formed by me from analogy, and in consideration of the blue lias approaching very nearly to a waler cement, proved on due enquiry to be borne out by, and exactly conformable to, the practice of the masons of Lyme Regia. But Captain Savage of the Royal Engineers, who was employed professionally some years ago in Improving the Cotb or Pier of that little seaport, which was done by tide work, and in which no other kind of lime was used, assured me that he found that amaller proportion of sand than 2 to 1 made still better mortar. We have sibeessertained by repented experiments at Chatham, that 1 cubic foot of blue tias lime from the kiln weighing 47ibe, mixed with 2 cubic feet of asid, and about $\$$ quarters of a cubic foot of water, made mortar fit for uee, but -hich could not have borne more asad without becoming too short. The average quantity produced wis twu cabic feet and one finh, which contrary to the reault obtained with the purar limes, occupiod more space than the sand alope originally did. We found aleo that blue lias lime from the kiln, like all the other limes that we experimented upon, filled only about two thirda of its original measure, when reduced by pounding to the state of quick lise powder; bul one cuble foot of blue lias lime when slaked, only dilated into one cubicfoot and 2 third of slaked lime powder, not including about one oighteenth part of a cuble foot of core, which we threw away. Hence it expaods losa by slaking than either chalk lime or Haliing fime.

The Colonel very justly attributes the modern introduction of concrete for foundations to Sir Robert Smirke, who tirst used it at the Penitentiary, Milbank, London. The Colonel remarks that: $:-$

Neither gravel without sand, nor sand without gravel can form good concrete. The large pebbles composing the former, if mixed with quicklime powder and water would only be cemented logether by lime paste, or as it is iechnically termed line pulty, filling up the large interatices between thom, which ia known to be the weakeat form of lime. On the other hand, fine and alone would produce pothing better than a mase of common mortar, -hich hes very litile atrength in itaetf, but is exoetlent for cemeatiog larger materinde. The proportions of the grevel and mand ued are of little importance, provided that the former be rather Inge, and the sand sufficient to fill up the foterstices in it, for which purpose a mixture of coarse and of fine and is better thas one sort oply. But no such mixtures are necessary, in usling the sandy gravel of many paits of the Thames, where it is found in the state most suitable for making grod concrete, and is employed both for this purpose, and as ballant for shipping.

It bejng known that clean gravel and and when put dry into any menaure, will almont immediately settle to a lower level on the addition of a certain quantity of water, and it beinga matter casily proved that no ramming can possibly compress them afterwards, it appears to me, that the proportion of lime ased in concrete should be just sufficient to combine with the gravel and sand in this compact state; that is after the violent action of slaking shall have mobsided, which causes a temporary expansion, that is counteracted whilat ia operation, but the usual process of treading down or ramming conerete.

Examples are given of several buildinge in which concrete has been applied in the formation of the external wails, and the Colonel abews by their failure the impolicy of this mode of constrnction, however strongly he reommends its adoption for foundations.

The composition, commonly called Roman cement, has within the last few years been employed pretty extensively in the metropolis for building purposes, and lias certalnly greatly contributed to the extension of extermal decoration. A prejudice, however, still exists against its application for ornament in our churches and public buildings, which may have arisen from an improper use of it, and from the frauds of some of the mabufactures, but the general result has been to convince utangy of its applicability for these purposes. In our opinion, if of good quality and properly worked in the mixture with sand, it is of equal durability with Bath stone, and capable of employment for the same objects. An unfortunate prepossession against its application to ecelesiastlcal structures seems to prevail, even as if a mandate of interdiction were issucd aggingt it, although it would most cortainly materially assist the architect in giving some character and decorstion to these edifices. Neither would its expense be such as to call for a great increase of the penurious allowances of the church commiseioners, Who shop as niggardly a spirit in these respects as if they wished to imitate the union workhouses. It would be well if the architects generally could prevail upon the proper anthorities to allow its introdaction, whieh we are sure could not fail to afford gratification to the public. It is only necessary to guard against the application of inferior preparations, and this could be fully secured by providing in the specifiration that the cement should be procured from competent manufacturers, which the architect may appoint.

We found by experiment at Chatham, that two thirds of a cubic fook of calcised 8beppy cement powder, which is equivalent to one cubic foot of coment from the siln, would not bear much more than one culic fuot and ose thed peiti of a loot of mand, without evidently beeoming too short for building purposes. This is equivaleat to mixture of two messurea of sand to ore
of cement powder. But experience has shown that even this proporion of sand is too great in practice, for the builder of the metropolis, who bave used immense quantities of the Sheppy and Harwicb cements for many years, agreo that more than 5 parts of and to 4 of cement powder, or 14 measure of the former to one measure of the latter, injures the cement, by retarding fis setting and rendering it too frlable, whether used as mortar for walls. or as stucen for the fronts of houses; but they consider that equal parts of sand and of cement powder, Involving a smaller proportion of the former ingredient, are still better.

But not to lose aiglat of the jut comparison between cement and llme, these proportlons, when stated in the ame manner as we did in trenting of lime, imply that whilst one measure of cement from the kiln will not bear mnre than two thirds or at the utmost five slaths of a measure of sand withrot it. jury, one mensure of the various corts of lime from the kiln, according to its quallty, will bear two or three measurea of and or even more.

There are two propertles of eement, whlch ought to be thoroughly understood.

First. It only sets rapidly when made up into small balls or in very thin joints. In large masses or in thick joints, the rapid induration takes place near the surface only, from whence it extends towards the centre so very slowly, that the cement there may remain in an imperfect state for a very ling tlme. Tbls property it hes in common with lime mortars and conerete, which when in mase get more slowly at the centre than at the surface, in the like proportion (33).

Secondly. As was before remarked in article 42, cement is alwa: a wreakened by and, no matter how stnall the proportion of that ingredient may be, so that if both materials were equally cheap, it would be best to dispense with and altogether in using cement as mortar for building walls, but not ln using it as stuceo for plastering the fronts of houses.

Numerous experiments have convinced me of the truth of these maximp, which any of my readers may easily verify. In respect to the latter in particular, take a small quantity of the best cement powder, mis it with three or four times its bulk of fine sand and make it up into a ball with water, and you will find that instead of setling, it will either remain quite friable or crumble to pieces, both under water and in air.

Upon the whole cement sets most quickly, and unites itself most powerfully to bricks or stones, when it is perfectly pure or unmixed with sand, provided only, that the joints be thin, I should say not exceeding half an inch in thick. ness. For this reason, in forming cement into chimney pots, copinga, sc., where the general thickness much exceeds the above dimension, and consequently where pure cement alone would not make sound work, instead of frittering away fie strecgth wlth sand, I would recommend fragments of broken tiles or gravel, to be mixed with th, the interstices of which are such as to allow the pure cement whlch filis them, sufficient body to attain a due degree of atrength, without being quite so large as to retard its setting, and thereby cause weakness in the central parts of thone spaces.

Among other interesting illustrations of the powers of cement, the Colonel has fully prosed its great strength when applied as a joint for atone-work. Ope of these experiments was made upon two blocke of Bramloy-fall stone, each 89 inches long, 29 inches broad, and 26 inches deep, weighing about 2662 lbs. The beds or contact surfaces of the tones at the joints were roughed over by picking down the surface; they were then united with some of Messrs. Francia \& Son's best Roman (English) cement, composed of a mixture of Sheppey and Harwich cement stone. Six weeks after, the experiment was continued by sus. pending the upper stone, aud loading the under one with weights, to the onormous extent of $36,54+4$ lbs without breaking the joint. This was then split by means of a mallet and chisel, when, to thie Colonel's astonishment, it was found that with the exception of the outer part of the cement, which had been exposed to the sir, and was extremely hard, the whole interior of the cement joint was softish. and neither resisted the action of the thumb-nail nor of a sixpenny piece on edge, which scored the surface to the depth of nearly a sixteenth of an inch. From this and other experiments, the Colonel deduces the importince of the "application of cement in masonry, even in the union of the largest stones."

The author gives some experiments on the strength of stone, which we think will be found serviceable to the architect aud engineer in the choice of this material :-

As the value and importance of artificial stone used for the walla of buildings, or for those of wharfs or docks, must depend upon its sirenyth in oppoition to a breaking weight, it now appeared desirable to ascertain its resistance in competition with that of the common bullding stones of this country, as well as with that of bricks and of pure chalk from the quarry, for which purpose I caused a number of similar amall priaroa, each fcur inches long and two inches square, to be cut out of all those subtances, whicb being nubjected to the proper breaking apperatus, yielded the results contaiued in another Table. No. VIII, and, in order to render this more complete, the coheiveness of the same stones has been repeated from Table III., whilst That of well-burned bricks and of iuferior bricks has been eatimared, from the average of the strongest and some of the wenkest results, recorded io Tables I. and II.

Take VIII.-Comparative Resistumec of various Natural stones, Bricka, and Chalh, reduced to Square Prisms of the same dimensions as the amall Artificial Stones before Experimented upon, with their comparntice Cohesireness also.

In our next Journal we intend to continue our remarks upon this excellent work, and to give some farther extracts; aud in the meanwiuile we cannot too strongly recommend to the profession the utility of examining this work for themselves. We do not pretend to offer a aubstitute for the works which come under our notice, but rather to enable our readers to form such opinions as may guide them in their use and selection. It is as much as we can do in some cases of such extensive scientific Forks, to afford even a specimen; but in case of works like Colonel Pasley's, it would be indeed the old Greek story of offering a brick as the pattern of a liouse, to attempt to condense such Important materials

Westminster Inprovements: A Brief Acrount of Westminster, with Observations on Plans of Improvement. By One of the Architects. London, 1899.

This small volume is designed to call attention to the plans of the author, as adopted by the Westminster Improvement Company, and is therefore necessarily subservient to that object. It contains, however, zome interesting matter as to the site of Westminster, its levels, and its drainage, and some agreeably-written antiquarian matter.

The basis of Mr. Bardwell's plan is, that it shall be conducted on a large scale, so as to insure the thorongh drainage of the district, which certainly cannot be effected by the piecemeal operations which are now adopted. Any clange either in the population or the salubrity of the district in question, cannot fail to do some good, and the proposition is extremely opportune in the present state of the Houses of Parliament. We think, that in this consideration care should be taken not to mar the splendid mass of gothic which we shall soon possess, and this induces us to demur a little to Mr. Bardwell's admiration of the Italian styles. This comes strangely indeed from one who, in the early part of his book, evinces such a love for Edward the Confessor, and such a yearning for the preservation of St. Margaret's.

Considering the object of the work, we are not entitled to expect perfection, and we are therefore not very much astonished at an infusion of egotism, which prevails towards the conclusion of the book. We dissent, however, from Mr. Bardwell in some few of his opinions, and to some of these we beg to call his attention. We cannot see how the insalubrity of London can increase the fogs, for indeed if they arose from land miasma, they ought rather to have diminished from the draining and clearing of the metropolitan districts. He obliges us with a lengthened enumeration of the many canses of London unhealthiness, but he totally omits to state that London is one of the healchiest cities in the world, and that the average of human life has rapidly increased in value. We rather doubt also that our Saxon ancestors were the founders of the civilization of modern Europe, however much we might wish it, and we should recommend our readers to peruse this statement "cum grano salis." Mr. Bardwell may remember in what state Alfred found England after the time of Bede, and how France sank subsequently to the labours of Charlemagne and Alcuin. We dissent also from him as to St. Marga ret's being a restige of Edward the Confessor, and we cannot see any claim of antiquity which can be urged against its removal. The epithets applied to Westminster strike us ulso as rather incongrious, for we cannot see what resemblance it has to the Isle de la Cite, the Palatine Hill, or the Acropolis, ner what it has to do with the oroó $\beta \mu$ gi λ oxit. "G Lucus a non lucendo."

Public Buildingg erected in the West of Englond; as deaigned by John Foulston, F.R.S., B.A. Quarto, 117 Plates. J. Williams. London, 1838.
This is almost the only work of the kind which has appeared in this country for several years, for, with the exception of Laing's, contaiming the Cuistom House, and some other buildings erected by him. we are not aware that any architect has published his own executed designa, although it used formerly to be by no means an uncommon practice among professional men. Gibbs, Adam, Paine, \&ce, for instance, peblished the plans and other drawings of all their principal edifices, and that at a time when architecture was comparatively litule studied. It is all the more singular, therefore, that such custom should have been laid aside precisely at the time when architecture itself has become more prolitic chan it was during the last century, and when structares of very varied design are rising up yearly, if not daily, not in the me. tropolis alone, but in almost every provincial town of any note, and, in fact, almost all over the country. Whether it be that, notwithstanding the very increased scope and demand for architectural embellishment, there exists less demand than formerly for studies in design, both on the part of the profession and of private individuals, we undertake pot to decide ; but it certainly does look like a very anomalous fact, that such shonld be the case, let the cause be what it may. We conld, iodeed, make two or three guesses at the latter, one of which is, that those who have done most and best are not particularly anxious to bring out their designs as studies for the benefit of others; while those who lave been less favoured by opportunity have not done enough to enable them to come before the public with a collection of the Find. Another reason, perhaps, is that, although greatly more has been dose within the last twenty or thirty years than in the course of the whote of the preceding century, out of that number of buildings there are comparatively few that rise above a certain average standard of merit; coasequently few that the public would care to have geometrical drawings of. Or, it may be that we are now so accustomed to behold decorated fronts, porticos, and other architectural embellishments, as to regard them as mere matters of course, and deserving no more than cursory inspection. Or else-but we will put an end to further conjecture; for even could we hit upon the real cause, it would be idle to expect that any thing we could say would tend to remove it. What may be taken for granted is, that there is no demand-we mean no adequate demand-for works of this description, else, doubtless, as is the case with all other produce, whether manual or mental, it would be followed by supply.

At all events, we bid welcome to the solitary "stranger" now before us, and not the less heartily because he conies from the provincesfrom Devonshire and Cornwall, where, at Plymouth, Devonport, and other places, Mr. Foulston has erected not a few public and private buildings. Nor can we do better than give, before we procesd further, a list of those which form the subjects contained in the volume :-

Plymouth-The Hotel, Assembly Rooms, and Theatre, 47 plates; the Athenæum, 6 do.; Public Library, 5 do. ; St. Andrew's Chapel, 8 do.; Do. Church, 8 do. ; Exchange, 4 do. Devonport-Town fill, 4 plates; Commemorative Column, 5 do.; Civil and Military Library, 5 do. ; Mount Zion Chapel, 4 do. Stonehouse-St. Paul's Chapel, i plate. Torquay-Interior of Ball-room, 1 plate. Tavistock-Librarys. Ball-room, \&c., 3 plates. Cornoball-Connty Lunatic Asylum, 8 plates. Bristol_Gaol, 5 platea.

Conceiving that every work ought in some measure to be judged by what it aims at, and by what is the author's professed aim, we shall here let Mr. Foulston explain himself, in order that more may not be exacted of him than he promises:-

The author, in publishing this work, illustrating the building erected from his designs, makes no claim to originality, except as regards construction and adaptation. * *

In exhibiting bis designs, the author is aware they must be comsidered merely as models calculated for the atmosphere of a town remote from the metropolis, and, though spirited, proverbially poor. .

Many volumes of general plans and elevations have been published from lime to time, giving some notion of arrangement and proportion, but afiording nose of that practical informution which chiefly, of a profestional student, constitutes the value of an architectural book. While, therefore, it has been the author's aim to obtain the attention of the amateur by his geacral elevations and perspective views, he has been still more dealrous of attractiag the notice of the young nrchitect by his "details at large," as they are architecturally termed; and by thoroughly developing the internal mechaniam of his more important buildings.
With these extracts from the plain and sensibly-written " Addreas" prefixed to the work, an address so different from the pompous, lumbering prefaces which a certain other party puts to his publications, we dismiss the work for the present, reserving our further remarks on it for our next number.

Fintes to Mechanics on Selfeducation and Mutual Instruction. By Timothy Claxton. London: Taylor and Walton. 1839.
Just in the same manner as in physical suljects we value the experience of practical men, so in moral and social questions we derive pleasure from seeing them treated by those who are "to the manner born." This is the gratiocation which nust be communicated to every reader of the amusing book before us, which has all the ease and simplicity of De Foe, and the exemplary utility of Franklin. To the mechanic it offers at once an example and a pleasant companiou in the pursuit of inowledge, aod to the general reader it affords a deep insight into those labouring closses which are the sinews ofthe nation. This bearing of the work we must, however, leave to our literary brethren, and content ourselves with such practical extracts as may be of intercst to our utilitarinn readers.

The author, in his plain and easy style, while giving an account of his labours in Russia, thus mentions the columns of the church of St . Isaac, the greatest cathedral work of the present century :-

Some of their columns made of granite are very large aud highly polished. I took the pains to menaure one of the colnmus intunded for a new church, and found it finy-six feet long, and near seven feet diameter at the base. They wero brought from Finland, and two of them were a load for a ship, one one each adde of the masts, to balance each other. They were rolled from the deck to the ricinity of the intended building on timbers nine inches equare, (placed bnt liule distance apart,) which were completely crushed to oplintern. The rolling was performed by two ropes; one end of each being made fast, some dintance a-head, to stakes driver into the ground. They were passed under the column, up the back ade, and over the top. The other end of each rope was wound round a seperate capatan. Each capstan had four long levers, with from ten to twenty men at each lever. These colamene were placed in a temporary building for polishing.

I also risitod the foundry where the bases and capitals were made. They were of brass, of the Corinthian order, and highly polished and gilt. The square plinth for the botton measured about nine feet on cach side, and one foot thick Several women and children were polishing these with promiceatone. The sorta, a round bead belonging to the base, was turning in the latbe, and the workman had a rery strong tool for this purpose. A stommengine, with a man to attend it, was employed entirely on the work. The capitals, with their leares and volutes, had a very splendid appearance.

The following is but one feature of the great scale on which they do things in Russia. The whole empire, indeed, is a great poor-law union, which beats our Somerset House commissioners by a long way: the whole is carried on with such system, that it almost realizes the satirist's suggestion of boarded, lodged, clothed, and flogged by steam :-

The building in which I was engaged in puting up the gas.works, was for transecting the budness of the Russian army. In this building were several departments, with a " general" at the head of egch, some of whom employed ebove two handred clerks. In this building I sam lithographic printing for the first time; copper-plate and letter-press printing were carried on here, and a very extensive establishment for the mannfactare of mathematical instraments, all belonging to the government; ulso a drawing-school, con.sisting of about two hundred young offcere.

The next extract exhibits another of their arraugements for removing great weights:-

In another bullding I noticed a model of the machine on which a large hinck of grenite, weighing upwards of nine hundred tons, was removed sere. ral milen. Peter the Great is said to have stood on this rock, giving comrannils to his army, when he subdued the Fins. The Empress Catherine oriered it to be remored to the city for a foundation on which to place a bronze atatue of that monarch on horseback. Many ineffectual attempla were mado for its removal; but it was easily performed afterwards by intro. ducing cunnon-balls for rollers between bers of iron.

The three wood-cuts exhibit some ingenuity, and although there is little that is new about them, we thought that they might be of interest to some of our readers :-

Fig. 1.

Fig. 3.

Figure 1 represents a contrirance for whuting doors. The power is ap. pliod in the ume manner as in our modern printing presses. There is a pin at each end of the apparatus: one pin is fitted to and tarns in a socket ato rached to the frame, and the other is Allied to a similar one on the door. In uppontog the door the ptus are brought nearar togethor, and the weight in the emper is raised. The door is ahut by this weight atruightaning the bark, and apreation be ptan forther apart, Some of these articles are mede of tron,
and are black; others are of brass, and kept bright; both kinds are extensively used. Figure 2 is a cistern for water, with a ralve in the botlom, which is much used for weeking the fuce und hands. By raising the ralvo the water is let down in small quantities, and, as it is used, passes off ly means of a sink placed underneath. The adrantuges of this method are that persons do not wash in tho sause water with others, nor use it more than once themselves, which is not only more conducive to health, but makes less water necessary than washing in a common basin. These cisterns are made of various forms and sizes. Some of them have a dozen or wore pipes, each fumished with a valve, so that many persons may wash at the same time; the large ones are made in a circular form, and placed in the middle of a room, but the small ones are hung against the wall. In figure 3 is represented a spring bow or arch. This is used with the horsc.collar, for the horse that ls placed in the shafts, as other horses do not have them. It was a long tius before I could see any other use for this contrivance than to cause the horse to hold up his bead, and to keep him fronn stumbling, by the bridle being hooked to the top of this arch. I was informed afterwards by an intelligent man, that the spring being connected with the collar prerented the shoulder of the animal from chatiag, by continually casing the collar off, and suffering the air to pass between that and the shoulder of the horsc.

This work will doubtless prove of considerable interest to our American readers ; but the strict boundaries which limit the sphere of our labours, prevent us from entering into the work generally. It may, however, be read with gratification, for, as a piece of autobiography, it is as amusing as it is valuable, and fully reflects the character of its author. who is known and esteemed for his endenvours for the improvement of his working brethren.

Journal of the American Institute for Promoting Agriculture, Commerce, Manufactures, and the Arts. Vol. 3. New York. WaxtMAN, 1838.

This is a publication belonging to the New York Society of Arts and Manufactures, and is an excellent compilation of valuable materials from European and native sources. We find that our own work, among others, has been laid under contribution.

It contains, among other interesting subjects, the account of the last mechanica' fair nt New York. Mechanics' fair is the term for an exhibition like that of the Conservatoire des Arts et Metiers at Paris, or rather like those of some of the continental provincial towns, and it is an omnium-gatherum of new inventions, old manufactures, confectionary, pictures, baby-linen, penmanship, perfumery; hobby-horses, and the fine arts. At the last fair there were above 1,500 contributors, and 160,000 persons paid down their admission shillings to the tune of about $£ 2,000$. The greater part of this money is re-issued in the shape of mednls and premiums, and the institution, no doubt, stimulates enterprize equivalent to its popularity.

These fairs both at Boston and New York are strongly supported from political motives, being mainly upheld by the home manufacturing party. It is astonishing to see the strength with which protective duties and anti-frce trade notions are maintained in the annual addresses; and it is very truly observed that partial free trade, without universal concurrence, is something like Govemor Penn's peaceable constitution, laid at the mercy of neighbouring nations. Free trade is no favourite in the northern states, so that if our political economists are in the right, the progressing nation must be behind-hand for once.

We feel very happy to sce ourselves in the far-west, for it is an additional proof to our readers, that we have been successful in endeavouring to fulfil our duties to them, while it imposes on ourselves the task of seeing that our labours may be such as to merit the extended circulation which our work has obtained both in the old world and the new.

Map and Sections of the Raihoays of Great Britain, with Tables of the Gradiente. By George Bradshat. Manchester: Bradshaw, 1839.
This is a very careful compilation, on a large scale, from the best authorities, executed in a good style, and surpassing any publications of the same kind yet attempted. The railways for which acts of Parliament have been obtained are accurately delineated, and the accessories are executed with equal attention. The canals and roads are given in such a manner as to render it equally valuable for a general map as for its special object. By the side of the map are sections of all the railways, enabling the spectator to form an estimate of the gradients at a glance. The canals in the map have their levels marked upon them, and it would have been a considerable benefit if the same plan had been pursued as to the railmays.

On the whole, it is a work which does credit to its compiler, and seems to be attended with few faults either of omission or commis-
sion. By some error of the colourist, the Oxford and Dudcot branch is represented as if it had obtained parliamentary sanction, and we obrerve that this and some other miner proposed lines, as the Harwich are inserled, while others in agitation, as the St. George's Harbour, Morecambe Bay, \&ce., are omitted. We suppose that the London Grand Junction is left out on account of the expiration of the act. We are glad to perceive that an announcement in the prospcetus as to all the levels being reduced to that of low water at Liverpool is incorrect, although it would be advantageous if the datum were taken from the Trinity standard, as that of the longitude is from Greenuich.

In conclusion, we may award the meed of approbation to this work, as being one of great practical utility, and conferring high honour ou its compiler. It is most appropriately dedicated, by permis sion, to James Walker, the President of the Institution of Civil Engincers; and thus, while it acquires a higher value with the public, pays an honouralle tribute to the cxertions of that gentleman.

LITERARY NOTICES.

The Monthly Chronicle, with an article on the Great Western Railway ques. tion, has been sent to us, but we have not thought it necessary to extract from it, sa the matter seems unly a dilatation of Mr. Wood's report, published by as in our present number. As to the argument pursued by the well-knomn author, relative to atmospheric resistance, he shows too much doubt himself of its feasibility by the intercalation of the phrase "in the presentstate of science," to render it necessary for us to refute it. Perhaps the author may do so himself; st any rate the present experiments are evidently incomplete, and it does not follow that a ratio of resistance existing at a certain period should continut uniform throughout. This resistance, as well as others, may be subject to the crclar law of rariation, and like the velocitr of boats on canals become more farourable at a higher speed.

That valuable and cheaf compilation, Wylda Monthly Index to the Trones Neuspaper, has with the new year increased the sphere of its lebouns, and is enlarped to an Index to the Metropolian Morning Papera, Times, Clironicle, Herahl, Pust, and Advertiser. It gives fur the same price as before, 10,000 distincl referepces to 3,000 heads, and presents such a mass of figures, that Were it not for the clearness of the arrangement, it would be sufficient to repulse the reader. The address conta'ns some most interesting remarks, and the work itself is of that atility that no man of business should be with. out it.
wur attention has hepn called to a pamphlet entitled, Hinta on the adoption of the Broand Gauge un the Great Western Raileny, by Traffic ; bat as it isomly a puff of a proposed line, repeating off-refuted assertions, ve do not ubink it nee:ssary "to burmish the refined getd."
We have examined the last three parts of Dr. Cre's Dictionary, and we feel plensed to see that it still maintains its high character for utility. In the last pumb $\because r$, which is the fifh, is an interesting table of chemical formule, and an excellent account of the manufacture of gas, which we shoald be tempted to extract, were we not assured that most of our readers have provided themselves with the original work, so that it would be like carrying coals to Newcastle. We see that the Doctor promises a new work on chemistry, which we hovalinle doubt will be, like his other compilations,' a valuable addition to the thoek of science.
we sumll refer to Davy on Foundations in our next Journal.

ORIGINAL PAPERS, COMACURICATIONS, ac.
RALPH REDIVIVUS.-No. 18.

the excise oftice.

Most persons, I am inclined to suspect, employ certain current epithets and pluases, either without attaching any meaning at all to them, or else a very false one. One of the cant terms thus bandied about is simpticity; but when you ask what is meant by simplicity, you are stared at as being a most dunce-brained ignoramus, or an exceedingly disagreeable and impertinent bore. The result of all your inquiries and cross-questioning will be, that simplicity is simplicity, nothing more nor less, and that you must be a prodigious simpleton not to understand it. Perlaps, the better detinition would be that it is a quality which everybody admires, or pretends to admire, which most penple fancy they can see where it does exist, and which very few can perceive when it is actually before their eyes.
That it exists, for the most part, only in the imagination, or, perhaps, only upon the tongue, can hardly be denied, when we consider the sort of things which are praised for their simplicity, although more frequently than not, they are mongrel compouads most clumsily put together : for instance, a dull school-bny copy of a portico, (that is, of a few colunums with an entablature and pediment-tied to a building where it is not only superfluous af fir as utility in concerned, but worte thin superanous, a
positive absurdity as regards consistency of style, or even mere ertionion effect, shall be admired for its simplicity, although it ought rather to be reprobated as a vulgar affectation and absurdity, manifesting notbing $s o$ much as sheer obtuseness of taste, and utter sterility of ideas. On the other liand, that it cannot be perceived or estimated when actually placed before people's eyes can hardly be denied, when we consider how ill we appreciate an edifice that, for its dignified simplicity and unaffected nobleness of expression, has not its equal in the metropolis. I mean the Excrae Office. Let any one, after looking at the tawdry insignificance of the columned façades in the Regent's-park, go and contemplate the unpretending grandeur of the edifice in Broad-street, and le canmot fril to be struck witb the vast superiority of the latter, and with the imposing presence it makes. If such really be the case, it will be said, how happens it that its merits have been overlooked, and that no one ever refers to it as a piece of architecture? Is not that extraordinary? Tout au contruire; that it should be neglected is quite in the ordinary course of things. It is marked by no striking features, much lees does it tecommend itself to the vulgar eye, by any of those prettifesses which are almost sure to command vulgar applause. Its talue lies in character and expression, and in its totality of effect, qualities which, it would seem, are altogether caviare to the million. Besides which it is not, like St. Bride's steeple, one of those things for which the good citizens are taught from their infancy to entertain traditional admiration. While it is too old to be stared at as a modern improvement it is nas old enough to be gaped at as being of long standing and universal note. Above all, it has never, like some productions greatly inferior to is, had the good luck to have a current reputation given it, by any generally recognized critical authority.

Nevertheless, all honour be to James Gandon, for in what he has here achieved, he has shown the true feeling of a master. It is, indeed, almost the only thing in all London that really looks like a palace, or that is worthy to pass for one. That erected, in evil hour, by Nash, admits of no comparison with this edifice, for greatness of manner, and stateliness of appearance. There, every part has a squeezed-up, little, and fnical look; and, notwithstanding that there is a good deal of embellishment, or what is intended as such, the building has not the slightest air of richness; neither does it offer anything that can properly be termed variety ; but, contradictory as it may sound, is stamped by insufferable monotony; alchough it exhibits nothing whatever of unity.
It is absolutely refreshing to turn from Nash's architectural Micromegas to this work of Gandon's, where the eye reposes with prolonged satisfaction on the breadth and grandiose physiognomy of the ensemble; to which all the proportions very happily contribute. Considerable as is the extent of front, it is not so great as in any degree to counteract the expression of unusual loftiness, which may be seld to be the predominating one; and what conduces not a little to it is that there are no horizontal members dividing the height, and cutting it up into a succession of distinct compartments from the ground to the summit. If we compare it in this respect with Inigo Jonea's building at Whitehall, we can hardly help feeling the great superiority of Gandon's. There, we behold a diminutive basement, and two sman orders without any crowning member to give importance to the summit of the edifice; here, a basement of unusual loftiness comprising two series of windows, and above it a principal and secondary floor surmounted by the cornice that crowns the entire mass. Withont thereby losing any of the consequence it derives from height, the first-mentioned portion of the structure acquires more importance in the design from the variety thrown into it , owing to the modes of rusticating employed, that below being of a more masculine character than the other. Nor is variety the only merit arising from this combination, because, to my eye at least, the upper part of the basement thus forms an agreeable transition from the more massive substructure to the more finished superstructure. This duplication of the basement is, besides, excellently well-motived by the lofty arch, which is so effective a feature in the whole composition. Substitute an ordinary sized doorway for it-either in idea or upon paper, and it will instantly be evident how greatly all the rest would suffer by such alteration alone. Another circumstance that mainly contributes to the air of external grandeur and internal spaciousness which distinguishes this piece of arefitecture consists in the proportions between the solids and apertures. Even in some parts of Somerset-house, a certain petitesse prevails, owing to the windows being too numerous for the surface they occupy; besides which the intermixture of windows with dressings and others without them, upon the same foor produces a patchy and parsimonious appearance. Here, on the contrary, the apertures are admirably propor. tioned to the whole façade, are effective but not obtrusive featuretand although far from petty in themselves-subwervient to the larger spaces; whereas in the building by Jones before alluded ta, the windolvs predomiante too much, atad ctuse the columns and pinition to appear dimiantive in comparisou with them.

Howour be to James Gandon, an architect to whrm Dublin, 1 should obscrve, is indebted for its finest structures, and the author of what is undoubtedly by far the finest apeaimen of simple unadomed grandeur in our own metropolis.

CANDIDUS' NOTE-BOOK.

(Second Series.)
[The Firat Series of these papers appeared in the "Architectural Magarine," which work being now terminated, the writer has consented to continue them in this journal, under the same title, as that will identify him at once-perhaps recommend him better than a fresh one, to those of his present readers who here neet with an old acquaintance.]

FASCICULUS I.

I. Within about the same time that was employed on the single church of St. Peter's at Rome, the northern metropolis, named after the same saint, has arisen from its foundation to its present magnitude and grandeur. Yes, not quite a century and half have elapsed since the site of St. Petersburg was a dreary morass, and ere that century and half will have been completed, will the St. Isaac's church, one of the most stupendous achievements of modern architecture, be finished. The works are now procecding with great rapidity, and it is confidently anticipated that the whole will be completed by the year 1842; and whenever it is, it may perhaps challenge the world to produce its equal for external grandeur and for sumptuousiess of material. The whole of the exterior will be of marble, granite, and bronze, and the dome will be gilt with ducat gold. The height of this dome is 340 Russian fect, or very uearly 400 English ones, consequently greatly exceeds that of St. Paul's, which difference, though ioconsiderable in proportion to their actual size, gives prodigious increase of magritude, just as every additional inch above six fect does to the stature of a man. The number of columns, each consisting of a single piece of highly-polished granite, is 104, of which those forming the porticos are nearly sixty feet high, and the remaining thirty-two, around the tower or tambour of the cupola, of somewhat less dimensions. Neither is it in the maguitude alone of some of these structures that the Russians surpass us, but also in the celerity with which thes execute them. The Winter Palace at St. Petersburg was burnt down about the same time as our loyal Exchange; but while the ruins of the latter are but just cleared away, the former is by this time rebuilt!-at least, in the midile of last August the works had adranced so far that it was expected the Emperor would be able to hold his new-year's levee there, for no fewer than five thousind man (a great number of them soldiers) were employed on the edifice. Very possibly this energy may in some respects be censurable, inasmuch as hardly any time can have boen allowed for duly maturing the plans; but it certainly offere h very atining contrast to the drowsy mude in which we proveed here nt home. The British Museum creeps on at a most todious statillike pace, indeed, if it does not soon begin to mend its pace, it is hardly likely to be finished before they end of the present rentury.
II. To me it appears almont inceplitible, fint nmong the swarms of tourists and travellers who returt every setoom from abroad with the materinls for a volume or conple of volumes in their note-books, there should never be an architectutal one. Most assuredly it cannot be because an architect can now meet with nothing that has not been described again and again, since to go no farthet than Patis and Fersailles, they alone would futnish matter both of description and criticism hitherto quite untouched. Eten the hackneyed route to Rome affords many ungleaned patches, hlere being scarcoly an Italian building of the present century which has obtained any motice from travellers. It is true, Italy has produced comparatively little in the way of architecture of late years; nevertheless, much has been accomplished that is exceedingly well worthy of note. There is, for instance, Canova's Tempie di Passagno, or Church at Passagno; to saty nothing of several beautiful edifices at Milan and elsewhere, by Cagnola, and others by Dordoni, Bianchi, Durelli, Di Secco, Peverelli, \&c. But if Italy holds out little that is new, there are Munich, Berlin, St. Yetersburg, and various other capitals, which are as yet quite untrodden ground to English architects-places where they might at any rate pick up some fresh ideas. Non-architectural writers and tourists, on the contrary, are apt to make exceedingly bad work of it, whenever they attempt to describe buildings or discuss their merits. It is, therefore, quite a god-send when we meet with such clever desarptive sketches as the "Critical View of Ge Architecture of New York," and the "Fragments of a Provincia, Tonis:" to the eoncluding number of the "Architectural Magazine." The only fualt in them 13, that, although not short articles in them.
selves, they create a longing for very much more from the same pens. Mr. Humplaries ought to extend his tour much further; and, ns he is quite an fait with his pencil as well as with his pen, should give it to the public in an illustrated octaro volume. His intelligent descriptioms and remarks would be most acceptable, particularly were the former to be somewhat more expanded.
III. Among much other information to be obtained from Mr . Humphries' "Provincial Tour," the folluwing is not the least worth notice :-"Beyond the church (at Manchester) I found the old college, an interesting building, unrestored nnd unadulterated by modernization of any sorr. It was founded by one Cheatam, a highminded merchant like Gresham. who has thus conferred a lasting benefit upon his native town. It contains a good librery, which is public in the true sense of the word ; that is, any person may go at any time, and call for any book he requires, unannoyed by any irksome restriction whatever." Prodigious! What a simple, plaindealing creature must that same Cheatam have been to have given a library to the public upon such casy terms, without so much as imposing any irksome restriction whatever! What grovelling, childish notions of munificence and public spirit the man muat have had:certainly widely different from those entertained by old Soane, who would far more worthily than the other have become the name of Cheat'em.
IV. The two great stumbling-blocks of art, or the Scylla and Charybdis on which it is generally precked, are pedantical, spiritless precision and exactness on the onc hand, dull licentiousness and disregard not only of all suthorities, but of all conditions of art, on the other. The great point is to know how to emnncipate ourselves from the trammels of slavish imitation, without-I wili not say running into wild, climerical extravagances, but without destroying those qualities of the style aimed nt, which confer upon it its chief charm and value.
V. It does not often lappen that the "Gentleman's Magazine" ventures upon anything like honest critical remark in regard to any of the buildings it notices. The following strictures, therefore, in the volume for 1826 , deserve to be here brought forward again, and to many will be entirely ncw. "Expensive and numerous," says F. J. C., " ns are the public buildings in prouress, though the names of Soane and Smirke may be quoted as the arclitects, and the thousands expended in their construction be adduoed in their favour, are, I would ask, any one of them grand? On the contrary, clo not the new brildings present one uniform air of meanness? The spacious wing added to the British Museum, with its unbroken brick wall, seems to have been built to compete in beauty with the King's Bench, or the Fleet. The new Post-office, like the new Mint, and the generality of Mr. Smirke's buildings, is is tame and spiritless as plain stone wrills with dwelling-house windows, and a few columns stuck about them as apologies for porticos, can be. If the ephemeral praise of periodicule was steffelette to exalt the claracter of a building, it is but a few years since that all the newspapers and periodicals, fron one end of the kingtlom to the athet, were filled with applauses on that huge and senseless pile the Custom-house." As to the new Mint, that has certainly not conduced at all to Smirke's fame. Indeed, it lies in a territory criticism never travels into; which, however, may be a rather fortunate circunstance for it than not, because the less it is known and spoken of, the lesa likely is it to be condemned.

CONETRUCTION OF LIGHTHOUSES ON SANDS.

We now lay before our readers one of the most importaut experiments of the present day, which promises to give to the engineer a foundation hs secure in the sea as he has hitherto enjoyed on the surface of the earth. The success of this attempt will give us resoufces to battle with an antagonlist, before which all our meehanical itrefigth hes too ofen proved defective, while, to the maritime imterests of the deuntry it will afford new and further protection. We can appreciate the difficulty which Smeaton encountered in planting the Edystone on the tirn rock; but we have now the means offered to us of security even upon the shifting sand.

At page 22 of our last volume, we were, through the kindness of Mr. Elnes, cnabled to give a description of "Mitchell's Patent Screw Moorings," but we did not then anticipate the application which they have since received. It having been prought under the notice of the Corporation of the Trinity House that this instrument might be advantageously applied in establishing lighthouses on sands, their attention was immediately given to the subject, and accordingly directed an experiment to be made to ascertain its practioability, under the superintendance of their engineer, Mr. James Walker.

The spot selected is on the verge of the Maplin sand, lying at the
month of the Thames, about twenty miles below the Nore, forming the northem side of the Swin, or King's Channel, which, on account of its depth, is much frequented by large ships, as also by colliers and other vessels from the North Sea, and where a floating light is now maintained. This spot is a shifting cand, and is dry at low water spring-tides. The plan is to crect a fixed lighthouse of timber framing, with a lantem, and residence for the attendants. For this purpose, in August last, operations were commenced to form the base of an octagon, 40 feet diameter, with Mitchell's mooring screws, one of which was fixed at each angle, and another in the centre; ench of these are 4 feet 6 inches diameter, attached to a shaft of wrought iron about 25 feet long, and 5 inches diameter, and, consequently, presenting an immense horizontal resisting surface. For the purpose, a stage for fixing the screws, a raft of timber, 30 feet square, was floated over the spot, with a capstan in the centre, which was made to fit on the top of the iron shaft, and firmly keyed to it; r power of about 30 men was employed for driving the screws; their united labours were continued until the whole force of the 30 men could scarcely turn the capstan : the shafts were left standing about 5 feet above the surface of the sands. The fixing of the nine screws, including the setting out the foundation and adjusting the raft, which had to be replaced every tide, did not occupy more than nine or ten days.

This is the portion of the work hitherto effected, and its continuation will be proceeded in when the proper season comes in the ensuing spring. Upon this foundation the superstructure of timiser is to be constructed, consisting of a principal post, strongly braced and secured, with angle-posts made to converge until they form a diameter of about 16 feet at the top, giving the superstructure the appearance of the frustrum of an octangular pyramid, the fect of the angular posts and braces are well secured and kesed down to the tops of the iron shafts, and the whole is connected at top and bottom with strong horizontal ties of wood and iron. The entire height of the superstructure will be 30 feet above the top of the iron shafts; up to a point about 12 feet above high-water mark spring tides the work will be open; the part above will be enclosed as a residence for the attendants; in the cenire and above this will be erected a room or lantern of about 10 feet diameter, from which the lights are to be exhibited.
The interval that has elapsed since the screws were fixed has fully proved the security of them, which, although driven into sand, seem as if fixed into clay, and in this state they have remained since the summer. The whale process confers the greatest credit both on the engineers and Mr. Mitchell, the patentee of the screws who superintended the work, (assisted by his son) and we feel happy to hear that his ingenious invention daily obtains a greater extension.

Figwre 1 showsthe screw mooring as prepared for use. a is a kpirnh or screw fiange of about one tum and a half, having a holiow cylindrical centre, an shown in figure 2 , and of cast-iron in one piece; b is a wrought-iron spindte, which jasses through the cylindrical socket of the serew fiange, somewhat tapering in form, as shown in figure 3, and when driven up tight, is fixed thereto by a forelock, which passes through both; it is formed with a square bead, c, to receive the key for screwing it into the ground; d is a collar of

The importance of this experiment certainly called for a trial, and it was with due liberality that the Trinity Board sanctioned the expense. To them it involves the question of a better security of the light, and a less expense in its maintenance, both objects justifying the experiment, and counter-balancing the expense of prime cost in such construction. The insecurity of floating lights has been 100 manifestly productive of disastrous consequences not to call for a remedy, and it will be fortunate if by this means it be obtained. Within the last month the Nore light was blown from her mooring; and the breaking away of the North-west Light of the Mersey is supposed to have led to the lamentable shiparecks at Lirerpool.

We can perceive only one oljection which can be started, and that is rather to be determined by experience than conjecture, that is how far the edifice is liable to be washed away by siorma as one of the Edystone buildings was; but this, in our opinion, will be mainly provided against by the unity of construction and the breadth of bare well secured to the shafts by the screws.
The progress of this work will naturally le watched with interest, for it is one which in its influence is not limited to this individan case. It is of much more importance than chain piess, as it will enable us to obtain a foundation in positions where they cannot at present be used. It must be remembered that the serew can be employed where the pile is of no avail, and that it possesses a much stronger hold, and has greater durability.

We shall thus, therefore, be able to construct piers and breakwaters in localities inaccessible, and be enabled to render important service to the interests or commerce. We think, ton, that the screw: itself would be of great atility in securing the end chains of suspen-sion-bridges, as its powers of resistance can be extended to any necessary degre by an increase in size. The greater employment of the screws, which would arise from their successful application, will have a further beneficial effect in enabling the patentee to supply them at a diminished expense, which, under their present limited sale, is necessarily high.

The carpenters' work of the superstructure is about to be contracted for, which is intended to be erected and put together at the Wbarf at Blackwali to save time of fitting, \&e., at the spot.

In order for the better understanding of our description of the mooring screws at page 22 in our last volume, we have obtained of Mr. Weale the use of the wood engravings illustrating his valuable publication, the "Public Works of Great Britain." They will exhibit, in a mucli clearer light, the construction of the moorings. The screws described above for the foundation of the lighthouse, differ in some respects from these engravings; instead of being furnished with a chain and shackle, they have a wrought iron shaft connected to the screw as before described.

HARLAXTON.

When we stated, in our review of "Dr. Dibdin's Tour," that Mr. (iregory's splendid new mansion at Harlaxton, near Grantham, was legon by Mr. Blore, we had fallen into a mistake, which we now correct. The architect originally employed, when the building was commenced in 1832, was Mr. Salvin; and although the exccution of the worl has since been committed to other hands, his designs have been adhered to. Mr. Blore was called in, but only to be consulted; and Mr. Burn, who was afterwards engaged to complete the edifice, had only to erect what remained to be done, in strict conSormity with that half or portion which had been built by Mr. Salvin; consequently, to the last-mentioned gentleman belongs Whatever reputation this mansion may acquire as a piece of architecture; and, notwithstanding that it is in a style to which, as a style, we are by no means partial, we are free to confess that it is infinitely more to our taste than almost any other specimen of it we are acquainted with.

The principal or entrance front-that facing the north-is, indeed, a most pictnresque and masterly composition, presenting a refined ideal of the style, where all its best qualities are brought out and blended together, and where features, which, taken by themselves, have no pretensions to grandeur or elegance, are made to contribute towards the richness and stateliness of the ensemble. The true fecling of an artist manifests itself throughout every part of this fagade. It is so perfect a picture that all our prejudices against the style itself not only are silenced before it, but serve to enhance our admiration, when, contrary to all our preconceived ideas, we behold what may be produced out of it when treated with geniality of taste. We shrink, however, from the task of attempting to convey, by mere words, any intelligible idea of so complete and varied a composition as this front. In description, the whole would appear little better than profusion and confusion; whereas, in the design itself, notwithwtanding the great number and diversity of its features, the whole is perspicuons and harmonious. The centre compartment, flanked by two turrets, and crowned by a larger one of highly decorative character, presents itself as almost one entirc mass of ornament, yet without secming in any degree crowded; there is nothing superfluous, because there is nothing that does not evidently conduce to the character here aimed at. The other principnl front, which is not quite so lofty, being raised on a terrace occupying the depth of the ground-floor on the entrance side, is that facing the west; and here the lower part, or that on the level of the terrace, is occupied through the whole extent from north to south by the gallery, that is, by what Dr. Dibdin describes as the drawing-room. This gallery measures 97 feet by 25 , exclusive of the northern oriel, besides which there are two bays and a lobby comnunicating with the terrace on the west side. On the other side of the gallery are two fire-places, one facing each of the bays just mentioned, and between them a door leading into an ante-room, (25 feet square, beyond which is the dining-room, 40 feet by 25 , exclusive of an additional space 37 feet by 10, and further extended by oriels, and recesses with windows, which latter are in the turrets at the angles of the centre compartment of the north front. Behind this dining-room is a spacious hall or reception-room (78 feet by 27 , and two storics in lieight), whose lofty oriel and other windows form suach conspicuous and characteristic fentures in the elerntion of the south front. The principal drawing-room (36.6×25) is at the west angle of this front, where it forms a projecting wing, between the great hall and the gallery, with the principal staircase at the rear of it. This latter commanicates with the ante-roon between the gallery and diningroom; thus affording a line of upwards of a hundred feet, from the. fire-place in the ante-room to the south bay of the drawing-room.

IRISH RAILWAY COMMISSION.

(Continued from page 15.)
The Irioh Railway Commissioners speak of the port of Havre, iu France, at page 66, thus :-
*We know that it is a question of doubt still pending whether Harre, or some other place in France, or a port of the British Empire, shall henceforth become one of general resort for the businesp to America for a great part of the continent of Europe, and a favourable result for our own country can only be obtained by the establishment of facilities manifestly superior to those of Havre or other Frebch ports."
In looking over we very few pages which the Railway Commistioners' Report contains regarding the bevt harbour on the western shores of Ireland, which should be selected as the port to communicate with Amaica; and the very few and limited obecrrations they have givon as
to the success of an intercourse by steam with the new continent. The total want of any kind of exposition on the very extended range that steam navigation across the Atlantic will naturally assume with all the large commercial sea ports situated on the western shores of Europe, with those on the eastern coast of America. The extremely objectionable system of railways, which the Royal Commissioners lave laid down, to connect the three largest cities in Ireland, viz., Dublin, Limprick, and Cork, slows that the Commissioners have not been able to elucidate in a full, clear, and satisfactory manner, even any one of those very interesting subjeets, although "My Lords have full evidence from the character of the gentlemen appointed to form the commission, that their labours will be conducted in a satisfactory manner."

The position assumed by the Commissioners as to a general port or ports, either on the south or west coast of Ireland, to communicate with America by steam, and to bee general port for a considerable part of Europe, is not shown to be based upon any reasonable grounds for such an assumption ; and in merely assuming that this will be so it has been recommended by them not only to connect Dublin, Limerick, and Cork, by railways, amounting to 316 miles, but also to make n new railway through Wales, not less than 140 miles long, and which will cost more than ten million sterling.
The Commissioners' report strongly recommends that the Government should make no less than 436 miles of railway, or nearly double the length from London to Liverpool* for the principal olject of endeavouring to make Cork, as they state, the general point or port in Europe for communicatiug by steam with America. I am thoroughly conrinced that when the British parliament examines those magnificent projects of the Royal Irish Commissioners that it ought not to adrance one single penny towards the execution of a line of railway through Wales of 140 miles in length, or to the making of 316 milles of railway through the southern part of Ireland for the mere hazardoua chance that one of the southern ports of Ireland might become the port of general communication by steam between Europe and America. Does not reason announce that such has been the success of steaming from America into Bristol and Liverpool, that no western or southern liarbour in Ireland is ever likely to become, in the present condition of commerce, the general port to communieate with Λ merica by steam, or for any portion of the continent, Great Britain, or even Ireland heiself.

From the triumplant success which has attended the voyages of the Great Western and other steamers in mavigating across the Atlantic between Europe and America, it must be quite clear to every person at all acquainted with the progress of steam narigation. that all the large British ports which may have business with the atates of America, to any extent, such as Bristol, Liverpool, Glasgow, London, \&c., will all have their own American steamers in the course of a short period. This is fully established by the present condition of steam navigation between London, Cork, Helfast, Dundee, Inverness, Hamburgh, St. Petersburgh, Portugal, Malta, Egypt, \&c., \&c.

Let any one acquainted with the rapid progress of maritime steam navigation during the last 25 years, read the extract at the head of this article and say if it does not lead to conclusions and speculations of the most absurd and ridiculous kind. To state that people in America returning to England, France, Belgium, Germany, \&c., would be desirous to arrive at an Irish port in preference to an English or a French one carries its own refutation. I can venture to tell the Government of this country, the Royal Irish Commission, as well as those who are concocting this very extraordinary job, that France will have her own steam vessels for American intercourse as well as Britain. France is too powerful, too great, too maritime, too commercial, and too ambitious, not to avail herself of all those advantages which steam intercourse with America will confer and offers to other pations. The noble harbour of Brest lies nearly under the same longitude as Falmouth, and is much more westerly than Bristol, Liverpool, or indeed any port in England except the first, and a steamer sailing from Brest ouly requires 12 tons of additional coal for a voyage to America to reach the longitude of the most westerly harbour in Ireland, while on the other laand thic parallel of Brest is a much better climate than that of Ireland to anvigate from for America; besides the port of Brest would be the best for Central Europe to communicate by steam with America, and possess many advantages in this respect over any of the southern or western ports or harbours in Ireland. Even the ports of Havre and Bordeaux will yet have steamers plying regularly to America.

Looking at the immense revolution which the application of the steam engine to navigation has so successfully aclieved in all the seas of Europe and North America, looking again at St. George's Channel and the Irish Sea leading from the Athntic to the port of Liverpool; to the Bristol Clsannel running from the main ocean to the port of Bristol ; to the English Channel reaching up to near the port of London

[^3]on the shores of the German ocean ; to the Northern Chanuel and the Estuary of the Clyde stretching up to Glasgow. Are not these communications extending from the Atlantic Ocean to the principal ports of Great Britain admirable channels, and quite sufficient for all kinds of steamers to navigate to these respective ports. Thus has nature laid open the whole of the harbours and commercial ports in the Empire to all the advantages of steam navigation with the states of the new world; and be it further observed that these magnificent sea channels have cost the nation nothing and never will require any kind of repair. On the other hand, looking to the land, is there not a railway already made and extending from Liverpool to London? and from which harbour or ports steamers are plying to all the principal ports of Holland, Bel. gium, and the north of France, Hamburgh, and even to St. Petersburgh. Agaio a railway communication exists between England and Hull, facing Hamburgh on the continent, and laying open the whole of the northern countries bordering the Baltic sea; and is there not a railway in full progress of execution which will connect Bristol and London called the Great Western? I ask are not these channels, harbours, and railways, quite sufficient to afford all reasonable facilities and accommodation to general intercourse with the American continent by steam, without embarking the government in the great expense of making 140 miles of railway through the mountains of Wales; and 316 miles of railway through the southern districts of Ireland, which would incur an expenditure of ten millions sterling, on a mere chance or probability that Cork might become the "general resort for the business to America for a great part of the conlinent of Europe." The endeavour to make Cork a point of general resort for the busiaess to America is made to appear the ostensible reason why government should make so many hundred miles of railway through Wales and the south of Iroland. It is under this mantle of a western port for the accommodation, as it were, to the intercourse of a great part of the continent of Europe is concealed one of the most extraordinary projects that has ever been attempted to becarried into execution within the realms of this empire, but it is to be hoped that the good sense of the British parliament will at once put a stop to any further proesedings as regards the recommendations of the Railway Commissioners.
W.

LONDON AND WESTMINSTER BANK.

Architects.-CharlesCockerell Esq. R.A., F.S.A.; and William Tite, Esq. F.R.S.
The new building for the city establishment of the London and Westminster Bank, which has just been completed, is situated on the north side of Lothbury, immediately opposite to the nortli-east angle of the Bank of England. The whole structure occepies a site of nearly 80 fect in frontage, and 90 in depth. The fagade consists of one general plane or face, broken only by an advancing pier at each end. It has seven apertures in the length, and threc tiers of them in the height; the two lower tiers, comprehending the openings on the ground and one-pair floors, are included in one architectural story, or order, if such it may be called, the upper tier, which consists of the windows of the two-pair floor, being contained in an attic story. The whole of the front is of Portland stone, with the exception of the plinth, which is from the Bramleyfall quarries. The entrance vestibule or avenue has, on cach side, is linc of four plain Doric columns, with appropriate accessories. From this vestibule access is gained on the right to the country bank, the principal staircase, and some official apartments ; and directly in front, to the principal or town bunk. The latter apartment is by far the most considerable in the building. Its general form is a square of about 37 feet, whose height is that of the entire building, and it is extended by lateral recesses, east and west, to a portion of this height. These additions or aisles are divided from the centre, on each side, by an arcade of three arches, springing from Doric culumns, with cornices. The surrounding walls are channclled in rustic courses to the height of this order. The recesses are sufficiently lofty to allow of the introduction of a gallery on each side, finished in front by a balustrade, abutting against the columns at such a height that the capping of the balustrade ranges with the abaci of the columns. Above this, the arches of the arcades run across over the aisles, and are intersected by a contrary vaulting, producing a system of groins as ccilings to the galleries ; they are also adranced over the main borly of the building, and treated as a series of half groins, so as to afford support to an upper gallery, which passes quite round the principal square. The verge of this upper gallery is guarded by a barrier, consisting of a double horizontal rail, sustained at intervals by ornaments of a scroll foliage. Over this gallery the lines of the cubical form below are continued through, and gathered up by means of penden. tives in a domed figure, exhibiting nearly a hemisphere cut of by planes raised upon thides of a square inscribed within its circum-
ference. The top of this dome is pierced by a large circular oper ing for a skylight, the margin of which is covered, and additionally ornamented with mouldings and lions' masks. Light is aloo obtained by triple windows, occupying the flat semicircular spaces left by the pendentives of the dome, on the three sides which are exposed to the view of a person entering; these windows are filled with glass in geometrical compartmenta, alternately ground and polished. Bmaller semicircular windows are introduced likewise in the three arches on the north sidc, which firm a continustion to those of the lateral arcades. Of the remaining apartments, the principal is the boandingroom, occupying a frontage of four windows on the one-pair story. On the same story are varions apartments for the business purposes of the establishment. The two-pair story, and another above it, the frontage of which last is concealed behind the balustrade of the attic, are approprinted to the use of the resident manager. Ample necommodation for cellarage, strong-rooms, porters' apartments, \&c., is provided in the basement story, which is fire-proof. The time ocetpied in the completion of this building has been about 18 months.

ASPECTS AND PROSPECTS.

The following judicious remarks relative to the choice of aspect for a house, we have extracted from the valuable work, entilled "Fragments, by the late H. and J. A. Repton." They are given in the form of a report concerning the situation for Walwood House, Laytonstone, Essex :-

Nothing ia more common, than for those who intend to build. to consult many advisers, and to collect different plans from which the? suppose it jossible to make one perfect whole; but they might as well expect to make an epic poem, by selecting detached verses from the works of different poets. Others take a plan, and fancy it may be adapted to any situation; but, in reality, the plan must be made not only to fit the spot, it ought actually to be made upon the spot. that every door and window may be edapted to the aspects and prospects of the situation.

It was a remark of my venerable fricnd, Mr. Carr of York, afier fourscore years' experience as an architect, that "to build a house we had only to provide all that was wanted, and no more, then to place the best rooms to the best aspectanand the best views." Simple as this apothegm may appear, it contains more trath in theory, and more difficulty in practice, than all the rules which have ever been laid down in books by architects, or the rmarks of all the admirers of rural seenery with whom I have conversed. The former never thins of aspects, and the latter think of nothing lut prospects. I will, therefore, beg leave to enlarge on these two suljects.

1 consider the aspect of infinitely more consequence to the comfort and enjoyment of the inhabitant, than any prospect whatever; and every common observer must be convinced, that in this climate a southern aspect is most desirable; but few are aware of the total difference in the effect of turning the front of the house a few points to the east or to the west of the south; because, although the south east is the lest, yet the south-west is the worst of all possible aspects; for this reason-vis., all blustering rinds and driving rains come from the sonth-west, and consequently the windows are so covered with wet, as to render the landseape hardly visible. My intention was originally drawn to this subject by travelling so nuch in yost car. ringes, and often remarking the difference betwixt the nindow to the south-weat and that to the south-east, during a shower of rain. or immediately after; when the sun slining on the drops causes an unpleasant glitter, obstructing the prospect, while the view towands the south-east remains perfectly visible.

At Organ Hall, in Hertfordshire, the living room was towards the south-west, and during a cheavy storm of wind and rain we accidentally went into the butler's pantry, which looked towards the southcast, where we found the storin abated, and the view from the windows perfectly clear and free from wet; but on returning into the other roon, the storm appeared as violent as ever, and the windows were entirely covered with drops, which obstructed all view.

On considering the prevalence of south-west winds, it was determined to reverse the aspects of the house by clanging the uses of the room, making a very comfortable house of one which, from its anpect only, was before hardly habitable; since no window, nor hardly any brick walls, will keep out the wet, where a front is exposed to the south-west; for this reason, it has been found necessary in many places, as at Brighton, \&c., to cover the walls with slates, or pendent tiles, and to use double sashes to the windows so situated.

If we had only one front, or one aspect to consider, our deficults would soon vanish; but the prevailing partiality for variety of prospect seems to require that in every direction the views choold be retained; and as the opposite walls of the house munt be parallela
and the corners at right angles, we must consider the effect on each of the four sides thus:-

First, the aspect due north is apt to be gloomy, becanse no sun shine ever cheers a room so placed.

Secondly, the aspect due cast is not much better, because there the sun only shines while we are in bed.

Thirdly, the aspect due west is intolerable, from the excess of sun dazaling the eye through the greatest part of the day.

From hence we may conclude that a square house, placed with its fronts duly opposite to the cardinal points, will have one good and three bad aspects.

Let us now consider the effect of turning the principal front towards the south-east, then the opposite front will be to the northwest; an aspect far better than either due north or due west; because come sunshine may be preserved, when its beams are less potent than in the west, and the scene will be illuminated by those catching lights so much studied by painters; especially where, as in the present instance, the landscape consists of large masses of forest trees, and thickets richly hanging down the side of an opposite hill. An aspect open to the north-east would be objectionable during the cold winds of spring; but in this instance it is effectually sheltered by an impervious screen of trees and large hollies, not drawn across the landscape, but perspectively receding in a deep bay, and forming an admirable defence against the north-east winds: while the richness and variety of this amphitheatre of evergreens will render the prospect as perfect as the aspect. This warmly sheltered corner will invite the rattle from every other part of the grounds, to enliven the home view near the windows.

It now remains only to mention the side towards the south-west; and having stated the objection to this aspect, we may consider it fortnnate that the prospect in this direction is such an requires to be hid rather than displayed; and consequently the detached offices and plantations, to connect the gardens with the house, will defend the latter from the driving storms of the south-west, and give that sheltered and shady commexion heiwint the house, offices, and gardens, which constitute one of the most delightful agrmens of a country residence.

While speaking of the three different aspects, I have slightly adverted to their respective views or landscapes, but I will speak further on that towards the south-east, to which all the others may be considered as subordinate, although not sacrificed.

It is very common for admirers of landscnpe or natural scenery to orerlook the difference betwixt a tree and a pole, or betwixt a grove of old trees and a plantation of young anes. We fancy that time will reconcile the difference; but, alas! we grow old as bast as the trees, and while we dot and clump a few starving saplings on an open lawn, we indulge hopes of seeing trees, when in fact we only live to see the elumsy fences by which for many years they must be protected. Happy, therefore, is that proprietor of the soil who becomes possessed of large trees already growing on the land he purchases, since no price can bray the effect of years, or create a full-grown wood; and without that we may possess a garden, or a shrubbery, but not a landscape. This consideration alone is sufficient to attach us to the ricinity of that venerable avenue, which it would be a sort of sacrilege to desert, and whose age and beauty will give an immediate degree of importance to the house, which could never be expected in any more open pert of the entate.
The view towards the south-east will consist of a glade into the forest, where distant woods of Wanstead are seen betwixt the alew of lerge triet in the foreground, producing a purple tone of
colouring so much studied by painters and admirers of picturespue effect. To this may be added the cheerful moving scene of a public road, not too near to be offensive; for however some may affect to prize the solitude and seclusion of a forest, shat out from all the busy haunts of men, yet within six miles of the capital few places can boust minch privacy as Wallwood House commands within its forty acres, surrounded by a forest. Who then would regret to see occasionally, and at a proper distance, the enlivening mixture of man with animal life, and vegetation in its most interesting forms?

From its situation within so fcw miles of the metropolis, this place ought to combine all the pleasures of the country with the conveniences of a town residence.

REMARKS ON THE REPORTS OF THE GREAT WESTERN RAILWAY.

by an old bnoinerr.

Sir,-The report of Mr. Wood to the directors of the Great Western Railway, upon the principle of construction adopted by Mr. Brunel, its advintages and disadvantages, \&c., and the contrasted results obtained by experiment upon other lines, having largely engaged the attention of the public for some days past, and as I do not coincide in opinion with Mr. Wood and Dr. Lardner, as to the mode in which some of the experiments were conducted, and the inferences deduced from them, you will perhaps oblige me by laying my strictures upon the report in question before your readers.

Before entering upon the subject, I cannot refrain expressing my admiration of the honourable and conscientious feelings evinced by Mr. Wood at the very threshold of the enquiry, that he was determined to constitute himself the mere chronicler of experiment, and in the spirit of a real philosopher, to go no farther than justified by its eridence. This temper contrasts beautifully, with the rcclless, empty, report of Mr. Hawkshaw ; and I am happy to record my respect in favour of Mr. Wood here, in the hope that his distinguished conduct may have its duc influence with my professional brethren, to induce them more frequently, in like cases, to do likewise.
The experiments made to ascertain the tractive power and performance of the engines, and the tabulated arrangement by which the results are exhibited, meet my fullent concurrence; but I object to the statement " that the average weight of coke required to convert a cubic foot of water into steam, is not greater than what is required by the best constructed stationary engines, and less than Mr. Watt's standard, viz., 8 lbs. of coal to cach cubic foot of water." Mr. Watt found that, to produce equal heat, coke is to coals, as 0.375 to 1 , so that 8 lbn . of coke is equal to 30 lbs . of coal ; thus, the locomotive in question consumes, comparatively, nearly four times as muchas a fixed condensing engine.
The experiments to which I would particularly direct your attention are those made upon the inclined planes, with the view of ascertaining the atmospheric resistance, and the experiment was only varied in two ways, viz., by impelling a train of emptr carriages down the plane, and then the same carriages loaded, and noting at what point the speed became uniform. The manner of conducting the experiment I consider byy no means the best, and the results deduced from it exceeding fallacious. The first thing I should have done, would have been, to ascertain the velocity which the plane, or angle of inclination, was capable of generating; and I should have done this, by a skeleton carriage, alternately empty and loaded, exposing the least possible frontage or surface to the wind ; the result would then have shown a certain point at which the velocity would not increase, a point at which gravity was counteracted by friction, \&ec; this ascertained, then, the carriages, loaded und unloaded, might have been aubjected to a like experiment, and the difference of the two velocities would have been then justly due to the enlarged frontal area. But even this method, if the subject sought had been merely the determination of the resistance due to the atmosphere, is not that which is most conclusive, if the frontal area alonc be considered; for, had a surface like a kite been exposed against the wind, and the string connected with a spring balance or weighing-machine, the resistance of the surface at varying velocities, could then have been read off by the weights indicated upon the limb of the instrument. This would have been the true way of determining the matler, and would have been best made upon a level, and in an open country; but in whatever way the experiment had been made, it ought to have been when the wind was still, because, driving against the wind and with it are very different matters, and in the experiments, this circumtance ought to have been noted.
Δ body freely descending an inclined plane of 1 in 96 , will be 96 times as long descending, as a body falling through the rertical height
of the plane, and making no deduction for friction, when it reaches the bottom of the plane, its velocity would be the same as that attained by the falling body; now a body falls freely through 96 feet in two seconds and a half, at the end of two seconds and a half it will hare acquired a velocity of 80 feet; but this velocity along the inclined plane will have been acquired when the body has reached the foot of the plane; but in practice the resistance from triction will be such as to reduce the velocity uniformly to a point somewhere about the mean, or half, which is proved by the experiment, and the addition of weight can produce no effect further than to increase the momentum of the body by so much as the weight is increased, but the velocity itself will be scarcely affected by the change, for the same reason as a cannon shot or a bullet, if let fall from the top of the Monument at the same moment, will both reach the ground at the same time; that this view of the case is correct, is proved by the experiment down the Madeley plane, on the Grand Junction Railway; here, as in the former case, the carriages being propelled down the inclined plane at a velocity of 30 miles per hour, (it is only a fair experiment to presume the starting velocity in both cases the same) and the carriages attained an uniform velocity of 30 feet per second, or 21 miles per hour, so that they were retarded until they were brought to the velocity the inclination itself was capable of generating without friction.

Mr. Wood says, "The force exerted by 15.6 tons down an inclination of 1 in 96 is equivalent to 364 lbs., and as this was the weight of the train in the first experiments, it follows that such a coach train, moving at 31 miles an hour, suffers a resistance of that amount, which includes both friction and atmospheric resistance," or, what is the same thing, that 364 lbs. represents the tractive force necessary to propel such a train, at the rate of 31 miles an hour, upon a level, including both friction and atmospheric resistance ;" 364 lbs. mised 45 ft . per second is equal to the power of a 30 -horse engine, and to produce the same results on a level, as shown by the experiments, requires a locomotive, evaporating 197.7 cubic feet of water per hour, or, in other words, an engine of 197.7 horse-power. This fact proves, that the power of a locomotive to produce a high speed is destroyed, or is most disadvantageously applied, and shows most conclusively that the great loss of power is not to be accounted for by the atmospheric resistance, as proposed.

As regards the observations respecting deflection, no notice seems to have been taken of the comparative bearing surfaces of the stone blocks, sleepers, \&e. A stone sleeper is usually 4 ft . surface; placed at 3 ft . asunder will be 8 ft . bearing surface for the two rails, or a yard in length. A transverse wooden slecper is scarcely ever more than 10 inches wide; if 6 ft . long, and 3 ft . asunder, the bearing surface will be only 5 feet. A longitudinal timber is scldom wider than 13 inches, giving $6 \frac{1}{f}$. surface; this view of the case at once accounts for the superior solidity of the stonc sleepers, for in fact the question of solidity must always be brought down to a question of surface, and that railway will be the most solid, other things being equal, the rails of whicli have the widest base; the mode, as admitted by Mr . Wood, of fixing the rails to the timbers is beyond all comparison safer than fixing them in chairs. A chair is seldom wider than 4 inches, and an inch and a quarter thick at the point of least section; then supposing them placed 3 ft . asunder, $1 \frac{1}{5}$ inch will be distributed over a space of 3 ft ., or a section of little more than oneeighth thick of cast iron, is placed to bear all the concussion of the engines and train, whereas, as tn the case of Mr. Brunel's rail, every section of it is held down by a section of half an inch thick of wrought iron, and the leverage of the rail reduced fully one-half less than upon the London and Birminglıam Railway.
However additional smoothness of motion may be attained by the removal of the piles and transoms, unless additional bearing surface be supplied, or the line perpetually packed, the levels will be lost by the sinking of the timber, for it is quite absurd to expect that any degree of consolidation can take place in a yielding and inelastic soil. In my opinion, the only proper method to be adopted is, to place the cross transoms closer together, and form a sort of flooring under the longitudinal timbers, thus throwing the load upon a nider surface, and this would be equally desirable if the weight and stiffness of the rail is increased.

Mr. Wood, in his enumeration of the conditions to be taken into account to form a perfect carriage, has omitted to note the perfect parallelism of the axles, a condition of more importance than any other, for if this be correct, the carriage is certain to run well.

The machine described to have been used to note the various vibrations, in my judgment must have been very ill adapted for the purpose; it must have been too mercurial, too sensible; had a heavy pendulum been employed instead, it would have given far more satisfactory results.
There is no doubt that the proper mode to link carriages, so that
there shall be no concussion, is by an inflexible link between each carriage. Mr. Booth's patent draw-screws produces a good effect, but the simple inflexible link as adopted by Mr. W. J. Curtis, on the Greenwich Railway, is much more simple and very much better.

The 7 feet guage, which has been so much reviled, is most unquestionably the only gauge to carry out the plan which has been recommended by every person who bas studied safety in railway travelling, and by no one more so than Mr. Brunel himself, to place the carriage within the wheels. By doing this, and allowing only onc inch clearance, a width of $6 \mathrm{ft}$.6 in . is obtained, and lowering the carriage to within 6 inches of the rail, a vertical height of 7 feet is procured, giving an area 45 ft .6 in. ; so that the Gruat Weatern carriages will be to the London and Birmingham as 45 ft .6 in . to 53 ft . and it is impossible, with the London and Birmingham carriages, to make a similar improvement, without making them 8 or 12 inehes wider.

One great advantage results to the public from the investigation which has taken place into the merits of this railway, proving the very defective condition of the system of railways generally, rendering it the imperative duty of railway companies to avail themselves of the suggestions and improrements of others, besides their own people. If it has the cffect, therefore, of breaking down the spirit of domination and exclusiveness at present existing, which forbids the introduction of other methods than the crude and originsl ideas of Stephenson and Co., such a conclusion is well obtained at the expense and noise this inquiry has created, and must be regarded with satisfaction by erery well-wisher to the railway system, and by none more so than by

AN OLD ENGINEER.

LETTER FROM WM. TURNBULL, Major C.S. Topographical

 Engineers.It is with considerable pleasure that we publish the following letter received from a highly respectable and valuable member of the profession residing in the United States. We are happy in enlisting him as a correspondent to the pages of our Journal, and it will be a gratification to us to receive the other engravings of the Potomae Aqueduct promised by the Major, in order that we may be able to lay before our readers the progress of that work.

Warhington City, Aug. 31, 1838.
Sia,-Several months ago, when a specimen number of your valuable journal was exhibited in this city, I became a sub scriber: but, owing to the remissness of our booksellers, or the want of a proper agent here, I did not receive it until within a few dayn, when I received three quarterly numbers at once.

I feel highly flattered that yon should have thought a description of the work (Potomac Aqueduct) under my charge, worthy of a place in your journal, and avail myself of the opportunity of our Charge d'Affaires to Helgium, M. Virgil Maxey, who visits London on his return to Brussels, to send you a copy of the drawings and description, which have been added to since the first publication.

There are still three or four more drawinge, showing the condition of the work at the end of the year 1837, and some changes, suggested by our experience, made in the construction of the cofferdams, which hare proved of great utility, and which should accompany the description, but, unfortunately, they are yet in the hands of the engraver. I shall have the pleasure to forward them by the next opportunity that offers.

The subject of coffer-dams is one of peculiar interest to me. I remarked in the third number of your journal, a drawing and description of the coffer-dam to be used in the construction of the terracewall, \&ic. of the new Parliament-house, and hope that it will be in your power to give some details of the operations of emptying, \&c., as that work progresses.

On examining the plan, 1 observe a great many iron bolts, passing through the puddling at different heights. I was once forced, by the spreading of the outer row of piles, to use bolts in a similar way, at low-water mark; and, as the puddling settled, a convity was left under each bolt, through which the water found its way, and was the cause of very great inconvenience: the dam was filled with water several times by means of them.

I should be much pleased to know their effect in the coffer-dam for the new Parliament-house.

With my best wishes for the success of your journal, which, I think, bids fair to be of extensive utility.
I have the honour to be, Sir, very respectfully, your obedient servaut,
WILLIAM TURNBULL,
Major U. S, Tope, Engincers.

MOMENTUM OF FALLING BODIES, COLLISION, \&e.

Sig-In further elucidation of my letter of last month, I beg to offer the following remarks, which I request you will be so obliging as to insert.
" Momentum is said to be (ride Hutton's Course of Mathematics, Vol. II, page $252,8 \mathrm{cc}$.) the power or force in moving bodies with which they strike any obstacle which opposes their motion :" and (page 314, proposition 149) it is aaid that " B being a body moving with the ielocity $V, B V=M$ is the momentum with which it strikes another body $\bar{b}: ้$-and an exnmple is given of two bodies, \bar{B} weighing 5 , and \bar{b} weighing 3 , moving respectively with velocitics $V=3$ and $v=2$, which, it is said, monld, after collision, move with velocities $\frac{\bar{b} V+b \bar{b}}{b+i}=2 s$ if previously moving in the same direction; $\frac{\vec{B} V}{\vec{B}}+\frac{\bar{b} v}{\dot{b}}=1 \frac{1}{4}$ if in opposite directions, and $\frac{\dot{B} V}{B+b}=1 \frac{7}{3}$ if \bar{b} were at rest. Now 1 loold this to be incorrect. I conceive the momentum of a body moving with a given velocity, to be the sum of tuo similar forces ($m=i+$ M), whereof μ is the force that acts to overcome the inertia of the body and is measured by its weight ($\mu=b$), and M is the force necessary to preserve the motion of the body at the given velocity; which force is in proportion to the product of the weight by the velocity (M is as $b v$). -From the experiment detailed in my last letter I conclude that $M=\varphi b v$, where φ is $>\frac{10}{9}$ and $<\frac{13}{1}$ nearly $=7$. Hence $m=b+\frac{z}{8} b v$; and v in feet per second $=\frac{3}{3}\left(\frac{m-b}{b}\right)$. The following would be the working of the problem above quoted.
M_{i} the momentum of $\bar{B}=5+\frac{3}{2}(5 \times 3)=27 \frac{1}{2}$. $\}$ where the formula ms ditto of $b=3+3(3 \times 2)=12 . \int$ is $m=b+\frac{1}{2}$ 6.

Making use of these values of the momenta and the formula
$c=3\left(\frac{m-b}{b}\right)$ applied to the various cases, we have
(I) $\frac{27 \frac{1}{2}+12-8}{8} \times \frac{3}{3}=2 \frac{2 ?}{2}$ velocity when \dot{B} and \dot{b} moved in

the same direction.

(II) $\frac{272-12-8}{8} \times 3=\frac{s}{8}$ velocity when they meet.
(III) $\frac{2 i \frac{1}{8}-8}{8} \times \frac{1}{3}=1 \frac{1}{6}$ velocity when B^{6} was moving and $\bar{b} a_{t}$ rest before the collision.
These resulting velocities are very different from those given in "Hutton's Course."-Experiment would decide which are correct. Were the experiment, detailed in page 18 of this Journal, repeated with good sping balances, and different weights let fall, a more exact ralae of φ would be obtained, and the formula $m=\mu+M=6+\varphi b v$ would be tested.

Yours obediently,

B.

Esn.ıтa.-Page 18, line 34, for $m=b+M^{b r}$, read $m=b+\varphi b r$.
49, insert between, and reud equal to between $10-7$ ths and $18-8$ ths, $\& \mathrm{c}$.

WOODEN PAVEMENT.

Sir,-I was much gratified the other day, in pasaing along OxfordWreet, to see that a comparative trial is about to be made of various Finds of pavement. It is only by laying down the different sorts in pxtaposition, on a muel frequented thoroughiner, that any thing like just estimate of their respective advantages caa be made. I know * whether the works now going on are under one perticular supertrendance, or whetber the laying down of each kind of parement is alded to the particular persons whose interest it is to see that every mesution necessary to ensure success be attended to. This latter ode would seem not only the most natural, but the most desirable; - if each sort of parement be not as perfect in its kind as it is possible make it, tho comparison will not be a fair one. Nevertheless, from hat I have obserred, it would appear really as if the persons directing e laying down of the wooden pavement were exerting themselves in Thalf of their rivals, for never did I see work done in so slovenly and sufficient a manner. I must, bowever, premise what I have firther say by observing, that I am in no way whatever interested in the peoion of the rolstive merite of the difiorent kinds of parement; but I
am sequainted, well sequainted, with the nature of woodec preverenta, their adrantages, and defecta, and can affirm that no kind of parement, perhaps, requires to be constructed with greater care.

1. The hexagonal blocks must be cut with mathematical exsetness in all their dimensions.
2. The surface on which they reat muat be not only perfectly even, but so solid and compeat as not to be irregularly compreasible into hollowh. The latter circumstance, indeed, is necessary to all pavements.
3. The blocks must be dry when laid down, else, if they be much swollen by wet, they will contract considerably in drying, and the parement be no longer solid, but ricketty. When laid down dry, the blocks will always be far enough from porfect contact to admit of such slight swelling as may result from rain falling on their opper surface.
4. The successive blocks of each successive range should be hard rammed down to a level, determined by a transverse rale laid on them from side to side, before another row is placed, so that if any block sinks lower than another by being rammed, it may immediately be difted up, and fresh sand or fine gravel placed beneath it.
5. The crose-section of a wooden pavement should have bat very little slope.

Now, Sir, every one of these essentials to a good wooden pavement is neglected in laying down the one in Oxford-street.

1. The hexagons are very different in size.
2. The surface on which they rest is one of a most irregularly-sized gravel, a mizture of large and small rounded stones; the very worst bottom that could be chosen for the purpose.
3. The blocks are quite wet when inserted.
4. The blocks are not rammed as laid down. I believe they will not be rammed till the space is all paved.
5. The cross section presents by far too great a convexity. The different size of the blocks is such, that in many places the faces are more than half an inclı asunder, and the irregularity of the bottom on which they rest will make them very ricketty. If, while wet, such openings exist, what will there be in summer? The ramming will be done to make an even surface; but unless each block be driven down till it can go no further, the paskage of carriages will soon make an uneven road of it ; and if every block be rammed down to the atmost, the whole pavement, with mach labour, must be beat down to a devel, When any single block that may happen to go down lower than the rest.

If well made, thy surface of a woodon pevement is so smooth that the slightest alope is sufficient to let the water run off. Too grest a slope is very dangerous on a wooden pavement; for one of its inconveniences is its beiog exceedingly slippery in wet weather or in fronty weather; indeed, this I take to be the great disadvantage of wooden pavements for the streets of London (for court-yards, when well done, it is excellent) ; many a poor horse's knees will suffer from it, and the omnibus drivers, who already pull up their horses so suddenly that they slide a few feet on the ruughest stone pavement, will find it impossible to stop suddenly, but by the wheels striking against the prostrate bodies of their cattle.

It is found that the mud of our streets is produced from the squeezing up of the subsoil. Now, this cannot possibly happen in a well-constructed wooden pavement, and such is, tbeswore, always free from mud in wirter, and from dust in summer, both very great advantages. But the pavement, as laid down in Oxford-street, is so badly done, that it wifl soon be covered with our slimy mud, and no horses' feet, onless their shoes be made with iron spikes to them, will hold. Indeed the thing is done in so hurried a manner that it caunot be good. A clever workman cannot lay down more than two square fathoms of wooden pavement in a day, supposing the soil beneath all ready to his hand, and if the blocks are secured to each other by wooden pins, as is found advantageous in some cases, he will not do more than 49 square feet in a day.

The necessity of a good bottom is such, that in some places it has been found necessary firat to lay down a good solid parement, on which a perfect floor of two Inch planking is laid down, this is smeared over with pitch, and finally, the heangonal blocks are carefully placed and secured each to the other with wooden pegs. This is, of course, very expenaiva, and with us unneceasary, but a hard and perfectly even bottom should be made before laying down the blooks.

I could asy a great deal more on the subject, haviag had opportunities of studying it, not from motives of intereat, but from a love of information. I must, however, conclude this article, already, I fear, too long. Any information in my power to give I will be happy to communicate ; my address may be learned of Mr. Weale, Architectural Iibrary, Holborn.

I am, Sir, your most obedient,
27th December, 1838.
J. R. J.
[The above communication was intended for our last Journal, but wha received too late for insertion. The wooden parement in Oxford.
street"already indicates our correspondent's prediotions; bat the bed success of the experiment is not to be attributed to defects Inberent in that kind of pavement, but to the unwarrantubly careless manner in which it has bean laid down; another cause of its failure may be attributed to the small space allotted for the experiment, the mad from the roadray at each ond is brought on to it by the horsos' feet and carriage-wheels, which keeps it constantly covered with mud or dust as] the other pavement, whereas the great cleanliness of a wooden pavement is one of its prominent advantages, which can only be secured by having it for come distance.]

WHEELS OF LOCOMOTIVE ENGINES.

Sir,-I beg to submit to the consideration of the readers of your influential Journal, a suggeation on the construction of the wheels of locomotive engines, should you consider it of sufficient value to be admitted to your pages. It is simply to call attention to the fensibility and utility of employing brass as the material for those parts of the engine. We well know that in machinery generally, it is considered of great maving in wear and tear to prevent the contact of kindred metals, and perhaps it might be deserving of consideration how far the wear of the rails might be lessened by such an expedient.

Anything tending to promote this object I know will meet with attention; and it might perhaps be practicable by the use of brass wheels to save the expenditure of metal on the length of rails which are more difficult to repair, and therefore more expensive. I do not pretend to decide upon the utility of this suggestion or its actual economy in working, but perhaps some of your readers who ane engaged in experiments on railways and have the means of trying it, might be induced to ascertain what would be the practical result.

In machinery, as you know, the contact of homogeneous mstala is sometimes prevented by the application of leather, but it would be absurd to propose such an expedient for adoptiou on a railway on a large scale. It might, however, be well worth experiment on a small scale, as elucidatory the laws of friction, how far the applieation of leather or other substance to the wheels or rails, by producing a smoother surface, would be calculated to dininish the friction.

I am, sir, yours, \&c.,
HYDF CLARKE, C.E.

STUART'S DICTIONAKY.

Sir-In the last number of your useful Journal your correspondent, "A Constant Reader," while noticing Mr. Brition's Dictionary of Ancient Architecture, adverts to the deffciencies of preceding similar works ; and, among others, he names "Stuart's Dictionary of Architecture." Having had the misfortune of projecting that compilation, I am desirous of your permission to say a few words in explanntion of some of its manifold imperfections.

It was originally designed to contain a general collection of technical architectural terms, a popular history of the art in all countries, and biographical notices of arclitects; but the engagenents of the publishers, urging a greater haste in publication than was consistent with a careful preparation of the manuscript, I found it impracticable, under the circumstances, to carry out the design to my own satisfaction. The labour of crude and undigested compilation became so inksome, that after lurrying a few of the first sheets through the press, and preparing about twenty-five of the engravings, I was glad to resign my share of the speculation. Feeling, however, the weight of my own faults, I was unwilling to run the risk of being loaded, in addition, with the editorial sins that might possibly be committed by my successof, and I therefore stipulated that the name of another Editor should be substituted for mine in the future parts of the compilation. Some time after this the publishers becume bankrupt, and I thought the book had deservediy died, as it "made no sign." The letter of your correspondent firat informed me that it had subsequently been revived, and continued, and that ton under the original title. A pecp, a few days ago, into the truly "finished" Didionary of Architecture, by Robert Stuart, makes nie anxious to assure the "Constant Reader" that I am utterly innocent of ninetcen-twentieths of its nonsense and plagiarisms. Should any of his friends be simpletons enongh to buy the volumes, in the hope of finding that kind of information which the title pages say they contain, and in the bittemess of disappointment, proceed from damning the book to perform the same duty towards its authors, I entreat the "Constant Reader" to interpose his friendly offices, and direct that one-twentieth part only, and no more, of the deserved maledictions shall rest on my devoted head in time coming. I am sure he will feel the rensonableness and justice of my request, when he refects that for weveral years
past I have, unknown to mpalf, porne all the blame of compiling that miserable production. I am, sir, your obedient serrant,

ROBERT STCART.
London, 22d Jan. 1839.

ON ARCHES BUILT IN CEMENT.

The custom of turning mehes in cement has now become very general with engineers, more particularly where great strength is required, as culverts under heavy embankments, and arches of a fin elliptical form. It appears questionable whether the additional strength acquired by turning arclies in cement is real or imaginary ; taking into account the great liability to fracture in all brick structures built io cement, the least settlement occasions a fracture, by which the adite rence of the cement to the brick is totally destroyed, but which would not be the case did the cement possess any yielding properties, as common mortar.

In some cases I have obserred arches turned in mortar, and a for feet at the crown only built in cement; and again elliptical arches built in mortar as high as the haunches, and the remainder in cement: this latter method will doubtless allow the arch to settle in a sligit degree withont detriment, in which case it wonld merely have the effen of forcing out some portion of the mortar joints; that part in cemeor remaining a compact mass, any rupture in which would occasion is destruction. A slight percussive force will often have the effect of rupturing a wall in cement, which would be comparatively harmless if built in mortar,

It has often occurred to me, and I now respectfully submit it to the notice of engineers, whether in the case of an arch being turned in cement, it would not be preferable to have mortar joints in each riop runuing quite through the arch, which I suppose would allow of spate considerable settlement to take place withoutinjury to the structure :say in the case of a brick arch having three or more courses in the firs half brick ring turned in cement, and as many courses in the remaining rings as necessary to allow of a continuous mortar joint from the soffit to the beck of the arch. The part in cement assimilating to a string course in masonry. I imagine that this method of construction would possess many advantages over that in present use-especially where there would be reason to suspeet a subsidence of the abutments.

Charlotte Street, Bloomsbury,
 January 20 th.

BENNETT'S NEW STEAM ENGINE,

for captain cobi's steamea.

We make the following extract from a parnphlet, forwarder to as from Americk, ontitled " Allantic Sleam Ships":-

This vessel, built under the immediate superintendence of Captain Nathso Cobb, and intended for the Lirerpool trade, is now completed, and will bo ready for her first royage across the Aclantic on the 10th of June (1838).

This enterprise was planned and decided upon by Captain Cobb (then of the Liverpool packet Columbus) in 1834. He memorialized the legislature os the subject, without cuccese ; but, deternined to test its practicability, be ertered into a contract with Mr. Phineas Bennett, of lthacs, to supply the mnchinery for his intended vessel before the 15 th November, 1896 . Variosi delays, howerer, occurred in performing the same-the engine being ourgtructod on a principle entirely new, the sole invention of Mr. Benoett; bet had the conar rect been duly fulfilled, Captzin Cohbis vessel, having been boult upwards of two years, would doubtless bave reached the English docka sercral months before the first voyage of the Sirius to this country.
Presuming the annexed description of her engine will interest many of our readers, we copy it ontire :-

This pagino has undergone the scrutiny of great numbers of scientific pro fesors, ingenious and experienced mechanics and engineers, citizens and stras. gers : and the examinationa have resulted in a general conviction that the world is about to realize a new improrement, not inferior to that of Watt and Bolton-an improvement that will effect a now era in ocean navigarion, asd bring all parts of the world in approximation to each olher. A voyage to Liverpool, it in believed, may, by the power of this engine, te accomplinhed in ten days, and with only one-lenth of the fuel beretofore required, wherety allowing more rwom for passengers and freight.

The following description and drawing, it is hoped, will fully explain bow the fire and the rater can be brought and continued in actual contact with eact otber, and, rapidly generating the ateam, atill kept in controul, and its potency safely directed to propel the ship, or other object to which it may be applied.
The engine for Captain Ccbb's Liverpoll steam-packet, is a double born zontal high-pressure engine, thirty-five incb cylinder, and six feet stroke, win two blowing cylindern, of half the capacity, worked by the piston-rod of tho stenm cylinder peasing through the lower or extreme heed, and into the blowing cylinders; cousequently, both will be of the came motion.

References.- Piper, C, with the neceusary valwes attached to the blowing cylinders, convey the air to the steam generator, whowe outer case, a, a, is four feet diameter, and swolve feet high, and tho inner case, or furnace, B, is three and a half feet diameter, and nine feet high. Gmoke and feed-pipe, D, is constructed with two slldes, e, e, which closes the pipe perfectly tight when thrust into it-their uses will hereafter be explained; f is a cap-valve in the steam chamber, placed over a short pipe or nozzle on the upper head of the fumace, and fitted to its seat perfoctly tight, with a rod exconding tbrough the upper head of the outer case; g is the ash-pit below the grate; h, an opening into the ash-pit, with a slide to close it tight, when necessary.

In order to pat the ongine in operation, and successfully use all the advantages of this generator over any other, it will be necesaary to set open the feed and smoke-pipe D, and the pipe h; introduce fuel down the feed-pipe, in sutf. cient quantity, and ignite it. Previously fill the opace between the outer and inner case with water up to the dotted line, half way up the cap-ralve f, which will completely inmerse the furnace; and when steam is generated of suficient elasticity to start the ongine, say seventy-five pounds per square inch, close the pipea D and h, with their respective slidea; then start the engine in the usual way, by opeoing a commonication with steam-pipe i; then the blowing cylindess will force their charget of air through the pipe \mathbf{C} into furnaco \mathbf{B}, partly taking its course through the mass of fuel on the grates, a suficient quanity being introduced above the fuel to burn the smoke, which ean be regulated by slides in the brauch pipes, torminating the air-pipe C. You will discover that there is no eacspe for the air thus forced lnto the furnace, until it elarieity is, by the continued blast from the blowing cylinders, a little ruperiter to the ateam in the ateam chamber, when the cap-valre f will risc from its seat, and the air, flame, and gases arising from combastion will bo forced to pen under the edges of the said valve out into the water; and in this procese all the beat geverated will be imparted to the water, without tho possibility of escaping otherwise.
By the repeated experiments I havo heretofore made, I Ind tbat one foot of ar blown into the furnace to promote combustion, by the expansion it uudergres, and by the addition of the gases and steam, is augmented in bulk at least ire timen its original size, or, to speak briclly, there is five times as much compound steam as air forced into the farnace; consequently, it will take one6fih part of the power of the steam to operate the beilows, plus the friction, or this is nearly the power; but I forbear at present, nor is it necessary, to apeak a lerge on that subject in this paper.
Bya carefal examination, it will bo seen that the pressure of steam will whaly depend upon the proportion of the size of the blowing cylinder to the ream cylinder. In my engine nom building, the blowing cy linders each conthin twenty cubic fect, the steam cylinders eacb forty feet; but the atcam being cut off when the piaton has made but one-half its entire stroke, whick reduces it inze, as a messure to deal out the steam, to exactly the size of tbe blowing cylinder, the measure of the air forced in by the blowing cylinders being auy. meated, by passing through the generator, to fivo times its bulk, has to he forced into a spece in the steam cylinder of just its original bulk; it will, therefore, exert a force equal to five atmospheres, which will be sizity pounds 10 the aquare inch above the atmospheric pressure.
This force, per inch, will not be exerted during the whole length of the stroke of the piston, but only half way, or to where the steam is cut off; and at the and, its elastic force is reduced to about twenty pounds, which will make the average pressure fifty pounds per square incb, and the piston contains 962 square inchet, whieh multiplied by 50 , will produce $\downarrow 8,100$ pounds-the whole averge force the piston moves with. It is calculated to hare the engine make thiny-five double strokes per minute ; hence, the pistou wiil move 420 feet per mave tree, which mukiplied by 48,100 , produces $20,202,000$ pounds: the weight that the piston would lift one foot high per minute, divided by 33,0001 betag what a horse-power is catimated at, gives 612 horse-power for each stemp-eylinder. But the power abstricted to operate the blowing cylinders and overcome the friction, I allow nearly equal to the power of one of the cylindets; therefore I estimate the power of the engine at 612 horse-power.
The amount of fuel consumed will depend upon the amount of air forced into the laraice by the blowing cylinders, and my two blowing cylinders, at eve:y tetolution, would force in 80 feet, if there were no leak either in piston or thes, and no apace betwees said piston and valves for the air to compress in, and cot be wholly forced out; therefore, probably not more than 75 feet will be expelled each revolution of the cugine; and as it takes all the oxygen contriad in 175 teet of atmospheric air to burn one pound of carbon, and 525 fert to burn one pound of bydrogen, I am of opinion, that to allow 225 feat to be seovestry to burn one pound of fuel. will not be allowing 100 much; and, a wise otated, 75 feet will be forced into the furnace at each revolution, it vill dandore tafe three revolutions to burn one pound; and, as a cord of yellow pop wiftes ehoat 2,100 powods, it will take 6,300 revolutiont to burt ene cond, mach, evidad by do, the motion of the engine per minate, will give throe

the Hudson, of little le or nearly the mame power (600 horne-power), will consurne forty cords in ten hours, or twolve oords in the same time my ongise will ore eord.

RESTORATION OF GOTHIC WORKS IN AC'STRIA.

We find that the attention of the Austrian government has been attracted from the rescarch of classical ruins to the restoration of their orn fine Gothic monuments, some of which threatened to be equally last. When we remem. ber the expense which way employed in the antiquities of Pola, Spalato, Aquileia, Trieste, Venice, Verona, \&c., we are justified in entertaining great expectations from this zeal for their national architecture. We do not know whether this is one of the fruits of the French mania for the Renaispance, but at any rate it forms an accession to the extension of that taste for the Gothic, which already in France and Northern Germany seem to promise the revival of this glorious style. Few countries are more interesting than those of the Austrian empire to the student of modieval arehitecture, for they stand upon that debatable ground where the Moorish and the Byrantine infuence both excrcised control, and where the churches are not less interesting from proper Gothic monuments, than from the relics of those arts which Greece, even when expiring, poured forth on the western world.

SOUTH EASTERN RAILWAY

WORE NEAR DOTER.

Communicated by an Enginecr on a'tour of inspection of the Public Works in Great Britain.
The works upon this line of railway, nader the charge of Mr. Cabilt, are now proceeding Fith rigour, and present a thornugh bueiness-like eppear. ance, indicating a decision on the part of the company to complete with as little deley as possible this line of railway, which, as the grest condinental outlet of the kingdom must, when completed, assume an important station among the principal lines of internal communication.

At Dover the works which are ander the charge of Mr. John Wright as rouldent engineer, are very extensive and also of peculiar interest; they consist of the formation of double (or parallel) tunnels, together with open galletics along the face of the cxtensice and magnificent range of chalk cliffs which extend from the Lartour at Dover to the Martello towern eastward of Folkstone. This rery interesting portion of the line is being divided into six spaces of unequal extent, three portions approphated to tannels, two to the open galleries alternating with the tunnels, and the sixth to an open eutting along that remarkable place the Warren, which is an undercliff occusioned by a setulement of the chalk strata during ouse of those great con. vulsions of nature, which causing both sabsidence and elevation of the crast of the earth, has put us in possession of ber intemal wealth, end given to the ecipnce of geology its high importance.
'The eastem tanuel terminates at the Dover side of Shaikspeare's cliff, Whare the cutting to form the face of the tunnel will be about 110 feet, the immense masees of chalk rock required to be remosed from this spot, and from so great a height, lias led to a very extensive use of gunpowder for this purpose, and masses contalning upwards of one thousand cuble yards of chalk are at one blast precipitated from the sumnit to the beach below, there to be levelled for the fornution of an embankment leading to the terminus on the quay. We were fortunate euough to wituete two of thewe blasting operutions on the 12 th of January, tho masses to be removed were ucarly cubes contalning about 700 yards efch, and isolated from the great body of the cliff, by excavating from lehind them a sutficient space for the workmen to pass and repase correaniently; ut tho foot of the mass to be overthrown, in the above-namod excavation, two borings were made downwards, forming an angle of about thirty degrecs with the perpendicular, each boring being fifteen foet deep; these were then filled, first with six inches of tow at tho botton, then 50 lbs . of gunporder was poured in, and lastly the holes were rammed to the top with rubble chalk around an iron rod, which, npon being withdrewn, left a hole from the surface to the charge to contain the prining, which consisted of fine gunpowder; in one of the holes of the eecond mass to be overthrown, the priming was conveyed to the centre of the charge by a pewter tube t-inch bore, similar to those used as gas pipes: this was done by way of experiment, und appeared to answer better than priming in the common way, which communicates with the top of the charge only instead of the centre. Whes all was ready and the order for firing the train given, a mont unimated scene presented itself along the extensive face of the cutting the Forkmen, amounting in number to about 170, were seen scrambling and climbing along the almost perpendicular fuce of the cliff, to attain a respectful distance from the scene of action. In a few eeconds after the ignition of the train, a rumbling sound, like that of extremely distant thunder was heard, and the next instant the whole mass was lifed bodily from its base, and in falling again, it clen asunder from top to bottom, and opening, erumbled to fragments, which poured like a torrent down to the beach. The oharge being inserted obliquely (below the mass to be overibrown, as before deacribed), at the same dme that it lifted it up, forced out at least 300 yerds from betow itt base, making a total of not less than one thoueand cubic yards of chalk remored with one blast, and if both charges bad gene off simultaneousif, as was intended (there having been a perceptible interval between the explowions), a puch greater effect would in all probability have been produced, as it was, bowever, eatimating it at 1000 yards, and allowing the apecifio gravity of chalk to be $2 \cdot 3$, as ctited by Dri, Mentall we heve for the wofebt
of chalk thus removed with l001bs of powder, no leas than 1,748 tons. In a fow minutes after the first explosion, the signal for firing was again given, and the second mase simileriy fallowed the firt: thus this immence worts, which if executed by manaal labour only would be very costly, is now carried on at a comparatively trifing expense both of time and money.

The double or parallel tunnels are being formed by first drawing a heading is feet high and four feet wide, the top of each heading being within two foet of the intendal roof of the tonuel, the headings are worked in opposite directions from shafts sunk from the surface above, and the excavated chalk is removed by side headings or drinways at right angles to the direction of the tunnel and lealing to the face of the cliff, whero it is thrown into the sea; a trainway is formed along these drifs having an inclination of 1 in 30 ; the waggons when loaded from the heading are casily pushed by one man down the trainway to the face of the cliff, he teems its contenta Into the sea, and npon such an inclination is casily able to push the waggon back again into the workings for another load; by such judicions arrangements the cont of the earthwork of the tunnels is reduced very considerably, compared with that of smilar great undertatings. Upon an examination of these works we could not but notice the precision with which the direction of the various beadings had been preserved during the arcaration, for we could not discern the least deviation from the right line where the workings met from opposite directions,

REPORT OF THE ENGINEER TO THE DIRECTORS OF THE LONDON AND BRIGHTON RAILWAY.

Gentienen,-Thestate and condition of the Worke up to the present time are as follows:-

On Contract, No. 1.-The contractor has completed the briuge at Combe L.ane, and has cut through the high ground in the late Mr. Cholleti's land, and formed the embankment acrosa Birdhurst I.odge, and cut through the bill beyond, and built a bridge over the lane on the sonth of the hill, and the embankment is carried some way over this bridge.
An occupation bridge is alsc built, and the road formed under it. The Works here are so well pat together, that the temporary ralls will be immedi. ately laid down for half a mile, and then the long embankments will be more rapidly proceeded with.

The works are almo commenced at the junction with the Croydon railway up to the crose-roede et Crosdon common, and the contractor hes laid in a large supply of materials for the remainder of the bridges, which will be commenced as soon as the weather is sufficiently settlod. Thero are at prosent employed on this contract 170 men and 13 horses.

Contracts, Nos. 2 and 3, are let to one contractor. All the cuttings bat one on No. 2 contract are in active execution: the Conlodou-roed bridge, and the ocoupation bridge No. 5, are nearly complete; the approaches $\begin{gathered}\text { ill } \\ \text { be }\end{gathered}$ finiabed in fow days: the culverts and brickwork are all in progress, and the temporary ralls will in a short time be laid upon a great portion of the wark.

Considerable progress has been made in the excavatlons of No. 3 contract, and although the contractur onght to have done more work in the time, yet the want of lodying and accommodation for the workmen has been a great drawback to him, but as buildinge are now erected for the extra accommodation of above eight hundred men. I shall compel him to use his utmost exertions.
There are at present, however, employed on theso two contracts seren han. drel and finy-foar men, and thirty-two horses.

Contract, No. 4.-Merstiam Ternel-The contractor has got all the thans but one annk to the bottom of the Tunnel, and that one is cunk to the level of the top of the Tunnel.

The driftway between the shaftia in progross, that between the trial shaft at the north end of the Tunnel and the first working shaft is completed, te well as the drifway between the trial shan at the south end of the Tunnel and the last working shaf. This Tonnel is perfectly free from water, and the chalk 's exceedingly hard and compact.

Thers aro at work on this contract 162 men and 9 horses.
The extra contract at Merstham for the diversions of the turapirs'rom is procceding in a satisfactory manner, although the contractor was at first deleged by not hering possession of the Merstham tran-road.

There are 120 men and 36 horses at work on these roads.
Contract, No. 5.-The contractors have been at work little more than one month, and they have commenced npon cuttings Nos. 1 and 2, and on the side entting for the large embankment on Earl's Wood common. The bridge over the mill-stream at Merstham is ncarly completed, and they are proceeding in a very satisfactory manner. I am informed they will have possession of some land they require for temporary parposes in about a week, when they will be enabled to make greater progress.

There are 337 men and 28 horses at work apon this contract.
Contract, No. 6.-The contractors have been at work on this contract about one month, and as they have only possession of part of the land, are obliged to confine their operations to the side cutting on the Low Iands at Horley. They have fenced off most of the land they aro in possession of.

There are at work on this contract 158 men and 10 horses.
Contract, No. 7.-The contractor is at work upon the cuttinge that will require the longent time to execute, and is going on in a very satisfactory manner. About three miles of this contract, is of so light a deacription of work, chat it is not pecessery at present to enter upon it.
There are at work 220 man and 10 horsan

Contract, No. 8.-Balcomegr Tunkel-There are five worling shafts at this Tunnel, besides two trial shafts which ars annk down to the bottom of the Tunnel, well as two air shafts: one working shan is finished. Two ofhers are sunk down within fire yards of the top of the Tunnel, coother wichin 14 yands, and the third within 20 yards, and they are all proceeding what and day.

The water hore has been found in greater quantities than I antialpaced, I have therefore caused an adit to be driven op from the Brool Course, aboot 350 yards long, which is finlsher, and han tapped the water at the level of the bottom of tho Tunnel, which it carries clear of the workings at fust as we get them opened out.

The drifitay at the south end of the Tunnel has been completed to within a few yarls of the first working shaf, and lays the work dry as is prooeda. The driftwy is also going on between the north trial shat and the northern working shan. The total length of drifway at present oomplete is 980 yands in length. When the drinway is finished the whole of the waler will run of of itself, and the Tunnmil for over afterwands be perfecty dry.
The contractor has at present 225 men and 16 horses at work apon this contrect.

Contracts, Nos. 9, 10, 11, and 12. -These contracts are all let, and the contrectors are activoly engaged in casting up brick earth, proparing materials and getting them to the ground, to commence the wort immediately the weather will permit.

Contaact, No. 13.-This contract was entered npon last Septernber, and the coutractor has pushed on the work with spirit, and has made it considerable advance with the cuttiugs and eunbunkments. He has completed and ballastind half-a mile of rood, ready to rceeive the permanent ralla, which are in coursc of delivery. He has also a very large ynantity of teraporary rails.

The coutractor lias 300 men, 30 horscs, and $\mathbf{6 0}$ waggons at work on this contract.

No. 14 Contract-Clayton Tonnel.-There are 10 working ehafle at this tunnel, beaides a trial shaft at each end; fire of the working shaft are complete, four are sunk to the top of the tunnel, and the remaining ane is within about 18 yands.

In sinking the Lial-shaf at the north end of the tmpnel, an imparvious strats was found cropping np to the north, which prevented the water raning off. I therefore ordered an adit to be driven up from the low groand to the trial shaf, Which when out through the impervions strale on a level with the botiom of the tunnel, will let off the whole of the watar, and no more cas in future accumulate.

The driftray between the shafs is being driven, and has been opened oul between two of them. The chalk is firm and hard.

The contractors have at present 143 men and two hormes at work cen this contract.

The Company have obtained possassion of lands for making brieka for the Tunnels and other worics at convenient situations, and brick earth has been cast up, and early in the spring there will be a large supply ready for mace.

Contracts, Nos. 15,16, and 18.-These contracts extend from the soath end of the Clayton Tunnel to the station at Brighton, as well as the station itself, and are all now advertised, and will be let on the 1 tth of March reext

Contract, No. 17.-TIE Siloreras Branch.-The contractor has proceeded much to my matisfaction. Ho has got most of the bridgel built, severa) cuttings arc opened, and the embankments formed, $2 \frac{1}{3}$ miles of roed ars formed; the ballast is being put uponit, and the permanont rails will be ladd down immediately.

A locomotive engine has arrived at Shorcham, which will be at wort apon the line as soon as the rails are laid. This will materially expedite the forma. ing of the enbankments, and I expect this contract will bo completod in September next, when the Shoreham bramelt will be opened to the pablic, which will be of great adrantage in conveying materials for the main Hae. The contractor has at present 290 men and 40 horses at work.

A large supply of rails, blocks, sleepers and chairs have arrived, and apore are daily expected.

The following is a summary of the number of mon and horses emaployed on the whole of the works:-

This amonnt is exclusive of men carting and preparing brick earth.
The woris now let and in operation extend over a distance of 41 it inita and are to be finished by the middle of Augunt, 1840; and I canngs corectuat thia Report without expresalng my altisfaction at the rapld profreen of the work.

Lomdon, $\sqrt{1} \operatorname{man}_{1}$ 16, 1899.
JOHN U. H\&ARERGT.

GREAT WESTERN RAILWAY.

[We trust that the importance of the following reports will be a sufficient justification for having occupied so many pages of the Journal. We had intended to have made some remarks thereon, but in consequence of our correspondent, "An Old Engineer," having so ably commented upon them, we have refrained, for the present, saying any thing further on the subject.]

EXTRACTS FROM MR. WOOD'S FIRST REPORT.

The increase of gauge has been from 4 feet $8 \frac{1}{2}$ inches to 7 feet, and the promineat reasons asaigned for such a departure from the common width, is the attainment of a higher rate of apeed-ipcreasod literal steadiness to the carriages and engines-s diminution of the friction by the uae of whecls of a larger diameter-and a greater space affurded for the wurks of the locomotive engines.

The deviation from the ordinary mode of constructing the railway, has been the subatitution of continuous longitudinal timbers, with piling at certain intervals, and cross transomes; with iron rails of a particular form screwed down upon the longitudinal timbers.

The additional width of gauge has increased the breadth of the entire track of the railway between tha outsido of the rails of the two lines (including the breadth of the rails) from 16 feet 3 inches to 20 feet 10 inches; consequontly all the works cmnectod with the formation of the read will be increased to a certain extent, but not in proportion to the above figures. The plan of continuous wooden timbers and piling also involves an additional cost beyond that of forming reilways scoordiug to the ordinary metbod.

The questioas submitted to me for consideration, therefore, appear to me to Le thorly these; are the advantages professed to be obtained by this departure from the ordinary plan of construction of railways and incressed width of gauge, realized? to what extent-at what additional cost-and are the adrantages an equivalent for the increased cost of forming the railway according to this plan, riewing the whole subject in connection with the present state of the works?

Acling upon the principles hereinbefore explainod as to the mode of comdacting the inquiry, it was my object, as much as possible, to subject all, or as many as could be, of the properties of this railmay as contrnsted with others, to direct experiment; certain advantages are stated to be derived from this deperture from the ordinary width and plau of constructing railways, and the circumatance of 23 miles of this railway having been opened, and having been in operation since the 4th Jane, appeared to me to afford an opportunity of subjecting to the test of expericnce, and of obtaining correct and indisputable results by carefully conducted experimentes, that which rested on conje furr, or cashal oliseriation.

It is perfoctly true that a daily opportunity has for some time existed of observing the rate of travelling with the passenger trains on your railway, by Which some result of the rate of speed accomplished, or likely to be realized whou a greater length of line was opened might be obtained, but the engiaes on the Great Westorn differ in many respects from those employed on other rail. waym, and also from each other ; if, therefore, extended obscrvations had been made on the rate of travelling, it was necessary to distinguish what was due to the road, and what to the engines, and if any increased speed or greater performance was accomplished, whother such wos sppliceble to the railway itself, or to the particular construction of engine only, and whether, by the application of similar engines to other railways (if practicable), the same results would not accrue.

If this had been done, no doubt important and valuable information would luave been obtained, but that would havo been, in fact, the very sort of inquiry by your own people, which you have determined to entrust to others; and it may be romaried, that if the inquiry had been conducted by yourselves, it could not have been at all conclusive or satisfactory in the comparison with other rail ways, and without suck comparisons it would have been useless.

At the first outset of tbe inqniry, it therefore appeared to me necessary to inatitute a set of experiments, to ascertain the actual performances of the locomotive engines upon your own railway; with this information carefully obtained we then had the real working powers of the railway; by employing heary Joads, we obtained correct data for deternining the maximum woight which the enginea, then upon the railway, could drag, at determinate rates of speed; and by subjecting the engines to very light weights, we likewise determined the maximum rate of speed with certain known loods; and by recording the quantity of coke consumed and water evaporated in each trip, we also ascertined, with considerable accurncy, the comparative cost of motive power in lragging different loads at different velocities.

These experiments appeared to me to be highly necessary and valuable, inasmach as wbatevor difference of opinion might exist (in the absence of correct experiments to ancertain the fact) as to the friction of the carriages, or resistance of the road as compared with others, these experiments, by determining the real practicable expense of working the railway, would at once ascerthin what increased rate of apeed could be necomplished, and at what additional cost of motive power such higher retos of speed was attained. These experimente would, in lact, anticipate, so far as the powers of the engines reached, the experience of some years of regular work upon the railway, and with more correct resolts, On nuy arrival upon the linc on the 17 th instant, I therefore commenced a series of experiments on the working powers of the engines, which were continued under my own obsergation daring the ten days I remained there, and are now in operation, and will shortly be completed by person in whom I have perfect confidence.

If woold be premature, to cay the least, at this stage of the inquiry, to give eny resalte derived from experiments not yct completo; but it may be some
gratification to the proprietors of thin great work to state, that one of the engines, the North Star, accomplished an average performance from London to Maidenhead and back, of dragging 180 tons, including engine and tender, at the rate of nearly 30 miles an heur, and that on some occusions, for short distances, a rate of 45 miles an hour was attained.

When the powers of the locomotive engines and capabilities of the Great Western Railway are thus obtained, in order to comply with your instructions, and contrast this information with the capabilities of other railways, it will bo neceasary, in order to arrive at correct and conclusive results, that we should bave the result of a similar set of experiments made upou railways of the ordinary construction. Altheugh isolated experiments have been made by different individusls on several railwaye, and although I have made several myself, it does not appear to me that a set of experiments have yet been made sufficiently extensive and varied to fully develope the capabilities and powers of other railways, so as to form indisputable data for contrasting with the experiments made upon the Great Western. The directors of the London and Birmingham Railway, in the most liberal nanner, gramted me full permission to make any experimenta on their railway, consistently with the noninterraption of their traffic; and Mr. Robert Stephenson, the engineer in chief, Kindly assisted me all in his power, and furnished me with some experiments he had made on that railway, on a former oceasion. I deem it, however, my duty to state to you that I do not think the informatiou I am in possession of is sufti. ciently extensive or conclusive as regards other railways to enable me to make a comparison with the performances of the engines on the Great Western, so as to arrive at an incontestible conclusion, nor do I think it right that I should go into a comparative statement at all, unless the data be equally conclusive or carefully deduced on both sides. The information 1 at presont possess does not enable me to go further than report to you the performances of your engines on the Great Western Railway; and if it be your wish that I alould comply fully with your requeat, and contrast their powers with the performances on other railways, it will be necessary that some experiments, similar to those performed on your railway, should be ingtituted on some of the ordinary railways of a different width of gauge. It will not be necessary that the experiments on those railways shnuld be equally numerous, as the engines on the other milways are generally of one description, and consequently one or two sets carefully conducted will be sufticient. It may be asked what practical advantage will result from all these experiments to the interest of the proprietors of the Grest Western Railway? The answer is shortly this: it is admitted that the construction of that railway involves an increased capital; it is, therefore, quite necessary to determine what are the additional advantages, in a practical point of view, resulting from this mode of construction, and whether the advantages are greater or less than are equivalent to the increased cost of construction.
These observations spply more particularly to the plan of constraction of the Great Western Railway generally, and to the capabilities of the entire system, or to the incrensed gauge, and the mode of construction combined; bat it in not necessary to the adoption of an increased gauge, that the railway should be constructed on the plan adopted by Mr. Brumel; it may be constructed on some modified plan of that system, or it might even be constructed on the plan of the London and Birmingham, or Grand Junction railways. Neither is it absolutely necessary, if. an increased gange be deemed advisable, that such increased gauge should bo precisely seven feet; all these aro separate and distinct questions, requiring different and distinct inveatigation, and, therefore, the simple acquirement of correct information of the comparative capabilities of the Great Western Railway in its present state, with the other exiating railways does not appear to me to comprice the whole question; it appears to me to admit of inquiry whether the width of gauge adopted by Mr . Brunel is or is not that which conduces most to accomplish all the objeets for which a departure from the more established width was deemed advisable, and also whether the mode of construction of the railmay is the beat that can be devised, or in what was it can be improved, consistenlly with the objects required to be attained, and with due regard to economy.

The plan adopted by Mr. Brunel, as previously stated, consists of longitudinal timber bearings secured by piles at proper distances, with cross transomen, douhle at the joinings of the longitudinal umbera, and single at the intermediate piles; and upon these continuous bearings iron rails of a particular form aro fastened by screw bolls.

It has been alleged that one of the objects of the increased gange was a greater stability to the carriages, and consequently less vibratory, or greater smoothness of motion to the passengers; it appenra th be, therefore, one of the subjects of inquiry how far this is realized,-whether such a desiderntum is accomplished, and to what extent. Keeping in view the principle set out with in this inquiry, of, if possible, subjecting to experiment mechanically every minutia, rather than to rely on opinion, or the more fallacious evidence of our senseb, I had constructed an instrument for measuring and recording apon paper all the oscillations or vibrations of the carriages, from one end of the lino to the other; and by transferring this instrament to the carriages of the ordinary railways, incontrovertible evidence is obtained, and such as can be appreciated by any one, of the relative vibratory motion of the carriages on the Great Western Railway, compared with the motion on other railwaya.

We have thus produced a diagram upan paper showing the number and extent of the vibrations of the carriages, and bence it can not only be ascer. tained if there does exist less motion on this railway than on others of a less width of gaugo, but to what extent : and this is thus made capable of being a subject of arithmetical determination.

It was soon found, howover, and this shews the importance of this mode of investigation, that the motion of the carriages on rail ways was a compound one : that besides a vertical motion, it was composed of on horizontal cecillatory
motion and of a trancerse undulatory motion combined; and it appeared, so fur ma we could depend upon observation, that leas of one description of motion existad on the Great Western Railray, and more of the other, than upon the erdiaary railways; it therefore became necessary, and of nome importance, to memure and determine each of these motions distinct from the other, not merely for idle cariosity, but for the purpose of ascertuining the causes of each, and hering done so, to attain the firat step towerde accomplishing a remedy. All this applies to the compound action of the rails and the carriages; and it will be seen that such a complication of motions required not only time but extreme labour asd attontion to investigate.

We now corne to, perhaps, the most important consideration, that of the conatruction of the ralway; this is the rubetitution of longitudinal continoous bourings of timber, with piling, instead of isolated stane blocks, or tranaverse tumber sloepera, or, indeed, continuous timber bearinga without piling.

The investigation of this part of the subject, sccording to the principles laid down in this inquiry, was attended with extrame dificulty.
The first subject for investigation was, the relative firmness or solidity of bese exhibited by the continuous bearings of timber with piling, and compared with stone blocke, or continuous beerings without piling; to determine this, I had an instrument, or deflectometer, made, which being placed underneath the rail, measured the amount of deffection when the truins or known weights passed over, and the more accurately to determine the precise action of the load in pasaing over the rails, I employed three defectometers at the same time. The motion of one with the other was effected by a rod between esch instru. meat, one was placed underneath each of the supports or transomes opposite the piles, and one in the middle of the rail; and by a similar contrivance to that employed in the instrument for measuring the oscillation of the carringes, I got a tracing of the defection of the ralla recorded upon paper, and thus obtained corroct diagrams of the defection at each of the places at the same moment of time.
By subjecting the ralls with piling in all their varieties, and alvo continuous bearings of the same acantling of timber without piling, to the defectometer, I obtained a measure of the relative firmness or solidity of base of these two varieties of construction ; and by likewise employing the same instruments to zueasure the deflection of the rails and depression of the blockn or cross sleepers, on other railways, I thus obtained the relative ifmness of base of all these different modes of construction, and these diagrams being capable of being transforred to, and embodied in a report, and measured with undoubted accuracy, will onable any one to pase their own judgment upon the relative firmnems of bece of those different plans. It will at once, however, be geen, that admitting we have obtained the relative frmness of base of the oxisting plan of construction of tho Great Western Railway compared with that of known plans of conatruction of other railways, the degree of stiffaess developed by the former, comprebends both the section of the timbers, and that of the ruils; and that such a plan of continuous bearings, either with or without piling, does not necessarily imply the use of that particular form of iron rail; It was therefore necessary to determine what part of the defection was due to the timbers and what to the particular form of rail. To accomplish stis, I purpose having these rails removed, and the same raila which were subjected to experiment on other riilways, where stone blocks or cross sleepers were nsed, anbestitnted; when the deflection will be again measured. By a comblnation of these experiments in all their varieties, I expect to arive at resulta which, not being matter of opinion, but facts, deduced from carefully-conducted and nelf-rocording experiments, cannot fail of producing the mont important if not eonchuive results.
Independently of those experiments, to elucidate all the minutix of action of the differeat parts of the system of railway mechaviom, and othera, which it in not nocescary at this time to enumerate, I subjected to experiment, so far as the means and oircumatances afforded me, the resistance und friction presented by the Great Western Rails to the passage of the curriages and engites along them; and by parnuing a similar courne of experiments on other railwaya, we shall thus have valuable corroborative evidence to that of the experiments made with the engines, of the relative resistance of the Great Weatern Railway, compared with that of railways of the ordizary width.
With the exception of some experiments on the London and Birmingham Railway, tade on my surrey, and which were not sufficiently varied or sufficiently numerous to afford conclusive results, we still requiro further - vidence of the resistance of the carriages and engines on other railway, to compare with those made on the Great Western Railway, in order to arrive at conclasive reealt, or indeed to ensble me fally to comply with my iutructions for thie inquiry.

REPORT OF JOHN HAWKSHAW, ESQ.

 To the Directirs of the Great Westers Railway.Gexplemmen,-Your instructions of the 5 th 8eplember are to the following effect:-That you are denirous of obtaining my assistance in coming to a sound and practical conclusion as as to your future proceedings, directing my attention to thome points which may be said to constitute the peculiar features of your rallway, as contrasted with others, including the construction and enieiency of your enginea, as well as every matter connected with the locomotive department.
My attention ts also called to the bridge at Mardenhead, as to fts construc. tion generally, and as to the means proposed to remedy an existing defect in one of the arches. To arrive at an oplnion, I am desired to undertake an examination of that portion of the line now completed, and investigate the reank of the whole syitem whict has been adopted.

should make myelf acquainted with the general cbaracter of the whole line, and consequently I have been over its whole leagth to Bristol. It seemed also desirable that 1 should inform myself, as isccurately as possibie, as to the traffic to be expected upon it generally, and in the aggregate, for this certaindy forms one of the most easential features of all lines.

The question seems also to require a atill more extended view than thin; the diatrict Into which it goes has to be glanced at; the area and enctent of population, whica may be looked to for collateral traffic, has to be seen ; and these have to be compared with districts through which other lines have been made, and where other lines are at work.
The necessity of such a view of the question became appareat to me, because, on coming first upon your road, that which immediately atrizes in, the enlarged capacity of all thingr; engines, oamriages, and road. And the existence of such an arrangement presupposen, in my view, an equally enlarged traffic; trains of much greater weight, and of a greater number of pasengers than elsewhere. In short, though not to an equal degree, the difference between your arrangements and those of other rillway companies, is something like the difference between a canal for barges and a camal for ships; and this comparison will not be extraordingry, should it appear thst, taking your gradients into the question, your locomotives have twice the power of those on other lines; and the contrast will not have been uselesst, should it be slown that it would be a parallel case to build a ship of 200 tons burthen, when there was no probability of ever obtaining a cargo of baif the weight.

Further, I mas extend these preliminary remarks by observing, that the object which I presume you to bave in view is, (after paying a due regard to to the accommodation and convenience of the public,) to carty out your mea. sure in such a manner as slall be most conducive to the interests of those who have invested their property in it. That this should be your object there can be no doubt, and I wish to place lt here as the desideratimn, because it is one thing to design that which shall be pleasing in outline, and grand io dimensions, and it is altogether another thing to design that which, under all the circumstances, sball best answer the end in view; one of those ends being to obtain a return for the capital invested.

I am desirous that it should not be thought that I am here pre-judging the question. To all questlons there are condltions, and I only wish it to be clearly understood what are the conditions of the question, which, as I understand it, this repirt professes to conslder. And they raay be repcatert, that in carrying out the measure, tbere is to be the fullest regard to the reants and corr. veniences of the public; but also a constant regard to the prospects and expectations of tbe shareholders.
Now, it will not be difficult to show, that the legitimate interests of there two parties are one.
The profts of a railway are determined by the ratio of the proceeds to the cost; if the latter be greatly increased, it becomes almost imperative on the proprietary to increase the former, either by curtailing the accommodation, σ o by increasing the charge to the public. The public, therefore, is intermed as much in the economy of railronds, as in the economy of mas nufactures; in the one case, if it be in fabrics, it will cause a reduction of the price per yard; in the other case it will cause a reduction in the rate per mile. And if the publle, in the extended sease of the word, is to be benefited by economy being exercised in the construction of a railway, the public, in a more limited sense of the word, or the more immediate district through which the line passes, will derive atill greater advantage.
Suppose, for instance, that the problem to be solved was, to give the greateat impetus to the trade, and the greatest advantage to the town of Bristol. The way to solve this problem, I think, would be, to connect it with the meetropolis by a road on which parties could be carried for the smallest sum, and at a velocity not inferior to that at which they can be carried in any other direction. Now the cost at which a party can be carried will be as the interest on the capital expexded added to the cost of working the road.

For instance, call the gross revenue of a road paying 10 per cent., 100 ; and call the cost of working 50 per cent.; 50 will then be left to pay 10 per cent. on a capital of 500 ; double the caplal, and it reduces the proft to 5 per cent.
The capital ought not to be doubled, advisedly, therefore, unless one of these two thlngs is to be accomplished by it ; either that the cost of working be reduced to nothing, or that the gross proceeds to be doubled. Should the capital be increased witbout effecting any material reduction in the cost of working, the consequence will be, that, to increase the proceeds, the rates must be raiked; and this may or may not be effectual; for an increase of charge beyond a certain limit will not increase the proceeds. If it abould not be effectual, the sbarehnlders will suffer. If it should be effectual, the publie will suffer, by having to pay the bigher rates.
If, supposing in the case of a railway only partially constructed, it should turn out that the traffic had been as much under-rated as the cost of the lise had been increased, and that atill a profit of ten per cent. would accrue, yet it proves only this, that though in the one case, by good fortune, a profit of 10 per cent. will be obtained, in the other case a proft of 20 per cent. would bave been secured.
I would not apply this species of illustration to cases where the cost is increased of necessily; I would only apply it to cases where the increased expenditure is for some specific object; such as the attainment of much flatter gradients, or of very higb velocitles, or of much greater dimensions ; which may or may not be desirable, accordiag to the result when tried by this rule.

Now supposing this species of test be applied to one great object which you appetr to have in view-the reduclion of a great portion of your time to 4
practionl lerel, for the ontmsible purposs of obtaining higher velocities, or ditrotionhed resinterce.

Between your maximum purlhmentary gradient, which was 1 in 528 , or 10 feet per mile, and your present proponed gradient, which is 1 in 1320, or only 4 feet in a mile, the question stands thus.

Calling fiction, realetance from the atmosphere, do., 101ba. per ton, and adding gravity, the resibtance on 1 in 528 will be 14. 2lbs. per ton, on 1 in 1320 it will be 11 7lbs. per ton, making a diminution of reaistance, when escesding, of 17 per cent. Now, supposing your railway was one inclination througto increased resintance of 17 per cent. would be felt, and a corresponding inerease of steam would have to be expended; but in dencending from B to A there would be a diminibbed reantance in the same proportion, and a amaller quantity of ateam would be required; and in auch a case, as it regards cost of morking, there would be very litulegdvantage in one gredient over the other. The manimum hoed that an engfornd could draw on an incline of 1 in 528 , would bo leat than on 1 in 1320; but on an incline of 1 in 528 all average toede could be taken.

On an inoline of 1 in 528 almo, to carry the same loed, an engine would have to be a trifie heavier than on 1 in 1320 ; but on 1 in 628 , to carry full average foada, an eagine conld be made of as light weight as they ever are, or pertaps can be made, consident with the requinite strength.

1f, iostead of having one inclination, the line consiated of a series of inclinmioss grealy undulating, the advantagen of the fatter line would approach searer to the 17 per ceot.; not but that it would atill follow, that in going up the meeper gradients there would be increased resistance, and in goling down there would be diminished resistance in equal proportion; yet in practice it has been found, that unleas the inclines be of very great leogth, advantage cannot be taken of the diminithed resitance in going down, as regards steam; for though it in not manted to an equal extent, yet a great portion is warted by blowiog off at the safety valve.

But your line correaponda to neither the latter nor the former of these casea; it is nother composed entirely of one plane, nor of a seties of planes greatly mendating; but in retult it will approach nearer to the former case than the Later; for it may be said to be composed of two great planes, one rising up to the sarmmit, the ocher descending from it-one upwards of 70 miles in length, the other opwarde of 40, and dividing your line at the summit into two parts; tit would then be analogoun to the former case, in which it appears that practically, and as regards cont of working, there would be no very material difference between the inclination of 1 in 528, and of 1 in 1320 , when so circwaphanced. If in your line, therefore, the adrantage of one gradient over the other be put at 8.5 per cent, it will, in my opinion, be the full equivalent.

Now, if the whole cost of working a railway was expended on locomotive power, by redacing the gredient from 1 in 526 , to 1 in 1320 , a saving of 8.5 per ceat. would be effected, and thesefore an increase of 8.5 per cent. to the capital to obtain it would not be expended uselessly.

But the axpense of working railways does not consist entirely of the cout of bocomotive power. There are other expences that remain constant, whatever saving be effected in the locomotive department; and this fact should be kept constandy in view during the remainder of this report.

Taking the Liverpool and Mancheater Railway a a stendard, it will there be seen that the cost of power dope not form one-third of their half-yearly expenses. It in apon this item only, therefore, that an alteration of the gradients of the nature I bave been describing would effect a seving of 8.5 per cent; and 8.5 per ceath upon one-third of the annual expensen will be only 2,8 per cent. on the whole of the annual expensen, and therefore a company would do wrong in increasing their capital more than 2.8 per cent. to effert such an alternion.

But the small saving to be obtained in many cases by reducing gradients below a cortain macilination may be proved by an appeal to actual prectice; pol expmimeot only, but the every-day results of lidea in operation, which is fur bexter, for ts is upon the overy-day business that the saving must be cefiected, if it is to be.

Coutaning your line with one wbioh opened about the same time, which also bes continuous bearingt, upon which an equal velocity bas been maintaned, and which, will appear from the atatement below, has very different gredienta, it will be seen that in a case like yours I have put the adrantage of a gradicat of 1 in 1320 over 1 in 828 , high enough.

GRADLENTS ON GREAT WESTEBN RAILWAY,

GRADIENTS ON MANCHESTER AND BOLTON BANWAY.

Miles

Chains

The following arofihe results of Four Weeks' Traffic on sach of these Lines, ending the 13th of Septomber.
GREAT WESTERN RAILWAY.

MANCRESTER AND BOLTON RALLWAY.

Avarage number of traine per dey
Thnee of running

Average number of carriages per traln
A verege number of pasengers per train
Arerage wolght per train
$\begin{array}{cc}\text { Tons } \\ 24 & \text { Cwt. }\end{array}$
A verage consumption of coke per mile
Average comaumption of coke per ton per mile
Average consumption of coke per pansengor per mile
Length of trip
0. 86

Arerage time of maing it, without atoppages
10 milen.
Average time, 35 minutes, with 6 atoppages.
Prom the foregoing statement it would eppear that the consumption of coke is conalderably less on the line with teep gradientr. But the average weight per tratr is in each case exclusive of the engine and tender.

The average weighs of engine and tender, in working order, on the Great Western Railway, will be 27 tons.
On the Manchester and Bolton Railway the engine and tender, in working order, weigh 16 tons 4 cwt .

Adding these to the respective trains, the average weight of the Great Weatern train, including engine and tonder, will be 67 tons 5 cwt.
The avarage weigh of the Manchester and Bolton train, including engine and tender, is 40 tons 5 crot. And

Consumption of coke per ton per mile on the Great Wentern, including weight of engine and tender, is 0.75 lbs.

Consumption of coke per ton per mile on Manchester and Bolton, including weight of engine and teader,

And on the [Leed and Selby Railway, with the following gradients, the resulta of month's working, ending the 13th of September, are as under:-
aradimiti.

11	milet	risea	1	in	210
1	n	"	1	"	176
2	"	"			182
3	"		level		
8	"	falle	1	"	136
3	"	"	1	,	162
61	"		level		

Average number of trains per day, 7. 2 on Sundaya.
One train extre on two market deys per week.
Average number of passengers per train
Average welght per train, exclusive of engine and tender
57

Average consumption of coke per mlie
32 tons 5 cwt .

A verage consumption of coke per ton per mile
1.1

A verage consumption of coke per passenger per mile . . . 0.63 Length of trip

20 milles. Average time 1 hour 7 minutes, with 4 stoppager.

The next subject for considaration is the inerease of gauge. In examining this question, it will bo necesary to put aslde uelem and erroneous objections; for the enquiry is one on which I am not only anxious to arrive at a proper comeludon myself, but I am deatrous of enabling others to do so also; and throwghout this report I shall rather aim at developing the proces by which tbe opinions it containsare arrived at, even at the riat of being tedions, and aware though 1 am , that this will be laying it more peeultarly open to any who thould be diaposed to onvil at it ; yet, on sech a aubject, it is better that

It may be observed here, that much that is alsurd has been applied to the question of gauge: some have looked for advantages so great as would have left them little less than magical; they seem almost to have expected that on such a gauge the carriages would run of themselves. Others, on the contrary, seem almost to have expected Uhat on such a gaugo carriages could never be made to run at all. It bas been applauded to the skies as being wonderful; it has been decried, and cried down, as being little less than nonseusical. Now, it is neither the one nor the other of these; it is simply a railroad of greater dimensions than those hitherto constructed, and the only question is, is such an increase of dimensions judicious or not? And the next question will be, if injudicinus, considering the amount in money to which you are committed to it, is it better for you to proceed or to make the alteration?

In the first place it may be stated, for there can be no doubt about it, that just as good a road can be made 7 feet wide as 5 feet wide: it is simply a question of cost. There are some, no deubt, who have connected the effect of the malformation of your road in the first instance, with the width of ways, but of course erroneously so.

In the next place, in determining on the question of gauge, it should be considered quite independently of anything that may have been done upon your railway, which is notabsolutely consequent on the increase of gauge; and I shall classamong the non-essentials the peculiar mode of lnying with piles, engines of 16 tons weight, and tunnels of 30 feet diameter.

It may be premired that determining the question of gauge in this country, is a very different question from determining it with regard to countries where the railway system is scarcely introduced. In England, what may be termed the great trunk, connecting the north with the south, has already beenf formed, or is in progress. Under the superintendence of men who were earliest connected with the Liverpool and Manchester Railway, and with railways even prior to that, it hat been constructed on a gauge of 4 feet $8 \frac{1}{y}$ inclies. They had more experience than others in railway matters; and their continuing the same dimensions as to width of way proves that they had found no occasion for altering it. Moreover, it is indisputably true, that they who have had the most experience, and who have been brought most into contact with the working of railways, see the least occasion for an alteration as to width, and are the most satisfied with the present gauge.

In addition to this main trunk, another line crossing it right angles, and of which the Liverpool and Manchester, and the Leeds and Selby Railways form a part, and which will connect the eastern with the western seas, is already constructed, or in progress, 10 a similar gauge : and other lines of great extent, some of them surrounding and piercing into the district into which your Railway goes, are also formed, or are rapidly forming to the 4 feet 8年 inch gruge.

And it will not be too much perhaps to say, that three-fourths of England is already being traversed by railways to the narrower gauge.

It follows, then, that any company deviating from this gauge will be isolating themselves to a certain extent; if not as regards their main liue, yet as regards their branches; if not as regards their direct trafic, yet certainly as regards their collateral traffic.
But In the present carly stage of railway traffic, it yet remains to be seen whether or not it may not become a great evil, for a main line to be thus isolated and rendered impossible of connection with the great lines in its neigtbourhood; that it will be an evil in this sense as it regards the branch lines, there can be little doubt; for they or some of them, in course of time, will of necessity run into the neighbourhood of other lines of different gauge; but with these, however vital the connection may be, all connection will be impossible.
In this point of view only, it bas become a serious matter for any company in this country to make their line to differ as to dimensions from the majority of lines around them. It is to a certain extent at if a canal company in a country of canals should construct a new navigation so, and with locke of auch a character, as would totally shut out the boats of all the canals that surrounded it.

Stili it is possible that there might be, coupled with the deviation, improvements of nuch a nature as would counterbalance the inconvevience, as would even compensate the loss. They might consiat of arrangements that would effect a great and important anving in time and money, and in a better conservation of the property to be conveyed. and it will be neceasary to enquire if such will be the result of the deviation in your case as to the width of way.

If the $\mathbf{7}$ feet gaoge is to effect a saving in money, it must be in one of two ways; either by calling for less capital in the first instance, or by reducing the cont of working arterwards. The first of these it cannot do. On the contrary, the capital will be increasd certainly: to how great an extent it would be imposible for me without more time for calculation to say. But contracting the dimensions to the smalleat limit; two ways of 7 feet must of necessity require a grealer width than two waya of 4 feet $8 \frac{1}{3}$ Inches. I should eay, to make line equally as convenient, this increase of widsh would amount to 4 feet; for the width between the ways is not to be governed entisely by the maximum width assigned to the load. A certain width is found convenient for repsire and other purposes; and too great a proximity of the ways is dangerous; as by it an accident occrring on one line inay be productive of disastrous consequences on the other, as I have seen. And the width outside the ways will also be nearly a fixed quantity whatever be the gauge; for a certain widih is requisite for safety, and for allowing proper consolldation to the onter rail on the embankments, and to give room for drainage in the cutting ; and, therefore, the width of the road generally, to make as convenient a road, weuld have to be increased by the extra width given to the ways. And besides this increase of general dimensions as to earth work and land, the locomotiven would of peceesity have to be hor vier (I do
not say to an equal extent to those you niow have), and they would therefore be more costly to some extent. The permanent road will aleg fast more of the larger dimensions than if of the smaller; for it avails nothing to compare a light rail on the harge gauge, with a heavier rail on the smaller gange; such comparisons must be made whel other things are the mane, or they mmount to nothing.

If then the capital will of necessity be increased, the next enquity in, will the cost of working be diminished 9 The cost of working will depend on the first cost of the engines; for though, in the first instance, they mny be chargeal to capital, anterwards they will have to be charged to current expences. It will also depend on the repairs of the engines, the consumption of coke, and the maintenance of way; and on other mattera which mee in nowise connected wlth the gnuge.

As it regards the cost of the engines, it will be greater on the wide gange; as it respects the repairs of the engines, should it prove in favour of the wide gauge, it can only be in a small degree. For the repairs of locomotives on lines where passengers are carried at great velocitics, have been fonnd to be incurred chiefly on tine wheels and axles, tubes, and fire boxes, which camot he affected by the gauge, excepting that if the wheels and axles be made larger, the repairs will be increased. And, at all events, the common repairs of a larger machine, necessarily so in consequence of the larger way, bat not necessarily so \ln consequence of any greater trafic, it is probable, will connterbalance any saving that might be effected in the repairs of the smaller gearing, in consequence of having more room to arrange it. Betiden. a great portion of the repairs of locomotives is not for common wear and tear, but is on account of accidenta. And In proportion as the machine is made larger and more expensive, 00 will the cost of repairs consequent on accidents be increased.

The maintenance of way will of course be fully as great on a wider way, and with heavier engines, as on a narrower way, with lighter engines; for perhaps it would not be advancing too much to say, that the engines and tenders do more harm to the superstruciure of railways than all the reat of the traffic put together; excepting perbaps londs.of long timber.

And lastly, if the consumption of coke is to be reduced on the wider gange, it can only be by the friction being dimloished, or by what has been called the mechanical advantage of large wheels.

It would have been highly desirable, if before using this as an argument, the lrish commissioners had clearly determined that there was an advantage in larger wheels. For there are some experiments and several reasons for doubting that any auch advantage will be derived from increasing the size of wheel. As it regards the friction of attrition, or that caused by the rubbing of the axles, it may be supposed to remain constant, however the wheel be enlarged; if it be nllowed that with an enlarged diameter of wheel, and especially when attached to a longer axle, there must be a corresponding enlargement of journal ; and in practice I think this would be the case. And as regards the friction of rolling, it is not likely to be diminished by inereating the size of the wheel, for the rolling friction on rails is very difterent from the rolling friction on common roads, where obstacles are met with that have to be surmounted by raising the vehicle over them. Small wheels on turnpike roads have been found to create much more resistance. But on a railway, unless the wheels be very small, the obstacles to motion from causes of this nature must be nearly imperceptible. And there is another species of rolling friction, caused by the grinding of the flanges of the wheels against the rails, which will be more felt in large wheels than in small wheels, and especially round curvet.

But to arrive at something more defnite on this subject, I will give the reeole of some experiments made on your line on the 20tu September.

A large train, consisting of nine carriages, one six-wheeled waggon, and eleven trucks, laden with iron and stone, was got into motion up and down a long and perfectly atrafight inclination of 4 feet per mile. The experimeat was first made upon the whole train, which gave a result of 6.291ber per tom friction.

The experiment was made so as to ascertain the friction of the trucks and the carriages separately, one truck only being left attached to the carriagen, and the result obtained was a friction of 6.5lbs. per ton for the truck and waggons, which weighed together 79 tons 8 cwt ; and a friction of 8.15 lbs per ton on the carriages and one truck alone, which weighed in the aggregase 74 tons 12 cwt .

On the 20th September I took six wagons on tho Mancheater and Bolmon Railway, each laden with $3 \frac{1}{2}$ tons of iron, and experimented in the asae way upon them, by getting them into motion, and noting the velocity and the distance run, from which the friction was determined to be 6.3lbe. per ton. The plane on which thls experiment was made was terminated at each end by curves, one of 111 chains radius, the other of 67 chaing radins. In the experiment up the planc the distance run was 2950 feet, the Fagons having run 330 feet into the curve of 111 chains radius before they stopped. In the experiment down the plane the distance run was 3825 feet, 1980 feet of which was in the curve of 72 chains radius in which the wac, ans ctopped. The same train of six wagons was then brought to an inclination where gravlty alone was sufficient to get it into motion. This portion of the line had previously been divided by stakes into lengths of 100 feet, and the raila opposite each atake accurately levelled.

From the starting point to the ninth stake the line was straight, bust af this point a curve of 42 chains radius commenced, and exteuded beyond the point where the wagons came to rest.

The result of this experiment, repeated twice. gave a friction of 7.321 bs. per ton; but it should also be observed that beldies passing for 1300 feet along a curre of about half a mile radlus, the Thole distance run being about

2200 fert, the train had to pass through three shupts before coming to rest, whict will probsbly account for the friction being bigher than in the previous experiments.
This line, as well as the Great Weatern, bea continuous bearings of wood. Though for a shart distance in the curves in all the experimenta on the Mancheater and Boton Railway, the motion was continued on continuous bearings of tone. The Manchester and Bolton line has a beavier rail of (53lbs. per jand). And in the Great Western experiments, three of the carriages and one wagon had mix wheels each, which have rather more friction than those of foor wheels; but in such a large and heavy train, no great difference could be cansed by this.
The whole of the wheels in the Great Western experiments were four feet in diameter, the journals $211-16$ inches in diameter. In the experiments on the Manchester and Bolton Railway the wheels were of three feet diameter, and the jourasls of two inches diameter ; and four feet : llaree feet : : 21116 inches: $11-16$ or two inclips nearly. But supposing that neitber the foregaing experiments nor reasonings are to be decisive as to the mechanical adrantage of increasing the size of the wheels, and I do not mean to zay that they arc, for to determine the question clearly the experiments should perhaps be unde on the same road; yet still as a general question there will be several drawbecks on the theoretical advantage of the larger wheel, such as the grater resiannace on curves with the wider way; more rubbing of the flanges agaivat the raila, not only in consequence of the larger wheel, but of the greater breadth of way ; for I think it is probable that friction would be reduced to a minimum by concentrating the whole momentum of a train on one rail, and that friction will be increased in some degree, as the distance between the wheels, or as the width of way is enlarged.
The next enquiry respecting the gauge is as to the matter of safety. If the gauge is to be altered on this account, it should only be because of a want of safery in the present gauge. If A be safe, there cannot be the smallest adventuge in making \mathbf{B} safer.
Now the qucstion is, is the narrower gauge safe? It might have been reasoned a priori that the width between the railway wheels being equal to those of turopike-road carriages; and from the very great weight of railway wheels and the under carriages, the centre of gravity being in all cases much lower on a nilway coach than on a stage conch; and the railway itself being infoitely more amooth and perfect than the common road ; that though the velocities are much greater, yet still there is no danger of overturning. And the fact is, I have perer heard of a case of overturning, or of any accident that I should attribute to the parrowness of base, occurring. And from what experience I bave had on Railways, 1 believe it would be a most difficult matter to overtnra the carringes apon them, with the present gauge, even if the object was purposely to do so, and an experimeut should be made for the purpose. But having heard it orged that ibere was greater safety on the wider base, which may be granted, but which amounts to litte if there is quite enough of safety on the narrower base; and being unable 10 call to mind a aingle instance of an accident of of an overturning in consequence of a narrower base, I addressed a letter to Mr. Booth, the treasurer of the Liverpool and Mancheater Railway, on the subject, to know if he had ever known an accident that could be attributed to the narrownets of bane; I also wrote a similar letter to Mr. Smith, engineer an the Leeds and Selby Railway, and I received the following rc: plies:-
"Liverpool and Manchestor Railway,
" Lime Strect Station, 21 st SepL, 1838.
Sfa,-I bare to acknowledge the favour of your communication of the 10th, onquiring whether or not, in nuy experience, there is auy want of safcty in the present geage, ifeet $8 \frac{1}{2}$ ineben asto the chance of overturuing; and also if I have known ny ene of orcturning in consequesce of narrownesi of base, or are aware of any weinat having occurred, which I woald ascribe to the natrowncss of the 1 feet by inches, base

In neply, I beg leave to inform you that in my opiuion there is not any want of afoty in that 4 leat $8 \frac{1}{2}$ inch gauge, and I an not aware of any necidents haring actirned, which I should ascribe to the 4 feet 84 inch gauge. The only case of overturning which I recollect occurred some years ago, nhen, owing to the breaking of an axle, the engine (which had only four wheoly) puited the rails, snal drew ceral of the carriages over the embankment, near Burg-laue.
Wheother in such a case a broader base rovild have prevented the carriages overanning, I will not protend to say; it might depead on the relative height of the carrigen and other eivcumatarces.
(Siguel)
${ }^{\prime} 1 \mathrm{am}$, Sir, ste.,
"John Huwkulew, Enc."

- Leeuls, 21 st Sept, 1689.
- Dear Sin,-In reply to yours of the 10 C inse, wa have bad wat one accident (during tbe experience of furu years) that was not occasioned eicher by tougues beng wroper of some obstacle in che way The one excepled, was cansed by the Nepirter traing nome wood aleepers too much nt once on a new made embankment. 1 do mot conder there is any waut of safety in the gauge, (4 feet $8 \frac{2}{2}$ inches) nor do I heow of elay aceident or overturving which cun be attributed to that guage.
"Sohn Hawkshaw, Esq."
(Signel)
"I am, dear Sir, yours, dc.,
${ }^{4}$ Gro. SMith, R.F.,
" Ieeds and Selty Hailway."
Beaiden, there is no difficully in lowering the centre of gravity on the preenas grage very considerably; were such a thing desirable or called for. For by matiog the conehes omnibus fashion, the passengers in cach coach could be rate to sit a foot lower than at present. That this is not done goes a Theathay to prove that it is unnecessary. Or by keeping the centre of
 ares the sise of the wheels from three feet to three feet six incher, or larger,

Having gone into the question of gauge abstractedly from what has been done apon your line in connection with it, and debiting the system of a 7 feet rail with such an increase of cost only as appears to rae to be absolutely consequent on its adoption, I feel compelled to come to the conclusion, that there are no advantages to be obtained by adopting it, at all commensurate with the evils that will be consequent on the devlation; and for the reasons which follow, it is not desirable, in my opinion, th proceed with it, unless you were already committed to it in a pecunialy senee, to an amount that will outweigh all the objections to it, but which will be seen hereafter.
The additional ressons for not proceeding with it are these;-first, considering the great cost, and the comparatively amall profite of railway lines generally on the smallest dimensions, and the great difficulty there is, and the corresponding increase of outlay that is incurred, in oblaining curves of suffciently large radius to be workable at the present marrower gauge; I cannot conceive that there is a aingle practical man in England who conld recommend the 7 feet gauge, as general system for this country.
If unfit as a general system for the whole country, it will be unft as a partial system for a portion of it; unless that syatem is of necessity to be very much confined ; its ramifications into other districts impossible from natural barriers, zuch as seas, or lakes; and the nature of the country, such as to undulations, that the cost of obtainiug curven of larger radius will be trifling.
Even admitting that the latter condition is true of your line, and that from its general flatness curves can easily be obtained of large radius, yet this cannot be predicated of the whole of the branches and extensions to which you will have to look for collateral and extended traffic. And even if it could, atill the system is unquestionably more expensive to some degree, and though you with your large traffic might not be totally crashed by it, it hat yet to be seen what the effect will be on the smaller und less favourable lines; which, to got into yours, will be compelled to adopt similar dimensions, and involving of course similar exjenses. At the sime time, the prosperity of your line will be affected in Do amall degree by the prosperity of the tributaries to it; and in fact, a probable result of doing tbings on such a great scale will be, to drive trafic which otherwise would come upon you, in some other direction. For in railway lines generally, in the same country, there will come to be a mutual dependance one upon another. And surely it must be rather an untenable dortrine to hold, that the gauge of each line is to be determined only by reference to its curves and gradients, for by such a rule it would follow that no two lines could be alike.
Finally, it may be sald of railway lines, that they will not bear any additional expense. It may perhapa be naid of every railway formed in this king dom, that if the company bad to begin again, their object would be to economise, and to diminish their first outlay, not to increase it ; or if there be a railwny company, and such are rare cases, that has already devoted its attention to the utmost in keeping down the expenditure in the first instance-that railway company gould not do otherwise if it had to begin again; and that railway company will feel that for the course that has been pursued, there is every cause for congratulation.
I could not advise you to take the London and Birmingham as your model, and feel satisfied if you exceed them as to cost in only a few particulars; thair line was necessarily through a country very different, and far more expensive than jours; and their line is in a position in which, if a great expenditure is to be repaid anywhere in this country, it will be to them. For I cannot conceive that your line, or indeed any other line that I am acquainted with, can expect an equal amount of thorough traffic ; for into their line a great portion of the north of England, and a still larger porion of Scotland, besides the great manufacturing and commercial districts of Birmingham, Manchester, and Liverpeol, must of necessity converge before arriving at the Metropolis,
Still, though I do not see that the aggregate of your traffic can ever be expected to cqual that of the London and Birmingham; yet, considering the much more favourable country through which your railway passes, and that the fraffic upon it will be unquestionably very large, I think your line presented equally as good features for investment, and perhaps may do so still; it will depend, in my view, upon the course you pursue.

That course, as far as my opinicn goen, is not to go forward on your present syztem. Knowing that railways hitherto, and on the smaller scale, have been found greatly expensive, so much so as scarcely in any case to leave an ample dividend, when the great risk of such investments is considered, I cannot advise you to proceed on a plan which, in all human probability, will materially diminish that dividend.
It cannot be necessary for the attainment of safety, when in the present gauge there is no danger.
It cannot be required for the atlainment of high velocities, because on the narower gauge velocities can be attained with perfect safety, greater than could be maintained by any railway company in England perhaps, without absolute ruin to themselves in a pecuniary sense.
The Liverpool and Mancheater Railway, by increasing their speed from 20 to 26 mikes per hour, have increased their locomotive expenses about 15 per cent. Mucb higher velocities thau this are attained, and with perfect safety. on the narrower gauge ; but there is no conipany that could bear the increased expease of maintaining such velocities constantly, or if there be, it will be fcund to be that company which has expended the least in the first instance. For example: the Grand Junction would feel the effects of increased expenditure to maintain a very high velocity, less than would the London and Birmirgham; not that their gradients are better, they are worse; but simply because their first outlay is much less, and therefore their annual expenses might be much incrensed, and still leave as large a revenue : in short, for very much the same reason that 20 s , for carrying a pabsenger $97 \frac{1}{2}$ miles on their
line, will probably pay them quite as well as 30 s. will pay the London and Birmingham Company for carrying a passenger 111 miles on their line.
But in advising you not to proceed in constructing your line on the larger scale, it is necessary to take a review of the consequences.
You are, to a certaio extent, committed to it in a pecuniary sense. This amount can be ascertained and contrasted with the saving to be effected by contracting the dimensions, if there be a saving; if there be no saving as to first cost, in making the alteration, yet as I believe there would be a material saving in the expenses afterwards, and other advantages of grenter magnitude still, such as the avoiding the introduction of an expensive system into districts which can ill afford it, the consequent re-action from which would be felt by our own line, I feel boand to recommend you to make the alteration.
That which will go to the debit of making the alteration will be as fol-lows:-
22 Miles of road to be taken up and re-laid, the
same materialn being nsed, $\mathrm{f1,500}$ per mile....
£33,000 00
14 Locomotives and tenders received (adapted for wide gauge) $f 1,980$ each,
7 Engines and tenders, constructing,
\qquad
42 Firat-class carriages at $\mathbf{E} 544$.
40 Second-
118 Trucks and wagons at $£ 106$
£27,720 00
$\begin{array}{lll}13,860 & 0 & 0 \\ 22,848 & 0 & 0 \\ 14,040 & 0 & 0 \\ 12,508 & 0 & 0\end{array}$
12,508 $0 \quad 0$
$90,976 \quad 0 \quad 0$

On the raile I do not consides there would be any loes, them too light, yet they will be much less objectionable in this respect on the narrower way.
That which will go to the credit of making the alteration will be as follow: -
$x 1,000$ per mile to be saved on 100 miles of permanent
way yet to be laid..
tained to make full stock
$£ 100,000 \quad 0 \quad 0$
£200 per mile less on enthwork, \&c. yet to be completed, say 60 miles.
Say 20 per cent. on tunnelling yet to be done, by the narrower gauge, requiring 4 feet lews width, say 2,000
\qquad

$$
24,000 \quad 0 \quad 0
$$

$12,000 \quad 0 \quad 0$
$20,000 \quad 0 \quad 0$
£158,000 $0 \quad 0$
It is useless to push this enquiry further. It is clear that even considering the question ns if your present stock of engines, carriages, \&c. would be valueless if you alter the gauge ; and contrasting this loss with abe saving that would be effected by adopting the narrower gavge, supposing that in prosecuting the 7 feet gnuge you were only in future to do that which is barely necessary, still, taking such a view of th, the advantage in a pecuniary zense is decidedly in favour of an alteration of the gauge.
But if the comparison were made on the supposition that in carrying out your system as to gauge, you were to continue the large dimensions you have begun with, the pecuniary advantages in favour of reducing the gange would be very much greater.

Further, there is no necessity for considering all your present-stock of engines and carriages as valueless; for supposing jou should decide upon altering the gauge, it could be done as follows.

It would be negessary in the first place to curtail the dimensions of all the works yet remaining to be done, and to proceed with taking up one of the lines between London and Maidenhead and to relay it to the narrower gauge. In the mean time your present trafic in passengers could be carried on very well on one line. On the rallway between Antwerp and Brussela, greater numbers are carried on a single line of way. This would of course afford employment for your present stock of engines and carriages for probably a year and a half, and would therefore go to diminish the sacrifice that ulimately would have to be made ; that sacrifice would be still further diminished, by the value of such part of the carriages, trucks, and engines, as could be applied in the construction of others for the narrower gauge.

Of course the traffic would have to be transferred to the line of narrower gauge before the second seven feet way between London and Majdenhend could be taken up; it might then be relaid to the narrower gauge, and could be got ready by the time that an extended portion of your line should be prepared for opening.

Having come to a conclusion that so great an increase of guage as to 7 feet is to be avoided ; the question will arise, is 4 feet $8 \frac{1}{\text { inch exactly }}$ the thing 9 No one, perhaps, will pretend to say that it is so precisely, or that an inch or two in addition could make much difference as to cost. Of course the objections to increasing the width of way, on the score of expense, become leas as the increase to be made ts diminished; the main reason in my view for abiding by the 4 feet $8 \frac{1}{2}$ inch guage in this comntry in, that it has been greatly adopted, and that tbere are no very substantial grounds for altering it. I have never heard any one, whose opinion I should esteem of great value from their experierce of the working of locomotives on rallways, winh for more than a few inches of additional width, five or sir inches at the utmost; and even as to this iocrease, just in proportion as the parties had had much to do with the working of the locomotives on rallways, so is the ame proportion did they esteem oven it to be of minor importance.

Perhaps, if railways were just commencing in this country, an addizion of a few inches, five or six inches at the most, might be made; bot the adruptage to be gained by making it now, in my opinion, would in no manaz com pensate the evil that will arise from a variety of gauges in the aame country.

Impressed with the importance of having other opinions on this subject thea my own, laddressed a letter to two of the largest manufacturers of iocomotira in this country, requesting from them to know whit in their opinioo woe the practical disadvantages of the 4 feet $8 \frac{1}{2}$ inchet guage as affecting the manufacturer.

The opinions of both these parties in my view are peculiarly valuable, for they were not only amongst the earliest locomotive manufacturers, but bave also had much more experience as to the working of their engives on railways than any other manufacturers I know ; and without this latter kind of es perience, manufacturers are, 10 a certain extent, only theorista, as to the question in band.

Their answers are below.
" Liverpool, Sept 29th, 1848
"Dear Slr, - In reply to your letter of the 27th inat. referring to the quantion of be right guage, which at this time ta 80 much agitated,

I beg to state that though we do not labour absolutely ander great dificultion ta consequence of the wact of broadth, yet there is no doubt an addition to the presat width (4 feet 8 in in) of a fow inches would enable us to make a more perfeot cupire. The addition of 6 inches would be ample, and I consider any thing berond that would tead to increase the difficulties beyond what we now experience, rether thmotherrix
"Yours truly,

" John Hawhahaw, Esq." (Signed)

"Edfasd Bray.
${ }^{a}$ Mr. John Hawhahaw.

* London, Oct 1, 18ta
" Sir,-The extent of inco
angines of enginas of moderate power (say 14 inch cylinders) for a gauge of 4 foet 84 inghan ix very small indeed. In our early engines an additional wdth of 8 or 4 inthes woold have facilitated the arrangament of the working gear and eecontrics; but this has since been simplified, and our latest arrangement of thoee parts loaves seapedy this mall increase of width to be wished for.
"The coustruction of ergines for Ruesia for a six foet gauge, leads as to belien that a considerable increase of expense is attendant upon increaed width; mar eapecially if the power of the engine is considered to bear any relation to the widh of the geuge. If the power or dimentions of the enpine be kept the anme, the editione expense consequent upon an increase of gauge will not be very congidessble.

(Signed)

"We are, Sir, \&e.,
"Robert 8teprgsion \& Co."
Wilh respect to Mr. Bury, it may be obeerved, that if any manafucture in England has felt inconvenience from the 4 ft . $8 \frac{1}{2}$ iu. guage, he must bave dove 50 ; for, from the peculiar construction of his engines, it is a principle with bim to use inside bearings only, which neceasarily leave leas room for the working gear than when outaide bearings are used.

brider at maidenatad

I have carefully inspected this bridge, and find that at the crown of the eastern arch, and for 12 or 14 feet on each side of it, there is a sapartion between the 1st, 2nd, and 3rd rings of whole bricks, counting from the with of the arch; these separations generally are about half an inch wide; and extend three or four yards each way from the crown of the arch; the dution cation appears to be less towards the interior, for on making a hole quite through the brickwork in the centre of the arch, it was found that there whs separation only between the 2 nd and 3rd ring of whole bricks, but thin p parntion was about an inch in width.

Tlsere is nothing any where that I could perceive like crushing of the bricth or dislocation in direction of the thrust.

I think it probable, therefore, that if a few iron bolts were put through the arch, to $t s$ to prevent any further separation, and the crown of the areb boded with additional weight, that the bridge might stand, and perhape be quit strong enough for anything that ever may be required of it. Bat I anod say that I should advise such an experiment to be made on such a drucurt, especinlly as putting its stability beyond all queation whll not bea very serios .matter.

I should recommend, therefore, that from 25 to 30 feet of the crown of the eastern arch be taken out, (the precise quantity will be aeen m the anch in opened), and replaced with stone, the facing of the clevation may still bed brick, ac as not to destroy the appearance of the bridge. The stove will girn greater weight to the crown of the arch, which I think is wanted; and I aboak also recommend an additional weight to be placed on the crown of the weterif arch; a co.pple of courses of 8 or θ inch landings would do; for 1 fidd difficulty in accounting for the appearances presented, otherwiee than on be supposition that the haunches of the arches have had more than their fuy share of load; and at all events, I am of opinion that mome additional Feigb on the crown of both arches will be of service, and will add to the grond stability of the structure.
peryanemt way.
The mode adopted in laying the rails, is, I thbm, attempting to do that in a difficult and expensive manner, which may be done at least an well in : simpler and more economical manner.

> LосомотIVE POWER.

Beyond what may have been aaid on thissubject generally in the proceliof parts of this report, the length to which ht has alreedy extended forbide y saying much more. Generally, I shoula say, hat the power of your engive thould be proportioned to your boeds.

Employing engines capable of dentilisg 200 tons to drag loedserungixy 50 toms, will be very much like fastening fight howes to 1 pon-cinion

The great weight of locomotived is a powitive evil. It is so, because they have to be cartied ebout for nothing. It is to, becaue they do more harm to the rad than anything ebe, and a railway is to be made stronger and more conly on sccount of them. But, to a certain extent, it is a necessary evil; butouly to a certain extent. And if the weight be increased beyond this limit, it will be to mucl thrown avay.

The weight of the epgine should be determined by the average load be taken, and the nature of the gradients.
Moreover, the eagines will work economically, or otherwise, in proportion as their power approximates to their londs.
Theaverage of your passenger trains cannot be expected to be greater or beavier than on the Grand Junction Railway. Supposing them to be the stane, at to weight ; from yopr fiatter gra lients, engives of little more than two-tbinds the power of those on the Grand Junction, and therefore of considerably less wcight, Would be sufficient for you to travel at equal velocities. If you wish to travel at double the velocity, of course you must have more powerful engines; bat it should not be forgotten, that you can only travel at doubte the velocity, by pretty nearly duubling the cost.
Finally, I should say of your line, that the country is favourable, and the gradients good; neturalls 80 , or in so far as they are dependent on the undulations of the country.
Furtber, with such a traffic as you may expect, and such a country, your line holds out great inducements for the investment of cepital.
But the advantages of country will be loat sight of and nullified, if for the mke of a system, the cost of the road be greatly increased; and even the rood gradients will be rendered of non-effect as to economy, if the apeed be grandy fncreased; for greater apeed willentail greater cost and will be tantamoant to steep gradients.

And though the same results may pertaps be obtained on railways of better gredients, with more dead weight than on railways of bad gradients, get this seems to be merely bringing down the good line to the standard of the bad.

I am, Gentlemen, your very obedient servant,
(8igned)
th October, 1838.

REPORT OF L K. BRUNEL, Esq.

to the draectors of the great western mailway company.
Geatlemen,-In compliance with your request, I beg to submit to you the following observations upon the oply report which you have laid before me; that expected from Mr. Nicholas Wood not having yet arrived.
Knowing that I should be called upon to expreas an opirion upon the subject of these two reports, and that the time ollowed me would necessarily be very short, 1 had proposed to class, as far as posaible, their contents under two hoads-riz., first, facts, including under this head the statement of actual ranlts ascertained upon the Great Western or other lines, and general prisciplos, or rales, laid down and assumed as axioms, whether of mechanics, mathematics, or of the practical working or economy of railways; and, secondly, of the arguments founded upon thase facta or axioms, including the inferences draind from then and the opinions expressed.
I proposed, in the next place, to consider how far the former were applicable to the case, and, what is of great importance, how far they constituted all the focts that it was neceasary to atate for the purpose of arriving at a fir conctosion. I intended then to have discussed the correctress of the latter, cod thas to have arrived, by a clear and satisfactory procesp, at the object I hed in ricw, which was, to give my opinions and my views on the same subject w that of the reports; to compere them with those of the writers; to show wheroin I agreed with them and where I differed, together with the reasons and grounds for the differences between us.

This moold, I triok, have laid before you a busiocss-like view of the case, and such al I' choold hare wisbed to have submitted to you. I regret that the pecaliar malure of the only report yet received puts it out of my power to presu this courte ; for bering carefully read it, I found, that by confining myself to the divimion or clansification which I had proposed, I should have passod over in silence a very great portion of its contents, unless I formed a third division molading neither such facts or arguments as I bave described, but conticting of general remarks and bypothetical cases, and even the opinions of obms fomded upon hypothotical cases. It is true, there are many remarks ad conparisons made which are not applied directly to the Great Weatern nilvey, nor are they in terms atated to be strictly rolevant; neither are the mas bypotheticelly pol etterward proved to have any practical existence, or made to throw light upon any tate exiating circumstances of the railway; bot bsing interwoven with a repon apecially made, upon the Great Weatern nuimay, they ere calculated, bowever inadvertently, to mislead, unless their irselerancy is pointed out.

Lrearet very much the necessity of considering these portions of the report, ta in involves the tedious procem of referring almost to each page, and of fregeatly encering into long explanatious to remove a mimpprehension, prodaced, perhape, only by a ciagle word; bat no alberative is left to me. The mand aztent to which I can veatone to depart from the line pursued by the report which I heve butore me, will be to consider the subject, in the first places in whet eppears to me the engineering and busineat-like view, and then, morgoantly and reparately, to comelder the particular manner in which the wis hes treated the question.
The reports after a fow protiminary remarks, is divided under the the folbolye heads, and they are copsidered in the ordor atabed, pemely, the objects
"the conditions of the question ;" the comprrative edvantages of good gradients ; the width of gauge; Meidenhead bridge; the construction of the permanent way; and the locomotive power. I shall now consider the subjects in the same order, and, for the sake of purfect accuracy, refer to the pages and paragraphs of the printed copy before me. As the opinions expressed, and the conclusion arrived at, in this report, are generally, if not wholly, diametrically opposed to those which I am known to entertain, and which I am now quite prepared to support, it is but just to state, at the outset, that 1 differ altogether from the general principles laid down, which appear to me to be unsound, and, indeed, to be iucorrectly and insufficiently expressed; and I must nay, that I consider the reasoning fallacious and defective, and that many of the calculations are incorrect or erroneous from the omission of quantities or conditions which must affect the results.

In the report (p. 48), the conditions of the question are stated to be, that "there is to be the fullest regard to tho wants and conveniences of the pablic, but also a constant regard to the prospects and expectations oftho shareholders," in which I concur. But the observationa which fo!low I entirely dissent from, for which I will shortly staw my resaons. It is said that the "profits of a railway are determined by tho ratio of the proceeds to the cost; if the latter be greatly increased, it becomes almot imperative on the propietary to increase the former, either by curtailing the accommodation or by increasing the charge to the publio."

In noticing this paragraph, I wish to premise that I deprecate, as much as any one, all uscless ex penditure, every increase of the cepital of any company not justifled by a fair probebility of return, either by economy in the management or in the maintenence of the work, or by increase in the income to be derived from traffie :-and I must distinctly sey, that no departure from a sound and wise economy would ever receive my senction. Having said this, I now, in answer to the obecrvation I have quoted, would beg to remark, that at whatever cost a railway may have been conatructed, the only way to increase its proceeds is the eame in all cases: you can only induce the pablic to travil upon a milway, by holding out better accommodation or lower charget, or both, then they can find elsewhere,-by, in fect, reveraing the means reoommended-by imereasing the accommodation or curtailing tho charges. Expedition, comfort, and cheapness, are the temptations to railroad travelling, and, according to the degree in which they exiat are made manifost, will the pablic use the railway. The object is, to get the largest income by these moans,- the itcome must depond upon the facilities afforded. Iet the reilroed cont what it may, it is by no such process as thas recommonded that "proceeds" can bo incressed, but by one just the reverse, which is and must be the commot object of all companies,-viz., to obtain the mazimum ef traficio and income: and no curtailing of the accommodation, no increase of charge to the puhlic, can do this.

It is stated in the succeeding paragraph (p. 48), that " tbe coot at which a party can be conveyed will be as the interest on the capital expended, added to the cont of working the road;" and inversely, as the namber carried, should have been added. But thia important condition, which totally alters the arithmetical renult of the coot of transport, is attogether omitted. Again, in what immediataly follows it is said, that if "capital be increased without effecting any material reduction in the cost of working, the consequesco will be, that to increase proceeds the rates nust be rained. May not the number of passengers and the traffic be increased by such additiomal outlay, and thereby the proceeds also?

Such are the principles ef railway economy which are laid down. I might perhaps avoid the necessity of further discusaing them, by dropping them ess suddenly and as completely as they are dropped attor this last-quoted paragraph in the report, but as an impression is produced (although no direct inferemee is drawn) by their assertion, I will examine what I conceive to be the fiewt of the writer on their intrinsic merits.

The theory of trade advanced in this part of the report may be stated thus; that the only mode of increasing the grom profits is to increase the profit opon each article by raising the price or by reducing the origimal vatlay. No doubt this is one method, if it can be effected; but I beliere it would be difficult to point out any ono great branch of trede which has thriven in this counsry by such a course. Bat, on tho contrury, in every branch of manufncture, each year the necessary machinery and plant become more costly, the price of the articles manufactured is reduced, and the profits upon any giren quantity diminished; bot the gross profits are at the same time maintained and inereased by the great increase of consumption consequent npon diminiabed prices or improvod quality.

In railways, the ame principle applics, and, if poasible, in a atill greater degree; yet in the report it is assamed throughout that the consumption, or, in the case of railwaym, the number of passengers and the trafic, is a constant quantity which, on the one hand, is secured to the railway whatever may be its comparative inconveniences or defects, and, on the other band, cannot be increased by any additional accommodiation, or by any other inducament beld out to the public.

It is upon these views that all the arguments adduced in farour of reduction of first cost are founded in this report; in no single instance is any alloaion made to the posaibility of increasing the number of passengers by improving the means of conveyance. The great argument of all the promoters of rijiways, the atrikisg reaulte of experiance in every railwhy-namely, the increased number of travellers consequont upon the increased facilities of comverance, is totalls lont sight of.

It is unnocesary to dwell any longer on this point, more pertioularly an shall bave oceasion to refer to it heactiter; bat it appears to me cloar that no concludgn tornded upoa this roasoaing can be safely relied roon.

The next question-namely, the effect or value of gradients, is one so susceptible of calculation, that it might be supposed to be a point upon which no great difference of opinion could exist; and when the calculations are exactly made, and the simple results clearly stated, no difference will be found to exist.

In the comparison between gradients of 10 feet per mile and 4 feet par mile (p. 49), in which a diminutiou of resistance when ascending the latter, as compared with the former, of 17 per cent. is admitted, dasa are assumed diferent from those generally given by the best authorities on the subject, and conditions most essential to all accurate comparison are omitted. Ten lbs. per ton aro assumed as the resistance on a level; cight lbs. have gencrally been taken as nearer the truth, and, upon a railway in good order, with carriages also in good order, may safely bo taken as the total resistance of a 'train. Tho effect of gravity in inclinations of 4 fcet and 10 feet will be 1.77 lbs ., and 4.25 lbs , which, with the constant of 81 lbs ., makes 9.7 lbs ., and 12.25 lbs . per ton; gradients, being already 26 per cent., instead of 17. But if the maximam load that an engine can draw (of course at the regular speed of the trains) ap the incline be taken, the weight of the engine and tender must be deducted, in either case, to obtain the effective load. In fast trains, such as those runaing on the Liverpsol and Manchester line, the engine and tender will be about 30 per cent. of the gross weight, in the three cases cited by the writer at p. 8 and 9 , the proportion is even kreater, being two-fifths, or 40 per cent. ; but I will admit even one-fourth to be the proportion, which nould be aliowing a fast passenger-train to weigh nett 60 tons, with an engino and tender, such as those of the Grand Junction, weighing 20 tons. From 100 and 126 is therefore to be deducted one quarter of 100 , or 25 , leaving 75 and 101 , which are as 100 to 134, being an excess of 34 per cent. instcad of 17 in the nett load which the samo engine will be capable of drawing at the game velocity up the incline of 4 feet over that which it would draw on an incline of 10 feet; but the writer, after making the calculation, proceced to sink all comparison by the simple asscrion, that "on an inclined plane" of 1 in 528 (10 fect per mile) all average loads "could be takcn." Uudoubtedly they can, but at a proportionate sacrifice of power or speed, which ought to have been added; without it the statement is incorrect, and with it I do not understand the object of the obervation. The uaked result of the above calculation is not altered by the omission, although certainly it may in consequence escape the recollection of the reader.

In the next paragraph the same thing is asserted in a different shape. It would have been desirable to have had explained what was meant by a "full average load." It appears to be assumed as a fixed or constant quantity for all railways, and quite independently of the gradients, or ceven of tbe power of the engines. I do not understand how any such fired quantity can exist. Several of the present trains on the Grand Junction railway require two engines; shoold they increase so as to require three, it will probably be necessary to divide them; the capabilities of the line, or of the enginee, will then kave influenced the load. In the cases of the three different railways before referred to as quoted in the report, the average nett loads of the trains referred to arc, 24 tons, 32 tons, and 40 tons respectively; and the average load in onc case is therefore nearly doublo that in another.
Whatever may be the results on othcr railways, we know from experience on the Great Western, tha: our best engines, which are cousidered so unnecessarily powerful, havo bcen barely sufficient to take the loads which, under certain arrangements of trains, we werc obliged to carry, and that intermediate or half-hour trains became neccasary. That many such inconrenient arrangements would have been required if the loads had practically been increased 34 per cent., with gradients of 10 feet per mile, I nced not rell you who are familiar with the details of our traffic. I regret the necessity of devoting so much space to an attempt to render more clear that which appears to me to be self-evident, - namely, that a load of 134 tons cannst be carried at tbe same speed and with the same power as one of 100 tons, or, in other words, that ithe addition of a useless load of 10 or 1.5 tons to one of our ordinary trains would not be unimportant; but the paragraph I have referred to implies this, and there being no argument advanced in support of it which could be examined, it becomes the more necessary to take notice of it.

The particular arrangement of the gradients on the Grcat Western railway and their effect upon the traffic are then gone into, and at the end of the paragraph, page 40 , the advantage of 17 per cent., befure alluded to, is reduced one balf, or $8 \pm$ per cent. How this is done I have not been able to perceive, as I find neither argument nor calculation to justify it. It is true it is very fairly given as an opiution; but, as there are many figures and quantitics given in the courso of the preceding paragraplis, the word "thcrefore," at the conclusion of the paragraph, would lead a cursory reader to suppose it reas proved by some preceding calculation or reasoning. As some sllusion is made to a supposed saving of the power in one direction which is expended in the other. and as 84 is half of 17 , it is barcly possible that it is arrived at by n system of averaging the power required in the two directions; but, in the first place, no steb average can be taken, the maximum porer that is required in any ono part of the line must be provided, and must be carricd at all tinces, ceven if no power at all be refuired on other parts of the line; und, sceondly, if the expenditure of power is to be averiged, then tho increas e of gradients makes ne difference in the average power, as the decrease of p wer in descending is said to be equal to the increase in ascending, and thercture balances it. Tho fact is, that there is no ground whatever for halving the 17 per ceut. (which I Lave shown to be 34 per cent.) as a meetare of the effectioe puter nf the same engines under the two circunstunces, and consequentiy none whaterer for fixivg it at $8 \perp$ per cont.
After this, the ef par ccat, is reduced to 2.8 per ccnt., in so far as selates
to the value, in money, of such reduction in locomotive power; and the nacetion is made, preceded again by the word "thercfore," that a company woald do wrong to increase the original capital more than 2.8 per cent, to effer a saving of $2 \cdot 8$ per cent. in the annual expenditure. Cau it possibly be meatat that if the capital be a certain sum, say 10001, and the annual expeaditare 1501., leaving 1501. of nett profit, that a company wonld do wrong to add $\# 1$ per cent., or 251. , to their original outlay, unless this secures $2 f$ per cesi saving, or 31. IS., on the annual expenditure, or 15 per cent. for the mones? This is evldently a great mistale, arising from the total confusion of the capial with the annual expenses, as if they were the same sam, and the apparant accuracy and proof are produced only by the repctition of the same figurea in the tro cases, although, in fact, there is no euch idontity. The way in Frich a man of busincss should proceed, would be to cqpitalize the annual sum likely to be snved at some given rate of interest, which in his opinion would cover all risk, and leave a profit, perhaps of 6,8 , or 10 per cent., accordiug to circura. stances, but having no reference to the purticular per centage which the annual expenditure might bear to the capital; and tuis amount a wise man would expend, not only to increase bis future profits, but also to secure permanent advantages to the concern.

The calculations, erroneous as I think I have shown them to be, do deverthe lcss, make out a case in farour of good gradients. But upon turning to a statement given of actual results upon threo railways, theso very calculations are annibilated. These experiments, if they prove any thing, prove an actud advantage in favour ef gradients, not of 4 feet per mile, nor of 10 feet, but of very stecp gradients of 30 fect por mile. The naked rosult gives a leem expense of power on two lines, on one of which half tho leagth consist of gradients above 26 fect per mile, and on the other, 8 miles out of 20 conmat of gradients upwards of 34 feet per xaile, over a line the maximum gradicat of which is 4 feet per mile. No explanation is given. The question here is not one of the comparative perfection of the lines, in other respects, or of the carriagea, or of the probable effects of circumstances not mantioned; it is adduced expressly as a praclical measure of the value of gradiunts, and in left without comment or explasation, to produce its effect on the miad of the rcader. As such it does appear to me, and I think must to any impartial man, that the proof is overmuch, and becomes valueless ; that the results cannor be correct, and that therc evidently must cither be an error in the dath, or there muk be circumetances quite independeat of the gradients which require separquion; otherwise wo are drived to the eonclusion that stecep gradients are leat.

I have nothing before mo but the results, and therefore I cannot pretend to discover all the sources of error; but I know that some of the date are syot as must introduce error; for instance, the consumption of coke given st than of tho Great Western railway, includes all that had been used in raisiag and kecping up the steam in the engincs, which, in the first working of a portion of a linc, and while tho arrangements are not matured, is necessarily great; ; includos also the coke expended in ballasting trains and experimental tripa

In fact, during the four weeks ending September 13th, which are referred to by the writer, 1 find that there were gonerally seven engines in use, and of these, two were cmplojed upon tho line, (not on the passenger trafic, and one was kept with the steam up, as a spare engine. How can the results of consumption per ton per mile be correct with such sources of error ?

I must beg, however, to keep your attention to the 34 per cent. at which I have artived, as the advaxtage, in actual effctive power, of a gradient of 4 foet over one of 10 feet.

The gradients muat ultimately govern the power of your engines, their speed, (at all events in ene direction,) the sixe of each of your trains, aind cosrequently their number; and it must always be remembered, that their operation is a permanewt one, which nothing can removo or even alter, and the effect of which nothing can diminish. On the contrary, 1 am preparcd to show, that the value of low gradients will, in all probability, be much increased.

I have assumed 8 lbe. per ton as tho resistance of a train ; but as the greatess part of this resistance depends upon the workmanship, the form, and the mechanical construction of the carriages, and other causes, and may be reduced by various contrivances already known, it would be contrary to all expericaco to suppose that it will not be materially reduced when there is an olject to be gained by its rednction.
In many experiments, with all tho circumstances favourable, the resiatanco has been as low as 6 lbs .
In some made by Mr. Hamkshaw, on tho Great Weatern Railway, the re sistance of a train, consinting partly of trucks and partly of carriages, only gives 6.22 lbs.
It may therefore be assumed, that we have now within our reeck improvements by which the resistance may be redted to 8 lbs.
With this datum, and making the samd leulutions as before, we oblain 100 and 144 as the comparative loads which the came engine rould take at ube same speed up the two gradients of 4 feet and 10 feet per mile.
Such an increase in tho capabilities of engines mast be of immense importance in passenger traffic. But how undeniably important it must be, even according to the principle laid down in the roport, in the conveyance of goods: in this service tho maximum power of the engine is broaght into operation, and cloes constituto the limit ; and if the engine, in such case, only forms oneeighth of the gross lond, the proportion Fill still be as 100 to 185.5 .

This advanlage, large as it is, is a highly probable one, and I renture to predict it as a cortain one; but, confining ourselves to the results which nky
be obtained with the existing rails and carriages, I will consider what is tho be obtained with the existing rails and carriages, 1 will consider what is the practical worting of an incressed uscful effect of 34 per cent. by the smace engine, or an increased recintagce of 26 per cent. With the ceime lond. According to tho rien of the writer, in pege 5 , of thero being a fixed standerd or
arenge power of engine which wrill be the same in either case, the former,samely, 34 per cent. of inereased effect-would be the correct mode of considering the comparison. I will assume, however, the latter, as being least adrantageous, and I will suppose the engines, although differcat in power, to bo of the anme weight. Now, the resistance in ascending and descending a plase of 4 feet per mile will be 100 and 68 ; with the 10 feet per mile, it will be 126 in ascending, end actually only 39 in descendiag.
In the cese of the Great Wentern Railway, from London to Slough, Maidenbead, Reeding, end to the point of deperture to Oxford, the maximum rise is 4 feer Had it been 10 feet, ns I must infer would have been the recommendation of Mr. Fankshaw, the rexistance going and coming would bave been 128 and 39 . Now, of what ariil would it have becn, that in returning to Lown tho recistance was sranll? No more passengers or carriages coulat be brought one way than must be conveycd the other, or, to apply one of Mr. Hankshawt own similes, the eight horses required to take the port-chaise out must retarn with it though two might be enough. I quite agree with the opinion very strongly expreassod in another part of the report, that for the economical working of locomotive engines, their power should be well proporfioned to the loed they have to draw. It is remarked, apperently in allosion to one which we consider the beat engine io our establishment, that to ase an engine ceppoble of drawing 200 tons, to drag loads averaging 50 tons, will be very like factening eight horves to a post chaise. Although the remark savours of ridicale. I quite coneur in it. It is a forcible description of tho practical working of a line with gradients of 10 foet per mile, such a line as the imasinary one (A B) described in 9.49 of the report.

Now, of this line (AB), the engines going in one direction would havo to exert a power of 128, and this at full apeed, and in the other of 39 , or as 200 1062 - proportion not very different from the 200 to 50 , which is mentioned only as someibing that would be very absurd.

Agnin, at another part of the report (p. 53), it in stated, that engines of little more than two-thirds the power of those on the Grand Junction Railway, and therefore of eowsilerably less ospight, would be sufficient on our line froin our fiafter grudiente. Buch an edmitted reduction of 25 per cent. in locomotiva power seeres to me no maen economy to be obtained by these gradients, the effecte of which are treated so lightly at other times; hut these contradictory realts are the nccestary contequences of an attempt to argue against the viuple tets, that the inclination of the line inereases the reaistance, and that if a regalm speed is to be maintained, you must have pover in proportion to that retitence.

An the foregoing ealconation upon gradiente havo been limited to the two cases of 10 foet mad 4 feet per mile. Theat ato both nnusolly favourable, and their eomparion therefore is not calcolated to render the advantages so striting; but had the gradient oftfeet per mile been compared with the more ondinary ones of 16 foat and 90 feet, the apperiority woald hive told much more in the discustion of the feneral quextion of the value of good gradients. To supply this deficiency, I majoin a table of the comparative effecti of the same engine, with the anme copanmption of finel, and travelling at the anoo spoed on the level, and on the four gradients of $4,10,16$, and 20 foet per mile, with a resiotance of ethe for friction, \&c.; and for the sake of uniformity with the previous colcniations, I take tho smo gtandand of 100 as the useful effect, or nett load, ep the plane of ten feet:

The discrepancy between these resulta and those giren in the report does not arise nerely from different data being assumed, and upon which there might be adiference of opinion ; bat from errors in the treatment of the calculation of the latter. I subjoin a similar table, calculated upon the besic of 10lb. per ton, being the total resistance on a levcl :-

By wese sables the great superiority of a line approteching to tho level is made apparent, not only is the effective power of the engine in that dircetion of the tipe which limits the load much greater, but the average work of the engine is performed more economically by the greater regularity of the resistancr. On an iaclination of ten feet per mile, al I have before shown, the enuine, during balf the time, is barely performing a quarter of the work of which it is capeble. On gredients of 16 fect per mile, the engine during balf the cime is berely doing more than driving itself.

These are incontrovertible facts: whether the total resistance arises from friction, from the resistanco of the atmomphere, or from whatever cause, the amoumt is about as steted, and the incresse caused by the gradients is in tho ratio arated in the abovo table.

Il appears to me almost to waken the strength and obscuro the clearnoess of a demonatration which is mathematical in its correctuess and certainty, to athempt to support it by reference to certuin experiments in which other canses might havo operated ; but ou the Great Western Mailway we have every day, and mith arwy traio, such crident and striking proofs of the effect of gracieati,
that I should have thought it must be conclusive to any one who has had an opportunity of witnessing them:
With powerful engines and light trains, running at a good speed of 30 to 33 miles per hour, tho changet of gradients, (which only vary from a level to 2 feot per mile, and to 4 feet per milo, are perfectly perceptible in the in. creased or diminished spoed, even without the assistance of a watch, and have been frequently detected by persons previously unacquainted with the levels.

It must always be horne in mind that the resistance ariaing from the gradients is a permanent evil which, once entablished by the completion of the works, caninot be remedied, and the probable future effects of this mast thercfore be seriously considered. In the course of a few years, as railway travel. ling becomes general throughout the country, and there are opportunitien of reaching different parts of England by differeut roads, the usual results of competition will follow; priccs will graduall be lowered ; the number of travellers will becorne immensely increased; and the gross profita and expendituro become proportionably large; bearing then, particularly the latter, a much greater ratio to the original outlay than at present. The profits will then depend mainly upon the economy of transport, and then any saving in the current expens, s will be felt in a fir greater degree.

I shall now consider the subject of the width of gauge. The quention of tho disadvantage of differing in point of gauge from other railways, and the consequent exclusion from commnuication with them, is the first. This is undoubtedy an incouvenience; it amounts to prohibition to almost any rail. way running northwards from Looidon, as they mast all more or less depend for their supply upon other lines or districts mere railways already exist, and with which they must hope to be connccted. In sucl cases there is no alternative.

The Great Westcrn Railway, however, hroke ground in an entirely new district, in which railways were unknown. At present it commands this district, and has already sont forth branches which embrace nearly all that cau betoog to it; end it will be the fault of the company if it does not effectually and permanently secure to itself the whole trade of this portion of England with that of South Wales and the south of Ireland; not hy a forced monopoly, which could never long resist the memte of the public, but by such attention to theso wants as shall render any competition unneccessary and hopeloss. Such is the position of the Great Western Railway. It could have no connecsion with any other of the main lines, and the principal branches likely to be made werc well considered, and aimost formed part of the original plan; nor can these be dependent upon any other existing lines for the trafic which they will bring to the main trunk.

At the London extremity, from the moment the junction, as originally proposed, with the London and Birmingham Railway wat obliged to be given up, there existed no possibility of a connexion with any other line. London will always be the terminus of thoso main lines now catablished, and which approseb it from distinct quarters, and the truffic of each will cease at this point ; and, unless when two such lines unite to form a common entrance into the town, they will have no connexion with each other at this extremity.

The Great Western was therefore free to adopt its own dimensions ; and nono of the dificicalties which would entirely prevent such a course in the north of England had any exirtence in the west ; and consequently, all the general arguments advanced, and the comparisons made, on the sapposition of such dificalties occurring-all excellent in case they did ure totally inapplicable to the particular cnse of the Great Western Railway, to which they hare no reference whatever.

The reasons for adopting any increased widah'of gange, and the particular dimension of 7 feet, have been so frequently before you, that it is unneccessury for me now to repeat them. Tho principal positive objection urged againut it in the Report is the incrowsed cost, while the mechanical advantagen are doubted, but not disproved.

As regards the cost, I have repestedly shown that this amounts at the utmost to a slight increace in the quantity of earthwork, and that the bridges, tannels, \&c., aro not necessarily affected. Mr. Hawkshav seems to be of the samo opinion, as at p. 50 he classes the "tunnels of 30 feet diametcr" among "the non-essentials," as "not absolutely consequcnt on the increasc of gauge ;" and at p. 50 he clearly limits the increased expense of construction to the earthwork, land, and permanent way. There is some inconsistency in these remarks, when compared with the estimato in page 52 , where tho width of tunnels is considered a consequence of the wido gauge, and a saving of estimated of 20 per ceut. "in the tunnelling yet to be donc, by the narrower gauge requiring 4 feet less width."
I have only here to repeat, what is really capable of the clearest proof-viz., that tbe greater width of tunnels, proposed by me for special reasons, which I have explained on more than one occasion, bas nuthing whaterer to do with the wide gauge, inasmuch as tunnels of the ordinary widih could be adopted, and the saving pointicd out would not, therefore, be necessarily the result of the return to a narrower gauge. But tho arguments advanced at p. 50 in the Report, to show the necessity of increasing the earthwork by 4 feet, are subeequently, withont observetion, applied to the tunnels. This error is oces. sioned by noglecting to give preciso dimensions to quantitics quite capable of it.

Arguments are founded opon the assumption that a certain width is necessary between the centre rails, for repairy. This is true; but the width should be stated in feet and incher. On the Liverpool and Manchester, this space is 4 feet 8 inches; aud even with stone blocks, this is forand ample for all tha purposcs of repair ; indeed, it is the width which is so perfect in Mr. Hawkshaw's estimation. Four feet 8 inches, with stono blocks (which doos not lenve more than 2 feet 8 iwches between the blocks,) are not equal to 4 feet with longitudian mogden sleepers, which mould lenve from 2 feol 9 inches to 3 feet
between them. Suppose 4 feet, however, to be necesury; then, with a 7 feet gauge, the distance from centre to contre of the two linet is 11 feet, which is the same as on the London and Birmingham, Grand Junction, and other lines, and which has been adopted to give a general increase of space. The width of tunnels, viaducts, \&cc., are therefore not necassarily affected by the 7-feet gange. Noither do I understand how the coot of ths permanent way can be sensibly inoreased. The weight of rail would be the mame. The engines, in other respects similar, would be, at the utmost, only a few hundred weight heavicr, consequent upon the incroased length of axies and breadth of frames-the boilers, fire-box, wheels, cylinders, and working gear (about nine-tenthe of the Whale) remaining exactly the same; and oven with our present heavy engines, the greatest weight upon one pair of wheela is not greater than upon the driving wheels of Mr. Bury's engines on the London and Birmingham railmay.

If the streagth of the rails be not increased, the mere distance between them cannot affect the expense of construction beyond the cost of a few cube feet of ballast per yard forward, and about eight loads of timber to the mile in transoms. If 1502 per mile is allowed for these sources of expense, it is far more than enougb. This, with the 2001, assumed by Mr. Hawkihaw for the earthwork, and 50l. for one quarter of an acre of land, which he has not allowed for, makes 400t. per mile as the outside of the additional cont incurred in the first conatruction of the road on the 7 feet gauge. As to the consequent increased cost in the ongines and increased expenso of repsirs, they are treated in so general a way that it is diflicult, if not imposible, to meet what is said; but certainly cotnal experience atisfies me that eventually there will be no material differenco in the first cont. The opinion of Messrs. Roint. Stophenson and Company, as quoted page 52, is, that it "will not be very considerable." The woar and toar, I am equally gatisfied, will be diminished.

The whole subject of the diminished resistance arising from the increased diameter of wheels, and tho opinion of the Irish commissioners in favour of it, is then disposed of in a summary manner. It is assumed that the heerings of the axles must be increased in the same ratio as tho diameter of the wheels, and that hence no advantage Fould be gained, in so far as the friction wat concerned; but such is not intended to be the case.

It is asserted that the grinding of the flanges againgt the rails must be more felt with a large wheel than a small one. No reason is given for expecting such a result, nor why this resistance should not be, as one might naturally expect, inversely as the square root of the diameter, and therefore diminishing with an increased diameter. As in the case of the gradients, however, the whole is act aside by one experimeut; this experiment (pages 50 and 51) gives nearly the seme result for wheels of 3 and 4 feet diameter. This is not surprising, as the difference in diameter was too small to be clearly detected by the very uncertain and unsatisfactory mode hitherto edopted for ascertaining the resistance. It appears to me also that they were not made under similar circumstances, or even on the same road, and the ratio of the bearings to the wheels seemed to be rather in farour of the smell wheels. The experiment, therefore, appears to be perfectly useless and unavailable, and the writer says that he does not think it conclusive. Nevertheless, these are the only experimente adduced, whilst the point is asumed to be proved.

The next inquiry made is on the question of anfoty. I cortainly never thought of the danger of upsetting from the narrownesa of base, as a stagecoach occasionally does; and therefore I need not occupy your time in discussing the manner in which this imaginary argument has been advanced and then demolished. But I must call your attention to the extraordinary and contradictory general ssertion (p. 51) that "if A be safe, there cannot be the smallest advantage in making B safer." This is a confusion of words. If safety, commonly speaking, meant a total absence of ponibility of danger, then the statement is coutradictory, and is not even sense; for if B is made safer than A, A cannot be perfectly safe. But safoty is a term, after, all only used comparatively, and then the statement astumes this extroordinary ahapethat if \mathbf{A} be tolerably good, it is useless to seck anything better. Now, although no man, I believe, ever supposed that ordinary railway carriages were much exposed to the danger of being upet, yet no man cond witneas, as I have had the opportunity of doing, numerous accidents on railways of both dimensions, without being atruck with the great difference in the susceptibility of the engines and carriages to being thrown off the rails on the 4 feet 8 inch gauge and on the 7 feet gauge. The reason is obvioua enough : the oscillation and the velocity of the angular motion, or, in other words, the jerk caused by any departure from lerel in the rils, or from any open joint or obstacle, or from collision, must be much greater when acting on a 4 feet 8 inch baso than on a 7 -feet base, and I have seen many accidents on the 4 feet 8 inch rail arisiag wholly from this cause, while on the 7 feet gauge 1 have seep the samo causes operating to a greater oxtent without producing any scrious results. I believe, also, that at high velocities much of the resiatance from the friction of the flanges, as well as the strain upon the carriages and liability to accident, arising from lateral motion, which is imparted to the carriage by angular motion, or rolling, and which must be lessened in the direct proportion as the base is extended. The great differonce in the rulling motion of the engine chimney, when running at high speeds upon the 7-feet gauge, as compared with the same effect on the 4 feet 8 inches, was remarked at once by the engine-drivers cent by several of the manufacturers to crect their engines, and is familiar to all now engaged on the line, although the raile themselves were at that time undeniably in a bad state. Safety, therefore, may, and indeed must, bo incremed by the width of the gauge. As to the cffects of the adoption of the wide gauge by the main tranks. upon the branch lines likely emanate from it, as I raid before, these branche have all formed part of the general plan, and were considered oricinally; and therefore the anmaption of the writer, that thare is upoertinity or danger ypon
this point, is not correct. The Bristol and Exeter Railray, whioh is the as. tension of the Great Western to the sonth-west of Englend, if well fited to this gauge. A great extent of it will be the mont lovel line is Eogland, and is nearly straiglit. On the Cheltonham Railwey, for four-flits of the leagth it ia free from any objectionable curve: and on the remainder there will be no curves of so small a radius, even in proportion to the 7 .faet geage, tes thert are on the Grand Junction and many other lines. The objections tahen, therefore, are not applicable; and it seems to me that none of the gromede on which the writer founds his somewhat startling advice to alter all that bas been done, are tonable. In fact they are none of them beought fornter in a clear aad tangible shape, except the debit and credit aceornt in page 52.

I will begin with the last, or the credit account. The first tiem in the largest, and considering that it conatituter two-thinds of the whole, it is a Fury important one ; yet there is no proof, there is not even one single reason given for suppocing any such increasa; the only reference to it that I can find in it the middle of p. 50, where these words occur :-" The permanent road will also cost more if of the larger dimensions than if of the smaller; for it avile nothing to compare a light rail on the larger garge, with a hearier ril tea the snaller gauge ; such comparisons must be mado when other thingz are the same, or thoy amount to nothing." The assertion here made is ungupported by a single argument or proof. What is meant by the truism contained in the allusion to the light rail and heavy rail I am unable to comprehend. I heve quoted it lest it ghould have some reference to a wide and sarrow garge which 1 may not perceive.

I have shown, I think clearly, that 1502 . per mile insteed of 1000 . is the exceas: this makes a reduction of 85,000 . in the assumed anvig. Ty 400, oxcese on the engive and tender I equally dispote; it is also unaspported by anything except the letter from Messrs. Stephenson, and their opinion it eve much qualified: their conclading remart is-ल If the power or dimenaien of the engive be kept the aame, the edditional expense consequent upon an in crease of guage will not be very considerable. ${ }^{\circ}$ In fact, the same eagios, in all its material parts, and the same quantity of workmangifp, answors For the one as the other; to viden the frame and lengthen the anles is all that is roquired; and even making no allowance for any increased facilities in the centuruction, 1006. will amply cover this,-say, 1504 ., an the increased ezparion consequent upon the wide gauge. This, of course, han no reference to any peculiar construction of the crigine, such as greater eveporntipg surfine, * larger driving wheels, which are not, in fact, consequences of the width of gauge, but which have been adopted with a view to economy of fael and weet and tear.

In the next itom I shonld add 501 . per mile for land, although neither upen carthwork, and still leas upon land, have wo 60 milea upen which we ond ecea the saving. The tunnelling, as I have shown by actual culcolation of the measurement required, is not effected by the gauge. Tbe account, therefore, stands thus:-

> 150L per mile on 100 miles of perraanent way.
> 515,000
> 1501. lees on 60 ongines and cenders

> 15,000
9,000
> 250 l . per mile on 60 miles of earthwork and land
> 15,000
> Tunnelling-nothing.
> £ $\mathbf{\$ 9 , 0 0 0}$

Instead of 156,0001 ., as given in the Report.
I now proceed to consider the debit account, in which I fond an importart umision. The change recommended from the 7 -feet grage to the 4 feet $8 \frac{1}{2}$ inch, is supposed to occupy a year and a hall; during this time no advartage could be taken of the extension of the line to Twyford, in the neighboutrood of Reading, which, if the opinions expressed in this Report are to be adopted, must be laid down with thie narrow gauge, and it therefore would be useless until one of the lines of the same gauge was open. By this delay at leatt a year would be lost.

But besides this lost, another would be experienced by the confinement of whe traffic to a aingle line. I believe it would be found irapracticable to carry on our trade on a single line; there can be no doubt that it would be meterially diminished, which, tagether with the lons of twelve monthe' tritic between London and Twyford, cannot fail to make a difference of upwarde of 50,000 . The gross receipts upon the present line are about 80,0001 . per annum; the extension of the line from $22 \frac{1}{2}$ to 92 miles, (thereby secoring all the long traffic, which is now only partially obtained, and the netural progressive increase of the traffic wbich would take place on the preseat lime, comer be estimated to produce less than 60,0001 . more, or 140,0001 per anater Supposing the expenses to be increased by 25,0001 , there remains, as creased nett profits, 35,000 . to this add $15,000 \mathrm{~h}$, at a very moderato allowance for the reduction, to which I have alluded in our receipts, waspoidely consequent apon the working of only a single line, which would corteinly not diminish our cxpenses.

The debit sccount, therefore, will now stand :-
Expenses of alteration and lose upon stock, as stated in Report (page 24)
Lons of profits on the extension to Twyford
85,000
Ditto un traffic to Maidenhead
15,000
£173,976
Instead of $£ 123,976$.
And deducting the amount to be gaved, $39,000 \%$, it shows a sacrifice of I34,976 $l_{\text {. }}$ as the result of the proposed alteration. Even if the acrumed increase of 4002 on each ongine were admitted, It would still leare 121,9764 a the balance against the change, instead of anything in ferour of it. In addition to this clear loss, is shotuld also be remembered, that atter tho comrer. sion of the one line to Masdeabed from the broed to the narow gange, the
other still remaine to be altered. During the whole of this operation, let me Topeat, the cotal traffic to Reading must travel on a single line, which, even admisting it to be pessible, must necessarily cause a continaed loss of traffic, with great additional inconvenience and expense, and serious risk of accident,-all so mach in addition to the amount of sacrifice already calculated.
maidenhead beidge.
On this head it is unnecessary to say more than that the dofective part of the work has beon coademned by me, and the contractor called upon to seglace it, which he is now doing.

PERMANENT WAY.
The quention of the construction of the permanent way appears to have been chonght a very unimportant one: three lines of the Report are devotod to it, and these consist of the expression, in rather strong language, of an opinion anfarourmble to the mode in which the attempt has been made; but whether she writer approves of the ultimate object sought to be attained-of the plan of continuous eupport-or tor, does not in any way appear. This is to be rogrethed, as the writer has lately bad some experience on this particular point, and it was eupposed might have been able to give some useful information upon it.

LOCOMOTIVES.

The question of losomotive power is treated also very concisely; nothing Whatever ia stated, under this particular head, of the engines of the Grcet Weatern Railazy. A few general principles are laid down, in almost all of Which I perfectly ooncur, -viz, the necossity of proportioning the powor of the engines to the loads; the advantage of keeping down the weight; the circumatance that the weight of the engine will depend on the avarage load to be taken, and the nature of the gradients. The comparison between the locoquotive powar mupposed to be necessary on the Great Western and on the Grand Jupction lines, is a powerful argament in favour of good gradienta. On the whole, these principles are precisely those on which I have founded my argements in the course of theac observations, and I think they fully bear out the riews l have taken; but the concluding observations of the Report appear to me to be the mont atrikiogly erroneous views that I have yet had occasion to call your attention to, and still arising from the same mistake-that of omitting all consideration of increased probits to be derived from increased accommodation or improved conveyance-objects at whleh I have aimed.

In the last paragraph but one, after condemning, very properly, any great increase in the cost of a road for the sake of a aystem, it is asserted that ". grood gradionts will be rendered of non-effect, as to economy, if the speed be greatly incraased, for greater speed will entail greater coat, and be tantamonnt to teeep gradiente"

It ecoms to me, on the contrary, that the attainment of a greater speed at the ease cont is economical, just as it is to make a better and more galeable article at the game price. And the next and last paragraph exposes still more strongly this fallacious principle, and may be taken as a fair sample of the theory of railway economy advanced in this Report. The words are-"And though the atmo results may perhaps be obtained on railways of better gra. diente, with more dead weights, than on railways of bad gradients, jet this seems to be merely bringing down the good line to the standard of the bad; "that is to asy, if "more dead weights" or greater loads, are carried with "t the same results," or at the same cost, no advantage is gained; so that, if mataral or artificial means enable you to carry greater loads, and, in fact, perforn more work, or, in other mords, carry on a greater trade with the same capical you are not to avail yoursalf of these advantagea to extend your busipess, bat merely to withdraw so much capital from a thriving concern. If the sole object were to redace the out-goings to the lowest possible scale, without reference to the comparative recelpta, such a maxim might be good. If the construction of the railway, and the maintenance and working of it, were a compuleory tax levied on tbe proprietors for the use of the public, without benefit to them, then. indeed, the only advantage of good gradients would be the diminution of cacrivn and of expenditure of power. To tho beat of burden a good road is certainly of little consequence, if he is propor. tionahly laden; but his owner would be surprised at being told that he could gain pothing by being able to carry more goods, because his horse would be Forked as mncb, and worn out as soon, as when he carried less.

I shall now make a few observations on the remarks and the bypothetical cases which I before referred to, and I think, when I have called your attention to them, you will agree with me that thej ought not to pass entirely unnoticed.

In p. 48 of the Report, the difference between tho Great Western Railway and other railways is compared to the differenco between a canal for bargea and a caal for abipa-a most exaggerated comparison, and one by no means diminished in effect by the qualification introduced by the words which follow, "though not to an equal degree." A sbip-canal is a totally different thing from a barge-canal ; it is most cosily, and if considered as a mere channel for the copreyance of good, is very ill adapted for the purpose. It is intended solely for the transport of the shipe to some inland port. The only cbange introdaced in the Great Western Railway is in the dimension of one of the parts, not for the parpose of carrying larger individual cargoes, but for the purpose of carrying the ordinary cargoes moro advantageonsly. If a comperisors be made wish canala, it should be simply with the case of a canal which, being intended for quick service, or fy-boats, is made rather wider, to allow the boatn more free passage through the water, and thereby diminish tbe reciatance. The comparison apparentily is thought to require some apology, st it is aid not to be extraordinary "should it appear that the locomoLires hare swice the power of those on other lines;" and "should it be shown to be a parallal casc to build a ship of 200 tona burthen, when then is so probability of ever obtaining a cargo of hall the weight." This
certainly in tantemount to the statement in a subuequant part of the Report, that the engines have this oxcess of power, and that wo hare, in fact, provided for a traffic four times as extensive as we can hopa to obtain; yot, after producing this impression, the subject is dropped, and no attempt made in any part of the Report to prove it.

In the ncxt paragraph (page 48) there is a remark that "it is one thing to design that which is pleasing in outline and grand in dimensions, and it is altogether another thing to design that which, under all the circumstances, shall best answer the end in viow, one of those enda being a return for the capital invested."

I must deny altogether that such a distinction pecctsarily existe." To make that large for the sake of appearance which ought to be small, is unquestionably, very different from studying the right size and adopting it ; but I think that when a work is evidently well adapted to the object for which it is intended, it is geuerally satiafactory to the efe; and that then there is rarely any difficulty in making it "pleasing in outline;" the distinction exista only with those who, like a bed architect, commence by designing the exterior of a building, and then make the interior arrangements subservient.

At the end of p. 48, a case is put which is strictly applicable, and which is solved in a manner to assist the subsequent arguments; but the solution seems to me to have ne other merit, certainly not that of correctnes.

It is supposed (what is indeed the actual case) that it is desired "to give the greatest impetus to the trade, and the graatest advantage to the town af Bristol ;" and the way to do this is said to be, as if incontrovertible, "to connect it ซith the metropolis by a road on which partien could be carried for the smallest aum, and at a velocity not inferior to that at which they can be carried in any other direction." Thls is the first time I ever heard that to win the race it was sufficient to be not behind your competitor. If nuch were the rule in trade, why was the Liverpool and Manchester railway made? The means of communication were not merely not inforior to, but probably superior to any in England. Why were railwags introduced at all, and the capital embarked in the general meana of trangit so enormously increased by the addition of totally new works? Stage coaches and canals loft all towns exactly in the same position which is here said to ensure the greatent impetus to their trade. Besides, are there no points of inferiority in the case of the port of Bristol which have to be compensated for, in consequeace of the the perior local advantages of other porta ? Bristol has, for mome reamon or other, fallen far behind Liverpool. Will it be of no advantage to the trade of this port, and thereby to the revenue of this railway, that it should have eaperior facilities of communication with London? Whether Liverpool continues at eleven-hours' or is reduced to eight-hours' distance from Loodon, it may be said by some to be still a dag'a journey, while Bristol will be brought withis four hours, or four and a half houra' distance; and if this is reducod to three hours, which is undoubtedly practicable, letters and orders may be transmitted and replied to during the basiness bours of the day; and precisoly the anme ohange introduced into the tranenctions of business that was effected by the Liverpool and Manchester railmay, and a great increase in the trade of the place, and in the traffic of the railway must necesarily follow.

This doctrine of the all-sufficiency of a railway, without reference to its quality, and the inatility of attempting to infaence the amount of traffic by increasing the advantages, appears, ander different forms, in other parta, and I shall not again refer to it, but shall proceed to another part of the Report.

The adoption of a different gauge is compared, at p .50 , to the construction of a canal "in a country of canale, with locks of such a character as would totally shut out the boats of all the canals that surrounded it." Now, in the frat place, as I have shown, the west of England is not a country of railwaye; and, in tho next place, thero is no similarity in the mode of conducting the carrying department of a railway and a canal. A barge, with its master and his family living on board, may go, and does occasionaliy go, without inconvenience, far out of the uaus beat. Railway carriages and Faggona muct belong to the particular line on which they run ; and, except in such cases as the Grand Junction and Birmingham railways which form in fact one liue, although they happen to be made by two companies, it will never pay to trunt them in the hands of others.

On the subject of the wide gauge, the opinions of Mr. Booth, of the Liverpool and Manchester railway, (which had boen proviously expreased in latter to the Irish Commiasioners,) and of Mr. G. Smith, of the Leeds and Selby railway, are quoted in favour of the 4 feet 8 inch'guge, and their answer in the negative, given apparently to the direct question whether they thought there was any want of safety, or danger of overturning, on their own railwayn The case is purely hypothetical. I never heard of the danger of overturning being advanced as an objection to the narrow gavgo, although I have seen such a thing happen; and whether the objection be real or imaginary is the question to be decided by such 2 reference? At any rate the directors of the Great Western Railway were quite competent to select the referees for its decision.

I have the pleasure of being personally acquainted with both theso gentlemen, and entertain the greatest respect for them, but I thould never have thought of anking then such a question. If before building the Great Weatern team-ship we had written to someo of the kighly reapected and talented gentlemen who command the New York liners, and asked them if they considered there was any danger or inconvenience in the use of sails, and whether they should prefer steem, I think we might have anticipated their answers.

I shall here close my observations with the expression of my regret, that the menner in which the important questionat aspe have been treated in the Roport has of itself provented the discustion leading to any very saciafcotory or useful conclusion. It has been almost imposibie to do more than to shorw thaf, whatever may be the tate of the case, the viewit talicn in the Roport, and
tho arguments admenced, are incorrect, and prove nothing. Another opporcunity will probably occar of entering more fally into the real merita of the question, and for that I shall be prepared.

I am, gentlemen, your oberient servant,
(Bigned)

1. K. BRUNEL.

Londor, Dec. 134, 1838.

REPORT OF NICHOLAS WOOD, ESQ.
to the dianctors of the areat wastern railway.
Killingivoth, Dec. $10 \mathrm{~L}, 1838$.

- * * Your inslructions were, that 1 should undertake an examination of that portion of the Great Western Railway now completed, and investigate tbe result of the whole system which has been adopted; and my attention is particularly directed to those points which may be said to constifute the peculiar features of the Great Wessera line, as contrasted with those of other railways, including in such inquiries the construction and efficiency of the engina, as well as every matter connected with the locomotive department of the company.

The Great Weatern Railway differs from the ordinary railwaya, in the width of gauge adopted, in the construction of the rails employed in framing the woad, and in the adoption of much larger driving wheels than ordinary in the locomotive engines.

The subjects for consideration are therefore comprised under the following heads of inquiry, viz., the width of gauge, the mode of constructing the road, and the efficiency, power, \&c., of the locomotive engines.

The lncreased width of gauge might have been adopted, and engines of the sume description as those used on other railways might have been used, and it does not necessarily imply that the adopting an increased width, should reader neceseary the particular mode of construction adopted by Mr. Brunel, except in one point of view in whlch Mr. Brunel has put it, viz. :-" That the increased width of gauge was necessary for the accomplishment of a bigh rate of speed, and that be believes continuous timber bearings to be a most enential improvement where high speeds are to be obtained." still, as the two questions are in some degree distinct, we shall in the first instance consider them separately, and shall afterwards consider them in their connexion with each other, as advanced by Mr. Brunel ; and as the elucidation of these two beads of inquiry, includes that of the power of the locomotive engines, we shall not in this phace make their consideration a distinct question.

In order, therefore, to bring the subject clearly before you, I slanll first of all point out the objects, so far as I can learn from the published documents of your body, and from the reports of Mr. Brunel, which have been expected to be realized by these departures from the more general plan of constructing and working rallways ; I shall then state some of the most prominent objections which have been made against the system, aner which I sball glve, in detail, the inquiries and experiments which appesred to me neceasary, to ascertain how far these beneftis have been, or appear likeiy to be realized, and to what weight the objections appear to be entitled. The result of these inquiries and experiments will be next considered, and with these materials, in obedience to your instructions, the system of construction of the Great Western Railway will be contrated with the most improved railways of the ordinary construction and width of gauge.

Width of Gawge.-The width between the rails of all the public railways in England is four feet eight and a half inches, the width of the Great Western Railwny is seven feet; the difference is therefore nearly one half more, or two feet three and a half iaches. From the documents previoualy alluded to, from a careful perusal of Mr. Brunel's reports, and from personal communications with that gentleman, the following appear to have been the prominent advantages expected to be derived from the increased width of gauge, and which induced the adoption of the width of seven feet.

Allariument of a high rate of speed.-On this point Mr. Brunel remarks, "with the eapability of carrying the line upwards of $\#$ ify miles out of London, on almost a dead level, and without any objectionable curves, and having beyond this, and for the whole distance to Britato, excellent gradients, it was thought that unusually high speed might easily be attained; and that the very large extent of passenger traffic, which such a line would certainly command, woudd ensure a return for any advantages which could be offered to the public, either in increased speed or in increased accommodation." For Mr. Brunel remarks, "I shall not attempt to argue with those who consider any increase of apeed unnecemary, the public will always prefer that conveyance which is the most perfect, and speed within reasonable limits is a material ingredient in perfection in travelllag," and the attcinment of high speed appeared to involve be question of the width of grage.

Mr. Bramel also considers, "that it would not hava been embracing all the benefts derivable from the favourite gradients of the Great Western Railway, untess a more extended gauge was to be adopted, for if carriages and eugincs of a certain weight bave not been found inconvenient upon one railway, grester weights may be emplojed, and the same results obtained on a railway with bettor gradients; and to adopt a gauge of the seme number of inches on the Great Western Rallway, as on the Grand Junction Railway would, in fnct, anouns practically to the uet of a different gauge on a similar railway, for the glug s which is well adapted to the one in not well adapted to the other."
Mechanicul adountaye of incroasing Lie Diameler of the W'heels, withoul mising the Bodies of the Carriages. - This conuprehends what is deemed by Mr. Biunel, the mont important part of the advantage of an enlarged width of sauge, viz., the reduction of friction by the increased diameter of the wherls, While to the amo time by being enmbled to plom tepody of the carriage
within the wheels, the centre of gravity of the carriage is kept low, and greater stability and steadiness of motion is expected to be attained. Fom feet wheels have been put upon the carriages at present in ase upon the line, but Mr. Brunel states "that be looks forward to the employment of wheels of a larger diameter; and that he has been influenced to a conalderable extent, in recomnuending the increased width of gauge, by its capabilities of prospective improvements, which may take place in the system of railroads. He states, " that though there are some causes which in practice slightly influence the tesult, yet practically the resistance from friction will be diminished exactly in the wame ratio that the diameter of the wheels is lncreased," and "considering that the gradient of four feet per mile only presents a resistance of lem than two pounds per ton, and that the friction of the carriages on ordinary railways amount to eight or nine pounds per ton, being 8-10ths of the entire resistance, any diminution of the friction operates with considerably more effect upen a road with favourable, than one with more unfavourable grtdienis;" and he further says, "I am not by any mins at present prepared to recommend any particuiar size of wheels, or even any increisc of the present dimensions. 1 believe they will be' materially increased; but my great object would be in every possible way to render each part capnble of improvement, and to remove what appears an obstacle to ang great progress in such a very important point as the diameter of the wheels, upon whith the resistance which governs the cost of transport, and the speed that may be obtained so materially depends."
Admits all sorls of Carriages, Stage-Coaches, Acc. to be carried withim the wheels.-Presuming that lic adoption of wieets of a larger diameter is found beneficinl, to the extent expected by Mr. Brunel, it became necessary that the carriages to be conveyed should be placed upon platforms within the wheels, to keep them as low as possible, which could not be done with carriages on railways of the ordinary width, a wider gauge seemed therefore necessary for this purpose.

Increased facilities for the adoption of laryer and mure poneerful Locomotire Engines, fur the altainnent of higher rate of speed. - Much stress has not been laid upon this by Mr. Brunel, although it has been alleged that great difficulties existand that considerable expense is incurred by being obliged to courpress the machinery into so small a space; and consequeatly, that a greater width of gauge would enable the manufacturer to make a more perfect machine, and by baving more space for the machinery, the expense of repairs would be lessened.
Increased stability to the Carriages, and consequentiy increased steadinezs of motion, not from any danger to be apprehended, by the centre of gravily beling higher in carriages of a less width; but that higher carriages are more liable to oscillate upon the railway, than carriages of a greater with end less beight, and that a considerable part of the friction is occasioned by the oncillation of the carriages throwing the flanches of the wheels againa the rails.

These appear to be the more prominent advantages set forth by Mr . Brunel, as consequent upon the adoption of an increased width of gauge. 1 have taken the extracts from the report to the Bristol meeting, in preference to quoting from Mr. Brunel's communications to the directors, ionsmuch as that report ls before the sharebolders; and also in that report Mr. Brunel enters somewhat minutely into details on the subject, and gives in a more determined and explicit plan the substance of all his communications to the directors on the subject. It would have increased the bulk of this report unnecessarily to have given all Mr. Brunel's reasons for the adoption of the increased width set forth in that document, and this is also unnecessary, as the report itself is before the shareholders and can be referred to. These representations and recommendations of the engineer, appear to have been the principal reasons which induced the adoption of an increased width of railway, as stated in your report to the shareholders, at the half-yearly meeting of the 25th of August, 1636.
The objections which have been advanced againat the adoption of atis departure from the ordinary width of dailways, have been principally the fotlowing, viz.
The incrensed cosl of forning the road track of the Railway, in consequence of a greater width of base required for the superstructure of the rails, and upper works. That the carriages were required to be larger and heavier. That the increased width of gruge caused additional friction in passing through the curves. That it entailed a greater expense of constrocting the engines and carriage, increased liability to the breakage of axkes, scc. That th prevented a junction of the Great Western wilh other railway; and above all; that there were no advantages gained, commensurate with the increased expsases and inconvenience of such a departure and disconnection from railways of the ordinary width, and several other objections which bave beet urged by different pertons against the system, which it is not necesary to enumerate.
Previously to entering upon the consideration of the presumed benefts and objections incidental to the width of gauge, it will be advisable to bring before you the sccond part of the syatem of Mr. Brunel, vix. : the mode of constructing the railway, and in doing so 1 shall pursue the same plim as in the case of the consideration of width of gauge ; frst of nll to point the reesons which seem to have influenced Mr. Bruuel in the recommendation of this particular plan, and the improvements over other plans which he anticipated from its adoption ; I shall then briefly state some of the principal objcetions which have been urged against it ; and lastig, detail and report to you the mode I have deemed adviseable to investigate, and determine all these conflicling quetrions, and then give the conclasions, which appear to me to result from the enquiries and experiments I have made.

Construction of the Road,-ll will not be neeessary for me to enter inle a
detailed description of Mr. Brunel's plan of construcling the Great Western Rathrey, Antberthan what is absolutely neceasary to explain the principles of construction, and in what respects it differs from that of other railroads.

The plan adopted by Mr. Brupel is that of a continuous bearing of timber with piles upon which the iron rails that constitute the track of the wheels are placed.

The construction may be thus shortly described: Longitudinal timbert of a scantling of from five to seven inches in depth, and twelve to fourteen iuches in breadth, and about thirty feet long are placed along the whole line. Then these timbers are bolted to cross sleepers or transoms at intervals of every Siften feet; double transoms each six inches broad and nine inches deep being placed at the joinings of each of the longitudinal timbers, and single transoms of the same scantling being placed midway between the joinings. These transoms stretch across, and are bolied to all the four lines of rails. Within the \boldsymbol{w} wo lines of rails of each track, piles of beech are driven from the upper surface of the railway into the solid ground, so as to retain a firm hoid thereof, and the transoms are bolted to the heads of these piles.- Vide Description and Cowstruction of the Raihary, in Journal No. 7, page 166, ld. I.

This plan is pninted out very clenrly by Mr. Brunel, in his report to you on the 22d of January, 1838, and presented to the shareholders at the half yearly meeting on the 27th of February, 1838.-Vive Journal No. 7, page 166, lol. I.

At the subsequent meeting (Oct. 10th, 1838) of the Great Western Railvay proprietors, Mr. Brunel thus gives his reason for the adoption of this plan of conetructing the road:-
"The mode of laying the rails is the next point which I shall consider. It may appear strange that I should again in thia case disclaim having attempted anything perfectly new, yot regard to truth compels me to do so. I have recommended in the case of the Great Western the principle of a continuous beasing of timber under the rail, instead of isolated supports, an old system recently revived, and as such I described it in my report of January, 1838 ; tbe result of many hundred miles laid in this manner in America, and of some detsched portions of railways in England, were quite sufficient to prove that the system was attended with many advantages, but since we first adopted it these proofs have been multiplied; there need now be no apprehension. There are railways in full work upon which the exprriment has been tried sufficiently to prove beyond doubt, to those willing to be convinced, that a permanent way in continuous beariogs of wood may be construeted, in which the motion will be much smomber, the noise lesa, and consequently-for they are effects prodaced by the same cause-the wear and tear of the machinery much less; such a plan is certainly best adapted for high speeds, and this is the system secommended by me and adopted on our road. There are, no doubt, different mades of construction, and that which I have adopted as an improvement upon otbers, may, on the contrary, be attcnded with disadvantages. For the rysten I will strenuously contend, but I should be sony to enter with any such determined feeling into a discussion of the merits of the particular mode of construction. I would refer to my last report (vide Journal No. 12, page 325, 10. 1) for the reasons which influenced me, and the objects I had in view in introducing the piling; that part which had been made under my own eye abswered fully all my expectations."

These appear to have been the reasons for the introduction of this system of railmay construction, and the objections raised against it have been-The increased cost of construction beyond that of other modes,-the additionsl expense of keeping it in repair;-and that it does not accomplish the objects propoed by Mr. Brunel, in recommendiug it to your notice,--that the motion of the carriages is much greater than upon ordinary railways of the beat construction, and that there is a considerable increase of resistance to the carriages.

The professed advantages to be derived from the incrcased width of gauge, and the conatruction of the road by continuous bearings and piles, are so extensive and numerous, while on the other hand, the objections alleged agsinst them are equally so, that it appeared to me, as stated previously, with th exception of amaiting the result of the test of time, there was only one mode of deternining these complicated questions with any degree of satisfaction, viz, to endeavour to investigate as many of the points as possible, by experiments instituted for the express purpose, and to ascertain if by this mode suct a number of facts could be obtained as would, with the aid of the experience already obtained of the working of the system, enable me to arrive at conclusions which would, to unprejudiced persona, determine the important questions submitted to me.

On a review of all the proposed advantages and above-enumerated objoctions, the moat important points to be determined by experiment appeared to me to be comprebended within the following beads of inquiry :-

1. The queation of the attainment of a higher rate of speed than on other nilways; whether the increased width of gange is, or is not, either Decesary or best adapted for the accomplishment of this object, and to what extent.
2 The mechanical advantage or diminution of friction, by leing easbled to increase the diameter of the wheels, without raising the bodics of the carriagen; and in what respect, and to what eatent, the friction or reastance of the carriages is effected by, or bears upon the peculiar construc. tion of the road.
2. The comparmtive ad rantage or firmbers of base, or road track, of the Great Wettern Failway, with continuous timber bearings, either with or without piles, and if it does or does not produce a greater steadiness and smooth. sans of motion to the carriages, and to what extent.
Then were the quations which appeared to me could not be determined
in any other way than by experiment, but which appeared to be capable of cotation by that method, and which Ilkesrise appeared to conctitute the foundation of the entire system; for if the plan was not either necessary for the realization, or did not effect a greater rate of speed than ordinary railways; if no diminution of friction was accomplished, and if no increased steadiness of motion to the carriagen was produced, at least, a very coasiderable portion of the inducements for a departure from the ordinary plan would be destroged: but if, on the contrary, the whole or some part of these desiderata were accomplished, then it remained to be determined whether the advantages did or did not counterbalnnce the disadvantages or objections to the system.

Allainment of Speed.-The first qucstion to determine was, therefore, that of the attainment of speed. The most conclusive manner of effecting this appeared to be, to subject all the different descriptions of engines upon the line to experiment; to ascertain at what rate of speed they could travel, the loads they were capable of dragsing at different rates of speed, and the comparative power required to accomplish these different performances. Having thus obtained the power of the Great Western Railway engines upon that railway, by instituting a similar set of experiments on other railways; we then had the comparative result of the engines as to speed, and performance upon the railways of the ordinary width and plan of construction, and upon the Great Western Railway.

A set of experiments for the purpose of ascertaining the performances of the several engines on the Great Western Railway was therefore commenced, and were conducted as follows:-

A certain number of first and second class carriages were selecled and weighed; they were then loaded with such a weight as would equal that of their full complement of passengers, with their luggage. A certain number of trucks were also selected, weighed, and loaded with the weight which they were calculated to carry.

The engine selected for the experiment was weighed, and also the tender, the quantity of coke in the fire-grate of the engine was carefully observed at the commencement of the experiment, and also the quantity of water in the tender. The engine was then attached to the carriages fixed upon for the experment, put in motion, and proceeded to the end of the stage without stopping. The coke having been previously weighed into baga, the quartity put into the fregrate daring the journey was recorded, and at the end of the trip the fire-grate was filled up, es nearly as could be extimated, to the amme height above the fire grate an it was at the commencement of the trip, and the quantity thus consumed correctly ancertained. The quantity of water at the beginning of the trip being known, the boiler was kept to the same height during the journey, the quantity of water len in the teuder at the end of the journey was gauged, and thus the quantity evaporated in the trip was obtained.

The mode of conducting the experiments was this:-Commencing at Paddington, the engine dragged the train from the depot to the first half-mile post, when it was stopped; the steam was then applied to the cylinders, and the time noted; for the first mile the time was recorded at every 110 yardn, for the purpose of ascertaining the progrest of obtaining the average upeed, and afterwards at every quarter mile. Tho train then proceeded until it arrived at the twenty-first mile post, when the ateam was shut off from the cylinders, and the train allowed to come to rest of itself. The quantity of coke consumed, and water evaporated, during each journey was sacertained as previously explained; and the rate of speed belog taken at every quarter mile, the rate of velocity was also obtained, not only during that part of the journey at which a maximum rate of speed was kept up, but aloo the time occupied in getting up the speed, and also of bringing the train to a state of reat. The mame process was observed in the return trip from Maidenhead to Paddington; the engine and train was brought up to the twenty-second mile post and stopped, the steam thrown upon the pistons, and the time, coke, and water, ascertained in the same manner as in the former case.

Table L. is the result of the experiments of the power of the Locomotive Engines on the Great Western Railway, arranged in a tabular form, \&ce.;
By clastifying these experimeate, under the respective loxds by which the powers of the engines wero tested; we have the comparative results, as regands the performances of the different engines with performances of the difierent engines with specific lomds, and the conmmption of fuel, or power required to drag theee loads at certain rates of speed.

On attentively considering the result of these experiments, as exhibited in the following tables, we find that the extreme menn maximum rate of speed accomplished by these engines, has been 41.15 miles an bour, Fith the North Star Engine, but the load which was taken at that rate of speed wat only. 15 tons. If may bere be ebserved, that the rate of speed ahown in these tables, is the mean rate from the time the engine obtained its full speed, until the tealm was shut off at the cnd of the experiment; and comprebended a diatance generally of 19 miles, as may be seen on jnspecting the tables in note E , Appendix. A greater extreme rate was accompliabed for a short distance, duriag some of the experiments, as mach et 45 milea an hour. The above exprearion of the maximum mean rate of speed, is therefore the everage rate of travelling from one end of the stage to the other, after the eagine bad got into full epeed, and uutil the speed was again checked at the end of the stage.

A rate of 40 , miles an hour has, it will be seen, been acocomplished by another engine, the Apollo, but with a load of only nive cons; when the loed wat increased, both with thin engine and with the North Star, the speed was correspondly reduced. The result of these experiments show that to efficot a meas rate of abont 40 miles an hour, exclusive of the time of getting up the apeed and stopping at the termination, between the twe ends of a stage, about iwenty miles in length, the lond cannot be mare that from 15 to 20 tom, with engine: of the power of the North Star.

TABLE I.
EESCLT OF THE PERYORMANCES OF THE DIFFERENT ENGINES ON TEE oreat wegtern malumay.

	Lond						Coke consumed.				WaterEraporated.	
	$\begin{aligned} & \text { 踽 } \\ & \xi^{\infty} \end{aligned}$		GronsLoada									
	Tons.	Tons.	Tons.									
NorthStar	$16^{\circ} 9$	2886	4.78	41.15	38.51	1587	9но	2.78	. 28		197.7	8.78
	32-92	2874	81.68	3897	91.62	piore	\% 24	125	-66	756	163.8	- 29
Folus	${ }^{41.61}$	29.01	71.62	38.8	33.9	56.7	1040	1.09	-4	014	1364	113
	63.68	28.58	78.26	30.63	$25 \cdot 3$	${ }^{62} \cdot 7$	${ }^{111888}$. 95	01	847	153.0	8.4
	82.03 106.56	28.41	110.71	${ }_{23} 32 \cdot 81$	30.06	388.7	${ }_{1102}^{1092}$	${ }^{50} 5$	${ }_{25}^{45}$		200.9	8.01 7.78
	24.27	28.41	52.75	88.28	33.2	$102 \cdot 6$	751	137	63			846
	81.22	28.29	58.32	3825	2977		839	1.15	62	572	1178	$0 \cdot 68$
	48.44	28.27	7659	${ }^{24 \%}$	19.72	${ }^{65}{ }^{6}$	092	$\cdot{ }^{-6}$	40	6117	108.5	8.6
	S0.46,	28.37	${ }_{82} 78.03$	${ }^{35} 2.28$	27.9	164	${ }_{1} 8114$	${ }^{75}$	49	615	129.5	8.79 10.67
	78.88	28.92	10829	24.60	${ }_{22} 23 . \mathrm{ch}$	59.9	958		37	657	1104	${ }_{8}^{8} 89$
	104.8	28.13	132.73	228	178	${ }^{6 \times 5}$	271	- 30	31	\%24	1052	78.
(Venus	81.41	26.58	58.	34.24	(10) 16	$60 \cdot 4$	681	96	53	500	111.1	8.49
	50.40	$20 \cdot 4$	$76 \cdot 9$	$27 \cdot 97$	22.6	70.	718	$\cdot 63$	41	570	$90 \cdot$	7.81
Neptuse	81.42	28.57	58.	$34 \cdot 14$	29.7%	\%0.5	601	84	45	405	107.6	7.68
	44.81	2853	74:81	9**11	23.35	85.	${ }^{603}$	-60	37	510	$87 \cdot 45$	7.40
Apollo	50.46	26.57	77.03	26°	2353	75	625	'(4)	42	510	92	88
	9.37	28.58	35.93	40.6	31.7	70		305	70	511	129:5	785
	18.25	28.61	4488	37.25	33.08		810	1:31	-81	481	117-1	8.12
	31.42	205	67.9	85.81	20.8	74.7	725	1.13	. 50	549	$120 \cdot 2$	8.29
	00-40	25.58	77.021	2575	21.05	75.	840	70	81	001	94	$\times 1.7$
Premier	69.67	2438	84.05	2615			806					6.23
	80.5	24.07	105.46,	, 24.17	$22 \cdot 37$	180	${ }^{85}{ }^{\prime}$	sog	40	812	1404	7.02
Lon												
	80.6	23.9	104:4	24.07	22.24		1169	. 64	49	80	1456	9.

TABLE II.
table of the melativg fowerg of the diffrrent engings on the GREAT wgstern railway.

	North Star Engine, 16 in .6917 f . Wheels.		Bolus Engine, 14 in. Cy1. 8 fi. Whects.		Venus, Neptume, and Apollo Engive 19 in. Cyl. 8 ft .Wheets.		Premier and Lion Eagines, 14 in. Cy. 6 and 7 f. Wheels.	
0		ths.		1bs.	405	168 800 805		
${ }^{15}$	$41 \cdot 15$	270			87.35	$1 \cdot 61$		
$\left.\begin{array}{l}18 \\ 21\end{array}\right\}$	….......	37.28	197	…1...	…1...		
82	36.37	1-26	3825	115	3-74	014		
50	3176	1.02	32.	76	20.67	-69	26.50	. 70
80	3281	99	24.59	51			
104			22.9	39				
106	133	-306						

It may be here remarked, that unless very large and heavy tenders are conveyed with the engines, the stages camot be of a much longer distance than twenty miles; the quantity of water evaporated in this distance, by the North Star Engine, being upwards of three tons.

The performence with the North 8 tar was with a six wheel, and in four wheel passenger carriage, eapable of coatainitg 50 passengers; the experiment with the Apollo Engine was with al six wheel curriago capable of containing 32 passengers, the full complement of luggege in beth cases being allowed.

It is seareely necessary to state that, this is a load which cannot be considered. a profitable or adriseable one, to be fixed upon ils a standard for the weight of
the trains; or such a lond as should be considered to be the weight of the first clasa trains on the railroad for permanent adoption. It is only necessery to refer to the experiments to see, at what a sacrifice of power and congumption of coke this rato bas been accomplished, to errive at once at the conclusion, that if such a rate of speed cennot be kept up except at such a secrifice, the rete must be reduced.

The सolus engive with 24 tons, realised a rate of 97 miles an boar, and the twelve inch cylinder engines with 18 tons, accomplished a similar p. rformase: these are likefise loads below that which it will be necessary to pforide for the regular traffic of the railway.

We come now to the next load, on which experiments were made, vis. $\mathbf{3 2}$ tons; this wonld provide accommodation for about 112 people with their loggege, with 2 six, and 2 four wheel firt class carriages ; and with this load the North Star rccomplished a rate of nearly 97 miles an hour, and the other enginer about 34 miles, This is likewise a less load than can be reckored upon for the permanent working of the line, at it does not allow for the conveyence of pivate carriages, which must always be calculated to accompany the swift or first class trains.

With a load of 50 tons, the speed realised by the Northern Star is nearly 35 miles an bour ;-with the Coolus 32 miles;-but with the other engines only $26 \frac{1}{2}$ miles an bour.

When the lond is increased to 80 tons, the North Star engine performas a rate of nearly 33 miles an hour ; but the performance of the OOlus engive in diminished to $24 \frac{1}{4}$ miles an hour ; and we see that a rate of $22 \frac{1}{6}$ miles an hour is the performance of engizes such as the Venus, Nepture, and Apollo, with 12 inch cylinders, and 6 and 7 fcet driving whecls, respectively.

It does not appear, therefore, that with the best of the engines at present upon the Great Western Railway, a greater velocity can be calculated upon; at the mean maximum rate of speed than 35 miles an huur, with such loads as may be expected to constifute a first class train. For extraordinary purposes, with a diminished load, a rate of 40 miles may be attained, but looking at all the circumstances incideutal to railways, with engines and trains travelling at the maximum rate of speed, it does not appear to me, that any standard cqual to 40 miles an bour can be depended upon in practice. The weight of two first class carriages, one with six wheels, and one with four whcels, and of two second class close carriages, one with six wheels, and one with four wheels, with their complement of passengers and luggage, will weigb about 31 tons; but this does not allow of any trucks for the conveyance of gentlemen's carriages, or for horse boxes. Upon the London and Birmingham Railway, since it has been opened throughout, the average weight of the trains, including passengers, passengers carriages, carriage trucks, horse boxrs and luggage vans, has been about 65 tons; this includes both first-class and mixed trains, the former being upwards of 50 tons and the latter about 70 tons. Taking this as a standard for the Great Western Railway, it does not appear that, for the first-class trains a less weight than 50 tons can be calculated upon; and with this weight the experiments show that a mean rate of 35 miles an hour between the stagea, after getting up the speed, and bofore its being checked may be accomplisbed, under circumstances similar to those experienced during the time these experiments wcre in being performed, and with engines of the power of the Norlb Star. And it will be seen that with a toad of 80 tons, which would not much exceed the weight of a second class train, a vetocity of nearly 33 miles an hour can be maintained, during the time the engine is at the full rate of speed.

Taking 35 miles an hour, therefore, as the mean maximum rate of speed between the stages, it will have to be considered what general average rate can be kept up between one end of the line and the other; in this calculation we have to take into account, the time lost in getting up the speed, and in stopping the train, the time lost at each station, and all the vicissitudes of wind, weather, and incidental casualtiea. On the other hand I think it my duty to explain, that these experiments, which are here brought forward as a standard for the assumprion of this rate of speed on the Great Western Railway, though it is not expected that more weight should be placed upon them than upon experiments generally, which must be considered as exhibiting more favourable circumstances than the everyday praclical result; yet it raust be taken into account, that the road for three or four miles from one end of the line was under repair, and would not therefore present what may be considered an average result, or what may be expected to be the permanent result when the road is in the best possible order. We shall see alterwards to what extent this may be supposed to influence the general result; I thought it my duty, however, to mention it in thls place, that every circumstance connected with the enquiry likely to operate, in any degree whatever upon the general result, should be brought into consideration.

On a mere inspection of these lables, every person must be struck with the enormous increase of power required to effect a high rate of speed, or a rate of 40 miles an hour, compared with that which is required to propel a load at the rate of about 20 miles an hour. We see the North Ster engine, dragging 166 tons at the mean rate of 23.3 miles an hour; while the same engine under similar circumstances is only capable of draggiug 15 lons at the jate of 41.15 miles an hour. Again the Alolus engine, drags 104 tons at the rate of nearly 23 miles an hour; and only 24 tons at the rate of 37.28 miles an hour. The engines of less power exbibit precisely the came results, we see them dragging 50 tons at $26 \frac{1}{2}$ miles an hour, and only nine tons at $40 \frac{1}{2}$ miles an hour.

If this bad been the result of theoretical deduction, some ouspicion might have existed of its accuracy, but the above is the result of carefully-conducled experiments, made under precisely similar clrcumstancen; and uhbough it might have been desirable that a greater number of experimants bea beee

then mparment exhibit，if mot atrictly 20 ，sufficiently correct date for all we requice in a praction point of view．

I mon aware that this aggragate result is composed of the effect of the eagtaes，the effect of the road，and the resintance of the carriages；and that enot of these eflictes are hable to modificalion，to the extent to which each of Ehers infuence the general result，and to which they are susceptible of fur－ eber improvement．We shall afterwards see to what extent each of these operate in producing the general result，and we shall also see that this result is completely and suisfaciorily made out by subsequent experiments，on each of these sections separately；still，in practice，it is the aggregate result to which we murt look，and by which we must be guidod in our inquirles into the eatire system．It is of the utmost importance to inquire into the causes， that we may know how far the general result is capable of improvement，and to What extent；bat in practice，concluaions drawn from experiments on a working scale and character，must carry with them considerable weight as a standard．

1 mout here revert to the often ropested expreasions of opinion，that in laytug down asy atandard of power in enginea，and espectally any standard With refersence to the power of locomotive engines，it should be a varying one，dependent upon their presumed lncreased powers；and，that looktng beek to the rapid strides of improvement nade in the engines，we may natu－ rally look forward to further improvements，and that，therefore，our calcula－ tions should rather be founded upon what may probably be the powers of these enginet in future，than upon the powers they exhibit at the present time．The force of this is irresistible，but we must not，where the result in－ volves the expenditure of an immense amount of capital，yield to prospective theoretical improvements，unleas they oarry with them strong，and almost certain grounds of practical realisation．The great impulse of improve－ ment given to these engines has has been their powers of evaporation，in pro－ ducing a sufficiently rapid evolution of steam with an engine of a tangible weight．The system of small tubes has effected more tban could at one time be reasonably expected，and we now not only accomplished an immense rapldity of production of steam；but we have likewine effected this without any waste of fuel，and this is a most important element in the consideration． By an inspection of the tables it will be seen，that the average weight of coke required to convert a cubic foot of witer into steam，is not greeter than what is required by the best constructed stationary engines， and hearthan Mr．Wates＇standard，viz．81bs．of conl to each cubic foot of water．When we consider the ingenuity exercised for so long a period upon this part of the economy of stationary engines，with so little effect，and this， with engines inflitity more favourably circumstanced than the locomotive engine，it becomes extremely queationable to what extent we ought to carry apeaulations founded upon a presumed increase of evaporating power of these enginet．But allowing to the most sanguine every possible extent of imagionive improvement，and supposing that we could effect an equally economical and as great a rapidity of production of steam，with the North Star，as with engines of the weight of the Venus，Neptune，and Apollo， which are only of half the power，and which，it may be presumed，would le the llmits of speculation by the most fertile mind，what do we gain，we have aspling of two tons weight．Or，if we were to go even further，and take the ugiteat engine working on the ordinary railroads，and suppose their powera of evaporation to be doubled，we gain no more than five or sir tons upon a railway of the width of the Great Western，and this would give us 20 tons at 41 miles an hour，instead of 15 tons，and so in proportion at other retocisiea．The only reasonable speculation of future improvementa，is in the expectation that increased evaporating powers may be given to such engines as the North Star；nnd that retaining the asme weight of the present most powerfal engines，we may so increase their evaporating powers as to produce an increase of effect．Here，however，we have practical data to guide us even in this reapect in thase tables：the comparative evaporating powers of the Alolus and the North Star，ine $165: 115$ ，and the Venus $165: 106$ ．These tables show，that with such an increase of powers of evaporation，no more than about three miles an hour is gained by the North Star over the Aiolus， both ongines belng of the same weight．It results，therefore，from these ${ }^{e}$ experiments，that it would，practically considered，be imprudent to indulge n_{i} apecalatious which are only necessary in case of considerable improvements ${ }^{\text {i }}$ being effected in the locomotive engine，and by which a much higher rate of apeed can be realized than these engines are at present capable of effecting ：－ we shall aferwards see that there is a limit to the velocity of nilway trains， by an element over which we have no control，and that it would be impolitic In a practical or commercial point of view，to attempt more than a certain rute of apped．
Having thus obtained，as far as the time permitted，the power and capa－ bilities of the enginea upon the Great Western Road，the next step was by a simither met of experiments to obtain the powera of the engines on railways of the，ordinary width and conatruction．To accomplish this，application was made to the directors of the London and Birmingham Railway，who very handeotwely gramted permission to make any experimenta which might not interfere with the traffic upon the road．When，however，it is considered that there experiments can only be made in the interval between the trains pacaing along the line；that on the Great Western Railway，where，from the line being short，much greater facilities are afforded for making the experi－ mente than apon a long line of road，the experiments occupied from the 13th of September to the 13th of October；and when it is also considered that these experimants involve considerable expense，and the almost exclusive atherion of the percons connected with the locomotive department，it is quite unseemary to mate that th wate extremely difficult to a vail ourselves of the perminton gronted by that company，witbout ruch inserfarence with the riguine trimo of the roed as would hare been unjuntigable．

The engines upon these railways，however，are nut so varied in their con－ struction as those of the Great Western Railway，and therefore a less num－ ber of experiments were necessary ；for，instead of having to determine the power of each different kind of engine，it only required experiments to deter． mine the power of almost one engine，the other being so nearly alike，the performance of one correctly ascertained was，in fact，the standard of power of the whole．

Mr．Robert Stephenson，in the most handsome manner，placed at my dis－ posal some experiments made on that railway on the powera of their enginex during the summer of this year，and，for the purpose of checking there by my own personal observation，he amanged and accompanied me on an expe－ rimental trip from the Camden Town station to Boxmoor and back，and gave me an opportunity of making other trips to corroborate the accuracy of his experimentu．
Table III．will show tho result of those experiments on the London and Birmingham Railway．

TABLE III．
ACCOUNT OP THE PERFORMANCES OF THE ENEINES ON THE LONDON AND birmingham railway．

$\begin{gathered} \text { NAMES } \\ \text { OFTHE } \\ \text { ENGINES. } \end{gathered}$	Load．				$$		Coke consumed．			Weter eveporatel，		
	$\begin{aligned} & \text { 安 } \\ & \text { 㡙 } \\ & \hline 6 \end{aligned}$		$\begin{aligned} & \text { 安 } \\ & \frac{1}{8} \\ & 8 \end{aligned}$				号		$\begin{gathered} \dot{8} \\ \text { 要 } \\ = \end{gathered}$	里家		
					$\begin{aligned} & \text { 呂 } \\ & \text { 禺总 } \\ & \text { 总 } \end{aligned}$							
	Tons．	Tons．	Tons．				9		\％${ }^{\circ}$			
Harvey	82.86	17.8	$60 \cdot 10$	32.88	$30 \cdot 61$	50.	434	48	47	800	89.81	8.8
Combe．	63.45	17.6	70.05	$32 \cdot 4$	28.08	60	601	． 50	$\cdot 4$	506	105.9	7.50
	64.38	17.28	81．61	$25 \cdot 68$	21.85	60	391．	6.40	－ 30	317	$70 \cdot 66$	7.62
Bury	34．46	$16 \cdot 32$	50．77	$32 \cdot 41$	31．29	$51)$	608	1.01	56	480	91.	$8 \cdot 9$
Eury ${ }^{\text {E }}$	38．01	16.85	60.76	32．04	28.82	60）	680	－88	－ 41	408	04.42	$8 \cdot 18$
Engine．	67．2	16.33	83.53	23.81	10.42	50	1220	$\cdot 36$	－28	035	5881	811

Thescexperiments，the results of which are shown in the abeve table，were made，as will be seen by an inspection of the section，upon a part of the rail－ way，the gradients of which are very variable；the inolination being in mome parts 16 feet in a mile，and are the mean result in both directions．

Table IV．is a summary of these experiments arranged for comparison with those on the Great Western Railway．

TABLE IV．
table of the powers of the engines of tee london and birmingeay gallway．

Load in Tons of Carringet and Passedgers．	Harvey Combe engine， 12 inch cylinder， 5 feei whecls．		No．15．Mr．Bury＇s ehgine， 12 inch cyllndex， 5 feet wheels．	
	Maximum speed in miles per hour．	Coke per ton per mile is lbs．	Maximum speed in miles per bour	Coke per ton per mile in lbs．
32.86 $\mathbf{3 4 . 4 5}$	32.88	． 80	82.41	1.01
63.45 88.91	32.4	． 58	$\boxed{39.04}$	． 08
$\begin{aligned} & 81.36 \\ & 67.20 \end{aligned}$	28.53	S04	$\overline{29.81}$	． 38

From this it will be seen that，on a railway of the ondinary widib，where the gradients are variable，and where the resistance is more than doubled in some parts，a mean velocity of 32 miles an hour may be maintained with loads varying from 32 to 54 tons．These experiments were made for the expreas purpose of comparison with those on the Great Western Railway，and with the ame loads；and they are，therefore，presented as experimenta for such a comparison．I have dope this in prefereace to producing as comparisons otber experimonts made on the Grand Junction，and Liverpool and Mancheater Railways；as if I had done so，these experiments not being made in the same manner，many explanations would bave been required；it will，however，be seen，on iuspecting the results of the other experiments，that the general com－ parative result of the performances of the engines on the London and Bir－ mingham Railways is corroborated by those other experiments．

On corapering the results of theso experiments with those made on the Great Western Railway we find，that with the same load，or with a load of 32 tons，a greater rate of speed is accomplished by the North Star engine；bat that the performances of the engives on the Loodon and Birmingham Railway with that load，nearly approach those on the Great Western of a kess power than the North Star，but of a greater power than the London and Birmingham engines．With a load of 50 tons，the North Star engine on the Great Weatern Railway，acomplished a mean velocity of about two milea an hour greater； tas 费olus engine the same rate；but the Yeatis，Neptote，and Apolboen－ gthey of the cime potrer as thon on the london and Btrmioghen hallway，
do not come op to the performances of the lafter engines by six miles an liour.

We see likewise in the comparison of these performances a much greater consumption of coke per ton per mile, by the engines on the Great Weatern Railway, than by the engines on the London and Birmingham Railway; and the construction of the engines being nearly the same, we consequently find a proportionate quantity of water, or quautity of steam, consumed. It is scarcely necessary to say, that the quantity of water used, or weight of steam employed, in a given dirfance, is a correct test of the power expended in performing a certain quantity of work on that atage; we can, therefore, besides knowing the relative dimensions of the engines, apply this as a test of the power employed by the engines on the respective railways in the perfornance of a similar quantity of work. Adopting the mode of estimating the relative powers of the engines by a well-known rule, viz., that the power of evaporation by the action of the radiant hent of the fire-box, is three times that of the communicative heat of the tubes; the following table will show the relative powers of the several engines on which experiments have been made, according to this mode of calculation, to which I havended the actual powers exhibited by the experiments, as determined by the quantity of water evaporated into steam.

TABIE V.
HF REIATITR ROWFRE OF TIE ENGINPS ON THR GRRAT FFSTRRN, AND LONDON AND airmingulam Rall.Wayg.

NAMFS OP ENGINES	Esti	maded Po of papora 						and mption	powers Cule.
Nortis	70.10	664.76	288,28	1050	34.76	1.02	100.	100.	0.
Eolus.	60.3	684.19	228.69	116.3	82.	76	79.12	09.63	75.85
\mathbf{N}_{01}	46.	461.61	10884	106.2	26.57	. 89	08.07	84.13	08.80
HerreyCombe	60.72	382.46	163.87	94.85	32.4	. 59	68.84	57.08	68.89
Bury's Rnqiine	398	1878.2	105.26	92.74	32.04	. 68	57.32	50.	67.88

We see by the above table, the comparative amount of power required to perform the ame quantity of work on the Great Weatern, and on the London and Birmingham Railways; arising partly from the much greater power and weight of the engines, compared with the useful load on the former than on the latter railway, and partly, as will hereafter be seen, on the increased resistance offered by the rails and carriages.

On cramining the account of the experiments on the London and Birmingham Railway, it will be seen that, although the mean rate of speed is 32 miles an bour, occasionally on some parts of the line the velocity wes much greater, the maximum being $\mathbf{4 0 . 9}$ miles an bour. I shall, for the present, defer making any further cornparimon of these results, and shall now offer to your notice some experiments made on other railways, as corroborative of the above.

Through the kindness of my friend Mr. Booth, secretary to the Liverpool and Mancbester Railway, I have been enabled to make some experiments on deflexion on that railway; and the renident engineer, Mr. Edward Woods, has furnished me with somo experiments on the powers of the engines on that railroad.

TABLE VI.
SUMMART OF RXPERIMRNTA ON THP LIVRRPOOL AND MANCRRBTRR RAILVAY.

$\begin{gathered} \text { NAMES } \\ \text { OF } \\ \text { ENGINES. } \end{gathered}$	Load.			Mean Rate of Travel ing in Miles per Hour.	Coke consumed.		
	Car. riagen, se. \qquad Tons.	Eugine and Tender$\|$	Groes Load \qquad Tons.			lbs. of per tont, per mile.	
					lbs.	Of Goods.	Grose Loud.
Phath Sun, Lightudirg, Phalaris, Firefly, and Strim..................	187.8	17.	154.8	10.16		297	20
Pannet and Lightuing. . .	26.	16.4	42.4		747	057	. 687

Having been informed, that several experiments had been made on the Grand Junction Railway, on the consumption of coke, and soma portions of that Line being partioularly favourable with respect to gradienth, for experi. ments on the friction of the carriages; I made appliction to Mr. Mom, the Chairmpn of the Directors, for permimion to make some experisuents on that
railwhy, and received from that gentlemin a letter, atating that be had lide my application before the Board of Directors, and that tboy had authorized bim to say that they had much pleasure in moeting my wishes, learing the arrangement in the hands of their engineer, Mr. Locke.

On applying to Mr. Looke, be at ance placod in my hands the reselt and particulars of a most valuable set of experiments, made on the Grand Jametion Railway, and met me on the spot to arrange about any other eaperiments which I might think advisable to make.

The following are the experiments made on the Grand Junction Railsay on the consumption of coke of the locomotive engines.

These experiments are presented for a different purpose than the preceding ones, the former gives the consmmption of coke and powers of the engires, with respect to apeed, from the time of starting at one end of estage until they arrived at the end of that stage, or the consumption and rate of travelling during the time of performing the journey alone. The experiments on the Grand Junction line gives tbe consumption of coke, from the time of lighting the fire until the engine bas finished the journey, including all the waste at each end; or, in fact, klowing what is equivalent to the consumption in the regular working ot the railway, from the time the fire is lighted until the engine has finislied the day's work.
Table Vll. is the result of these experiments:-

TABLE VII.

gUMMARY OF EXPERIMENTS ON THR GRAND JUNCTION RAILWAY ENOINES.

The experiments were made for the purpose of ascertaining the comptative qualities of the different descriptions of coke, and were consequently mado with the greutest care by Mr. Alcard, the resident engineer.
For the purpose of comparing this result, with that of the consumption of coke of the eagines on the Great Western Railway, I have made out Table VIII., from documents furnished me by Mr. Saunders.

We see therefore, that these statements corroborate the reanit of the former experiments made in a different manner, and show, for the reasomes previoully explained, a greater expenditure of power, or consumption of coike. on the Great Western Railway, than on the Grind Junction Railway, for the performance of the same quantity of work.

On a careful consideration of the data furnished by these experiments, the conclosions which appear to result from them, as regards the firat proposition. viz., the attainment of speed, \&c., \&c., appear to be as followa:-

Ist. That the extreme rate of speed, accomplished on the Great Weitern Rallway, has been 45 miles an hour, with the North Star engine, and with a-load of fifly tons, for a whort distance.

TABLE VIIL
consumpton of cone on the grgat western mailway.

2d. That with a load of 50 tons, which may be considered to be the ireme load of a frat-class train, a mean rate, at full speed, of 35 miles per unr, in both directions, has been accomplished upon the line at present resed, riz., $22 \frac{1}{3}$ miles, the extreme gradient being 4 feet per mile; nd that this has been performed with engines of an average evaporating gwer of 165.6 cubic feet of water per bour, and with driving wheels 7 feet inmeter; and cylinders, 16 inches diameter.
3rd. That with engines of a leas evaporating power, or equal to 115 cubic ve of water per hour, the average speed with a load of 50 tons has been 32 tile an bour; the eagines baving eight feet driving wheels, and twelve 2ch cylindera.
4th. That the extreme rate of apeed sceomplished on the London and irmiagham Rellway, bas been 40.9 milles an hour, with the Harvey Combe agine, and with a load of $34 \frac{1}{\text { tons, but only for a short distance. }}$
Sch. That with a load of 50 tons, a mean rate of 32 miles an hour, at full peed, has been accomplished, on a stage of about the same length as upon se Great Weatern, or 24昷 miles; the extreme gredient being 16 feet per alle, and with engives, the mean evaporating power of which is equal to 4.85 cubic feet of water per hour, and with 5 feet driving wheels, and ylindars 12 inches diamerer.
Ch. That on both rallways, the consumption of coke, or power required - tacompliah the above stated performances, has been as netrly as posaible, the ratio of eraporating powers of the respective engines.
7th. That a high rate of velocity can only be attained by a very great actifice of power, the following table, shewing the relative performances of wo of the nowt powerful eagines on tho Great Weatern, with reapect to pead and load, and also the consumption of coke per ton per mile: 一

TABLE IX

Xorth Bear Engtae.					EOlus Engline.			
Load in Toons		$\begin{aligned} & \text { 8ped in } \\ & \text { ailesesper } \\ & \text { Hour. } \end{aligned}$		Cnasumpt. of Coke per Ton Por Mille.	Load in Tous.		8poed in Miles per Hour.	Consumpt. of Coke per Toa per mille.
				lbs.				1bs.
16		41.		2.76	24		374	1.37
33	...	37.	..	1.25	31		332	1.15
50	\ldots	35.	...	1.02	51		32 76
82	...	33.		. 59	80		$24 \frac{1}{3}$...	. 51
168	...	24.		. 308	104		23	. 30

We come now to the determination of the flrut section of the report, viz. : -the quation of the attinment of a higher rate of speed, on the Great Weatern Rallway than on other railways, whether the increased width of rage, is or is not, either necessary, or beat adapted for the accomplishment of this speed, and to what extent.

We find, from the results prevlously enumenated, that a higher rate of upeed has been attained on the Great Weatern Railway, than on other railways. This has been accompl/sbed by the increased power of the engines employed on that railway, above that of those on other railways; before, bowever, we can determine whether the incrensed gauge, is or is not, necesang, or ben edapted for the accomplishment of this object, and to what exteat, we must enquire whether engipes of the power by which such performasce was eftectod on the Great Western Railway, or such a power of engine as voold accomplich that rate of speed, can be applied on rallways of the ordimary width.
The etimated powers of evaporation, of the largeat of the engines on the Grat Western Railway, is 288.28, as per table; apd this engine perfanma mean rate of apeed with 50 tons, of 35 miles an hour. The evapo ntiog power of the Harvey Combe engine is, by the same table, 163.87, and thin eqgine performs a mean rate of speed of 32 miles an hour. The largest engipes manufictured by Messrs. R. Stephenson and Co., and in use upon be Newcuatle and Carligle Rallway, havc, however, an evaporatios power of 459.21; and an engine, built by the same manufacturers, for the Leicester and Swanaiagton Railway, han an evaporating power of 203.8. The Folus engtae on the Greet Wextern Ruilway, which is the next powerful tgitoe on that line, bes an evaporatias power of 2a8.09, and this culet efficts a mean rete of speed of 32 miles an hour, with 50 tom,
No. 17,-Fimoany, 1839, Voz. 11.

We see, therefore, that there are engines in use upon Railways of the orditrary width, more powerful, in the proportion of $263: 228$, than an enghe upon the Graat Western Radiony, which effects a rate of speed, within three miles an hour, of the moat powerful engine on that railway. We have had no opportuaity of subjecting these more powerful englaes, on ordinary railwass, to experiment, which would have been very desirable on the presemt occasion; but we find such eagines with an evaporating power of 165.26 effecting the aame rate of apeed on those railways, at the engine of 228.09 on the Great Weatern; and therefore the presumption in, that engines on railways of the leaser width of gauge, of the evaporating power of 253.21 , or 263.8, would effect an increased velocity, quite equal, if not grester, than that of the largest engine on the Great Western Railway.

This conclusion results from the engines on the ordinary railways, yielding a greater comparative useful effect than the engines on the Great Western Railway; partly owing to the much greater disproportion between the weight and power of the engines, and the useful load on the latter than on the former ; and partly owing to the increased resistance of the road, and also of the carriages themselves. Those parts only of the increased resistance, however, which relate to the additional strength and weight of the engines, and carriages, and which is produced by the enlarged wind scare of the carriages, are attributable to the wide gauge. We shall anterwards see, how much of the increased power, on the Great Weatern Railway, exhibited by the preceding experiments, as being necessary to drag the same quantity of goods, at the same rate of speed, beyond that on railways of the ordinary width, is to be placed againat the width of gauge; the inference which appears to me to result from theee experiments is, thai with engines of the same power, a greater result, and consequently a greater rate of apeed, may be realised on the ordinary width, than upon the increased width of gauge of railway. If the object be to accomplith the greatest possible speed, a wide gauge is unquentionably better adapted for the construction of the largest poasible engines, than the narrow gauge ; considerable doubts may, bowever, be entertained if a geuge of seven feet is the best for this purpose, and whether a lesa width of gauge, taking into consideration every circumstance affecting the question, would not afford every requinite facility for the ereotion of engines, capable of attaining a maximum rate of apeed.

The question, therefore, whether an increased width of gauge is or is not necessary, depends almost entirely upon the determination of what rate of speed it is advisable to attempt, or it is resolved upon to establish. If a mean rate of 32 miles an bour at full speed be sufficient for the purpose, or such increased rate as engines of the largest dimensions now in ue on other railways can accomplish, then it will not be necessary, 50 far as the motive power is concerned, to increase the width of gauge. But if a greater rete of speed is required, the question assumes a different shape; and it must then be ascertalned if an engine can be erected upon the lesser width of gauge to perform that rate of speed.

As this appeared to be a very important part of the inquiry, I asked Mr. Brunel the question as to the rate of speed proposed for both passengers and grods. His answer was:-"The rate of speed proposed I conceive also to be quite uncertain, my own opinion being, that it will always be fixed at the highest which we can maintain with regularity. With moderate loads we might fix it at 35 miles an hour, and shortly, when the rond is in complete repair, and kept cleaner, when the short trains are established, so as to render one stopping unnecessary, and our engineers more experienced in the management of the engines, at higher speeds, I think we may attain 38 to 40 miles.'

If the object be the attainment of the rate of apeed assigoed by Mr. Brunel, the present engines, it will be seen by these experiments, cannot accomplish that performance, including all the vicissitudes of weather and other casualties; and, therefore, if a mean rate of speed of 40 miles an bour, including stops, is to be attempted, more powerful engives will be required.
These experiments, however, show the immense sacrifice of power incidental to an extreme high rate of speed, or the accomplishment of a rate of 38 or 40 miles an hour, gbove that of 32 or 35 miles. If economy of conveyance is to be taken into consideration, it becomes a serious question whether such a system should be scted upon as that of providing for an indefinite rate of apeed, or that a maximum rate should not be determined upon, and that such standard should be composed of that apeud which will best suit the public conveyance generally, and at the same time comprebend every possible economy and regularity. It is, however, not necessary to enter further upon this at present, as the determination will be influenced to a certain extent by other facts elicited in the course of this inquiry, and which, in my opinion, leads to the conclusion that the limit of practical speed, combined with the requisite economy, is that which can be attained by engines capable of being erected on a lesser width of gauge than seven feel.

The preceding experiments having been made for the purpose of accertaining the comparative power required so work the trains upon the Great Western road, contrasted with the power required to work trains on railway of the ordinary width end construction, -and were quite necesary, in a practical point of view, to show the comparative aggregate amount of effective power given to the load by the engines at present employed on that line, and the effective power produced by the engines on other railways. But these experiments, however extensive and valuable, do not determine the whole question, for although they ahow the amount of power required to work the respective railways, yel that power is employed to overcowe the agrregate resistauce of the engines, the friction of the carriages, and the reslitance of the roed; it became, therefore, extremely deairabla that we should separate the resulto, to arrive at practical conclusioas, by which to make a
comparison between the two systems of an increased and ordinary gauge of railways.

If the object had beee only to escertatin and develope the power required to work the Great Wertern Railway, this would bive been shown hy these experiments, and it would have been less an object of utility to determine what part of that power was expended in overcoming the resistance of the engines, what part was due to the friction and reaintances of the carriages, and what amount of obstruction was caused by the road. But when the inquiry was extended to a comparison with other railways, it then heome neceasary to separate the results, the engines employed on the Great Weatern Railway being, in some respects, different from those employed on other railways; the carriages are also different, and the construction of the road varying likewise.

The carriages on the Great Western Rallway are mounted on wheels four feet diameter, whereas the wheels of the carriages on the other railways are generally, and those on whieh the experimenta were made were upon wheels three feet diameter. The first inquiry, therefore, appeared to be to determine the comparative friction of four feet and three feet wheela, or wheels of different diameters.

Again, the experimenta with the trains included the retistance opposed to the carriages and engines by the road, and the construction of the raila being different from those on which the other experimenta were made, it became necessary to determine whet effect the peculiar conatruction of the road had upon the aggregate resistance determined by these experiments, and to ascertain tho comparative friction of a road with continuous bearings and piles and a road upon isolated supports, or such as those on which the several experdmenta were made.
These investigations, therefore, comprise the second proposition, viz.:The mechanical advantage or diminution of frlction, by being enabled to increase the diameter of the whoels without raising the bodies of the carriages, and in what respect, and to what extent the friction of the carriagen is affected by the peculiar construction of the roud. The first process will, therefore, be to determine the actual friction or reaistance of the carriages on the respective railways. Many modea have been adopted by different experimentalists, of determining this on reilroads; that of variously constructed dynamometers, the force of gravity, and several other modes.

The action of the dynamometers is so very irregular, requires such perfect instruments, and even with the utmost possible care it is extremely difficult to ascertain the correct resistance; the vernier in a state of constant vibretion or oscillation, that no correct mean reault can be determined by observatlon. I had a dynamometer conatructed in 1835, which was mounted on a truck, and, by a set of rollers connected with the travelling wheels, anwound a roll of paper, upon which the vibrations of the vernier was traced by a pencil. By this mode of application the real vibrations of the vernier was recorded, in a precisely similar manner to that which will hereafter be shown to have been used in these experiments to record the motion of the carriagen, and by which a mean result can at any time be ohtained by admeasurement of the diagram. This machine being, however, constructed for a 56 inch gauge of railpay, and baing rather cumbrous and bulky, could not be adapted to the Great Weatern Railway in time for the purpone of this inquiry, and this instrument is likewise liable to the objection of all dynamometers; that being placed bebind the tender, they do not show the entire resistance of the train, the tender intercepting the effect of the atmosphere, and diminish. ing, therefore, the entire resistance.

The gradiente of the Great Western Railway also, being nearly that of a level, the action of gravity could not be made use of for determining the fric. tion; and therefore there appeared no other mode than the following, by which the resiatance could with any degree of accuracy be determined :-

A piece of road, perfectly mtraight, and as nearly level as could be obtained, was selected; this road was staked out with posts at every 110 yards. An engine and train of carriages, the friction of which was to be ascertained, wha brought to one end of the stage so staked off ; the steam wes set on, and the engine and train put in motion, until they acquired a velocity of about 20 miles an hour; the steam was then shut off, the engine atopped, and the train of carriages being previously detached from the ongine, they were allowed to run along the line until the friction and reslatance of the atmosphere brought them to rest; during the whole of the experiment, the time of passing each post was carefully noted down, and also the time when the carriaget came to reat.

Noto P, Appendix, is an aceount of the experiments and formula, for acertaining the comparative friction of three and four feet wheels on the Great Weatera Railway.

Note Q, the experimenis made on that and other railways, for the purpose of ascertaining the comparative retistance of railway trains.

These experiments were made at a velocity, at the commencement of the experiment, not exceeding 20 miles an bow, and vary fing from that until the carriages came to rest; and appeared to be the only mode of obtaining the friction by a precisely similar manner on the Great Weatern and other railwayn. The resiatance of the most important section of the experiments with the engines are not, however, comprised within the rate of speed at which the preceding experiment with the enginem were made. We have already remarked the very great diminution of efrect at a high rate of apeed, especially when a velocity of from 35 to 40 miles an bour wat attatned; it became, therefore, of the utmont importanee to ascertain whether the diminution of effect was referable to the engines, or to the ruintance of the carriages at those hisher rates of speod.

rected is that which is properly called friction. That the atmosphere oftred some resistance has been alwaya, of course, admitted, but this resistaver be been generally considered to be so insignificant, compared with the recistance depending on friction, that in all calculations which have come whth ar know ledge it has been wholly disregarded.
It became, however, of the greatest importance to inventigate, to the fulleat extent, every resistance offered to the motion of raliway trains, erpe cially at high rates of speed, and it was therefore determined to inexitute : course of experiments, with a view to determine, by some direct and a clusive means, the actual amount of atmompheric resistance, indepeadenty of any principiea of calculation founded upon the laws of friction.
The method adopted was founded upon the following coniderations: $-B_{j}$ numerous experiments which have been made by different phikoophan an the resiatance of the air, it has been satisfactorily ascertained that that raido ance varies in a proportion somewhat higher than that of the square of in velocity of the moving body. Whatever, therefore, might be the actural amone of this resistance, at any particular speed, it was to be expected that its berest would be very rapid, even by a small increase of apeed. If, therefore, ant way train was moved down an inclined plane, of an inclination to ateep the grevity would produce conalderable acceleration of motion, the reaistane ${ }^{(1)}$ the motion, so far as that resistance depends on the air, would be sabject to : repid increase. Now, if the resistance of the atmosphere be considerahte ir is quite clear that the opeed which the train would ecquire in desceading the inclination might be auch as to render that resistance to great thet, combinat with the friction, it would be in equilibrium with the gravitation of the trig dowa the inclination; and in such case the necescary consequence wocl tx. that the train would cepere to be accelerated, that it would require em urifone speed in the descent, which it would retain without any angmentation unid its errival at the foot of the piane.

The Whiston inclined plane on the Liverpool and Manohemer Raing being stralght and about a aile and a half in length, falling at the rat of 1 is 98, afforded a favourable opportunity for the experimental tent. A taind four firt olas carriages was accordingly propared and brought to the lowit the summit of this inclination. In the fint instance the carrizges were or loaded, save by the persons employed in making the obarvatiom, mat the gross weight of the train was 15, 6-10th tons. An engige way placed behted them, wo as to puah then towerds the aummit of the plane, and then to miss them down it with is conoiderable speed. They commenced the derest sccordingly, moving 100 yarch in seven seconds, or nearly 30 milles te wor. As was expected, a uniform speed was soon scquired, which gutited mo change untii the arrival of the train at the foot of the plant; this naif upeed in the turt experiment was 45 feet per second. The experinent we repeated in the ame manner, when a uniform speed was gain stteioed of 46 , 3 -tenths feet per socond, the mean apeed in these two experiments bein th, 6-10ths feet per second, or about 31 miles an hour. The ctirringe wure wor loaded with a weight equivalent to their naval load of paseseges, by mid. the groms weight of the train was increased to 16 toms 1 ewt. ; the crationin of the train boing thas increased it was expected that the spead wornla abo is orease, the momentum of the deacending body being adequate to eacoumtrit proportionally greater reaistance of the air. Three expertosents were ther made with the trains thus loaded, which showed roalts of comidante uniformity; in the first experiment the uniform speed nttained was 4 8.10ths feet per second; in the recond, 48 foet; and in the third, 471.10 h feet per second, the mean of which is 47, 3-10ths feet per second, or 88 miles an hour.

The force exerted by 15, 6-10ths tons down an inclinetion of 1 in 06 ; equlvalent to 364 pounds, and as this was the weight of the trais ia the first experiments, it follows that such a conch train moving at 31 miles an hour suffers a resistance of that amount, which includes both friction ad utmospheric redistance.

Again, the force exerted by 18 ton 1 cwt . down the same inctinative is 421.12 pounds, and as the tratn havfog this weight moved with a mitern velocity of 324 miles an hour down the plane, this was fte resietance at the epeed.

These experiments are quite conclusive as to the ageney of the atpor sphere, in resinting the motion of trains on rallwayt. It has mever bers pretended that the actual resiftance from friction amountr to more tha ntme pounds a ton of the load, and many have stated that it does not erever seven pounds, and some that it is solow as six pounds. But even if lighest of these estimates be taken, it would follow that the whole of resiatance of 421 pounds, encountered by the train moving at $32 t$ zifes at an hour, only 162 pounds are due to friction, while abotet 200 poand ate due to the atmosphere. But we shall presently now that this extimate of the resiatauce from friction is overrated, and that, therefore the acnound the atmospheric resistance here referred to is eonsiderably underrated.

In comparing the results of these two sets of experiments, ft will be co parent in how great a degree the recistance is increased oren by a all morease of apeed. The mean speed in the first two erperimentan wes is mila
an hour, and in the last three 824 ; the ratio of theos veloedties is aboul 10 to 109 , the speed being ts the latter cace thereased three per coen. Now th recistances in the two oaces were in the direet ratio of the groos moight at trains, whioh ratio was 100 to II5. Thus to gain an increace of speed amous. ing to 8 per cent, an expenditure of power amounting to 15 per ceant, in ar comary. Nor can ft be sid, that the great amoont of retwooe bave rish fested was produced by a head whad, thongh even wers guch timitsed mix

Wis plane, there was a pretty strong wind directly in favour of the motion of 2 so trin down the plane.

Scientific experiments shew, that the incrense of resistance from the atmospere is in a higher ratio than that of the square of the velooity; the expeimente just mentioned coafirm this, for whilt the squares of the velocities inrreese in the ratio of 100 to 107 , or 7 per cent., the resistance is increased in he ratio of 100 to 115 , or 15 per cent.

These experiments, though conclasive as regarded the effect of the afmozpoere In thit case, and though thay give a total amount of resistance, were manalicient to determine the proportion in which this resiatence Fas due to the at-roorphere, and to friction. Various methods of determining this presented Aheorelves. If a train were moved down an inclined plane comuncing from a of reat, or with any given peed, and allowed to be gradually acselerated, autiject to the combined reaistances of friction and the atmosphere; the cirecmatances of tos motion could be invertigated by the principlea of mesthernation, assuming that the friction wat, as it is generally considered to Da, independivat of the veloclty, and that the atmosphere varies either as the square, or as any other asamed power of the speed. This, bowever, comprohesded eomplicated problems, and it therefore became deairable that some more direot method of deriving the required quantition shonld be adopted, and if poseible by direct experiment. By subjecting to experiment the same or axrilar truina down difforent inclinations, different velocities would be attained, and theap velocitien wonld batunce the differost resistance: due to such inclinatione, and distinct date woald be thes abtained, which being properly combined ead ocmpared, would shơ" the friction and the atmonpheric resiatance separatedy. It wat dificult, howevor, to fnd inclined planes precisely suited to this pappose, and the following experiments, combined with thoee on the Whistos plame, were made fer the parpeee.

An inclined plane ocews on the Grand Junction Railway, deacending from Madaley towards Crewe, the inclination of which is 1 in 177 ; four carriages were ealueted, and loaded so as to render the gross load equal to that of the four Ceringes with which the lapt three experiments wero made on the Whiston Plate,-that is, their groes load amoanted to 18 toos 1 cWt . These carriages were propelled by an ongine to the summit of the Nedeloy Plane, and former expermense on the Whiston Plane. A uniform speed was in like maneser oteained, which continued to the foot of the plane. In the firte experiment this speed was 80,4 -10ihs feet per second, and in the eecond 31 , 4 104) second, or 21 miles an bour. The force of 18 tons 1 cwt . down this plane being 2584 lbs, is follows that this represents the revistance of such atrain moving at 21 miles an howr. From this and the experiments down the Whistom Plane, iwo distinct data were obtained for the total resistance, inclading atmopphere and friction, vis. at 324 milen an hour, the sum of the rentameas what 421 lbu., and at 21 miles an hour it was 2281 lbe. By combining theos raculta, a simple mathematical proces gives us the revistance doe so firiction equal to one 499 rd part of the weight, or 5.17 lbes. per ton; hence the tolal reastatese doe to friction for the cosch train nsed in these experimeats was 884 lbe. and therefore the renintance dae to the atmophere moving et 824 miles an hour was 829 lbs , and at 21 miles an hour 1 S 5 lbs .

Prow these experiments, therefore, it follows, that of the whole resistance Which the moving power had to encounter in these experiments, when a speed of uboat 32 miles an hour is maintained, 22 per cent. only is due to friction, while 78 per cent. is due to atmospheric resistance.

Baring thas ascertained that a comparatively small proportion of the whole reatatace is due to firction, it ceaved to be matter of sarprise that the methode of calculating the resistance of trajns, based exclusively on the laws of fitision, should gire discordant and unsatisfactory rasults. Yet such methods are the only ones which appear to have been hitherto applied to this enquiry. By such methods the common estimates of from 7 to 9 pounds a wa from Hition have been obtsined, and as such estimates have been derived mom carriages in motion, and whout any allowance for atmospheric resistcrace, it is obrionit that to whatnver extent that resistance may have affected the calculations, to the same extent has the estimate of friction derived from them aseasagmented boyrnd the truth; and this will satisfactorly account for the amourt of Aftetion derived troves the above calculations, which are independent of atmospberto redatance, being so constderably noder the common estimate.

These comparalive retulte were, bowever, obtained from one set of experiments onls on each plane; and althongh they determine most concludively, that a vory conoderable reditance ariset from the effect of the atmorphere; ret I would not have it understood that the amount of fiction, properly so calleal, as desermined by these experiments, should be adopted as a standard; Guare be mo doabt that its precise amount is much leps then the received aqdaion, bet it wonld require further experiments, more in number, and more rexied, to determine the amounts which should be adopted as a atandard © difarent veloctites and with different weight of tralns.

The experiments ot the comparative friction of the four and three feet Whetw, and also thoo made to sscertain the resistance of the road, haring bess ande by putting the carriages into condderablo velocity, and allowing thre to eome to rest, the velocity was therofore variable, from the extrume mortcat to soet. As the etmospberio resistance varies at the equare of the relocity, Finde the friction of attrition on the axlet, and the resistance of the rbelis ata the raile are constant at all velccitios it requires a complicated forcity fer caleulating the amount of each separataly, and it requires also a verine of expedrenter to come to a correct conclasion.

At, boverer, shat part of the resistance of carriages which depends upous Hoo hitivase of the dfameter of the wheols, has been, by the procediag experimant froved to be eq extremely mall in proportion to the entire reatetance;
and as the experiments with the three and four feet wheels were made upon Waggons, (there not being both descriptions of Theel upon the passengers. carriages), I did not think it adrisable to gise results deduced from compli: cated formula, in this report; they are, however, given in the Appendir, Note S, together with the formule by Dr. Lerdner, for calculating the resistance.

There can be no doult, that the friction on the axles, and also the resistauce of the wheels on the raile, will be diminished in the ratio of the diameter of the wheels; but on the other hand, if large whecls have the effict of presenting an increased frontage to the carriages, it is doubtful to what extent they are productive of a diminution of reaistunce, at high rates of apeed:with hesry loads at a slow rate of speed, there is no doubt that a reduction of friction will be effected by them, but our enquiries are with high rates of speed, and, therefore, until further experimeuls are made, it cannot be determined what the effect will he by an increase of diameter of the wheels.

The above reasons, likewise, preclude us from determining with perfect accuracy, the relative resistance of the Grcat Western rails, and chose of other railrays; the mode of conducting the experiments heing the same as above stated, viz. of pulting the carriages in motion and ranning them to rest. The atmospheric resistance being affected by a difference of the area of frontage of the carriages, and the carriages on railways of a narrow width having a less frontage than those of the Great Western, unless we could determine what effect the increased frontage hed at all the varying velocities, we could not determine that part of the resistance which arises from the wheels upon the rails.

This is, indeed, more difficult than that of determining the relative resintance of wheels of different diametars, the experiments in the latter case, being mado with carriages of the same constraction, whereas in the former case, they made with carriages of a different conatruction.

It will be afterwards soen, that the rails of the Great Western Rallway present a less rigid surface to the wheels than stone blocka, but abont the same or rather less than wooden crost sleepers; and an it may be presumed, every other circumstance remaining the same, that the reaistance opposed to tho rolling of the wheels upon railroad, will be in some degree proportionate to the rigidity of the eurface on which they roll, especially when the material composing the surface is the same; we may, therefore, conclude that the resistance opposed to the carriage wheels upon the Grest Western Railmay, will be about the same as thal of a rallway laid with cross sleepers, bat grater than one constracted with stone blocks:-to what extent the present question is affected by this, will be afterwards considered.

We come now to the first part of the third propostion, viz. The comparative advantage, or firmness of base or road track, of the Great Western Rall. way, constructed with continuous timber bearinge, with or without piles.

The only mode by which this could be determined in a satisfactory man= ner, appeared to me to be by direct experiment, by ascertatning the extent of deffection produced on the ralla of the Great Western Rallway by the passage of trains of known wetghts along them; and by making oimilar experiments on other railways differently constructed, thus to determine Thich of them were leat affected by the passage of the load.
In an enquiry in 1835, as to the best descripzion of rails mad fastenings for the Liverpool and Manchester Railway, by Profeseor Barlow, he eraployed an instroment which he called a Deflectometer, to test the amount of deffection produced by the passage of the tralns along rails of different descriptions. This instrument, however, only recorded the extreme or marimnm defection, and as in many cases jerks were produced by the larching of the engine and carriagel, which threw the vernier of the instrument upwands in a very distorted manver, the result wat by no means so astisfectory as could be wished. He likerise only employed one instrument, consequently the obserred deflec. tions in the middle of the ruil, being affected by the depression of the blocke supporting each end, the entire effect was not shewn.

It occurred to me that by improving the form of this instrament, and by applying the same apparalus which has been proviously described as being uted for the dynamometer, the motion of the arm of the deflectometer, or instrament showing the deffection of the rails, might be reconded, and we sbould then obtain adiapram of the defections of the raile es the trains passed over them; and by employing three instraments at the eame tume, one at each point of bearing at the blocks, (or transoms of the con. Hnuone rails,) and one midway between the transoms, or in the middle of the rall, and having an these connected logether, so an to record their action at the same time, we thus obtain correct diagrams of the deflections produced at each of these points as the tratn passes orer.

By this plan we not only had produced diegrame, showing the actua amount of deflection of the rails and bearings; but we had exhlited apon paper, the natare of the action of the deflection produced, and onnsequently a correct outline of the effect of the passage of the trains on rails of diferent kinds.

On consideriag the subject of the deflection produced by the pasaage of the trains on a raliroad, it will be readily conceived thet the deflection vertioally is not the only eflect; if the rails are not perfectly perpendicular, and the rim of the wheel perfecuy cylindrical, whioh in practice is eeldom or ever the cave; or, if the base of the block or timber bearing be not perfectly horizontal, sup porting the load with equai firmnese throughout the whole ares of its buse; when the incumbent weight comes npon the rall, there will be a certain extent of deflection horizontally, as well as rertically. On almost all railroads tho periphery of the Fheel is conical, and the ralis are ladd at sach an angle an to correspond with the cone of the wheels; the hine of pretsure of the incambent weight is not therefore vertica, but in a line at right angles to the cone of the Wheed, and hes of conse a condency to prodace hodxontal defiectios, and this Fill also be farther increased when the fanch of the wheal preases againat the
rail. The combined action of all theee effects will be, certain amount of deflection in the direction of the rambinat of the several forces, constidored in connection with the portion of the base whereon the blook or sleepers ultimataly rest. The direction of the combined action of the incumbeat weighe upon so yielding a base, and linble to be affected by 20 many circumatances; must, it may be suppoeed, vary in almost every case, and, therefore, no instru. mentcould be so placed as to indicate the resplitant eflect of these rarionsmotions.

The only mode of determining this appeared to be, the application of an inetrument to measure the extent of horizontal deflection, in addtion to that of the vertical defection, when it will at once be meen that the two motions could be resolved into their remaltant.

In a practical point of riew, tadependently of being able to resolve the two motions into one, it appeared deadrable to know the amonut of horizontal, or lateral deflection, an well as that of vertical ; a particular plan of construction of railway might exhibit very perfect resulta, as regarded the amount of vertical deflection, and yet be very inferior, as regarded the lateral mqtion, or horisontal deflection, and vice versa; the invertigation conld not, therefore, be com. plete whhont having developed the extent of each dercription of modion.

The mode of conducting the experiments was as follow: :-
These instruments were first of all applied to the rails of the Great Western Railway, one instrament being pleoed opposite a single transom, another instrument oppoitte a double transom, and the third midway hetween the transoms. The trains were then run along the ralls, at first with a slow moLion and diagrams taken, the mosion was gradnally increased, and diagrams were again taken; several diagrams wers thus taken at different parts of the line, with the rails in their woriding atate. The piles were then detached from the transoms, by withdrawing the bolti, and diagrams taken in the came manner; next, the transoms were cat csunder, thereby allowing the longittdinal timbers to act independent of any support from the transoms or plles; and in some experiments, aftar the transoms were detached from the piles, they were cat asander between the two linnes of way, when they acted as cross mleepers between the timbern without piles, diagrams being taken in all these variety of cases.

The instraments were not, however, alwaye placed in the positions ubove atated, thoy ware varied, both as regarded the places where jointis of the iron rails occurred, and also with respect to the joints of the timbers, as regarded their ponition with the joint of the rails. The experiments were likewise made on exnbankments and in cuttings ; and aleo on the longitudtual timbers where no piles existed.

It ras also found to be desirsble to ascartain if any motion of the rail upon the timbers existed, and consequently disgrams were taken by applying the instruments succesively to the rall, and to the timhers.

The next set of experiments were made upon the London and Birmingham Railyway, two of the instraments were here placed as near the chatry or points of support as posible, and the other midwey between them. Diagrams wre taken on 501 b . and 62 Ab , ralle respeotively; but the vertioal deflection only, was taken on this rallway, and on stone blocks.

Experimenta were likewise made with the same Instriments, on the Liverpool and Mancbeater Rallway, of both horizontal and vertical deflection, on 601b. rails with four foet beerings, and 751b, rails with fire feet bearings.

A more extended course of experiments were made on the Grand Junction Railway; on this line all the rails are of one weight and section, but they are pleced in some parts of the road on stone blocks, on other parts of the line on crose wooden sleepers, and upon the Dution Viadnet on longitadinal timbers. Diagrams were taken at varying rates of apeed, of both hortzontal and vertical deffection of rails supported by atone blocks, wooden crose sleepers, and lon. gitadinal timber bearinge reapectively : the inatruments were then applice to the ohaira, and diagrams of the detections of these tainen, and lastly, they were applied to the blockn, sleopers, and timbers reapectively, and diaprame taken of the depression prodiceed $b y$ the paseage of the tratis on these different description of bearinge.

Thic nert railway on which experiments were made, was the Meschester, Bolton, and Bury; this railway je constructed partly of continuous atone blocks, but mosly of continuous timber bearinge, with cross timber Hes, of tranmums, and without pilem. It became, therefore, an object of great insertet to ascertain the comparative effect apon the road by the peasege of the traine, orer continnous bearings on this line without plles, and on the Great Westorn Railway with piles. Experimonts were tharefore made, in every respect the same as those on the Graat Weatern Rallway, the inutruments beling applied successively to the rals and trmbers, Upon the stone bearinge reating upon masonry there was in fact no depreacion or yfelding whatever, and therefore theso diagrems, though tiken, are not given in the book.

The following fables will show the rertical and horizontel deflection of the rails and timbers in the toveral rarieties of appitication of the instroments, on the Great Westans and other sallways in parts of an toch :-

TABLE X.

great wegtenn railway.

Enginc.		Coaches.		Intrument applied to.	
Lateral.	Ferlical.	Lateral.	Vertical.		
-0102	-0991	. 0083	-0697	Single transon	
-0232	-1669	-0293	-1477	Midray	Pilea Purpect.
. 0102	-127.1	-0366	-0981	Double transom	
-0043	-1116	-0030	. 0827	Single transom	
-0136	-0894	-0111	-0616	Midway	Palses Cot.
. 0130	-0927	-0112	-0631	Doabletransmo	-
-0042	-1217	-0029	-0862	Single transqua	
. 0068	. 0918	. 0051	-3579	MidWay	Trawsom CEs.
. 0041	- 1188	. 0028	-0674	Doubletinutom	¢mancoa C.x.

TABLE XI.

601be. Fich-bulted Raily, 8 feet bearings on 'Blociks.

Indrwinent applial to the Rail at
Angle Cbair. Midway. Joint Clpafr. Bogfac. Coaches. Bugine. Coaches. Engine. Cracbea.
Vertical.
ditto
COHbs. Raile, $3-75$ beartags on Blocks
$0492 \quad .0260^{0} \quad 0633 \quad .0344 \quad 0372 \quad 0273$
TABLE XII.
LIVERPOOL AND MANCHESTEE RAILWAT.
62lbs. Parallel Raik, and 3 feat beariugs on blooln. Instrumerts applied to Rails at

Vertical.	Instrumento applied to Rails at					
	Enginea.	Conches	Engine.	Copaclues.	Engime.	Concti
	-0676	-0501	-0743	${ }^{0} 0415$	0445	-0240
	-0210	-0197	

TABLE XIII.
mancheatin asm solron mailway.
Inatruments arphed to Timber at
Tressome. Midway. Joint Midwey.

Vertical.	Tresuome.		Midway		Joint Mramey.	
	Bngtoe.	Conches.	Engine.	Conches.	Bngine.	Concies
	0980	00680	-0690	. 0440	-0861	ferl
		Inetrum	apptio	0 Raita		
ditto	-1007	-0681	-0587	-0331	-1310	-1604

TABLE XIV.
GRARD JUNCTION RARWAT.
Rails of 65 kb . four feet bearings.

Raile of 651bs. four feet bearings. Coachen. Instrument					
Lateral.	Vertical.	Lateral.	Vertical	. applied to	
-0111	0478	-0078	. 0259	Single chair	Rais 0
-0212	-0641	-0122	.0344	Midway	one Block.
-0150	-1366	.0096	-0906	Single Chair	
-0228	-1307	-0144	. 0855	Midway	8lecters.
-0800	-2161	-...	-1327	Joint Chair	Slecter
. 0200	-0283	-0135	- 0149	Chairs on Blocks	
-0112	-1095	. 0070	-0717	Chalrs on Sleepera.	
-0053	-0223	.0007	. 0174	Blocks	
-0125	-0821	. 0080	. 0311	Sleepers	
-0247	-1105	-0170	-0688	Ralls midway from Chair	Dutten Via.
.0350	-0272		Raila at Joint Chair	duce on
-0387	-0823	. 0265	- 0570	Chairs	Loggitodion
	-0808	-0633	Timbers at Chairs	Timb
-0138	-0574	-0089	-0404	Ditto Midway	

On an attentive axaniastion of the rexults of thowe experitaceses, ase hibited by the preceding tables, but more particularly on amaniming th diagrams themselves, and the meesurement of each, it wiH be soen thet stove blocks (except in come casen where they were not propwis meated), AFal decidedly the firmest, and most unyielding base; that there in not moeh fif ference in the firmnem of base between crom timber bearinge, and coneinone timber bearing without piles, as exhibited on the Grand Junction, Mancbester, Bohton and Bury Railways; but that there ha greater varker in the recults of the different experiments in crom sleepern than in coottowest bearinge.
It will likewise be seen, that on folated apports there in a greaberanoum of deflection shown in the rails than in the chairs; and atill lees deflection the blocks and wooden sleepers than either the chairs or rails. The bfereace from this is, that the rails in these casos wers not firens fixed dowe to the chairs ; and also that the chairs were not inmoveably seeured to to blocks and sleepers; and as the experiments comprebend a great mapy casa, it may be presumed that such is the case generally on isolated bearinge.

On the Manchester and Bolton Railway, the jointa of the rails rata on ant chairs, the rails being on either perts of thelr length taxed to the then bearings with iron clamps ; bere also we find a considerable yleldfor of the rails upon the timbers, the latter ahowing lens deflection than whea tbe inatruments were applied to the raila.
The experiments on the Great Wreatern Rallway, blew tn the table a leas difference of deflection between the rails and the tipbers thap any of the modes of factening either on isolated supports or on the continnows bearings of the Manobenter and Bolton Railway; and hance we may conclude, that the mode of fastening the rails to the throbers on thas railway by sorewe, effects a firmer junotion than any of the oetior modea of fustesing. On examining the table it will be seen that notwith ing the agintance of the pilles, the diagrams show a greater amomer of deflection of the timber beartagt of the Great Westarn Ratiwey then the gtome blocke, and quies as mnoh as the continuoas bearings without pline; the fin nese of base as shown by those experiments, is, therefore, less than with sume blopks, and not greater than with eontinuous bearings, withoat piles, bat lan thina crowe feolated timber beartogen. It gast, however, be ramarked, thras these tables show the dofiection on the Great Weatorn Railway, with eagines and carriagos mach hesvier then those uned in taing the deflections an the adiet
 deflections prodnoed by the pasage of the trins, accouitiog to the reppective
rystoms of working the milways at present in nse, and which may be conafCered as the practical resalt of the effect of the trains on the rails; edill, if we riah to know the actoal comparative firmness of base, we must take into ac-
 rea able to obtain the pressure upon the raile of the Great Wentern Raliway ry the enginet, there being wo welghing machinen on that railroad by which tifs could be accertaine, when thene weights are known, the comparinon can hen be made with the engines; the rright of the carriagea ate known, and he congparison can therefore be made with them. The woight on each thoel The Great Wostern Railmay carriages may be taken at about l-S tons, and (theoarriages on the other pailvayt at $1 \cdot 125$ tons; and connequently the de. lections have been prodnced with inonmbent weights, in the proportion If:3.
We come now to the effuct which the pilet have npon the firmnent of bave f the continums timbers on the Great Western Railway; the reatons as. laned by Mr. Branel fos adopting piles was, for the parpose of securing and olding the timbers down to the ground with much greator force than merely he welght of the timber itself, and thereby to effect a closer contect between the timber and the ground. It became, therefore, necensary to accertain whebex the timbern were held diwn to the ground, or if they were aupported by we pilea. To secomplish this, the instruments were first of all applied to the als with the piles in action, or without being disturbed, and the deflections then; the transoms were then divided near to the timbers, or betwoen the mbers and the pilen, the instoments remaining applied to the ralls, and the Aert prodaced by the eparation of the timbers from the transoms was thut bained; in admant all, if not in every case, the timbors foll, on the transoma -ing dirital, showing that the sction of the piles was not to bold down, but , unpport the cimbers. Tids wes aleo hhown vary conclusively in the effeot chibited by the dingrams taken, before and after the transoms wore divided; -the fizst diagram thken after the tranmoms ware dirided, showed a groater monat of defiection from the ariginal line of the rails, then when the piles ere in ection; it was found, however, that the raile did not rise to their riginal level, but that, in fact, a permanent dopreasion to a certain extent had sken place;-In continuing the experiments the deflection berame less, show. $4 g$ quite decisively, that the timbers were aupported by the piles, and that bey were not fu fact in wach close contact with the ground when attached to, a they were ater being detached from, the pilen. This was the result in vort intance. Moat of the diagrams were taken upon that part of the line ear to Paddington which had been recently packed, and being clayey cuusd proeepted a wet and apongy base, and the packing was not ro perfect i in mane other parts of the line; the extent of the deficetions on this part bull therefore bo taken as being more unfavourable than an average reault; ut on applying the instruments to a part of the line, relected as being in the ext order; the same relative results were exhibited; the cimbers dropped on nir division from the tranmoms and piles, and it was found that the amount idetection was leas aher the plien were detached than before, after the train ad ran lolong the rails for afew times.
Some part of the Great Wentern Railway is laid with continuous timbers, thoat piles; an axperiment was made ayon this, where the ground was not 0 most farourible, or similer to that where the diagrams Tere generally ten with plles, and deflections sforiar to the above were obtained; -an exurimant what howeror melo, and several diagrams taken, apmin on ombalirent with cimbers withont phis; when the result was an amount of deflection taeh leas than thet Where the pllos were in action, and very Hitle, if at all, ifaicer to that of moee blocke, talding into sccount the difference of the invist 4 wrigith At this plece, however, the cantling of the timbers was grenter yen arimagy, being tear inchas in dopth, the ganeral depth being oix to seven relicm.
The experimentin en tha Mmohecter and Bolton Railway, it will be seen, chibit a copalderabie monount of deflection, quite as much, if not greatar, no that of the Great Western generally, taking into account every circamance of she acantling of timbers, eection of rails, and weight of the ongine nd trimest
The pesult of the whole of these experiments is, that stone blocke afiond the rment bave; and that lhers doea not exist any material difference of deflec-
 ubture with holated anpports; the difference, if any, being in favour of conuuous beatingu.
The previove oberrvations upply to the vortical deflection only, during the rogreep of the experimente on all rails resting on chairs, it was found that in great meny eave . the rail wes deflected inwards, the great majority of cases, ovevery belag outrards; it bes been, therefore, extremely difficult to redace se resulte into a tebular form, some of the diagrems exhibting both invard ad ondrand dofective in the cane oxperiment. The cone of the wheel hav. as a lapedmoy to prese the rail optwards, and also the action of the fiange arkey die case teadoacy, it is yaite clear that whon the deflection is mawards, : mand be the result of some rocidental canse ; a wans of colidity of the bave (the blacks or sleeperss on the inner cller, or from the mil not bearing horisutally is tise chals, or at the proper inclination to the cone of the wheels. "pes the Grat Western Railway, the horizuntal deflection was invarimbly rutwand aod thits is no doubt owing to the particular construotion of that ved edmitting of a more perfoct and permanent edaptatioa of the rait to thit ope the wheak. Wapt of time proeladea me from going into the particalar molly erihlited by these onperiments on berimontal deflection; the genoral Ealt, howrever, appens to be, that they acsimilato very neeriy to the rertieal lefarion, both in thots natare and extent, on the dificrear deacriptions of natiog x_{0}
The rimainine pant of thin inguiry th tha lacter part of the third proposition,

the carciagea, and to what extent, an the Great Westorn Rallway, by the incremed width of gauge.

The solution of this queetion also appeared capable of being sobjected it the test of experimept, although not withont considerable difficulty. The motion of omaiagea on rallways being the sfloct of no many dintinct caumes, it was extromely dificult to contrive an instrament to deteet and record each motion separately.

For instance, any sinking of the blocks, or sapports of the rails, or the dafection of the rails themsalves, produce a corremponding depression of the wheels of the carriages on that wide where such yielding takes place;-2lio mebsldence or ahrinking of the base, or formation level of the railway, gencrally produces aleo an inequality of lerel on the two sidee of the railway; and these variationn of level between one side and the other, tend to produce a continual rocking motion in the carriages trausverwely, which is aggravated more or leas in proportion to the frequepey and extent of these inequalities of level of the two sides of the railway. The sanne cansee, riz. the tnequalitics of level, Ukevlse produces a pilching or undnleting molion, longitudioedly; and those two motions combined, the modulatary motion in the direction the corriages are travelling, and the rocking motion traversely, produce a vertical motion. Any changy likewise in the direction of the roud, throws the carriage wheels from a straight line egrinst the interior wide of the curre, and thus produces a latoral motion of the carriages, and when the curve agejn changes, or the lime of direction becomes atraight, the wheels are throun to the oppoaite aide of the ralle. The difierence of lovel between the raile on the two sides of the rallway, besides producing a rocking motion transvertely, causes the carriages to ribrate from side to side, in proportion to the exte:t of the inequality of the level; the depresaion in the fint instance causing the carriages to fall towands that side of the road, and the flanch of the wheel th pross against the rail, the conical form of the wheel Immediately throws it off towarla the opposite side; and we thas have a conllaual contost between the gravitation occanioned by the difference of level between the two ridee of the rallway, and the line of direction incidental to the conical sction of the wheel:-As thew effectis are continually in action, we bence find that the lateral osclilatory motion is the most predominant of all the rarleties of motion which ocetr on railways; and when a very high rate of apeed is attempted, this latoral motion is very conalderabiy increased, so much no that in extremely high rates of apeed a sort of sivinging lateral motion is produced, the carriage wheels on each side being thrown alternately back and formards againat the aldes of the ralle :-probably from the cone of the wheels, not having trme, in extremely rapid relocities, to accommodate itself to the proper line of direction.

Comaidering, therefore, the ratiety of motions in action at tho same time in railway carriagen, the different cansen by which these are produced, and the numerons adventitions olroumstances operating to increase, modify, or counteract them, it is not to be wondered that a difierence of opinion should exint in the public mind generally, as to the ralative smoothness of motion of railway carriages on different railroads ;-an increase of a few miles per hour in the velocity, not perceptible to a traveller, fill make a considernble varistion In the motion;-the number and nature of the curven;-a difference in the construction of the amrriages; -the ponition of a carriage in the train;-or even different bodies of the same carriage, all tend to infinence the aggregato amonnt of motion in railway carriage; and few, If any, of the causes whereby these differant motions are produced, are sensible to the observation of a passenger, at least to the great majority of pasengors; they judge from the quantity of motion, withoot refereuce to the carees, and hence the difference of opinion, which has artsen as to the compartive amoothness of motion on mome of the existing radivays.

Tu the mant attentive obsarver, knowing all the canses which produce these rariety of motlona, it woald be exiremely difficult, if not impossible, to jadge from observation of the relative amoothness of motion, or at any rate of that Which properly belonge, or has reference to, the constraction of the rallway.

There circumstances, therafore, rendered it almost absolutely necessary to gubject this part of the inquiry to expertment, it not appearing posaible to arrive at any conolusive determination by combon observation; and after considerable difflculty a set of inatruments were contrived, which subjected all the different motions of railway carriages to experimert, and whlch produced diagrams of all the oscillations of the carriagen from one end of the line to to the other.

The different kinds of motion proluced on railway carrisget may therefore be comprised within the following heads, viz. :-
lst. A rocking motion transversely, produced by the inequalities of the lerel of the two sides of the railway.

2nd. A pitching or vertical motion, in the eentre of the carriages, being the combined action of the alternate rocking motion of the two fillos of the carriages, produced by the andulations of the road.

3rd. A lateral, or oscllatory motion horisontally, produced also by the Inequalities of the road, and the other cances previously ennmerated, throwing the carriage wheels from side to side against the sails.

Having thus, agreeably to your instructions, and to the extent to which the time and opportunities afforded has enabled me to eccomplish, investi. gated by oxperimental data and inquiries all the properties of the system of construction and working of the Great Wostera Radlway, I now beg to lay before tou the conclustons which appear to me to be the result of these inwestigaicons. I think it my daty however, in this place, to represent to yuu that i have not been able, in draving ont this report, to ardil myself fully of the vart mate of valuable information ellicited in the course of this inquiry, owing to the short period, (ouly six days,) between finishing the experiments and belng required that the report shotild be printed; and I truat that this Will be sonficiout excrie for the imperfect mapper in which it is presonted
to voar notice; at the aame time, I beg to add, that I have in the short period allowed to me, availed myself of every fact or discovery of a practical nature, which appeared to me to bear upon ihe question, or to be to any way conducive towardn your interests. I hare, in the appendix, fiven in detail all the experiments which 1 thought woald be of any utility, and from which, at any subsequent period, the valuable information contained therefn may be extracterl and investigated; and it occurred to me to be rery important that theze docnments should be given in such a manner and in such detail, that it should be in the power of rourselves or your engineer at any time, to cramine into and compare the conclusions which I have arrived at, and which appear to me to result from these experiments, with the experiments and inventigations themselres

Widh of Garge.-Pursuing the same arrangement as set out with in the first part of this report, I shall nor consider in what manner, and to what extent, the results of these investigations and experiments bear npon the reasons which induced the aloption of the increased width of grage, and the particular construction of the Great Western Rallwny.

The first is the attainment of a high rate of speed. The experiments on the pomer of the locomotive engines ahow, that the engines at present employed on the Iondon and Birmingham Rallway accomplish an average rate of speed of 32 miles an hour, with weights equal to that of a first-cless traln, (Table III.); but that engines in the proportion of $263: 165$, more powerful than these, are in existence on the same width of railway. The less powerful engines accomplish a rate of speed within three miles an hour of the most powerful engines on the Great Western Railway, (Table V.); and, therefore, the presumption is, that if the more powerful engines on the ordinary railways had been tried, they would have accomplished a higher average rate of speed than the most powerful engines on the Great Western Railray, the effective power apparently yielded by the former being much greater than the latter. But we now find that a cause exists which perfectly accounts for this comparative diminution of effect, and that it is, in fact, if not almost entirely, attribatable to the greater atmospheric frontage of the Great Western Railway carriages, than those npon the London and Birmingham Railway, and the powerful effect which the atmosphere has upon the resistance to be overcome.

The experiments on atrospheric resistance being as yet confined to the cartages of the narrow gauge, we cannot salisfactorly determine what the precise increase of resistance will be by an enlarged frontage; the carriages of the Great Western Railway are 10 feet high frmm the rails, and 9 feet Fide $=90$ square feet, whereas the London and Birmingham Railway carriages are only 9 feet high and 63 feet wide $=60$ square feet; but an open space exists below the wheela, which is only partly filled up by the fire-box of the engine; taking, in each case, a foot from the rails to be olear space, the relative area of frontage will be $81: 53$. Every circumstance being the same, wo may snppose that the atmospherio remstance will be as the area of frontage, but the figure of the engine preceding the carriages, the comparative length of the train, and several other circumstances, may affoct the result; and, therefore, until the question has been satisfactorlly determined by expertment, no comparative standard can be asalgned of the relative amount of atmospheric resistance to trains of different areas of frontage.

For these reasons, therefore, I shall not go into an analysis of the presumed resistance of the Great Western trains, as compared with those of the London and Birmingham Railway; for the same reasons, Hkewiee, it will at once appear to be impracticable, with the data we are at present in possession of, to determine with any degree of accuracy the comparative adrantage of large and smaller driving wheels to the engives; 一the incontrovertible conclasion, that a very large proportion indeed of the resiatance of railway trains is attributable to atmospherical resistance, is quite sufficiens to account for all the differences of results between the engines on the two descriptions of railways; bnt to what extent, and what portion is attributable to atmonpliarical resistance, what part to the engines, and what portion to the carriages, varying as both engines and carriagen do, in the diameter of their wheels, cannot be conclasively determined at present.
There 100 be little doubt that the atmospherical resistance variea at least in the ratio of the square of the velocity; considering, therefore, this rapld increase of resistance, it appears to me, that no other conclusion can result from these experiments, than that it is not advisable to attempt an extreme rate of speed, and that 35 miles an hoar, with the existing engine powers, may be considered as tho limit of practical speed for passenger trains; combining economy with regularity of transit, and giving due weight to the necessity of accommodating the public, as regards colerity of travelling, to the utmost practicable extent.

If such a conclusion ia warranted by these In restigations and experiments, then it results that it is not necessary for the altainment of anch a rate of speed, that the gange should be seven feet.

The next proposition is the mechanical mdvantage of increastng the diame. ter of the wheels, without raising the bodtes of the carriagen. We soe that there is a diminution of friction by the increase of the diameter of the wheels, but It is doubtful to what extent this is modified by elevating the bodies of the camiages; a bromd gange by allowing the bodies of the carriages to be placed within the wheele, and thus to reduce the height of the carriages, and consequently diminish the area of frontage, is an advantage, considering the great emonnt of resistance arising from the atmoophere. Then to carry ons the premises fully in this respect, we must not give any gremter width of frontage than is absolutely neoespary for that purpose; it will depend upon the result of forther inquiries, as to what superficies in terms of length and wideh of tradn afords the requisite accommodation, and presents the leant reasiatance to the tomophere, whioh ham not been yet determined

Tho natt propesition; that the incremend whith of gauge winits all worts of
oarriages, stage comches, \&c., to be carried within the rheels, in rendils answered; any width of geuge which reduces the height of these carringen ibore the radls, will be preferable to that width which doen not edmit of anch an arrangement ; aud the ordinary width, not admitting them within the wheth renders an increased width, in this respect, advisable, this can, hovercr,be effected with a lesa width than seren feet.

Increased faclitios for the adoption of larger and more powerful epines, for the attainutent of a higher rate of mpeed, has been answeral previousir: it not appearing necossary for such a purpose that the widu should be serin foet. The remaining proposition is, that a wider gauge aforda increant stability to the carriages, and, conseqnently, incpeased steadiness of motion. The diagrams given will show how far this has been effected on the presert portion of the Great Western Railway, and certainly these docnmentu would prove that this has not yet been accomplished. Considering, hovever, the eauses of the different motions of railway carriages, there can be no doobt, thet an increased width of gauge must tend to produce that effect. In the present instance this has been connteracted by the construction and pranit condition of the road and carriages; and therefore it appears to me tho oair conclusion we can come to is, that in similarly constructed railways the wiler gauge will afford greater stability and steadiness of motion to the carriags.

The objections alleged againat the increased width, as detailed in pege s of this report, no doubt exist to a certain extent : the expense of forming the road track of the railmay is increased. This Mr. Brunol eatimates at 181,840 . for the entlre line. The carriages are larger and heavier, and so fu, licr. fore, as the weight acting upon the rails may be objectionable, mast be ad mitted ; but I find that Mr. Brunel's atatement of the relatire weight, per pls. senger, given in his report at the last meeting of the ahareholders (vide Jour. nal No. 12, page 324, vol. 1), confirmed by my evquiries, which shows that there does not eriat a greater weight, per passenger, with the Great Weskm than with other carriages.

The increase of friction in passing the curves does not apply with mach weight in your case, the radius of these boing so greak. The comparaine expense of conatruction of the engines and carriages are not maticrs of gras moment, as there would not be any material difference if the engines ver similarly conatructed; and the amount, per passenger, is nearly the ame with the carriages. The next objection, that it prevente a junction with other lines, does not apply with such force to the Great Western Revilasy, a it would to some other lines; that railway being complete of itell betren the two sides of the island. How far this may be affected by the brenches I am not capable of judging, it being more a commercial than an enginaring question; and an opinion could only be atisfactorily given, by an intimum acquaintance with all the circumatances attending the required commanichion with the adjacent country.

The last objection, that there are no advantages gajned commensurute rith the increased expense and inconvenience of such a departure, and conpetion from railways of the ordinary width, does appear from a full consideration to be substantially confirmed; at the same time I must be allowed to ary, thet there are counteracting advantages, incidental to an increased width of gange. above that of 56 inches, which should not be orerlooked.

Almost all the results erising from these enquiries go to establish a cunclo. sion, that 7 feet is beyond that width which may be considared the beat ; but theme inventigations are far from conclutive, in the present atale of our infor. mation, as to what other width is, under all circumstances, the most adrialle to be adopted. Under these circumstences, and considering the great norifice of property which would result by the removal of the presend rilt, and the sabstitution of any other width; it appears to me that auch a mep wobld not be jnstified by the result of these enquiries. We have only determign one part of the proposition, viz., that seven feet is too great a width; wi herr not determined the most important section, to what injurions axtent it riu operate practically. The only resulta bearing upon this is the incramd power required by the enlarged width, and that is in some respects aberi br the increased consnmption of coke; which, as per table V., sppesrs 10 be with the North Star, $21 \frac{1}{2}$ lbs per mile, and with the Æolus, $8 \frac{1}{2} l \mathrm{bs}$. per mile widi. tional, the former, however, effecting an increased rate of speed of tro mila an hour. It is also necessary to state, that the resulte elicited in the coast of this enquiry shew, that considerable modifications may be beneficidy made in both engines and carriages; and, therefore, untll we have datermind. in the most satisfactory and conclusive manner, the preciee extant of injor! arising from the retention of the present width of gauge, and what wide bris effects all the objects required, and which, ander all the circumatancea, is wow onnducive to the interests of the company, and affords the greatost ncconato dation to the public, it appears to me the present width shonld be retuined.

Conefruction of the Rood. - The question of the construation of the rid comes next nuder consideration, and here, I presume, there will be lear dif. culty than iu determining on the width of grage. No doubt can aria, attet these experiments, that the piles do not contribute to the firmness of bee a the railway, their action seems to prevent the oontact of the timbers with th groand; and it is unquestionably proved, that the pasage of the engires and carriages along the ralls, contributes, with a more powerful effert, to conmbi date the road, and produce a greater firmness of bearing to the rivis, than wh packing connected with the piles.

The principle of having at the end of every 10 feet, vie. at the tranmons, comparatively nnyielding bearing, with acantling of timber intrement very far short of the requisite strength to support the weight of the eagin and rains, runders it extremely difficult, if not impossible, 10 prodoce and iraius, runders it extremely difficult, if not impossible, wo prodon in effected by any system of packing, dependent upon manaal labour. If eon tinuous bearings are preferable to leolated aupposts, It appears to me thet in mont eocmomical, and nont periect plan of comerraction of contimen dimw

Breaings, is with common trangoms; and that a more anlform and firm base -ill be obtained, by depending on the weight of the trains to ulimately conEoldate the bese of the timbers, than upon any system of piling, preanming always, that a proper and firm base is prepared in the firat instance.

The next consideration is, whether continuous timbers or isoleted bearExags are proferable; the experiments on deflection show that there is a erreter amoant of deflection on the continuous timber bearings on both the Creat Western and the Manchester and Bolton Rallways, than on stone blocks on the other railways; the latter will consequently afford the least restatance to the carriages; and the weight of the stone blocks intercepting to a considerable extent the impact of the trains, they afford a permanently firmer buse. We have seon, however, that in high rates of speel, the resistance of the roed itself is small, compared with the aggregate resiatance; and, therefora, if continnons timber bearings are preferable in other respeots, a Iitede additional friction cannot be of very great importance.

There is no doubt that timber bearings produce less noise in the carriages: and It has been urged with considerable force, that the wear and tear of the migines and carriages are less than with stone blocks. I have endearoured to ascertain thin, which is a very important consideration; but the returns of the expenses of the different railways do not, in my opinion, produce conclusire eridence on this part of the subject. The impression produced in $m 5$ mind by the information obtained, however, is, that with longitudinal cimber bearings of adequate Hgidity and strength, the injury to the engine and carriages will he less than with stone blocks. Thu case of the Dublin and Kingstown Railway has been often quoted, as exhibiting an instance of the great destruction to the engine and carriages, and road itself, by the use of whone blocks; and the cross wooden sleepers in Chat Moss, and the American railpays, as instances of the utiny and cheapness of reeping in ropair, the timber bearings. Every engineer, however, knows that the Dublin and Kingutown ralls were much too weak for the stone blocks on which they were placed; and the inferior rate of specd on the American railways affords Do cifterion whereby to compare with the effect of stone blocks in this country, where a moch higher rato of speed is practised,-the peculiarity of base of Chat Moss lirerrise, does not admit of any comparison rith stone blocks on a firm foundasion. Notwithstanding this I am inclined to think, that the wear and tear of the carriager and engine apon timber bearings of a proper strength will be less than upon stone blocks; -of the comparative dnrablity no definito comparison can yet be made.

Thesc experiments, however, show that the present scantling of timber on both the Great Western and the Manchester and Bolton Railkays, are mach too shall for the loads which come apon them; and that they do not present - cofletently rigid and nnyielding base for a railway. One set of experimenta (No. 7, Part I. Book A.), on the Great Weatern Railway, on the cantinuous timbers withont pilcs gave very satisfachory results, but here the scanting of the timber was 10 inches; it appears to me, tberefors, that if continuoas timber bearings are used, they should be of a scantling of timber greater than that at present iu nse; and it appears, also, that a more rigid section, and grenter weight of rail should be adopted.
This will, no doubt, make the continuons timber bearings more expensive than stone blocke, against which we have leas noise, and a smoother, and a more perfect road for high rates of speed; sufficiently strong continuoum timbers present, in fect, a more perfect, but a more expensive line of road than stone blocks; of the comparative durability no satisfactory conclumon can be drawn. At a lower rate of speed, and where economy is an object, tone blocks bing cheaper, will be preferable.

I bave not in this comparison noticed croms timber sleepers, as compared With eondnuons timber bearings; as temporary roads, during the consolldation of embankments, the cross aleepers will be preferable; bat the result of the experiments on deflection show, that there is not onily a very coniderable ylelding of the timbers, but that there is likewise an fmperfect fasteaing between the chalrs and aleepers, which cannot be romedied without increased expense and difficulty; this road is much oheaper than eithor adequatily strong continuous timbers, or stone blocks, but it is less perfect and cannot be considered as a permanent descrlption of road.

With respert to that part of your request, which relates to the examination of the Maldenbead Bridge; while on the works in September last I minutely examined the atete of the arches and the plan of construction;-the cause of Its fallore appeared to me to have been occasioned by the centering being prematarely drawn, and before the cement was perfectly hardened and had inken atet in the finterior of the brickwork forming the ring of the arch. Mr. Branel at that froe pointed out to me the remedies which be proposed to speir the d-fects, in which I concurred, and those I understand have not yet been corppleted.

In concinsion, i truat that the magnitade and rariety of the objecta, and the great and impoting interests embraced in this inquiry, added to the great remponsibilty attached to the investigation, will be a auficient excuse for the protracted time occupied in making the experiments; and I trust, also, that these reanons, logether with the unexpected and important reaults which bave arien oot of these inquifies, will be deemed by you and the shareholders at lage, to be a sumclent apology for the delay which you have oxperienced in not reeeving thls report at the time originally contemplated; to comply whith which, to the atmost axtent in my power, must also be my apology for the faperieot manaer in which thin docnment is presented to your notice.

I am, Gentlemen,
Your most obedient servant,
-
NICEOLAS WOOD.

REPORT OF I. K. BRUNEL, ESQ.

TO THE DIRECTORA OF TEE GREAT WESTERN RAILWAY COMPANE.
Gentlemen, - I have now before me the report of Mr. Wood, the latter part of which I received only on the 17 th. The appondix, without which, for all parposes of investigation, the report is incomplete, I have not yet received.
Considering the great mass of valuable matter contained in this report in the shape of numerous experimentr, of caiculations founded upon them, and the discunsion and examination of the results and their consequences, the collection and consideration of which have occupied aeveral persons for about three months, it will not surprise you that I should find a few daye a very short period in which to make myself sufficiently master of its contents to be able to lay before you my observations thereon.

The extremely short time which circumstances ellow me will prevent my entering into a detailed examination of the varions tables of experiments which appear in the body of the report, or, in fact, doing more than refer to the principal points and those general results which appear to hare mainly influenced Mr. Wood's opinions. Fortunately, the clear and methodical manner in Which these various results are arranged, and the falr and impartial way in which they are treated, will render this an easy and comparatively an agree. able task, and nill enable me to select such points as I consider most important, and to mequrate such facts and conclusions as relate to these particular points.

The satisfaction which I feel in approaching a subject, when treated in this manner, is, however, very much diminished by one source of great regret ; and if in the conrse of the following observations I should have occasion to differ from Mr. Wood, either in the view he takes of the reliance to be placed on, or the consequences resulting from, any particular experiment, I ascribe this difference of opinion almost eutirely to the cause which I shall refer to.

I think it is deeply to be regretted that Mr. Wood should not have been able himeelf to hare attended to and conducted all the experiments. I do not mean to imply the slightest doubt of the accuracy of the records of tho facts as they were observed; but that constitutes but a small part of the duty of collecting evidence upon doubtfal points, particularly when they relate to queations of mechanics and science, which may be affected by a great variety of causes, and where the results may be infuenced and entirely changed by the manner in which they are obtained.
It is certainly my opinion, that had Mr. Wood personally superintended the oxperiments; had he brought his own practical knowledge of the subject to bear upou them; he would have dincovered many operating and interfering cansen, which oither would havo led him to repeat bis experiments by other methods, or to explain apparent anomalies, and thus, in my opinion, upon many of the most important points to come to very different conclusions. But more especially do I think his opinions would have been changed upon all those points which are necessarily capable of alteration and amendment by the knowledge and experience daily gained in the working of a system new in many of its details; and that before he drew dofinite conclusions, fuunded, inevitably, apon very imperfect data, be would have made a larger allowance for that progreselve improvement which practice, observation, and experience, never fail to produce.

To no part of the syatem do these remarks apply more strongly than to that of the performance of the locomotive engines, and the question of the practicahility of attaining high apeeds; and as almost the only conclusions arrived at in the report apon which I think it necessary to eprress any materfal difference of opinion, are founded entirely upon the resulte of experimente made to determine these pointa, I shall apply myself principally to the conderation of them, and the experiments by which they were obtained.

In order to show that I am not attaching undue importance to any one part of the report, or to any one section of the expertments, I shall refer briefly - the general arrangement of the report, and to the order in mhich the conclusions are artived at.

Aftar stating the general questions to be treated, and the adrantages and objections which have been arged for and against the plans which have been adopted on this railway, Mr. Wood arrangea under three principal heads the poluts to be determined by experiments, viz.:-

* Itt. The question of the atcainment of a bigher rate of apeed than on other raliways; whether the increased width of gauge is, or is not, either necessary or beat adapted for the accomplishment of thit object, and to what extent.
4gnd. The mechenical advantage or diminution of friction, by being enabled to increase the diameter of the wheels without raising the bolles of the carriages; and in what respect, and so what extent, the friction or resistance of the carriages is affected by, or bears upon, the peculiar construction of the road.
"3rd. The comparative advantage or firmness of base, or road srack, of the Great Weatern Hailway, with continuous timber bearings, either with or without piles, and if it does or does not produce a greater stendinest and amoothness of motion to the carriages, and to what extent.
"These were the questions," the report continuen, "which it appenred to me could not be determined in any other was than by experiment, but which appeared to be capable of molution by that method, and which likewise appeared to constitute the foundation of the entire system."

The first division consiats of summaries of experiments, the detajls of which are to be given in an appendix, and of obsarvationa upon the performance of the Great Western engines, an compared with those of other railwaya, and the comparative performance of all at different velocitles. These conatiute the first section, and occupy the report to page 63. From theuce to page 65 of the report it devoted principally to some experiments mede upon the resiatance of the air to the moving train, with a view to aecount for, and to ascertale the cances of, the result epparently obtained in the experimenta
reoorded in the preceding section. The third seotion, from pages 65 to 68, is devoled to the inventigetion of the stability of the rails and carriages. The remainder of the report is oecupied with the conclusious arrived at, fonmed upon the preceding observations and reandic.

As regarda the construction of the roml, to which the third section principally relates, Mr. Wool appears to be or opinien, that for bigh apeeds, conunuoun longitudizal bearinge of timber form a good road, and thit the mode adopted on the Great Western Railnay of securing the rail to the Limber is good; but that the syatem of piling is bad, and that the weight of rail aud menntung of dmber hitherto adopted on the portion of the line completed, are insufficient. .All this is in perfect accordance with the plans propoeed for the sature construction of the road. A rail considerably stiffer and longitudinal timber of greater mennuing are prepared, and a plan has been recommended to you and approved of, in which the use of the piles is abandoned. Though I do not, therefore, differ from Mr. Wood in his results, I think it right to ray here, as regards the experimenta themeelves which are recorded, that those upon the deflection of the rails of the Great Western Rallway necessarily give a much less favourable result than would have been obtained had an average been taken of experiments over the whole line: theme experiments have been confined almost exclasively to a short space of about two miles in the clay cutings in the neighboartood of Paddington, where we have always met with the greatest difficultien, and which is andoubtedly the warst part of the road. I conclude that this was accidental, and that want of time alone has preveated further experiments being made; nevertheless, the reaults must not be taken as a correct average of the line. As regards those upon the comparative smoothncss of the carriages, I am bound to say that I doubt the accuracy of the instruments. I alwars maintained tbat they were not correct in principle, and werc quite capable of indicaling greater movements in an easy carriage or on a good road, than in a rough carriage or on a bad roui, if the motion of the former should bappen to coineide with the natural motion of the instrument ; or, if the former should be of a character to which the instrument, from its construction, might be more susceptible. If the instrument were good as a comparative measure, it would, of course, in each experiment, indicate the rough and smooth portions of our line. Now certalnly, according to the Table 15, there are no indications which would enable us to point out cor. rectly these different parts of our line, although they are distinctly perceptible to the traveller, and well known to ua. And, upon turning to the Table, and the correaponding portions of the line referred to, I find, from an exuct know. ledge of every part of it , that the nambers indicate rather the reverse of the fact, giring the lowest amount between the second and seventh miles, which is a hed part, and the higheat between the seventh and fifteenth, where the road is good. It is not, however, upon this discoriance in the results that 1 fuand my objection to the instruments nsed. They might have been correct, whilst the instrument was faulty. But considering the principles opon which they Fere constructed to bo unsound, and as I do not hence attach much Importance to the results, I only now allude to them, to prevent my silence being misanderstood.

But, in the absence of an accurate instrament, the public are perhaps most competent to determine whether, on the whole, they find the travelling on the Great Western Railway as comfortable, and the motion as easy, even at present, as apon other fines; and this, notwithstanding the shorter time our roal has been opened, the greater speed of our engines, and that as yet we work under all the disadrantages of new tools (carriages and road inclusive), in which experience is absolutely necessary to adapt the variout parts to each otber. Unless, indeed, inatraments are contrived which shall separate the different sources of motion, and measure them aucurately, they will hardly afford as correct information as the mere sennations of a care. ful obeerver.

Upoa the question of the assamed amount of resistance from the air, at deduced from experimenta made upon that pert of the Lirerpool and Manchester Reilway called Whinton inclined plane, if, practically, the high speed be attain. able, us I will prove it to be without the extravagent consumption of fuel which was sapposed to be unavoidable, it is perhaps unnecessary to occupy your time at present with an inquiry into the subject. But as it has been looked apon as the discoviery of a new cause brought into operalion, from which we are to apprehend new and hitherto unexpected results, I must say a few words upon it. The realstance to a body moving through the air has long been known, and although perbaps not with perfect accuracy, fet tables giving a near approximation were made and published sixty or seventy years ago, by Smeaton, (Phil. Trana. 5 lit vol.,) as well as by other eminent men, and are now to be found in mote elementary works.

Any oalcalations foumded apon these Tables shew that resistance of the atmosphere is rery considerable, sind varies in some ratio approaching to that of the squares of the relocitles. I have long since, and frequently, made such calculations, which I belleve, if judiciously made, would give more correct reaults, though not nearly so large as the experiments before us; they wonld at least be free from soveral very terious sources of error.

That there must have bcen some great sources of error is evident from the striling discrepancies between the result of the experiment on the Whiston plane and every day's experionce upon it. The paseenger train, in deecending this plane, whith the stean shut off the engine, which then carrues eome conaiderable resistance, frequently acquires'a very high volocity, exceeding forty miles rather than thitty miles per hour, and reqniring the use of the break. This I have been ocenr without any farnuring wind, while in the experimenta, notwitistanding the assistance of a brecze, the carriages did not acquire a velocity of more than 324 millen jer honr. Althongh this is so contradictory, there is nothing really inconsiatent with the full operation of remistance of the atmosphere, but merely an erident indication of the circimstances beling quite diesimilar in the experiment from those which occur in actual practice.

Again; in the experiments themmelven, a circamstance is mentomed which destroys the apparent hgreement between the reanlt and the theory, and which Fould prove that the resiatance of the atmospliere in even much greater than is stated, and In fact maken it so exceasive, and so different from the reault obtained from the experiment on the Madeley inclined plane, which is also given, an to destroy any dependence noion either of them.

It is atated in p. 65, that "there was a pretty strong wind directy in favour of the motion of the train, down the Whiston plane." Now, 10 miles mn hour, Is below the velocity of anything that can be called "a pretty atrong wind," -but assame 10 milem, no as to be on the safe side-deducting this from the 324 miles, we have $22 t$ es the real velority of the train passing throagt the air, or the velocity to which alone any atmospheric resistance could be due. At this velocity, $2,31 \mathrm{bs}$ per aquare foot would be the utmost effect that could be produced by the air, and the 329lbo ascribed to atmonpheric resintaner would therefore require 143 square feet of surface: if the four carriages had been placed by the side of each other instead of bwhind, this surface would havily hare been obtained; or, again, if the 3291 lbs . Were due to the atmon. pheric resistance of four carriages of the narrow gauge at $22 t$ miles per hoar, at 40 miles the same four carriages would meet the resistance of $1,0631 \mathrm{ha}$., Which alone, without any allowance for firction, or for the increased width of carriages, would be a greater registance than the North Star engine is capable of orercoming. Bnt the North Star, as I shall herester show, does calse a train of meven carrieges, welghing 48 tons, and having seats for 188 paseangern, at 40 miles per bour, which according to the above date would require, Including friction, a trective power of comewhere about $1,5001 b s .$, probably nearly doable that which the engine can posadily exert at that speed. But these dincrepancies are eacily soconnted for.

The experiments werc madearith very light loads, $15 \frac{1}{2}$ and 18 tons; and consequently the assumed comparalive resistance for the air, which world be nearly the same oven hed there been 50 tons, appears much larger. Tibr fiction of 50 tons would have been 285 lb , and the atmospheric resiatasce being still 3291 bs ., the relative per centege of the total reaistance would have been 44 and 56, and to the 44 per cent. has to be edded, all the friction of the engine itealf, which is aleo a constant quantity independent of any resispance of the air; taking this at 15, or one-thind of that of the trains, the proportion becomes 51 for friction, and 49 for some other reantange, instad of 22 and 78.
But the sources of error to which I have alluded are much more serions, and appear to me so incapable of measuremont, and conerquently of correetion, as in render the experiments uselem.

The circumstances were not really, though apparently 0_{0}, in any one point similar to those of an ordinary train in motion. In the first place, the carriages are sent with the square end to meet and receive the full readstance dae to their aurface, which is totally different from the case when the engine precedes them. In the next place, this resistance is acling encirely againet the front of the first cerriage of the train, while the motive power, vix. the gravity, in behind, that is, acting npon each carriage, and puahing one npon another. Everybody experionced in railways knows that in such a case the carriages are thrown out of aquare, and a degree of resistance created which would alone account for the whole.

The ullimate conclusions, however, at which Mr. Wood arrives on anl the principal points, will, upon perusal, be foupd to have been governed by the results of the experiments upon the performance of the engines, and the as sumed resistance of the trains at high speed; the experiments apon the resist. ance of the air being made to ascertain if this asammed incroase of reasetapse could be eccounted for.
The mechanical advantage of large wheals for the carriages is, of comrm, admitted; but high speeds heligg assumed to be practically of economically unattainable, the reduction of friction is considered unimportant. I shail now, therefore, consider this brazch of the mubject-the performance of the enginea.

The locomotive engincs ranning upon the ordinary railways are the result of nearly ten years' experience; during which time the moft talented mana. facturers have been constantly engaged, not in invenling any new constraction of engine,-for certainly, seven, if not eight years siuce, Mewirs. Stephenson constructed, what, in form and general arrangement, was exactly similar to that now made, -but simply in sdapting and proportioning the different parts the one to the other, and by such trifliug changes, If thoy can be called so, important improvements have been effected, and greater speed and economy attained.

On the engines mada for the Great Weatern Railway the aame experienced manufacturers have been employed; but as a higher apeed was monght a larger craporating surface of boller was required; and many of thome proportions which had been long atudied, and in which perfection had to a great extent been attained, were necessarily altered: and yet these machines, brought into operation without the possibility of any suffiofent previous triale, in which their defects could be dincovered or improrements introduced, ano taken as the full measure of what can be effected in, the new syatem of which they form a part. It is certainly contrary to all experience to suppone that they ahould at once be well adspted to a new syttem; for not only would this hare required more foreright than the mont eminent of those enigaged in their constraction oould possibly pomean, but it involved a departure from many rales in favour of which long and succeatul experience had, to a certain degree, created a prejudice.
The axperience of at least some manily of the actanal working of these enginem, and that at a time when wo ahould be sufficiendy free from thl the emberrassments of the first openiog of the bue to allow of such alterations being tried as appeared likely to effect improvementa, which invalven the aritity to throw out of work any engine upon whioh it might be neveseary to make the
trial; mone such short exprience and anch trials were at least necossary to intog the syutem even on a par with others long previoualy in operation; but this opportunity we have not yet had.

From the results obtained op to the prosent time, therefore, little could be boped for beyond very clear and decided indications of all defecta, while the adrentages were atill to be acquired; and if, ander anch circumstaneen, the performance had been nearly equal in that obtained on other luren, with the berpeft of long experlence, I should hare been padialed We should have had a righe to expect great impmoements; we ahould have started from the point at which others had arrivel; and when we had attained the amme relative perfection in all past which they had, with all the adrantage of their previous experience, and which we might calculate apon doing in a much shorter time, Wr ehoruld be as mach in adrance of onr present state as they are now of the ctate in which thoy were some years ago.

Bat I am prepared to shew that we are now in that position; that the per. formance of our engines is not merely as greas, but greater, than that wbich has yet been attained on other lines; that those changes and improvements to which I have alloded arv jnst commenoed; and thal, even annce Mr. Wood made his experiments, the adrance has been so great, that if he were now to repeat them he must arrive al totally different conclastons.

Tables III. and IX. of his report give the performance of engines with different loads on the London and Birmingham, and on the Great Wertern Rallway. From them it wonld appear, that on the Birmingham Rallway the same engines which took 60 and 64 tons at 24 and $25 \frac{1}{2}$ milen fer hour, were ouly capable of taikng $34 \frac{1}{2}$ and 39 tons at 324 and 39 miles per hour, with neerly double the consamption of coke per ton; while on the Great Western Railway the same engine-the North Star, was capable of carrying 62 tons at 38 miles per hour ; only 38 tons at 37 miles per hour, and 16 tons at 41 miles, and to obeain which last additional velocity of four miles per hour the con. snmption of colve per ton was more than doubled.

Sach an enormons diminution of effect by a comparatively small increase of speed, if nuavoidnble, or neceasarily consequent on the increased resistance of Obe train, would undoubtedly jastify the conclusion arrived at by Mr. Wood, that to attempt to exceed 35 milen per hour is not advisable; and conseyuenlly, that 80 far an the system of the Great TVeatern Railway was adepted for high velocitles it was unsuccessfal. But these conclasions are founded apon the statements above referred to. Experiments have since been made giving reyy different results, and I ean prove, that if an engine be properly constructed for high speeds in the manner which I have always proposed, that there is no such of immense sacrifice of power incidental to an extreme high rate of speed, or the accomplishment of a rate of thirty-etght or forty miles per hour above that of thirty.two or thirty-five miles;" (page 68;) and that the amme engine, which was then oaly capable of taking mirteen tons at an arenage velocity of firirty-eight and a maximum of forty one miles and a helf per hour, is now capable of taring forty tons at an arerage velocity of forty milen per hour; and farther, that the consumption of colee per ton, so far from boing extrangent, is not eo great en that of the engines on the London and Birmingham Rallway, when only travelling at a mean rate of thirty miles per hour.
The experiments here been made with the same engine and the same clasa cartiages as those ased in Mr. Wond's experiments, and in every other respect conducted to the same manner, and without any attempt to diminish the reatstance of the air, which may be done to great extont, and which as I shan hereatier have occaion to state, was always my intention, and has been prepared for in the construction of engines and carriagea.
The comparison between the parformance of thin engine in September lant and at tbe present time will therefore stand thus:-

	Lead.	Average	Conaumption of Coke
	Tons.	apeed.	per ton per mile.
September,	16.9	$38 \frac{1}{4}$	2.76
Deceraber,	40	40	.90

Prom which it appears that in lesa than threo months (the change has really heen enfected but lately) the performance of the engine is nearly trebled, while the conmumption is reduced to a moderato quantity, or by two-thirds of that of the former experiments.
The explapation of this change is easily given. The great diminution in the useful effect of the engine in the former experiments did not erise wolaly from the tneremsed resistance of the train-which might have been more difficult to overcome-but principally from the diminished power of the eagine at that speed. This might appear, at first sight, to bo the aame thlong, but sach is by no meana the cave. The increased resistance of the load to be moved might arise from canse which could not be controlled. Tbe dtminlahed porrer of the engine might be a niechanical defect, capable of being remodied, and investigation has proved the truth of this most satisPectorify. The engines at that time were so regulated by the proportion of some of thelr parta, that their power was crippled when the speed was in. creand The great quantity of atemm which is required, could not, in fact, exape, and If allowed to escape more freely, there wus a deficiency of dran in the farnee. This wan difficulty inctdental to the high speeds, and alwo to the increased diameter of the driving wheels, but it is a difticulty which is eapable of being overcome, and, in a great measure, has been overcomes. There is, however, no doubt, still room for improrement; but if, in wo short a tme, we have mole this great advance, it is fadr to premume that 0 vary mite till farther improvements.

If, herefore; great apeed is altainable- if tbere are no natural csuses, no madreopmable obtacles-the position raken by Mr. Wood (and in tailing Whoh the was perfectiy justified, by the evidence before him) becomes totally duruit twe hypotheis is no longer correct on which the optodon wras
formed and expremed in page 68, in the following words:-" If auch a con clonion"-riz., the pracuical limit of 35 milen par hoor-"is warranted by theae investigations and experiments, then it results that is is not necemary for the attalnmont of such a rate of apped that the garge ohould be teren feet." But all the advantagea pointed out in the two following paragraphs of the Report as reaulting from an increaced ordth of genge over the four feet ofght inch, apply in a still greatos degree than under the fircamstemees Which erdsted at the Lime. Some donbts are expressed an to the adrantage of so great an fu. crease of gaoge as seren feet; but these dotabts, agaln, appear to arime entirely from the circumstance, thet the remults of the experiments then made upon the performance of the engines were anfavourable. The reverse appears now to bo the case; the work perfarmed with a given consamplon of coke is much greater than in any of the experiments made opon other lines, the details of which are given in the Report.

On the nubject of the seven-feet geage, I can edd very litale to what I have said before. It wat adoptad axpremaly to exable us in effect that errangement which ie recommended at page 68.
"We sec that there is a diminution of friction, by the Increase of the diameter of the wheels, but it is doubtful to what extent this is modified by elevating the Bodies of the carriages ; a broad gauge, by allowing the bodies of the carriages to be placed within the wheels, and thus to reduce the height of the carriages, and consequently diminiah the area of the frontage, is an advantage, considering the grent amount of resitance arising from the atmonphere."

To cffect this, with the most convenient form of body, similar to thet ondi. narily adopted on railways, does require, as I have frequently stated in provious reports, a width of at leatit 6 feet 10 inchen
The alvantage of stability is probably directly in propostion to the incresed width; and upon this point I will quote the words of Mr. Wood, page 68 :-
" The remaining proposition in, that a wider gauge affords increased atebility to the carriages, and, consequently, incremed stemdiness of motion. The diaarams given will show how far this has been effected on the prewant portion of the Great Western Railway, and certainly these documents would prove that this has not yet been accomplished. Considering, however, the causes of the different motions of railmay carriagea, tbere can be no doubt that an increased width of gauge must tend to produce that effect. In the present instance this hat been counteracted by the conitruction and preaent condition of the road and carri ages; and therefore, it appears to me, the only conclusion we can come to is. that in and therefore, it sppears to mo, the only conciugion we can come to is, that in aiminrly constructed railwhy the wide
biity and ateadmes of motion to the carriages."

As regards the expense of forming the railway of increased width, Mr. Wood has made a mistake, which I believe he will correct in the Appendix. The estimate of the increased cost is $£ 59,000$ only, instead of $£ 151,840$. Upon all these points I hare so frequently explained my views to you, that I shall take the liberty to quote a passage from my report of the 15 th of Auguat, which contains in a mall compass the grounds upon which I adhere to my opinions in faronr of the width of gange I have selected :-
"It hat been aseerted that four feet eight inches, the width adopied on tha Liverpool and Manchester rallway, is exnctly the proper width for all railways and that to adopt any other dimension is to deviate from a positive rule which experience has proved correct; but such an assertion can be maintained by no reasoaing. Admitting, for the sake of argument, that, under the particular circumatances in which it has been tried, four feet eight inches has been proved the beat pomible dimension, the question would still remain-What are the best dimensions under the cincomatances?
"Althougb a breadth of four feet cight inches has been forupd to create a certain reaistance on curves of a certain radlus, a greater breadth would produce ouly the same resimance on curves of greater radins.
"If carriages, and engines, and more particularly, if wheels and axies of a certinin weight, have not been found inconvenient upon one raiway, greater weights may be employed, and the sune results obtained, on a rallway with better fredients.
"To edopt a gauge of the same number of inches on the Great Western Railway as on the Grand Junction Railway, would, in fuct, amount practicaliy to the use of a different gauge in simitar railways. The gauge which is well adapted to the one is not well adapted to the other, unless, indeed, some mysterious cause existh, which has never yet been explained, for the empirical law which would fix the gauge under all circumstances.

- Fortunately, this no longer requires to be argued, as 100 many authorities may now be quoted in support of a rery comiderable doviation from this preacribed width, and in every case the change has been an increase.

I trake it for granted that, is determining the dimensions is each case, due regard has been had to the currea ard gradients of the line, which ought to form a most easential, if not the principal, condition. In the report of the commisaioners upon lriah railways, the arguments are identically the same with those which 1 used when first addreasing you on the sublect in my report of October, 1885.

- The mechanical advantage to be gained by increasing the diameter of the carriage wheels it polnted out ; the necesaity, to attain this, of increatiog the width of way; the dimensions of the bridget, trannels, and other priacipal worke, not being materially affiected by thin, but, on the other hand, the circumatances which limit this incropte being the curres on the ifive, and the fncreased proportional reaintance on inciinations (and as this sceount it is atated to be ahtroet sololy applicable to rery level hines), and lanty, the increaned expeone, which could be justifed only by a great trapic.
${ }^{4}$ The whole is clearly argued in a geversl point of view, and then applied to the particular case, and the reault of ihis application is the recommendetion of of the adoption of 6 feet 2 inches on the Ifrah rilmays. Thus an increace in the breadth of way to attain one particular object-via., the capability of increasing the diameter of the carriage-wheels, without raising the bodien of the carriages, is adonitted to be the most desirable, but in limited by certain cir-cumatances,-ramely, the gredients and curyes of the line, and the extent of tralic.
" Erery argment here dideced, and every calculation made, would tend to the adoption of about 7 feet on the Great Western Rellway.
"The gradients on the lines hatd down by the Irish commimion are considembly ateoper then thowe of the London and Birmingham Rallwey, and four and Ave times the inclination of those on the Great Weatern Rallway; the curret are by no meana of very large radius, and, indeed, the commismoners, after fixing the gauge of 6 feet 2 inches, exprest their opinion that, upon examimation into the question of curves, with the view to economy, they do not find that the effect is so Injurious as might have been anticipated, and imply, therefore, that curveg, generally considered, of small sadius on our English lines, are not incompatible with the 6 feet 2 inch gauge; and lastly, the traffic instead of being unusually large, so as to justify any expense beyond that absolutely required, is such as to render assistance from government necessary to ensure a return for the capital embarked. As compared with this, what are the circumstances in our case? The object to be attained is, the placing an ordimary coach body, which is upwards of 6 feet 6 Inches in width, between the wheels; thit necescarily invoives a gauge of rail of about 6 feet 10 inches and a half to 6 feet 11 inches, but 7 feet allows of its being done eanily; it allows, moreover, of a different arrangement of the body; it admits all sorts of carriages, stage-coaches, and carts, to be cariled between the wheels. And what are the limits in the case of the Great Western Railway, as compared to those on Irish railways? Gradients of one-ffth the inclination, very favourable curves, and probably the largest traffic in England.
"I think it unnecescary to sey another word to show that the Irish commissioners would have arrived at seven feet on the Great Western llailway by exactly the same train of argument that led them to adopt 6 feet 2 inches in the case then before them.
"All these arguments were advanced by me in my first report to you, and the subject was well considered."4

All the opinions expressed, nad the urguments advanced by me on that occacion, I consider to be supported by the general arguments of Mr . Wood, and fully borne out by the experiments recorded in lis report, when taken in conjunction with those recently made.
The experiments made during the progress of Mr. Wood's investigation, and those, few in number, which I bave been enabled to make since, have given much useful information upon many points connected with the working of the line; and, while they confirm the views which I had previously taken, they also point out many imperfections. which are capable of removal. Upon the value of gradients particularly, the records of the experiments made for Mr. Wood, give most conclusive evidence. Upon an average of about eighty experiments made with several different engines, and various loads upon our liae (with the manuscript details of which Mr. Wood has kindly furnished me), the mean velocity, after the speed war nequired in ascending a plane of eight miles in length of four feet per mile, was $30 \frac{2}{2}$ miles; on a short level summit of only half a mile, the spced increases to 324; and the average of the next seven miles, on which the levels vary from 4 feet to 2 feet per mile descending, the velocity was 347 ; and upon the remainder of the line, which varies from 2 feet to 4 feet per mile ascending, the velocity is $33 \frac{3}{4}$. The velocity upon the latter part is rather greater, from the circumstance of its being near the conclusion of the journey, the engineer being thereby enabled to reduce the feed or the supply of cold water to the boiler, or to avoid adding fresh fuel and in other ways to majntain the steam.

This result gives a clear difference of four miles per hour between the velocities in ascending a plane of eight miles in length, at four feet per mile, and descending a plane of seven miles in length, a veraging about two feet six inches per mile. Nothing can be mere conclnsive as to the actual practical effect of even any very siight increase or diminution of the gradient of a line, notwithstanding the vaguely expresred assertions-not that I mean to imply that such are found in Mr. Wood's report-that after a certain degree of perfection is attained it is useless to seek a nearer approach to a level.
The observations which I have lately made upon carriage moving with a high velocity satirfy me that a very great portion of the resistance at such velocity is caused by the rolling of the carriage wheels from side to side. And in proportion as this cource of resistance is removed, which it undoubtedly may be in a great measure, if not entirely, to will the useful effect of the engine be greatly increamed.

I should have been glad to have taken thls opportunity of entering more fully into the various questions, the agitation of which has led to these experimental inquirips. But in order to comply with your desire to have my obaervations priated and circulated this week amongat the proprietors, I am compelled, though most unwillingly, to bring them to a conciosion.

It is but justice to myaelf to add, that being thus limited in time, I am deprived of the opportunity of which I should, under other circumatances, have readily availed myelf, to examine most minutely every experiment and inference drawn in the report, as well is of fully explaining, and 1 hope I may add, of vindicating, the views and principles which, with your sanction and spproval, I have hitherto acted upon in the construction of the Great Wentern Railway.

I am, gentlemen, your obedient servant,
(Signed)
I. K. BRUNEL.

London, December 27th, 1838.
At the special meeting of the shareholders, held on the 9 th of January, the report of the difectors was approved and adopted.

PROOHMDNGS OF SCIWNTHIO SOCDNYE3S.

INSTITUTE OF CIVIL ENGINEERS.

[It affords us much pleasure to publisi the following very interesting annmal report of the Institute, and to announce the remowal of the Institute to premises in every way suitable to the station and rank in which the profession is justly held by the public. The house which has been lately fitted up for the members is one of the splendid mansions in Great George Street, Westminster. In the rear there is a very convenient theatre, capable of holding at the least 150 members, where the proceedings and discussions of the Institute will be conducted.]

Annual Report, 1899.

It is with feelings of the greatest satislaction, that the conncil invite the allention of this meeting to the following report, the presentation of which terminates the trust confided to them by the last annual general meeing.

The twentieth year of the proceedinge of the institution hes been marked by events of considerable importance, furmishing the strongest evidence of the stealy progress and succest which has attended the labourn of the council, oided as it has been by the uuanimous co-operation of the general body. To meet on the present occasion, under circumstances more favorarable than perhap attend any similar society is most gratifying; hut the gradfication atopanot bere, to form a proper estimate of your present condition, it is necessary to contran that of earlier years with the steolily increasing progreas of the last. In ful. filling the more extensive duties consequent on this progress, as well as on the many important changes which luro taken place, the council hare always been deeply seusible of the high responsibility committed to them, and that their endeavours have been well dirceted, will they trust be apparent firom the present report, to the details of which they now solicit your carofel attention.
New premises.-Tho hopes which were at the last annuml meeting held out respecting the present premises have been more than fu.ly reulised. The kindness of the commissioners of compensation, in resigning at midsnmmer, that portion of the premises in which the more important alterations were to be made, las cuabled the council to commence the sescion in the precent plece, and though the repairs be yet incomplete, the council believe they will be completed ere the institution again meets. The alterations and repaira will be executed for about $£ 1,000$. More than $£ 700$ has boen already anbseribed, and among the many gratifying circamstances of the past year, the council would particularly select the liberality with which all hare come forward to further this object.
Such has been the unanimity of feeling eviaced in this respect that the council believe ample resources will be found, and that the future council will not hare to arail themselves of the liberal offer of your president to advance whatever sum the institution might require.

The existing famitare is all available for the precent premises, and the outlay which will be required for what more may be dearable for your come. fort aud suitable accommodation will not bo greuler than the growing recources of the institntion can conveniently meet, so that there is no danger of any permanent debt being entailed on the funds of the iustitution. By the lermit of the lease you are mecured from the expense of serious repairs, and from the completeness with which on the present contract they will be erecuted, the conncil do not anticipate that any thing farther of importance will be required for many years to come.
By-large,-The council would next advert to other subjects which have occupied their attention during the past year, some of which were dwelt npon at length in the last annual report. It will be in the remembrance of most, that during the year preceding the last annaal meeting, some changes were made in the constitution of the general body and of the conncil. The more important of these ohanges were, the incorporalion into the class of membert, whont distinction of residence, of all those whose professional qualificationes were recognized as the same; the creation of a new class under the term gradnates, to include those who either as popils or assistants to engineern, werv yualifying themselves for the practice of the profession on their own account; the increase of the number of the council, and the addition of two an repre. emtatives of the clase of assoctates. The council, on the experience of the past year, conceive that these and other important changes recommended by their predecessors in office, and adopted by the general meeting of members, have contributed to the success and permanent stability of the inatitution.

The council conceive that the introduction of two from the class of associates may be attended with great benefits to the institution. This change has been objected to by some zealous friends of the instituticn among the associates themselres, on the ground that such an introduction might tond to divert the attention of the institution from objects strictly professional. The council, however, do not conceire that such fcars have any just foundation, so long as the rest of their body consists of men honoured by the confidence of the profession, but on the contrary, that the class of ussociates contalning many distinguished for their attaiuments in pursuits intimately connected with thi practice of the civil englneer, will furnish those who may co-operate in edvancing not only the interents of the institution, but the cause of geveral knowledge. The council cannot omit to bear testiunony to the valaable services of Mr. Carpmael and Lieutenant Denison during the preceding year, and tiney would repeat the recommendation made to the last annual meeting, thal two of the clate of ansociates be elected on the councll of the ensoing year.
Other alterations have been suggested, on which the rouncil have beptowed much deliberation, and in case the future council ahould think it adrisable to summon a general meeting of members to consider the propriety of making any alteration in the existing lawn, it may be odrantageous brietsy to adrest to
ane or two of the propeeed alterations which bare oocupied the attention of tho council daring the paat year. It has been suggested that the annual election of the council should be conducted in a somerhat different manner from that at present parsued. That a greater number than that constituling the coancil should be nominated, and that each peraon at the annual general moettog instead of, as at present, erasing one name and substituting another, erase as many names an the number on the balloting list exceeds the constituted number of the council. It has also been suggested whether it may not be for the adrantege of the institution, that the council should be incricased by the addition of two members; that as frequently some of its most dis. tinguished members are ineritably prevented by professional engagements from attending the orlinary mectings, the council should be enlarged to as great an extent as may be consistent with the true interests of the institution.

Mcmbers.- The conncil have frequently experienced difficulty in deciding on the quelifications for edmission into the class of members. It is a peouliar foatare in gour institution that the class of members should consist of those strictiy angaged in the practice of the civil engineer. The objects of the civil engineer are defined by your charter, and the council, considering that the success and permanency of the institution must depend in great measure on the care erercised in admission into this class, leave repeatedly considered this subject with the view of presenting some definite rules for the guidance of thomselves and others. It has appeured that they will be aided in this difficult task by adbering as much as possible to the two following conditious; either :-

He shall have been regularly educated as a civil engineer according to the usual routine of pupilage, and have had subsequent employment for at leata five years in responsible situations as resident or otherwise iu some of the branches defined by the chartor as constituting the profession of a civil engineer; or, he shall have practised on his own account in the profession of a civil enginear for five years, and have acquired considerable eminenco thersin.

It is thought that the first condition will include those who by regular education have done their ntmost towards themselves for the profession, and that their cubeoquent employment in responsible situations will be a guarantee that they have avniled themselves of the opportonities which they may have onjoyed.

In the earlier days of the science of the civil engineer such a condition wonld have been inapplicable; then the force of native genius sufficed to place the individual in that position of profestional eminence which commenoed with a Brindley and a Smeaton, and was in our own time excmplified in a Rennia and a Telford. To such, of whom there are many illustrious examples emongst us, the eecond coudition is etrictly applicable.

Tramactions.-Since the close of the last session the second volume of the Trapantions has been published. The council regret that the volume ahould have been delayed to long beyond the expected time, but they would remind the meating that the preparation of a volume containing 23 highlyexecated plades, is a work of no ordinary difficulty, and that a delay in any part all of necesaity preclude the publioution of the rolume. The danger of delay, when a whole volume is to be published at once, has led the council to comsider whether it would not be for the interest of the institution to publish in parts of volumes, and from time to time, as they can be prepared, such communications as are destined to occupy a place in the Transsctions. The adveatages resulting to all parties from such an arrangement would, it is conceived, be great; delay in the pablication of a body of commanications, by reseon of the incompleteness of one of them, wonld be entirely avoided, eathors would sarely glady avail themselves of this method of transmitting papers 20 the world, since all the merit due to priority of claim would then be undoubtedly mecured to them.

Minutes of Procredingg.-Should, however, the succeeding council conLider the propriety of adopting some plen similar to the abore, for the publicetion of the Transactiona, the council would urge the importance of adhering to the publication of the minutes of proceedinga. In these are recorded many communications of partial and transiont interest, which would be comparativaly of littie velue unless published at the time. By these the pablic is at once brought into immediate contact with the institution, the faboura of authors can be extansively made lnown, their merit in the priority of invention and discovery secured as a matter of history, and their opinions canvanad almont as soon as promulgated by many competent judges, who are unable to altend the meetings.

Tafford Preminne-At the close of the preceding session the council issoed a list of anbjects to sdequate communications, on which they would avaed Telford premiums. The following communications were received:A moot oleborate and beautifal set of drawings of the Shield at tho Thames Tunnal, from Mr. Brunel, and two sets of drawings of Huddart's rope machinery, the one from Mr. Birch, the other from Mr. Dempsey. The merits of this celebrated shield, and its value as a means of executing works similar to the Thames Tunnel, are so well known, that it were superfluous bere to infint apon the benefite which Mr. Brunel has, by the invention of it, conferred an the civil engineer. The council, feeling that this commonication and the invention of the shield were entiled to a ligh mark of approbation, determiped on presenting Mr. Brunel with a silver medal, accompanied by a suitable reoord of the sanse entertained of the benefit conferred by bim on the pretice of the civil enginter. Feeling also that the beanty of the dravings fully merited come mark of mpprobation, they determined on presenting the draugbiman, Mr. Pinchback, with a bronze modal in testimony theroof.

The commmications by Mr. Dempeay and Mr. Birch on Hnddart's Rope Machinary, likewise called for some mpecial mark of approbation on the part of the compoil. The liberality of Mr. Cotton, the indimete friend of the late Capade Einddath proprtetor of the machinery, in throwigg open to the insti.
tution the Frorks at Lirmehouse, is fresh in the recollection of mot preeent; Fith that anme libernlity he at once acoeded to the wiah of the council, to allow any person to attend and make drawings of this celebrated Rope Machinery for the institution. Two young men avalled themselves of this liberality, and with great perseverance monsured and took drawings of this ela. borate machinery, and the results of their industry are the two beautiful sets of drawings, accompanied by suitable malnuscript accounts, presented by them to the institution. Of the accuracy of these drawings Mr. Cotton and Mr. Roberts have spoken in high terms; of their merits as mechanical dravings tho institution has had ample opportunity of judging. The council felt that to have atlempted to distinguish betwixt the merits of these two communications would have bean both dificult and invidious, they have therefore awarded a Telford medal in silver, accompanied by books to the ralue of five guineas, both to Mr. Birch and Mr. Dempeey.

The council have already spoken of the liberality with which Mr. Cotton had responded to the wishes of the inatitution; his liberality stopped not, however, here, but he has promised to supply to the institution that account and history of this machinery of his late distinguished friend, which he alone lias the power of doing.

On tho other subjects then issued the council have not get reccired any commanications of great merit. They have, however, the pleasure of being able to announce that your associate Mr. Jones has made considerable progress with an account of the Westminster sewage, that your essociate Mr. Johnson lius promised some drawiags and models connected with the Break. water, and your member iMr. Oldham a commonication on the means which Le has adopted for warming and ventilation at the Bank of England. On the nature and properties of steam considered in reference to its application as a moving power, and ou the ratio betwixt the velocity, load, and power of locomotive ongines on railways, no communication to which a premium could with propriety be adjuilged has yet been received. The subjects on which no commanication deserving a premium has been recaived, have consequently been issued with others for the prosent session.

But though the council received no communication in which the subject of steam was treated in tho wide and comprehensive manner which was desired, they deemed worthy of promiums the following commanications on parts of this great subject. On the enective Pressure of Steam in the Cornish Condensing Engines, by your member, Thomas Wicksteed. On the expansive Action of Steam in the Cylinder of some of the Cornish Condensing Engines, by W. J.Henwood; and on the Evaporation of Water in tho Boilers of Steam Engines, by your member, Josiah Paries. To each of these the council Lave awariled a silver medal.

The communication by Mr. Wicksteed is of great ralue, as containing the only recorded experiment in which the water raised was actually weighed. It will be in the recollection of most present, that this is the second commanica. Lion from Mr. Wicksteed on the same subject. The two are valuable additions to our knowledge on the subject. The rater raised was weighed and measured. The weights raised in the stamping machinery were also accurateiy ascertained, and a comparison instituted between tho daty of the single engine in raising water, and of the double acting and crank engines in working stamps.

The commanication by Mr. Henwood is remarkable for the extreme minuteness of detail with which the observations were conducted, the communication consists of tro parts; the one, on the quantity of steam employed and the mode of its distribution on the working stroke, the other on the duty performed with a given quantity of fuel. Under the former the indicator is accurately described, and the evidence furnished by the diagrams explained. Under the latter is exhibited one of the most valuable specimens of detailed obscrvations on record. It is a peculiar feature in the system parsued by Mr. Henwood, that he never interfered with the ordinary worling of the engine; be obserres with accuracy what is going on. Thus his paper is a record of observation in the highent sense of the term. It is of importance 10 practical men to keep in mind a distinction which has been ofton insisted on betwirt observation and experiment. In the former, the phenomena which are going on are noted as they go on, the circumstances under which they occur being untouched; in the latter, the phenomena are produced for the parpose of the experiment. The former consequently requires great care in referring effects to their proper causes, the latter in guarding agajnst the results being influenced by the circumstances necessary for the production of the phenomena. The tro are distinct, each requires their respective talents, the former would lead a Newton to the law of gravitation, and gride a Smeaton in the construction of an Edystone; the latter a Watt and a Black to a knowledge of the properties of steam; the two combined would gaide a Davy to the construction of a safety-lamp.

In the communication of your member Mr. Parkes, we have an instance of both these methods combined; he observed what was going on nnder particular circumstances of evaporation, and then, having altered the circumetances, recorded the results of these experiments. The researcbes of this anthor led him to push slow combustlon to its utmost limits. It would be foreign to the object of this report to trespass on the time of this meeting, further than to remark that the contents of this paper will funish many most useful hints to the practical engineer in the management of the fires of his steam boilers, and to the theoriat some important facts towards a true theory of combustion.

The council have also srarded a silver medal to the commanications of your associate, Lient. Denison, on the Strength of American Timber, and of your member, Mr. Bramah, on the strength of cast iron. Each of these com. munications must be viewed as valuable additions to our knowledge. The series of experiments by Lieut. Denison was undertaken by that highly talented officer, whon atationed abroad, with a view of establiahing some propertion betwixt the strugth of differant hinds of American timber, and of affording a mans of comparing it with Epropen. It in a pecaliar gatmot in theme
pxperiments, that the effect of time in increaning the deflection is noted. Aner the elastic limit is pansed the deflection increases with the thane which the beem is loaded, the amonint of this increase is recorded in mont of these expertments: The councll cannot but ragret that Lientenant Denisun should hare retamed to this country before the very extensive meries which he had contemplated, and for which he had made preparation was complete; his tntention of deter. mining the change of strength and the amount of shrinkage betwixt green and dry was thus unfortanately Mastrated; and they mot earnestly concur with him In the expreasion of hopee that oficers and others employed to the colonies will be Induced to turu tueir aftention to this smbject. They point out the above communication with eapectal pleasare as an example to other military engineers, of the very valuable services Fhich their opportandities will enable them to render to the science of the civil engineer.

The other communicution by Mr. Bramah is also a vituable addition to our knowledge, andertaken with a view of verifying the princtples anmued in the widely-circulated work of Tredgold on Cant Iron; they surpaes every other teries in exintence in their extent-the number of experiments belng nearir 1500, and in the care taken to ensure accnracy, since two similar apectmens of each beam were made the subject of experiment.

The principles, with the view of eatablishing which this series of experimenta were undertalien, are, that the forces of compression and extendion are equal within the elastic limit, and that consequently a triangular beam, provided it is not loaded beyond this limit, will hare the aame amount of defiection whether the bare or aper be uppermost, and a flanged beam the same deflection, whether the flange be at the top or the botlom.

This commonication is accompanied by some valuable observations by your associate, Mr. A. H. Renton, pointing out the agreement which subsiste between the experiments and the reanits of the formula of Tredgold. The council have peculiar pleasure in pointing out the preceding, as communications of a kind on which they conceive the Telford medale may be most worthily bestowed. The wndertaing a series of observations and experiments with a view of eatablishing important physical principles, and from a desire after the truth, is an object worthy of the highest approbation of this institution.

A silver medal has also been apraried to your member, Mr. (ircen, for his communication on the Canal Lifs on the Grand Western Canal; to your mesaber, Mr. Marrison, for his commanication on the Drops on the Stanhope and Tyne Railway, and to your ansociate, Josiah Richards, for his most elaborate drawing of the Rhymney Iron Works.

The perpendicular lins erected by Mr. Grees on the Grand Wentern Canal involve some ingenious applications of simple principles, and prenent many considerations of interest to the civil engtneor. The pripciples of their construction are simple, and the economy of construction and seving both in time and wator gives them greet mivantages in certain cases over locks for tho purposes of canel navigation.

The Drops on the Stanhope and Tyne Railway for the purpose of shipping coals, present another instance of simple mechanical adaptation. These have several points in common with the lifte just apoken of ; the original drating of these by Mr. Harricon is an exceedingly beantifal example of what drawinge of this nature oughe to be.

Of the drawing of the Rhymney Iron Works by Joriah Richards, it would be difficult to erpest in too high terms; it is a most elaborate drawing, exhiblting all the details of the manufacture of iron. The institution has not yet received the description which will be necessary to render the communication complete; but the council have the gratification of stating that your associate, Mr. Rowlee, the chaiman of the company, has promised thet Mr. Richarde shall bo funished with cvery facility towards completing a communication which, they doubt not, will be a most valuable acquisition to the recoris already existing in the institation.

The councif have also arranled on silver medal to Francis Whishaw for his History of Westuninster Bridge. Of the great labour and research of Mr. Whishaw in collecting these doouments, it would be difficult to speak in adequate terms. The history is ertracted from voluminous records contained in the Bridge-office, and you are indebted also to the kinducas of your member, Mr. Swinburne, for the facilities which he furnished the author in the execution of his difficult taak. The history of this bridge, the ouly one of the old bridges now remaining, is intereating to the general reader no less than to the engineer. The difficultics which presented themselres gare rise to contrirances then for the first time brought into use, of which the introrluction of caissons is not the least remarkable. The difficultics and progress of the work are well set forth In the reports of Labelye, of which the moro interesting are embodied in this communication; and the account of the work fumishes a very complete bistory of the state of this department of practical engineering a century ago.

This communication accompanied by an atlas of eleren drawinge showing the site and various dotalls of the construction of the bridge is one of those historical records which it is espectully the object of this institution to collect, and which, from the labour and research employed upon it called for this mark of approbation of the council.

The inntitution reocired during last mession from your member Mr. Rendel, a very elaborate and beautiful set of drawings, accompanied by a muitable deacription of the Torpoint Floating Bridge. This interesting communication is fresh in the recollection of most, and it would be difficult to mpeak in 100 high terms of the forethought, skill, and design, displayed in the construction of these bridges, and the perfect sucxess which has apended their establish. ment. It does not often lappen that the same individual has the genius to invent and the good fortune to see his invention broaght into general use. In this respect Mr. Rendal has been singalarly tortunate, as these bridges have heen already established in several difficult and dangerous pasages. It would be forelgn to the present oocesion to dwell more at length on thit invention; but the coaroil feel that fn wrarting a eilver medal to Mr. Repidi, sccomph
nied by a enitable reconl of the sensp entertained of the benefis conferted by him on the inland commanication of the country, this, the higbert sclonowled. ment in their power to make, is most amply merited.
A bronse medal has been awanded to your assoclate, Mr. Balland, for the drawing of his ice-boat, and demeription of his melhod it breaking ioe by forcing it upwards; this simple method is applicable ac about one-third the labour of the ordinary ire-boat. A bronze medal has also been amanded to Thomas Mardougal Sinith, for his drawing and account of Edwand's, or the Pont-y-tn-prydd Bridge, in South Wales. Mr. Smith being for a ahort time in the neighbourhood availed himalf of this opportunity to male accuraf drawings of this curious and interesting miructure. The councll would point out this as an example of the way in which erery young men may, by erall. ing himself of the opportanities afforded by his profersional engagements, farward the objecta which the institution has in view; and they would earnestly impress on all young men the importance of availing themselves of such opportunities, and of reconding their observations on every work with which they may be connected. This habit is of the greatest advantage to the individual, since only by such an habitual self improvement can any one hope to obtain eminence in the profention.
The council have also awarded fire gnineas to Mr. Gny for his method of making perfect spheres; thin great derideratum in the mechanical art has been in a great measure supplied by the ingenuity of this Indiridual, and a simple method furnished of readily prolucing spicres of metal, or other hand substanee, with a great degree of accuracy.

The preceding are the communications of the last two sessions to which the councll have arrarded premimma. The conndil in disponing of the premiams placed at their diaposal by the munificence of pour late Prosident, hare endearoured to melect from the great number of commanicathap which have been brouglat before the institution, nuch of each clasa as empecially demerved this mark of distinction. They truat that these premiums may ect as a mi mulus to many, to forwarl to the institution recordm of matern of intereat to the profesmion, and that thus the object of the noble benefactor of the factiantion will be fully realizal.

The council cannot dwell on the numerons communications received daring the lat session, of which an araple account will be found in the Minutas of Proceedings, they cannot however omit to remark on the greet Interest of the discussions and on the ratwe of the rooond of copisions and facts which is thas obtained. They would expedtelly refer to the discramionet on the duty of ateam engines, and on the explosiona of atem boflers, ate baving led to the collection of much valuable matter; the practice of recording the minuten of converation is almost peculiar 10 your tanditution, and is calculated in an expecial manner to formard the interente of prectical ecience.

Life of Telford.-The councll, in reviewing the events of the past year. cannot omit to expross their gratification at the pablication of the LMe and Works of Telford. Every thing connected with his name in tntereating to this institution, and the life and works of 80 dintinguiabed amam, writuen by himself, cannot fail to be received with the greatest satiafaction by all who knew him or are able to appreciate his works. Through tho kindneas of year honorary member, Mr. Rickman, the editor of the Hfe and worke, and actints executor of Mr. Telford, the institation hat been pat in posession of two copies of this valuable work.

Monworent of Telford_The council have also the stiafaction of annome. ing through the mediam of this report, that the monument to Tolford is nearly finished, and that a place has been found for it in Weatminster Abbey. The site which the Telford committea have ealected and bope to obtalen, is one woll adapted for the statue, and they trant that by the moxt manal meeting the monument will be placed among thpee who, by the beaefis coesferred on their conntry, have justly demerved this thibute of rempeot.

Charles Temment. - The institution has to regret the loss hy death of Mr. Cherles Tennant, of Glaegow, the exrinent practical chement. Mr. Tennint was born at Glenconns, in Ayrshire, in 1767, and commenced this earoer as an improver in the chemical arts before the end of the lant ometary. The great rerolution in the practice of bleaching which then oecurred wean carried out by the discoveries made by him, first of the solution of chloride of Hive, and aflcrwards of the dry chloride of lime or bleaching powder an inestimable gif to the arts with which the name of Mr. Tennant will atweys be associstod. The chemical works of St. Rollox, near Glasgow, which mot form 20 conspicuons 8 monument of hif energy and succem, wero erouted for the purpose of manufacturing this article, for which he held a patent.

The manufacture of sulphuric acid, and of alkali from salt, wasa also greatly improved at St. Rollox, and first conducted there on a scale comemencurate with their national importance. The manufaoturing intereats of this country possess an alrantage in the extraordinary cheapnems of thewe and other clemical projucts, whieh they owe in a great degree to Mr. Tennamt' acientific talents, and activity as a manufactarer.

The arts are deoply indebted to Mr. Temuant for other benefits, partherlarly for his exertions in removiag the duty on calt. Ithis be plitienecely succeeded in accomplishing, after a struggle of many years with the keolp proprietors. Few legialative enactments have been so beneficial to the country, as is well attested by the immenses increase of alkali mannfactories.

For some years patt, Mr. Tennant left the chief manegement of his monufactaring affairs to his sons, and devoted a greal portion of his energetic mind to the welfare of his fellow oitizens, among whom he was considered a leader in every philanthropic undertaling.

The sucoess of railway undertakings oocupied latteriy much of hin time and attention; the last groat atragglo in which he was cagaged wat in favour of the Edinlurgh and Glagow line, the paming of the bill for which ha had the happincss to Ure to see. He died at his honse in Chengow on the lat of

October, aged 71, and bas left a name which will long continue to be exkendroly known, and eseociated with practical soience.
Presents.-The presents during the preceding year have been numerous and raluablo, and the council have made several advantageous exchangea with other sociedem publiahing transactions. From the Society of Arts, from the Geographicel Society, and from the Society of Literature, the intitution hea reoeived complete sets of Traneactions. The Koyal Society of Edinburgh, and the Philosophical Soniety of Manchester, hare promised as complete a set as their stock will furnish.

The councll have also to acknowledge the contincel obligations of the inntitation to the Lord Lieutenant of Ireland, the Master General of the Ordseace, and Colonel Colby, for those maps of the Irish and English carrey which have been published since the last annual meeting; they have also to acknowledge the liberality of your president in prescnting that beantifal painting of the Menai bridge and adjacent scenery, which is placed in the library. They have also to acknowledge the liberality of your solicitor, Mr. Tooke, who has refused to accept any remaneration for the advice and information furnished to the council, accompanying bis refusal with the most obliging expressions of the deep interest he takes in the welfare of the inatitution.

The following abstract of the receipts and expenditure, during the year ending the 31st of December, 1838, will show the present atate of the funds of the institution:-

CASH ACCOUNT FOR LAST YEAR. neceipts.
To Balance in handa of Treasurer

	\boldsymbol{f}	8	d.
-	27	1	5
-1040	0	6	
-	71	8	10
-	299	0	0
-	183	0	0
$£ 1620$	10	9	
	$£$	6	d.
-140	6	0	
-	250	0	0
-	24	12	0
-	$\$ 53$	12	1

Sabecripttons and Feos
Divtiands
House 8ubucriptiona
Sale of Slock

By Honse ETPENDITURE.
Rean, Tarea, and Repairy, No. 1, Cannon-row
Repaire, sco, 86, Great Gearge-street Leise of Ditto
Salmios and Commistion
Centingencien
Pontere and Pamols
$\begin{array}{rrr}20 & 13 & 8 \\ 43 & 3 & 1 \\ 47 & 2 & 8 \\ 94 & 0 & 6 \\ 35 & 16 & 1 \\ 44 & 9 & 1\end{array}$
Stationery and Engraving
Conks, O1, 80.
Tee and Coffe
Printing
Sumdriea
Libenty
Publicition
Fupaiture
Telford Premiums
Balance
225110

It - FII be oberred with gatiafiction; that the balance in the hands of the treasaser, at the elowe of last jear, was 3051. 18s. 10d., whereas at the close of the procedtas yoer the belance wes only $\mathbf{2 7 L} \mathbf{1 s}$. 5 d . The statement of this halance does not reprement the funds of the institution in a sutberently favourable potat of riew, as the amount of outstanding bilis on the current expendl. ture at the commencement of the present jear was considerably less than at the commencement of the last. The institution also possemes 3851.3 per Cent. Copeols, andiable for general parposes, and a lease of the house in Cannonrow, for which a good premitum may reesonably be expected.

Conclusion.-In conclusion, the council cannot but offor to the meeting their sincere congrululations on the prospect which now lies before them. They congratalate the meeling on the recent accession of many names distinguiabed In choir nopective braucbes; and trast that the details of the proceding report pot anly athect their own nuremitting attention, but also will be fompd to recond many zealons and talenid efforts on the part of the general body to promote the objeote of the institution, and the progrose of profeacional knowledge. Frome every quarter bive been received the mot liberal aid and sympathythe mont cordial co-operation. That by which yon have been enabled to meet in the propent moro opecious and convenient premises will be readily appreciated.

The state of the funds is more prosperous than at any previons period; and in avery point of dew the prevent condition of the institution mey form a sub. jeet of cenerial congratulation.
'Tio cotmoil now resign into your hands the trust comraitied to them, with a macutre centidence to the futare importance and dignity, as well as properitis of the inatitution, and of Its forming a national establishment for the cdrancement of profesional knowledge, conapicuous even in ar age of general tmprovement.

ROYAL INETITUTE OF BRITISH ARCHITBCTS.

The Ontinary Mecting wees held on Momday, January 7, Crarnes Banky, Fice.President, in the Chair.
Tbe meeting proceeded to the eleotion of the following gentiomen at Fel. lows; Metirio Pacry, Waller, Wykt, and Wataon. As Associaten:-Mencrs.

Brandon, Flowey, Woodthorpe, Bury, Wright, Milea, Prichard, Petrce, and Ealem

Amongst the correspondence read, was a letter from Signor Nicolini, of Naples, accompanying an Itallan tranalation of the several pablications of the Institute, publimhed by the Royal Neapolitan Acedemy of Fine Arts. Theme convisted of the constitution and by-Inwe of the Institate, the proceed. ings of the opening meeting in 1836, and the eeries of questions drawn np for the information of members, and which batng thas circulateal it wat enticipnted would lead to elielting valueble information on architeotural subjects from the Two Sicliies and the whole of Italy.

Mr. Richasdson exhbited drawinge of the Old and New Bethlehem, and there were alao some interesting drawings of the architectural remains of the period of Elizabeth and James, from a collection in the maseom of the late Sir J. Soenc.

Donations were also announced from M. Valdermini, who bas been ami: ployed in the reconstruction of the Imperial Palece at St. Peternbargh, whtch was recently burnt down; and from Mr. J. Wells, of drawinge of the doorway of the famous Baptiatry at Florence.

Mr. Fowler read a paper by Mr. Pocock, on the bond of briokwork, whoh occupied the remainder of the meeting.
Ondinary Meeting, Monday, 21 st Janmary, Pailip Handwice, Vice-Prerident, in the Chair.
The mecting proceeded to the election of the Slgnor Besia, architect, Pro. fessor of the I. and R. Academy of Brera; at Milan, as honorary and correapondting member.

The following donations were announced as haring been received :-
Signor Cavaliere Gasse, hon. and corresponding member of Naplos, three volnmes, folio, of lithographed views in the KIngdom of the Two Sicilies.

Mons. Suyb, bon. and correrponding member of Brasseln, one volume of Illutrations of the Portico of the Pantheon at Rome, and prints of the Botanical Building at Bruasels.

Mons. Leon Vandoyer, Ilfustrations of the Monament to General Foy, erected by him in the cemetery of Pere la Chaive, Paris.

The following papers wero read:-
Some obserratione on the helghts of Entablatares, by Joseph Gwilt, Architect, F.S.A.

A description of the beronial castle of Sheriff Hutton, Yortshire; illustrated by dravings, being a rentoration sent in for the Soane medallion.

The thanky of the meeting were voted to Mr. Gwift, for his interesting paper.

Mr. Catherwood, hon. and corresponding member of New York, being present, at the request of the meeting gave some explanation of the mode practised in America of transporting bouses from one stte to another, upon which the chairman conveyed to hlm the best thanks of the members.

ARCHITECTURAL SOCIETY.

At a Monthly Marting, hald at Lincols's Inn Fielde, on Twealay eoving, 1th January, 1839, Wiliax Tits, Esq., President, in the chair,
John Griffths, Esq., Finsbury Pavement, was elected member of the Soclety.
E. W. Brayley; jun., Esq., F.L.S., F.G.S., \&e., delivered the firt of a Course of Lectares; the subject of which was,"On the Geology and Mineralogy of Building Stones."

At the conclusion of the lectare, the President gave notice that the next public meeting would be held on Tuesday evening, the 12th Febraary, when Mr. Brayley would deliver his second lectare-subject, "On Limestones and other Subatances affording Materials for Cement;" and a thini lecture on the 12 th March-anbject, ${ }^{\circ}$ On Artificial Substances employed as Sub. stitutes for Stonc."

MEETINGS OF SCIENTIFIC SOCIETIES.

Royal Society and Sociely of Antiquerles, Somerset House, Thursdeys, at half-past eight, P.M., 7, 14, 21, 28.

Institution of Civil Engineers, 25, Great George-street, Weatminster, Tuesdeys, at eight, P.M., 5, 12, 19, 26.
Royal Inmitule of British Architects, 16, Lower Grosvenor-street, Mandigys, at ejght, P.M., 12 and 26.

Architectural Socloty, 35, Inncoln 's Ino-fields, Tuesday, at eight, P.M., 12. Soclety of Arts, Adelphl, Wednesdays, at eight, P.M., 6, 13, $20,27$.

LAW PROCRTIDINGE.

TITEE BUETETS.
At the diting of magistrates at Horthem, in December, a Mr. Baker, who is omployed in surveying the parish of Lower Beeding, appeared to answer an information, charging him with haring cut down certaliz trees and tellows, the property of R. Aldridge, Esq. The defendant admitted that he bad cut donn the Irees, but pleaded that it was ncceasary to do su, in order to make a correct aurvey. After hoaring evidence, the magistrates decided agalnat the defen. dant, and fined him Sh., conts 403, Mr, Baker tntends to appeal to the quartor ensions.

DUTY ON OLASB.

An important case as affecting the menufacture of glass was brought before the magiatrates of Sunderlaud last month, in an appeal by the Messra. Harliey, glass-manufacturers of that town, against the mmount of duty levied by the Excise. Measrs. Hartley, it appears, have recently taken out a patent for the manufacture of "broed glass," which bears a duty of $£ 110 \mathrm{~s}$. per cwt; but as the quality was found to resemble "German sheet," a superior kind of glass, which is chargeable with a duty of $\mathbb{L S} 18 \mathrm{~s} .6 \mathrm{~d}$., the excise officers made a surcharge on 80 cwt , amounting to $£ 174$. Mr. Wright, solicior of Sunderland, who appeared for the appellants, conducted the case with great ability ; and showed, by a reference to the act of Parliament, the distinction which the Iegislature laid down as regulating the duties on glass. "Broad glass," chargeable, with the luw duty of $£ 110 \mathrm{~s}$ per cwt ., was required to be annealed in an oven having but one opening, and the cylinder was required to be cut hot, whereas "Gorman sheet" was allowed two openings to the oven, and the cylinder to be cut cold. By the introduction of varions improvements, without infringing the clauses of the act of Parliament in reference to broad glass, Messrs. Hartley were enabled to manufacture glass bearing a close resem. blance to German sheet. After a long investigation, the magistrates remitted the surcharge, thereby allowing the mannfacturers to proceed, on payment of the smaller duty. Mr. Johnson, of Durham, appeared on behalf of the Crown. -Nerscastle Journal. [It is a disgrace to the country that such obstacles should be put in the wey of improvements in our manufactures. Ed. C. E. and A. Jounsal.]

stean navigation.

Great Preatern Steam Ship.-During her stay in the Royal Dock-yarl at Milford great alterations have been made on board, all of which, we are essured, will very matarially contribute to the comfort and convenience of the parengers. The whole of the lower berths under the saloon have been thrown into cargo apace, and the passengers' berths reduced to a number which must ensure every comfort and eccommodation. The house on deck has been removed, aud in lieu thereof the cuddy has been carried fortard more to the midule part of the vensel, and has a range of catins on cither side. The splendid saloon is lighted from upper slryights. Great additional room has been gained by the alterations, and a space under cover is obtained sufficient for a promenade for the whole number of passengers. The whole of the cooling establishment bes been very much increased, and several other conveniences have been built on deul. The vensel, on examination, was found to be in the very best order, without even a single strain or so much as a ruck in her copper.

Steam from Glazgow to New York.-The merchants and manufecturern of Glasgow intend to try ateam navigation to Ner York. They maditate, it is said, the building of an iron vensal, of very large dimenaions and great atemem power, to ply regularly between the Clyde and the Hudson.-Scotensan.
Sleam from the Clyde to New York.-Glasgow is not to be behind Bristol or Liverpool in having a line of ateamers across the Atlantic.-Glangore Chronicle.
The aplendid steam-ship Hecla, of 814 tons, was launched on the 14th January, at Chathan. This fine reseel was built under the superintendence of Mr. S. Read, from the School of Neval Architecture, Portsmonth, foreman of the shipwrights of this jard. This is the finest steam-ship ever built; her cabins, store-rooms, and Indeed the whole of her Giments, are superb. Sho rill carry two of those tremendous engines, eighty-pounders, on swirels, with four smallor guns.-Maidutons Gasefte.

The last letters from Madras by the overland mail (the great irregularity of which has caused much complaint) mention that the association to promote ateam navigation with Europe at that presidency has coalenced with the association at Calcutta, and that the nnited body will endearour to promote the comprehensive plan of steam narigation between Europe and India,
The little wooden steam-boat, I told you some time ago was building at Cairo for the Pasha's use, was launched the other day there, and has turned out a very pretty boat. Another is ordered to be built immediately, and the enyines to be made in Cairo!-another step in the progrem of cirllization in this country.
Novel Mode of Narigation.- The French Government steamer Veloce has been fitted out on a new principle for working the veasel with oither sails or steam, and is now on her voyage from Rochefort to Moxico, for the purpose of testing this important invention. When fallen iu with of late by a Spanish ship, north lat. 40°, long. W. of Paris 149, the captain reported that her rate of sailing under topsails, studding sails, and royals, hed been for two days and a half upwards of eleven knots an hour.
France ard America.-According to the plans proposed in $i t s$ report by the committee of merchants of Borleaux for the steamers to run between that port and Now York, the reasels ars to be 220 feet in the keel, width from 32 to 38 feet in the beam, and 21 to 22 feet in depth; they are to measure from 2,090 to 2,050 tons, are to be moved by enginet of 460 -horse power, and are to carry a crew of 67 individatis. The report calculates on an arerage of 60 passengens each trip, which would generally occupy 16 dags, and the charge of passage is eatimated at $1,000 \mathrm{fr}$. The total capital required for the constructing and eatablinhing one such vessel is estimated at $1,400,000 \mathrm{fr}$., and the anuual net proft resulting from seven voyages at frozo 200,000fr. to $280,000 \mathrm{fr}$.

Spain.-A Barcolona letter of the 21at December utates that the French merchants in that city bad just presented a handsome sword to M. Geudier d'Arc, the Fremch Cousul, in testimony of the good serricen he has so long reudered them. This gentleman, the lotter adds, has forwarded to the Government at home a priject for establishing a line of ateaners to run from Marseilles to Barcelona, Cadiz, and the Canariss, thence to cross the Atlantic to Martinique and Cubs, and so to return home. Each ressel would carry engines of 200 horse power, would start the first day of each month, and, secording to his entimete, would only coat 25,000 . on its voyage out and home.
Germany-Arrangemente are boing mede for extending the ateam navigation of the Danube from Retisbon to Ulm. If the undertaicing succoeds, and there appears little durbt of it, the dintance between these two cities may be performed in a single day, and from Ulm to Vianue in three dags. This operaton will open the Dunube from it neerest narigable point to the Rhine, and thus offor the readient mode of commo

Holland.-Ansterdam, Dec. 29.-We hear that the Eaglish itecim-boeta will soon be obliged to come to 8choveningen. It in to be boped for the make of trevellens that measures will be adopted to prevent the ground of complaint which existed hast yeur. The Bask Gaselte tays a second line of meamers is to be set up naxt apring between that eity and Strasluarg.
Gottingen.-A German paper gives the speech of the King of $\mathbf{S w r e d e n}^{\text {in repty to }}$ one of the numerous addresses presented to him in the coursa of his progreas throngh his donninions. Hin Mujesty told the suthorities of Gotheubargh that be only awaited the concurrence of the British Government, to establish a Fegular commmcation by steam between Swelen and England.

PROCRTSS OF RAILWAYS.

South Eastern Railuay. -In the nolghbourhood of Tonbridge the cuttinga and en bankments are proceeding. with vigour, and a considertble quantity of brickwask, in culverts and occupation bridges, is completed and in program. The culvarts rwy by diameter from 2 to 12 feet. At Dover the works are proceeding with great rigoar. In another page of our present number will be found some particulary of the mamer of carrying on the opirations at this place.

Great Western Railucoy, -To make up for the time Which hat been lont oe the Graat Weatern Railroad near Reading, upwards of 100 axtra workmen are now emb ployed, who work at night by firelight.
Mancluster and Birmingham Raikoay.-The viaduct acrosa the velloy and river a Congleton has been let to Messrs. Nowell and Sons, Dewsbury, for $£ 110,000$. The longth is 1030 yards, and the greatest height 98 feet 6 iuches. It is to be finighed in two years and a halc.

Liverpool and Manchester Railuay.-At the lat half yeariy guneral moedng α the proprletors of the Liverpool and Manchester railway, which took place on Toesiay, 22d January, in the Cotton Salea' Room, Exchange-buildings, the report stated chat there had been an increased traffic in every brancla as compared with the ecorverpoed. ing period in the preceding year; and that in the department of merchandise this romelt hed been contributed to by the rerival of trade from the depression under which it had leboured. Betwean Liverpool sad Birmingham the traffic had also increseed, and since the 81st of October last, the North Union railway had been opezed for the ∞ enveyance of passengars, though arrangements for the transportation of goode had not yet been made, and perhaps no correct idea could yet be formed of the errent of the cuach trafic from what had taken place in two months of the worat period of the year. The report concluded by stating that the directors intended to apply to Purtinment, in the coming session for a bill empowering thom to form a fanction then, through the town of Salford, to Leeds. A drat of the blll would be drewn up and snbmitted to Parliament; and after the bill had been once read, the whole subject of the extension of the railway to Leeds, will then be brought bellore the proprietors.
The receipts for the half-jear were:-

The largent items amonget the disbarsements were-conch department; 211,061 ; carryidg dith, 111,180 ; conls, $\mathrm{f743}$; engineering department, 220,427 ; carting £8,072. The accounts further stated that to the net profit of $£ 06,714$, thare was to be added the sum of 4858 , being the balance after providing for last gear's divideod, and thus making a total of $£ 56,567$. The total amount of shares were equal to 10,405 E100 sharea; mid the directors recommended that a dividend of $£ 5$ per cent. shoold be paid, which would leave a balance of $\mathbf{2 4 , 0 9 2}$.

FNGINMERING WORKS.

The Coffer Dam of the new Houset of Parliament was enclosed on the 24 h of Decembar last, since that time the men have been actively employed in clearing arry the silt within the coffer; a fine stratum of gravel covers the whole site, and that part where the river wall is to be erected ls now being excavated down to the clay substratum for the foundation, the dam stands remarisably firm, there are very hitio signs of leakage in any part of it. We shall, in our next number, give some eo count of the works in progrews.
Dover, Jan. 18.- For the last few days past our harbour's month has been so cornpletely choked up with shingie, in consequence of the provaience of coutherty and wenterly gales, that all ingress or egrese of reasels, foreign or domestic, may be adid to have been entirely cat off. Even the small class of government packeta have been compelled either to put into Ramagata harbour, or to anchor in the Dowth, there to arrait the precarious chance of our inefficient aluicing power onabling them to effict an entrance by tho next tide. The sluices have been run to night. The only efiect these playthings seem to havo is to throw the beach in a heap a fow yerda beyoed the pier-head at low water, that it may be thrown back into its old position ack succeeding surge as the tide returns.
Caledonian Canal.- We are happy to learn that R. Steaart, Eaq., ope of the Lords of the Treasary, risited the Oaledonian Canal hately, and we beliove governveat meriounly contomplaten completing this great work, and randoring it suitable to the purpoess originally contemplated, viz., to afford facillitis of trade betwren the anstern and western cosasts of the island, and the means of speedy and safo passage to vessels from the east coast of America, and the rest const to the Baltic. Eren io its present stato, we lcarn a good many vessels of this clasg, have parsed lately, and the trade is deify increasing. When tog stewm boats arg entablished, we have po doubt it will afford government an ample revenue. Iff should be recollected the Förth and Clyde Canal did not pay the original apocvifators tor memy yean anar it was opened, but it is now one of the most profitable if public works in the country, Inturwen Horold.

Esbandwent of the River Thamea.-At a lato Court of Common Council, a repart was promatal from the Narigation Committee, recommending the embankwent of the thames, and regulating the live of wharfis on both shoses of the river The following hecura, written at the desire of the corporation by Mr. Remembrancer, and eddreseal to Alexander Mylne, Esq., ono of the Commissionera of Woods and Foreates fully explains the objects sought to be attoined:-
"Guiluhall, Sept. 17, 1838.
"Sin.-I an requested by the Narigntion Committen of the Corporation of Lonulan to state to jou, for theinformation of the Commissioners of her Majenty's Woods, Le., that the greai iuconvenience occasioned by the accannulation of mad near the embankment of the new Houses of Parliament rendors it necpssary that mome immediate step abould be taken to obviate the same, and that the Narigation Comnittee conaider that the enpoyance can only be effectually remored by continuing the line of embenkment. Ender these circumstances the Navigation Committee are of opinion that a surrey and plan should be made of the river Thames, for the parpose of sacortining the most desirable lue of ombankment on both sides of the river from Lomion-bridge to Vauchall-bridge, and also the expenses of making the proposed ecmbaukment and of excavaing and deepening the bed of the river where requitred, and that a lill shoukd be brought into Parliament in the next seasion for embanling the river Thamea, according to a plan to be agreed on; in which power should be given to the Commisaioners of Woods, \&ce, to embank the bed and soil of the river oppodia the crown property, and that power should be given to the corporation either to embenk themselves, or to permit the owners of the wharts and property on each side of the river to embank, under their directions, upon such terms an may, apon consideration, be thought desirabie; half of the expense of the nurvey and of the act of Parliament to be borne by the Commisuioners of her Majenty's Weodn, te.
"Alosamider Mylne, Exq." (Signed) "Edfard Tyrixil. The Lorls of the Treasury have agreed to the ubove propoadtionn, and have appointed Mr. James Walker, of 23, Great Georgeatreet, Weatminster, to make the neconaty survegs and extimates. The Corporation have approred of the nomination of Mr. Walker, and have given him, as a colleague, Mr. Stephen Leech, the clert of the worke of the Thames Navigation.
Arissian Frells-At a meeting of the St. Pancras vestry, a motion, proposed by Mr. Vigors, was carried, to the offect, that each member of the vestry should sign a declaration atrongly approving of the plan of supplying the borough of Marylebone with water by menns of Arlesian well.
Hastings.-The project of forming a hasbour here has, atter many weeks' agitation and excitement, been aboudoned, so far at least as respects the idea of going to Parliament for a bill in the approaching session.-Brighton Gaselte.

Mrount's Bay Breakuater-_A very numerons and highly respectable meeting was beld at the Town Hall, Peazance, on Tueaday, the 1sth January, to take into consila ation the propriety of memorialising her Majesty's government for the proteccion of lite and property, aud the promotion of important national objects, by the immediate construction of a breakwater In the Monnt's Bay. It was stated that the breakwater would require 2818,175 tons of sione, st 1 s , being 140,6581 . 16 s ., and for completing the alope, $1,108,529$ tons at 1 s .8 s ., or 68,2831 . 16. 31.-making the total coot, with ien per cent. for contingencies, $230,9951.18 \mathrm{~s}$. 3d.
Menai Bridgr.- So many contradictory reports have appeared relative to this noble structure, and particularly as to the degree of damage it has sastained in the late starm, that we are glad to avail ounalves of the communication of a frieud, who riatited the briuge on Tharaday last. He writes :-"I have this moment returned from riating the Menai Bridge, and have now the pleasure of acquainting you that the communication with Angleses is again open; the mails, cars, and carriagos, heripe pawad over in perfoct safoty since Friday lest. This applies, however, only to the divinion of roadway least injured by the hurricane-the other part is axpectod to be completed in a week or ten days. It is Intended to strengthen, considerably, the vertical roda. The flooring, aleo, which was heretofore of common plank, four or five inches in thickness, will now be twolve and oighteen lnches, and of Beltic timber. The broken vertical roils are being replaced, and part of the sanken flooring on the rondway, which aufered most, ore completed. The main chains, which prove the otablity of tho suppension principle, have remained firm as the rocky \ln which they are ambedided-Morning Chronicle.
Portpatrick-The lata dreedful gale han considerably damaged the extensive worla at Portpatrick, which our readers are aware have boen carrying on for a considerable lonth of time at that place. In perticular the pler-haed, on which the barbour commiasioners hat crectud itigh-house, has been undermined; and the lighthouse is in such imminent clanger, liat the light-keeper narrowly encaped, and the light has aince been tranaferred to the old tower, which is in a more sheltered pecition, in the interior of the harbour.
Scoteh School of Engineering.-In the Scottish Naval and Nilitary Academy is a probesor of civil engineering and of the scesmory branchen.
Improtemut of Leilh Horbowr.-Our readers will learn with much setisfiction, that the Iords of her Majenty: Treasury have been pleased to direct Meesrs. Cubitt and Walker, jointly forthwith to proceed to Leith, regarding the projected improvement of the harbour; and we enxiouly hope that the report of two engineers of such acknowledged bbility and experience will put an end to an doubts and difficulties on abe sabject, is the minds of well-informed persons, and that after the report of these perchamen is made, no farther obstacle from anj quarter will be thrown ia the way, chat so partial intesesta or local prejudices aill any longer be suffered to retard an imamediaie commencement of thi long desired and necassary work for increasing the trade of the port of Leith, and promoting the prosparity, not ouly of the city and cocentr of Edinburgh, but of a large portion of Scctland, that harbour being a great tranait port It is much to be wiahed that anch enargetic measures may be adopted by the enpineers as will enable the commissioners to edvertise in time for contractors, * that the work may be begun early in the rpring. Not a day should be loat in encuring the adrantage of a low-waterpier as near Leith as ang be consistent fith the goueral interents of trade and commerce. - Edinburgh paper.

Filuration of Water on a Great Seale.-In a recent number of the proceediugs of tha Iastitate of Frace, it is mentioned that a trial has been made of Fouviellis fllering apparalus, working under the enormous prcasure of 70 mitres, or nearly 230 (hat of what Pour acte of apperstus, each about five feet high by three feet eight inches in diametar, have boen wet to work at Bellorille and at Li Villette. The water of peaing through them poesosses perfoct limpidity, and it does not appear that thin ereat promatue occacions any derengement of the filtering materials, whether the when be paring through them in the direction it takes in the procese of altration, or wheo the current is reversod during the time of clemping, which occupies only a fow

PUBIIC BUILDINGS AND MMPROVENGANLE.

Consecration of the Netw Chureh at Cheode.-On Saturiay leat the new parish church at Cheadle was consecrated by the Lord Bishop of Hereford. It is a rery splendid edifice, in the Gothic style, contwining nave, sido aisles, chancol end tower, at the weat ond, and will seat 1,500 parsoas. It is built by aubecription.-Stafford shire Gasetle.

The new staircase of Buckingham Palace is completed. It is more light and elogant than the former onw , and gives accees to the magnificent picture gallery. Some projected improvements have boen deferred sine die, owing to the early return of the court to to m .
Hyde Park.-A qualruple row of alms, forming three dintinct malls, hat just been planted, with much taste and judgroent, at the eantern cond of Hyde-park, and will, in a fow years, add greatly to the beauty of that favourlte remort.
St. Paul" Covent-ganden.-The new achool-hoaso, arected in Hartertreet, Coventgarden, cost nearly 2,0001., towards which the Dutee of Bedford hat largely contri. buted. The school will comfortably sceommodeto, on throe separate ficoss, 800 boy a, 200 girle, and 200 infants, on woak days ; and 400 children are instructed by 86 gratuitous teachare, on Bundayn.
The Lath City of Loadon Tavern-The Wealeyan Methodista have purchaeed tive City of London Tavern, Biahopsgate-street, for the sum of 15,0001 . A part of the specions building, which in freehold, is to be eppropriated to meetinga for businese on their mistionary and other benorolent undertalings; e portion being recerred for poblic worship.

The New NationalSckool of St. George the Martyr, Southeark.-The bailding is of Gothic architecture, consisting of a contre and two winga; the fortaer compriees two sohool-rooms, one for the girls, and the other for the boye, calculeted to hold upwards of 800 children. Tho wipge will form reaidences for the meders and mis treazin of the taboole The architect, Mr. White, spered no pains in mating it a handaome and permanent building.

4 New Ruad-Application, it is ead, will be made to Parliament, next ecesion, of a blll for the purpoee of Corming a new road from Eaton-aquare to Kensiagton. The road is intended to crose Elomnostreet, Alexander-mquare, and thence to the gardens of Glouceder Lodge, the residence of the late Mr. Canning; thence to the Addison-roed: and to terminate af Kensiogton. The length will be two mile.
The Gohbmitha' Company, at their own expeose, are about to erect a new charch, aljoining their almahouses at East Acton, tor the accommodation of the company's numarons tenants, and their aged poor in that entablimment. The Biahop of London, as Lord of the Menor, presenta them nith a ring of bells and an organ.

Surrey Luhatic Arylusk. - This building has been contracted for by Meara. Baker at the sum of $£ 30,370$. - William Mozely, Esq., is the architcet
The equeatriap statue of the Duke of Wollingtan, which excited so much attention at the Duke of Rulland's grand party at Belvair Castle, wat dexigned and modalled by Mr. Edmund Cottorill, and was manufactured by Mears. Gerriorda

Ascot Grand Sland. - The first stone of this building was laid on Wednenday lant by Lord Eirrol, one of the trustees, in the presence of a large and distipguished com. pany. The contract is taken by a Mr. Cuthill, who is under penalty to complete the atructure by the $20 \mathrm{ch}_{\text {o }}$ of May, so that the public may calculate on finding ample acconmodation by the next moeting. The wem raised by 1001 . shares is 10,0001 , part of which will be paid off yearly, until the stand is free, whon it will become the property of the trustees for the benefit of the race fund.

Cheder.-In consequence of the falling of a part of the battreseen from the tower of the venerable cathelral at Cheater, the nouth tramept was mach iujured, and the timbers burat through and brokeo to piocen.
Leeds. - A magnificent hall is to be erected in this town for the rociety of New Odd Follows, trom the designs of Mexarn. Parkins and Backhouse, srohicectr.

Furk Casile, thie berracks, and the renerablo cathedral, were injared by the late storm; in the latter, some of the valuable windown have been partiely damagod, and anch wat the forcejof the wiud that the leed roafing was diven a comaderable dintance from the building.

Birningham, Slorm_-The top of the Town-hall is roefed with leed, neerly threefourthe of which is corn off. A uewly arected chimney of the ritriol works, upwards, of 300 feet high, was partially blown down.
Dunyrics, Storm.-Five ntones have beeu displaced from the apire of SL Michmed's and as it has long been off the plummet line, werious feart are enterthined for ith future safety. The same remark applies to the wooden top of the Mid-steople, and all the churches on both sides of the river hare been more or less damaged, not excepting St Mary's.
Dublin, Storm.-The ball whieh murmounted the spire of St. Petriek's Cathedral was blown down, providentially without doing misclisef. It hed been out of perpendicular a condiderable time, and sall within the railing in the North Cloee. Abont 27 yeara ago the former ball fell, carrying with it several feet of the spire.
Ireland.-The Earl of Dunraven is completing a magificant manaion at Adere Abbey, upon which 40,0001 . will have been expended. Lord Clarina is making an outhy of $10,000 \mathrm{~L}$ upon relusble improverisents at the herroditary seat, Elm-park. William Munsell, Eaq., hat commenced large improvements at tho ancient mansion and romantic demeane of Torroe. General Lord Bloomfeld, a beentiful mansion and rille pear Nowport Siz Lucias O'Brien, Bart, otill further embelliahing the aplendid reaidence of his ancestora, at Dromoland. Mr. Barrington building a manmon at Cannarcullen.-Limerich CAronicle.
Thr Jumenik Prion at Parkharat, Inle of Wight, haing now Anished, reccirod itn firat fify inmaten in December, from the hulks at l'ortsmouth.

FORMIGN MHYGILIGENO:

Purin.-The comnission which was appointed to eramine and roport npon the new fire-proof machlnory (consisting of Col. Paulin, M. Robault, M. Maynich, and M. Simopet) met ou Friday, Jan. Ilth. Thoir inutructeas are to furaiah a report, with a fiew to the introduction of this perfeetionmement in theatrical mocherim, at Well into the proposel dow thealren os into those alreedy constructed.
The large paintinge in the churah of the Madeldone, by Mearn Ziegler, Abel da Pujol, \&c., are neary finibed; the eculptare, gilding, and inerautationn in marble are almous comploted; the aliars, palpil, beptistry, and base donove are nearif placed; aud the great bronze doors are rapidly approaching to coraplotion. It is expected that the buildire Fill bo ineagurited is the itan of aest July.

Naw French Copyright Bill.-The author of a drawigg, pictore, a work of seulpture, aschitecture, or any other work of the came description, shall alone have the right of reprodacing or anthorising the reprodacing of it, by engraviug, or in any other way. This right ahall liast daring the anthor's whole life. Ater his death, hif widow, heins, or reprementatires shall enjoy it, conformably to the provisions atitbliahed in the first permgreph of this prevept law. The authors of the works just mentioned, or their representativen, may cede the right secured to them, retaining, novertheless, the property of the work; but, in cace the original work bo sold, the oxclusire right of eathorising the reproducing of it by engraving or any ocher means shall be transferred to the purchater, if no atipuiation to the contrary exista

Immense wooden gallerise are now being erected in the squars of the Champa Elybes, for the impending exchibition of uhe produce of Fronch maunfecture.

Naples.-Aocording to lottors from Palermo of the 2tth Dec., referred to in L_{0} Conmerce, the Eing of Naples, previons to his deperture from Sicily, publiahed a varioty of decrees reletive to the eutablishment of cemeteries, without the precincts of cowns, the opearing of a number of romeds, \&ec.

Napoleon Columen.-The Journal de la Corse states, that the works on the column which is to be erected in homonr of Napoleon, near the house in which he wan born at Ajaccio, are going on with repidity. The column will be formed of a single block of the granite of the country 50 foot long, and will be armonnted by a atatue of the Emperor.

Dutch Dikes.-In the ialand of Beverlanal, which is only fiteen milen in length by serea in breadth, there are 200 miles of dikes or artifioial embanknents. Chambera' Edinburgh Journal.
Stean Dock-yard in Hollaynd.-About a mile abore Rotterdam, on our right, we noticed Finjord, a considerable atoum brilding etetion, where at preaent a large namber of men are employed, many of then upon an iron steam-boat of great magni-tudo.-Chamberi Edinbwogh Jomrnal.

Brugea Road-A now roed is in the procens of coontruction betwixt Brages and Calais. It will be much shorter than any other now existing, and direct, oxeept in one part, where, on acooumt of the mobile nature of the grevelly soil, a circuit of three miles is rendered unavoidable.

Faortm Lake-It meems that thepe is a very great diversity of opinion io the sections of the two chambers rempecting the project for druining the Late of Haarlon.
Homburgh.-A private lottar shates that during the late tremencions gile, the barbour of this plece hal been almont entirely deutroyed, nourly overy pile having been tom away; the whola town had been inundated.
In the dominions of the King of Wirtemberg a royal theatre is to bo built at Stritgard, and a smaller theetre, to be completad next year, at Kabatedt, within a fow milet of the former town. Professer Zailht, who lately visited England, is the arehitect of the new thentres.
A grand thentre is aboat to be built at Dresien, at the public expense, for the parformance of German and Italian operas.
The Statue of Goethe, executed at Milan, antived a fow daym wince at Prankfort.
The celebrated Barerian painter, M. Cornolina, who has lately vidited Paris, lees been made a Knight of the Iegion of Honour, and since olected Forsign Associate of the Rojal Acmiemy of the Fine. Arts, in lieu of the late distinguinhed componer, Zingarelii.

Copenhagen, Jax. 5.-The King has removed the principal obstacles to the erection of the Thorwaldeen musens, by alloting to that purpose in building consisting of two winger and anothar portion of the palace of Christimbarg.

Grece.-An adrantageous discovery for the state has been lately made in the mines of Kumi, a better sort of conal than that as yot worked having been found.
Road to the Red Sea.-We learn by letters from Alexandris, that 800 Europeans crosed the isthmus of Suoz last year, on their passage to and from Indis: and that a regular costh conveyance will be soon established between the shoret of the Levant and the nearest point for embarkation on the borders of the Red Sea.

Penasylvania Public Worka.-The amoant axpended in 18s7, by the state of Pennoylvania, in public works, was, for canals and railways, $1,789,442$ dollars, and for turnpikes, 118,160 da., being about 400,0001 . The receipts were, canal lotts, 16,081 dole, ritiway lottu, 385,827 .

NEW PATENTS.

LIST OP ENGLISH PATENTS GRANTED BETWEEN THE 24th OF DECEMBER, 1838, AND TER 99 TH OP JANUARY, 1890.
Samuzi Clego, of Sldmouth-atreot, Gray's Inn-roed, Engineer, for "A new Improvement in Valres and the combination of them with Machinery."-srd January ; f months to specify.
Hesiy Ronert Abrabam, of Keppelstreet, Rameilhquare, Architect, for "Im provementi in Apparatus applicable to Steam-boilera."-Srd January; 6 monthe.
Thomas Nicholas Rapir, of Greekstreet, Soho, Gentiemsn, for "Improvements in rendering Fabrica and Leather Waterprool." -Brd January; 6 monthi.
Abel Mumair, of Studler, Noedlo Maker, for "Certain Improvements in the Mating or Manufacturing of Needles, and in the Mechinery or Apparatus employed Qherein."-8rd Jenuary $; 6$ montha.
Lovis Matevine bisaon do Mavieze, of Lombardstreet, Genteman, for "Improvements in the construotion of Springe for Carriages."-ard January; 6 month.
Miles Berixy, of Chancory. lane, for" Certain Improvementa in Rotatory Enyines to be worked by Sleam or othar Fluids, 4hh Jenuary; 6 monthn
Williax Eicklino Buanytyiof Whartoustreet, Bagnigge Wells-sond, Gentlemen, for "Now and Improved Machinery for Sawing, Flaning, Groving, and otber proparing and working Wood for cartain purpoess."-ah Jarnary: 6 months.

Josspil Clisild Danizil, of Limphey Stote, Wits, for "An Improved Metbod of weaving Woollen Cloths and Cloths made of Wool rogether with other materials." -9th Jenuary ; 6 months.
Mossi Poors, of Lincoln's Inu, Gentleman, for" Certain Improvements in Cloge." -11 th Jenuary: 6 months.

Joze Howamere of Aldermanbury, Manufacturar, for "Cortain Improvementain Machinery in Spinuing, Roving, Doabling, and Twisting Cotton, and other fibrous materinis."-11th January; 6 months.
Joun Asmion, of Mencheater, Silk Manufacturer, for "An Improvemeat or Improvemonts in Manufacturing Plush of Silkar other fibrous materiale" "-11th Jemury; fronthe.

Jorn Swain Woirn, of Mancheater, Meschant, for "An Improved Machine foe Proparing and Cleaning Wool for Manufacturing Parposen."-11th Jamuary; 0months William Newton, of Chancery-lene, tor "Certain Improvenents in Mechines for Drilling Land or Sowing Grain and Seeds of different descriptions."-1 lh Jenuary; 0 montins.

Francis Berwin, of the Old Keutrond, Tanner, for "Certain Improvements in uning Matorials employed in Tanning, and propering the same for otber usefal pur-poses."-Ilth January; 6 months.
Romegt Logan, of Trafalgar-square, for "A new Cloth or Cloths constructed from Cocom Nut Fibre, and for certain Improvements in preparing such fibroas materiala for the same and other"parposes."一l ith January ; 6 months.

William Ponsyord, of Wangyehouse, Easex, gentleman, for "Improrements in the Manufacture of Hats, and an Improved Description of Folt suitable for Hets and various other usefol propoues, and Improvements in preparing the Material or Materinle chiefly used in the Mannfecture of such folt."-Jan. 12; dx montha.
Edwin Martin, of the village of Brasted, Kent, plumber, for "An Improved Method of Laing covering composed of Leed or other Metal on tho Roof of Hoomes or other Buildinge, with Draing, whereby the part of the Water falling on wuch roof which would otherwise penetrate, is carried off, and rolle and seams are readered nnnecessary."-Jav. 12 ; pix month.
Josera Burch, of Bankide, Bleckfriarn, calico printer, for "Certatn Improvements in printing Cotton, Woollen, Paper and other Fabrics and Materiala."-Jan. 15; six month.

Willias Withay, of Hudderafield, machinist, for "Improvements in Engines to be workel by Steam-water or other fluids."-Jan. 15; six months.

Ilvoil Furd Bacos, of Pen Drayton, Cambridge, for "Improrement or Improve. ments in Apparatus for regulating the llow or Supply of Gas through IFpes to Giss Burners, with a vipw to umformity of supply."-Jun. 17 ; mix months.

Wilifam Holme Hzoivaotram, of Stockport, genteman, for "Certain Improrements in Machinery or Apparatus for propalling Boats or other Veasala, to be employed either for Marine or Inland Navigation, and to be worked by steam or other power."-Jen. 17; six months.
Willian Nefton, of Chancery-lane, Ciril Figineer, for "Certain Improvements in Engines, to be worked by Air or other Gaces."-Jan. 17 ; six montha

Oglethozpe Wakelim Bargatt, of Birmingham, Metal Gilder, for "Certein Improvements in the procem of decompocing Muriate of Sola, for the Manuficture of Mineral Alkali and other raluable producta."-Jan. 19; six montha.
Joseph GaEnett, of Haslingden, Dyer, for "Certain Improvementa in Mechinary or Apparatus Sor carding Cotion, Flax, Wool, or any other fibrous aubstances."-Jen. or Apparelus
10 ; mx moutha.
Richard Dugdale, of Paris, now residing at Manchestar-treet, Middlemer, Engineer, for " Method or Methods of increasing the secarity, tenacity and stroogth of Heams, Axles, Rods and other articles made of Iron and Steel."-Jan. 19; six montha.

Calef Bedells, of Leicester, Manufecturer, sor "Improvements in Gloves, Stocking and other Articlen of Howiery."-Jan. 21; two months.
John Coope Hadpar, of Baring-place, Watorloo-road, Sorrey, Civil Engineer, foe "Improvements in Machinery or apparatus for propelling Veseels and Boats by Steam or other power."-Jan. 22; ix montha
Georoz Stevenr, of Stowmarket, Brewer, for "Certain Improvements in Storea"Jan. 22; nix months.
Trosis Dowling, of Chappl-place, Ozfond-street, gentleman, for "Improvementa in preparing Metals for the provention of Oxidstion."-Jan. 24; six months.
foby Harrocks Ainswosth, of Halliwell, Lancaster, Bleacher, for a Certain Improvenents in Machinery or Apparatus for Stretching, Drying and Finishing Woren Pabrice."-Jan. 24; six months.

Robert Copland, of Courlend, Wandsworth-road, Surrey, Esquire, for "Imp provements in Water-wheels."-24th January; 6 months.
Piepaz Jean Isidore Vezdiege, of the Sabloniere Hotal, Leicester-ayuare, Gentleman, for " Improvements in the Mannfacture of Starch, and in the Mechinery for proparing and in emploging of the refuse matters obtained in such manuficture." - 25 th January; 0 months.

John Howard Kran, of Cheltenham, Esquire, and Willian Hyatt, of Lower Fruntrin-place, City-roud, Engineer, for "Inprovements in Steum Engines." 20 th Jannary ; 8 months.
JOHN Hillasd, of Breadestreet, Cheepside, Merchant, for "Certain Improrements in Machinery and Apperatus for Mating and Manufecturing Screws,"-29th Janaary; 6 months.

William Lurym, of Lower Cowley House, Onford, Dentist, sor "Certain Impravements in applying and attaching Artificial and Natural Teeth."-29th Jenoary; 6 months.

TO CORRESPONDJNTE.

We have received sereral communications on the subject of engineering oducetion. We had conoeived that we hed gone into the subject at rufficieat leagth, but as theoe communications call for a reopening of the question we intend to go into it at greater extent next month. We had commenced a reply this month, but on mocount of the preacure of matter we are obliged to defer it undil the next number.
We regret that we are obliged to postpone Mr. Tait's communieation on Improvements in Railways. Likewise soveral othar communications, We will endeavour to make up the arrears in our mext journal.

In reply to the inqniry of tho Country Subscriber respecting the Oxford-etreet paremenh, we must observe thet aech party has laid down his specimen at hia own expense, and that the present experimant is not to try the expense but the darabitity and working of the different systems.
Subscribers are particularily requested to complete thetr sets of numbers for the first volume immedintely.

We shall feel obliged to the profossion if they will forward us eccounts of warts in progress, new infentions and discovaries; and particularly if our country wab. scribers will seud us any newspaper containing any matter ralative to the objects of our Jourual.
Booly for review must be sent early in the mbath; commurications prior to the 20ih; and adrertivemente before the 20 ch instant.
**: The frrit volume may bo had boued in cloty, and lothered in gold, prion 178
PONT DU CARROUSEL, PARIS.
ENGINEER, M. POTENCEAll.

No. 18-Fot II.-Mancit, 1839.

Fig. 1. Section of Road and Foot Path ovir Arch.
Fig. e_{0}
Fig. 8. Elevation of Cornice.

Fig. 7. Section of Abutnent.

Fig. 11. Fig. 12. Fig. 13.

Figs. 8 and 0. Elovation and Sccion of
back Abutmeut Mlate.

Figs. 14 and 15. Elevation and
Figs. 14 and 15. Elcvation

Fig. 17. Section of one of the Tubular Ribs.

Fis 18. Man of the Top of one of the Ribs, Cross Slays, Ties, and Diagonal Braces.

Fig. 19. Section of the lib upon an enlarged Srale.

BRIDGE OF THE CARROUSEL AT PARJS.

references to the drawliges.

Fig. 1. Elevation c,f one of the side arches, span, 156 feet; rise, 15 feet 6 inches; and width of pier, 13 feet.
Fig. 2. Section of the arch, nud elevation of pier, breadth of roadway, 17 fect, and two foot-paths, each 9 feet; total widih, 35 feet.
Fg 3. Plan of ribs of the arch, shown more at large in fyure 18. Similar letters in figures 3, 17, and 18, refer to similar parts.
Fig. 4. Section of part of the roadway and footpath over the arch. A, the upper part of the cast-iron rings (figures 14 and 15).-B, two flitches of oak timber, 12 ituches by 8 iaches, forming the longitudinal bearers or girders ; they are bolted tugether with nut and serew bolts.-C, external plates, the inner plate 10 by 12 inches, and the outer plate 8 by 10 inches, bolted together; on the face is a cant iron paneled fa-cia, forming part of the cornices.-D, transverse bearers or joists, 12 by 10 inches, placed 4 fee 4 inches apart from centre to centre; on the ends are cast-iron caps, furming a modillion to the cornice. - E, a cast-imn moulded capping to the noodilion.-F, longitudinal plate, 8 by 12 inches. to carry the edge of foot-path and iron railing, with a fascia and moulding to form the cornice. - G, a b:ock, 12 by 8 inches. -H , longitudinal bearer, $12 \frac{1}{2}$ by $2 \frac{1}{2}$ inches under centre of fiot path, with a plate $12 \frac{1}{2}$ by 8 inches to carrycurb of foot path, and rebated out to form an aperture for the water from the roadway to escape. K , curb, 8 by 12 inches.-L, planking of luotpath, with a narrow slip of iron let in flush on the edge.-M, iron guards bolted down to curbs. Curb to roadway, 6 by 7 inches, splayed on the top- $-P$, planking of onk 4 inches thick. $-Q$, planking of fir 3 inches thick. $-R$, road materials.
Fig. 5. Elevation of cornice, 3 feet 10 iuches high; similar letters refer to similar parts, as in figure 4.
Fig. 6. Se ation of one of the longitudinal beams in the centre.
Fig. 7. Section of the abutment.-A, stone springer, the face cut to an angle of 66°.-B, iron abutment plate, with 2 mortice holes, asshown in fig. 89. C, rim of abutment plate, forming a socket; the section of this rim is shown in figs. 11, 12, and 13.
Figs. 8 \& 9. Elevation and section of the back plate, with 2 mortice holes.
Fig. 10. Elevation of the front plate or rim, furming the socket
Fig. 11. Secion of rim round abutment plate, actoss A. to B.
Fig. 12. Ditto across C. to D.
Fig. 13. Ditto across E. to F.
Fig. 14. Elevation and section of one of the rings and connecting pieces or stays between the rings.
Fig. 15. Horizontal section and plan of ditto.
Fig. 16. Elevation of one of the external lengths of the tubular ribs of cast iron, 13 feet 9 inches long, and 2 feet 9 inches deep, including flinges.
Fig. 17. Eleration of the inside ribs, showing the section of the bolts and ribs.
Fig. 18. Plan of top of one of the ribs, showing the edge of the flanges ard connexions. - Λ, iron tubular rib. -B , cast-iron hollow cylinders, 44 iuches diameter, forming stays betwcen the rits.-C, wrought-iron bolts or ties, 14 inches diameter, with nuts and screws.-D, cast-iron diagonal braces, with feathers, average 9 by $5 \frac{1}{2}$ inches, and a groove at the ends, fitting on, and bolted to the connecting pieces, screwed to both sides of the upper flange of the tubular ribs; similar letters refer to similar parts in figure 17.
Fig. 19. An enlarged section of rib, drawn to a scale of two inches to the foot. A, cast-iron casing.- B, nine thicknesses of timber, bent into a curvilinear form, and bolted together with nut and screw bolts, C C.-D, coating ofasphalte.-E F, nut and screw bolts, connecting the two cheeks of the iron rib, with thin slips of wood between the flanges.-F, capping of asphalte.-G, lower part of one of the iron rings, which carriea the longitudinal bearers, as shown in fig. 4.
This bridge was constructed under the direction of M. Polencean, engineer. It was commenced in the year 1834, and completed in 1836. It forms a communication over the Scine, between the Place du Carrousel by the Quai du Louvre and the Quai Voltaire. The bridge presents some novel features in its construction, so as to merit the attention of the profession. It is constructed of timber and iron, with stone-cased piers and abutments. The bridge consists of three arches, forming portions of an ellipsis. One only is shown in the accompanying drawings. The centre arch is 187 feet span, and $16 \frac{1}{2}$ feet rise; and the tuo side archers 156 feet span, and $15 \frac{1}{9}$ feet rise. The total length of the bridge, including piers and abutments, is 558 feet, and the breadth of the roadway 35 feet. The whole length of the bridge in its design forms a that arch. The chord line of the side arches is slightly removed from the horizontal, so that a line drawn from the springing at the pier to the springing at the abutment would make an argle of one degree with the horizon. The churd of the middle arch is horizontal.

The piers are cased with hewn sandstone, and f.lled in with concrete. They are also erected on a foundation of concrete, and protected with sheet piling. The cut-waters at each end of the piers are semi-circular, and are thus carried up to a level with the springing of the arch, and terminated with a hem'spherical head. Above that level the piers are carried up square, and project ubout 1 foot 8 inches before the face of the arches. The abutments are also cased
with stone, and founded on concrete. On account of the flatness of the bed of the river, they are projected forward on each side, so as to concentrate the stream in the centre of the river. By reference to the drawings it will be seen that the cornice of the abutments and piers follow the inclination of the roadway, which we consider an improvement in the architectural effect on the ordinary mode of waking the cornice and parapet horizontal, as at London, Waterloo, and other bridges.

We will now proceed to describe the construction of the arches. It will be obscrved that at the springing of the ribs the abutments are splayed or inclined to an angle of 66 deg., and formed of solid masses of stone, on the face of which oval recesses are sunk to receive the abutment plates, and are made a little larger, to prevent the vibration of the bridge splitting the stone off the edges. The abutment plates are of cast-iron, in two pieces, as shown in figures 7 to 13, which were firmly bedded on to the stone with Pouilly cement. These plates form a socket for the reception of other plates bolted on to the ends of the ribs. They were firmly connected together, and the joints filled in with an iron cement, composed of 10 parts of castiron filings, 2.5 of sal ammoniac, 1.8 of sulphur, and 2.25 of metal dross. All these were in fine powders, carefully amalgamated, and mixed with only enough water to bring them to a good consistence. The weight of each under plate is about 8601 bs ., and of the upper plates $12201 b s$.

In order to unite the firmness of iron with the elasticity of wood, and to insure both against the ravages of the weather, while lightness. and cheapness of construction are equally consulted, M. Polenceau has adopted a peculiar form of rib, which has been called, from its shape, the "tubular rib." Each rib is formed in 22 lengths, and composed of two separate cheeks of cast iron, bolted together, with nine thicknesses of timber inside, as shown in figure 19. The interstices between the timber and iron are filled in with a composition of two parts of Seyssel asphalte, and one part of gas tar, which also forms a capping on the top of the ribs. In filling in the asphalte, the ribs were heated by means of portable furnaces, so that an opportunity was afforded of ascertaining the extreme expansion of the metal. The length of the ribs were of four kinds-outer and inner end pieces, and outer and inner iniddle pieces, varying in size, but were about 13 feet long on the average, and weighed about $2,8001 \mathrm{bs}$. To insure their strength, each half rib was subjected to a double proof, first by suspending it by a fulcrum at each end, and then laying on it 40 tons; and again, by dropping a ton and a half on the middic, from a height of $1,2,4$, and 6 yards: these lengths fit into each other, and are fastened together by screw-bolts and iron keys, as shown in figures 16 and 17.

Each arch is composed of five ribs, connected together by means of cross ties, bolts, and braces, as shown in figures 2 and 3 , and more at large at figures 17 and 18: upon these ribs are placed the rings which carry the superstructure ; they vary in size and weight, according to their position. Some of the larger are 10 fect diameter, and a ton and a half in weight; they are united to each other by bolts at their circumferences, as shown in figures 14 and 15. By reference to tigure 19, it will be scen how the lower part of the ring rests upon the ribs; and, by figure 4, how the upper part carries the longitudinal bearers: these rings are again connected transversely, by means of bolte across the arch. They required considerable care in setting them, on account of the difference in the size of the arches. Some of them were found too large, and others too small.

The longitudinal bearers or girders consist of two flitches of oak, loolted together, as shown in figure 4: upon these are laid the transverse bearers or joists of oak, which are notched or calked, and bolted down; upon the joists are laid two thicknesses of planks, breaking joints over each other. The lower planks are of oak, and the upper of deal ; over these are laid the road materials, and on the sides are Hitches of timber, forming a curb and gutter to the roadway; the footpath is also formed of oak plants, raised on longitudinal bearers, ns shown in figure 4, with a slip of iron let in flush, the whole length, and iron guards at distances, as shown in figure 4. The exterior of the footpath is converted into a cornice, an iron sunk fascia, being laid over the face of the lower longitudinal bearer, and on the ends of the joists, an iron capping, forming a modillion, with a moulded capping also of cast ircn, and the upper part formed into a fascia with a bed molding under the edge of the footpath, the whole having a pleasing effect, as slown in figures 4 and 5. The plankings of the roadway were well rubbed over with tar, and all the joints carefully filled up with sand, and then rubbed with a mixture of equal parts of vegetable and gas tar. The material of the road is composed of white chalk stones and pebbles, the size of walnuts, and the whole surfuce of the roadway and footpaths finished with asphalte. On each side of the bridge, to protect the footpath, is an iron railing, with bars 7 inches apart. All the iron work of the
bridge is painted with an iron grey colour, of M. Polencean's invention.

We have endeavoured to explain the construction of this bridge in the best manner we are able, and for the better understanding of itu details, we refer the reader to the drawings and references which will be found to contain the dimensions of most of the timber.

We are principally indebted for the drawings to our foreign contemporary, the "Algemeine Bauzeitung." We wish the editor of that publication would be as generous in acknowledging the namerous articles that have been copied by him from this joumal.

GLENARM HARBOUR.

"The ehiof ruler or atateaman that will be able to form anyism-ha, bours on the ansheltered and dangeroas parts of the coast, end will also calso to be marked or beacomed, by the erection of granite towers, ilie danferous rocks, the shosin. and the reefs which surround the shorres of there kingdoms, therehy giving safely and security to the mariner in lipe of tempest and storm; also safrly to the fluating wealth of these realins. and the culonies thereunto inelongling ; alsn lessenlug the wall of the aidow and the orphan through ut this maritime land-will not ouly receive the blesninge of future generations for the erpction of these works of meres. trading so much to the prearvation of life and propery, but with als, incresse, to a greal extrit. the wealth. the puwer. snd promperity of the下hole empire."-Bald's Evidence on Harbours-Public Horha-Ireland.

Report of William Bald, Civil Engineer, F.R.S.E. \& M.R.I.A., \&e., on the erection of a Pier, and formalion of a Harbour in Glenarm Bay, in the County of Autrim, Ireland.
The Bay of Glenarm, where the proposed Pier is intended to be erected, is siluated on the north-cast coast of the county of Antrim, bordering the North Channel. The bay is about half a mile in length, and three furlongs in breadth; containing an area of about 120 acres, and possessing a very considerable depth of water: four, five, aud six fathoms. The bottom consists of clay, and is well known to le excellent holding-ground to all classes of ships. At the head of Glenarm Bay is situated the town of Glenarm, and the land surrounding the bay rises to a considerable elevation, and protects it from the prevailing southerly and westerly gales. This bay is, borever, open to the channel sea from the north, north-east, east, and soutb-east; but the greatest run of sea into it is from the north and north-cast. The Bay of Glenarm lies nearly opposite the entrance to the Clyde, offering very great facilities to commercial intercourse with all the towns situated on the west of Scotland; viz., Glasgor, Ayr, Greenock, \&c. \&c. It is distant from Lame 10 miles, and from Portrush nearly 50 miles ; so that, in an extent of 60 miles of coast, there is no harbour, either artificial or natural, to afford protection to foreign traders, coasting vessels, or even to the smallest description of fishing craft. These reasons alone are sufficient to prove the great utility that would be derived from the erection of a harbour in Glenarm Bay; and it would, also, give shelter and security to a great portion of the floating wealth belonging to the Clyde, the pors of Liverpool, the colonics of North America, and the West Indies, which would pass throughthe Irish Northem Channel. Besides affording an asylum for vessels overtaken by storm, it would give a port to the whole of the central portion of the county of Antrim, consisting of large districts of country highly cultivated, and producing great quantities of grain, and cattle of all kinds, and which could be cheaply exported, by means of a harbour at Glenarm; and, also, the valuable facility of importing into the country all the necessary aricles of merchandize. Glenarm harlour would become the port to an extent of country containing not less than 400 square miles, also to the whole of the fertile interior country adjacent to the large and populous town of Ballymena, distant only 12 miles; and it would offer a ready means of direct commercial intercourse with the manafacturing and maritime districts of the Clyde in Scotland, both by steam and sailing vessels; and which would, in a very short period, create and augment the trade of the country to a very great extent. The Portrush and Derry steamers to Liverpool, touching at Glenarm, would establish a trade of vital importance to the merclaants of Bal lymena, particularly those engaged in the export of pord, botter, provisions, and linen cloth. The exportation of limestone from Glenarm to Scolland, and the importation of coal in return, would form a very lucrative and highly beneficial branch of trade betwen the countries. At present there is not more than about 6,000 yos of limestone exported, and only 1,000 tons of coal imported.
can be no doult bat the importation of coal would greatly iscreme, both for burning lime, and working the steam-engines and machinery in progress of erection at Ballymena and Broughshane, when the facility of procuring this necessary article from Britain is attained. by the construction of a harbour at Glenarm.

The port of Belfast is distant from Ballymena about 24 miles, and Glenarm is only 12 miles ; and independent of the saving of landcarriage, it offers a greater facility to direct intercourse with Scotland, being nearer, and in a more direct line; besides, the depth of water within the proposed pier at Glenarm would enable vessels drawing even more than 20 feet of water to enter and depart at all times of tide. With these cminent and peculiar advantages, which no artificial harbour in Ireland possesses except two, there can be no doubt but a very considerable trade would arise, fully sufficient to repay any moderate expenditure which might be made in erecting a pier at Glenarm Bay.

Design for a Harbour at Glenarm on the Const of the County of Antrim, Ireland. Drawn to a scale of 800 feet to $1 \frac{1}{8}$ inch. By William Bald, F.R.S.E., M.R.I.A., and Civil Engir eer.

Fig. 1. Plan of Harbour.

(The dotted line D)-N. by $E_{\frac{1}{2}}$ to the Mull of Cantire-(the other dotted lice)-NE by E $\frac{1}{2} \mathrm{E}$, to Craig of Ails-AAA, Low-water-BB, High-water-CCC, Proposed Piè or Breakwater-DD, Glenarm Bay-EE, Roed-way-PF, Harbour-GG, Line of Transverse Section - H, Town of Glenarm.

Fig. 2. Transverse Section at GG, 190 feet broad at bese; drawn to a scale of 55 feet to the inch.

AA, High-water-BB, Low-water-C, Top of Quay, 18 feet wide-D, Pafepet at fop, or Storm Pavement-EE, Breakwater Glacis, or Storm Pavement.

The Construction.-It is proposed to run out a rough pier, or breakwater, from Paixe's Point to a distance of 825 feet, then with a cant of 380 feet in length, as laid down, drawn and described in the chart containing the proposed design and sections of the breakwater, deposited with the clerk of the peace. This work would effectually protect and cover about 20 acres of the Bay of Glenarm, and give security and shelter to trading ships of all kinds. The depth of water within the mole would be from 22 to 30 feet at high water ordinary spring tides. There is an abundance of limestone, in extremely thick beds, lying close to the proposed site of the breakwater, casily wrought, and which will afford an abundance of very heavy and large material, at a remarkably cheap rate, to construct the breakwater with. It is proposed, simply to lay down an abundance of stone blocks, and then to permit the ocean, for some time during storins, to shape down the slopes of the sea-side of the mole to the angles of inclination which the momentum of that element would assign to such materials. And for the purposes of landing and shipping of goods, it is intended to construct a timber wharf within the pier or breakwater, leaving to some future period, when the trade would afford the means, the facing up of the inside of the pier with squared masonry. Even the construction of only 300 or 400 feet in length of the breakwater, would enable vessels to discharge and take in cargoes, so that an immediate traffic would be the result of even a very small portion of this work being done.

I have drawn out two estimates : one for an extension of 1,205 feet in length-amount, $£ 17,312$ 16s. $8 d$; the second estimate is for an extension of, in length, 825 feet-amount, $£ 11,217 \mathrm{2s} .5 \mathrm{~d}$.

Willam Bald, Civil Engineer.

RALPH REDIVIVUS.-No. XIV.

the lowther arcade.

What advantages its more successful rival may possess in regard to its shops, I am not prepared to say, neither la it a question of any im-? portance to my present purpose, but I may assert, almost without fear of contradiction from any one, tbat the Lowther as far surpasses the Burlington Arcade in its architectural appearance, as it falls short of it in the degree of favour and patronage it receives from the public. In itself this is but very indifferent praise, since it might be greatly superior to the ether, and yet scarcely worthy of notice for any architectural merit. In fact, as a design, this piece of architecture displays both originality and taste, greatly more so than many things which it is the fashion to talk of, merely, it would seem, because they happen to have been cried up in books, and their praises have been repeated and handed down from one bonk-maker to another, without further examination or inquiry.

Before, however, I touch upon the merits of this arcade, I must be allowed to say something in regard to the class of buildings so denuminated in this country. As far as public convenience is concerned, most assuredly nothing could be devised more suitable to such a climate as ours-that is, supposing it to deserve one tithe of the ill-natured, splenetic grumbling it provokes,-than a covered street, which bids deflance to the humours of the atmosphere, and where one may lounge and look at the shop-windows, though the rain should come down in torrents, or though an August sun sliould broil people as they walk along in the open streets. Here there is no disagreeabie, perhaps I should say, delightful variety of nud, ankle-deep at one time, and hovering, but, alas! not golden, clouds of dust at another. On the contrary, there is a monotonous constancy of uniform, dry, and level pavement, where a lady might walk without soiling a white satin slipper. It is this monotony, I presume, that prejudices the publlo against such galleries, as they may very fairly be styled, more eapecially the one here under notice.

I say, "projudices the public against them," because there is some reason to presume they have no attraction, or else by this time we should have many more erections of the same kind, if no where else, in those places at least that seem expressly intended for them, a nd unfit for anything el-e; for instance, the two squeezed-up alleys called the "Turnstiles," leading into Lincoln's-Inn fields; Middle-row, Holborn; Cranbourne-alley, and several others of the same description in Cornbill and its neighbourhood, all of them very greatly frequented thoroughfares, and more particularly disagreeable to pass through in wet weather. Were these widened, and covered in, and converted into galleries lived witb the shops, they would, I think, be so many improvements; spots which one would be more inclined to visit than to avoid. It will, perlaps, be said that merely widening them would in many cases not be sufficient, some of these alleys being, if not absolutely cruoked, full of windings and turnings. To which it masy be replied, tant mieux, since, so far from presenting any obstacle, buch deviations frum an uninterrupted straight line would suggest many.
new ideas and combinations to an architert, that is, to an architect of any nous and taste. Indeed. much as I admire the Lowther Arcade, I by no means wish to behold any repetitions of the same subject, where there is so much scope for novelty and variety-far more, I will undertake to assert, than in almost any other class of buildings that can be mentioned. Styles that would be far too outré and fanciful for ordinary street architecture-decoration that can hardly be applied in exposed situations, might he employed here. Bvery varicty of Gothic, from Norman to the latest Tador-if I may be allowed to say so without getting a rap over the knockles for apparently confounding Norman with Gothic-the Byzantine, Lombardic, Moorish, Italian, in all its most picturesque and peregrine fancies, or Pompeian, with its araberque vagaries, or pure Greek, arrayed in all the pomp of its polychrome embellishment, might be resorted to at will. What displays of perspective might be obtained! what pictures! what painter-like effects! what magic witchery of light and shade! what-but this is raving-the rery coinage and cestacy of the brain. I am soaring on Pegasus-no, I lave got astride on Astolfo's hippogriff, and have got nearly half way to the moon.

These larum-scarum flights do not do for sober company; my worthy progenitor, I am sure, nerer gave way to any thing of the kind. He never soared higher than a flying-fish, never frisked nor curvetted at all-at least, not more than a horse does in a mill. Therefore, let me endeavour to talk soberly; and, in sober seriousness, I would $r a$ her have a subject of this kind to work out according 10 my own i eas, than one of those grand affairs which seem to be of more mark and likelihond-at least, of far greater impurtance; yet which, after all. generally turn out to be very little better than common-place, magnified and displayed upon a more than common scale.

Highly satisfactory as the Lowther Arcade is in itself, it goes very little way towards showing what might be made of a gallery of this kind, by throwing greater play and variety into the plan, by increased loftiness in particular parts, by a sudulen expansion in one place, and consequently the effect of contraction in another. A central rotunda, octagon, or hexagon, from which different vistas radiated, would even, were it in itself but of moderate size, give a piquant complexity to the design, and provide a point where some statue or other ornamental object would produce a striking effect. Though not exactly in the very best taste, the rotunda of the Passage Colbert, Paris, is a scenic, architectural bit, which shows what might be accomplished in that way. An upper aisle of shops on cach side over those below might occasionally be adopted, and would certainly aid very much in varying the character of the particular design. In short, a place of this description is one that affirds the utnost scope for invention, contrivance, and taste, and also for bringing together the features and claracteristics of both external and internal architecture. There is hardly any kind of embellishment that might not be applied; and since the introduction of asphalt for that purpose, the very pavement might be made to assume a decorative character, and be variegated with ornamental patterus.

But how are such things to be done? Who is to pay for all this splendour? Taste is an exceedingly expencive and costly thing; such, at least, seems to be Juhn Bulls opinion, although John is generally ready enough to anffer himself to be hambugged out of his money in paying double what he ought to do for many things that have no pretensions to taste at all. However, as I my:elf happen to have no taste whatever for the L. S. D. part of the business in such matters, I leave that epsideration to other heads; merely remarking, that so far from there being any symptoms of lack of money amnng our shopk cepers to prevent their encouraging any architectural enterprise of the kind here mentioned, numbers of them seen to be contriving how to squander away as much as pasaible of that commodity, without any return to them for it in the shape of taste, for after all the extravagant expense they incur, they seldom, if ever, produce more than what is a little bedizened-out patch in a street or row of houses.

Perhaps I have been somewhat indiscreet-a rather blundering tactician in indulging my fancy as to what might be inne, before I speak of what actually has been done. Nimporte: the Lowther Arcade has sufficient merit of its own to satisfy as a very excellent specimen in itself: as a piece of deaign, it is in admirable kceping throughnut; unostentatious, it is truc, in its embellishments, but perfectly free frum any alloy of that meanness which too frequently gives a strangely preety-stricken air to buildings that, upon the whole, affect grandetr. Here notling more appears to have been aimed at than what has been actually accomplished, which, as matters are generally managed, is certain'y no little praise. There is none of that trumpery pomposity which may captivate the vulgar, yet disgusts the informed. And by vulgar I do not mean the vulgar in rank, but the vulgar in taste, let their rank bo what it may. Neither are there any of those crude whims and whimsies that are occasionally palmed upon us as fancy and inven-
tion, I suppose, as for instance, that compound of heterogeneous absurdities and contradictions the front of the British Insurance-office. In the Lowther Arcade, on the contrary, the whole is niade to appear perfectiy of a piece, and the different parts so skilfully reconciled together, and harmonised one with the other, that what is Greek does not put us out of conceit with what is Italian, nor vice versa, does so hat is Italian shock us by the side of what is Greck. Without being in the least degree crowiled, the whole design is well filled up. In regard to the mode in which this passage is covered over, I greatly queslion if there be in all the country a more beantiful ceiling vista than that here produced by the series of small pendentive domes, upon which the effect of the whole, as an architectural picture, so greatly depends. It is true. the sides consist merely of shops; but how much taste is shown in the design of the front contained within each compsartraent, morc especially if compared with the insufferably dowdy office-windows, and those above them, that are thrust into the grand Ionic hall of the Post-office !-though, I suppose, it must still be allowed to pass as oxtremely classical, because it has no admixture whaterer of Italisa or any other style-save the genuine John Bull cocknoy; I have heard, upon what I consider very sufficient authority, that the designs for the Lowther Arcade werc furnished by a Mr. Turner. Who the same Mr. Turner is, I know not, but I am sure he has no occasion to be ashamed of lis name, at least not as far as this specimen of his talents is concerned with it.

CANDIDUS'S NOTE-BOOK.

FASCICLLES II.

"I must have liberty

Withal, as large a charter as the winds To bluw on whom I please."
I. Very few architects, I am sorry to say, appear at all to perceive the policy of diffusing a taste for, and some knowledge of, their art among the public. On the contrare, many have endeavoured, os far as in them lay, to deter non-professional persons from attempting to take it up as an agrecable study, by involving it in as much mystery as possible, and representing it as one that demands nothing less than a thorough acquaintance with the practical as well as the theoretical branch of it. This is not only decidedly foolish, but also untrue. and at variance with the common-sense course adopted in all analogous cases. You may allow a man to be an excellent judge of cookery, although you entertain so poor an opinion of his actual skill in it, that you would not trust him to dress a beef-steak. He may be a profound connoisseur in music, although unable to compose a single bar; a supreme authority in matters of painting, though he never put a palette upon his thumb; an oracle in matters of sculpture, thongh utterly ignorant of the processes of it; yet, if he ventures to meddle with architecture, to pretend to have an opinion of his own in regard to it, the chance is that he is scouted at once as a mere amateur, a conceited gentleman just capable of drawing out pretty-looking things on paper, and perhaps hardly capable of that. If, indeed, destitute of all practical knowledge, such a one assumes to himself the power of doing more, he very justly deserves to be treated as a slallow pretender, but surely not else. Did architects clearly sce their own interests-I do not mean their own individual interest, because in many cases that may be best served by the greatest quantum of ignorance on the part of their employers, but the intereat of their art - so far from discouraging amateurship, ther would endeavour to render the whole public amateurs; becaure, un. less there be something very peculiar and anomalous in regard to ar. chitecture, it should follow that the greater interest people in general take in it the greater relish they have for it, and the better they com. prehend it, all the more likely are they to encourage it, and to en. cournge it with a proper feeling. As a body, therefore, the profecsion ought to do everything in their power to create and foster such taite: not only not to check it, but to encourage it with the utmost solicitude. At any rate, if ther do not care to do so, they have no r ght to reproach the public with that ignorance, and consequent indifference in regard to architecture, which they themselves may we said to keep up, because they do nothing towards removing it. After all, of what arc they afraid? Are they really apprehensive that the public woald find out how very little talent, or original ability of ans kind, is to be found in many buildings which, though they rank high as edifices, are entirely the work of the hands, not of the mind; in fact. do not require more, if even so much, contrivance and intell:rence a* is exhibited in many manufactures, which, nevertheless, are hele to be purcly meehanical?
II. Anong those whimsical absurdities to which custom reconciles i:s is that of inseribing the name of the architect and the date of a
building, not where they can be seen, and convey such information at a single glance, but where they must remain unseen for ever, namely, on the foundation-stone. Surely this practice must have been of Irinh origin, since a more blundering one, and one more contrary to the plainest common-sense, can hardly be conceived. It is all very well to bury under ground the names of lord mayors, or other official worthies and digaitaries who assist at the ceremony of laying the first stone, because it matters not how soon they and everything relating to the childish silver trowel part of the business are forgotten; but that there should ever be any mystery, or room for doubt, as to who was really the architect of a building, when all uncertainty might be obviated by a mere name and date, is quite prepostcrous. Besides which, it is very likely to happen, and often does happen, that a structure is either rebuilt, or nearly, on its old foundations, and in such cases what becomes of the veracity of the inseription on the foundation-stone, should it ever come to light at all! Of this we have two notable instances in the Custom-house and the College of Surgeons, one of which has been, though only partially, altered so greatly for the worse from its original design, bad as that design was; and the other so metamorphosed from its original ugliness, as to be no longer the same buildings they first were. Had arehitects invariably made it the practice toaffix theirnamestotheir works, we should now be at no loss to know who we are indebted to for those noble fabrics of olden time, which are the admiration of all. Why it should not be done I do not understand, when every engraver put his name to the plates he exccutes. Neither would there be any occasion that the architect's name should be ostentatiously displayed; for were it cut merely on the lintel or architrave of a door, the plat-band above a basement, or some member of that kind, it would not obtrude itself on the eye, nor discover itself till souglit for.
III. It looks somewhat like inconsistency, that nt the very time they wish architecture should be ranked as one of the fine arts, profescional men should lay so much stress as they do, not merely upon the practical but upon the mere basiness-like part of it. Should you happen to express your surprise that Mr. Such-n-one obtains so mueh employment, when he has on no single occasion shown any talent, perhaps the reply will be, "Ol, but he is a most excellent man of business ;" the plain English of which is, that let architects fancy themselves what they may, the public consider them in no other light than tradesmen; and in nine cases out of ten the publie may be perfectly right. By no means do I asscrt that talent never finds imployment, but it will, I believe, generally be found that it is the very last thing that recommends a man to it.
IV. That the Elizabethan style possesses historical interest I do 10 dispute, but that it offers any beauties or advantages to recommend t as n mode of architecture is what I must be allowed most flatly o deny. Its only principle is the disregard of all architectural prin:iples, and of all artistic feeling. Very seldom do we meet with nything in it that can be termed really good, even estimated accordng to what may considered the leading taste of the examples themelves; or if there happen to be some particular feature that satisfies he ege, it is a mere solitary bit in the composition-although it is ather an abuse of term 50 to employ it-without anything to haraonise with it. Besides which, notwithstanding their licentiousness of design, the examples of this style betray great dearth of ideas and orerty of imagination; for, be it observed, there is a most wide diference between whimsies and fancies and faucy itself. I have met vith some people who, in aiming at being amusingly lively, have nly been impertinently frisky: nor is it a sinall degree of nwkward riskiness that characterises the style in question, and causes it to ,ppear even more dull than it else might. It is no more than right lat we should know what it really was; but its examples ought to e held in terrorem, certainly not for imitation, except it be that speies of imitation which enables an artist to appropriate what is availalie for better purposes, rejecting all the dross. Yet those who have f late served up this style to us have generally taken care to give us arbage and all. Certainly no one has hitherto attempted to discriainate between its best and worst qualities, or to point out what it :Fers for adaptation to our present purposes; since, leaving taste ntirely out of the question, it has nothing whatever to recommend it s a mode of building adapted to our present habits and tastes; cerainly nothing on the score of comfort and convenience, on that of conoms perhaps even less, since it is only lavish profusion of deoration that can conceal its native ugliness. I may be wold that it o a truly national style, that of our ancestors: national nonsense : is were trunk-hose and cumbersome ruffs at one time our national Iress, yet what min-I do not say of sense, but in his senses-would rear them now, unless determined to establish for himself, at all tazards, a character for singularity? We do nothing else like our tncestors; then why, in the name of common sense, should we put rarselves into their most grotesque and unseemly architectural
fashions? I have been led to these remarks by looking over the first number of Richardson's "Architectural Remains;" which work professes to give only the shoicest specimens of the Elizabethan poriod; and is therefore likely to effect good, by exposing the unmitigated deformity that prevails even in what we must presume to be comparatively pure in taste, and happy in invention. It is a pity Mr . Richardson, who, of courec, thinks very highly of John Thorpe's architectural taste, should not think sufficiently well of John Brit ton's literary taste as to take thitt learned sexagenarian's dedication to the queen as a model for his own. In regard, however, to the style-I do not mean of sexagenarian's dedications, but of Elizabethan ar-chitecture-I conceive it would be a far noller object of ambition in the profession to aim at forming what might hereafter be distinguished as the Victorian, than to content themselves with aping what is called the Elizabethan.
V. Gwjnn's "London and Westminster Improved" is pretty well known to every one by name, but it is not, perhaps, so generally known that that writer is apt to be occasionally rather satirie. The following remarks, for instance, are somewhat in the spirit of Boz. "The powers of inventive genius are at this time so very little attended to, and the examples of Grecce and Rome so firmly cstablished, that nothing innre is required to model a youth of moderate parts into a complete architect, than to put him apprentice to a bricklayer, mason, or carpenter, under whose tuition he will acquire the great art of scoring straight lines, and setting off their proportions by scale and compasses. His servitude being ended, thus accomplir hed and furmished with the rudiments of architecture, he may be rent to Rome, and after he has spent the u-ual time for traversing that city, he may cause it to be inserted in the London papers, that Mr. Trowel, the celebrated architect, on account of his vast abilitics, has had prodigious honours conferred upon him, and that he shortly intends to revisit his native country, to which he will no doubt do infinite ho nour." This, it must be allowed, is tolerably Bozzish, and conrinees us that quackery was understood before our own time. "But to he serious," he continues, "where is the necessity for this parade of going to Rome? Is there a building, or even a fragment of a building in Greece, or Italy, of which we have not accurate draughts and measures? and is it not from these resources that every modern building is compiled, without variation, and without the least attempt at novelty or invention? It is very much to be questioned, if such an attempt was to be made, whether a thorough-bred connoisseur would vouchsafe to bestow a second look upon such a design." That Gwynn must have been a brave fellow ! And yet, he might as well have "whistled to the winds," as attempt to correct the inveterate pedantry of "thorongh-bred connoisseurs," and the servile commonplace routine of architects. What inconceivable magnitude of talent it must require to be able to follow a pattern, and make an exact enfy of columns, and things of that sort! Is not that exactly your opinion "My Public"? Ayc, to be sure it is.

PLAN FOR A HARBOUR AT HASTINGS.

by a series of progressive improvemrnts.

By Joun Rooke, Esq., Author of " Geology as a Science," Scc. \&c. Applicd to Enginecring.

The plan of a harbour for Hastings, noticed in "The Civil Engineer and Architect's Joumal," vol. 1, page 338, being closely associated with the course of the tides in the British Channel, so must the tideway be first considered; as upon the influence of these tides, and the projections of land upon the line of shore. depends the success or failure of artificial works for the shelter of sea vessels. To the deeps of the Atlantic Ocean, the origin of tides in the British Channel may be distinctly traced; the line of tidal current i , therefore, from the westward, terminating in the strait of Dover, and there meeting the opposing balance of a tidewave foom the North Sea. In the western section of the British Channel, the force of flood tides propelled eastuard by a powerful pressure from the Atlantic Ocean, as a result of fluid action, drives beds of shingle forwards, which are necessarily deposited in the eastern section thereof, since the force of the reflux tides is less than that of the flux tides. As Hastings is situated in the eastern section of the British Channel, and not far distant from the terminus of a tidewave, which has a general course parallel to the trending of the shore, so shingle has a decided tendency to drive easitward, and convert harbours lying in its course into what have been designated" shingle traps." The cause of this result is plain. If the North Irish Channel, where the tiderave is continuous, be compared to the eastern section of the British Channel, where the tidewave terminates, we observe a marked difference. In the one, drift is propelled onwards, and deep water preserved, because a continuous scours prevails; while, in the other case, the scour terminates, and the dift
is deposited. It is by observing these results, that in planning a harbour for Hastings, we ascertain the general laws by which the engineer must be guided.

We may now restriet our observations to the localities of the English coast, along the British Channel, and, passing from Land's End up to the Isle of Portland, we see that the Chesil Bank is the first decided accumulation of drifted shingle. The projection of this isle, however, forcing the tidewave southward, causes it to run northward, again, with great force, and scour out the Bay of Weymouth. We next observe the Isle of Wight taking the position and form of a geological deposit, projected from the headlands of St. Alban's and Durlestone; and opposite the great fresh-water drain of Southampton Water. In Swanage, Studland, Tollande, and Colwell Bays; and in the Solent, Southampton Water, and Spithead, a deflection of the tideway on shore, and, according to an angle of incidence, operating in conjunction with the Isle of Wight, has preserved deep water, and a continuous navigation. Between Selsey Bill and Beechey Head, we observe another of those undulations seaward, and deffections on the line of shore again, which have more or less preserved continuously deep water. Beechey Head having driven the tideway southward, necessarily causes it to run on shore again, according to the angle of incidence on which it has been pressed seaward, whence we are able to assign a distinct cause for the prevalence of permanently deep water in Pevensey Bay, and up to Hastings. This may be regarded as so far encouraging for the successful construction of the harbour proposed; while the infuence of the Isle of Wight on the navigation of the Solent, Southampton Water, and Spithead, gives an exact model, on a large scale, perfectly applicable for planning n harbour, on reduced proportions, for Hastings. In so much the Bay of Hastings resembles that of Whitehaven, as scoured by the headlands of St . Bees in south-west gales; one of those places where (see vol. 1, page 337, Civil Engineer and Architect's Journal) in the plan of a harbour, "our best engineers have been baffled, and all their operations disconcerted." Why? Because they failed in combining and preserving smooth water, and an adequate tidal scour.

Mr. Tait's plan for forming isolated harbours proposes to meet the objection arising from the drift of shingle. But as there is no tidal scour provided for, though shingle were disposed of along shore, might not silt eventually choke such a harbour up? The uncertainty of the plan, its obvious expensiveness, its distance from the shore, and an exposed locality, however ingenious and able the scheme may be, involve objections which are more easily started than answered. Were his plan, nevertheless, provided with a double entrance, under the terms which prevail in the instance of Hastings, a requisite scour might be insured, a main objection obvisted, and a harbour of isolation brought nearly in communication with the town. In the first place, therefore, taking the features of the INle of Wight as the model of a protected tideway and harbour for Hastings, the following plan might answer the means of expenditure and the purposes anticipated. Even its failure in part, by carrying ont further works on the dotted linen, would give it all the advantages of the double harbour system, an interior scour, and that of isolation. a, a, the west and east walls; 6 , the breakwater.

In the forcgoing ontline, it is proposed that each succeeding step of the plan shall be determined or varied according to the practical results previously shown. In the first place, the breakwater b would be constructed when a scour would commence, of which the extent
and direction should be closely watched. Next the went and eas walls might be commenced and carried out according to the operations exhibited by the progress of the work. These finished, the interior scour of the harbour, if insufficient, would suggest the extersion of the breakwater still further along the dotted line d, until the scour within the harbour should be sufficiently powerful, by which the plan of the harbour would bear a resemblance to the Isle of Wigh: pressing upon the waters of Southampton, the Solent, and Spithead The scour thus established would then determine the position and figure of a quay on the side of the dotted line c; and if these sariouworks, when combined as a whole, should fail in affording a harkour of refuge, then the dotted line, e, might be built in addition, and thus give an inner harbour, g, and an outer harbour, f, or partly an isolated harbour. Thas vessels taking refuge in the one, could be sulsequently towed into the other by a steam-tug, if required; and dock, might then be added as a security and convenience to the whole. On the plan here detailed, the entire works would be determined by practical results, errors would be corrected, and no step in the frocess need be regretted or retraced.

What hns been here sketched out must, however, be considered merely as a free outline, subject to remodification in its details, rathes than as an absolute or invariable plan. The convexity of the curred line, b, is intended to scour and preserve deep water along the line of the concave curve opposite thereto, marked c : and if the run of water along these curved walls were too powerful, such defect migh: be mitigated by adding undulating jetties at the dotted points, $i l$. Ever keeping experimental results in view, the spaces of the evtrances, j and k, and those of h and i, if called for, might be in some measure determined by such a rule.

Though the harbour, g, might appear somewhat exposed to eithe: eastern or western gales of wind, from having double entrances, jes the smoothness of regulated water flowing in continuous lines obriates its rebound, and more than compensates the security which a single entrance affords. The breadth of water within the harboor. g, exceeding the space of the entrances, j and k, smooth water and an accumulation of silt would be a more likely objection than the excessive force of a passing and onward current. A material adrantage in disposing the lines of walls in curves and diagonally, in place of at right angles to the course of the tideray, would be that of smoothing the water, easing the various works, chenpening their construction, and augmenting their security, besides directing the force of the tidewnve on those points mainly where a scour might be desirable, and giving the greatest äepth of water along the propood line of wharf.

SCHOOL OF CIVIL AND PRACTICAL ENGINEERING.

at the Scotch Naval and Militart Academy, Edingezgr.

We had preprared last month an account of the Engineering Sehoolat Edinburgh; but the pressure of other matter compelled ite delay. We are now, hnwever, by the kindness of T. Compton, Esq- (formerly of Woolwich), the Professor of Civil Engineering in the Aeadeay, enabled to give a better description than would otherwise have been in our pnwer. The class of civil engineering has been in activity sibee November, 1835, and consists of the departments of mapping sod plan.drawing, construction, practical surveying, and administratioe, or the mode of making out upecifications and estimates. The chss is actively employed in summer in surveying the most interesting localities in the neighbourhond of Edinhurgh; and its suecess nonder its able conductor has been such as to lead the directors to form a elam for practical engineers. This is to be divided into the sections of drar. ing, pattern-making, monlding, and casting; millw right-work, theor! and construction of steam-engines, miscellanenns machinery, boflefmaking, and locomotive machinery. The course of instruction in this latter department is intended to be three or four years; and she terms thirty-two guineas the first year, twenty-four guineas the secood, twelve guineas the third; and, if a fourth, six guiveas; the fees pary. able quarterly, in advance. These terms are high; but, altogether. the institution, proceeding on a practical basis, is calculated to effer much good. We should wish, however, that it was in the power of the directors to place the institution within the reach of meehanies; as, with great liberality, they have thrown the school open to a matecn at three guineas per quarter. We think that it is well worthy of the attention of the directors to make instruction in the steam-eogioe: part of the course of their naval pupils, and also to afford facifales for the instruction of steam-boat engineers, which would be a more efficient meanure fur preventing accidents, than any quack lawe and jobbing superintendents.

OBSERVATIONS ON THE IRISH RAILWAY COMMISSIONERS' REPORT.

With no unfriendly feeling either to the Irish Railway Commissioners, or to those professionally connected with them, we again make firther observations on the Irish Railway Report, as a public document executed at the expense of the peonle.

Does not the following suggested distribution of railroads through Ireland exhibit a spirit of favouritism and partiality, when, for the southern division of Irehand, the Railway Commissioners lave laid out 359 miles of railway, estimate $5,317,8841$., and for the northern 152 miles, estmate $2,936,258 l$. ; while no railway has been laid out for the centre of Ireland, nor for the whole province of Connaught?

In the September number of this Journal we took a gencral view of the Report; we showed that the general system of railways laid out through Ireland by the Commissioners was wrong; we also showed in correct detail numerous errors, both in the maps, plans, sections, and gradients, such as were sufficient not only to destroy the reputation of the work, as to its accuracy, but even affecting the very characters of the individuats who had incautiously compiled and published 30 crroneous a document. Those numerous and serious errors werc laid before the public through the columns of our Journal six months ago, and have not been questioned or replied to in any published works to our knowledge, by any of the commissioners or their friends, no, nor even by the grandson of Charles Hatton, nor the eleve of Telford, deeply and seriously as it affects both of them, the Railvay Commissioners, and even the Government, after an expenditure of nearly twenty thousand pounds, and a loss of more than two years' time.

We ask, what will the engineers of France and of America say in examining such an inaccurate production? Will they not justly exclaim, Rehold, the people in the country of Newton, of Napier, and Maclaurin, are now so reduced in scientific acquirement, that they are not able to work accurately the simple operations of decimal arithmetic? Is it not hamiliating to think that among the ru'ers of this great empire that so few individuals of scientific acguirement are to be found? Sir Davies Gilbert and Lord Oxnantorn are men of science; the former has now nearly reached the maximum age allotted to man, while we regret that political influence has swept the latter from that position in the councils of the sovereign and the country which his talents and acquirementa so pre-eminently entitled him to occupy, for to aid the advancement and the progress of those interests connected with the works of science and improvement, which so few could comprehend and understand so well among the representatives of the country. We are happy to have an opportunity of testifying our great regard and esteem for Lord Oxmantown, not only as a cultivator of science in its highest branches, but also of his devotion to the prosecution of practical mechanics. Has not one of the most distinguished savons of the empirede-clared-"That the sciences and the arts of England are in a wretched state of depression, and that theirdecline is mainly owing to the ignorance and supineness of the Government, to the injudicious organization of our scientific boards and institutions, to the indirect persecution of scientific and literary men, by their exclusion from all the hononrs of the state." And has it not been truly said that-" The young diplomancy of the American States was raised into distinction when Franklin cook upon limself the functions of her ambassador, and France was at we zenith of her glory when the Marquis La Place was President of her Comservative Senate, Lagrange a Peer of France, and Carnot lier Minister of War."

A fer leading articles have appeared from time to time in the ministerial papert, praising the Irish Railway Report, but the acquirements of the editors of newspapers are such as to exclude them from being able to review such a work, and to those who understand such nabjects, those leading articles must appear to have been put forward by the comonissioners and their friends, to support their very objectionable syatem of Irish railway projects. It is remarkable that the government of the country found it necessary to employ a gensleman to travel through Ireland for the express purpose of praising this railway report, at various public meetings which had been held in that country -and this wes actually acknowledged publicly by the iudividual so employed.

The "Quarterly Review" for Jannary, 1899, contains an article on the Report of the Irish Railway Commissioners; but it contains nothing t'at had not been previously published or well known before, and it is ooly remarkable for introdnciog a vast variety of subjects totally irrelcrant to the one it professes to discuss. We beg to observe, that Mr. Datill Sterenson never was at New Orleans, and that the information regarding the steamers at New Orlcans, which the "Quarterly Review" quotes at page 6, is from the pen of Captain Babil Hadl, who hed visiced New Orleans, and not from that of Mr. Sievenaun, who Led bot been there; the atatement of the "Quarteily" is, therefore,
not correct. The observations made on the democratic institutions of the North American Repablic at page 25, are not only quite unworthy of the intelligence of the age, bat they are, in our opinion, unfounded and untrue. The property of the people of the United States of America is just as secure as that of the people of any other country. The laws which govern the free and independent states of the North American Republic are more likely to spread through the great American continent than those of the arbitrary and despotic governments of Europe; in all likelihood those principles of freedom which have been spreading so widely for the last 50 years, will yet be extended much more, and ameliorate the condition of the human race in the most remote and distant regions of the eartb. Matters of a political kind we do not profess to discuss, and we regret to do so in any manner; but our excuse is, that for the American people of the linited States we entertain the lighest respect, and we therefore do not like to see them and their institutions calumniated in pages which profess and avow to be consecrated to the discussion of a scientific subject, and which our avocations oblige us to notice, and more particularly as an attempt will be made to convert the Irish railway monopoly into a political state job; it therefore becomes a sacred duty with us to expose it to the fullest public animadversion.
" We conceive the principal question in this inquiry to be-Does the report emanafe from persons possessing, in the opinion of Europe, the requisite qualifications? We have, accordingly, taken some pains to inform ourselves upon this subject."-Quarterly Review, December, 1838.

The aecount given by the "Quarterly Review" on this very important matter, has established, in the clearest manner possible, that none of the Irish Railway Commissioners had ever executed any kind of railway works; and it therefore cannot fail to appear to those possessed of practical knowledge in rail way engineering, that the nomination of such a railway board was a very extraordinary proceeding on the part of the executive ; to depute such men to legislate on matters they never had been previously acquainted with, was certainly, to say the least of it, nut an arrangement either consonant to reason, nor creditable to the wisdom of the government of this country. When the legislature had deemed such a commission necessary to lay out a system of railways for Ireland, why were not individuals of the highest practical skill in railway engineering, totally unconnected with Ireland, selected for such a purpose? And this service, we affirm, could have been accomplished in four months, and the reports, sections, plans, \&c., might have been with ease delivered in less than eight monthy, while these Railway Commissioners required nearly two years, involving in its consequences a loss of three years to Ireland in the progress and extension of railways, inflicting a deep and lasting injury upon her prosperity, and the unemployed population of that country.

We are advocutes that great works of national utility should ori ginate with the people-we are inimical, in the highest degree, to legislative interference with anything, from the making of a stean-engine to that of the smallest article ; we conceive it is the duty of a wise and a paternal Government to aid and assist public companies in their exertions and endeavours to execute works of public utility: but, on the other hand, if a Government once assumes the mantle of general manufacturer of steam-engines, engineer-general of railroads, \&c., under an act of the legislature, then the rights and intercsts of all the industrious classes are directly invaded, a monopoly set up, and the spirit of enterprise, of invention, and improvernent ceases, and all those vigorous trading impulses which have so eminently contributed to the wealth and to the prosperity of all free and enlightened countrics, but particularly the great advantages wbich would result to Ireland by the introduction of English capitalists. We deny the right of the British Government to step in at the eleventh hour and interfere, except so far as the public interests may require, with either the English railway companies, or eren those of Ireland, which have been formed, by men who hare, in England, Scotland, and Ireland, congregated together, subscribed and. risked capital, called into existence a new power, executed the most stupendous works with the most triumphant success, and all without the aid of a Ruyal commission. Will not the Guvernment of this country read a lesson of wisdom froun past events? Has not steam pavigation across the Atlantic Ocean been achieved in the most eatisfactory manner by private enterprise? Have not the river navigations, and also the whole of the canals of England, been exccuted by companies? Are not all the steamvessels which cover, nut only the British seas, but also those of Europe, entirely due to the successful enterprise of companies? And have not the noblest engineering works in the world been acroumplishpd by private companies? Look at the bridges of Waterion and $\$$ uthwark; they will prove that the people are quite capabl. of executing works as stupendous and monumental as the pyramidy if L.gypt, but of a much more useful and nuble kind. We are thoriughly cua-
vinced that wherever works of a public nature have been executed by the Government, they have not only been inferior to those now named, but they have also been attended with much more expense than if undertaken by private enterprise. If we look at the imperfect execution, and unfinished state, of the Caledonian Canal, after an expenditure of one million sterling, and thirty-five years of time, it is really not calculated to inspire people with confidence in the executive of the country, as either being the best or most competent authority to execute public works. Or, again, at the suspension-bridge erected over the straits of the Menai, a structure strongly characterised by its zoferiority of strength and durability, as compared to those bridgoworks erected either in ancient or modern times. This fragile and perishable work was constructed under Royal authority, and which the passing breeze not only dismantles and renders impassable, but is also fast consuming its strength by the vibratory motions to which it is constantly exposed, as well as the never-ceasing oxidation of the material which forms the main and imposing feature of that atructure. The expense of the Holyhead-road and bridges is stated in the appendix, p. 366, of Sir Henry Parnell's book on roads, at $\boldsymbol{X} 759,710.6 \mathrm{~s}$. 11d. sterling, and the expense of the execution per mile of the road is from $£ 4,000$ to $£ 5,000$ sterling, and the tolls upon that road are much higher than upon any other road in England. We are not aware that Government toll-roads or Government steam-boats are cheaper to travel on, and voyage in, than those of private companies. For example, the fare from Dublin to Liverpool, in her Majesty's steam-vessels, is from five to ten shillings more than what is charged by the Dublin Company's steamers from the quays of Dublin; so much for Government cheapness.
It is not only painful to contemplate the odious monopoly of government in the post-office department, but it is really extremely injurious to this great commercial country that the postage of letters should be overwhelmed with so high a rate of duty. What insanity then to talk of the governinent of this country becoming constructors of railroads and carriers of passengers. "Legislation is not health but human welfare ;" and the government of Great Britain has quite enough to do in legislating for this great empire and the colonies thereunta belonging, without interfering with projects which should be left entirely to the enterprise of the people under proper legislative restrictions for the good of the public.

Looking at France, one of the most powerful nations in Europe, and where by arbitrary authority the public works of that conntry had been placed under the controul of the state; are tlose works, we ask, more substantially executed, or kept in a better state of repair than those of Great Britain? Is it not allowed by every person who has travelled through England and France, that the roads of the former country are much better than those of the latter, and that the superiority in the velocity of travelling in Great Britain is well known and admitted to surpass that of any other country. It is also remarkable that our bridges, docks, harbours, canals, aye and also our railways, are, we venture to lay with pride, the most substantially executed, and the grandest works of the kind that the people of any uation in the world has jet executed. These noble engineering works astonish all travellers who have visited Great Britain; they anoounce the genius and enterprise of not only a great, but that of a free people, whose unparalleled activity and intelligence have not been fettered and withered by legislative enactments in the promotion of commerce, the increase of our national wealth, and the consequent greatness of this empire : and this may be justly attributed to perfect freedom being allowed to every kind of private entterprise under parliamentary regulation.

Let us examine how far the Kaikway Commissioners have been able to lay out a judicious system of railroads tor the southern division of Ireland, and whether they have been able to de so upon better levels, and at a less expenditure of mileage than private companies.

First, to connect the cities of Dublin, Kilkenny, and Limerick, the following will show the extent of mileage and the gradients.
Length of mileage by the Railway \mid Length of mileage by the ComCommissioners' lines. panies' lines.

$$
\text { niar_ } 1550
$$

Difference in favour of the Companies' lines $\begin{array}{rl}139 & 0 \\ 16 & 0\end{array}$
Hence it appears by these facts that the system of railways proposed by the Companies to connect Dublin, Kilkenny, and Limerick, would be sirteen miles shorter than the length of those railways proposed and recommended by the Railway Commissioners.

Again, takiug Dublin, Kilkenoy, Limerick, and Cork, and comparing
the number of miles of Railways which will be required to conneet them, first, by the system proposed by the Railway Commissioners, and secondly, by the Companies' system.

By the Railway Commissioners' system.

stom.	M. F
Dublin to Limerick	1284
Kilkenny branch	264
Cork branch	767
Small Southern branch at Donahill	130
	244

> Dublin to Limorick Kilkenny branch Cork brapch

By the Companies' system.

Difference in favour of the Companies' lines
207
873
Here again, in comparing the Companies' lines of proposed railways with those laid out by the Railway Commissioners, there would be a saving of 37 miles 3 firrlongs by adopting the Companies' system, which is very serious, viewed both as to the first expense of construction, and afterwards in working those lines of railroads.

We shall now exhibit the distances to be travelled in going from Dublin by Limerick to Cork, from Dublin to Kilkenny, and from Limerick to Cork, \&c., by the Commissioners' lines and also by those proposed by the Companies.

The direct distance from Dublin to Cork by the Commissioners' line not passing through Limerick, would be 169 miles 5 furlongs; by the Company's line, passing through Limerick to Cork, would be 179 miles 4 furlongs ; difference in favour of the Commissioners' line 9 mites 7 furlongs. Looking attentively at the above table, and also at the map of Ireland, it will appear that the Companies' lines possess many ami great advantages over the Railway Commissioners' system of railmays as laid out in the south of Ireland.

It appears by the Railway Commissioners' maps that a railway has been delineated on the map from Clonmel to Waterford, but in examining the estimates, it does not appear that any item of expense is to be found for constructing the continuation of the railroad from Clormel to Waterford, distance $26 \frac{1}{4}$ miles, which, at $10,000 l$. per mile, would be 262,500 l., which is a serious error committed by the Railway Courmissioners; for it is not pessible to think that they ever thought of excluding the city of Waterford from the benefit of railway communication. In the Railway Report, appendix A, No. 1, page 11, it is chere stated that no survey was made of the Limerick and Waterford line for the Commissioners further than Clonmel. This is certainly an extrordinary admission as regards the city of Waterford, containiug $\mathbf{3 0 , 0 0 0}$ inlabitants, having an excellent port, an immense shipping of both sailing and steam ressels, and an export trade of more than two millions sterling.

In looking over the Railway Report we tind it stated at page 41, Uat the distance from

Dublin to Cork	is	166	miles
5	5 furlongs		
… to Limerick	125	4	
… to Waterford	141	2	
… to Kilkenny	79	0	

These distances are all incorrect, for in looking over the sectiona, the zero of mileage is placed three miles from the Dublin Post Office; and therefore three miles should be added to each of the above distances: for example Cork is 169 miles 5 furlongs from Dublin according to the figured sections given by the Railway Commissioners, and not 166 milm; 5 firlongs, \&c., \&c.

At pages 104 and 105 of the Irish Railway Report, the powers of four locomotive engines are given. The diameter of the cylinders, the length of stroke of the pistons, diameter of the wheels, and the weight of itie engines and tenders have also been stated.
"Now the whole power of these several engines is found by multiplying the area of their respective pistons by the preasure (64.71 lb ..) and then redacing this product to the circumference of the wheel."
"In this way it will be fourd that the whule power is:-Cless firs.

37551 bs ; class second, 24881bs. ; closs third, 2837 lbs . class fourth, 2090lbs."

We have examined those calculation but lave not found one of thers correct.

Class 1.

$3.1416 \times 54=169.64$, circumference of whee),
$14^{2} \times \cdot 7854 \times 2=307876$, area of 2 pistons,
$2 \times 16=32$ inches, length of double stroke,
$307.876 \times 64 \cdot 7=19910 \cdot 62896$, force applied on the pistons,
$\underline{16964}=5 \cdot 301$, ratio of the velocity of wheel and piston,
$\underline{19919.62896}=3757.71 \mathrm{lbs}$. power applied to make the engine advance.

Claza 2.

$12^{2} \times{ }^{7854} \times 2=226 \cdot 195$, area of 2 pistons,
$\mathbf{2} 26.195 \times 64.7=14634 \cdot 816$, force applied on the pistons,
$\frac{\mathbf{F 1 4 1 6 \times 6 0}}{2 \times 16}=5.890$, ratio of the velocity of the wheel and piston,
$\frac{14694 \cdot 816}{\dot{5} \cdot 890}=\dot{2} 484$ lbe. power applied to make the engine adrance.

Class 3.

$11^{2} \times 7854 \times 2=190 \cdot 0668$, area of 2 pistons,
$1800668 \times 64.7=12297.32196$, force applied on the pistons, $\frac{3.1416 \times 60}{2 \times 18}=5.296$, ratio of rhe velocity of wheel and piston, $\frac{12297.32196}{5 \cdot 2236}=2848 \mathrm{lbs}$. power applied to make the eng ine advance

Class 4.
$112 \times \cdot 7854 \times 2=190 \cdot 0668$, area of 2 pistons,
$190.0668 \times 64.7=12297.32196$, force applied on the pistons, $\frac{3.1416 \times 60}{2 \times 16}=5.890$, ratio of the velocity of wheel and piston, $\frac{12297: 32196}{5 \cdot 890}=2087 \mathrm{lbs}$. power applied to make the engine advance.
*The gradients also, on the regulation of which so mucla depends, both in respect to the original cost and the ultimate value of the railway to the country, have been carefully gone over by one of the commissioners, in conjunction with the engineer, and in consequence several material afterations were made, which have much lessened the amount of the original estimate, without affecting; in an important manner, either the rapidity of intercourse or the commercial advaitage." - Page 37, Railway Report.

In the September number of our journal for 1838, we printed a list of sixty-five errors found in the gradients, and upon a more full examination there will be found at least from forty to sixty more; this clearly shows that very little care or attention was bestowed by the cormmissioner and engineer who had examined and gone over the gradients ; indeed, the very numerous errors found in the gradients are destructive to the character and accuracy of the Railway Report and Sections, although
" My Lords had full confidence, from the character of the gentlemen appointed to form the commission, that their inquiries would be condurted in a satisfactory manner."

We consider an alteration in gradients from one in 330, to one in 180, as most important, both as to rapidity of intercourse, and also as to commercial advantage, although the railway commissioners do not think so.

The same force of traction which is required to draw 100 tons up a rise of one in 850, would draw on the level 195 tons.

$$
\begin{aligned}
& \text { tons. lbs. lbe. } \\
& 100 \times 8=800 \\
& \frac{100 \times 2240}{330}=679 \\
& \text { Engine } \frac{12 \times 2240}{330}=\frac{81}{1560} \text { Total } \\
& \begin{array}{l}
\text { resistance not including the } \\
\text { friction of the engine. }
\end{array} \\
&\left.\frac{1560}{8}=195 \text { tons. }\right)
\end{aligned}
$$

The same force of traction which is required to draw 100 tons up a rise of one in 180 would draw on the level 274 tons.
100×8 lbs. $=800 \mathrm{lbs}$. friction at 8ibs. per ton. $\quad . \quad .800$ 100×2240
$180=12441 b s$ gravity of the 100 tons (rediced to lls.) on a plane inclined in the ratio of $\frac{1}{180} \quad 1244$ $\frac{122 \times 2240}{180}=1491 \mathrm{bs}$. gravity of the engine on the same plane 149

Total resistance not including the friction of the engine 2193 ($\frac{2198}{8}=274$ tons.)
This shows the difference between the rise of one in 350 and one in 180.

The load, tender, and engine, taken at 100 tons, and running at the rate of 20 miles per hour on the level plane, will, on ascending a slope of one in 330 , run only at a rate of 14.20 miles per hour, and ascending a slope of one in 180 , will rum al a rate of $11 \cdot 43$ miles per hour.

An engine capable of evaporating 48 cubic feet of water per hour wil draw on the level plane $88 \cdot 32$ tons, at the rate of 20 miles per hour

$$
\begin{aligned}
& \text { up, } 1 \text { in } 500 \text { - } 51.96 \text { tons, } \\
& \text {... } 400-46^{\circ} 49 \text { tons, } \\
& \text {... 300-39.00 tons, } \\
& \text {... } 200-28.44 \text { tons, }
\end{aligned}
$$

Woods on Railways. Page 578.
Looking at the levels which the surface of Ireland presents, we differ entirely with the Irish Railway Commissioners, as to adopting 1 in 180 as the characteristic gradient for the main trunk lines proposed to be laid out through that country; and we object still more so to 1 in a 100 for the great main line of railway laid out from Dublin to Cork, which appears by the Railway Commissioners' sections to be the characteristic gradient of that line, because an engine running up such a slope can only draw about one-eighth of the load that it can on the level plane; and running up l in 180 less than one third of the load it can draw on the horizontal plane. We are, therefore, thoronghly convinced that the Irish Railway Commissioners have notsufficiently studied this most important element in railway engineering ; or has their limited knowledge of such a subject precluded them from being able to comprehend the vital advantages arising from the adoption of good gradients, even although attended with some expense in cutting and embanking?

In our journal for last September, we forcibly alluded to the very great injustice of not giving railway communication to the centre of Ireland, and also to the fertile province of Connanght; we stated our reasons why that province ought to participate in railway intercommunication, as well as the other provinces of Ireland. In the same number of the journal we stated our reasons fully against the line of railway projected by the commissioners from Dublin to Armagh, and we particularly observed that it ran parallel with the coast railway for nearly one hundred miles, and that it could not be possible that two such lines could exist, as one or other of tnem would be a total failure. Having with some attention sudied the commissioners' inland lines of railway from Dublin to Armagh and Enniskillen, we think that those projects recommended by them are extremely injudiciously planned; because, if an inland main trunk line was to be laid out from Dublin to Armagh, with a branch line to Enniskillen, and were it determined upon that the important trading town of Drogheda should be excluded from railway comrannication with the capital, then lines of railway might have been chosen which would have united Dublin to Armagh and Eaniskillen, with a saving of twenty-six miles of railway, which would be a great advantage as regards economy, not only in the first construction of these lines, but also in the working of them afterwards.
The system of main lines of railway, which have been proposed to be carried into effect by the various companies tbrough the south of Ireland, possess superior advantages in conneating the various large cition together, than those recommended by the Irish Railway Commissioners. The lines proposed by the companies being much more expensive, and laying open a wider, a more populous, and a richer extent of Ireland's surface, with less mileage and better levels than the Irish rallway commissioners' main lines appear to do. This fact has been established by the calculations alroady given ; and by examining the Irish commissioners' index map of the proposed railways, there is to be seen a small triangular portion of country lying between Cahir and Hollycross which is completely encompassed by railways, amounting to more than 40 miles \ln leng th, and which cannot fail to atrike every engineer, who will take the tronble to examlne the proposed
system of Irish railways laid out by the commissioners, to be an extremely defectire and objectionable one, as to the distribution of this intercommunication by railways through the southern division of Ireland, as far as regards the connecting of the citles of Dublin, Kilkepny, Limerick, and Cork; although the royal commissioners lad before thern a very sensible and also an ably written paper by a gentleman of the name of Sinclair, who seems to have studied the subject of railways with deep attention. He states in his letter addressed to Peter Barlow, printed in the Railmay Report Appendix, A. No. 12, page 83 , in which the fullowing paragraph is to be found:-
"In laying out great or general lines of railway through a country, my experience of the system generally leads me to think, that it would be extremely desirable to carry such main lines so near to considerable towns as to supersede the necessity of brauches."

Let us hear what tho royal commissioners say on this subject :"It is not by selecting a line to some large town, and conforring upon it the imposing title of a grand trunk line, that the object for which we are contending is to be accomplished." Then, was it wrong to have connected Liverpool, Birmingham, and London together by one main line? Was it wrong to have connected Bristol and London by one direct main line, and titled it the Great Western? Nothing, in our opinion, is better than to have large cities at the termini of railways.

The system of railways which have been proposed in the south of Ireland by the Irish Railway Commissioners, has evidently been copied from a small map of Ireland, containing a proposed project for making a main line of railway betwcen the harbours of Kingstown and Valentia; the map is dated London, May, 1835 , and carries the signature of the person then engiueer to the Dublin and Kingstown Railway Company; and to the activity of some of the members of that company has fame assigned so great an influence in the conncils of the late Irish Railway Commission, not only in the drawing up of parts of the report itself, but also in the selection of the railway lines, as will appear by the small map alluded to; and so highly injurious did this appear to some of the individuals in high authority, that part of the report which had appeared in the first numbers printed, was altogether suppreased in those which subsequently appeared, and this gave rise to a discussion in the House of Commons, to which the Chancellor of the Exchequer was not able to give a satisfactory reply. This transaction alone ia strong presumptive evidence of the partiality and favouritism which has characterized the proceedings of the Royal Irish Railway Commission.

We have been not a little surprised to find that one of the engineers who had adyocated and laid out the line of railway from Dublin to Belfast, by Newry, along the sea shore, called the coust line of railway, appears also as the engineer and advocate for the railway commissioners' inland line extending from Dublin to Armagh and Belfast. The inland line of railway is well known to be the avowed and open opponent of the coast line of railway : we conceive this proceeding to be certainly an anomaly in the jurisprudence of civil engineering. It is beyond our compreliension how a professional man conld conscientiously reconcile to himself such a proceeding, or continue to possess that respect due to the integrity of his claracter, in becoming the professional advocate of a competing line, destructive we should think to the interests of the Coast line Company, hy whom lie was originally em. ployed. On this subject we have already, in a very furcible manner, expressed our opinion that no engineer in the employment of any of the Irish railway companies should have been employed by the commissioners in laying out railways in Ireland, that they should have been careful to have kept themselves free from any herealter obscrvations which might be made as to suclia proceeding ; but, this fuir and straightforward course could not be done in lreland, no, not even by a royal railuay commission; their proceedings could not be conducted without an open exhibition of partiality and favouritism by the employment both in the south and also in the north of the engineers of various competing and rival railway companies in Ireland.

It apuears that two systems of railways have been laid out through the south of Ireland by the professional engineers employed by the commissioners ; one to plense the Royal Irish Railway Commissioners, the oth r to pleare the companies-ihose systems being at utfar variance with each other; we ask would it not be proper to have those im. portant differences frat examined and investigated, and then decided by an impartial tribunal, composed of the highest engineering authority which could be found, totally unconnected with either the Royal Irish milway proccedings, or those of any existing Irish railway companies in Ireland.

It is remarkable that although Mr. Nimmo, Mr. Telford, Mr. Bald, Mr. Etephenson, and other eminent entiueers who were professinnally employed in Irelend, to report on railroads, and that their reports state, that ad income profit would be derived from them of ten, twelve, and thirteen put coat.; yet, the Jrish Railway Commissioners have not
noticed those statements and valuable reports. Further it appean by a printed report of Mr. Griffillis (one of the railway commissioners) oo the proposed Limerick and Cork railway, that it would pay a proft of $11 \frac{1}{3}$ per cent., while on the other hund it deserves notice that the Irid Hailway Commissioners state that the suggested railrags in Ireland will only pay from $3 \frac{1}{6}$ to 4 per cent.
"And througin whose agency do the railway commissioners arrire st this conclusion? Why they employ Mr. Stanley, of the Stamp-ofice, to make their calculations ; a person well qnalified to clove bankrupt books, and give the balance whichever way the parties pleased."-Ar, O'Connell's Speech ; House of Commons, 30th July, 1838. Aod tho has sioce been promoted to be Secretary to the Irish Poor Iaw Commissioners through the influence of the Chairman of the Grand Canel Company.
A cry has been set up by the jobbers in public money that Ireland is not able to maintain railroads. It may be observed that it las not yet been shown by any kind of well grounded facts, that such is the case. Because, the Kingstown Railway has been finished by private enterprise, aided by a loan from the state. The Ulster and Droghed Railways are in progress of execution, and so would the Dublin and Kilkenny Railway, if it land not been checked in its course by the unfortunate publication of the Irish lailway Report, and also the Dublin and Limerick Luilway. In all of whiclı British capitalists hed joined with the Irislı companies, being perfectly satisfied, from accurate calculations, of a profitable result. Scotland has already made fire railways, and there are five or six more in progress of execution in that country. And really we think that Ireland onght to be as well able to make her own railways by private enterprise, aided by British capital, as Scotland, if the public companies who have projected those works be not interfered with by the state.

Have not all the Steam Navigation Companies in Ireland beed eminently successful? and are there not fleets of steamers sailing cun. stantly from Cork, Waterford, Wexford, Dublin, Drogheda, Dundalk, Newry, Belfast, and Londonderry to the ports of Great Britain? Has not the Dublin Steam Packet Company alone raised five hundred thousand pounds sterling? And is not that company as well as all the others in a prosperous condition; these well attested facts speak volumes as to what private enterprise could effect in Ireland, if it be not shachled by state monoply, but aided and assisted by judicious loans from the Goverament, or as recommended by a Select Committe of the House of Commons in 1885.

As a ligh authority of the value of private enterprise applied to public undertakings, we beg to quote the following observations of D. Bowring :-
"Dr. Bowring observed, there appeared to him to be a unanimows feeling in favour of the communication by the Red Sea. At present is was most imperfectly carried on ; but by the formation of such a company as that proposed, it would be greatly improved. An objection had been offered to the proposed plan of its being left to a privste company, but that it should be taken up by the Government. He had always thought that English commerce had sptead to the extent that it had owing to its being left to private enterprise, and that it was deairable that it should be as independent of the rovernment as possible. It was in this spirit that the Frenci merchants replied to the great minister of the day, when he asked what lie could do for their advantage when they said, 'Leave us alone.' (Hear, lear. hear.)"-Steam Communicutioa with India. Public Meeting held at the London Tavern, Bishopsgole. street, Jan. 18th, 1899.

Looking at the total exclusion of central I:eland, and the whole pro. vince of Connaught, from railwny intercommunication by the commis sioners, and at the imperfect and objectional system of railways laid out by them, both in the south and in the north of Ireland-again, at the numerous errors existing in the commissioners' maps, sections, lepels, and gradients-fully anthorises us in declaring that they present a mas of inaccurncies unequalled in any work that lias yet been published under executive authority by any state in Europe. The Report is deficient as an exposition of Ireland's manufacturing industry of her internal traffic; the amount of lier agricultural produce; ber minetal wealth; her lake and river water power; the extent of her improrable wastes and sea lands; the value of her sea, river, and lake fisheries; the number of her stean-bonts, \&c.; the extent of her conl and pent fuel ; lier lake and river navigations; the revenue of her chief towns, \&sc. Nor does it appear that any correct geological survey luss been made of any one of the Irish counties; although a coloured mep hes been published by the iailway commissioners, as if it really had beev the result of an examination of the whole of the Irish strata, bit this docnment is incorrect.

The effect of the Railway Commissioners' Report, closled as it is with an official garb, has been to engender donlts in the minds of British capitalists as to the returns which they dad previously expected
from the money which they had subsci ibed towards Irish railway undertakings, in consequence of which they have hesitated to proceed with the works. Thi, renders it imperative on the Government to repair the deep injuries they have inflicted on Ireland by the Ruilway Commission, and to come forward promptly to reanimate that spirit of rigorous enterprise which has been thus so unfortunately cliecked by reasonable and judicious loans to such railwiy undertakings an have been sanctioned by Parliament.

Railroads are being extended through France, Germany, Russia, Belgirm, England, Seotland, and the United States of America; bur, unfortunately. in Ireland the Royal Railway Commission has paralysed the progress of these works of civilizntion, and has scaled their doom for years to come, unless the British Executive assumes the mantle of Enginerr-General of Railworys for Ireland, and constructs thein at the public expense. This Royal Commission has by its acts and writings, for more than two years past, been contriving the most unfair practices to railway companfes, the deepest injury to the existing rights of private enterprise, and the total subversion in Ireland of all the freedom of the pursuiss of both the Irish and British people, as conn cted with the promotion of those works of improvement, the offspring of human invention, and which are sliodding such a lustre upon the annals of the nineteenth century.

It is very remark ble that a distinguished public character, exercising greot influence in Ireland, and a strennous supporter of the present government has lately appeared in public as a prominent supporter and advocate for the commissioners' report, and the plan of the execution of railways by the government, on their own responsibility, to the exclusion of private enterprise. It may be useful to refer to the recorded opinions of the same honourable gentleman as delivered in the Housc of Commons on the first appearance of the Commissioners' Report, and which appears more accurately to descrihe the injurious effects of thint document than a more lengthened essay, for which we have shown there was ample grounds.

- Mr. O'Connell said he was one of those who was dissatisfied with the report. The commissioners had not contented themselves with reporting proper lines for railroads hereafter to be undertaken, but they take upon themselves to stigmatise those already in progress. They tell us, moreover, that no railroad in Ireland can yield more than sf per cent. profit. And through whose agency do they arrive at this cooclusion? Why they employ Mr. Stanley, of the Stampofice, to make their calculations-a person well qualified to close bankrupt books, and give the balance which ever way the party pleased. Kealty the result of this commission was a melancholy one for Ireland. Tirese commissioners having decided that $3 \$$ per cent. profit is the most the speculations could yield, it is now impossible to go to the Stock Eschange and get money to forward these works. The result on the whole is, that it would be useless to make railroads in Ireland. If we had not this report, works would be undcrtaken, and employment given to the people; and yet the Chancellor of the Exchequer comes furward to praise these commissioners-and praise more undeserved was never, in his (Mr. O'Cunnell's) opinion bestowed upon any mett. The thing is dore-Ireland is stamped-there is the report. He rose to perform a melaneholy dity ; le could not approve of the report, and he had only now to express his regret at the inevitable consequences which must follow from it."-Mr. O'Connelrs Speech; House of Commons, Monday, s0kh Jaly, 1888.

STEAM BOAT INSPECTORS.

It is with great regret we learn that the Government has given way to the clamours of a few idle twaddlers, and is on the point of proposing measures in Parliament calculated to be in the highest degree injurious to all parties interested in steam navigation. These measures are said to be based on the plan of appointing inspectors to exaraine all machinery, and to decide upon its safety and applicability. This is a conrse which will certainly not only defeat the objects of its promoters, bnt strike a deadly blow at this important branch of public eaterprisc, wbile, at the same time, it will inflict great injustice on a partieular elass.

This is a measure totally uncalled fur, as it is a question not to be deoided by the clamour of fools, but by the cridence of facts; and to these wo confldently appeal, to prove that instead of there being any degree of danger, further than is incident to all human proceedings, there is a less amount of loss of life than is to be found in any other department of forsign, or domestic eommunication. Let figures speak for themselves, and then we chall see the thousands of lives Which are yearly lost in the merchant marine of all nations, and the numbers who daily perish on land, by accidents from coaches and other rabicles. While, if we look to other countries, and particularly to the Uulted Stutet, we sball fiod that the secidents jo stemas veseols
far outnimber those with us. It must be remembered, also, that where accidents with iteam boats have necurred, ilas where they have not pruccerled from maritime causen, oflen of far from being the fault of the manufacturer, they have arisen from avarice of the owners, or the ignorance of the engineers on board. Thus, not only is there no possible rensnn for such arbitrary proceedings. but there is no reason for singling out for oppresion a means of intercourse which has carried so many millions of persons with such an incredibly smail number of casualtion.

Why have not the shipnowers been singled out? Ther cusunt sacrifices of life by thnusands where we lose lena, yet none think of attarking an interaxt which a powerful enough to defendi-sulf. Neither are there in plectors of enaehes to decide whether a rotten axle thunld run anither journey or be laid avide; while, because the rights of ateam buat owners are supponed to liave no powerful protection, they are to be selected as a peace-uffering at the shrine of vulgar prejudice and administrative ignoraner.
While this novel legislation is thus uncalled for, we may see, by anticipating its results, that it has D) argument on which to base its future utility. For by the introduction of inspectors, the whole talent of the manufacturers will be left at the mercy of men who, however competent in other respects, cannot fail to be guided by prejadices injurious to the cause of science, and to the interests of the parties concerned. A stop will be put to all imprnvement, and all experiments annihilated; and in the hands of two or three men will be left the control of all this important department. What manufacturer will run the hazard of incurring the veto of this despot, or what owner will expose himself to the loss of capital in experiments? That this will be the result, it needs but litile reflection to demonstrate; for, in a acience which is not yet fixed, but is ever progressive, which must be left to the decision of time, which would be rejected by the prejudices of men. Let us remember the opposition of Watt to the lighpressure engine, and the conflict of opinion which still exists on the subject. Let us imagine Watt a steam-boat inspector, and say where would now be the locomotive and the Peruvian mine engine. Let us recall the contest about the powers of the Cornish engines, or suppose Dr. Lardner deciding on the question of Atlantic steam navigation; and we may be assured that if this plan had been in activity thirty years ago, we should have been far behind; and that if it is carried on now, we shall be as victims before the power of those nations who have the sense to leave science unshackled.

Except to produce this mischief, the operations of these obstructors must ever be a nullity; for they must be more dispersed than poor law commissioners, or as numerous as excisemen, if they have time and power to make such an examination as shall ensure a remedy against the evils which they are intended to prevent. Their superinterdence must be indecd vigilant if tbey can climb every chimney and poke themselves into every fire grate, while their occupation will be no sinecure when they will afford such admirable opportunities for diminishing the responsibility of the engineers, and thrusting it all on tho devoted obstrictors. The effect will be a check to the progress of science, no guarantce against accidents, and a less available responsibility than at present exists; while the unfortunate employers will have the benefit of all the odium of the class over whom they are spies, and the certain blame of every mischance.

If there be even a shadow of a fault, and we lave shown that there is scarcely that, the proposed measure, instcad of remedying the evil, by attacking wrong parties, perpetuates it and creates a greater. It is not the mannfacturers who are in fault, but the cupidity of the owners or the want of instructiou in the working engineers. These are the sources of the evil, if any exist; and it is to these that the meazures of the Anerican government are chiefly directed. The skill of the manufacturer no inspectional ability cau regulate ; but, by making the responsibility of owners and captains more direct, a more efficient remedy will be provided, and the error, if any, corrected.

In conclusion, we deprecate this procceding as mischievous and unjust; and we call upon the manufacturers and steam-boat owners to unite and oppose this measure by all the means in their power. It was by such combination that the railway proprietors last yciat defeated the government in a similar invasion on their rights and property ; and in this case, even shonld not the entire proceeding beamulled, at any rate many of its ill effects may be remored, while the legislature may be bronght to entertain sounder opinions on the question. This association of persons interested in steam-boat traffic has now become imperative ; for not only in this inatance, but in others, measures are contemplated for inflicting severe injury on it. The question of tolls on passengers is of paramount importance, while the proposal of inspectors equally calls for resistancc, and the steam-boat proprietors may feel assured that it is only by union and prompt measures that chese present evils can be ayoided and future safety insured.

ON THE GENERAL THEORY OF THE STEAM ENGINE.

Notwithstanding the number of years which have elapsed since the invention of the Steam Engine, and the immense extent to which it is now employed, as well as the great importance at present attached (particularly in some of its applications) to the perfection and economy of its working : yet our knowledge of the general theory of its action is still but very limited. We were led to investigate this subject more fully on the perusal of a pamphlet which appeared in the course of last year, entitled, "A New Theory of the Steam Engine,' by the Chevaler G. de Pambour, and purporting to be an analysis of a memoir by the same suthor, which was read at the Institute Royale of France, during the year 1837. The author, after shewing the inaccuracy of the ordinary mode of calculation used to determine the effects and proportions of steam-engines, exposes what he calls his new theory, by menns of which he undertakes to solve all problems relating to those effects and proportions. M. de Pambour's theory consists essentially in the following laws:-

1. That the pressure in the cylinder is strictly regulated by the resistance on the piston und by nothing else.
2. That the velocity of an engine is determined by the quantity of water which can be evaporated in the boiler in a given time, and
3. That the pressure in the boiler is indifferent, provided it be at least equal to the pressure in the cylinder.

The last of these laws is of very little consequence, since it can have no effect on any of the calculations; but the two former serve to solve all the problems relating to steam-engines; for, having ascertained the quantity of steam generated in the boiler, and transmitted to the cylinder, as well as the velocity of the piston, which gives the volume occupied by that steam, we find its density and elastic force, and consequently the resistance on the piston. Inversely, either of the two other quantities might be determined, the rest being given. The principal difference between M. de Pambour's and the ordinary mode of calculation is that, according to the former, the effect of an engine is measured by the quantity of steam generated in the boiler; and according to the latter, by the guantity used in the cylinder: both which quantities must be equal, if correctly measured; unless, of course, there be any discharge through the safety valve, in which case M. de Pambour's method would fail, if he had not the means of measuring or estimating the quantity so lost; in place of which he assumes (for locomotive engines) an average loss of one fourth of the whole of the steam generated, and therefore considers the effective evaporating power of a boiler to be three fourths of its total evaporating power. Now this clearly cannot be true for all locomotive engines, nor even for one engine on all occasions; the safety valve will be more or less open, according to the load of the engine and the pressure in the boiler; and the discharge of steam through the valve, when open to the same degree, will depend on the pressure in the boiler. The latter circumstance would, however, have but an imperceptible influence if the difference of pressure were not very considerable, the velocity of efflux being directly as the effective pressure, and inversely as the density of the steam.

The manner in which M. de Pambour arrived at the average loss of steam through the valve, shows that it is seldom, if ever, correct. He first ascertained what rise of the valve cras necessary for the discharge of all the steam generated, which corresponds to different numbers of degrees of the spring balance for different boilers, and then observed the actual rise in a certain number of experiments made with different engines; he then compared the sum of all those rises with the sum of all the rises necessary to give egress to all the steam generated in the various boilers, taken once for each experiment. In eleven experiments, the sum of actual rises was 12 degrees of the various spring balances, and the sum of rises necessary to give egress to all the steam, in each case $46: 5$ degrees : namely, five experiments, with engines requiring 5 degrees, give 25 ; three experiments, with one requiring 4, give 12; two experinents, with one requiring 3, give 6 ; and one experiment, with an engine requiring $3 \cdot 5$, gives $3 \cdot 5$; which numbers, when added together, will be found to make up $48 \cdot 5$. The ratio of 12 to $46 \cdot 5$ being very near one-fourth, this has been taken as the average rise of the valve, and consequently as the average loss of steam.

Thus we see that we can make no use of the constant coefficient 0.75 in determining the effective evaporating power of a boiler ; for it might very well happen that only one-eighth should escape through the ralve, in which case we should find the effect oneseventh too little; and if in any case there should be a loss of onehalf of the steam, then we should arrive at a result 50 per cent, too great.

But, setting aside the error we should commit by taking the average rise of the valve, how are the following facts to be accounted for? In the table of experiments at ${ }^{1 r g e} 228$ of M. de Pambour's
"Treatise on Locomotive Engines," we see that the Fory ascended the Sutton inclined plane, with a loed equivalent to 188 tons on a level, at a speed of 13.33 miles an hour, the rise of the valve being 5 degrees of the apring balance, which is sufficient (see the tebte a page 175) to allow of the escape of all the steam generated in the boiler. We also find (page 232) that the Veata ascended the same inclined plane, with a load equivalent to the former, at a velociky of 3.25 miles an hour, when the rise of the vulve was equal to 85 degrees of the apring balance, or sufficient, according to the abortmentioned table, to give issue to all the steam. Also, (see page 234), the Vulcan is stated to have ascended the same inclined plane. with a load equivalent to 188 tons on a level, at a velocity of 11.4 miles an hour, the safety-valve being suffieiently open to allow of the escape of all the steam; and, in the came page, the ane engine is stated to have ascended the Whiston inclined plane on another occasion, with a load equivalent to 186 tons on a level, at a speed of 18.75 miles an hour, the safety-valve being open to the same degree as in the preceding case.

Supposing the observations to have been correctly made, we can only account for these apparent anomalies by supponing the eraporation to have been more rapid in the cases quoted than during the experiments which had been made, with the view of determining the rise of the valve necessary for the discharge of all the them gemrated; for it is the absolute quantity discharged, and not the proportion, which is determined by the size of the aperture. It in, therefore, exceedingly difficult to deduce the power developed by us engine from the evaporating power of the boiler, whenever there is any escape through the safety-valve.

Before leaving the subject of these experimente, we must olucrve that, from their nature, they were not suaceptible of that precinive which is necessary to allow of their results being made the basis of accurate calculation: for, on account of the irregularities of the road, the circumstances were continually varying, and the monentwin of the trains rendered the effect of those variations less pereeprible than it ought to have been.
It is an essential part of the Chevalier de Pambour's theory, that the pressure in the cylinder is independent of the pressure in the boiler, and depends solely on the resistance to be overcome. This is to a certain extent, true; but we cannot sllow that the pressare in the boiler is altogether independent of the pressure in the cylinder, for it cannot be denied that the law of the flowing of elastic furid must obtain in this, as well as in all other cases. The pressure of the steam in the cylinder being, therefore, equal to the resistance on the opposite side of the piston, and the velocity of the piston being determined by the effective evaporating power of the boiler, which wt readily allow, the pressure in the boiler will necessarily be euch as to cause a corresponding efflux of steam from the boiler into the dewn pipe, and through that into the cylinder. If at any moment this were not the case, the pressure would inumediately begin to adjut itself, and would finally remsin fixed as soon as it had arrived at that point: suppose, for example, that the pressure in the loiter is too low to cause an efflux at a sufficient velocity to supply the cylinder; the pressure will instantly rise until it be sufficient to couse an efflux at the velocity which will then be required, which is less then before, as the density is greater. This circumstance has beet entirely overlooked, or rather neglected, by M. de Pambour, as well us the effect of velocity on the resistance of the air to the trains, which must considerably affect the results of his experiments.

Before entering upon the general discussion of the theory, when we shall have occasion to revert to M. de Pambour's works, we shall briefly advert to a paper on the application of steam as a mating power, which was published in the second volume of the "Transactions of the Iustitution of Civil Engincers." We should not hare stopped to notice this paper, but for the medium through which it has been brought before the public, which naturally gives a cortais degrec of importance to everything thercin published, as it must fint obtain the sanction of a body of men, who, from their profession, and the eminence which some of its members have attained in that profession, have necessarily considerable influence over the opinicos of those who are personally unacquainted with mechanica.

The author of the paper in question appears to bave had less in view the advancement of science, as the title seems to promise, than to create a doubt in the public mind as to the correctress of the official reports of the duty performed by the Cornish engines; and he appears to have persuaded himself that he has demonstrated, on scientific principles, that those engines comld not have performed anything like what they are reported to have done, and, consequently, that the reports are erroneous; but we hope to be able to shor, satisfactorily, that he is labouring under a delnsion.

We will, for the sake of argument, allow that the combustion of 7llw. of coal is required to convert one cubic foot of water into stean
and consequently that the quantity of steam generated by the combustion of B4lba, of coml under a presaure of 15 lbe on the square inch, and reoondensed without having been allowed to expand, will raise $44,467,5001 b s$. one foot high and no more. This we will allow to be the greateat effect that can be accomplished by atmospheric steam, and yet we assert the possibillty of raising not only $70,000,000$ but double that quantity, one foot high, by the combustion of the same quartity of coal, by making the steam in a condensing engine perform a part of the stroke at a high preasure, and then causing it to expand through the rest, though it should be reduced at the end of the stroke even to a lower preasure than that of the atmosphere. But Mr. Palmer attampts to demonstrate that "high pressure steam, when applied expansively, cannot produce so great an effect as atmospheric steam, thereby meaning to infer that no high-pressure engine can perform the same amount of duty as a condensing engine, both consuming equal quantities of fuel." He professes to draw his arguments from the estableshed laws of nature, andadduces the following theorems; to prove which he very unnecessarily occupies seven pages, and then never makea any use of them ; indeeed, if he had, they would rather have shown an advantage, both in the use of high-pressure steam and in expanding it.

1. The sum of sensible and latent heat in steam is a constant quartity, viz, about 1172 deg. F.
2. All matter (steam, of course, included), whether solid, liquid, or gaseous, from the most dense and refractory to thelleast ponderable, evolves caloric on compression, or increase of specific gravity, and baorbs caloric on dilatation, or when its specific gravity is diminished.
3. To convert equal quantities of water of any assignable tempernture, and under like pressure into steam of given temperature and elasticity, requires equal weights of fuel to be expended; but, although equal weights of water must absorb equal increments of caloric, when atmospheric steam is generated, it does not follow that all the caloric absorbed in high-pressure steam is exclusively supplied by the fuel expended. The law maintained is simply this, that the same causes produce the same effects.
4. Steam of two, three, or more atmospheres elasticity, is not composed of two, three, or the like number of volumes of water conchined in an equal volume of atmospheric steam, when generated under the same barometrical pressure, but contains proportionably less water as the prossure under which the steam is generatedincreases.

Frows the first of these theorems we conclude that whatever be the prescure of steam before expansion (so that it be in that state called calurated, that is, as dense as it is possible for it to be at its temperature), if its density be reduced by expansion to that of steam genersted under any given pressure, it will assume the latter pressure aad the corresponding temperature, and will therefore be still in the satnrated state; so that if steam enter the cylinder of a steam-engine at a preamure of three atmospheres, and, after having performed a little more than one third of the stroke, be made to expand through the rest, so that its density shall be reduced at the end of the stroke to that of stesm generated under the pressure of the atmosphere; then the cylinder will be filled with steam in every respect the same as atmospheric steam, and, by the third of the above propositions, gencroled at the same expense of fuel as that quantity of atmospheric steam; and yet the effect will be about double what it would have been if the steam had been worked at the pressure of the atmosphere throughout the stroke, for the mean pressure is somewhere near two atmospheres. The fourth proposition shows that the economy of fael is greater, the greater the pressure is at the commencement of the stroke, for the consumption of fuel is in proportion to the density, which, by the last named proposition, does not increase so rapidly as the pressure. The steam will thus, at a higher pressure, be required to work at full pressure during a greater portion of the stroke than if its density increased uniformly with its pressure, in order to fill the cylinder with steam of a given density, which shows that the mean pressure, and consequently the effect, will be greater, the higher the pressure at the beginning of the stroke.

The almost incredible advantages to be derived from the expansion of steam becoming every day more generally known, from the experience of the Cornish pumping engines, and the adoption of this principle constantly extending itself in consequence, as every body is desirous of availing himself of hhose advantages, it becomes absolutely necessary that the action of the steam, during that portion of the stroke of the piston through which it expands, should be better understood than it is at present, in order that we may be enabled to make a more exact calculation of the power exerted under such circumatances.

The present rule for calculating the mean pressure on the piston, when the steam is used expansively is extremely defective; it supponer the steam to lose none of its temperature during its expansion, white (neglecting that loot by radiation, which is a comparatively
trifing quantity) the caloric absorbed by the steam itself in consequence of its dilatation, which no clothing of the cylinder can prevent, amounts to many degrees, particularly if, in order to obtain the greatest advantage possible from the principle of expansion, the steam be cut off after the piston has performed but a small portion of the stroke. In this case, the application of the law, that the pressure and density increase in the same ratio, would make the mean pressure appear much more considerable than it really is. We shall attempt, in a future paper, to bring this branch of the theory-we will not say to perfection, for that were presumption, but as near that limit as can be required for practical purposes.

MEMOIR OF RICHARD TREVITHICK.

While the biography of literary men has received full attention, although rarely presenting any object of interest, the lives of men of science, deeply enwoven as they are with the history of the pursuits in which they are engaged, have frequently remained unknown, or too often neglected. Nothing, however, can be more interesting to the student, or better calculated to animate him in his career, than the perusal of those efforts of application and genius, which have overcome impediments apparently unconquerable, or created a giant work from the rudest aud most incongruous material. It is here that we find the most practical lessons of perseverance, and the most effective stimuli to our exertions: the slow and arduors path to fame is thrown open to our view, and we are taught not to be daunted at the most protracted labours, and not to neglect the slightest effort for success. When, too, our own countryman is the theme, we warm as we take pride from the halo shining on our native land, and we feel the exalted nature of that genuine fame which is not restricted to selfish enjoyment, but brightens the whole human race.

It is not unaccountable that oblivion should often encloud the memory of the greatest practical geniuses, for their early labours are hidden in the obscurity of the study or the workshop, and then, after battling against the efforts of the malignant, or the immoveable resistance of stolidity, the inventor is long dead before the contest is ended, or his works are successfully established. In the meanwhile, the progress has been so slow and so gradual, that, like a plant, casts off all semblance of the seed, so the nams of the author has ceased to keep company with his labours. Often, too, where a name survives, we are led to distrust, when, like that of an Arkwright, it has supplanted the rightful owner.

One of the neglected benefactors of the haman race is the subject of the present notice, whose memory, except in his native mines, is among his fellow-countrymen almost consigned to oblivion. At the present period, therefore, when we are beginning to enjoy the benefits of steam locomotion, we have thought that it would be acceptable to present some account of the engineer to whom our country is so much indebted for his efforts in promoting this improvement. We can only regret that this cask had not fallen to the lot of othera possessed of more ample materials for doing justice to the subject. Although we knew Trevithick during a most active portion of his career, get the lapse of years soon renders the memory of incidents vague and imperfect. We know no one, indeed, who could better have fulfilled this task than a late President of the Royal Society, Trevithick's fellow-countryman and friend. Many errors of omission must therefore be excused, and many misrepresentations palliated; and it must be remembered that we are not so much to blame in committing faults, as that we merit protection for attempting what has not been done before.

Richard Trevithick originally moved in that class of society called in Cornwall the Captains of Mines, for which profession he was educated in the mine counting-house as clert, having as one of his colleagues at that period Richard Griffiths, now the Chief Government Engineer in Ireland. Cornwall, at that period, was something different from what it is now, the mail road not extending beyond Exeter, the Cornish language just extinct, and the great influx of London capital not having commenced. This state of affairs, consequently, did not allow of any superior education; and although belonging to the mining aristocracy, Trevithick had little but the routine of practice to qualify him for the profession in which he wes destined from his birth to move. Of his early years, therefore, it is unnecessary to say more, than that his career was distinguished by the introduction of many improvements into the operations in which he was engaged, and by a promise of distinction which his future exertions did not belie.

The mine captains, from their inter-marriages, were nearly all reLated, and among Trevithick's nearer cousins were the Vivians, Andrew Vivian, one of these, was a man of greater worldly abilities than most of his class, and fertile enough in all those expedients which are useful in raising money. With him Trevithick engaged in several affairs, be finding work, and Vivian supplying money. It was in part.
nership with him that, in 1802 , Trevithick, while at Camborne, took out his patent for the high-pressure steam engine.
About the year 1723, Leupold, a German philosopher, in lis comments orr Papin's apparatus in the Theatrum Machinarum, had given the first idea of the application of steam on the high-pressure principle, but his suggestions remained without any practical results. Watt indeed had made some allusion to this principle in his attempts to obtain a locomotive power, but at any rate was not able to arail himself of it, even if he understood its application, and to the last day of his life displayed an obstinate prejudice against it. It does not appear that Watt had then read the Theatrum Maclinarum, and it is not likely that Trevithick in his Cormish seclusion ever saw it, so that he has the merit of invention as much as of application. The introduction of this improvement gave increased powers to steam, and it is of that importance, that Stuart, not likely from national sympathy to be over-prejudiced in favour of an Englishman, is even inclined to date the era of the steam engine from this invention. It is certain that independently of its merits, this application of steam power is already of paramount importance from its great extension. It affords the means of locomotion on all the railways in the world, propels the swarms of American steamers, and is greatly used in manufacturing operations.
In I804, Trevithick had the opportunity of trying his engine on the Merthyr Tydril tramroad as a motive power applied to a carriage. The engine had an eight incl cylinder, and the piston lad a stroke of four feet six incbes; it travelled at the rate of five miles an hour, and drew as many waggons as carried ten tons of iron, without requiring any water, for a distance of nine miles." Stuart says that the great obstacle to its introduction at this time was the supposed want of ndhesion, or hold of the wheels upon the rails, to effect the locomotion of the engine.
Trevithick and Vivian erected several of their high pressure engines in Wales and other places, and it was about this time, although we do not know whether before or after the experiment on the Merthyr Tydvil tramroad, that Trevithick put into operation the first locomotive engine in London. In the great metropolis Trevithick found ample support in his countryman, Davies Gilbert, the Earl of Stanhope, Mr. Isaac Rogers, Mr. Samuel Rehe, Mr. Henry Clarke, and others connected with his native county or the cause of science. The engine he used was about the size of an orchestra drum, and which he attached to a phaeton between the back wheels. With this carriage an experiment was made in Lord's cricket ground, at Marylebone, several men of science alternately steering it, and expressing their perfect satisfaction as to the ease with which it was directed. From hence it was steered down the New-road, and Gray's-inn-lane, to the coaclibuilder's, whence the phaeton was obtained. Thus it passed over ground, since the site of Hancock's experiments, and perhaps ultimately deatined to be witness of the final triumph of this branch of locomotion. The next day Trevithick took this same engine and exhibited it in a cutler's slop, working the machinery ; which was one of his essays, to show its general applicability. Subsequently he had a temporary tramroad constructed within an enclosure on the ground now occupied by Euston-square. This road was of an elliptical form, and on it he ran his locomotive. It was opened to the public as an exlibition, and people crowded to see it, but the second day Trevithick, in one of his usual freaks, removed the engine, and, to the great disappointment of visitants, closed the ground. This he did under the impression that it was better to let the affair drop, until he saw the opportunity to avail himself of it advantageously.

Another occupation of his metropolitan career was the tunnel under the Thames, in which he owed it only to his own pertinacity that he disappointed both the publie and himself. Ralph Dodd, an engineer of some note of the last century, was the first to commence operations for a tunnel under the Thames from Gravesend to Tilbury Fort. His plan was to avail himself of the cladk stratum which he supposed to run under the bed of the river, and he expected that the chalk quarried out would sufficiently pay the expenses of working, leaving its subsequent use as a viaduct to afford a handsome income. As was mentioned by a correspondent in one of our late numbers, \dagger he obtained an Act of Parliament for his plan in 1799, with power to raise 30,0001 ., and to increase his capital in case of need to $50,000 \mathrm{l}$., his estimate being only 15,0001 . The work was commenced, and proceeded for about three years, but was ultimately stopped on accouut of the exponse of drainage. He had gone on the assumption that the chalk would be in one solid stratum, and that he should not be embarramed by water, having in his cstimates allowed only 17801 . for this purpose, and treated the expense as merely contingent. He found, however, such great inconvenience fronl under-springs rising through fisaures in the clualk, that as we liave said, he was obliged to abandon the project.

[^4]This tended to throw a damp on such plans, and when Trevichick proposed a similar tunnel under the 'Thameses at Kotherhicbe, he found is metural reluctance to support any such undertuking. Several of his frienta, however, raised a subscription to enable him to make an experiment on a small scale, and the result was anxiously amaited to justify mo appeal to the public for carrying out the entire plan.
In 1809, therefore, Trecithick was employed in running a gmall drifiway parallet to the bed of the Thames. The committee or subscribers justly feth every assuranee of the success of the undertaking, for the operation was extremely simple, while they had entire confidence in his skill and ability, from the experience he had gained in similar underground mining works. We have tunnels four miles in length to some of our canals, and abundance of communications io the miaing districts under the surface of the earth, and even beneath the see; brit notwithstanding the ease of such a work, extraneous causes have alwas hitherto prevented this kind of viaduct from being used under rivers. Trevithick, to save labour and expense, committed the usval fuodhmental error of not going deep enough below the bed of the river, the object in his case being a close-run endeavour to keep at the lease possible distance from it. Had his experiment been conduded, chis would have enabled him to give a plausible original estimate at any hazard of subsequent increased expense. This error, lowerer, was roi productive of much inconvenience to him, nor was it the immediate cause of the abandonment of the enterprise, for he carried his driftway to a greater extent without impediment than has been done in any othier attempt. It was not until he had gone $\mathbf{9 3 0}$ feet* under the river, that he encountered any obstacie, when he got into a hole in the mnd y bottom of the river, and at one time a piece of uncooked ship beef, which had fallen from one of the vessels, drifted into the works. Alchough the Corporation authorities refinsed to allow him any facilities, be managed to get this hole stopped, and again weat on with vigor; he carried on the excavation at the rate of from fonr to ten feee per day, and soon completed a thousand feet, to the great joy of every one concerned. On arriving at this distance, according to his previous agreement with the committee, Trevithick was to receive a huvdred guineas, which, after a verification of the work by a surveyor, were paid to him. This surveyor was appointed by the subscribers to chect Trevithick, and in giving in his report, confirming the measurement. stated that the line liad been run one foot out of the perpendienlar. This statement Trevithick took in high dudgeon, and chose to consider it as a deep reflection on his engineeling skill to have deristed one foot in a thousand. His Coraish blood was excited, and with his usual impetuosity, he set to work to disprove the assertion, witwoat any regard to consulting his own interest, or embroiling himself with the committee. Of all possible contrivances for effecting this object, he adopted the most absurd, which was no less than to make a hole in the roof of the unnel at low water, and to push through a series of jointed rods to be received by a party in a boat, and then observed from the shore. Even had he been successful in carrying out this process, it would have afforded no criterion of the precision of the work, as the set of the current would necessarily have swerved the rod. Treviehick was employed in the driftway in carrying out this contrivance, and as delays of course ensued in fitting together the rods, the gully conserneent on the opening in the roof ultimately admitted so much, water ns to render a retreat necessary. With a moral courage innate to his claracter, and worthy of a better cause, he sent the men on before him. and very nearly fell a sacrifice to lis devotion. It has been already observed that the driftway was parallel to the bed of the river, and consequently curved; it necessarily happiened, therefore, that the entering water would lodge, syphoo-like, in the bottom of the curre, at which part, on Trevithick's arrival, he found so much water as hardly to be able to escape, for us he ascended the slope on the other side, and climbed the ladders, the water rose to his neck. It is needless to say, that this act of rashness was the death-blow to the project, while it added the climax to the many acts of inconsistency with which Trevithict's erratic career was disturbed. Un a subsequent occasion, being crose examined as to this occurrence while witness on a trial, he admitted the fact of lis ruining the works, and his determination in any similar circumstance to defend his own character at whatever sacrifice to other people. The work thus ended after having reached 1,011 feet, and remains within a lundred feet of its proposed terminus, a melaucholy monument at once of his folly and lis skill.
After these events Trevithick returned to Camborne, and we Dow approach another of those epochs of his life, in which liis labours were again destined to be followed by the most extended results. Here we lhave an instance of the operation of those trains of finite causes, which, while they are sonietimes productive of the most unexpected advantages, too often baffle all human expectations and arrangements. \uparrow

- Nechanics' Megnzine, Vol, $I_{\text {, }}$
+ Thansatious of the Curnwal Geological Societr. Mr. Boweta Mromptr.

Uvillé, a Spaniard, seeing the decline of the American mines, from the inanficient power of drainage in the old worls, whs desirous of adopting the English method of pumping by steam. For this purpose he came to London in 1811 , but his efforts were baffied by the difficulty of transporting such cumbrous machinery over the mountain districts, and the diminution of porrer which the atmospleric engines would sustain when worked in the rarified atmosphere of the elevated mine countries. When on the point of departing from England, frustrated in lis object, he chanced to see a finished working model of Trevithick's engine, exposed for sale in the shop of Mr. Roland, in a street near Fitzroy-\&quare. This model Uvillé carried to Peru, and to his inexpressible joy le had the pleasure of seeing it work with success on the bigh ridges of Pasco. Again encouraged in his favourite plan, he entered into partnership with two rich merchants of Lima, and obtained from the Viceroy of Peru the privilege of working some of the neglected mines. He once more started for England, and while on his royage, talking with Mr. Teague, a fellow-passenger, of his anxiety to discover the inveutor of the model, he was most agreeably surprised to hear Mr. Teague reply, " that Trevithick was lis near relation, and that he could bring them together within a few hours of their arrival at Falmouth."
Uvillé continued with Trevithick for some montlis at Camborne, profiting by bis instructions; he then made a tour under his guidance in several of the mining districts, and afterwards went to Soho to consult Boulton and Watt. Whether, however, it was their jealousy of Trevithick, or their genuine want of resource on the subject, they gave Uvillé no encouragement as to the success of his enterprise. The great elevation of the mines, the difficulty of the precipitous roads, and the absence of means of transporting heavy masses of machinery, appeared to those engineers insurmountable obstacles, and disinclined them to engage in such a difficult undertaking. On the refusal of these capitalists to assist, Trevithick himself undertook to furnish the necessary engines; and in September, 1814, Uville embarked at Portsmouth for Lima, with three Cornish miners, and nine of Trevithick's cogines,
Long before this period Trevithick had married a Miss Harvey, a lady of good connections; her brother subsequently acquiring a large fortuse. By her Trevithick liad several children, and it will prove at once the love he entertained for her, and his spirit of perseverance even in trifes, thet during his long courtship he never missed walking every crening several miles to visit her. Dissensions had, however, arisen in his family, and be was more prepared to engage in that distant career on which lie was now invited.
Uivillé was received at Lima with the greatest honours and rejoicings, and hoded with his cargo under a royal salute. It was not until the niddle of 1816 that he was able to surmonnt the local difficulties of ransport, and place the lirst engine.in operation. Trevithick, however, lad uobly armed him against the antagonist obstacles, and all that his itgenuity could suggest lasd been put into practice. The machinery, implified to its greatest cxtent, was so divided as to form adequate loads for the weakly llama, and the beams and boilers made in several pieces were transported over precipices, where a stone may be thrown for a league. The engine erected at Tauricocla, in the province of Tarma, *as put into operation, and in the presence of the government deputies drained the first shatit of the mine of Santa Rosa, one of the Pasco distriet. The greatest anticipations were created, and amid the profusion of honours slowered upon the projectors, nothing was wanted but the presence of the meritorious inventor himself.
Trevithick had in these latter years been fully as active in his contributions to the canse of science, as in any previous portion of his career. It was he who suggested the improvement on steam boats by propuhion at the stem, which is now the subject of experiments at London and at Liverpool. He considered that a spiral wheel revolving at the stern of a vessel was preferable to the use of side paddle wheek, and we believe that a vessel something on this principle is now abont to make the trial voyage across the Atlantic.
Another contribution of his to steam locomotion was his revival of giving motion to the engines by means of the re-action of the steam made to spout against the atmosphere.
In 1815 he effected a great improvement in his high pressure engines, hy forming the piston so that a ring of water should run all round it, and reader the whole air-tight; as lie found in practice that a very noderate degree of tightness in the packing produces this result.*

Trevithick was now actively engnged in England preparing for his departure. He had constructed several new engines, and an apparatus lot the Peruvian Mint ; and his attention was directed to an object of the greatest importance, to remedy the growing scarcity of quicksilver, by conatructiug furnsces for purifying the silver ore by fusion. At last, in Octaber, 1817, Trevithick, Robinson Crnsoe like, gave up all his
property in England, and leaving it to his wife and children, set sail for Peru.

In February, 1817, he arrived at Lima, where his presence excited the utmost enthusiasm. He was received by the government and the people with the greatest honours, alile the official announcement of his arrival in the Gaxette created the highest expectations of the whole population. He had immediately an audience of the Viceroy, and the Lord Warden of the mines was directed to escort him with a guard of honour to the seat of his future labours. The principal men of the mining district came many days' journey to Lima to see and welcome him, and all exerted themselves to testify their esteem for the well-deserving Don Ricardo Trevithick. Never, perhaps, was European so well received in the New Indies; it was not Las Cases coming to rescue au injured population from oppression, but it was a man of science who had arrived to augment their old resources, and to create new mines of wealth. It was the first benefit which they had received from the Old World, and it is not surprising that an ardent people received 'Trcvithick with as great enthusiasm as Columbus hadonce awoke in Spain.

The exertions of this great man were crowned with success, and he was equally rewarded by their profitable return, and the gratitude of the people. The produce of the mines augmented to an unexpected degrec, and the coining machinery was increased six-fold; his companions united in expressing their obligations to him, and the anthorities were not remiss in showing how they appreciated them. We understand that he was invested with the title of a marquis, and was created a grandee of the Spanisli empire, while the Lord Warden of the mincs even proposed to erect his statue in massy silver.

In these employments Trevithick was engaged for many years; but at last the political dissensions, and his own wandering disposition, induced him to wish to leave the country. This was no casy matter : for the veneration with wbich lie was regarded as a benefactor sent from Heaven, made the people regard his absence as a public calamity, and take every measure to prevent his departure. At last he made his escape, through dangers which few, less adventurous than himself, could have encountered; and, after escaping the terrors of the mountain and the desert, and the arm of the wandering savage, lie again arrived safely in England, where he was about the period of the great panic in 1827.

Here he endeayoured to raise capital to carry on some of his colossal projects, but with his usual ill-success-for those who kpew his skill, feared the waywardness of his character; and those who did not, were repulsed by the giant nature of lis enterprises. It was in vain he urged his own success, and represented the boundless resources of the Andean tertitory. He had the mortification to find his provision for his own fortune uullified by the ignorance and timidity of those with whom he sought to participate. While in America he had acyuired large tracts of land, and on one estate had a mountain of copper ore, which, like the liill mines of Potosi or Montserrat, it would take centuries to exhaust. Here he proposed to construct railways, and, by the aid of capital and machinery, make the shores of the Pacitic as great a mart for the produce of the earth, as those of his own native promontory.

Don Ricardo again returned to the New World, and resumed his labours for the benefit of the American people; for, it must be observed, that lowever he may have been remunerated, and how much so ever lie may have desired to advance his own interests, yet the apathy of his countrymen ever prevented him from carrying out his own wishes, or being any other than the great regenerator of American riches. He died, indeed, comparatively poor, and left, we believe, little other inheritance to his family than the grandeur of his name and the glory of his works.

In his person and manners he seemed formed to sustain the arduors contests to which he was destined. The robustness of form, inured by years of toil and fatigue, was reflected by the innate self-confidence of his disposition. Blunt, but not rude, he mairtained his opinions with lonesty and power, and was only in fault that too frequent auccess made lim adhere to them with pertinacity. In his moral chameter lie maintained with propriety all the social duties. Kind to his family, he was ever ready to make any sacrifice, although the meddling of others may have created dissension in lis domestic circle; while as a friend none, perhaps, could be more relied upon, for his feelings of confidence sarvived repeated disappointments and betrayals. His mental porers are best appreciated by the events of his life, for we may be assured that if no one be great without some divine assistance," so few have done remarkable things without having in some degree participated in their greatness. His genius was of the lighest order, while those difficulties which his invention could not dissolve were overeome by his perseverance. His self-education also allowed him to borrow little from
others, but made him dependent on himself; and this confidence was rarely in vain, for his errors were always less those of judgment than consequent upon a hastiness of disponition, which, as it had met with but little sympathy from the world, was but too apt to despise it. His skill in providing for all occurrences was rarely baffled, and could not easily be surpassed, while his original and gigantic conceptiona, however much beyond the progress of his age, were seldom beyond the bounds of ultimate practicability.

That his name is but slightly known, and his labours consequently little appreciated, is by no means a result of their unimportance, but the effect of concurrent circumastances, which, as thoy can elevate in. significance, too often obscure merit. When he had conceived a plan by the resources of his mind, and confirmed it by experiment, the very vastness of it surpassed his means of execution, and prevented it from being carried into effect. He was himself no financier, and the associations he formed with Vivian and others were either insufficient in their extent, or turned more to the protit of his colleagues than himself. It was true that he left no means unsought of obtaining the assistance of others, but those who had capital feared to engage in enterprises to which they were unaccustomed, while those used to business had no disposition to deviate from the track in which they were long practised and successful. It is the nature, indeed, of great monopolies, that their very success engenders waut of activity, for none feel so little intclination to engage in new processes as those who are accumulating wealth by old ones. It is this that deadens the progress of the iron trade, of distilling, and many others; and the manufacturers, instead of supporting new inventions, spurn them as associates, and trample them down as rivals. It was the support of this influence which gave power to Wath, while it cramped the energies of Trevithlick; for without the aid of Boulton, the former might have wasted his life in experiments, or, Hargrave-like, have been supplanted by another Artwright. Trevithick wanted but this to compete with Watt in worldly prosperity, and he wants not this to equal him in the height of his genius, the greatness of his works, or the wide-exteading influence of his inventions.

That the memory of Trevithick has not received the honours which have been conferred upon others, is a neglect which has been shown to many of our greatest names, and proceeds less from our want of veneration for men of genius than from our national character. We do not, like Frenchmen, dread a rival near the throne, nor are we, like Americans, fearful of others denying to us what we are scarcely known to posseas. We are rich enongh in illustrious names to consider their admission in our domestic habits and our thoughts as a sufficient sacrifice to fame, and it is only on the instigation of some provincial that we raise statues to those who live in our hearts. Our population in the north, however, less fertile in their contributions to the slirine of genius, and more remarkable for locai preference than extended sympathies, give a greater share of admiration to the few of whom they dare to boast. The English, in acceding to their suggeations, white they commemorate inferior names, create mementos of their own neglect. While, therefore, there are three memorials of Walter Scott to one of Shakspeare, and to Milton none, we must not consider the many tributes to Watt as emblems of superiority, but as proofs of a better fate. It is to this that we must attribnte that a statue is rising to Watt in Manchester, while Briadley's merit still relies upon the glorious memory of his canal. We may carry, however, this self-confidence too far, and where we meant only to show hospitality, may have brought in strangers to master our own children; when we see the generosity of the American Congress to the spurious claims of Fulton, and the gratitude of Peru for the labours of Trevithick, we are called upon to offer some honour to his name, and to show that we are as proud of the inventor of the high-pressure machinery as we are conscious of the benefits we derive from his railway locomotives. But, neglect him as we may, the name of Taevítice will live while his engines annihilate space in the Old World, and in the New control the current of the Mississippi, and diagorge the mountain riches of the Cordilleras.

MR. OLDHAM'S SYSTEM OF WARMING AND VENTILATING,

AS ADOPTHD AT THE BANE OF ENGLAND AND BAES OF IBELAND.
Sir,-As the best mode of heating and ventilating apartments and buildings is still an undecided matter among scientific men, I avail myself of your journal to draw public attention to what appears to me to be tbe best among the various plans and patents of the present day.

At a late meeting of the Royal Institution, Professor Brande, in the course of his Lectures on Heat, and in considering its transmission and diffusiou by means of currente, pointed out the advantage of alding the operation of those currents by mechanical means.

In illustrating this mode of conveying heat where extensive apartments are to be acted on, and where either a large volume of aitror a great quantity of heat may be required, the Professor described the operation and effect of an apparatus successfally adopted by Mr. Otdham, of the Bank of England, in which building ft has beed fon zoe during two years, having previously been adopted by him in the Bask of Ireland, and where it has been in operation during sirteen years.

When heat is conveyed by means of natural currents, these are necessarily, and exclusively, due to the difference in the temperature and specific gravity of the column of air, when lieated, relatively with that of the surrounding atmosphere; the force of these currents, and the body of heat they are enabled to transmit, arc therefore necessarily languid, compared to what may be effected by artificial means.

That steam is the best medium for the transmission of heat is nov too well known to require much illostration. Its guperiority over water (independently of the greater facility with which steam is cosveyod to a distance) is derived from the extraordinary quantity of heat which water contains when in the state of vapour-a cubic foot of water, in the form of vapour, having the power of giving out nearly eleven times more heat, than the same body of water conld when in it liquid state.

The mode hitherto adopted in many establishments, and in the large cotton-factories, is that of conveying steam through a continuous series of cast-iron pipes, so arranged and extended, througb the several apartments to be heated, that each shall be supplied with a girea length and surface of pipe, proportioned to the dimensions of the apartments to be heated.

This is manifestly a mode attended with great inconvenience and expense in the conveyance of such pipes, in their liability to leak: and in the want of uniformity in the temperalure of the several parts of the rooms in which those pipes are introduced. But there is yet another and more formidable evll attending this mode of heatiag. namely, that while it merely conveys beat to the already existing air in the chambers to be heated, it has no relation to the condition of that air, or the supply that may be required, or the changing and purifying the same. In a word, the system, by means of steam-pipes, has the power of heating, but not of ventilating. It has no relation to the purity or impurity of the air to which it imparts the beat ; and it is a fact, that giving an additional supply of heat to an apartment may even be prejudicial, inasmuah as such apartment may require ventila. tion, that is, change of air, rather than heat.

Now the process of heating adopted by Mr. Oldham Las this peculiar and distinguishing characteristic, which gives it a claim above all othes namely, that it both lieats and ventilates at the same time, to any extemt. and with any required rapidity.

As far as healith and comfort are concerned, heating and ventilation should never be separated. Mr. Oldhan's process and apparatus nocs! effectually supplies this desideratum.

Doctor Ure, in his inquiry into the modes of warming and ventilatitg, observes, that "the great principle of ventilation is, never to present the same portion of air twice over to the humian luiggs, but to supfly them at each fresh inspiration with pure aerial particles in a genw: thermometric and hygrometric condition."

Where heating is alone attended to, as in the case of heat conveywd by steam in metal pipes, it becomes necessary to provide currents of cold air, to supply the required continued change in the apartments for the purposes of ventilation. It is manifest, then, that the bess principle must be, first, to heat the required volume of fresh air, a 1 , then introduce it to the apartments to be heated and ventilated, insie ad of effecting this double object by two distinct processes. This ieffectually accomplished by the planof Mr . Oldham under consideraciuc. The mochus operandi is as follows :-A body of pure air, of any requirod volume, and passing at any required velocity, is forced by the aid of an air-condensing pump into a clamber or chest, where it is heated in wo ingeniously-contrived, but extremely simple spparatus, by means of cross currents of steam. The peculiarity of this contrivance is, that it ascending body of air, on entering this chest, divides itself spontaneoo ل into any required number of thin horizontal films, by which a vit) extended surface is exposed to corresponding steam-heated metal s r r . faces. Instead, therefore, of passing thesteam through a series of pip \leq. along which, but in an opposite direction, the condensed water hast t. return, it is conveyed at once from the boiler into the cheat or condens ur. (which, in fact, it is,) where, on having parted with its heat to the ir as above described, it is condensed, and returned directly to the boil ar. The chest or condenser, in the apparatus at the Bank of Eogland is but three foet square, yet the body of air to be beated, while passe is over but 8 lineal feet, spreads itseff over no less than 154 superic a feet, and coming in contact with a corresponding superficies, heteed br the steam, it necessarily receives a very large supply of hyat in a sh ift space of time.

This apparatus in the Bank of Englund, independently of heating and veotitating several large apartments, is put to the severest test materely, that of evaporating the moisture from a series of 400 harge mill-boards, with a surface of 1600 feet, and which moisture they have ahsorbed from the fresh-printed bank notes which are daily dried by sims procese.

With respect to the quantity of heat which this small apparatus is capable of imparting to the air, this is accurately tested by the quautity of water which is condensed, and which amonnts hourly to twelve gallons. Now, as Professor Brande observed, when we consider what an enormous body of heat is contained in the steam generated from ewelve gallons of water, we arc enabled to appreciate the hourly cffective leating powers of this apparatus.

As to the volumes of warm air that may be required, that will of course depend on the cubical contents of the buildings to be heated. This, however, may be stated, that there is scarcely any limit, either to the quantity of heat which may be thus given out, or the quantity of fresh nir, so heated, that may be propelled by such a system. Of the mechanical means by which this artificial current of air is created, little need be said, these are within the reach of all.

Of the efficacy of an artifical current produced by means of a fan or cylinder, Dr. Ure observes, that "it has been ascertained that a power equivalent to one horse, in a steam engine, will drive at the rate of 80 feet per second a fan, the effective surfaces of whose vanes, and whose inhaling conduits have each an area of 18 inches square, equal to that of a largo steam boiler chimney. The velocity of air in the chimney, prodaced by a consumption of fuel equivalent to the power of twenty horses, was no more than 35 feet per second; while that of the fan, as impelled by the power of one horse, was 66 feet per second. Hence it appears, that the economy of ventilation by the fan, is to that by the climney draught, as 66 is to 数 or, 38 to i . It is obvious, therefore, that with one bushel of coals consumed in working a steam-impelled excentric fan, we can obtain as great a degree of ventilation, or we can displace as great a volume of air, as we could with 38 bushels of coals consumed in creating a chimney draft. Economy, cleanliness, and compactness of construction, are not, however, the sole advantages whicls the mechanical system of ventilatiou possesses over the physical. It is infallible, even under such vicissitudes of wivd and weather, as would essentially obstruct any chimney draught ventilation; because it discharges the air with a momentum quite eddy proof; and it may be increased, diminished or stopped altogether, in the twinkling of an eye, by the mere shinting of a band from one pulley to another. No state of atmosphere without, no humidity of air within, can resist its power. It will impel the air of a crowded room, loaded with the vesicular vapours of perspiration, with equal certainty as the driest and most expansive.'

After 20 clear and practical an exposition of the advantages of a current, mechanically created, nothing further need be said of natural currents arising from mere increase of temperature, cxcepting that by the adoption of the pump instead of the fan, a very considerable power is sured, and the operation performed much more effectively.

Asotleer peculiarity of Mr. Oldham's apparatus here merits attention. The large volumfe of air heated and passed off to the required apartments is, previously to its being received into the heating chest, filtered and puritied, by being deprived of all that noxious foating neatter with which the atmosphere, particularly that of London, is at all times clarged, and which, if heated and sent into the apartments with the air, would bnt increase that noxious character and render it still more injurious to the respiration of human beings. Not only indoed are these offensive impurities which are floating in the atmosphere effectually separated, but a power is given of charging it with uromatic or antiseptic matter, thus rendering it not only the medium of warmth and ventilation, but of purifying and healthful influences.

The peculiarities of Mr. Oldham's arrangements then, are, first, the adoption of mechanical means for the creation of a current of hot or cold air, and which may be augmented to any required extent or rolume, instead of that comparatively feeble current which results from the difference of temperature alone; secondly, the causing this artificial current of air to be heated by a peculiar arrangement which separates its volume spontaneoosly into their horizoutal films, thus making them paes in contact with a corresponding number of surfaces heated by team, imparting a large volume of heat to a large volume of air in a mum space and with great rapidity-and when so heated, of again uniting these films-to be passed up in a body in whatever direction or to whatever distance may be required; thirdly, the flitering the air before it is received into the heating apparatus, thus effectually excluding that offensive dust and black matter with which the atmospliere is charged.

I am, Sir, \&c.
C. W. WILLIAMS.
(We will, in our next Journal, if powible, give the drawings of Mr. Oldhan's apparatua-Eidiroz.]

M ACHINE FOR CLEANING AND REPAIRING FRONTS OF HOUSES, \&c., OR A FIRE ESCAPE.
Sir,-As the many melancholy instances of loss of life by fire have occasioned a very general interaat in the invention of Fire Escapes, I beg the favour of your notice of one which I think has all the desiderata mentioned by Captain Manby, in his address to the Society for the Protection of Life from Fire, namely, simplicity, portability, and efficiency. I may add to these, economy in construction as being not a whit less important, seeing that the cheaper such machines can be made the greater will be the claance of their being kept in every part of the metropolis; the expense of mine will not exceed seven pounds; and in quantities, I have no doubt they may be made for a third less.

As I do not pretead to be more
 than an amateur in mechanics, I fear I shall very ill explain myself. By referance to the annexed sketch it will be seen that my invention consists of a car traversing up and down the inner or under side of a ladder, which it uses as a sort of inclined railway, and is suspended to the top round of the ladder by means of a chain passing over a pulley of 2 snatch block. The car may be adjusted to any sized ladder, which is admitted within the double framework of the machine between four rollers (two at the top and two at the bottom), each of which have eccasionally a bearing on the ladder, but generally only the lowest inside and the upper outside rollers. The car weighs, including a single fall rope and block, about 901 lbs , and I propose that every fire eugine should carry one, which may be attached very ormamentally at the opposite end to the driving box.

By means of this car a fireman could be raised to the upper windows of a house without difficulty by three persons, and thus afford personal help to those in danger, who, nine times in ten, have not presence of mind to avail themselves of the aid thrown up from below.

As the car descends with the inclination of the ladder, it of course recedes from the front of the house ; it is, however, enabled to put forth in case of need an additional projection or stage of four feet, as shown in the sketch, which I believe would be the utmost required. Such a machine will also be found very useful for builders, plasterers, painters, and others, for the purposc of repairing, cleaning, colouring, or painting fronts of buildings. If generally adopted for such purposes, hardly a street would be without one, which would form an additional certainty of the fire-escape being ready in case of need.

I need not be reminded that my invention is nothing without a ladder; but as fires very rarcly happen without their being speedily procured in the neighbourhood, there cannot be any difficulty on that point.

Hoping to obtain, through your widely circulated publication, some practical opinion of the machine, I intrude this communication.

And remain, Sir, yours, \&c.,
Nine Elms, December 31, 1888.
A. F.

THE NATIONAL GALLERY.

Sin, - I had been for some time coveting a little lelsure to submit a few opinions to you on this ill-fated building, when the "Supplement to the Public Bnildings of London," by MI. Leeds, informed me that my intentions were anticipated by one much more competent to sppak upon the suhject. The points to which I more imniediately intended to advert, were for the most part those on which Mr. Leeds has so forcibly commented, viz., the absurdity of accusing the architect of having diminished the capacity of the building by the very measures which, on the contrary, increased it (see pages 62, 63) ; the ioconsiderate outery concerning its being "too low" see pages 67, 68) ; and the injustice of "censuring in the lump, without caring to hint at particular besuties in what upon the whole may be defective." It is not for me to presume that anything emanating from so hum.
he a correspondent an mysclf, will be allowed to add much weight to the critirisut of Mr. Leeds; nor should I venture on these reumeks, but that opinions-anil very decidrd ones-have been expresxed hy su many persons, whose right to pass rentence is not more than mine.

The drfects of the structureshould have berls criticised with a more candid reference to the imperative necessities which interfered with the full exprcise of the architert's taste; and the merits of the portico (parti.ularly as regards its plan) of the ontrance hall, and of the general proportiona of the several compartmenta of the farale, separately connidered, shonld have been alluwed. Granted, the centrul enpole is small, its tumbisur much 100 plain, and the two smaller cupolas or rurruts unneresary. The rortice of the portico, two, certainly larks that promisence and richness which the Curinthian coluinns (particularly as thry art fluted) raquire; but the pirtico otherwise, in recard to its low pitched ped ment (uerhapsit may he too low) and the just approximation of its columns, is worthy of infinitely more admiration than the St. Martinians have yet bestowel upon it: a d I "ordially a_ree with the writer, whose minute ana ysis wou'd rinder any further comments gratuitouy, that the "facu ir, if arreted gouse years eartior, would have been probably as mich extolled as it hus now bren decrird."

My chiff purpose in now adiressing you, is to sugg st such remedial mesures as I conccive to be-at a very little expense-practionb!e; and I therefore, with all defrrence (as lo an ungisextionable superior Whom, in spite of the world, I delight to bunour) smbmit to the architect the adjoined sketch, simply showing bow, hy raining attic stories over the central and extreare compartinents; by trarsposing the columins now in the centre of the wings, and by placing a pilaster attic order round the tambour of the dome, au altered effect would be produced, which the public might deem an inprovenent. The dome will still perhaps remain too small (the dotted line inclosing it being more accordant with my own notiuns of proportion), but it will certainly not be so objectionable on the score of plainness. If the dome conld be entirely reconstructed, it might possihly be made at once available, for increased accommodution and effect; but I am specalating only on what may bo gathered from the small engravings before me, and saw too little of the building when in London nome time back, to venture on anything more than mere suggestions.

Yuur obedient servant,
GEORGE WIGHTWICK.
Plymonth, Fub., 1839.
[We regret that it is out of onr power to comply with the regnest of our correspondent as to the insertion of a wond-cut, as it would furm a precedent which wonld not fail in other cases of suggestions to entail on us great inconvenience and expense. We think his proposed altrations would be calculated t: producc the effect lie describes, but they would bave a tendency to alter the character of the building from ils presunt classicality.]-Edit. Civ. Erg. §' Arch. Journal.

RAILWAY CURVES.

Sin,-Having been lately employed setting out railway curves, like your correspondent, "A Sub"' (in your January number), I cannot help offering a few observations on his plan; although I fear I am not one of the " more experienced readers" that he expected would take it up. He says, he thinks "it would be an improvement upon the system of running directly from a straight lipe to a curve of $1 \frac{1}{\frac{1}{9}, 2,}$ or $2 \frac{1}{2}$ miles radius, if a curve of 3,4 , or 5 miles radius, for a short distance, were made use of to connect them."
Now to me it appears that the true principle is this:-When you must change your line of direction in a railroad, do so with as equable a curvature as possible; for we knov that if the curvature is not cquable, some parts of it must be sharper than if the same radius were used all through. This, I think, would be a sufficient reason for rejecting his plan at the ontset.

But even if without injury we could have a gradual increase of curvature-Cui bonof Is it to accustom the engines to a curvilinear path? Surely when an engine is at a point just entering on a curve, it is pretty clear that its action on that curve will not be affected by the nature of the path it was previously describing, since its tendency just then is in the direction of the tangent, which is quite independent of that path.

Again, your correspondent says, "that projectilcs (where the resistance is equal) assume the parabolic curve," by which he proposes an approximation. Now the resistance being constant is not the cause of a projectile's describing a parabola, but because gravity, which acts upon it, is a constant force, producing a constantly occelerated velocity, so that the dlstances gone in a vertical direction are as the squares of those gone in a lorizontal (counting from the bighest point), which is not a very similar case to that of an engine moving
along a ruilwey. But even if we wera to draw an inferemee fratie the motion of a projectile, I would do it thas:-Wa know that the exrsature of its path is not constant, neither is its velocity-the latter being leapt when the former is grcatest; now, the velocity of an epgine showld be constant, if possible-therefore, lot the curvature of its path be so also.- I remain, Sir, your most obedient servant,

Fob. 19, 1899.
B. W. T.

A METHOD FOR STRIKING GOTHIC ARCHES.

Sir, - I beg leave to make public, through the medium of your Journal, the following method, which I discovered some years ago, and which I believe to be original, for Striking Gothic Arches, more particularly that which has been termed the Tudor arch :-

Having determined the height and breadth of the arch, draty a horizontal line on a whitened wall ; make the length of this line twiee the lieight of the arch, and from the centre of the line, let fall a perpendicular, to which give one Lalf the width of the arch. Let nails be driven at the two extremities of the horizontal line ; to one of these fix an end of a clain somewhat heavy, but composed of short links, and, passing the other end over the other nail, draw up the chain till the bottom of the curve correspond with the extremity of the perpendicular. and when in that position make the chain fast to the nail over which it was passed. This done, trace upon the wall, rith charcoal or ofherwise, one half of the curve formed by the freely suspended chain. This curve, placed in such a manner as that the lower or more curved pars may rest upon the impost, will form one half of the required Tudor arch, the other lalf being its counterpait-thus :-

Fig. 1.

Let A B (in fig 1) be the breadtl of the required arch, and C D is height. Set off on the wall (fig 2) $\mathrm{E} F=2 \mathrm{CD}$; from the ceatre G , of $E F$, let fall $G=H \frac{A B}{2}$. The chain being fastened at E, and then passed over F, and drawn up until the bottom of the curve correspand with H, make fast at F. Now the curve E H or F H placed so as that the more curved part fall on the impost; and the extreme E or F at the point \mathbf{C} (fig 1), will be half of the required Tndor arch. By this bisection and arrangement of a Catenary, gothic arches of various agrecable currature may be most easily and expeditiously traced.

I am, Sir, your nost obedient,
13th Feb. 1899.
J. R. JACKSON, Col.
[We itave taken the liberly of altering our correspondent's sirrangement of the figures, by making two answer the purpose of three, which we hope he will excuse, particularly as it does not interfere with the description of lisingenious and simple method of setting out the arch; a method which, we are sure, will be appreciated by the profession.Enitor.]

MONTROSE WET DOCK.

Report of James Walher, Esq., Citil Einginecr.

Tue Site.-Having risited Montrose, in company with Mr. Lenlte, eadr in December last, I surveyerl the sites and plans of Docks proposed br dhit engineer, viz.,-the Horologe Hill site, and the other between Meridian Mace and the patent Slip, or farther down the river than the Horologe Hill $;$ and I have no hesitation in preferring the lower situation. It places the entrabere in a wider and better part of the river, where the ealdy-tide will rander the entering of the ships very easy; it interferes less with the presont whartage; and (Which I think very important) gives the opportanity of extradiug the Docke es occasion may require upon the links-a property which is uncorercl and belongs to the town. I consider this site also, whether as respects of proach from sca, entrance to the Dock, or the Dork itaelf, pecullariy ghen
First, as to the apphoach prom Sea-Maving had referengto of apparently very accurate survey by Mr. Buchauan of Idinbuggh, anjitian
bren Guroured by Captain Beanfort with the Alminalty aurvey of the harbour, 4 copp of which is now before me, I find the depth between the Annal Sand and tho Leadk, at low water of spring-tides, fro seventeen to eighteen feet, shich was confinned by the sounding I took: outside of this to deep water, there is nothing less than Gifteen feet; inwaris, the depth decreases gradually to less than balf the ahove, * until opposite the Low Light, when it again inveract to $13,12,14,16,10$, and 11 feet, which last is in the Stell, opposite w, and not far from the entrance to the proposed lower Dock. Four feet may be added to all the above depths for the luw water of neap tides; thirteen foct for the high water of neap-tides; and cighteen feet for the high water of spring-tides. The length from the entrauce to the harbour to that proposed tor the Dock, is upwanls of a mile, nearly straight, rith rocky ground on the eonth benk, and sand on the north; but no rocks in the channel of the river: the bearing boing N.W. by W. 1 W., and the width in the Stell, oppoofte to the proposed entrance to the Dock, about 300 yards. In this place, the direotion of the flood-lide is thrown over towards the south side, so chat for about a with of 100 yards from the shore, there is scarcely any current. The passage from ses, therefore, np to the Dock entrance, may be pronounced decidedly good.
Secondly, as to the Fntranct,-Mr. Iseslie has pointed the entrance dumn the rirer, which, hal there beon any current to interfere with ships en. ering, wonhl hare been objectionable; but in the present case, it is, for the retons abore statal, a matter of comparative fudifference. This entrance is propoded to be fing. five feet in width, and fiftoen fect six inches in depth, st the high-water of neap-thdes, which I think sufficient, and was so considered by the trastees when the subject was mentioned at the meeting. Mr. Leslie prupares one pair of gates at firnt, and shows by dotted lines npon the prinel plan, how thin extension may be made at any future period into the tis.r, mo as to form the entrance into a lock with two pair of gates. This is the part of the design, the idea of which, for the reason I shall presently male, ought, I think, to be abandoued. The Dock is to be of the same depth as the entrance; the form a rectangular parallelogram, foar hundred and firf feet long, and three hundred feet broad,-giving an area of three acres, Wich, for a Dock, I cousider decidedly too small; and that the plan wonld therefure be objectionable, wero it not for the great facility of extension upon tielinks, my opinion being that, in a very few years, the three acre Dock will not be too large for a tide basin, with one pair of gates into the river, to be opened before high-water; and that then the lock with the double gates should be at the apper end of the basin, to lock out of it, up to the inner Dock or Docks, properly so called, which may then be of a size thought expedient; for what would, in respect of size, be considered extravagant if recommended now, will not probably appear so when the first Dock, which will ancrwards le the basin, shall be found insufficient. The sletch which accompanjes this rport will better explain my ineaning. I would not recommend more being dope as firat towards the alterior plan than simply returning the wing walls to form the fnture entrance, and making the front of the Dock or basin wall betrenn these returns of tumber piles or baulks to form a dam for future works within, and to be removed when these works ahall be completed. With the above modification, I entirely approre of Mr. Lealie's plan, the execution of rhich does not appear to me to prisent any peculiar difficulty which Mr. Lealie has not provided for.
Waten.-What was said to me of the apprehension that there would be great dificully in keeping the works clear of water, led me to inquire parti. cularly respecting the wells that had been lug in the neighbourhood, and the reture of the strata. On these points, I had information also from Charles Gordon, en experienced well-digger, as well as from Mr. Leslie, and uther gotiemen. There will be water undoubtedly, as the ground is sand and gnvel, with stikh below : this will have to be pamped out, and the springs and wells tound will be drained; but, after this is done, the water will diminish, and the quick-aspd lose its quickness. I feel assured, from experience in amilar cases, that a moderate-sized pumping engine will overcome the diff. culty of water. The docks in the Thames are made in sand and gravel, ander a elay surface: the Hull docks are all in silth. Mr. Jeealie having forntibed me with a oopy of his working-plans, I hare examined the same, and fad that great pains have been taken with them; they are rery particular and explanatorg. I here also axamined the estimate in detail, by taling out the quanticies from the plasa, and find that the same care has been extended w this. The sufficiency of the prices in some cases, particularly the makinry, may be tested by those who have local infurmation. From the proximitr to quarries, I think them sufficient; but that the prices of the dams and the excaradon are close, considering the contlogencics to which these works are liable. On the whole, I would recommend an addition of $\mathbf{3 , 0 0 0 1}$, to the amount of 35,1216 . upon the worksdetailed in the eatimatu. On eximining the detall, I do not find the following particulars to be included, viz :-The Doek-gutes, mooring and warping buoys in the river, moorings or bollards in Dock, pumping (with the ateam-engine) while the works are in progrese. These will amoont to 4,0001 ., making an addition of $7,000 /$. to the estimate of $35,1214+$

[^5]Tre Harbock.-The Farbour is intimately connected with the Dools; and, as my attention was called, and reveral questions asked, at your meeting, on the rarious points relatire to the former, it cunnot be considered irrelevant If I mpeat what I then stated. I have alrealy referred to the principal features of the entrance and river up to the Stell. The harbonr is considered by yon, and probably with reason, as the best between the Forth and Murray Firth : it is therefore very important in a public view, although certainly not a perfect harbour of refuge ; for, with north-east winds, the Leads atone, and other rocks, are upon the lee, close to the entrance, and nearly dry at low water; and, with sonth-east gales, ships are stated to lie nueasy in the Stell ; yet, with westerly, which are the prevailing winds, the harbour affords good refuge. The number of wind bound vessely that entered the harbour last year was airty-four; and it was stated to me that trenty to thirty were in the harbour at the same time. Considering the harbour thus, even in a pablic light, a good beacon should be placed at the entrance, upon the dangerous rock to which I have before alluded; and, judging from my ex. perience in this quarter, I think it more than probable that, if a proper repre. mentation were made to the Commissioners of Northern Ligltts, they would either undertake the work, or assist in it.

Tire Basin.-As the harbour of Montrose may be considered the paseage through which the sca-mater finds its way into the Basin* When the tide is at Hond, and out of it when the tide is at rbb, and as ita depth and midth are proportioned to the quantity of water that passes, so every thing that diminishes that quantity, or lessens the basin, has the direct effect of lessening the width and depth of the harbour. Therefore, the basin, to the extent that is covered by a spring tide, should bo watched with jcalousy, and evory encroachment prevented. In the Admiralty sorvey, it is includedes part of the barbour; it is part of the plan now before me, and every encroachment upon it may, by a aperial Act of Parliament, be the subject of prosecnuion; but your intereatn are more immediately cencerned, and you have a better opportunity of guarding this, which may be considered the lungs of your harbour.

Hanhoul Trugt. - A meeting of the trustees of the harbour took place in the Town-Hall, on Monday, 28th Jannary last, Provost Crawford in the chair, when the clerk luid on the tahle the abovo report. The meeting were lighly gratified with the tenor of the report, and concurred in a pnanimous opinion, "that the authority of so eminent an engineer as Mr. Walker, in corroboration of Mr. Ieslie's vews, completely removes all objections to the plan, in regard to site, foundations, eligibility, or otherwise,_-and also justifies the trustees in concluding that the works can be executed for a sum below the amount warranted by the rates leviable under the Act, which afford the most adequate security to lenders." The provost then stated that seraral gentlemen interested in the improvement had resolved to adrance 15,000 . to the trastees, or to give their gaarautec to that amount; and that he was appointed to announce this to the meeting. The trustees expreased their bearty approbation of the proposed loan or guarantee, and agreed to accept of the same, and to record their thanks to the gentlemen who had come so liberally forward to promote the undertaking. The meeting afterwards apprinted com mittees for arranging and disposing of sundry matters preliminary to the commencement of the work, which will be contracted for without loss of time. We understand that the outer wall of the Dock, which is 600 feet in length, and will consequently be of some temporary service to the shipping, is to be first completed.-Mfontroce Revieu.

HISTORY OF PAPERHANGINGS.

Eriracts from a paper by Mr. CRACE, read before the Royal Institute of British Architects.
Paperhangings are of comparatirely modern origin, and although they are of such consequence both from the present extent of the manufacture, and as a vehicle for the diffusion of taste, I believe that there has pever yet been written any detailed account of its rise and progress in this, or as far as I can discover, in any other comntry. I imagine them to have been originally manufactured as a cheap imitation of the rich stuffs and tapestries used by our anceators to cover the stone walls and mainscoting of their apartments.

The English and Flemish were the first in Europe who excelled in tapestry, and are supposed to have brought the art from the Crusades; the workmen in France, from this cause, were called Sarozins.

The well known Bayeux tapeatry, representing the invasion of this country by William the Conqueror, is mupposed to be the oldest existing specimen. Turner, the historian, says, that our Anglo-Saxon ancestors had wall hangings, somo silken, some with figures of golden birds in needlework, others woven, and some plain; and in various illuminated manuscripts dating from the 14th to the 16 th centuries, I have found this material frequently introduced as a covering for the walls, and particularly as a canopy for thrones and chains of state.
It is in the reign of Henry the Eighth that I have been first able to trace the distinct manufacture of the wove tapestry ; and Dugdale, in his Warwickshire, afirms that it was now first intraduced into England by William Sheldon, Esq., who brought orer workmen from Flanders about 1540, and employed them in draving hangings, of which I beliere specimens still remain at Weston. Notwithstanding the authority of Dugdale, I think the art was merely then revived; for Lord Arundel, by his will in 1398, tempore Richard the Second, bequeeths to his wife Philippa the hangings of his hall recently made in Londun; and even ten years previously Richard
the Second granted a licence to Coamo Gentilis of six pieces of tapestry, of a green ground, powdered with roses, which the king sent as a preaent to the Pope. However, the art seems in the reign of Henry the Eighth to have been bronght to a perfection it had not before attained, and the great Holbein is supposed to have furnished various desigas for it.

About this time the uso of tapestrics was not comined to the nobility, but it was not uncommon to see abundance of arras, rich hangings of tapes. try, silver vessels, \&c. in the houses of persons of much neaner quality.

In the reign of Jamen the First, a very extennive manufactory of hose tapestry was established at Morlake, in Surrey, by Sir Francis Crane, which was munificently patronised by that king and his son Charieg the Finst, who granted an anmity of $£ 2000$ towards the maintenance of the undertaking. Francis Cleyn, a painter of considerable reputation in the service of the king of Denmark, recomanended by Sir Henry Wutton, was employed in this mannfactory, and guve designa in both history and grotesque. Indeed, the beantiful hangings which then adorned the British palacers were much admired by foreigners of distinction, who visited this country, and the manufacture was held in high repute abroad. The civil wars, however, ruined this large manufactory to which I have jurt alluded, and it dues not appear to have been again carried on to any extent.

A Monsienr l'ariport, in 1720 , made a spirited attempt to compete with the celebrated Gobelins at Paris, and founded a considprable mannfactory at Fulham, in which le was nobly enconraged by the then Duke of Cumherland, who assisted him with n gift of $£ 6000$, bnt this soun failed; and in 1759 a set of designs for tapeatry, painted by Zusharelli, and executed by l'aul Saunders for the Earl of Egremont, for a house he built in Piccadilly, were the last made in this country,

Connceted with tapestry are the silk and satin damasks and the rich figured velvets; and another material much employed in this country for hangings and other purposes was the stamped and painted gilt leather, on which was represented sometimes in relief divers kinds of grotesques, relieved with gold and silver, vermilion and other colours. Many suppose it to have bcen invented by the Spauiurds, and by them communicated to the Flemings, who excelled in it, and introduced here about the time of Henry the Righth.

The writens in the French Encyclopedia confess, cven in 1762, that though the stamped leather of France equalled that from Flanders and Holland, yet that that made in Veuice and England was superior in both beauty of design and durability. This manufacture so much resembles that of paperluangings, that I conclude it must have given the idea for the invention of, at any rate, one branch of the subject now under consideration.

Paper hangings may be divided into three separate branches; the flock, the metal, and the coloured; and each of these seems to have been invented at a different time, as an imitation of a distinct material-the flock to imitate the tapestries and figured velvets, the metal in imitation of the gilt leather, and the coloured as a cheap substitute for painted decorations. Protessor Beckman says, that the former of theer, the flock, was first manufactured in England, and invented by Jerome Lanker, who carried on the art in London, in the reign of Cherles the First, and obtained a patent for his discovery, dated May lst, 1634 . Various French and German nuthors give us the credit of ihis invontion, yet it is dioputed by a French. man, M. Tierce, who in the Journal Ficonomique says, that a man named Frangoia carricd on this art at Houen so early as the year 1680 and 1630 , and aflirms that the wooden blocks employed are still prewervod with the before-mentioned dates inscribed on them. Franguis was succeeded by his son, who followed the business with success for fifty years, and died at Koucn in 1748 (?) M. Savary, in his Dictioanaire de Commerce, thus deacribes the annner in which the French mannfactured their tonture de laine, or flock hangings:-The artist having prepared his design, drew on the cloth, with a fat oil or varnish, the subject iutended to be represented; and then the flocker, from a tray contnining the different tints of focks, arranged in divisions, took the colours he reqnired, and sprinkled them in a peculiar manner with his finger and thumb, so that the various shadow ands colours were properly blended, and an imitation of the wove tapestry produced.

Of the second branch, the metal papers, I do not find much mentioned by the older writers; and of the coloured papers, I almont deapaired of finding any early account, till, in an old French dictionany of commerce, printed in 1723, under the head of Dominoterie, I discovered an account which seems to give the origin of the present system of paperstaining. Dominoterie is an ancient French name for marble paper, auch as used by bookbinders; and the early French paperstainers were assuciated with the makers of that article, as a close called Dominotiens. The manufacture is thus described:-

The design laving been drawn in outline, on paper pauled together of the size required, tlu paper was then divided into parts of a suitable size, and given to the carver or wood engraver, to cut the deaigas on blocks of pear tree, much in the same manner as at present. The outline thus cut was printed in ink with a press, resembling that then usod by the letterprese printens, un separite shucts of paper. When dry, thoy were then painted and relieved with different colours in distemper, and afterwards joined together, so as to form the required design. The author then adds, that grotesques and panels in which are interningled flowers, fruits, animala, and sunall figures, have up to this time succeeded bettor than imila. tions of landucapes, or other tapeatry hangings, which are sometimes attempted, and refers to article 61 of the French laws in 1686, which confirms the statutes published in 1586,1618 , and 1649 , in which rules are given as to what kind of presses, \&c., are to be used by the dominotiers, and prohibiting thom under heavy panalies from printing with types.

Recurring to the subject as connected with this conntry; in the yfar 1754, a Mr. Jackson, a manufacturer of paperhangings at Batteraea, pus. lished a work on the inventign of printing in Chimro Oacuro, and the application of it to the making of paperhanginge, illustrated with prints is proper coluurs. This book is a sort of advertisement of the kinds of papers made, and the mode of manufacture omployed by him. He adupted a style of paper hangings executed with blocks in Chiaro Oscuro, in imitatiun of tho most celebrated classic subjects.

To use his vordn, "The person who camot purchase the stataen themselves, may have these prints in their places, aud thus effectually show L :a taste. 'lis the choice and not the price which discovers the true taste of the possessor ; and the the Apollo Belvedere, the Medicean Vernus, or the Dying Gladiator, may be dispomsed of in niches, or furronnded rith mosaic work in imitation of frames, or with festoons and gariands of Howers, with great tnste and elegance; or, if preferred, landscepes after the most famus masters, may be introdured into the paper. That it need nut be mentioned to any prown of taste how much thin wry of fnimhing whb rolumr, softoning intu one another with harmony and repose, exceeds erery uther kind of paperhanging hitherto known, though it has none of the gar. glaring culuurs in patches of red, grech, yellow, and blue, \&c. which are: pass fur flowers; and uther ubjects in the common papers.

By the accome of this gentleman we find that paperhanginges wrere then in common use, and had reached a certain degree of perfection, for that etes arabesques were executed; and 1 therefore conceive that the art diser vered by Lanyer had been continued from his time to the present ; particularly as in the year 1712 , the l0th of Queen Anne, a duty of 1 d. 1 as square yard is imposed on this manufacture. In the reign of that quern the Chinese paperhangings were very much employed, and have continoed in fushion to the present day. These hangings, though parta of them may be executed by blocke or stencilis, are almost whully painted by hand. Cotempan rury with Jackson, 1 have leamed that a Mr. Taylor, the grandfather of one of our present most eminent manufacturers, carried on this basinese to a considerable extont, and acrumulated a large fortme. He was succeeded by his son, who, I am informed, visited France, and was enabled to gre the inanufucturers there eonsiderable information. He said, on his retarm. that he found the French paperhangings rery inferior to our own boch as to execution and beanty of design. In thase days we had an exterase export trade in this material to America and other foreign parta, but we are now driven out of this market by the French. The paperbangings a: that date, about 1770, were munnfactured nearly in the same manner as at present ; I have indeed seen a flock paper of a large rich damask pactern. more than 100 years uld, which resembles in every way the modera mate. rial; it is singular that this art of flocking was disused and almost lont dup. ing a period of twenty years, and revived only about furty yearn ago: a mode of decorating papers was also formerly employed, which is now merkt adopted. I have seen papers omamented with a substance commonly called froat, a specics of tale.
In the year 1786 there was established at Chelsea a manufactory for paperhangings of a superior description, conducted by Messrs. George and Frederick Echardts, gentlemen of cousiderable taste and epirit. The mande of manufacture was diffcrent to that in general use; for, bexides the manal printing blocks, copper plates, on which were engraved designs of grest finish and beauty, were likewise omployed, and they not only printed un paper but also on silk and linen; and by an underground of silver or geld. they obtained very beautiful effects of colour.

Only part of the design was given by printing; it was finished by artists constantly retained by the manufacturers, men of considerable tale-ut. who again were assisted in the inferior parts by young girls, of whom mure than fifty were empluyed; and had this undertaking been supported by the government, it would, I do think, have been more available as a schurl bor our rising artists, and of infinitely greater service than our present achool of design, for it would have been a woorking school, and no other, I am coovinced, will be of any use in forming a talented race of decorative artints in this country. There was also about this time another establishment similar to the former, conducted by Mr. Sheringham, in Marlborongh-street.
From this time the French began to excel in this superior branch of the art, which with us had fallen on such barren ground. Their manufacturen were encouraged in every way by their government and the Emperor Niapr. leon, to attempt that perfection which they have now so successfuly attained.

Having now slightly sketched the history of this art up to the present time, I propose on some future occasion, if agreeable to the society, tu explain to the best of my power the different processes employed in the manufacture.
[The continuation of this interesting paper, which was read at a meme. quent meeting, we shall publish in the next Journal.]

DESCRIPTION OF TIIE PATENT CEMENT OF MR. R. MARTEN, OF DERBY,

Flead al the Royal Instiule of British Architects, Febrwary 18, 1889.
The composition of my cement consists of a solution of pearlash and sulphuric acid, nuxed to the exact point of neutralization with powder of gypsurn, and the whole calcined together.

In calcination every particle of crystallized water and matire arid is driven from the gypsum, and their place supplied with the alkati and arid made sulphate of polash as abore dercribed.

This change of solidifying substances creates propertion atogether pew
and opposite in effect to all other water-mixed cements. There is neither heat nor expansion in solidification, nor subsequent swelling from absorption "t the atmosphere or by immersion in water. It therefore rosults that the rement neither cracks nor creases, when used either as an in or out-door tucco. The mode of using the cement trery simple-similar to common huse plaster, but the purposes to which it is applicable are extremely saried. As it can be made of a varicty of colours in manufacture, or olvurs introdaced, it will supersede the necessity of paint or paper, where their use is objectiouable; it is therefore particularly upplicable for attics und basements.

For imitations of marble it must becume the substitute of plaster of Paris, it being much more dense, and through its nonabsorptive quality xithstanding all atmospheres, as has been already proved. As it dues not expand in solidification, as above stated, sulid figures may be cast with it if pressed into moulds. It combines readily with limes slaked or quick, and mixed with the latter it prevents its slaking, and with these, or by ifself and sand, it forms an excessively hard and durablestucco. In its rrepared state for use it does not receive the slightest injury from exposure to 2 damp atmusphere for any lengul of period, and will therefore carry without depreciation to any part of the globe-it is effective for every parpuse for which the limes of this kingdom are used in ita transatlantic poosessions; and from being double their weight, will be nearly as ceonomical in use, independent of its peculiar properties excluding all onoisture and preventing the intrusion aud ravages of insect and other ermin: considerations not only important to the resident, but to the curemment as conservators of the public stores.

For the joining together of stones, bricks, \&c., it has not its equal, and cun be used with the greatest advantage, where lime proves but an ussufficient bond, and Roman cement from its expansive properties is inproper; say for light-houses and other very elevated and much-cxposed - Lructures.

Applied as a stucco over common lime plaster a very smouth and hard urfuce is produced, and is so little absurbent that in painting two coats ure sutticient. This application was made by Mr. Chadwick above three years since, on two halls at Adelaide-place, London Bridge, and who will ierify the fact here stated.
In the summer of 1837 it was applied in castings and as a stucco, at $i \because$, Cheapside (opposite the Atlas Insurance Office); the stucco has been unce painted over, but not so the two eoats of anms, which, as well as the usco, lave withstowd the two last winters without the slightest injury.

Any further infurmation respecting propertics, \&c., \&c., may be obtained of Mr. Bernasconi, Alfred-place, Bedford-square, and who will also show -pecimens of its various applications.

PHOTOGENY;

OR, THE ART OF fIXING THE IMAGES OF VISUAL OBJECTS.
The means of obtaining a self-acting, permanent representation of visual objects, has long attracted the attention of philosophers, and in 180% was the subject of experiments by Wedgewood and Sir Humphry Dasy. Their efforts, further than recognising the sensitility of nitrate of silver, were, however, ineffective, as were those of a committee of the Acadeniy of Sciences, composed of Laplace, Malus, and Arago, who were engaged in a similar manner investigation for ascertaining the power of moonlight. Chlorure of silver was also known to be easily acted upon ly the rays of light ; but it was not until the close of last year that any announcement was made of the progrens of this art. Mr. Fox Talbot seems to have been first in the field; but M. Daguerre, the inventor of the diorama, made the firt disclosure. As the two processes seem to be distinct in their resulls, we shall give a description of each separately, as derived from the "Compte Rendu" of the Academy of Sciences, and from the letters of Mr. Talbot. To commence with that of M. Daguerre, it is effected by placing a copper plate in a camera obscura, which copper phate being covered with a chemical preparation susceptible of the effects of light, produces a shaded drawing on the plate. These designa, when funished, may be exposed to the glare of the sun without changing, and will bear the scrutiay of a microscope. On reverting to the different powers of colours, it can be readily conceived that the several tints and shades will produce an effect corresponding to their intensity; the three primitive colours, as thetermined by Field, standing in the relation of three, five, and tight ; the time required for the process varies with the quantity of light, and, consequently, with the scason and time of day; in summer, at noon, eight or ten minutes is sufficient. This apparatus is a present incompetent to the representation of moving objects, and is imperfect cveu with regard to trees. A hackney-coach stopped luring the drawing of one of the scencs, and one of the horses, turning his head during the process, is represented without one. a shoe-black, also engaged in his vocation, appears without arms; The Academy of Sciences expressed a unanimous opinion of the utility and importance of this invention, and application has been mitule to the French Government to remunerate the inventor. The amonncemenk of this discovery led to the declaration of Mr. Fox

Talbot, who has perfected another variety of the same process. He uses a prepared paper, and produces a representation in coloured tints, which, after the drawing is finished, is not affected by sunshine. Both processes possess peculiar advantages, and have a superiority over any chemical medium heretofore known. Chlorure of silver being white, is blackened by the light, and the white parts of the image become black, whilst the black parts remain white. Nitrate and muriate of silver obtain an impression in half a second, but \uparrow one of these preparations produce a permanent effect. The importance of the new discoveries will open a new world to science, and even ly the results already produced, the bounds of human investigation have been enlarged. The preparation of M. Daguerre is so sensible that it has obtained an image of the moon in twenty minutes, although the light of that body is 300,000 times less than that of the sun, and it prodttees no effect on any other chemical substance yet known. M. Daguerre is also said to have obtained an impression from the star Sirius, thus proving the fixed stars to be suns, and that light is homogeneous throughout the universe.

We copy the following very interesting account of the process of Mr. Talbot from our respectable contemporary, the "Athenæum"

1. In the spring of 1834 I began to put in practice a method which I had devised some time previously, for employing to purposes of utility the very curious property which has been long known to chemists to be possessed by the nitrate of silver; namely, its discolouration when exposed to the violet ray of light. This property appeared to me to be, perhaps, capable of useful application in the following manner:-
I proposed to spread on a sheet of paper a sufficient quantity of the nitrate of silver, and then to set the paper in the sunshine, having first placed before it some object casting a well-defined shadow. The light, acting on the rest of the paper, would naturally blacken it, while the parts in slaadow would retain their whiteness. This I expected that a kind of inage or picture would be produced, resembling to a certain degree the object from which it was derived. I expected, however, also, that it would be necessary to preserve such images in a portfolio, and to view them only by candle-light; because, if by day-light, the same natural process which formed the images would destroy them, by blackening the reat of the paper.

Such was my lending idea before it was enlarged and corrected by exptrience. It was not until some time after, and when I was in poasession of several novel and curious results, that I thought of inquiring whether this process had been ever proposed or attempted before? I found tlat in fact it had; but apparently not followed up to any extent, or with much perse. verance. The few notices that I have been able to meet with are vague and unsatisfactory, merely stating that such a method exlats of obtaining the outline of an object, but going into no details respecting the best and most advantageous manner of proceeding.

The only definite account of the matter whicb I have been able to meet with, is contained in the first volume of the "Jourual of the Royal Institution," page 170, from which it appears that the idea was originally started by Mr. Wedgwood, and a numerous serics of experiments inade both by him and Sir Humphry Davy, which, however, ended in failure. 1 will take the liberty of quoting a few passages from this memoir.
"The copy of a painting, immediately after being taken, must be kept in an obscure place. It may, indeed, be examined in the shade, but in this case the exposure should be only for a few minuter. No attempts that bave been made to prepant the uncoloured parts frem being acted upos by light have as yet been successful. They have been copred with a thin coating of fine varnish; but this has not destroyed their susceptlbllity of becoming coloured. When the solar rays are passed through a print, and thrown upon prepared paper, the unshaded parts are slowly copied; but the lights transmilled by the shaded parts are seldom so definite as to form a distinct resemblance of them by producing different intensitles of colour.
"The images formed by means of a camera obscura have been found too faint to produce in any moderate time an effect upon the nitrate of aflver. To copy these images wat the first object of Mr. Wedgwood, bat all his numerous experiments proved unsuccesaful."

These are the observations of Bir Humphry Davy. Ilave been informed by a ecientific friend that this unfavourable result of Mr. Wedgwoodts and Sir Humphry Davy's experiments was the chief cause which diseouraged him from following up with perseverance the idea which he had also entertained of fixing the beautiful images of the comera obscura. And, no doabt, when $s 0$ distinguisbed an experimenter as Sir Humphry Davy nnnounced "that all experiments had proved unauccesoful," nuch a statement was enleulated materially to discourage further inquiry. The circumstance, also, announced by Davy, that the paper on which these images were depicted was liable to become entirely dark, and that nothing hitherto tried would prevent it, would perhaps have induced me to consider the attempt as hopeless, H I bed nok (fortunately), before I rend it, nirendy discovered a method of opercoming this difficulty, and of fixing the image in such a manner that it is no nore liable to injury or destruction.

In the course of my experiments directed to that ead, I bave been astonished at the variety of effects which I have found prodaced by a very linnited number of different processes when combized in various ways; and also at the length of time which sometimes elapees before the full eflect of these manifests itself with certainty. Por I bave foond that images formed in this manner, which bave appeared in good praseryation at the and of
twelve months from their formation, have, nevertheless, comewhat altered during the second year. This circumstance, added to the fact that the first attempts which I mado became indistinct in process of time (the paper growing wholly dark), induced me to watch the progress of the change during some considerable time, as I thought that perhaps all theae images would whimately be found to fade away. I found, however, to my safisfuction, that thin was not the case; and, having now kept a number of these drawings during nenrly five yenrs without their suffering nny deterioration, I think royself authorised to draw conclusions from my experiments with more certainty.
2. Effect and Appearance of thase Images.-The images obtained in this manner are themselves white, but the ground upon which they display themselves is variously and pleasingly coloured.

Such is the variety of which the process is capable, that by merely varying the proportions, and some triting details of manipulation, any of the following colours are readily attainable:-\$ky-blue, ytllow, rome-colour, brown of various shades, and black. Green alone is absent from the list, with the exception of a dark shade of it, approaching to black. The bluecoloured variety has a very pleasing effect, somewhat like that produced by the Wedgwood-ware, which has white figures on a blue ground. This variety also retains its colours perfectly if preserved in a portfolio, and not being subject to any sponianeous change requires no preserving process. These different shades of colour are, of course, so many different chemical compounds, which chemists have not hitherto distinctly noticed.
3. Nirst Applicalions of his Process.-The first kind of objects which I attempted to copy by this process were flowers and leaves, either fresh, or selected from my herbariun. These it renders with the utmost truth and fidelity, exhibiting even the venation of the leares, the minute hairs that clothe the phant, \&ec. \&c.

It is so natural to associate the idea of labour with great complexity and elaborate detail of execution, that one is more struck at seeing the thounnd florets of an Agrostis depicted with all its capillary branchlets (and so accurately that none of all this multitude shall want its litte bivalve calyx, requiring to be examined through a lens), than one is by the picture of the large and simple leaf of an oak or a chesput. But, in truth, the difficulty is in both cases the same. The one of these takes no more time to execute than the other; for the object which would take the most skilful artist days or weeks of libbour to trace or to copy, is effected by the boundless powers of natural chemistry in the space of a few seconds.

To give an idea of the degree of accuracy with which some objects can be imitated by this process, I need only mention one instance. Upon one occasion, baving made an image of a piece of lace of an elaborate pattern, I showed it to some persons at the distance of a few feet, with the inquiry whether it was a good representation? when the reply was, "That they were not so easily to be deceived, for that it was evidently no picture, but the piece of lace itself."

At the very commencement of my experiments upon this subject, when I kaw how besutiful were the images which were thus produced by the action of light, I regretted the more that they were deatined to have such a biief existence, and I rewolved to attempt to point out, if possible, some method of preventing this, or retarding it as much as possible. The following considerations led me to conceive the possibility of discovering a preservative process:-

The nitrate of silver, which has become black by the action of light, is no longer the same chemical substance that it was before. Consequently, if a picture produced by solar light is subjected afterwards to any chemical process, the white and dark partis of it will be differenily ncted upon; and there is no evidence that, after this actlon has taken place, these white and dark parts will any longer be suldect to a spontaneaus change; or, it they nre so, still it does bot follow that that change will now tend to assimilate them to each other. In cases of their remaining disuimilar the pic ure will remain visible, and therefore our object will be accomplished.

If it should be asserted that exposure to sunshine would necessarily reduce the whole to one uniform tint, and destroy the picture, the onns probaxdi evidently lies on those who make the assertion. If we designate by the letter A the exposure to the solar light, and by B some indeterminate chemical process, my argument was this:-Since it cannot be shown, $\dot{\text { a }}$ priori, that the fral reanlt of the series of processes ABA will be the same with that denoted by B A, it will be, therefore, worth while to put the mutter to the teat of experiment, viz., by varying the process B until the right one be discovered, or until so many trials have been made as to preclude all reasonable hope of its existence.

My first trials were unsuccessful, as, iadeed, I expected; but after some time I discovered a method which answers perfectly, and shortly afterwards another. On one of these more especinlly I have made numerous cxperiments; the other I have comparatively little used, because it appears to require more nicety in the management. It is, however, equal, if not superior, to the first in brilliancy of effect.

This chenical cbange, which I call the preserting process, is far more effectual than could lave been anticipated. The paper, whicb had previously been so sensitive to light, becomes completely insensible to it, insomuch that I am able to show the society specimens which have been exposed for an hour to the full summer sun, and from which exposure the image bas suffered nothing, but retains its perfect whiteness.
4. On the Art of fixing a Shadow. -Tbe phenomenon which I have now briefly mentioned appeara to me to paitake of the character of the marcellous, almon as much as any fact which physical invenigation has get brougta to
our knowledge. The most transitory of thinga-s shadow, the most provorbial emblem of all that is feeting and momentary-may be fettered by the spells of our "natural magic," and may be fired for ever in the positios which it seemed only destined for a single instant to occupy.
This renarkable phenomenon, whatever whlue it may tum out in it application to the arts, will, at least, be accepted as a new proof of the valas of the inductive methods of modern ecience, whlch by noticing the accurrence of unusual circumutances (which accident, perhaps, first manifens in some small degree), and by following them up with experiments, and varjing the conditions of these until the true law of nature which they expres is apprehended, conducts us at length to consequences altogether unerpected. remote from usual experience, and contrary to almost unirersal bellef. Surh is the fact, that we may receive on paper the fleeting shadow, arrest it then. and in the space of a single minute fix it there so firmly an to be no mare capable of change, even if thrown brek into the sunbean from which it derived its origin.
5. Before going further I may, however, add, that it is pot always nees sary to use a preserving process. This I did not discover untit after I had acquired considerable practice in this art, having supposed at first that alt these pictures would ultimately become indistinct if not preserved in some way from the change. But experience has shown to me that there are it least two or three different ways in which the process may be conducted, 0 that the images shall possess a character of durability, provided they are kept from the action of direct sunshine. These ways have presented themsers to notice rather accidentally than otherwise; in some iustances without any particular memoranda luaving been made at the time; so that I am not get propared to sta.e accurately on what particular thing this sort of scmi-dumbility depends, or what course is best to be followed in order to obtainit. But as I have found that certain of the images which have been subjerted to no preserving process remain quite white and perfect after the lapse of a rest or two, and, indeed, show no symptom whatever of clianging, white chbers differently prepared (and left unpreserved) have grown guite darl in one tenth of ilat time, I think this singularity requires to be pointed nut. Whetbe it will be of much value I do not know. Perhaps it will be thought bettr: to incur at first the small additional trouble of employing the preserving pro. cess, especially as the drawings thus prepared will stand the sunshinp; mbit the unpreserved ones, however well they last in a portfolio or in comms daylight, sbould not be risked in a very strong light, as they would be fiatie to change thereby even years anter their original formation. This ryy quality, however, admits of useful application. For this semi-durabte prpe. which retains its whiteness for years in the shade, and yet suffers a changr whenever exposed to the solar light, is evidently well suited to the use of 1 naturalist travelling in a distant country; who may wish to keep some memorial of the plants he finds, without baving the trouble of drying them und carrying them about with him. He wonld only have to take a sheet of this paper, throw the image upon it, and replace it in his portfolio. The defet of this particular paper ip, that in general the ground is not even; but this is of no consequence where utility alone, and not beanty of effect, s consulted.
6. Porlraits.-Another purpose for which I think my metbod will be found very convenient, is the making of outline portraits, or silhoasties. These are now often traced by the hand from shadows projected by a cande. But the hand is liable to err from the true outline, and a very small devision causes a notable dimination in the resemblance. I believe this manual pio: cess cannot be compared with the truth and fidelity with which the portnit is given by means of solar light.
7. Paintinge on Glass.-The shadow-pictures which are formed by ex. posing paintings on glass to solar light are very pleasing. The ghas itatif, around the painting, sloould be blackened; such, for instance, as are ofrem employed for the magic lantern. The paintings on the glass should bsse do bright yellows or reds, for these stop the violet rays of light, which are the only effective ones. The pictarel thus formed resemble the productions of the arlist's peacil more, perhaps, than any of the others. Persons to whom lave shown them have generally mistaken them for such, at the came ture observing that the style was new to them, and must be one rather difficulto acquire. It is in these pictures only that, as yet, I have observed indications of colour. I have not had time to pursue this branch of the inquiry furtber. It would be a great thing if by any mann we could accomplish the deliser. tion of objects in their natural colours. I am not very asnguine respectiog the possibility of thia; yet, as I have just now remarked, it appears posible to obtain at least some indication of variety of tint.
8. Application to the Micrascope.-I now come to a branch of the abbed which appears to me very important, and likely to prove extensively anful, the application of my method of delineating objects to the solar microcope.
The objects which the microseope unfolds to our view, curious and wonder ful as they are, are often singularly complicated. The ese, indeed, wry comprehend the whole which is presented to it in the field of view; bat tie powers of the pencil fail to exprese these minutise of nature in their innumert ble details. What artist could have skill or patience enough to copy them? Or granting that he could do so, must it not be at the expease of moch moss valuable time, which might be more usefally employed?

Contamplating the beautifal picture which the molar microteope proderes, the thoughistruck me whether it might not be possible to canse that imapt to impress itself upon the paper, and thus to let Nature subatitote her on inimitable pencil for the imperfeet, trdious and almost hopeless attompt of ewr. lag a subject 80 intricate?

My fint attempt had no success. Although I chowe in bigtat day, and formod
gow hange of my object upon prepared paper, on returning at the expira. tion of an hour I fomed that no effect had taken place. I west therefore half inctived to abasdon this experimeat, when it ocenrred to me that there was no reasom to suppose that the common muriate of silver was the most sensitive subataree lhat exiate to the setion of the chemical rays; and though such ahould eventoally prove to be the fact, at any rate it was not to be asaumed without proof. I aherefore began a course of experiments in onder to ascertain the anducace of various modes of preparation, and I found these to be aignally differost is their sesulte. I considered this matter chiofy in a practical point of view; for as to the thoory, I confers that I cannot as yet undentand the reason why the paper prepared in one way should be so much more sensitive than in another.
The seanlt of these experiments was the discovery of a mode of preparation greatly auperior in sensibility to what I bad originall; employed; and by mears of this, all shose effects which I had before only anticipated as theoretically pomible were found to be capable of realization.

With a theot of this, which I sball call "Srusilive Paper," is placed in a dark chamber, and the magnised image of some object thrown on it by the nolar microncope, after the lapse of perhaps a quarter of an hour, the picture is sound to be completed. I h ave nut as yet used high magnifying powers, on account of the consequent enfeeblement of the light. Of course with a more coscitive paper, greater magsifying power will become desirable.

On examining one of these pictures, which I made about threo years and a half ago, I find, by actaal measurement of the picture and the object, that the later is magnified seventeen times in linear diameter, and in aurface consequendy 889 times. I have others which I believe are considerably more magriked; bat I have lost the correspondiag objects, so that I cannot here shate the exact numbers.

Not only docs this process save our time and trouble, hut thera are many objecte, especially microseopic erystallizations, which alter so greatly in the course of three or four days (and it could hardly take any artist less to delineate thens in all their details, thet they could never be drawn in the usual way.

I mill now describe the degree of semsitiveness which this paper possesses, promising that I am far from supposing that I have reached the limit of which this quality is capabte. On the contrary, considering the few experiments whicia I have made, (fow, that is, in comparison with the number which it would be easy to imagine and propose) I think it most likely that other methods may be found, by which substances may be prepared, perhaps as much transcending is sennitivenem the one which I have employed, as that does the ordinary stato of the mitrate of silver. But to confine myself to wbat I bave actually accomplished in che preparation of a very sensitive paper.

When a abeet of paper is brought towards a rindow, not one through which the cans thises, but looking in the oppotite direction, it immediately begins to discolour. For this retson, if the paper is prepared by daylight, it must hy no means tre laf uncovered, but as soon ats fiaished be shut up in a drawer or cupboard and there left to dry, or else dried at night by the warmth of a fire. Before asing this paper for the delineation of any object, I generally appronch it for a litclo time towarda the light, thus intentionally giving it a slight shade of colour, for the purpose of seeing thet the ground is even. If it appears so when thus tried to a small estent, it will generally be found to prove so in the Anal rwalt. But if there are some places or spots in it which do not ecquire the same tint as the rent, such a sheet of paper should be rejected; for there is a rink that, when eraployed, instead of presenting a ground uniformly dart, which is essential to the beauty of the drawing, it will have large white spots, plecen altogether insensible to the effect of light. This singular circumstance Ishall revert to elewhere; it is sufficient to mention it here.

The paper then, which is thus readily sensitive to the light of a common wiadow, is of course much more so to the direct sunshine. Indeed, such is the retocity of the effect then produced, that the picture may be asid to be ended alcocte as so00 as it is hegun.
To pive some more defnite ides of the rapidity of the process, I will state, thas after various trials tho nearest evaluation which I could make of the time mectapery for obtaining the picture of an object, so as to have protty distinct catlizes, when I employed the full sunshine, was half a sccond.
9. Architecture, Lanuscipe, and External Nature.-But perhaps the most cerious upplication of this art is the one I am now about to relate. At loast it in thet which hat appeared the most surprising to thoge who have examined my collection of pictures formed by solar light.

Every ooe is ecquainted with the beautiful effects which are produced by a eamers oberurs, and has admired the vivid picture of external nature which it dieplays. It had often occurred to me, that if it were possible to retain upon the peper the lovely seene which thus Alluminates it for a moment, or if we coald bet fix the outime of it, tho lights and shadoms divested of all colorr, suots a moult could sot fail to be most iateresting. And however mach I might be dimpeed at firat to treat this notion as a scientifio dream, yet when I had saconded in fixisg the imeges of the solar mieroscope by means of a peculisty saruifive paper, there appenred no longer any doubt that an analogous prosess would areoved in copying the objects of external nature, although indeed they monem lem illursiated.

Not having with me in the conatry a caners obscurt of any considerable iuse. I conmencted ose out of a large box, the inage being thrown upon one end of it by a good object gine fixed in the opposite end. This npparatus being armed with s sonsifive paper wat takea nut in a summer afternoon and
 are. As haver twe eherwerde I opened the box, and I found depieted upon
 Sremed that with amaller camerwe oblcura the effect would bo pro-
duced in a smaller time. Accordingly I had several small boxes made, in which I Axed lenses of shorter focus, and with these I obtained very perfect but extremely amill pictures; auch as without great atretch of imagination might be supposed to be the work of some Lilliputian artist. They require indsed exemination with a lena to discover all their minutive.

In the summer of 1895 I rade in this way a number of reprewentations of my house in the country, which is well suited to the purpose, from its ancient and remarkable architecture. And this building I believe to be the firt that was ever yet known to have draurn its own picture.

The method of proceeding whs this; baving firt edjusted the paper to the proper focus in each of these litule camora, I then took a number of them with ane out of doors and pleced them in different situations around the building. After the lapse of half an hour I grothered thetr all up, and brought tbem withiu doors to open them. When opened, there was fousd in each a miniature picture of the objects before which it had been placed.

To the travelter in distant lands who is ignorant, as too many unfortunately are, of the art of drawing, this little invention may prove of real service; and oven to the artist himself, however skilful he may be. For although this natural process does not produce an effect much resembling the productions of his pencil, and therefore cannot be considered as capable of replacing them, yet it is to be recollected that he may often be so situated as to be able to devote only a single bour to the delineation of some very intereating lecality. Now, since nothing prevents him from simultaneously disposing in diferent positions, any number of these little comnerie, it is evident that their collective results when examined afterwards, may furnish him with a large body of intereating memorials, and with numerous details which ho had not had bimself time either to note down or to delineate.
10. Delineatious of Sculpture.-Another use which I propose to make of my invention is for the copyiag of statues and bas reliefs. I place these in strong sunsbine, and put before them at a proper distance, and is the requisite position, a small camers obecurs containing the prepered paper. In this way I have obtained inages of various statues, \&ec. I have nor pursued this branch of tho subject to any extent: but I expect intereating resulta from it, and that it may be usefully employed under many circumstances.
11. Copying of E'ugravings. - The invention may be employed with great facility for obtaining copies of drawings or engraviags or facsimiles of MSS. For this purpose the engraving is preased upon the prepared paper, with its engraved sido in contact with the latter. Tise presare must be as uniform as possible, that the contect ray be perfect; for the least interval sensibly injurea the result, by produciag a kiud of clondisen in liea of the sharp strokea of the origianl.

When placed in the aun, the solar light gradually travartes the paper, except in those places where it is prevented from doing so by the opayce lines of the engraving. It therefore of course makes an exact imege or print of the design. This is one of the experiments which Dary and Wedgwood atate alast they tried, but failed, from went of sufficient senaibility in their paper.

The length of time requisite for effecting the copy depends on the thick ness of the paper on which the engraving has been printed. At frst I thought that it would not be possible to succeed with thick papers ; but I found ou trial that the success of the method was by no means solimited. It is enough for the purpose, if the paper allows any of the solar light to psss. When the paper is thick, I allow half an hour for the formation of a good copy. In this wey I have copied very minute, complicated, and delicate engravings, crowded with figures of small aize, which were rendered with great distinctresa.

The effect of the copy, though of courne unlike the origial, (subetituting an it does lights for shadows, anil rice reran), yet is often very pleasing, aud would, I think, suggeat to artists ustul ideas respecting light and shade.

It may be supposed that the engraving worald be soiled or injured by being thus preased against the prepared paper. There is not much danger of this, provided both are porfecily dry. It may be well to mention, however, that in case any atain should he perceived on the engraving, it may be readily removed by a chemical application which doen no injury whatever to the paper.

In copying engraringa, sce., by this method, the lighte and shadows are reversed, consequentiy the effect is wholly altered. But if the picture so obtained is first preserved so as to bear sunshine, it may be afterwards itself employed as an object to be copied; and by means of this second process the lights and shadows are brought hack to their original disposition. In this way we have indeed to contend with the imperfections arising from two processea ingtead of one; but I believe this will be found mercly a difficulty of manipulation. I propose to employ this for the purpose more perticularly of multiplying at small expense copies of such rare or unique engravings as it would not be worth while to re-eng rave, from the limitel demand for them.

I will now add a few remarks concerning the very singular circumstance, which I have before briefly mentioned, viz. that the paper sometimes, allhough intended to be prepared of the most sensitive quality, turns nut on trinl to be wholly inseasible to light, and incapable of change. The most singular part of thin is the very small difference in the mode of preparation which causes so wide a discrepancy in the result. For instance, a shect of paper is all prepared at the same time, and with the intention of giving it as much uniformity as possible; and yet, when exposed to sunsline, this paper will exhibit large white spots of very definite outline, where the p:eparing process has failed: the rest of the paper, where it has succeeded, turning black as rapidly as poasible. Sometimes the spots are of a pale tint of ccerulean blue, and are sorroonded by exceedingly definite outlines of perfect whitencsa, contrasting very much with the backness of the part immediatels succeeding. With regard to the theory of thic, I am only prepared to state as my opinion at present, that it is a case of what is called " unstable equilitrfum." The process followed is such as to produce one of two definite ehemical compuunds;
and when we bappen to come near the limit which separates the two cases, it Gepends upon excéedingly small and often imperceptible circumstances, which of the two compounds shall be formed. That they are both definite compoumds, In of course at present merely ny conjecture ; that they are signally different, is evident from their dissimilar properties.

I bave thes endeavoared to give a brief outline of some of the peculiarities attending this new process, whick 1 offer to the lovers of science and nature. That it is susceptible of great improvements I have no manner of doubt; hat even in its present state l believe it will be fond capable of many useful and important epplications besides those of which I bave bere given a stort account.

The subject (says Mr. Talbot) naturally divides itself into two headsthe preparation of the paper, and the means of fixing the design. In order to make what may be called ordinary photogenic paper, the author selects, in the first place, paper of a good firm quality, and smooth surface; and thinks that none answers better than superfine writing paper. He dips it into a weak solution of common salt, and wipes it dry, by which the salt is uniformly distributed throughout its substance. He then spreada a solation of nitrate of silver on one surface only, and dries it at the fire. The solution should not be saturated, but six or eight times diluted with water. When dry, the paper is fit for use. He bas found, by experiment, that there is a eertain proportion between the quantity of salt and that of the solution of silver which answers best, and gives the maximum effect. If the strength of the salt is augmented beyond this point, the effect dimintshes, and, in certain cases, becomes exceedingly small. This paper, if properly made, is rery useful for all ordinary photogenic purposes. For example, nothing can be more perfect than the images it gives of leares and fowers, especially with a summer sun. The light passing through the leaves delineates every ramification of their nerves. If a sheet of paper, thus prepared, be taken and washed with a saturated solution of salt, and then dried, it will be found (especially if the paper has been kept some weeks before the trial is made), that its sensibility is greatly diminished, and, in some cases, quite extinct. But if it be again washed with a liberal quantity of the solution of silver, it becomes again sensible to light, and even more so than it was at first. In this way, by altemately washing the paper with salt and silver, and drying it between times, Mr. Talbot has succeeded in increasing its sensibility to the degree that is requisite for receiving the images of the camera obscura. In conducting this operation, it will be found, that the resulta are sometimes more, and sometimes less satisfactory, in consequence of small and accidental variations in the proportions employed. It happens sometimes that the chloride of silver is disposed to darken of itself, without any exposure to the light-this shows, that the attempt to give it sensibitity has been carried too far. The ubject is, to approach to this condition as near as possible, without reaching it; so that the substance may be in a state ready to yield to the slightest extrancous force, such as the feeble inpact of the violet rays when much attenuated. Having, therefore, prepared a number of sheets of paper, slightly different from one another in the composition, let a piece be cut from each, and, having been duly marked or numbered, let them be placed side by side in a very weak diffused light, for about a quarter of an hour; then, if any one of them, as frequently happens, exhibits a marked advantage over its compctitors, Mr. Talbot selects the paper which bears the corresponding number to be placed in the camera obscura.

With regard to the second object-that of fixing the images-Mr. Talbot observed, that, after having tried ammonia, and several other re-agents, with very imperfect success, the first which gave him a successful result, was the iodide of potassium, much diluted with water. If a plotogenic picture is washed over with this liquid, an iodide of silver is formed, which is absolutely unalterable by sunshine. This process requires precaution; for, if the solulion is too strong, it attacks the dark parts of the picture. It is requisite, therefore, to find, by trial, the proper proportions. The fixation of the pictures in this way, with proper mnanagement, is very beautiful and lasting. The specimen of lace, which Mr. Talbot exhibited to the society, and which was made five years ago, was preserved in this manner. But his usual method of fixing is differcnt from this, and somewhat simpler-or, at least, requiring less nicety. It consists in immersing the picture in a strong solution of common salt, and then wiping off the superfloous moisture, and drying it. It is sufficiently singular that the same substance which is so useful in giving sensibility to the paper, should also be capable, under othcr circumstances, of destroying it ; but such is, nevertheless, the fact. Now, if the picturc which has been thus washed and dried, is placed in the sun, the white parts colour themselves of a pale lilac tint, after which they become insensible. Numerous experiments hare shown the author that the depth of this lilac tint varies according to the quantity of salt used, relatively to the quantity of silver; but by properly adjusting these, the images may, if desired, be retained of an absolute whiteness. He mentions, also, that those preserved by iodinc are always of a very pale primrose yellow, which has the extraordinary and very remarkable property of turning to a full gaudy yellow, whenever it is exposed to the heat of a fire, aud recovering its former colour again, when it 18 cold.

Ship-building. -The shipbuilders of Liverpool, have seldom, if ever, been so busy as they are at present. All the yards on both aides the Mersey are occupied by ressels, of varions tonuage, in process of building; and more frames would belaid down if the builders could undertake the work. The ship.builders along the weet and the east coast are equally busy, and have frequant occasion to refuse proffered contracta for building vessels. All these circumstances show that the shipping interest is is a

NELSON MEMORIAL.

Merely a single visit to Mr. Rainy's Gallery-just before our preen number was guing to press, and when of course we ourselves were greatly hurried, - does not enable us to enter into any eritical remarks on any of the designs and models individually, or even to give a geneal opinion as to the average talent displayed in this competition, farthe than that satisfuctory as the coup dail of the exhibition ituelf is, we observed very few designe characterised hy originality of invention or propriety of adaptation to the intended site. On the contrary, the larger majority, we apprehend, would be found, on deliberate eximination, to be but poorly calculated to suit either the area itself, or the sarronnding buildings.

design by w. ballton, architsct.

To which the first premium is proposed to be adjudged by the first Committe.
The design makes no pretension whatever to originality, being no moor than a fluted Corinthian column, 174 feet high, on a pedestal ornamented with reliefs, and surmounted by a statue 17 feet high, consequently for hat of some basement or substructure will be apt to look too small, except as merely a lofty central ornament in the square.

The following description of the two other prizes are by their respectire authors:-
design, by e. h baily, R.A.
To which the committee propose to award the second prize.
Descriftion.-An Obelisk raised to the memory of Neloon by his grateful country. At the base, our great Naval Commander is repre. sented supporting the Imperial Standard; on his left stands the Geais of Britain, hailing with affection the Hero of Trafalgar; his utteodat, Victory, being sested on his right. At the beck of the Obelisk' rests the NikeNeptune with the subordinate Deities of the Ocean, form a Triumphal Procession round the Rock on which the Monument is placed, thereby indicaing that the Victories of Nelson were as extensive as the Element on which b fought.

Dimensions.-The heigbt of the Monument is intended to be 60 feet; the diameter of the steps the same extent; and the beight of Nelson to be nine feet, the other figures in proportion, as in the sketch.

Estimate.-To execute the whole monument in Ravaccioni Marble, (the same as the arch before Buckingham Palace is built of) 22,0001.-if execoted in Bronze, 30,000 .
drawings and model by charles fowler, architect, and r. w. siefier, scleptor.
To mbicl the committee propose to award the third prize.
This design has been composed upon the principle of combining Architce. ture and Sculpture; with a view to obtain a more striking effect from their uninn than either is calculated to produce separately; the one by its forms ad mass, to arrest the attention and make a general impression, which may be beightened and perfected by the more retined and interesting detaits of the other. It would appear from the result of existing instances that a mere structure cannot properly conve, the feeling or produce the effeet intended by a Monument, designed to commemorate any celebrated character or event. On the other hand a Statue or Sculpture Groupe is inefincient for rant of mas and general form ; the former is appreciated as a distant object, and the latter only on close inspection. The desideratum, therefore, lies in avoidiag thesse objections, or rather in combining the advantages which peculiarly belos to each art, so that the many who pass by may be struck with the general eqper of the Monument, and the few who may pause to examine its detaits my fod their first impressions carried forward and perfected by the beanty and significance of its historical illustrations.

With respect to the design now submitted, the endeavour hea been to render it characteristic and appropriate to the occasion, avoiding plagiarim but without affecting novelty. The rostrated decorations of the pedestal, and it accessories proclaim it at once to be a naval trophy; and the hero to be cons memorated will be not less plainly indicated; whilst the scalpture sed atber details will set forth his achievements.

In regard to the structure, simplicity and streogth are the dintinguishing qualities of the basement, which is proposed to be construeted of graite, ia large blocks, so as to be striking for their massiveness, solidity, sead giving dignity to the superstructure. The pedestala at the angles of the plafiorm tre to be surmounted with piles of trophies executed in bronse, and crowned with lamps to light both the area and monument; massive granite basing are set to receive the running fountains on threé sides, the fourth being reserved for it entrance to the structure within. The colossal figures aeated agsinat the four fronts of the pedestal, are designed to represeut Britannia, Caledonis, Hibermin and Neptune, distinguished hy their appropriate insignia and atuributea

On the south front of the pedestal, and at a legible distence from tho specsuter; is proposed to be inscribed a brief eulegium of the bero,--40sne attompt at which, by way of illustration, is made in the drawing, without presuaing to anticipate that delicate task, which will properly devolve upon other and more able hands. The opposite side is intended to contain the historical or mater-of-fact inscription, comprising also a record of the erection of the monament. The otber two sides are to have each a ahield of arms in relief, encircled by a wreath. The cap or cornice of the lower pedestal is decorated by antiquer prows of vessels, to give the roatrated character, enriched with featoons of ant and marine urnaments.
The midule compartment of the structure contains on the fonr faest of the dado simply the names of the four principal actions in which Nelson was eagaged; and in the panel over each is a representation in Buseo rebian of ante striking incident, in each battle-me front being distinguisired by the grow
cathstrophe, which formed at once the climax of his achievements, and the inmination of his brilliant career.
In onder to give character, as well as to provide for an unusually bold projecture, the Gallery above is supported on Cannons, in lieu of the usual architectaral consoles: and the intervals in the soffite are enriched with bombs and grenades. The railing of the gallery is composed of decorations and emblems, baving reference to the occasion, so as to combine ormamant with clarecteristic expression.
The upper compartment of the monument is distinguished by its circular form, and is more completely charged with decoration, illustrative of the honors which Nelson had achleved. The four large wreaths, embracing the entire circuit of the pedestal, conrain respectively the Naval Crown, the Visconnt's Corocet, the Mural Crown, and the Ducal Coronet. From these wreaths are suspended the decorationg of the four "Orders" to which he belonged.
The friese of this pedestal is entirely ocenpied by the heraddic motto, which happens to be peculiarly appropriate to the occasion. The ornaments surmomang the cornice, which wre analogous in form and application to the Grecina mifeflxe, are composed of escallop shelts, and the cupola is to be of copper gith.
The Statue of Nelson crowns the whole, and is to be executed in bronze, about sixteen-feet in height, and the catire height of the structure and statue will be 180 feet from the area of the square-viz: eleven feet more than the Columin of the Duke of York.
The momanent, with all its decorations anid accemsories, to be completed in the most perfect style for the sum of ruenty-fice thourand penond. This we are ready to undertake, and to give security for the accomplishment. Having taken the paing to arrive at the conclasion upon which this bona fide ofler is grounded with all the rasponsibility it envolves, it is hoped that due precau. tions will be observed in testing the accuracy of the estimates generally, so as to avold the delusion that too commonly occurs, which besides misleading the protuoters of the nudertaking inflicts an injustice in those who are more carefal and serupalous in their proposals.

RESTORATIONS OF ANCIENT MONUMENTS OF ROME, \&c.
 prange.
(Estract from a Paper ant by M. Vaudoyer, of Paris, Archilect, io T. Ztonaldbon Enp., Aschitect; read before the Royal Inatitute of Brilish Archilects.)

These 34 restorations, with from 8 to 10 drawings each, forming in all more thas 300 , are sketched upon canvas, and richly bound, each set in a distinct volutue of the same shape and size, 3 feet 3 inches English in height. They are also accompenied by a very curious and erudite historical memoir.

Thin work is not a production of the imagination, but is based for the most purt upan positive materisls, which up to the present time have never yet been eramined and studied with to much judgment and perseverance, and is the fuilhful record of invaluable monumenta, which are daily perishing, and of which many will be lost to posterity-and will one day form a work of the greateat inlereat, not only with regard to architecture, but to the history of archaology and the fine arts in general.
The Minister of the Interior proposes to publish them for the use of French attists, and for circulation in foreign countries.
Fratiftom of Ae Fet Court, Otd Daiky.-Mr. Perkins has caused anbtetraneoun emabets of a eapaciors xize to be formed, in whieh are placed coils of hot.wator
 the wamed frath eir is admituod throcigh aperturen mede in the floor and walnecoting of the ovart $\rightarrow 0$ that a comformble tamporature may be preserved, whethor the court be wore or hese crowded. The foul air, which naturally generates in e crowied court, i. drawn oft by a ahal under the prisoner's luck, as well as from the gailery and ceiling, wheh, commmicating wich large curves on the roof, the fonl uir malices ap thootolgh exit, and freah air, eiduer warm or cold, can to supplied in such yountities as menvily may repiptre. Gireat rrealif is conceded to Mr. Perkins for him excellent enurirnees, and theinprovemmat which he effectul upon the nutique method of venulikig the comits by cauvas bags, and warming thern with braxiers filhed with charcoal. Therets anameter coopectod with this contrivatice which onght not to be over. hasted. The phapern bor trisi obeach day were placed in thap and nhwholesomse rth. where they were lupt hhirering with coll in the winter months. A gental

REVIJW8.

Observations on Lime, Calcareous Cement, Mortars, Stuccos, and Conerete : and on Puzzolaqas, Natural and Arlificial: logether with Rules deduced from humerous Experiments for making an Artificial Water Cemment, \&c. By C. W. Pasiey, C.B., Colonel in the Corps of Royal Engineers, F.R.S., \&c. London: John Weale. 1838.

(Second Notice.)

We now take the opportunity of again referring to Colonel Pasley's work, less for any purposes of criticism than to aftord our readers an opportunity to judge of the correctness of the views which we adopted, in recommending it as a highly practical work. In the first extract, of which we shall avail ourselves, the Colonel very properly supports the necessity of specifying the proportions of lime to be used for making mortar by weight, and not, us is generally the case, by measure.

For this purpose I beg to suggest, that whenever the common mode of measuring lime in lumps from the kiln has been intended and used, this ahall be particularly specified, and that the average weight per cnbic foot of the lime in this state, estimated, however, not from the contents of a single cubic foot measure, but from that of some larger measure, which need not except 10 , and should not be less than 5 cubic feet shall also be recorded. * In fact, supposing it required to mix 3 measures of sand with 1 measure of Halling lime, it would afordmuch greater accuracy and uniformity in the quality of the mortar, to direct 3 cubic feet of sand to be mixed with 371bs. of guick lime fresh from the kiln, or as a 10 feet measure is most convenient, let it be stated that the mortar slanll be made in the proportion of 10 cubic feet of sand to about 124 lbs . of lime, which is nearly equivalent to the former; and the mode of measuring the lime from the kiln should also be described or specified, because, although it may be presumed that fair and full level measure is intended or has been used, it is best toleave nothing donbtful.

When the lime from the kilo is directed to be ground to a fine powder, it is still more essential to define the mode in which it is to be or has been measured, whether ligbtly, or after temporary compression only, or under actual compression.

In respect to sand, the custom is to serve it in by stricken measure, in whatever state it may be at the period of sale, which may vary between more or less dry or wet, according to circumstances, known to the persons who use it, but not to others uniess explnined, amongst which circumstances the state of the weather has its influence; for sand is not kept under cover, but laid out in masses in the open air. Hence, in order that we may have any precise knowledge of the real proportion which the sand bears to the lime, in the mortar of any work of importance, the person who describes such mortar ought to specifyl particalarly the state in which the sand was mensured, whether absolutely dry, or damp, or wet ; because the actual quantity of sand obtained by the same measure in these three states, varies considerably between the second, which is the minimum, and the latter, which is the maximum of quantity. But the sand used for building in this country is scarcely ever: in either of these two extremes of perfectly dry or wet. It generally varies only between more or less damp, and probably the difference in real quantity, between equal neasures of it in those two states, does not exceed one-tenth in the practice of building at any one place. To describe accurately the state in which it has generally been used for the mortar of any important work, the author ahould specify not only the mean space occupled by it in that state, but also the spaces which the same quantity of the same sand is capable of occupying when perfectly dry, and when thoroughly wet, stating also its weight per cubic foot when perfectly dry, there being no certainty ns to the weight of sand in any other state. Moreover to enable a person, who does not know the sort of sand obtained from a particular locality, to understand the nature of it, the size of the particles should be described in the way tnat has been done by M. Vicat, by stating the diameter of the smallest and of the largest grains composing it, the latter of which may be sufficiently defined by describing the sort of screen through which even very fine sand is almost always sifted, to exclude pieces of wood or other extraneous subatances generally found in it. When sand and gravel are to be mixed together, in any given proportion, the size of both thould nlso be described in the same manner; and even in using some natural nixture of these ingredients, such as Thames ballast, in the mortar of any important work, it is desirable that it should be defined in the same manner, for the use not only of foreigners, but of our own countrymen, in those parts of the United Kingdom where it is not used, although those who are accustomed to the daily use of it will of course need no auch description.

- Whilst investlgating the subject of measures and weights, I found by repeated trials that a 10 -cuhbe-feet measure made of two rectangular wooden cases, open at top and bot tom, and each measuring $\&$ feet by 21 feet square in the clear and 1 foot high, either to be used separately an 8 five-cubic-feet measures, or jolintly by placing one upon the other, was a more convenient arrangement for the measurement of dry materials, as well as for calculation, than the cublic yard measure in coramou use, which is also usually made in two parts, earh composed of a similar case 3 feet square in the eleap and is incher brigh. In mall buildiags, where oniy few masons or brickiagers are employed the hall of the lo-rubic-feet menare may be the most conrenient, as manall quantities of mortar unly are required to be mixed at a time. But to use a smaller marasure than this would not a frord a satisfactory estimate of arerage quantity, becrause the rubir foot of hime in lumps, mesaured singly in a one-cubic-foot mea-
sure is pot equal wo poe-tenth pert of the contents of a tuncubc-fert measure nor to one-finh part of the contents of a frecuble-feet mensure.

We have next detailed several experiments upon brick and cement beams, combined with hoop iron, laid horizontally between the joints. From the experience obtained in this investigation, the Colonel derives the following conclusions :-
That cement bond, consisting of four or dive courses of brickwork laid in pure cement, if atrengthened by longitudinal pieces of hoop iron in all the joints, may be used to supersede not only the wooden lintels of doort and windows, but all timber bond generally in the walls of bulldings, as suggested in Article 234, which was written before we had tried thesc last experiments. In using hoop iron bond in walls, the irons should extend, if possible, the whole length of each wall in one piece; but if a break be necessary, the adjoining ends need not be united together by the blackamith, but turned down at right angles into one of the vertical joints of the wall by the bricklaycrs themselves. Without hoop iron bond, on the contrary, the additional atrength communicated by cement alone would not suffice in difficult cases.

It is to be observed, bowever, that a continued string of four or five courses of cement and hoop iron thond, in the wallx of a building, would not be exposed by any means to the same atrain asour experimental brick beams; for it would not have to bcar much more than its own weight in all the unsupported parts over a door or a window, there being other windows above those, and in all the intermediate portions of the wall corresponding with the ends of our experimental brick beams, the courses of cement bond alluded to would not only be supported from below, but their strength would be greatly increaved by the weight of the solid parts of the wall above, it being well known that all benms bave a much greater resistance, when firmly fixed, than when merely supported at their ends, which Mr. Barlow in his able and useful treatise on the atrength and streas of timber estimates from his own erperiments, as being in proportion to the numbers of 3 and 2. Besides whicli, it feet between the bearings is a much greater width than would be given in practice to the windows, or even to the doors of the largest building, unless the latter were carriage-gateways, which are more usually covered by semicircular or elliplical arches, than by fiat arches or straight lintels.

It only remaina further to remark, that the Hatteat and thinnest brick and cement arch has sufficient power to resist great pressure, in openings of 10 or even 15 feet, as was proved by one of our former experiments; though a straight brick and cement beam is not to be recommended, over such openings, unless consolidated by hoop iron bond.

We have then some experiments on cements, tiles, and bricks, applied for steps or staircases; an investigation bearing upon a very useful professional subject.

In both of these artificial steps the fracture takes place near to the wall, but that part of eacb, though entirely broken through, was suspended by the irons, which did not break, but elongated or were drawn out from their original position within the wall, just enough to admit of the far end of each slep striking the ground in falling. In reference to the consideration before stated, the stone step may be considered to possess a resistance of about 5 times, the plain tile step a resistance of about 3 times, and the paving tile step a resistance fully double of the greatest weight, ever likely to press upon one step of a geometrical staircase 4 feet wide; that is, provided its width, which was only 12 inches, had been increased to 14 or 15 inches, which is the more usual width of the steps of such staircases, and which would of course increase its resistance in proportion. I shall observe also, that as the resistance of plain tiles and of paving tiles without cement was proved to be very nearly equal by our former experiments recorded in Table XVIII. (324), the marked superiority of resistance of the plain tile and cement step over the paving tile and cement step, though both formed of materials equally or nearly equally strong, may probably be ascribed in this experiment to the former being composed of a much graater number of tile and therefore having a much greater number of cement joints than the latter. Notwithstanding, however, this inferiority of the paving tiles, I would recommend their being used in prefercuce to plain tiles, if the expedient of building staircases with artificial steps composed of tiles, with cement and hoop iron bond, should ever be adopted, because the paving tile step is quite atrong enough, and gives much less trouble in the workmanalip than any very small sort of tiles, such as plain tiles would do. But instead of using tiles 12 inches square and $1 \frac{1}{2}$ inch thick, like the common paving tiles of this country, they should be mado 15 inches long, 12 inches wide, and about $1 \frac{1}{2}$ or $1 \frac{1}{8}$ inch thick only, so that 4 courses might be used for the steps of the principal staircase, and 5 courses for those of a second rate staircase of the same bouse, the latter of which are always made higher nnd also usually narrower than the former. And in order to break joint pruperly, it would be better to make a proportion of half tilea of the same length, but only six incles wide, than to cut whole tiles in two for this purpose.

Colonel Pasley strongly asserts the superiority of cement mortar over hydraulic lime, in the construction of wharf and river walls. Several instances are given of the failure of hydraulic lime for this purpose, and particularly one remarkable instance - in the case of a wall which had utood forty years without showing any symptoms of decay. The Colonel observes,-

Isstead of plain tiles, long thin stones, such at schists, or coarse slates not good enough for the roofs of buildinge, might be used for the same purpose of forming artificial steps, wben united by cement and strengthened by boop of forming bond; but in all materials not before tried, it mould be proper to make

the parts, and the bent mode of breaking bond fu patting then togethe. About three monthe ahould be allowed for the cement to met, before min acpa are let into the walle of a building.
I have seep an official drawing, of $: 789$, evidently in reference to a project for the completion of thin wharf, a section contained in which very neatly agrees with the present profile of the wall, which is known to have been finished morr than 40 years, and 1 have ascertained by inquiry that no apparance of failure was ever noticed until the year 1825 , when part of it wh observed to have bulged a little forward, but no material change took phact until some yers afterwards, when a substantial granite coping was laid in froat of the wall, as a substitute for the timber capping and land lien, whiet bed become rotten. The weight of this coping, which could have done no bers, had the mortar of the brickwork been good, has undoubtedly accelerated the separation of the front of the wall from the counterforts, which action has been gradually in progress, but exerted itself more powerfully, as soon as the bood timber and lower row of bond ties became rotten. \dagger

The circumatance of thit wall having remained perfect for at lcast 27 yeurs after it was finished, and of some parts of it still remaining so, may be coosidered a proof, that the profile was sufficient, if better mortar had been ued, for the wall, which was about 24 feet high and had offeets or footing a bottom, had an exterior slope of one tenth of its height, and would have been $6 \frac{1}{2}$ feet thick at top, if the back of it had been carried up vertically, instend of which its thickness was reduced to 4 feet at top, by a step in rear, about 71 $\frac{1}{2}$ feet below the level of the ground. It had very substantial counterforts measuring rather more than 6 feet square in plan, at central intervals of 18 feet, and terminating about 4 feet below the same level, that is severalfect higher than the step at the back of the wall, the lower part of which by beitug thicker was in itself a sort of counterfort to the upper part of it, in consequence of which the front part of the wall being the thinnest and leas capable of it siating the pressure of earth in rear, separated from the back part in rear of the said step, whereas bad the whole back of the wall being carried up vo. tically, the separation, resisted by a greater mass of brickwork, would hare been less considerable, and would have taken place farther back, entinely bo bind the back of the wall, and in front of the counterfort.

In the following judicious observations the Colonel points out the cases, in which hydraulic lime may be used, and those in which it ough to be avoided.

For the general purposes of Civil Architecture, concrete should therefor, I again repeat, be chiefly confined to foundations; but I conceive that the failure of the new concrete foundation of the Storebouse in Chathem Doct. yard has proved, that it is generally, or at least when formed ax Mr. Ranger has usually done, with rather a greater proportion of lime than was originally adopted by Sir Robert Smirke, liable to settlements like lime mortar, which in fact forms the principal part of it. Hence care must le taken, in commencing the brick footings of a building over a concrete foundation, not only to use cement mortar and hoop iron bond, in order to do away the necewily of the more expensive expedients of Yorkshire landing stones and chain tim. bers, but also to construct inverted arches under all the propoaed openiags for doors and windows, in order to equalize the pressure.

In using concrete for the backing of wharf walls or other ressining walls, carc must be taken to connect it well with the atone or brick facing of the wall, but 1 spprehend, that the wall and its backing ahould be constructed of a aufficiently substantial profle to dispense with counterforts, becaosea substance having so little resistance and adhesiveness, as concrete, would admit of the wall in front being forced away from the counterforts, by the pressure of earth acting upon the back of it ; as has often cocurred to reteining walls and their counterforta, even when built of brickwork.

In works of Fortification, whilst 1 bave already reprobated the use of concrete for casemates or vault, yet as the severcst frosts seem to destroy those surfaces of concrete only, which are alternately aaturaled with water and then exposed to the atmospbere, as in the facing of the wharf walls of tide rivers, I see no reason to withdraw the opinion formed by me, previonsly to the recent failures in her Majesty's Dock-yards at Woolwich and Chatharn, that it may be used for retaining walls not exposed to the action of water, as in the sen wall at Brighton improperly so termed, and also for the revetments of fortresses in the peculiar situations before mentioned, In which it is posibit that it might be so much cheaper than regular masonry or brickwork, that although greatly inferior in resistance and consequently liable to be morh sooner and more easily breached, whether by battering guns or by mining, this disadvantage would not be a sufficient argument against the use of it in thost situations.

We omitted to mention in its proper place that the Colonet lus dis covered a cement, which appears from the trials to which it has ben subjected, stronger than Roman cement, and very useful as an hydnolic mortar. It is composed of 4 parts of pure chaik, and $5 \frac{1}{4}$ parts of fresh blue alluvial clay; and the method of preparing, mixing and calcinng is fully described.

At the end of the work is an appendix, giving a description and the
Aniahed or this drawing one would infer, that a brick wan with counterforts, rither Anished or perhaps only in progress, exiated in 1789 , which it was propoped to lart With stome. But this is conjecture, as I have never seen any document explanatory w the drawing alluded to.
been used by the engibeers of che preablep or strong from bolta or bars have recents beth used by the engineers of the present day as land lies, for whari whil That ate particulariy necesary in wharfs faced with iron, whieh has very litthe aubitity ia the wharf, mud well secured to sompe by long land ties running through the backoy a the wharf, and well secured to mome limoveable objeets in rear.
composition of most of the cements and mortars used in this country, so as to give the architect and engineer much useful information. In this appendix the Colonel has given a description of Mr. Brunel's experimental brick arch, the dimensions and details of which he states that he has derived chiefly from the sixth number of this journal. This account he believes to be correct, except that nett cement was used instead of mortar, composed of cement and sand, as stated by us. In consequence of this correction by the Colonel, we agnin made enquiries of the brickbajer who asisted in the construction of the arch, and who still persists theat cement and sand were used, and not nett cement ; we have also procured a piece of the brickwork from the arch, and we feel bound to state that from its appearance it seems to be constructed of nett cement.

We do not think it necessary to say anything further in praise of this work, for we feel assured that the extracts which we have given from it are sufficient to convince our readers of its highly valuable and practical nature. It is, in fact, a work which every member of the profession may refer to with advantage, as he may place every rcliance upon the correctness of the experiments which are there detailed.

Life of Thomas Telford, written by Himself. Edited by Join Riceman. Loudon: Payne and Foss, 1838.
We have purposely delayed our notice of this work, that we might not be accused of mot paying duc attention to it, or hastily passing a judgment unfavourable to its claims. It is a work which was anxiously awaited by the profession, and naturally looked for as a great accession to the stores of scientific literature, but we regret that its appearance has deceived these expectations. The "Life of Telford," described by his works, offered a field which, in judicious hands, could not fail to have produced a book of standard reputation. The price also, of eight guineas, demanded for the present volume, and the circumstance of funds having been provided for its execution by Telford himself, is so high, as to require great exertions to justify anch a charge, and we vainly hoped that, from among the papers of Telford, many valuable ideas would thus have acquired a greater circulation. A large volume of plates is certainly given, but they contain so much that is trite, and so much that is useless, that they greatly derogate from the value of the mass.

The work has been thrown into the form of a narrative, under the plea of insuring greater case and freedom, but the subject has been so mutilated by the editor, that it is neither an autoliography nor anything else. The few snatches of Telford that are left, give a promise of what he was capable of effecting; and wo should have derived an invaluable example in the relation of a progress through life, of which he has given us such a modest commencement. Telford, However, never lived to finish his work, and his editor has taken such liberties, that if anything of Telford is left, it is principally his faults. He has warped the current of the anbject to make room for irrelevant dissertations; the descriptions of works, instead of slowing the minute care with which an author would dwell on his designs, are derived from the commonest sources, and a considerable part of the work is occupied with parliamentary reports, superannuated documents, Roman baths, and other men's works. We deplore this catastrophe, as it is one which we hnve beard greatly regretted by many members of the profession, and we had certainly expected something better when we looked at other engineering works of less pretensions. The money and reputation of Telford have been lavished on it, but it shrinks in the scale when compared with such volumes as the "Public Works of Englsod," " Railway Practice," the reprint of "Smeaton's Reports,", or the ncw edition of "Tredgold's Steam Engine;" any one of which contains far more practical information, at half the cost, than this "splendid work of Telford." We need scarcely sry that the editor has fully redeemed his pledge of "not requiring classification of suljects," and that he has produced a most admirable and agroealle confosion. As to the literary portion of the work, which Telforl's diffidence imposed on the editor, it is very scanty and unsatisfactory; and although we could excuse this from Telford, we can make no concession to the editor. Instead of this work being called the "Life of Telford, written by himself," it should be the "Life of Telford," with the part of "himself" by Mr. Rickman; and thus the name of Telford would be redeemed from the slur cast on it by this compilation. Altogether, Telford is most singularly unfortunate, that when, having taken some carc to maintain his reputation, he should have confided the task to one 80 manifestly incompetent. To deny that the work has some merit would be absurd; for it would be impossible that Telford could be associated with an enterprise wuhout conferring some lustre on it ; but our opinion of the compilation as a whole is, that neither the quantity of information commulpicated, nor its quality, are at all commensurate with the extent of
its assumptions or the magnitude of its price. The drawings of Telford, it is true, are to be found in the library of the Institution of Civil Engineers, but who can find time to study them there? Few men can afford to sacrifice, in such researches, their leisure and their time.
The work commences with a descriptive narrative of the works of Telford, and such short snatches of his life as the editor has left unpruned. Thomas Telford was an orphan of a working mason in an obscare part of Scotland, and this avowal which his sense of innate dignity prompted stands in solitary contrast with the lack of farther information. We find him successively working at Edinburgh and at Somerset House, then of a sudden superintending works in Portsmouth Dock-yard, and afterwards county surveyor of Shropshire. We see no proof of merit which could warrant this rapid rise, and we look in vain to the work for an explanation of the circumstances which thus determined his career in future life. We can appreciate the studious and laborious attention with which he cultivated his mental powers, but we must look to other operations for the causes of his promotion, and we may believe that had it not been for the patronage of his schoolfellow, Sir William Johnstone Pulteney, his career might have been in a lower grade, and his reputation of less extent. As county surveyor, we find Telford first engaged as a civil engineer ; and here he had full scope for his favourite pursuit of bridge-building. The first bridge the construction of which he superintended was one of three arches over the Severn, and soon afterward he constructed the second cast-iron bridge in England, at Buildwas, the first having been at Colebrookdalc. This consisted of a single arch of 130 feet span, of which the iron-work was executed, in 1796, by the Colebrookdale Company, by contract with the county magistrates, for $6,0341.13 \mathrm{~s} .3 \mathrm{~d}$. Of this bridge an engraving is given in the Atlas; and besides these, he erected forty smaller bridges in the county. This led to further employment in the same line, and he also attempted some works as an architect, though with very little credit to his taste. The parish church of Bridgenorth, in Shropshire, which had been the chapel of a Norman Castle, he rebuilt in a mixture of the Greck and Roman styles.

In 1793 we find him engaged in one of his first great works, the Ellesmere Canal, the managing committee of which was principally composed of county magistrates. Telford's management of this conplicated work was such as fully to justify their confidence in him, and he thus acquired new means of displaying the boldness and originality of his mind. Here we find descriptions of two works of magnitude, the Chirk Aqueduct and that of Pont-y-cysylte.

The Ceriog, or Chirk valley, is 710 feet in width ; the banks are steep, with a flat allnvial meadow between them, through which the river passes. To preserve the canal level, the surface of its water must be maintained at 65 feet above the meadow, and 70 above the water in the river. There are 10 arches, each of which is 40 fect span. The first stwne of this aqueduct wis laid on the 17 th. June, 1796 . Previously to this time, such caual aque.ducts had bece uniformly made to retain the water necessary for navigation, by means of puddled carth retained by masonry; and in order to obtain sufficient breadth for this sinperstructure, the masonry of the piers, abutments and arches was of massive strength; and after all this expense, and every imaginable precaution, the frosts, by swelling the moist puddle, frequently created fisures, burst the masonry, and suffered the water to escape, nay, sometimes actually threw down the aqueducts; instaneces of this kind having occurred even in the works of the justly celebrated Brindley. It was evident that the increased pressure of the puddled earth was the chief cause of such failures; I therefore had recourse to the following scheme in order to avoid using it. The spandrills of the stome arches were constructed with lougitudinal walls (as at Kirkcudbright Bridge), instend of being filled with earth, and across these the canad bottom was formed by cast-iron plates at each side, infixed in square stone masunry. Those buttom plates had flanches on their edges, and were secured by unts and serews at every juncture. The sides of the caunal were made waterproof by ashler masuury, backed with hard burnt bricks, laid in Parker's cenomit, on the outside of which was rubble stone work, like the rest of the aqueduct. The towing-path had a thin bed of clay under the gravel, and its outer edge was protected by an irou railing. The width of the water-way is 11 feet, of the masonry on cach side, 5 feet 6 inches, and the depth of the water in the canal is 5 fect.

- By this modo of construction the quantity of masoury is much diminished, and the iron bottom plate forms a coutinued tie, and prevents the side walls from separation by lateral pressure of the contained water. There being a quarry of excellent fat bedded rubble-stone within a quarter of a mile of the site, and lime-kilns within two miles, the whole, with the exception of quoins, coping and lining the sides of the water-way, which are of ashler mnsonry, is of rubble work, laid in line mortar; the materials and workmanship equally excellent. The cdifice was completed is tho year 1801, and in still in n perfect state ; the total cost was $£ 20, \mathbb{E} 98$. ."
"Abvut four miles north of Clizk, the aqueduet of Pont 9 -cyyylte funns a still mure striking object than that which I have just described. The aurth bank of the river Doe at this place is abrupt; on the south : id tho
meclivity is more gradual; and here, on account of gravelly earth being rendily procured from the adjacent bunk, it was found most economical to push forward an earthen embankinent, 1,500 feet in length from the level of the water-way of the canal, until its perpendicular height became 75 tect; still a distance of 1,007 feet intervened before arriving at the north bank, and in the middle of this space the river Dee was 127 feet below the water level of the canal, which was to be carried over it; therefore serious cousideration was requisite in whit manner to acconplish this passage at any reasonuble expense. To lock down on each side 50 or 60 fect, by 7 or 8 lucks, as originally intended, I perceived was indeod impracticable, as involving serious loss of water on both sides the valley, whereas there was not more than sufficient to supply the unavoidable locikage and leakage of the summit level. To construct an aqueduct upon the usual priwciples, by masonry piers and arches 100 feet in height, of sufticient breadth and strength to afford room for a puddled water-way, would have been hazardous, and cnomnously expensive: necessity obliged ne therefore to contrive some safir and more economical mode of proceeding. I had abont that time carried the Shrewsbury canal by a cast-iron trough at about 16 feet above the level of the ground; and finding this practicable, it occurred to me, as there was hard sandstone adjacent to Pont-y-cysylte, that no very serions difficulty could occur in buiding a number of square pillars of sufficient dimensions to support a cast-iron trough, with ribs under it for the canal. After due consideration I caused a model to be made of two piens, a spt or compartment of ribs, the canal trough, the towing-path, and siderailing, with all the flauches, their muts and screws and jointing complete. The foundations of the river piers are placed upon hard sandstone rock; those on each bauk are either on nitemating coal sirata, or hard firm gravel. Thus secure of good foundations, suitable sandstone for the masomry, the best of iron, a satisfactory model of the irun work, and able experienced workmen, I proceeded with confidence of ultimate success, although the undertaking was unprecedented, and generally considered hazardous.
- The height of the piers above the low water in the river is $12 I$ feet, thair section at the level of high water in the river is 20 feet by 12 feat, at the top 13 feet by 7 feet 6 inches. To 70 feet elevation from the base they are solid, but the upper 50 feet is built hollow; the uuter walls being only 2 feet in thickness, with one cross inner wall; this not only places the centre of gravity lower in the pier, and saves masonry, but insures good worknanship, as every side of each stone is exposed. I have ever since that time cansed every tall pier under my direction to be thus built. The width of the water-way is 11 feet 10 inches, of which the towing-path covers 4 feet 8 inches, leaving 7 fect 2 inches for the boat; but as the towing-path stands upou iron pillars, under which the water fluctuates and recedes freely, the boat passes with case. The stone piers are 18 in number, besides the two abutment piers; they werc built to the level of 20 feet, and then the scaffolding and gangways were all raised to that level, and the materials being bronght from the north bank, the workmen always commenced at the most distant or south abutment pier, receding pier by pier to the north bank; and by thus ascending from time to time fu their work, they felt no noore apprehension of danger when on the highest, than at first on the lowest gangways; one man only fell durint the whole of the operations in building the piers, and affixing the iron work upon their summit, and this took place from carclessncss on dis part.

By referring to Plate lis, the general form, and ulso the details of constmection, will be readily understood. This singular aqueduct was opened in 1805, and has now been navigated 28 yeurs with facility and safety; and thus has been added a striking feature to the beautiful vale of Llangollon, in which formerly was the fastness of Owen Glyndwr, but which, now cleared of its entangled woods, coutains a useful live of intercourse between England and Ireland; and the water dravn from the once sacred Deva, furnishes the means of distributing prosperity over the adjacent land of the Saxons.
"The whole expense of the aqueduct, and great embankment, was £47,018; n moderate gum as compared with what by any mode heretofore in practice, it would have cost.'

Telford had now sufficient standing to recommend him for the execution of great works, and sufficient ability to justify the choice, and we consequently find him employed on the Caledonian canal. This was one of the political lions of the day, and many expectations were formed of the utility of this national underlaking; but except forming th fertile source of government and local jobbery and an interminable sink of English money, it has produced nothing but disappointment and disgrace. We shall endeavour to give some explanation of the causes which led to this, and from our own sources point out the reasons for its defeat. To understand the subject better, however, it is necessary that the reader should understand something of the nature of the conntry, which is explained in the following extracts, describing a singular valley,
"Called the Great Glen of Scotland, which, commencing between the promontory of Burgh-Head in Elginshire, and Cromarty, passes through a surcession of sea-inlets und fresh-water loches (lakes) to the southem extremity of Cantyre, a distance of 200 miles, and in nearly a straight direction between the Naze of Nurway and the north of Ircland. The whole of this extensive valley, with the exception of about 22 miles, being vecupied by anvigable water, and the excepted space by a navigable canal, aures upwards of $50 \times$ miles of dangerons navigution, as compured with that by tw Orkueys and Cape Wrath. Ships of war, were this track opent to
them, might in two days, from a station at Fort George near Invernes, reach the north of Ircland."

The description of the works on the canal is meagre in the extreme, deficient in interest, and destitute of that practical instruction which such immense works might have afforded. Numerous difficulties were to be encountered and overcome, and, as Telford himself observes, the narration of failures often leads to more practical information than the description of success. From the account of the Caledonian Canal we shall give a few extracts, which may serve to explain the comments we have to make thereon.

About ten miles within Fort George, and ane mile to the north-west of the mouth of the river Noss, the tide-way of the Bcauley Water is from 5 to 7 fathoms decp, and Lere, at the fishing village of Claclunacharry, is the entrance of the Caledoniau Caual. In order to secure an eutrauce for ves sels of 20 fect draught of water, at the top of neap tides, it was necescary from the flatuess of the shore, to place the tide-lock 400 yands from high-water mark, at the end of an embankment ; and in constracting tbis lock, very cunsiderable difficulties occurred, which will be atorwark described. I shall here only observe, that this sea or tide-look is 170 fex long in the chamber and 40° feet wide, and that its rise is $\mathbf{8}$ feet; from this luck the canal is formed by artificial banks, upon a flat mud shore, uncilit reaches high-water mark at Clachnacharry, where another lock of simila dimensions is placed upon hard mountain clay. Immediately to the sorth of this, is formed a basin or floating dock, 967 yards in length and 162 in bleadth; its area is sbout 32 Eugligh acres. It is furnished with a sheri. wall and warehouse at the south ond, and its ample dinconsions produced earth by excavation for its own bunks, and also for supporting tho adjoin. ing locks, instead of having recourse to back-cutting.
'At the south end of this basin, the great nortly road passes over a swing bridge, and adjacont to it are the forr united Muirtown locks, ewh 180 feet long and 40 feet wide, which together rise 32 feet, lifting the casal to the level of the surface water of Loch Ness, when in its ordinury momet state. From the top of thesc locks the canal, 50 feet wide at the bothom, 20 feet decp, and 120 feet at surface water, is carried by easy beadr in the rear of the insulated hillock of Tomnahuric, to the river Ness at Torrains, Where, by reason of a precipitous bank, the canal is constrained to occupy the former bed of the river, a new channel being made for it by rewosing the opposite bunk, whiol tht the same tine produced earth for separating the river and cianal; a great work, more than balf a mile in leagth. The same kind of diffeculty, but losis in extent, is overcome in the savie manuet twiee before the canal enters the small loch of Dunghfour, (six miles from Clachnacharry) by a regulating lock 170 fect long and 40 feet wide, actually placed in the old chamel of the river Nese, which in this place was heretofore separated into a double stream by an island of gravel. Such a situation points out the difficulty of keeping an extensive lock-pit free frotn the influx of river water, the ordinary level of which was 20 fect above the necessary excavation. Mr. Davidsun's incessant attontion was necessary and comsjicuous during this unusual operation in the years 1813 and 15id, as well as that of Messrs. Simpson, Cargill, and Hhodes.
"Between the small Loch of Doughfour and the outlet of Lach New at Bona Ferry, the river has been deepened, chiely by a dredging machive. Loch Ness is about 22 miles in length, no where less than a wile in breadth; in depth varying from 5 to 129 fathoms, (a greater depth than is found between the Murray Firth and the Baltic sea,) its direetion is straight, with several tmall bays of moderate depth, affording good anchomge, at at Urquhart, Invermorrison, and Port-Clare, on the north side; and at Dors, the fall of Fyers, and the Horse-shoe on the south side.
" At the south-west end of the Loch stands Fort-Augustus, on the north side of which the river Oich entors the Loch where the cand leaves ith crosses the glacis, and at the back of the village asconds 40 foet by mean of five counected locks, cuch 180 feet in length; from thence it passes along the south side of the river to the north-eust conner of Loch-Oich. In this distance of about five miles is the Kytra lifting lock, and a regulating loch, each 170 fect long and 40 feet wide, and the channel of the river has bech changed in two places; the breadth of Loch-Oich is inconsiderable and irregular ; in some parts it requiros deepening by dredging, erpecially where the river Garry fulls in from the north, draining the whole of Clengarry, and having in its course Loch-Garry 6 miles in length, and lartQuoich 10 miles; the summit nupply of water for the Caludunian Canal is therefore abundant.
"Between the westem end of Loch-Oich and the cast and of LochLochy, a distance of about two miles, the surface of the ground is about 20 feet above the water level, and the depth of the canal waler being 20 fcet, there is 40 feet depth of cutting. Near Luch-Lochy are two lockss: regulating lock and a lifting lock; the diftierence between the surlace of the water in thesu two locks (alhuugh Loch-Lochy has been raised it feet, is nearly 10 feet.
'At the south-west end of Loch-Lochy (which is 10 miles in leagth) there is a regulating lock as usual, and the canal is carried over raged ground along the north-west side of the river Locliy, its line intersected by oue considerable river, and by several mountain streams; the ordinary level of Loch-Lochy is continued along the canal to within one mile of Loch-Eil, where are cight connected locks, cach 180 feet long and 40 fert in width, and together falling 64 feet ; from thence the canal is continued on a level to Corpach, where are two connected loaks filligg 15 feot, and a single sea-lock entering the tideway of Loch-Eil. The sifl of thin last moutioged lock wes inboriously excarated in cock, to as to sagure a dapth
of 20 ceet of water at high water of an ordinary neap-tide. The operations which were necessary in making this lock were eutirely dissimilar, but not much less difficult than those at Clachnacharry, and are worthy of attention.
"The connection with the tideway being to the westward of the general line of the valley, and at the rectangular turn of Loch-Eil towards FortWilliam, a well-sheltered roadstead and good anchorage are here obtained. Loch-Eill and the Linnhe-Loch are inlets of the west sea, and the latter joins the usual channel of navigation south of the Sound of Mull.

The navigation by the Caledonian Canal between the two scas wis upened at the latter end of 1823 ; the eastern distritt had previously been marigated threc years."

From the above description of the works in the neighbourhood of Torvaine the profestional reader would be led astray, for no notice is laken of the difficulties which impeded the progress of the works, and which still cause them to remain in a defective state.

To understand this, it must be observed that Torvaine is the name of a very high hill of sand and gravel, at the base of which flows the River Ness, and it was necessary to widen the bed of the river on the south side, which, at the same time, produced earth for separating the river and canal, as stated above, by removing the opposite bank; for in fact, there was no opposite bank to remove, the land on that side being very low and fiat; and although the widening was rather considerable, the earth so obtained formed but a small portion of what wus necessary to separate, by a proper embankment, the river und the canal. The hill of Torvaine, although at least 150 feet above the river, had to be cut into to a considerable extent, before a sufficient quantity of stuff conld be procured and the canal was partly congtructed on the hill, and partly in the river. The annexed sketch will better describe the features of the canal at this particular place, and show the peculiar nature of the position.

A-The Ness River.

B-The Caledonian Canal, partly cat out of the foot of the bill, 50 feet wide at the bottom, and 120 feet at the top, and 20 feet deep. C-Embankment formed from the cutting opposite, with a slope of i_{1} to 1, and 20 feet wide on the top, which divides the canal and the river Ness.
D-The part of Torvaine Hill cut away, with a slope of $2 \frac{1}{2}$ to 1 , and benches 10 feet wide.
The course of the canal from the Muirtown Locks, on towards Torvaine, passes through a stratum of clay, but as it more nearly approaches Tomnahuric and Torvaine, the stratification becomes loose and porous. At Torvaine, in particular, the whole hill is composed of sand and gravel, which continues through the Muir of Dunanchroy, and on to Dochgaveh. The engineers, notwithstanding the knowledge of these materials forming the banks of the canal, neglected taking any precaution to line the canal with puddle, but entirely depended on the great supply of water which they had in the Looch and River Ness, which run close to the canal through nearly the whole district. These, they trusted, would oupply the loss of any water by filtration; and they also calculated that, by means of this, the deposit of the river would ultimately have filled up the interstices of the gravel, and that, thereby, the canal Fould be rendered water-tight. With this impression, no sidelining or bottcm puddle was provided, and the consequence was, that they could never keep the canal full, but the water filtered out before it reached Tomnahuric. This circumstance occasioned much surprise and ditappointment at that time, and a danı was placed acres; the canal, to retain a def th of about five feet of water through the Moir of Dunanchroy, so as to try the effects of filtering. Many thou:ad tons of loamy silt were brought down and hove into the lostom of the canal, but to no purpose; for, as fast as it was thrown in, it was carried through the sides and the bottom into the river; and instead of the silt filling up the interstices, every part of the camen when the water was let jn, became more and more porous; for
the water not only carried away the stuff thrown into the canal, but it also carried away all the sand and smaller pebbles, making the gravel still more porous, so that in a very short time the bottom and sides of the canal became as open as if it had been made through a mountain of macadamized stone. The contractors were employed for many days near Dunanchroy, trying to prevent the leakage, but without the least practical effect.

There can be no doubt that the want of a puddle lining in this part of the canal was attended with disappointment, great expense, and to a certain extent a failure of what the canal proposed to be, and what it ought to have been conducted on a different plan. Instead of using the porous materials of Torvaine Hill for the embankment, the clay which was found between Torvaine and the Muirtown Locks should have been employed, instead of which it was wheeled into spoil, and thus thrown to waste. The canal ought also to have been cut much deeper and wider, not only to receive the necessary puddle of clay, but also for a sufficient protection of gravel facing to keep it firm. All this could have been done at half the expense, or perthaps one-third, of that afterwards incurred; but the most unfortunate part renains yet to be told. It is a fact, that after having proved the ineffecturl and superficial manner in which the canal bad been constructed, and having determined to deepen and widen it to the necessary size for receiving a proper thickness of puddle to resist the pressure of water, by some unaccountable error the canal was never made deep nor wide enough for the purpose, and up to this day the canal at that part has not strength of side and bottom lining to carry more than 12 feet water, instead of 20 . We ask the editor, is not this the true cause of the failure of the canal, instead of the ridiculous statement set forth in the work before us at page 66 ? The facts we have stated are quite sufficient to prevent large vessels from navigating this canal, and until the line is made perfect there, it is quite useless to have 20 feet of water in any other part. We recommend strongly that an inquiry should be made to see how far the defect we have pointed out, and any others, might be remedied, so that the canal may be perfected for 20 feet of water throughout, and what would be the cost.

After such an immense sum of money has been expended upon this canal formed on such a grand scale, with its locks of size and depth to carry through a frigate with all her stores, it is worth while knowing why and wheretore no vessels drawing more than twelve feet water can navigate through it. We are of opinion that a comparatively small sum, as compared with what it has already cost, would make this canal a credit to its projector and a source of profit to the country; and, in time of war in particular, its adrantages in letting through ships of war and steam boats would confer incal. culable benefit, which in a Russian war could not be too highly prized.

To revert to the progress of the work before us, the next object of considerable magnitude and boldness is the formation of the sea lock at the eastern entrance.

Foulston's Public Buildings.

aecond notice.
Of the buildings here described, that containing the Thestre, Hotel, and Assembly Rooms, is the most important subject in the volume, both on account of its extent, and of the fulness with which it is illustrated. Its principal, or north front, is 270 feet in extent, 70 of which are occupied by its octastyle Ionic portico, which is raised on five steps, and whose columns are thirty feet high. The remaining one hundred feet on each side of this centre, has three tiers of windows (seren in each tier), viz. ground floor, principal, and attic or mezzanine ; all of which openings have dressings to them, those of the ground floor and mezzanine kneed architraves, in addition to which those of the principal floor lave both frieze and cornice. The general appearance is good, has a certain degree of breadth and simplicity that are sufficiently pleasing; and although it is upon a somewhat lesser scale, this fagade very much resembles in its style that of our Post-office here in town, while it cortainly cannot be said that the architect was in any degree indebted to the latter building, since it appears that his own was commenced several years before, namely in 1811, the foundation stone having been laid on September 10th in that year.
So far, indeed, from suffering very greatly by a comparison with a structure that is a national work, and one moreover that cost the country upwards of 230,000 l., the Plymouth building-and Plymouth, as Mr. Foulston himself tells us, is, though spirited, proverbially poorneed not shrink from it, as in some respects it will gain by such comparison, particularly if we bear in mind its priority of date, and the means placed at the disposal of the respective architects. This difference in regard to means becomes all the more striking, when we
consider that the Plymouth architect had to provide a good deal in the way of decoration both in the assembly room and theatre, to say nothing of the various other apartments; whereas the rooms at the Post-office exhibit nothing further than desks and bare walls. We mny further remark, that in regard to the windows, their features are far better in the Plymouth building than in the metropolitan one; and while they are less bald and insipid in themselves, they are not squeezed so close together, consequently do not impart to the design that ordinary dwell-ing-house aspect whicls, whatever the design may be in other respects, is almost sure to communicate itself to the rest where such openings are too numerous in regard to the space allotted to them. We may further observe, that the style of the facade is very properly kept up in the adjoining fronts, or returns at the ends, whereas in Sir R. Smirke's building very little similarity of character seems to have been aimed at in its different sides. While we admit thus much in farour of what Mr. Foulston has here done, we feel it incumbent upon us also to notice some defects. As he bimself, so far from putting forth any claim to originality, is content to forego all commendation on that head, we feel no reluctance in saying that we must withhold it ; but it also appears to us, that notwithstanding his professed admiration of Greek architecture, he does not show limself to have imbibed its real spirit, and caught its feeling. The portico exhibits to us an lonic order, treated with literal correctness, indeed, as regards certain established particulars of detail, but without any artistical expression or effect. Were it not for the capitals of the columns it would be an absolute negation of any distinet order, because as to all the rest, it is marked, not by positive claracteristics of its own, but merely by the omission of those which serve to distinguish the orders.

The entablature is of the plaincat description, far more so than that of the Doric order, which is the only one, we may observe, in which our modert architects have thought fit to retain any degree of decoration as regards the frieze. Here both the entablature and frieze have a particularly naked, and not a little heavy appearance; and yet, notwithstanding the rigorous economy-not to say poverty-displayed in those parts, statues are introduced on the acroteria. The doors within the portico are, taken by themselves, pretty enough; but although their prettiness, would recommend them as part of a shop front, or something of that kind, it is altogether out of keeping with the character which ought to be kept up in a building of this class. There is, however, one merit in this portico that ought not to be passed over in silence, which is, that instead of being crammed full of doors and windows, there are only three doors, and as many windows over them, placed so as to correspond with the alternate inter-columns in front, owing to which there is an agreeable degree of breadth and repose in the bark ground to the colonnade. The ball-room, which is on the principal floor over the great dining room, is 77 feet by 40 , and 32 high to the centre of its segmental ceiling, through which it is lighted from Gve lunette windows on each side above the cornice, forming arcs doublecuux in the curve of the ceiling itself. The Lysicrates example of the Corinthian order is here introduced, in columns placed two at each end on the sides of the room, coupled with antre behind them; and the capitals of these latter, which are continued each side, so as to divide it into five compartments or in-ter-columns, are similar to those of the columns themselves. Whether these pillars and pilasters are of scagliola, or painted either in imitation of that material or of stone, is what we are not informed, neither is it said what is the colour of the walls, although a very fow words to that effect would have served to remove the uncertainty in which we are now left in regard to what is a matter of some importance in itself. In our opinion too it would have been far more satisfactory had Mr. F., who is so liberal of his illustrations as to gives a representation of the Lysicrates capital and entablature, favoured us with a drawing of one of the compartments of the ball-room, drawn to the largest size his book would allow. In that case we might perhaps have been better satisfied with the design of the panels on the walls, which, as shown in the general section, have a poor, not to say too trumpery look, for they appear to consist of mere lines with sprigs at their angles. Whether they are really such, or raised mouldings, or whether distinguished by gilding from the general surface of the walls, we are unable to judge.

Thereare many other patits of the interior which, on examining the plan, seem grently to stand in need of further elucidation, by means of particular sections on a larger scale. A larger section, or rather two or three of the kind, are very much wanted to show the interior of the audience part of the theatre, for, as represented in the general section, it is so small that very little can be made out in regard to it, especially as the mode of engraving here adopted (litlography) is by no means very favourable to neatness and distinctuess wheu the subject is minute.

On the other hand, a greater number of plates than seems altogether necessury-no fewer thata tiventy are devoted to explaining the carpentry and machinery of the stage-and as very little, if anything, has becn before publiviled in this cusutry on the coustruction of that part of a
theatre, and the various apparatus required for effective scenic clanges and exhibitions, this work will doubless afford great assistance to those who may be called upon to execute anything of the kind; but the letterpress explanation to these plates is exceedingly briefindeed, which is the more to be regretted, because it requires some previon familiarity with such mechanism and contrivances in order to comprehend it-at least to judge how lar that here shown is marked by any improvement.

At page 7 of onr present volume will be found a table of the dimensions of some of the principal theatres, by referring to which the comparative size of the Plymouth one may at once be estimated; for we slall here transcribe the author's own account of it.
"This is the only fire-proof theatre-in the country, the whole of the framing for the boxes, corridors, \&c., being of cast-iron. The roof (the span of which is 60 feet) is of rolled irou, and though no piece is more than It of an inch in thickness, it is yet remarkably strong, and not more than half the weight of a timber roof. The particular constinction of the ironwork to the boxes and the roof is shown in plates Na. 41 to 45.
"The auditory is included within a circle, the ends of the boses being rounded off at three-fourths, and their back partition continuing to the columns of the proscenium, by which there is a perfect view of the stage for the spectators, to the depth of 25 feet from the least eligible seat in the boxes. The pit, which is 33 feet in diameter, will afford accommodation for 200 persons. There are two circles of boxes, capable of receiving 512 persons, and above them a gallery and slip boxes, which will jointly contain 480 persons. By means of an arched coloonade. continuing along the gallery and the ships, the ceiling of the theatre is completed in a perfect circle."

The other dimensions are as follows: the diameter across the boxs, 48 feet; width of curtain, 28 ; depth of stage from curtain, 30 ; height from floor in centre of pit to ceiling, 40.

Almost adjoining the preceding building, or separated from it only by a street on the west side of it, is another edifice of Mr. Foulston's, namely the Athenxum, which was begun in 1818. Its north front, or that on a line with the hotel, is a Grecian Doric tetrastyle, and though somewhat lower than the other, is of a richer character, for in addition to the usual ornament of the fricze, the pediment is filled with sculpture, at least is so represented both in the view and elevation, and is surmounted by a figure on its apex. Within, this portico has only a single door below, and three windows above, or rather a window-niche, over the door, with a statue, and a window on each side of it, which arrangement gives some originality and play to the composition. As to the details of the order, which occupy two out of the six plates devoted to this subject, we could rery well have spared them, and should have been better pleased to find the various parts of the interior more fully represented. Of the remaining designs we must defer speaking till next month, when we shall pass them in review, and examine how far Mr. Foubiton las been successful in his allempts with other styles.

Isometrical Perspective. By T. Sopwith. Weale. 1838.

This is a new edition of Mr. Sopwith's well-known work of Isometrical Perspective, in which he has extended its application to mining. In this department it appears well calculated to be useful equally for professional purposes, as to explain the subject to persons generally interested in it. Mr. Sopwith has introduced several improvements in principle into this edition, aud altogether it presents one of the most valuable works which has yet been published on this subject.

The Universal Calculator. By J. Wallace. Glasgow, M'Phuo1838.

This is the cheapest work on the subject which has yet been published, and has condensed in the smallest possible space, most of the arithmetical knowledge necessary to the engineer. Most of the calculations are made by logaritloms, and many new processes of calcution suggested by the able compiler. Altogether it is a work recontmended by its portability and the moderation of its price.

LITERARY NOTICES.

We bavo an article prepared on the subject of Enginetring Education, but wo regret that the pressuie of matter has obliged us to dofor jis publicatioa until bext month.

We shall next month refir to Mr. Hays work on Coluwr as applied to interkul Drcoration aud House I'rinting.

Loudon's highly intereating work, The Suburtorn Gurdener, we shall review in our next number, for in our precent crowded columne wo ehould not be able to do jubtice to it.

We are happy to find that the steter Arty, Painting and Soulptwe, have now

- periedical dovoted to them under the titlo of the "Art-Inalon," the first number of whict has been transmitted to us.

We have had placed in our hapds the corrypondenco between Mr. Hyde Clarke and the Weat Comberland Railway Committee, but it is too long for our pagen, although we think that Mr. Clarke has not boen treated with
proper attontion.

PROCFPDNTG OF \&CLHNTWFIC SOCLYTIES.

INSTITUTE OP CIVIL ENGINEERS.

address of daxes walker, esq., the president,
To the Annual Gemeral Mecting, Jannary 15, 1839.
I thauk you very sincerely for the munner in which you luve expressed yourselves of my endeavonrs during the past year. It is truly gratifying to me if, through your partiality, I have been at all the instrument of forwarding this institution, and the object of the escellent man (Telford) whose picture is now behind me.*

There is really so much doing in this country alone, that without drawing largely upongenius, it would be sufficient to register but a proportion of the new works in progress to keep us fully employed; and suroly the most timid asociate or graduate need not be afraid of assisting in this. By the originaI by-laws a candidate for admission was required to present a drawing or paper; this has been waived, but still I consider tho claim remains as afmost a debt of honour, and the discharge of it wonld be found acrecable, if set about; agrecable not only in the excention, but in the antiripation of reward; and 1 would have gentlemen only refleet upon the suhjertes for which preminms luave been adjudged, to sec that the distinction riquires no particular skill, but only resolution and moderate application; where there is the will, I am sure there is in this case an easy way. I am aware of the difficulty that frequently arises from indecision and in choosing a sabject; a difficulty often felt and confessed by our most distinguished English estayiat. To remove this, the council have given subjects for papers; and it has occurred to me that it might even be desirable to charge iudividuals with particular subjects---thus not only imposing more specially a duty upon the individual, but confining his attention to the particnlar subject (and even 6 limit the time) ...both of which, I have found, from long exprrience, the best preventives to wandering and procrastination.

Let ous remember aleo, that as the importance of our profession is increasing, and is being felt, it behoves us to exert ourselves to maintain our relativo station. Clawes, with professorships, for the cducation of the civil mpincer, ure established at our colleges; and there is now upou the table a prospectus fur the establishment, on a large scalc, of a college for civil chpinecring.

We have cvery reason to be grateful for our success herctofore, but our motto must be "Forward," and we must kcep up to it. There is an ample harrest to reap from the new works which are going on throughout this remutry, from the Land's End to the northern extremity of Scotland, and in Ireland; and as the powers of human invention and discovery increase, the 1 ange for it becomes more ample-.-the higher we rise, the more enlarged is the sphere that bounds our prospect. There is reusou to believe, from analugy, that we know as yet but a small portion of the powers and capabihtics of matter, and which require but the application of mind to bring them to light. Much, I admit, has been done within the last ceutury; but ar our decpest pits are, when compared with the radius of the carth, but seratches on the surface, such, I believe, would our stock of knowledge, much as we think of it, appear to a mind that could comprehend all the properties and beraties of nature, cren of that province with which the civil coggineer has to deal; and this would appear the case to the last of a sucresoion of Newtous, or Watts, or Huddarts, supposing each to add to the tork of his predecessur, even more strongly than it does to us. How much then orght we to admire that beautiful adaptation, which is fitted to man in "very stage of his mental imprurement! 1 sometimes doubt whether, when mechanical and other scientific improvementsare made, weare disposed sufticiently to refer to nature, and then to rise to the author of Nature, in adiniration of the treasures which have been opened, and are still in store for mankind. Thiss, in admiring tho genius of a Newton, and others, we are not so dispowed as we ought to be to carry our admiration back to the natural substances which have produced the glass, without which the priacipal phenomena of light wond still be unkuown; and to refiect, that these subshances have cxisted from the beginning, althongh their combinations are of human discovery of no rery racient date. Again, when we admire the ntupendous tixed or the aetive locomotive engine, or the fine machinery of Huddart, for drawings of which you have seen two premiums awarded, and reverence the minds which have brought these to their present state, let us not sorget how small are these compared with the naterials for stenn and for manufacturing the steam-cnginc,--the water, the coal, and the iron; how nsignificant these minds conpared with the mind which gave to them the propersties they have, - to stemin its elasticity and wondrous velocity, --and uspreanel upon matter thow beautiful and uniform laws which govern it, and ruabled a Huddart to calculate with certainty the strengih of his materials, aud what would be the result of his complex eombination of aheels aud pinious! What the poet said of the underout astronomer, that "he is mad," may apply with equal inuth to the undevout mechanie or manecr; and it would be well if those delightful feelings wero cultivated, and invariably astociated with the study and practice of the cmpiuecr, so What to mind might in every punait dwell upouthe Fundrous wdaptations of
nature to the wants and pleasures of the community, and both in its lowest and most improved state be led to the contemplation of tho power which formed, and the goodness which so admirably fitted the whole for the neo of his creatures.

I have been led withont premeditation into this train of reflectiou. I gratefully acknowledge the attention you have paid to me on the present and on every occasion, and now leave the chair with a repetition of my thanks for all your kinduesses.

Jan. 8.-The Phesident in the chair.

The discusaion on this occasion was on the uso of peat in the manufacture of iron. It had been remarked at a previous meeting that the iron made with peat fuel was more malleable than Swedish, and that the tools were of a superior quality. It was doubted whether peat fuel had been recently employed, or, indeed, whether it could be used at all in the pudding furnace, though it might in the refining or smelting funnace, but with a diminished produce. The working of iron by peat fuel was known to improve its quality in some respects, and the wrelds especially thus made were superior to those made with coal. The Dartmoor peat wes frequently used for this purpose, and found exceedingly good. The improvement of iron by the use of a particular fucl seemed a very difficult question. The weld made with ligneous carbon, owing to the absence of sulphur and pyrites, must be better than that made with a fuel containurg these impurities. The analysis of peats is very various. They all contain 5 per cent., and some 20 per cent., of earthy matter. Some kinds of peats were stated to produce threc times as much gas as coal. Peat was said to colltain no sulphur, but the experience of several gus-works, in which peat was employed, proved that some peats contain large quantitiey of sulphur, as the purifiers become rapidly tilled with sulphuretted hydrogen. All coal, however pure to the cye, contains pyrites and sulphur, so that sulphar must be considered as une of the elements of coal. Much is to be attributed to long practice in the use of fuels; the smiths of Connwall can use peat, and the smiths of Pembrokeshire anthracite, for all purposes of working iron: both would, however, use pit coal could it be couveniently procured.

> Jan. 29.-Brian Donkin, V.P., in the chair.

On framing Lock Gates without Iron-work, by S. Ballard, A. Inst. C.E.
The horizontal pieces in gates thus framed are held to the back by doretailed tenous and wedges; the use of iron T pieces being thus wholly dispensed with, the premature decay which invariably takes place where wood is in contact with iron is entirely avoided. The mortices into which the pieces are inserted are previously filled with tar, or white lead, and on the wedge being driven in, every part is rendered perfectly water-tight. This method has been adopted in gates on the Herefordshire and Gloucestershire Cual, and, after cight years' experience, found completely successful.
On Tubing the Boilers of Locomotire Eugincs, by G. Buck, M. Inst. C.E.
The author's object has been to determine the diameter of the tubes of a locombtive boiler, so that the greatest quantity of steam may be prodnced by a given quantity of fuel, on the condition that the cvaporating effect of the hot air, in passing through the tubes, is in proportion to the cxtent of surface in contact with the hot air and the time of contact conjointly. The result of this investipation is, that the distance betwixt the diameter of two adjacent tubes should be equal to four times the interval between their internal surfaces. On comparing the aggregate surface of a locomotive boiler tube, in this proportion, with those geuerally employed, the fonner is superior by from 23 to 26 per cent. to the latter.
On the state of the Suspension Bridye at Montrose, aftcr the late
Hurricanc, with remarks on Suspension Bridges, by Culonel Pashiy, IIon. M. Inst. C.E.
The hurricane of the 11th of October carried away a third part of the roadway of the suspensiou bridge at Montrose, and broke or bent very much all the rods on the west side. From the effect here produced, ant his expericnec of the motions of suspension bridpes, the anthor is of opinion that the dangerous undulations are longitudinal; that the whole roadwity is brought, by the action of the wind or pressure of the air bencath, into H stato of waves, by which the roadway is ultiunately broken up; that this can ouly be obviated by adopting a strong longitidiual trussing, as has been done by Mr. Tierncy Clark in the Hammermith Bridge, in which no motions of this uature are expericuced, even in the most violent gales. This opiniou of the action of the wind on the under side of the roadway, is confirmed by what Colonel Pasley once witnessed at Chatham Dockyard. Oue side of the roof of a large ship-building shed ruse up and down repeatedly, fapping like the leaf of a book, until a portion, of nbout tho extent of 40 feet by 10 , was flonted up like a shect of paper, and carried to a distance of 50 yards.

Feb. 5.-The President in the chair.
The following gentlemen were clected:-Alfred Burges, John Taylor, as Members; Joseph Baxendule, J. M. Parsons, J. Bennett, as Assoriates; and Charlex Wood, M.I', as an Honorary Micmber.

Mr. C. W. Willians presented specimens of Peat, from the fint state, as taken from the bog, to the last, when compressed and converted into a hard coke; nud of his new Resin Fuel, or artiticial coal, which is composed of resin and turf coke. This resin fucl is found of the greatest use iu long voyages, when used with a proper propurtion of cond, as it enables the fireman it maintuin the requisite pressure of stemm with grcat regularity, and also
to raise stemm more mapidly on any cmergency. It is not adapted for use asa fuel by itself, but when about $2 f$ cwt. of this fuel is used with about 20 cwt. of cual, by throwing it in front of the tirc with each charge of fresh coal, a much better combustion of the coal takes place, and the effect is equal to that which would be produced by 27 cwt . of conl. Thus $2 f$ cwt. of this fucl so employed is equiralent to 7 cwt . of coal. The cost is from 35s. to 10 k . per ton. The Trausatlantic steaners carried from 40 to 60 tons of it, and besides the advantage attending its use, there was a suving in room, which was applicable to the stowage of corgo.

A long discussion took place on the important facts which the application of this fuel had elicited. Those appeared in some meanure contradictory to the results, which could not be doubted, that 9 lb . of coke will do as much inany departunent of the urts as 12 lb . of coal: for on adding tw coal a peat and a hydro-carbou far more iuflammable thau caal, the result is equivalent to that which is produced by all the carbon, hydrogon, and oxygen, in nany tinues the quantify of coal. It was remarked, that the circumstances under which fuel was employed ought to be considered, as the cousumption of fuel under steam-boilers could hardly be compared with the consuuption for simply heating and keeping hot a large pass of matter as in a glaxs-house. It could not be believed, that the aboulute quantity of heat from the coke of a ton of coals is the arme as of the ton of cuals, for in that case all the heat of a coke oven would go for nothing, und there were instances of this being beneficially employed.

INSTITUTE OF BRITISH ARCHITECTS.

E'eb. 4.-P. F. Robinson, V.P., in the chair.
The Cavalier Bianchi was elected an Honorary and Corrcsponding Menber.

The report of the Council, as to the adjudication of the Prize for the best restoration of an ancient castle, was read and confirned; and the letter, bearing the notto of the successful drawings, haviug been opened, the author appeared to be Mr. Samuel Sharp, Assuciate, of York. In consideratiou of this being the second time that Mr. Sharp had entitled himself to the approbation of the Institute, for the zeal and talent with which he had executed the restorations of St. Mary's Abbey, York, and Sherif Hutton Castle, it was resolved that a gold rim be added to the Soaue medallion, which will be awarded to him.

A tranolution, by Mr. Donaldson, was read, of a memoir of the late M. Pbrcitin, anohilee, of Paris, Homorary and Corresponding Member, foruurded by M. Vaudoyen, archilect.

Charlos Percicr was bom at Paris of a respcctable family, and received a liberal education. From his earliest age he cvinced a talcut for drawing, was placed by his father at the free school for drawing, then under the management of the founder, M. Bachelier, painter to the king. His taste leaning to the side of architceture, he soon after entered the studio of M . Paris, whose school had long enjoyed considerable reputation. In I783, M. Percier carried of the secoud great prize ; and in $\mathbf{1 7 8 6}$, having galned the first great architectural prize, he became a travelling student to the Freach Academy at Rome. He there became the compalion and intimate friend of M. Fontaine, who, pussessing like tastes, like ardour, and like information, entered with him into the same brauches of study, and from that time the two friends worked logether, travelled together, and lived in the same dwolling; aud, till thoy wore soparated by death, they shared the same glory, the same joys and sorrows. On the return of MM. Percier and Fontaine to France, the storm of 1702 was riging, and they employed their taleuts in designing for manufacturers of carpets, paper, furniture, \&c. It was at this time, also, that they eugraved and published their many useful studies in Italy. A calin liaving at length succeeded, M. Percier's tulents began to be appreciated under the Emperor, and in the following reigns he was called to assist in great works. Le Carrousel, the Triunphal Arch, the interior of the Tuileries, the Kue de Kivoli, the completion of the Louvre, Ise Chapelle Expiatoirc, the improveusents of l'Eiysec, de Malmaison, de Neuilly, and Fontainebleau. M. C. Percier died on the 5th of September, 1838 , at the age of seventy-four. He was a man of great general information, conversant with the literature of his own and foreign countries, well informed in history, antiquitics, a lover of painting and of musie, to all of which he had devoted much attention. In consideration of the advantages he had in his youth derived from the Royal Free School of Design, M. Percier bequeathed a sum of 150,000 francs to this institution, for the encouragement and assistance of poor and deserving students. At the conclusion of the paper, Mr. Wunaldson reviewed at some length the various merits of the numerous works published by Messrs. Percicr and Fontaine.

At an Ortinary Gevieral Meeting, held at 16, Lower Grosvenor-streat, 184 Feb., 1839, P. F. Roninson, V.P., in the Clwair.
A letter was read from Mons. Yaudoyer, acknowledging the thanks of the Institute for his former communication, and enclosing a liat of the reatorations made by the students of the French Acbalemy at Rome, and preserved at the Academy of Fine Arts, at Paris.

The following donations were annoanced as having boen received since the last meeting:-

From Mons. Laves, Hon. and Cor. Mem. at Hanover: A Print of the Water. 100 Column and Hall of the Knights, Hanorer; and Pamphlets on the Qualities of Wonds-Goorge Saunders, Eay, : two steol standand foot mennuts, pros-
paced by Ramsden.-H.E. Kendall, Fellow: Cast of the Lion's Headrfrom the Parthenon.-C. J. Richardson, Fellow: Proof ipprastion of a view of End. Lend House.-T. L. Domaldson, H.S. : one volume of Trangetious of Ameri. can Institute, containing the "questions published by the B.I. B. A.- F. C. Mylne, Fellow : Editio Princeps af Virruvius, and Autograph Lettersaf G.B. Piranesi, Bonomi, Robert Mylne and Lewis, Architects; and of Sir Willian Hamilton, formerly British Ambasagdor at the Court of Naples.-Copy of Resulutions of Associated Architectis, to consider cases of frequent fire and means of prevention.-Thomas Chawner, Fellaw, presented twenty guineas.
A paper was read from Mr. Martin, of Derby, describing a new species of cement invented by him, accompanied by specimens.
A paper was read hy John Shap, Follaw, ap Hicclesiantical Architectore applicable to Modern Churches; a printed copy of which Mr. Shaw alo presented.

A Description of the Manufacture of Paper Hangings, by Mr. Joha Greger Crace, was read; illustrated by various samples of papers, and expisined br specimens executed by Mr. Crace's assistants at the time.

A Letter was read from Wm. Wilkins, Esq., R.A., addressed to his Londaip, the Preaident, calling attention to some drawings wbich accompanjed thr letter, made by young self-taught draughtsman at Cambridge. The letiar alis stated that another volume of the Diloutanti would soon be ready for publication.

ARCHTECTURAL SOCIETY.

Ordinary Meetiny of the Sociely held 2014 January, 1830 -Williax Basmli. Esq., is the chair.
Michael Meredih, Esq., of Blomfield-strect, Finsbury Circus, wes elected a member.
The Chairman announced a donation of twenty gaineas, by J. Grifith, Esq., (member,) of Finsbury. Place, South.

Monthly Mexting of the Sucicty hicld Tuesday cvening, the 1ath Yebruary, 1839Wililian Tite, Esq., President in the chair.

Thomys Nichole, Esq., of Castle-street, Hotbern, was elected a Member.
E. W. Brayley jun., Esq., delivered a Lecture "On Limentones and othet subetances affording materials for Cements," being the second of a course of lectures now in progress of delivery in the Society's Rooms.

The Chairman announced that the subject for the sketches proposed to be produced by the atudent members at the next meeting was as follotif:-"The olevation and plan of an entrance to a Lunatic Asylum, dotached with lodge ench side.'

The next Public Meoting will be beld on Tuesday evening, the 12 th imstath, when Mr. Brayley will deliver his third leature "On artificin substences employed as subrtitutes for Stone."

ROYAL SOCIETY.

Feb. 7.-The Marquis of Nosthampton, President, in the chair.
James Heywood, Esq., and the Rev. H. Mosely, M.A., were elected fellows.

A paper was reud, entitled, 'Notice of a Shock of an E'arthimake, fell in thi Ishand of St. Mary's, one of the Scilly Isiands, on the 21 lst of Janmary, Is \% By the Rev. George Wordley.'

The tremulous motion of the ground is described as being very slight, and felt chiefly in the south parts of the island. It was accompaniel by a pern. liarly harsh and grating sound, which was only of momentary darajion, and no particular agitation of the sea was observed.

A paper was also read in part, entitled, 'Obsercations on the Parallet Roads of Glen Roy, and of other parts of Lachabar, with an attempt to pruct thot they are of marize origin,' by Charles Darwin, Esq., F.R.S.

Feb. 14.-J. W. Lubbocx, Esq., V.P. and Treus., in the chair.
A paper was read, entitled. 'Researches on the Chemical Eymicalenth af ieflar bodicy; by Ricuard Puillaps, Eaq., F.R.S.

The author examines, by a new series of experiments, the truth of the theory of Dr. Prout and Dr. Thomson, namely, "that all alomic weighte are simplo multiples of that of hydrogen"-a theory whioh the late Dr. Turact had maintained is at variance with the most exact analytic researches, and consequently untonable. Although the experiments of Dr. Tarner, and be infereaces which he drew from them, agree very nearly with those of Berty. lius, it atill appeared to the author desirable to inventigate this sabject; and it occurred to him, that the inquiry could be conducted in a mode not liable to some of the objections which might be urged against the processes useelly omployed. Dr. Turner baving adopted a whole number, namely, JOB, as br equivalent of silver, this substance was aelected by the author is the buis of his inquiry into the equiralent numbers of chlarive, and mome other elemen tary guses. It appeared to him, that the chance of error ariang from the fusing of the chloride of silrer might be entirely remored, and othor adran. tages gained, by experimenting on silver on a large scale, with anch propar. tions of the substances employed as were deemed to be equiralents, and in stead of calculating from the whole product of the fused chloride, to do it merely from the weight of such small portion only as might arise from the difference between theoretical views and experimental results. The anthar coucludes, from the train of reasoning be applies to the serles of experiments so undertaken, that no material, and even scarcely any appreciable, error can arise, from considering the equivalent numbers of hydroyen, oxyen, asatr, and chlocine, as boing $1,8,14$, and 36 reapeotirely.

A paper was also read, entilled, 'Some Account of the Hurricane of the 7 th of
Jurmury, 1830 , as it wean experienced in the meighbourhood af Dumfnics,' is a letter
 andremes io P. A. Rooter, M.D., Sec. R.S., by P. GA1LDEN, Esq

Ifter describing the position of his house, and the nature of the instruments emploged for ohservation, the writer gives his observations of the barometer arui thermometer on the 6 th and 7 of January last, and proceeds to state, that on the 6th, at abont ten minutes past ten o'clock, P.M., violent squalls commenced, at first with intermissions of perfect calms, but gradually becoming more frequent, and being accompaniad by the sound of strong and increasing whiriwinds. By eleven oclock, the wind was obscrved to proceed from the cast, and its velocity was extimated at forty miles an hour. Its violence then increased, and threatened to blow down the chimneys. At midnight it abated, at the same time shifting to the sonth or west. At two oclock in the morning, nearly two cons of lead were torn away by the wind from the west-end platorm on the house-top, and thrown down behind the house in a westerly direction. Some of the lower windows having been lef a little open, the wind thus admitted into the hoase forced up and blew off the very heavy bateh Inor of the roof, which was covered with lead. The whole house rocked orribly, and even the stone floor of the half sunk kitchen story heaved as if shation by an earthquake; the slates from the roof were blown in every direcuion, some being carried to a prodigious distance. During the greater purt of the night the rain fell in tremundous torrents. In the interval from twa to half past three in the morning, the baroncter sunk very nearly an inch and a hair, and reached its gremest dopression. But the tompest continued till abrout four o'clock, whon it began gradually to subside. Extensive devastation occurred among the trees; some that were blown down raising two or thre tons of clay woil with the roots. Several trees thus thrown duwn fell with thair cops to the W.N.W. The writer concludes, from these and other observations, that the first and squally part of the storm begun froin the E.SE., and blew from S. by W. at about midnight, and that most injury was done so tho slating and roof when the wind was not far from the south. It thon gradually yeared to the weat, till noon, and reached the N.W. point by right o'slook in the evening of the same day.

Feb. 21.-J. G. Childxen, Esyq., V.P., in the chair.
Captain Arthur Conolly, and Lieut.Col. W. Raid, C. B., were eleoted fal. Lows of the Sooiety.

The fullowing papers were sead :-

1. 'An Account of the Processes employed in Photogenfe Drawing,' in a lethar to 8. H Christic, Esq., Sec. R.S., by H. Fox Tabbot, Esq., F.R.S.
2. * A Description of an Hydro-pneumatic Baroscope,' by T'.J. Cooper, Esq. 3. Consinuation of Mr. Darwin's paper 'On the Parallol Roads of Glen Roy, and other parts of Lochabur.

THE ROYAL HREH ACADEMY.

Jampley 14, 1899.—8ir W. R. Hamilpn, A.M., President, in the Chair.
His Grace the Archbishop of Dublin, V.P., having taken the chair pro impore, the Preshout communicated to the academy the first part of his rescarches on the Dynamics of Light.
Willam Bald, Esq., Citil Engineer, read a paper entiled "An Account of the
Survey and Map of the County of Mayo."

The author commenced by giving a brief account of the origin and pro. greas of the construction of topegrsphical maps in Europe. In modern times, the firat attempt at the construction of topographical maps may be dated from tbe seventernth century, and was due to the Swedes. Under Charles the Ninth, a eurveying depurtment was organised, placed under the direotion of Bareus, and particularly encouraged by Adolphus. In 1684, the Swedes had completed the general Lopographical maj of Sweden; but it was kept secret, and at the end of a century, they had ouly published some parts of it. These maps wem constructed for the purpose of ameliorating the condition uf sweral provinces of the kingdom, which had been desolated by war. The Dutch also commenced early to construct topographical maps.
The measurement of many aros of the meridian to determine the figure of the earth, had very much extended geodetical operations, and had, in many rases, become the elements on which topographical maps were hased. The numerous geodetical surveys called into activity the inventive powers of the ablest artite in Europe, and inatruments of extieme accuracy were pro. duced; and the skill of obterving and determining angles kept pace with thoee improvements connected with this important branch of science. The repeating yrinciple due to the celebrated Tobies Meyer, gave birth to Borda's circle of ropetition abont 1789, an instrument which hes been connested with the mont brillians soientific operations which adorn the annals of the eighteenth century.

Mr. Bald thes ahomed to the academy some specimans of the new map of Fracos, and noticed briefly the trigonometrical surrey of England-the Nown earvey of Ireland-the maritime surveys of Irelund-the county surregs, and the bog warvaya. He made mome obearvations on the great import. apce of eccurate mapt, eapeoially to profesaional men engaged in conducting poblic woriss, euch us roads, canals, river navigations, harbours, railways, mpplying towns with water, irrigations; to the geologist und miner, exploring the strate, and minural wealth of the country; to the statesman devising improvencents, and doveloping its resources; and to the poor, by affording ugeful emplogmens to the working claseas.

The anthor them alluded to the map of Egrph, whioh was mode during the
period it was under the dominion of the French rapublic, and which receired from Bonaparte all that protection and assistance, which mo much distin. guished him on all occasions regarding the adivancement of the works of science. This map was engraved on fify-threc slects of copper, and the names are engraved both in Arabic and French.

After this introductory account of tho rise and present state of the topo graphical art, Mr. Bald proceeded to the details connected with the survey of Mayo.

The instruments used in this survey were a seven inch theodolite; two five-inah theodolites, by Troughton; a small theodolite, by Dollond; and also a five-inch one by the same artist. In taking the levels over the bogs, two of Troughton's best levels were used. The baromaters were made by Mr. Thomas Jones, of London. There were also two plain tables, a chain for measuring, base lines, a sextant four inches radius, and two sextants, each ten inches radius, divided to ten seconds for observing allutudes, one of which was made by Troughton.
The proceedings of the geometrical details of the survey were then given, and the mode of describing the rise and fall of the ground, which was shaded on the map with a depth of colour corresponding to the sines of the angles of inclination. The irregularities of surfaces were simply delineated by hatch ing lines, drawn in the direction of the declivities, forming a series of nor mals, perpendicular to the horizontal lines of equal level.
Dr. Smite read a paper (by Ligutrmant Newengay, R.N.) "On a Tumulua or Barrow, tear Rush, County of Dublin."
The barrow, called Knocklea, or the Giank's Hill, is situated on the edge of the cliff, about midwey between the village of Rash, county of Duhlin, and the martello tower to the northward, called Dromaniak, and immediately in front of Sir William Palmer's residence, Kinuro Park.
It appears to have been composed of yuantities of boulder mtones and cartb beaped up into a conical form, and sloping away to the base, which was square, as appears from the eastern angle, which yet remuins perfeol. Within the base of the mound there was a circle formed of large stopes placed on their ends, and about one hundred paces in circumference.

The farmer who rents the land on which it stands has removed about one. half of the mound, for the sake of the earth as a munure, and nearly onehalf of the circle of stones on the south side, for the purpose of huilding a wall, part of which is erected on the stones forming the wentesn side of the circle. In the course of his depredations he discovered a passage which opened on the south side; its entrance was funnel-shaped, and the walls of this passage were formed of flag-stones placed on their ends, and roofed in with the same. It was about eleven yards long, and one in width; and led to a low chamber about eight feet long, and sir wide, which was situated nearly in the centre of the barrou, and formed of atones in the same manner as the passage.

Tho farmer removed all the stones forming the wettern side of the passage, and in the course of bis excavations found some human bones on the south side of the chamber, and within the circle of stones. The lines of stones forming the sides of the passage appear to continue on through she mound towards the north side; and a few feet below the prosent surface of the barrow, a litlle to the north of the chamber, there is a bed of periwinkle shells, about eight inches thick, with some limpot and muscle shells intermixed; and bencath this bed of shells there is a quantity of rich dark mould, with some reddish carth, which has the appearance of being burned. A few buman bones, and some bones of small animals, were found in the earth bencath.

Outside the circle of stones, and on the very edge of the cliff, near the western angle of the mound, there wha found a rudely-formed grave containing a human akull, with the bones of the arm, leg, and thigh, which appareally had never been disturbed; the bones of the back, ribs, \&c., could not be diccovered.

There are several remains of entrenobments and smallor mounds in the neigbbourhood.
Circles of stones are found enclosing many similar bastows in Ireland. At New Grange, near Dowth, in the county of Louth, the circumference of one measured sbout four haudred paces; and in a barrom near Drogheda, an engineer officer found a gigantic skeleton, a pair of elks' horns, and a apear, in an upright position : the horns ware above the alieleton. There are many barrows in the neighbourhood of Drogheda, which, if opened under the direction of competent persons, would probably lead to many very interesting discoveries.
The President gave an account of a singuler appearance of the clouds, observed on the 164h of December, 1838, at the Observatory of Trinity Col lage, Dunsink. They appeared, for at least the last four hours of day-light, to be arranged in arches which convarged very exactly to the N.E. and S.W. points of the horizon ; while tho breaks or joints in these arches were directed, thongh with less exactness, to two other horizontel points, whiol seemed to be always opposite to each other, but rangod from N.W. and S.E. to N. and S. Conjectures were offered with respect to the canse of this appearance.

8CHOOL OP DESION,
margaret-btaet, cavendish equare.
We are happy to witness the progrese of this excellent inatitution, which under its able conductor, Mr. A. de Villalobos, seems to effect all the purposes

- Mr. Newenham thinks that, as far as his observation has exfepiled, the eatrance of all barrows it on the nopthat ate.
for which it was originally deaigned. In eddition to the excellent system of enstrection, and the valuable collection of the antique, Lectures on Anatomy have been commenced, and form an additional attraction, if any were needod.

MEETINGS OF SCIENTIFIC SOCIETIES FOR MARCH.

Rnyal Society, Thareday, half-past eight, p.M., 7th, 14th, and 21 st.
Society of Antiquaries, Tharaday, eight, P.M., 7th, 14th, and 21st
Institation of Civil Engineers, 25, Great George-street, West, Tuenday, eight, F.M., 5th, 12th, 19th, and 26th.
Royal Institute of British Architects, 16, Groevenor-treet, Monday, eight, P.M., 4th and 18th.

Architectural Society, Tueaday, eight, P.M. 12 hh.
Society of Arts, Weinesiay, half-pash seven, p.u., 6 th, 13th, $20 t h$, and 27 th .
Ditto, Illustration, Tuesday, eight, P.y. 12th.
Geological, Wedpesday, half-past eight, P.M., 7th and 2lsL
Rosal Geographical, Mondny, nine, F.M., 11 th and 2ith.
Graplic, Wednesday, eight, P.M. I3th.

ROYAL EXCHANGE.

We regret that we cannot yet announce any final decision in regard to this building. The disgraceful delay which has now arisen in consequeuce of the dispute between the City and Govermment will be the cause of losing the very best time of the year for getting in the foundations of the building. If the city authorities were to deternine to-day to issue notices to architecta for the designs, there must be a delay of at least three months, to give them an opportunity of working out their ideas, and at the end of that time after the committee should have determined upon the design to be adopted, there must be a farther delay of another three monthe for the preparation of the contract and working drawings, specification and estimates for the builders, which would bring us to the autunn, and drive the builder into the short day and the inclement scason. As there cannot be any difference between the partics as to the necessity of clearing away the immense quantities of rubbish and the old foundations for the new building, we should recommend to the city the necessity of immediately eugaging with a contractor for that purpose, which will be very considerably forwarding the works.
For onr part we cannot see for what reason the city should be afrnid of submitting the selected design to govemment. If all is "to be fair and above-board," and if the city really intend to submit the designs to public competition, and select the best without farour or affection for any party, there can be no fear that the government will act in opposition to the city, when thus so honourably calling upoa the profession for their labours. Wo do hope and trust that beforc our next Journal is published, some decision will have been made and this vexatious delay arrested.

THE FINE ARTg.

THE NEI,SON MONUMENT.

On Saturday the 25th ultimo, a highly respectable meeting of the general committee was held at the Thatched-house, St. James i-street, to receive the report of the sab-committee, who were appointed to recommend to the consideration of the general commitlee those models and designs which were sent to Rainey's gallery, Regent-street, for the Netson monument, and also to adjudge to the three best the prizes of 2001., 1501., and 1001. Amongst these present we observed Lord Minto, the Marquis of Northampton, Sir John Barrow, Mr. Rice, the Marquis of Brendalbane, Lord Melville, Lord Yarborough, the Earl of Hardwicke. Sir Thomas Troubridge, the Right Hon. John Wilson Croker, Sir George Cockburn, Lord Colchester, the Hon. Captain Grey, Sir George Murray, Lord Hotham, and numerous other persons of distinction.

In the absence of his Grace the Duke of Wellington, the Marquis of Northampton was called to the chair. Mr. Scott, the secretary, then read the resolution of the general committee, appointing the sub-committec, declaratory of their power to recommend which of the models and designs were entitied to the prizes. There were in all 118 drawings, and 41 models. The report stated to design No. 81 they recommended the first prize, that of Mr. Railton, being a column of 174 feet, surmounted by a statue of 17 feet. The committee, however, expressed an opinion that they thought on a column of such an altitude that the features and character of the statue would be lost, and they therefore were of opinion that a statue executed in marble, placed under the shelter of the National Gallery, or some other public buikling open to thq publie, was the most appropriate way to evince a country's grakitude. The report further stated, that the model No. 10, of Mr. G. H. Bailes, was entitled to the second prize, and that of Messrs. Fowler and Siever was entitled to the third prize. The secretary thought it fair to state, that between the second and third prizes there was a diversity of opinion amongst the committec on their respective merits.

The Hon. Captain Grey objected to the confirmation of the report as regarded the prixes, as many members of the committee had not seen the designs and models; and out of a committee of upwards of 140, not more than 37
had been to view them. He therefore proposed the consideration of the report should be adjourned for a fortnight, so as to afford an opportunity to the committee to inspect them.

Sir G. Cockburn was willing to consent to an adjournment, particubtr as his Grace the Duke of Wellington was absent, who had taken wo great an intereat in the business.

Ater a desultory conversation between scveral members of the committes, a resolution was proposed by Mr. Rice, and seconded by Lord Minto, "That the public, in the week after next, might obtain cards of admixsion to view the Models and designs in Rainey's gallery, by application to the secretary of any member of the committee."
[We sincerely hope that the committee will delay finally fixing the choice of the models or drawings for the three prizes until after the exbibition of tix whole of the Deaigna has been open to the public inspection, as by this meana a tolerable correct opinion may be obtained as to the feelings of the poutic ou the decision of the committee. It appears, however, to us rather out of place that the committee should have selected a deaign for the firat prise, aed a the same time think it 'unsuitable for that situation which ham been simos aniverally admitted to be the best, Trafalgar-qquare.-ED.]

WELLINGTON STATUE IN THE CITY.

On Saturday, 25th ultimo, the general committec assembled at the Mansion-house for the purpose of completing the final arrangemeuts with the sculptor, Sir Francis Chautrey. The Right Hon. the Lord Mayor it the chair.

Sir P. Lauric presented the report from the sub-committec, which statud that her Majesty's governnieut had prescuted to the fund for the city statar of the Duke of Wellington, gur-metal taken in his victories by his Grace of the value of $1,520 \mathrm{~N}$., which, together with the sum of aboat $9,000 \mathrm{~K}$. aiready subscribed, constituted an amount of 10,5200 . It also stated that the sanbcommittee had come to an agreement, subject to the approval of the committeg, to hand over to Sir Prancis Chandrey 3,00KK. upon signing the agreement, 2,0001. With the metal when the small model is finished, and the renaining $4,000 \%$. upon the completion of the work. The time for the completion is fixed for the J8th of June (Waterloo-day), 1843. The report concluded with stating that the 6,0001 . be imneediately inrested in the goverument fuids, in the names of Sir P. Lauric. Mr. Masterman, Mr. Barclay, and Mr. M. L. Jones, as trusters.
It is to be an equestrian statue of bronze, and not less than ton feet hiet, from the top of the pedestal on which the horse stands to the top of the head of the rider. The site was not determined upon, but the nosit eligille one was cousiderored to be between the Bank and the Globe-office, where the buildings are now occupied by the Sun Fire-nffice. Messrs. Ladbruke and Co., and Mr. Thomas's, but intended to be taken down to improve the avenues to the new Royal Exchauge. Sir F. Chantrey was whable t." attend, being engaged at Buckingham-palace with her Majesty, who sat to him for her bust, but his acquiesecuce in the contract and entire arproval of the whole proceedings was sigutied by Sir Peter Laurie on his behalf.
The committec are to provide n site and to erect a pedostal of granite os some other stone three monthe before the completion of the statue.

STATUE TO MR. STEPHENSON.

Measuass are now in progress to commemarate the services renderol by Mr. Roorrt Stephenson in the improvement of locomotive power. This proposition the erisinated with the iron trade, and a higliy influmitial conmittee of iron mastors beo been formed for its pronsotion. It is intended to erect statue, whicb, ou tho mop gestion of Mr. Hyde Clarke, is to be made of castiron. We betiove that this material has been exployed in an equestrian statie at Berlin ; no doubt means may be tiven rered for defonding the iron from oxidation. At all ovents the experiment is worth trying, as its success would enable us to use stutues mote extenaively as a mmars if decoratiou. The comunitteo met on the 15 th February, when molola were loid before them by Mr. Iof and several other eminent artists. We thiuk that there in another name connected with the progress of locomotive power, which is well worthy of some tribute, we nean Richaral Travithick, the iurentor of the high preasure syater. and the rival of Watt, and to π hom the Spanish goremment propuset to erect a statue of silver.

COLOURED PRINTS.

Instructions to the Printer, or Colourer of Engrasings.

The plates to be printed in a bluish-gray ink (this is the neatral tiot for the light and shade of the landscape), and the colourer to wash in the sky with blue or violet, \&e., according to each sketch; alsogoing over the distanoes with each colous, then wash the foregrounds and middle distances with red, orange or yellow, copying the drawings ; and when dry, wech over with bloc, to pro. dace the greens in the middte distunces: this being done as a dead coiouring. a for touches with the havd of the master, and a harmonizing tint to softea tho whole, will produce the effect expected from a coloured print. Fragmenef from Repon.

A Tramsparcui Waich.- A watch has been preseated to the Acmileray of Sonvoce a Paris, constructed of very pecaliar materiala, the parts being principally formed af rock cryata. It wat male by M. Rebelier, and is anuall in size. Tlup internal works are visible; the two-teethed wheels which carry the hande are rock crystal, oto othert Wheole of netal, to prevent acciden is frout the breating of the eprioge. All the seruse are fixed in crystil, aud all the axles turn on rubies. The encapesenont in of seppherier. the belancewheel of rock crystal, and its spring of gold? The regularity of than
 aryital in the balancewheel, de. The execation of the whole alnowa to what sten of perfection the art of cutting precious stones has beon carzied in noodera times.

Antipotrisis

Discoevry of Ancirat Coinu, fc., in the Temple.-Within the lat few days the warkmen amployed in digging the foundation of the chamber in Paper-buildings, Tuarple, beve dimovared sareral earthen venvaln of curious cotistruction, some of them containing coina of an ancient date. Matry have been prichased, and the apot is daily riacied by antiquaries, who evince great anxiety to possess some of the relics.Mornimg Chronicle.
Fioina Casts. - Theso casta in Ule British Musenm have now been arranged as the origiualn are in the Glyptothek at Munich, so an to oxhibit their ponition un the peciliment of the leaple. This in stront the solitary architectural monnment in the masenm, and it in well calculated to animate the public mind in favorur of mecMtactaral decorations, while it more than ever induces us to regret the blind poliey of the govermment in having allowal the origiuals to emcape them. The arrapgement confera great credit on Mr. Luh, the urodeller to the museuna, who has had the superiatendence of the work.

Framable Jhelie.-In the very macient ecelaniantical structure called Kingis Chapel, at Inlip. in Oxfordehire, formerly stood a stone font, which was usoi, as tradition aftirmes, for the baptising of Edward the Confescor, more than 800 yearn ago. It has lung been displeced, aod now ocenpies a lar less plous position in the gardens of sir Henry Brown, who renidea not far ofi, at Nether Rodilington, abil afforde free accese to this entiquarien carionity.

Esppian Stone Cufln.-There is now on board of tho brig Elizabeth Anu, Captain EDis, Iring at the north end of the Queen's Dexk, a remarkably ancient Egyptian atode cofin, recently imported from Alexandria, in the vessel callel the Hope, whence it fase been trunhhipped, to be taken to the British Museum. It is eight feet six inchen in longth, measured outside, and three feet six inchen in width. It is covered with eqrions carring of human figures, hieroglyphica, and emblematical dericen. It was dincorered tar fin the interior of EgJut, and has been sent to England by our consal ax Alerandria. The cost of ite conveyance it is aupposed will reach 1,0002 , owing to the want of roand in Egypt, and the necesity of employing men chiefly as carriers.Lirermoel Paper.

Sarrophagat.-In the Lland of St. Margaret, on the Dannbe, betwixt Pesth and Ohen, her been foumd a aarcophagus of colonred marble, and of diatinguiabed work. aicachip, containing the body of a female, embalnued, and in a remarkable atate of prearration. It in clotbed in a dreas of silver brocade, with a crown of mapive gold wo the heod; a pearl neeklece sarronnds the neck, and each finger io-eovered with risgs, made of precious stonem, besiden which there are many other ornaments of the mome material, as well as of gohl. It is generally thought that it is the body of St. Murgarek, deraghtrof Bele IV., King of Hungary, patronesa of the inland. The sarcophorias hrving boest taken to the Bialuop of Peeth, be has ordered it to be temporarily depoontied in the Cathedral. - Near Peath has also beed discovered in a as encient vase, of an extreordinary shape, tofllly new to antiquariuns.
At Maraal, in Firance, workmen excavating the bed of the river Seille have found, asidat the remains of aquatic plants, and buried deep in the suil, twenty nkeletons in perfect preservation. They lay in different positions, without any weapona by them mope hariag fractured aknils, mome with their face to the gromad, appearing to indicats thelr havitug been peecenble men, who fell victims to an unexpected attack of warlike inredern. Their nockn, their arms, and their legs were sarrounded by bronze rings like those found in the tumuli of Brittany. One of these rings, or solid neckleces, is of remartable worknemahip, elegance and finish. Thin is formed of gold and bronze, and being filted light to the neck, to that it could not pass oves the head, it must eitber hare bean put on the permon who worv it in early youth, or have been moldered when oo. Thnse rolics, supposed to be two thourand years ohd, are occupying the etimation of the antiquaries of Frauce, whose descriptions, detaile, and suppositiona roald cousume more space than we can spare. The bodies, from the appearance of the anelent brickwork beneath them, appear to have anml into the son shme of the riner, Which has subeequently tollditiod, and been angmented by succescive doponitiona of errth and equatic plants.
The Sociely of Antiquarians of Normandy have decided on elevating once more in itn piace a miliary tune foumb in 1819, near Bayeur. It bears an inscription in bwoour of the Eimperor Chaulius, and was orrected in the XL.VI. Year of tha Christina era It is the moat ancient monument of Romans fonnd in Normandy. In coming winrale England the Experor Clendius twice traversed Prance, and Suetonius redicee that in the last joumey he made, which only took up six monthi from the motment ho lea Rome, till that when be returned there in triumph, be travulied on foot from Marmiltan to Boalogne. It was probably arter these expeditions that be metablimbed the military roed of which this miliary stone was one of the appendagea.

C'afielral of Chartres.-The Monitear pablishes a report, addresped to the Minister of Pablic Ingtraction by M. Didron, Secretary of the Hintorical Committoe of Arts and Monuments, on the archeological monography of the cathedral of Chartrea, Amongat other intareating facts, M. Didron ontablishes that the ntatues takeu down laring the revolution of 1793 trom the gullery over the grand portal of Notre Dame de Porie were not the statizes of the Kings of France, as has been seated by the Becsedfetines and Xauval, and as was bellered by Napoleon, who intenied to repeople the gapery, bat aimply the statues of the Kings of Jnda, the ancentors of the Virgius Mary, and Joseph. In the report the atatue of Liberty is also described-a atatue belonging to the 18th century, and decoratiog the northern porch of the Cathedral of Comartite

A carions and inferestiag sepulchral monument has lately been discorered at Rome. The anchant anueduct at the Porta Magxiore, bearing on their lofy entablature the thre insacriptiona, will be familiar to the reculhection of all persons who hare visited the anciquitien of Rume.-(The reader n in find a description of these wajestic archen; ent the soberquent rude works of Honorius placed againat them, in Burgees's "To" pograpley and Antiquitios of Homa," vol. ii. p. 311, 812, and S:29.). Two of the archem of the Clawhing equedaet mervel for two gates of the city, reppectively conducting to the redin which lid to 1 treneate and Labscum. Stilicho, the genoral of the Emperar Hasorias, pleced some cambrouts walls against those archea. In an atternpe to clear cud supais nome of these walla lant Soptember, the workmen dincorered a portion of a

singular for its conatruction as far the subjects it represants. It was foupd in very good preservation. In clearing away the nurrounding wills, the next discovery, after the bear relief, was s sleb of marble, on which were iv'o recumbent platues, rather larger than the fifo, male and female; close by them was the following inseription. -

> PVIT ATISTIA VXOR MIHEI
> TKMINA OPITVHA VEIXBIT
> QVOIVG CORPORIS EZLIGVIAE HOC PASARIO.

The form of the monument in that of a machine which was ured by the Romens for encloaing the pewly-baked bread, and which was perforated with holes or tubes to lat out the steam. These are curiously imitated in the construction of the tomb. The bas relief represents the whole process of making breed; it raun ell round the top, and is supported at the anglas by pilaters, the eapitals of which are nenuly omamented. These descend half way down, and repose upon a hroad aquare plinth, on which is the fullowing inseription on one side :-
fat hoc. Monimentim marci
vexalli svargac-

On the other side the three first words are weoting an far as the x in monimentum and the name of Murcus Vergilius Euryax is writien with nome litle difierence in the paleography. The cognomen of gveysacis, however, in complete, and then follow these three words, pisponss. nenemitomis appankt. On the aides, along the upper part, are placed horizontally, in rows of three, nine hollow atone cylinders, and in the lower part (boneath, the inscription Fist Hoc, tre.) two columnar masen are piaced perpendicularly, separated by ayuare block. The "Panarium" was also found, and is carral in the form of circular wicker backet. It in obeerrable that the southern side of the monnmeut, which probsbly atood within the property of Vergilius Eurgsax, is formod of fine Travertine stone, while the sides exponeli to the public roadn are of Tufis. The whole of thin mepulchral monowent was completely enveloped in the comparatively modern wall built agaiust the arueduct. It is proposed to clear away the obmtructing walls, and to lay open the tomb and the Porta Labicans to public view. The two statum have been conveyed to the Vutican Museum. The materialn of which this tomb is built, and the paleography of the inscription, appear to show that it is a monument of the republic. It is not impru bable that the Travertine atous may have been added at a more recent period: the words avorvs, miski, and oritvma, way be compared with the inscription on the ancophagua of L Acipio Barbatua, where we have quolve furma virtviki yarisida. egliquiae quod is almo very ancient.-Athernum.

STEAN RAVIGATION.

Ericuon': Steam-Boat Propeller. - The great power exhibited during the marly trials of this propeller, about eightean mouths since, induced woma American canal proprietors to order an iron ateam-boat, with a 60 .horne engine, to be fittel with the new propeller. This small iron steamer, called the Robert F . Stockton, han lately arrived in the Thamen from Liverpool, and will ahortly proceed to the United Staten; her dimenaions are 70 feet length on deck, and 10 feet veam. A variety of experiments have been made in prosence of several acientific and proctical men, who consider the success to be perfect. Although constructed for towing purposes only, this boat han frequently gone nt the rate of iwelve miles an hour. As to her power as a twg, we are incormed that on Tueaday, Jan. 20, she towed the Awerican packet ship, Toronto, from Blactwall to the lower point of Woolwich, a diatance of three miles and a quarter, in forty minnten, againat the flood tide, then running from two tw two and a lualf miles; thus towing her throngh the water at the ruse of upwarda of six milem an bour. The Toranto is 650 tons burden, slo measures 32 feet bean, and drew at the time of the trial 16 foot θ inches; thus presenting a sectional ares of more than 460 aquarefeet. Now the fact of thin body having been moved at a rato of upwards of aix molles an hour, by a propoller, or piece of mechanism, meeeuring only six feet fur inchee in diamoter, and occupying leas than three foot in length, in one which, scientifically considered, is interenting in the extreme, and in a prectical or commercial point of riew, is of immense importance. Wie understand a company is about being formed to apply the propeller to a ahip of 1,000 toms bunden, to be employed in trane-Aclantic navigation; and as her sailipg qualities will not at al! intorfore with her steanaing power, it is confidently anticipated that increeved mafety will be inmured, and her pasage greatly accelerated, at a saving of at leass onehalf the fuel.-Timer.

Ikiparture of the Groat Wemern, Briotot Jan. 28.-The Great Wiotem having boen completely reftued during ber atey as Peter, a now quarter dock haviug been built, and incromed stowage.room provided for upwands of fifty tona, miled wis dey on har firat voyage lot Now York this semon. Sbe set sall at about twouty minutes before nix p. m., carrying with ber 107 peasengers, mong whom is Captain Hudson of the Guarin, with Governmeat deapatehos, and Mr. Halla of Covent Garden, npwarde of 8,000 lettern, and a full cargo of Britinh manufactured goods, consistip of silks, Irish pophins, and cotton grorls. She is expectal to return about the 7th of March.

Chriatiana, Jan. 22.-Orders have been given to build an armed ateam-boat of 100 or 120 horse power, ifter the drawinge of Lientenaut Sommerfeldt, on the nodel of the Meden, which is reckoned to be the first armed utoambout in Europe.
The Kite, Post-afice Steam.resacl, running fram Liverpool ω Dublin, has lately been refitted at Woolwich. Her mechinery and boilors are the manufucture of Mears. Fawcett, Preston, and Co., of Livejpoul, who have introduced tome improvements into them. On ber first trial, about the 22nd of January, in consequence of the immense drat to the builers, it was coushlered proper to shortan the chumwey eleven toot, whict, in ordinary cesees, would mo check the draft an almonat to dowtroy it. Slis then proceeded on hor necond trial, when tt wee almatied that her mechinery was oxcelieat and satisectory; that the boilers, with the chimney eleven foot shortor, produced a enperabundance of steam, the enginem making their full complement of revolutions; and, to the surprise of all on board, scarcely any or no amoke whe nem insuing from the chimnoy, Which was then explained to be in conseyponce of the pecoliar sorm of the brixges appliad to the furnaces. These are a pow invetation of Mr. E. Hoptina, 61, St. Johnstreet, Clarkenwell, anil luve the effect of returning the light fuel and gases on to the fire, whin the smoke is consamed, and conls are conseqnem tiy sarvoh

FORGIGN EALDETA

Austria.-The ralls in the Aastrim rallways nve now mede of fron from Styria which are said to be found more durable than ihose mupplied in Eugland.

Austria.-The Austrian gorernment is at presentocctpied with the plan of a rail. rosd between Vienna and Salaburg, by the way of Lenx, upon the right bank of the Danube, which will be speedily carried iuto execution. The constant cammunication upon this road promisen every prompect of succras to this undertahiug.
The Feraciltes and St. (lowh Roitray. The Forks hare bopn conmmenced at five points at once wiffin the communc of Vorsalles, snd are carried on with the uttopotartivity. As the works on the other parts of the line ate nearly finished, the whole of the two liues of ralla are experted to be laid from Asnieres to the limita of Versallies before the end of the month. Independent of the ordinary works, the company hat hat to torm the tunnel under the Purk of St. Clour, 1854 feet in length; another tunnel of 607 feet, under the Park of Montretout, and the high road between Saint Cloud and Manten; athiri tunnel of 272 feet, at Courbevoin, nnder the road between Paris and Poissy; two large vieducts of five arches earh; 36 Lridges over high, departmental, and cross-rosis, and 10 aqueducts. There retwain besiden five bridges to be erected in Verxailles. All these workn are comprisel withln a limit of four and a half leagues. In the plan laid down by the govermment anginecrs, upon whirh the undertaling was funnder, there were only one tunnel, 28 bridges, and four syueructa meutioneti: and the grester part of the additional works have been occasioned by the decreen of the inunicipal councils.

St. Cluud Railuray-The jury of exproprintion has just decidel at Veraalles upon the indemnities to be paid to proprietors affected by the last portion of the line of the Versailles and St. Clond Railrond, from Virofay to its entrance into the firstnamed town, but the sums awarded have in general been much less than those dernanded. Property in Montrenil, for wlich UN0,75sf. wert demandod, has heen adjudged at 264,11If. Ten honser in the same place, estimsted by the orracra at 207.433 ., have been nuarded at 8s, fitur Sume gartens in Versallen, for which $211,615 f$. nere askel, have bepu given to the fompany by the jury at $60,200 f$; and the total mmont of $1,648,160$. for the portion of the line has boen rectuced to
 sailles demanded 21,2487 . as an indemnlfication for ove acre of land, and produced documents signed by mone architects of that plare in mupport of his enthmate. It was, however, reduced by the jury to 100 f . Another proprietor claimed $8,620 \mathrm{f}$. for the suppresion of a right of way across his land; the company offered fof. for it, and the jury awarded him nothing.

Bchpius.- From a report recently laid before the Belgian Clamber of Repreaentatives by the Mivister of Public Workn, it appears thut the total expense of maintetives by the Miuister of purchame, and repair of machinery, watcbing, sce., of the Belgian railwayn. siuce tha completion of the first line in lisst, up to the 1 int of November, 1838, is 3,974,570fra. ; that the total receipts luring the same period have been $5,141,645$ fra. ; giving a net profit of $1,770,075 f$ ra, which, upon th:e capital expended in the conatruction of the rouls, returns an ammal diridend of 4 per cent. The arerage cost of the construction per leagne has been 531,000 frs., alout a nixth of the cost of the Finglish lines; and the arernge price paid by passengors is 12 centimes per lenpue, aboiff a fifh of the lowest rate of charge in Enpland. The total leagth of the Belgian lines, now completed, is of leagues, about 270 milea.

Rnnaia.-The Hatoburg papers meution, upos the fith of letters from St. Petershurg of the 12 th December, that a nert raitrotal than abont to be estabhished from the Luwn of Morschausk, on the river Zora, is the motrit of that Aver, in order to facilitate the communications of some of the richest provinces of the sonth, which send all their wares and prodice to Mornchamk, one of the first commerciat cowne of the empire, with St. Petersbirg and the north.

Proposed Rnilocay in Inerica.-One of the grandent reflrond schetion aver con, ceived by Uue mind of man, has been suhmittel to the public Hy Generat Gatns, of the United States arrij. It proposen a system of sailrowh, ill diverging from acommon focus or centre in Kearucky and Tennessee-the nidillo point of the Cuion; and
 all the large cities, and imporfant frontier posits in the conntry. Thms Now Offeans, Portland in Maine, New York, the other Athante ctites, sud Dettult for Nfchigen
 lakes, and the southern sud of Mcxico, the ocean and perfinps the Focti Mountalns, diff all be uuited in bonds of lron, stenm; and rapd pubfic metercours The General says Urat such disstem would make the t'uiltol States prosperots in peace and fm . preguable in war. I thint that before many yectis hape rofied away olis scheme will
 we commenced
Daily Puper.

 whitratee that thoir bonde will incrosse in vilus overy year thoy hold than. The Cumber land Valley have complowed their brido over the Sumpaehangonh, med formad their connexion with our romd, which will anable our Philabelphie merchanto to forward their goods 160 miles by railroad in chirteen hourn towardy fittsburg, which is just half way. Formerly goods were 18 to 20 days reaching Pittsburg, and you, who ere so famtliar with the rapid increase of the popndation of the western staten,
 supplitumyou cari reatily calurimes the great inportmicer of our rowd, wad the eer. painty of lits immenter revetud."-Moming A erald.

The ourplotion of the Cohom, in en mmemoration of the Rovolution of July, may at Mongh be axpouted witbln a defivits time. Mesara. Soyer and Inge atow dipys ninoe cevt the erpital and the tambour, by whioh it in to be crowned, in one mould. This in one harget stngle east of a chpitit that hes over been made- - Parit Paper.
Twoo were marble sfatues, those of Lakaln and Talma, have jum beet stationed right and left of the author of Zaire in the hall of the Theatre Yramenis.

Iron Steam Ship.-There was lansched from the buibling yard of Mr. C. Wcod, Dumbarton, on the 22 d Jan., au irou steam-ahip, 146 feet long, and 26 broed, intended for South America. On being launched this vemel drew only eighteen iuches water. and with mochinary and cargo will not exceed three feet. Sbe is intanded for pest. seogers chiefly, of whow abe can carry a thounand. This fine remed was beile by Mesera. J. and \mathbf{W}. Napier, in Glagow, end we underatand thut these guthormen bave hor machinery ready for putting on bourd, so that wo shall seou have ar opportnnity of seeing this splandid specimen of the impropements of the grement dey hearitg our river for a distant part of the world, another troplyy of the micems of the onverpritiong engineers on the Clyde. She in now of the Hroomielaw, and in worthy of ingpection. The carpentervoris of the vessel was dovie by thateminent shipbuilder, Mr. C. Wood, of Dumbarton.-Glacgov Paper.
Stcom Navigurion th South Awericn.-A memorial, which lureludes among its signaturrs thome of Baring, Gladstone, Rothnchild, and other firose of mercantile, banking, moud unaularturiug eminence, has junt been prevented to the Treasiry, praying for a monthly line of stram-packets. from Faltonich to Medeira, the Canaries, the Cape de Vord Inkuns, Pernambuen, Bahla, Rio de Janefro, Monte Video, and Buenca Ayres. The pecket establinbment now existing is no irregular, that with the portc of Pernambico and Behia a conmunication cen be had but sin times in the reer, treire winds and ocend-curreuts hindering any sailing venel from lowehing at oikher, except

 the npeed of the Grent Wentern ntemuer arrows far lime tivourable meen, two-thinh of that time inight, in all probability, be sared. An allow ance of 40,000\%. per ennume is at present made for the tardy packets apon this important line, and for the same son contractors could doubtlems be found in deliver twolve monthly mails outwanls and homewards, in stesm shipa of the very firat class. We do not surely err in auticipating for this mpmorlal the most inimediate and attondive conolideration which Government can give it.- Daily Paper.

The Delats quotes letters from Fitannah, announcing that the magnificeut Governmeut steamer Véloce, Capt. Béchameille, which had recently entered Fiaraanch after its transatlantic experinental voyage, lad been burnad in cliat habour.

PROGRESS OF RAILWAYB.

Eantern Curnties Railuray.-The rapid progrese of the work on thin Duse bapents an ective executive. We hel no idea of tho forward state of the werka totrarda Breatwood. It whim only in ictober last that the econtract whe let, asd kotrivg to the
 On in pecting this part of the line, we foend the worke in furt operetion: mevel bridges and large culverth ercemed, and the emabenkeonts carried orer trens. Thepe are three extensive cuttings on this contract, all of which are in full wort, even duriug the late and present unfuvourablo wenther there has been excarated and cerried to the embankment near 200 yards per day. The cutting in the bill on this side of Brentwooll is so deep as to be carried on in four lift, near to this excavation is erected a handsome skew bridge, the angle of which is rery obfique, we sbowh auppose about 40 ileg. At Runford great activity prevalls, neveral large bridges and culverts are iu the courw of erection; clowe by at Harentreet, a large bridge over the raifway, of three or more arches, is commenced, the foundations are alout 35 fert below the surface. Retwoen Iondon and Romford there tre five locomotive eaming: below the surface. Betwoen Iondon and Romford there are five focomotive eaginfa
incessantly employed in expuliting the earthwork, betides an immense number of horses. The lorlg acd expeusive embanknuent over the Stralford Mank is not just rompleted; intl as the distance between its ternination and the commencecorul of the visduct at lethnal Green has been formexl from side cutting, there remains bothing of importance between London and Romford but the riadwet, portione of which are in a very forward state.

Bristol and Exefer Railicay. - Within the lat few montha-coffar danas have been driven preparatory to the erection of a bridge, 100 seet span, oter the river Paret, about threberarih of a mile higher ap that Avep than the town of Bridownter. The contrator is now employed in builiting the abutments, and the areh wift be turined in the leterer end of the apring, when the work wwads Termion with be began themediately. The cattheg at Pariton Hill is proceeding with moch viewor, npwords of 500 men are employed on it at presont, and mare will be ahorthy. This is the only hin, for mamy millew, and as soon as it is got throngh, which, If the Compeny go on if the rete they heve begra, will be soon, nothing remilas bur to byy the perneneat ratis. The broed gaege will of coume be adopted. The newrr of Brityewreter pem.
 the first ports in the kingdom; and when the commumication with London on the one side, and the Weat of England on the other, is opened, we know nonght move werstad, sare a fow more spirited men in the middle.- Bridol Jourmal.
Birmingham and Glowceater Railway-Mr. Norris, of Pluladelphia, hasmeceived an order for ten of his locomotire engiues, from the Birningham and Gloucetesr Rail road Company, iu Engtand.-New York Paper. If this be correct we are not murprised that the ahares of this company are at a greas dioceunt. Do they expect Englied. men will support their projecta if the monoy snbseribed in to go out of the comstry* and does the company expect that the pulblic will heve any confidence in ase safiny of the onginem whea male abroad. - Edi. C. ki. ard A. Jowrnal.
London and Brighton Ruilicay. The lommotive engine which han been metoed "The Brighton," lately sent down by the railway compeny to facilitate tbe works on the Shorehem branch, ans tried oo a portion of the line, aloort a molle and a half is extent, on which the permanent reils have already boen ladd. We are happy to atate that the works on the shoreham branch are progrousing with great activfy. The turnol nodor Lashmar's mill ia proereding nifht and day; and the hant purchased of Mr. Kemp has been enclosed from the min to the terminus, ronseing the Montpelier road. As great a number of excavators as the sphee with atmil are engaged on the coting at Fuller'shilh, in the pariah of Altrington; and as acon an this in complated, Which it is enticipated will bo the cane in a month, permanent rolls will be last ane the distamee of abont foar milen, and the engine with bo uned hor dis purpostof remortig the earth from the enttinga and trmnets at the Bitghtoa end of the frometh The works on the Latidon perrt of the line are also proceento whith great raplitity.Brtyhton Gasteft.

Hatre.-The Minister of Commerce, it is reported at Havre, has informed the Chamber of Commerce of that plece, that Government intends proposing to the Chambers a grant of 150,000 f, for the formation of two trenches in the new entrance port, in order to enable large ateawers to lie there afoat at low water. To this plan the Journal du Farre is opposed, as being a poor substitute for a large dock, especially deroted to the reception of steam. vessels, which the town of Havre has been ancious to have conatructed, in order to be ounbled to set up a line of steamers to Sew York.

Haurt.-A few days since a considerable portion of the cliff at Cape La Réve, naar Fiavre, geve way, and carried with it into the sea upwards of 140 feet by 12 feet ride of land which was in cultiration.
Achain-bridge over the Allier at Vic-le.Comte gave way for the second time a fem day since. The first time it sank ander the weight put upen it to try its strength, hat was rebrivis with greater solidity. The second broke down while a wagon beevily ladeo was going over. The vehicle rith its contents fell into the river, and What with the horses ; but the driver was fortunately saved.
La Tour dAuterpre.-A monument is aboat to be erected to Corret de la Tonr rAurergme, known in the French army an the "First Grenadier of France." The monumeat to thit gallent Breton is to be erected at Carhaix, his native town, which has roted 2001 . Whe Council-General of the department having added 401.

The Presech King has approved of a propasition laid before hius by the minister of the marione, for commenciug in the apring a hydrographical survey of the French coect in the Mediterraueso. The resalt of this survey, when published, will form a supplement to the Pilure Francuis. The operations are to be under the direction of U Monnier, hydrographic engineer of the tirst clasa.

The steana-generator of M. Girand's sugor-manmfactory, at St. Saulve.lez.Valen. cimnes, harnt daring this mouth; and, althougli it weighed $6,000 \mathrm{lbs}$, was forced up. wards through the coiling and roof, and carfied to a distance of 100 feet, together with the tubes, and other apparatus attached to it. 'T'wo of the stakers, who were at the fres, were seriously injured.

The mimister of the interior has granted $2,000 \mathrm{f}$ to be appfred in the restoration of - Doe specimen of the statnisy of the middle ages, calied the Puite de Moise, in the anciest monastery of the Uhartreux, at Dijon.
French Coasting Trade in 1837.-The nnmber of vensels employed in that trale in 1087 wate 6 : 9000 , carrying $2,200,269$ tonx, and manmeit by 254,162 , and the whole of their cargoens weighed 900,000 tons, or $17,821,991$ metrical quintats. The trade of the difiorent ports, in metrical quintath, in an follows:-Houen, 2,005,509; Marneilles,

 S01; 2000 ; Cette, 217,650 ; Arles, 216,728. The trade of the Mediterrtacan ports in unly one-finh of the whole, and the whole coanting trade is twice as much the Freach Coreign trade, and three-quarters of the whole forwign trade.
A fine marbla matue of the ilfustrions Goethe, executed at Milan, by Marchisi, at the expease of three citixens of Frankfort, bus arrived in that city, which was the preat poet's native place. The statne ts to ornarneut the principal room of the publie library.

The Milan Gasefle gives the following details of the organization of the inatitutes of aciencea, arta, and letters, and the technical schools recently founded at Milan and Venice by the Emperor of Anstria:-"The institute at Milan will be composed of three claseas of members-ordinary, honorary, and corresponding. The first will the 40 in number. twenty of whom will receive a stipund of 1,200 . per annum each. The wbject of this institute is to encourage stuties which inny influence the prosperity of the Lomberdo-Venetian provinces by the cultivation of acience. All that attend to the improvement of agriculture, the usefit arts, and commerce, as well as of letters, will be nusder itn care. It will have to award prizes at Milau and Venice to such tombirido Venetian subjects ait have iuvented or introlucel any now brauch of indurtry, or fresh source of pronperity. The journal La Billioteca Italiana is to be numb yid fumpral of the Pinithte, in which reports of its proceedinga are to be mindarfy inverféa. Tho Academì of the Fine Arts, founded by the Empress Maris Therese, in henceforth to be subjected to fixed regulations. The professors are to luave opecific ranks and efteses, and to be axiocisted with counsellors, ordinary and astraortinary, honorary menbers, and artists, It will be endowed with an ample revenue for the distribution of anmat privists. The technical schools are to be estabished at Milan as woll as at Venice. Such yonths as are intended for commerce will be taught in the writing arithmetic up to its highest degrees, the Italian, Freuch, and Germath haguages, history, geography, book-Yeeping, and the whole system of romaterete. Those itho ard destined to the usefil arts and mannfactures, will be iimercetide in phytics, nafital history, and diemistry, ds applicable to the arts.
 iffinti."

The Sasion goterament dre about to construct a theatré at Dresden, upon a scale of
 hare been simt to Lotbiton, I'aris, fud Italy, to ascerfain what improvements have forn tuabs in Ais depaftiment. Mr. Stepheusin's machtnery is expected to be adopted it thls theatts aloo, Pruftesior Seinper hasing protecdedf fo Paris to meet Mr. Stephen--n, who whe in altendauce upoi the Frencli cumnission.
Seprimis Fary.-Orderi have liebn given to build an armed steam-boat of 100 or 120 horse potwer, difi the drawing in Lieutenant Sommerfeldt, on the nodel of the Hidea, which in whontedged to te fié fint arméd stenm-bot in Europe.

The Rusainn jotimaln ainotrice that Profesior Jacoti, of Sí. Yetersburg, has succresed in trenkerting engtuvidgh oni copper to othier plates, formed of a certain compreison, by meand of a galvenic process, rejrollacing, wih exactitude, the most nunnto Hiren. The emperor, it is added, hes grunted sufficient funds for porfecting this alanoyery.

Toption (iptrd-The obeatrd at Pera in building by fuv Frencli architects, and is w bo forsobed towands the omi of next suinmef. In the meaii fime, a house has been rrited amer the place of Atmoiden, whare Italian uperas are performed three or four tuse -week. These is accommodiation in this whuprary theatre for about 1,000
 -thich rey from Jor. in 60f. The Sultan has already hoctoured this place of amuseunat will his prosence. The performern, for the most part, belong to an Italian

 Lare of the Turkials cepita, and is atated to be carried about to her pupik' residences in a uplendid licter, eovered that ghtinj and crimsort velvet enrtima, and carried by tour bleck sleven, who ese preeded or followed by elfith othern.-Prench paper.

Contantinople Merical School.-On the 10th Deeember, the Sultan risitad the new building just terminsted at Galata Serei, in Pera, for the Medical School. The
 museum, botanical, chernical departments, hospital, and everything necossary for the edincation of young doctors there. The students are to tale up their quarters there shortly after tbe beiram.
A line of telegraphs is being eatablinhed at Constantinople; and a auccosaful trial liss alreany been made on the Bosphorus. It in intended to extend to the Darda. nelles, and mubsequently two more branches will convay intelligance to aund from the extremen of the European proviaces, whilat others are to leal far into Asia Minor. The bent part of them at preseut is, that they are not expersire.

A letter from Buchareat states, that the project of cutting a canal from the Dannbe to the Black Sea is to be carried into execution during the spring, by the common consent of Englend, Austria, and Turkey; and that the last of these powers has issued an order for a lery of 20,000 workmen for this purpose.
Upper Syria-M. Eumebe de Salle has just returned to Beyrout, from a tour through Upper Syria, as far as the Tamian Chain and the Desert of Palmyra. This country is a apecies of Syria Petrea. The plans of Antioch of the Turhomans, and the ralley of the Orontes, present at every step rinis, sometiuns of entire towns, which date either from the most remote autiquity or from the liyzantine period. In the Upper Orontes alone, Prince Puckler Muskau professes to lisve discoverell upwards of ten cities or towns omitted on the most accurate mapa. M. de Salle has discovered at least as many between Antioch and Aleppo. The constructions with which he was most struck are Roman camps or redoubts, buil probably betreen the times of Crassus and Trajau, during the wars of the Perthiana. These antique pilen, which are still remarkable for their solidity, were retouched by the Byzantines, the Turks, the Saracens, and the crusuders, which has no doubt hitherto prevented them from heing recogrized.
Road to the Red Sra.-We learn by lettera from Alexendris, that 800 Europeans crossed the isthmue of Suez last year, on their pansage to and from India; and that a regular coach convejance will be woon establishell betreen the shorey of the Levant and the nearest pointa for embarkation on the borders of the Red Sea.-Bath Guardian.

BNGMTHERING WORES,

Pure Fater.-Four of the Water Companies of the metropolis, viz., the New River, the East Middlesex, West Middleapx, and the Grand Jumetion intend to apply to Parliament for power to draw their water higher up the Thamen, so as to improve ite gnality.-Morning Adcertimer.

The Purtand ferry bridge has been opened with a graml procesnion, both of civid and military.

Rirer Lane Napigation.- We find by the Iancaster Guardian that a discuasion on this important sabject is vecupying the people there. Mr. Hooke, the autbor of "Geology as a Science, applifed to Eugineering," in objecting to the plans adopted by the Mearrs. Stevenson, bilopts their own dats, that the foree of the flux of spring-tides in the River Lune exceeds that of the reflux more than two-fold; and th in goes on to prove that it is the back water which is the cause of the setting up, and that instead of shutting out the tidad action, ns preommended by Meners. Stevenson, that it is necessary to allow it greater play. Engiveering smbjects like this and the Morecambe. Bay subject form the staple nustertal of the focal pepers in the north-west counties; and while the profession must benefit by this excitement of public interrat, so the cause of science is promoted by directing the attention of engineers to the laks of natural action. It is perhaps the misfortune of engincert that wlereas in other cuses they bave only to deal with inert masses, in the coustruction of harberrn they are dramn from their old habits to a new competition wifi the ative forces of nuture.
New Docks at Lirerpool.-A capacions dock, to be called the Eigerton Doell, is being now constricted at the month end of the town, edjotring the Hercatitieum Pottery, for the use of the immense and still indreantry carrying trade of Lorl F. Figerton. The dock trantees also contemplate the enchonire of the ntrand to the westwhed of Trectharm-stroet, and the forchation of two docles, rumtidg eant atril west, in lien of the present Salthouse Dock. This contral poditon, mifacent to the New Custom-house, and within a few minutes' walk of the Exchange, will be of immens adventage to the commerce of the port: If appoart ahoo, that by remsority the preient graving docios to the extrentities of the town, , furthet addition of 10 or is ecter may he obtained to meet the increasing wants of the port, tegatier with a hatge entrunces. basin, in lien of the prement inconveciient ofd doel gat. The fand to the wentwert of the Salthouse Dock now prodncat a very trival ront, beias pritucipally oceripted by ship-buildiag yards; snd by carrying out these bold designs, dock space widl be provided tor many years to conite tim the Jery centre of the towni, anif tho netendy of any firther extension witl be obviated to the aerthwand, whore espercidity where the dift. enlty of docling vesmoln in' bad wdefiter is everesty felt.-LLiterpool Timetr.

How Bridye.-On Tharsulsy, the Fttie nth, the new Bifdpp ereeted oror the river Lew, at Bow, was opened with ceremony by Mr. Aldercrat Thonsmi Woot, the thmit for Muldlesex, and Mr. W. Coiteri, the nhieffif of Ewex, a ttended by a ammerous trifin of the mregintratea and gentry of the fwo connties.

 church is about to commence ; the dd matiofian huvo bertis afd, and dirsety they
 be connected with the present torict nud the dhont, ith which divine serviat it mow performed, will be proceded with.

 the geologists hare a treat, the the rertebrec of an inunense animal hay been latd btre,
 moval of the fallen rubbinh.
A Sheet of Puper.-There was lately sent from the paper manufactory at Eollintion

 made, it would weigh $206,0001 \mathrm{~b}$., of upwards of 128 toni. - Sobitment.

We recommend to the notice of the profeasion, Mr. Dey's, Advertisement, his pencils we have tried, and find the lead to be of a good quality, and unay be depended upon an being of one degree of hardnees through the whule longth of the lead.
Mr. P. Thomson, on Thursday, the 21st ult, obtaiued leave to bring in a bill to provide for the copyright of dasigna for articles of manufacture, and a bill for extend. inf the copyright of designs for calico printing to other wovon fabrics.

Lace Caps.-A new and important manufacture hat lately arisen in the hoviery tradh in making lace capa from the stocking-frame, by the aid of the jack tickier machibe. This machine lian been latterly spplied to the making of laces in breadiths, and with such brilliant success an to atonish even the oldest worknen, -Nottingham Jourwal.

Iron Satues.-A correnpondent, M. G., augeests that as it is of importance that public stutase abould be execated of a cheep metal, whether the use of iron might not be contemplated to foe preserved from rust by the preparation of the Auti Oxidisation of Motals Company.
Carvings in Wood.-Two very curious and very elaborate carvingh in walnnt-tree wool, of the altoreliof clese, have just been brought ts this country. They were formerly in the poseetcion of the Emperor Napolicon, whome eagernens to posseas the rarest gemas of art was much more than commensurate with his reapect for menm and tumm. These carvinga are eech about five or six feet in length, and shout three or four in beight or cidth. One of them represents the victory of Constantino over Mazentius. The demign is from Julio Romano, and is known to artimts. It contains upwarly of two hundred figures of coubstants, horse and foot, mingled and grouped with groat pictorinal effect, and carrad with extreordinary boldness and accuracy. The finish of the armour, costane, and minute details in very delicete. The necond tellet is after a deaign by Rubeus; come of the figures are after Leonario da Vinci. The subject is the scriptural battle in which Joshua commanded the sun to stand still. This carring is in higher relief than its companion; it containa fower figures, and most of them are equestrian. It is full of apirit, and cut with great freedom of hand. These carvingn, which cortainly surpats anything that is generally to be meen in this country, aro by an Italien artist, Simon Cognowelli, and bear date 1761 . Upon the downfoll of Napoloon they were returned to their original locality, the Castle of Salma-Genta Mag.

A Grbat Humaicanz.-A evere hurricame has devastated the north.weet of Furope. It in suppoeed to have come from the Weat Inilien soross the Atlantic, nod spent its chief fury in the Irish sees. Iiverpool, Manchenter, and Dublin, particularly suffored, and the lows of shipping is yery great, besiden the damages to public workn parks, and trees. The loss of life in Iroland is said to have been above 200 persona. The hurricane welled up the waters in the north sea to such an extent, that irregilar tides wore produced, the coant works of Deminark, Germany, and Holland, severely injured, and the wares of the Elbe forced up into Hamburgh forr feet abovo the level of the Exclange. A remarkable feature in the deposition of eea salt eighty milen iuland in Ireland, Lancashire, Cheshire, and Yurkshire.-Wyld's Monthly Index and iuland in Ireland, Lanceshire, Chenhire, and
Geological History or last Munth. -The principal peological eventa aro prosented by the effeets of tho activity now provailing in the volcanic banin of the Mediterrenean. The orsption of Mount Eina hen ceased, but that of Vesuvius continues, and in the early part of the month supplied a great quantity of cinder and lava. Furthquaken have been feltat Edinburgh, Inicestor, Berlin, and Malta. Coal hat been diecorered in Greece.-W yld's Moxthty Index.

NEW PATENTS

LIST OF ENGLISH PATENTS GRANTED BETWEEN THE 20TH JANUARY; AND THF: 23an FEBRUALY; 1839.
Thomas Collettry, of Aylesbury, in the county of Buckingham, for "Improre. mente in Childreni Cots."-91nt January; 2 monthe to specify.
 for "Certaiu Improvernents in two-wheel Carriages."-29th January ; 6 months.

Hobert Caney, of Breadgar, Kent gentleman, for "Certain Improrements in Pavidg, or Covering Streets, Roeds, or other Ways."-2tth Jarnuary ; 6 months.
FanNx Hills, of Depiford, Manffacturing Chomiat, for "Certain Improvernenta in the conatruction of Stoan Boikrs, and of Locomotive Eugines."-2Hih Jenuary ; 6 mouth.
Thomas Barnabas Dapt, of Repent-atreet, gentlemamf, for "Certain Improva ments in Ink-ataushs, and in Matarials and Apparatus for Fatening and Soaliug meaters, or ocher Documentu."-2mi Feloruary; 8 noonths.

Mosen Puolx, of Livcoln's Inn, Gentiemau, fur "Improvemments in the meank of convuyiug and transporting Porsons and Goode from une place to anolher."-4th February; 8 monthe.

John Evana, of Rirmingham, Paper Mennfacturer, for "Improvementa in the Manufictare of Paper." -ith Pobruary; 6 months.

Thoxas Roninson, of Wilmington-square, Middlenox, Grenteman, for "Improvemeata in the procens of Rectifying or Preparing Spirituous İquorn in the making of Brandy." 7 7h February; 6 months.

Caristophra Binge, of Nowington, Edinburgh. Manufactaring Chemist, for *Certain 1 mprovementa in Ohtaining or Mannfecturing, and in rendering Chlorine, the uneful Chilorides of Lime and Soda, and other Compounds of Chlurine applicable in Bleaching."-bll Pobruary; 6 months.

Chamler Gabeiet. Baron dr Suarce, of Red Lionequare, Middlenex, Colonel in the Freach eervice, and Wilisam Puntifex, of Shuelame, in the city of Iondon, Copperamith, for "A now mode of obtaining Dyea, Colours, Tannin, and Aeids, fropporamith, regotable submances."-11u Fobruary ; 8 months.

Gromen Hener Manton, of Dover-street, Piecadilly, Gun Maker, for "Certain Improvementa in Fowling Irecen, aud other Fire Arins."-1 lth February; 6 rmonths. Euwasd P'eazson TRE, of Marnaley, York, Dyer, for" Inpprovenwats in Wearing ILiden, and uhber Fabrica "-1lth February; six montha.
Johe Thoman Berti, of Spithfiald Bars, Rectibar, for "Inpprovemente in the procese of preparting Spirituoun Liquors in the making of Brandy."-11th February ; 8 procienths.

Fagdseice Cathey Wonslex, of Hollywellestreel, Weatminater, Esq., for "Certein Improvements in Locomotive Engines and Carriagus."-1dth February; 6 menathe.

Richaind Paoxarn, of Birningham, Civil Engineer, fur "Certain Improremente in Appartus for Generaliog \%loem, Comaming Srogke, and Heating A partionts."104h Fobruary; 8 nopacha.

Moses Poolp, of Incoln's Inn,Genleman, for "Improvensents in Epanle wh and Ornamontal Motalic Wire Fringe, and other Ornamental Articles or Falive of Wire. A Communication from a Foreigner."-21x Folruary; 6 months.
Johann Andrkas Stempp, of Grest Pordand-atreet, Mumical Inntrument Maker. for "Improvementa in Grand and other Pianofortes."-2lat Pobruary ; 0 monthas. Mattink Uzirlle, of Fenchurch-street, Merchant, for "Improvements in Lach, or Fastenings."-21nt February ; 6 monthns.
Hpraxrt Reid Wibhiams, of Gloucester, Surgeon, for "Improvemerits il Trumes and Surgical Bandaqes."-7lst Fobriary; 6 moniha.
Thoxas Hali, of Leeda, Brase Founder, for "A Now Combinationa ar Arrangement of Parta, forming an Improved Fornace for Conaming Smuke, and tirana mising Fuel, applicable to Steam-engine Bollery and other Furnacen."-21 at Febrwars. 6 months.
William Nash, of Budge row, Merclant, for "Certain Improvecsents is the Cen. atructions of Brhistas, Viaducts, Roofs, and other Parts of Buildingn."-2srd Februart. 8 months.

John Syivzetin, of Weat Brompich, Stafford, Whitenmith, for "Certain Im. provernents in the Arrangermeut and Construction of Apparatus for Kanging aed Classing Doors."-21st February; 6 monthm.

William Jobison, of Saint Mary Cray Paper Mille, Kent, Peper-maker, fer - A Certain Improveneut, or Certain Improvernents, in the Manufacture of Paper 21 nt Pebruary; 6 month

Willism Nasu, of Budge-row, Mérchant, for "Improvements in Machinery fur Winding, Spiming, Donbling, and Throwing Silk and nther Fibrora Materiale.- 23rd Pebruary ; 0 months.

OBITUARY.

Drath of Rudolyh Cabamel. Eseq., Archilect.-On the 1th of February Mr. Cabe nol, ater a long and severe illnem died at his house, Monnt Giardens, ot tive geve of 76 Ho wis a native of Aix-la-Chapelle, but had lived in England since his boy hood. Ife was the architect of the atage of Old Drury dane, for he blended with hight takotes anan architect an ingonioas and inventive turn of mind, and an extenaive actentific and mor chanical knowledge. He wat the sole architact of the Cobnyg Theatre, which, an be ta it fininhed, was acknowledged by the must compotent judsea at the time to be the mott perfectly-constructed theare in London, or perkapn in England. He wat the sute inventor of the roof knoth by bis name, boaides a number of machises and ondort nutters of great value. He lived much respected and died mach regretted by a numerous and highly respectable circle of frieuds.-Morning Adiertiser.

FRRATA.

In our last number, page 86 , 1 st column, line 2 of 1 th paragraph, "polislinal and gilt." Now the brouze capitals aud basen of the columas of the Isame Charch, a \$i. Peternburg, are nof gits, neither have they ever been, or will they be.

I'age 37, ist column, Candidur, describing the Inatc Charch at St. Petersbare ays. "The height of the dome is 340 Fhasian feet, or nearly 400 Einglish oose We are not prepaned to say whether the height be $\mathbf{8 4 0}$ or $\mathbf{4 0 0}$ feot; but ciandidus is: under a great mintake regarding the value of the Hensinat foot, which is istewtira: with the English foot. We are the nore anxiuns to me thin error cirrected, as it in an generally as erroneourly imagined that the Huasian and English foot are different. measures, wherean they are exuctly one and the same.

Page 48, 2nd column, lines 30 and 40, for "level, when," read " level with."
l'uge 44, 1st column, line 1, for "indicates our," read "indicates the correctoene of nur."

ADDREAS.

Onr readers will perceive, by the cover, that we have this month added anothert sixpence to tho price of the Jourual, and they will see, by ith contents, that th. enlargement of size, and increase of wood engraving, have been pruportionate to th, idditional charge. This measure has been relactandy forced apon um by the exteot of matter which we have hithorto bewn ubliged to reject, and we trust that every ont will foel that this has leen done less for our owu profit than the public edrentian This increase of size we have long resisted, but its ufcessity hay nox berame.. apparent, that, however unwillingly, we have been conppelled to mibwit to its adoptise As we feel convinced, honever, that chempness is most conducive to char ow in intermi and the public convenience, we shall, if the press of matter should diminish anter the present weason, again reduce the size to its old standard.

For thin increnve of matter we are principally indebted to the engineers: an 1 thongh we lave every disposition to gire equal scope to architecture, we regret tho: the extent of communications ne receive from that breuch of our malers, is tht corresponient to our desire to do justice to their wishes. We earnestly requed trwa all classe the communication of unything they may deem likuly to prutoote th. objects of our Journal ; and we are sure they will feet convinced that no watot if attention on our part will ever caune them to regret their exertions in its favonr W. may, it comclusion, condidently appeal to our past efforts, and the present mumber, 1 , show that, while we do everything in our power to merit the support of our reeder. wo have not beeu inefficient in fulfiling this desire.

TO CORRESPONDIMNTS.

We heve jnat recoived, en we wers going to press, a matirico-poetical effuciod fruat one who sigas hirmelf "A Candidate valuquishel, but nut caut down," of which we "A now spare room for to more than the cotwituling couplat, which im not without motit point.

Hurreh! fur brave Neleon, now Engtend may boeat,
That in touth, ta in lifo, he still sticks to kis pool."

BOW BRIDGE.

ENGINEERS, MESSRS. WALKER AND BURGRE

Eleration of the New Bridge.

Plan of Roadmay.

BOW BRIDGE, AT STRATFORD-LE•BOW, IN ESSEX.

The great and atill-increasing traffic between the county of Essex and the metropolis has of late yesrs led to many important improvements in the line of the Great Essex-road, but nothing yet done has been so bighly appreciated by the public as the new bridge across the river Lea, at Bow, which is built upon the site of the ancient structure and was opened for traffic last February. Before we proceed to describe the new bridge, we will give some particulars of the old bridge, a view of which is given above, a description of it we extract from an interesting account by Mr. Burges, in the Arcbeologia, vol. 27, pp. 77 to 95, communicated May 17, 1836.
Of the antiquity of Bow Bridge there can be little doubt, as we have proved from the best authorities that it was erected by order of Matilda, queen of Henry the First, which must have been between the years 1100 , when she became queen, and 1118, the year of her death.
If any portion of the present structure can be identified as part of the original edifice, it may be considered, if not the oldest bridge extant, as at all crents possessing an age which few other bridges in the kingdom can so satisfactorily trace, the long period of upwards of seven hundred years, and it must consequently be considered as a highly interesting work of antiquity.
In the construction of this bridge, we find all that characterises the very early specimens of bridge architecture; the small openings for the water, and wide piers with large angular projections, not only to divido and throw off the force of the current, but for foot passengers to retire into, to avoid the danger from carriages and horsemen when passing along the narrow roadway.
"That the bridge was originally built of stone can need no further confirmation; but the number of arches it originally consisted of is a question we have now no means of ascertaining, though, in all probability, it never had fewer openings than it has had in our day. Lysons indeed states it be a bridge of one arch, but he does not give his authority; neither have I met with any other writer who has favoured that opinion, or advanced one argument to lead to such a conclusion. That it had at any time more than the present number of arches is uncertain, unless it were furnished with small openings or archways at each end under the causeway for the passage of the land floods; but if there were such, they could not in fairness be considered as forming any part of the bridge. Of such arches, however, I have not been able to discover the slightest remains, either from the excavations made purposely to determine that point, or from any examinations of the bridge itself.
"That the present pointed arches formed no part of the original construction of the bridge must be evident, as no other but a circular arch would have been used at that time; the pointed form of arch not having been introduced into the buildings of this country till many years after. The original arches therefore appear to have been removed, and may probably have given place to several forms of construction, each partaking of the fashion prevalent at the time of their erection. It may also be observed that the form of the present arches is of that particular description which was last of all introduced into our architecture, and is commonly known as the Tudor Arch, from being found in most of the buildings erected in the reigns of the two last Henries, or about the latter end of the 15th century; and it may therefore fairly be stated, that the present arches cannot be older than the date assigned for the introduction of that species of archi, to which they are similar, but have in all probability been erected since that time, as is clearly the case with regard to the arch of the centre opening of the bridge.
"Before closing this account of the bridge, we are led to inquire into the origin of its name, and the circumstances which gave rise to its being called the Bow, or Bow-bridge. Most writers ascribe the derivation to the resemblance of the arch to the form of a bow, then called de Arcubus, or the Bows. The description given by Stow, in his annals, goes to state ' the bridge was arched like a bowe, a rare piece of worke, for before that the like had never been seen in England;' and Grose observes, it might derive its appellation from the word beaw, or handsome, an epithet very likely to be given to it in those days.*
"The piers for the support of the arches occupy a very large proportion of water-way of the river, and, like many other ancient structures of this description, are placed at an angle with the stream, causing interruption alike to the navigation and to the passage of the flood-waters.
"The width of the bridge was originally only thirteen fect six inches between the parapets, but in the jear 1741 it was increased to twenty-one-feet.
"A few years previous to the bridge being widened, an accommodation had been made for foot-passengers, by projecting a wooden platform five feet wide over the piers on the north side; this bas lately been rebuilt, at tie expense of the two counties, after having been the subject of litigation for two or three years.
"Very little attention appears to have been paid to uniformity in building this bridge, ns scarcely any two corresponding points in the structure agree. Wo find the springing courses upon different levels, and also the olevatica of the arches above the surface of the water, besides which the two piers are unlike both in width and length.
"The side arches claim particular notice, from having a centre rib of considerable strength projecting below the line of the arch; a form of construction freguently to be met with in old buildings of this kind.
"The centre arch, which is without any rib, has evidently been rebuil upon the remains of a former one, probably to meet the demands of an improved navigation, it being in its present state much better adapted for the passage of vessels than if formed after the model of the side ones, as it no doubt was before being altered, for the springing stones still remain.
"At this distant period it is difficult to determine with any degree of certainty the description of stone used in the original construction of the bridge. As in many other ancient buildings erected in this part of tho country, Caen stone appears to have been used for arching, some of which still remains, while Kentish rag and Purbeck stone were employed in the inferior parts of the work. The present face of the piers consiste of Portland and Kentish stone, laid in courses of various shapes and dimessions.
"Bow Bridge, unlike many of the old English bridges, has no starling or projections beyond the line of masonry of the piers, which may be arcounted for by the shallowness of the river at the spot; at low water. during the summer months, the difficulty of constructing the coouddations could not have been great, as they are laid upon a stratum of grivel 3 to 4 feet below the present bed of the river.
"The filling-in of the arches between the face-courses and the centre rib is little better than rubble masonry, the stones of which are boch rough and irregular in size, the joints wide, and in several places tiles arc employed to wedge the whole together.
"The masonry of the centre arch is of a different character to that alreadr described; the outside face-courses are also in two thicknesses, composed of Kentish rag atone, with a few of Caen atone, which no doubt had been saved from a former arch, while the filling-in between is entirely built of Kentish stone in regular courses very neatly put together, and, as already stated, without any rib or other projection.
"The external face of the bridge above the arches is formed of common rubble masonry, and the interior part over the piers and arches, no doubt filled up nearly to the level of the roadway with chalk or stone built in mortar, the plan generally adopted by the ancient builders in works of this description.
"The masonry of the additional arching, \&c. made to the bridge in 1741. consists principally of Purbeck and Portland stone, built in regular courna in a firm and substantial manner."

After many years of unceasing endearours on the part of the trartees of the road, an act of Parliament was obtained in 1834 for taking down the old structure and building a new bridge. As this was to oocupy the same site as the old one, it became necessary to provide a tersporary bridge for the public during the erection of the new one, and this was doue by the erection of a wooden bridge across the river, dear to the eame spot, which was opened for traffic July 25th, 1835, and on the same day the old bridge was clused, and in a short time after " oof one stone was left upon another" of that once celebrated structure, which Stow relates to have been "a rare piece of worke," at the period when he wrote.
The works of the foundation of the new bridge, on the Esser side, having been sufficiently advanced, the ceremony of laying the frit stone rook place on the 12 th day of December, 1835. The stone was of granite about $5 \frac{1}{\frac{1}{2}}$ tons weight, in which was deposited, in a hollow made for the purpose, a glass bottle, containing a series of new coins, and a brass plate upon which was engraved the following inscription:-

330m 33ringe.

The old bridge over the Rivir Lra, founded on this site by Matilda Quern of Henry 1., having become inadequate for the increased thoroughfare by land and water, and a new bridge to replace the ancient structare having been resolved upon, this first atone was laid on XII December. mdCCCXXXV, by Emma, the lady of Jorn Henry Pelly, of Uptod, in the County of Essex, Esquire, F.R.S., Deputy Master of the Trinity House. and Cbairman of Trustees of the Middlesex and Essex turnpike roads, assited by the Committee of Trustees appointed to carry into effect the provisions of the Act 4 \& 5 William IV., chap. 89, in relation to Bow Bridge.

COMMITTEE.
John Henay Pelly, Esq., f.r. 8 . Chairman.
The Venerable Achdeacon Jones James Graves, Eaq.
Sir Thomas Barrett Leonard, Bart. Ricbard Gregory, Esq
Robert Weatley Hall Dare, Esq., M.P. Richard Hallett, Esq.
James Bridger, Esq.
Benjamin Bruahfield, Esq.
John Burnell, Esq.
John Carstairs, Esq., F.R.S.
Nicholas Charrington, Esq.
William Cotton, Esq., F.R.S.
William Davis, Esq.
Jobn Drinkald, Esq.
Genrge Fox, Ekq.
John George Hammack, Exq.
Jobn Hodgson, Esq.
Jobn Hubbard, jun., Exq.
William Maiden, Esq.
John Milner, Esq.
William Pearce, Esq.
Joshua Pedley, Esq,
Samuel Taylor, Esq.
John S. Thompson, Esg.
Edward Vincent, Esq.
John Francis, Esq.
John Hillson Giles, Erq.

George Dacre, Clerk to the Trust.
Jamea Walker, F.R.S., and Alfred Burges, Engineern.
Samuel Farey, Surveyor to the Trust.
Thomas Curtis, sen., and Thomas Curtis, jun., Builders.

The last stone of the arch was laid Jan. 31,1888 , by the chairman of the trustees, J. H. Pelly, Esq., F.R.S., \&c. \&c., when a bronze medal of Queen Victoria was depusited in the bed of the stone, inscribed upon the edge with the occasion, date, name, \&c. \&c.

The bridge was publicly opened on Thursday, Feb. 14th, 1899, by the Sheriff of Essex, William Cottou, Esq., F.R.S., \&c., and a retinue of carriages driving from the Essex side, meeting on the centre of the uridge, the Sheriff of Middlesez, Alderman Thomas Wood, accompaniad by the chairman of the trustees, and followed by a long retinue of carria. es, containing the trustees, the engineers, \&c. \&c.

The form of the bridge, as shown in fig. 1, is a very flat segment, the rime not being more than thrre feet, and consists of an oblique arch of an elliptical form, the wing walls extending at each end of the bridge terminated with granite pede-tals surmounted by lamp irons.

The following are the principal dimensions of the bridge :-

The arch stoues are 4 feet thick at the springing, and 2 feet 6 inches in the crown.
The contract for the new structure, with the temporary accommodation for the public during the erection of the new bridge, is s:ated to be ubout 11,000 . The stone used for the exteroal face is blue Aberdeen granite, backed with the masenry of the old structure. The foundations are laid upon a bed of strong gravel several feet below the bed of the river, and a protection of sbeet piling is driven in front of the masonry several feet into the solid ground.
It was expected that in excavating the bed of the river, for the inundations of the new bridge, some antiquities would have been discorered, but in fact few articles of any interest were found, and those of trifing va ue. The must interesting were some brass tokens, two of Which are more particularly connected with the subject before us; a few silver cuins of little value, some ancient iron keys, with the remais of an iron spear h-ad, nearly comprise the catalogue of all that was fonnd.
We must not omit to notice thit in the demolition of the old bridge it was found that the masonry of the arclies was not originally covered by gravel, \&e., to form a roadway, as it is now usual, but that the carriages and horses went directly upon the stone-work of the arches, and tbat ruts of the wheels had been worn in places to a depth of nine ischea, and holes were worn through, evidently made by the tread of the horses.

ISOLATED HARBOURS OF REFUGE-EXAMPLES OF NATURAL FORMATION,

 BY HYDE CLABRE, ESQ., C. E.

 BY HYDE CLABRE, ESQ., C. E.}As I have strongly advocated, and I believe introduced, the principle of insulation as applied to harbours, it is not unnatural that I should take some interest in that of isolation, which is certainly one of the most important principles which has lately been elucidated. Its author, Mr. Tait, may congratulate himself on the acknowledgement of its merits which it has so generally received, and I shall be happy if the few remarks I now contribute should afford any additional reason for its support.
It is certainly augural of the advancement of harbour engineering, that instead of plans being merely confined to local circumstances, so much attention is now being devoted to the illustration of general principles; which, however, can only be drawn from nature. The importance of philosophical instruction to the engineer is powerfully inculcated when we see the manner in which oljects, apparently so remote, are brought to bear upon our immediate pursuits. It is true, indeed, that this is a principle of philosophy, but it is one, the importance of which does not seem always to be recogoised, although it should be remembered that even the abstract sriences are derived from the observation of natural phenomena, and that the laws of mechanics are equally developed in the motions of the heavenly bodies, as in the construction of the animal and vegetable kingdoms. The face of nature is, in fact, the great book of truth, written by an uncrring hand; and it is upon the precepts there taught that equally in science, literature, and art, all excellence depinds.

Mr. Tait has, indeed, informed me that it was from the lole of Wight that he partially conceived the idea of his oun plan, and
upon that basis Mr. Rooke has also founded his mudifications. To shew, however, that this is not an individual example, but part of a general rule, I now present seme instances of natural isolated harbours, which, while they support the principle advocated by my two philosophical friends, may throw some inductive light upon the probable result of future operations.

The figure B here inserted is the rcpresentation of an isolated harbour in active operation. It is called Porto do Ilheo, and is situated in the island of St. Michael's, one of the Azores, opposite the town of Villa Franca, and not alove six miles from that of Ponte Delgada, one of the most important shipping places for the fruit and wine trade. From the nature of the basin it may be readily referred to a volcanic formation, and this is supported by its general confguration, as much as by its situation with deep soundings around it. It has all the appearance of an extinct crater; consisting of a wall of rock rising in most places 30 to 50 feet high, with a hollow centre, and an opening on one side. As nearly as I can recollect, it is about a quarter or half a mile across, and at low water has, in the centre, from eight to ten feet water, with a sheeting of mud covering the bottom. The month is to the north-east, of course opposite to the prevailing winds, and it is the only place in the islands which is sheltered against the westerly winds, but it is unprotected in the southeast when a heavy swell runs in its neighbourhood. The island is often used for careening, and it is the general place of refuge in westerly winds for the vessels from Ponte Delgada, a hich run here until the fury of the storm is abated, and lie without a wave to ruffle them, except that sometimes there is a dash of spray through a break in the west wall. Its importance was impressed upon me at the time I was engaged with the Atlantic Steam Navigation Company, the first which was brought forward in 1836, when my plan was to have used the Azores as a central station for com munication to North and South America and the West Indies. The use of this island as a depot was strongly enforced upon me by a merchant captain well acquainted with it, and I proposed to have had it deepened and an entrance made, accessible at all times of tide.

All such cases, it must be remarked, are of volcanic formation, and the entrance is almost uniformly found opposed to the prevailing winds. No satisfactory account of the cause of this has, however. been given, and the reasons assigned by Lyell are far from clear or convincing. In the recess called Rowley Shoal, off the north-west coast of Australia, however, as described by Captain King, in Lyell's Geology,* where the east and west monsoons prevail alternately, the open side of one crescent-shaped recess, the lmperiense, was turned to the east, and of another, the Mermaid, to the west.
In the Yellow Sea there is a remarkable horse-shoe volcanic harbour, mentioned in Macartney's Voyage to China, and the Chagos Isles in the Indian Ocean, described by Horsburgh, which have their openings to the north-west, are most important to navigators. These harbours are well known for their sccurity, and thips can enter and depart with casc.
The Coral Islands, in Polynesia, are nearly all of this horse-shoe formation, so that of thirty-two examined by Captain Beechey (\dagger), twenty-nine had lagoons in the centre, the land being mercly a narrow ring. Some of these lagoons were as deep as thirty-eight fathoms, and the largest was thirty miles in diametcr.

The following cuts represent a view of Whitsunday lsland and a section.

Fig. 2-View of Whitaunday Island.

Fig. 3.-Section of Whitsonday Island.
The channel leading from the sea into the lagoon is nearly always a deep narrow passage, which is kept open by the eflux of the sea at low tides. Lyell observes, that it is sufficient that a reef should rise a few feet above low water mark to cause the waters to collect in the lagoon at high tide, and when the sea falls, to rush out violently at one or more points. This, he remarks, is strictly analogous to that witnessed in our estuaries, (where a body of salt water accumulated during the flow,) issues with great velocity at the ebb of the tide, and scoura out or keeps open a deep passage.

We see from these extended examples that Mr. Tail's principle is. one that is neither unsanctioned by example nor useless in its recults, although in the present state of science we have not perhaps the opportunity of carrying it out artificially upon the great scale which is exhibited to us by nature. The force of voleanic action, which can elevate reefe from the depth of the ocean, our greatest steam power cannot imitate; but the day may perhaps come when we may be able to employ this agent with the same ease that we do the strength of the ocean.

CURTIS'S RAILWAY IMPROVEMENTS.

We have before had the pleasure of recording several of Mr. Curtis's railway improvementa, and we now add two others, well deserving the serious attention of all ruilway companies, for arresting those awful accidents, "collisions of trains," which, we are sorry to say, we see too ofen reconded in the daily papers to the injury of railways. We consider both contrivauces admirably well adapted for the purpeses intended by the ingenious inventor; they form part of several other improvements for which Mr. Curtis has recently received her Majesty's letters patent. In our next number we ahall give some particulars of his other inventions. The following descriptions we extract from the specification of the patentee:-

4 Break or Carriage for arresting the Progrest of ans Engize or Carriage, and which may also be applical for clearing the Lime of impediments ploced or lying upow is.-The best form of this brake is shown in fig. 1, 2, and 3; fig. 1 is a side view, and Gg. 2 an end view of the same, it may be placed either in front as shown, or behind the engine or carriage; but I prefer the front of the engine; because it is made then to act as a means of clearing the lide as above stated.

A shaft. F, is placed across the framing of the engine, and upon this shaft are fixed the two legs or levers, C C, and to the lower ends of the levers are attached the shoes, E. E., by the pins of the connecting rod, G., but in cases where the conoecting rod, G., would not clear the timbering of the bridges of the line it may be omitted and the joints made by pins enly; the cross-bars may be either omitted or placed higher on the parailel rods, D D, used to keep the luwer surfaces of the shoes parallel with the rails, and to give them a certain degree of steadiness; the slooe is formed either of wrought or cast iron, or of timber shod with iron, with a flange upon its inner edge to correspond with the flanges of the wheels; the back end is formed to the curve of the contiguous wheel, so that where it is in gear it impingen against it, and the flange of the wheel enters the grooves formed in the ahoe, and thus very materially adds to the stability of the apparatus. The groove is shown clearly in tigure 3, which abows the upper plan of the ahoe, and fig. 4 the nuder side of the same. A rubbing piece of wrought iron or other metal may be introduced into the under side of the shoe,
and secured by rivets or other means, which can be renewed at it becomes worn out by the friction of the rails when in contact with bher. A craok is fastened upon ode end of the cromes.shaf, F, to which inces. nected the rod, B; the other end of this rod is connected with the leen A, working upon a pivot, by which che engineer can work the brike ${ }^{-1}$ circumstances may require ; the cross-shaft is connected by the curringa to the frame in the usual way, and the pin makes likewise the connerion of the parallel rod, $D_{\text {; }}$ at its upper end, and the pin at its lower end; the lever may be substituted by a screw, which may be made to att in a line with the connecting rod, B, for the purpose of morking th apparatus, or anyother fit and suitabie leverage may be adopted. Whet the engineer observes anything upon the line he is desirous to resore with the brake, he depremes the shoes to within a very slort distance of the rail, which distance may be denoted by a stop placed upon anarthed segment, against which the lever, A, may work, or by any of the rasal means for the same purpose, and when he is desirous to stop the engios he causes the brake to come into contact with the rails by moving the lever, A, further forwarda, and if tostop the engine as sbort as pomible. the lever is thrown forward until it occupies the place shown by the dotted lines, when the apparatus asumes the position abso shown by the dotted lines in figure 1, the effect of which is to raise the engipe a space equal to that included between the black and dotted lines.

The force required on the part of the engineer to produce thin effer is very trifling, because the momentum of the engine forces the boo into gear as soon as it is brought firmly into contact with the nib; the springs, by their re-action, still keep the wheels upon the raik, bat the weight being transferred for the most part to the brake, the trective power of the driving wheels is very much reduced, at the same time such an extensive rubbing surface is brought into action that it will be sufficient to bring the engine to a dead stop although the steam moy no be shut off. It is evident by examining the figures that any degree of retardation may be produced between that necesaary to bring np the engise and that slightly to check its velocity, as in descending inclised planes and by moving the lever more or less forward, and the lerenpa must be also sufficiently powerful of whatever kind it may be formed. so that the shoes may be drawn out of gear without stopping the engine.
An Apparatus to prevent Collisions between Trains on the sume Lim of Rails.-This apparatus is shown in figures 5 and 6. Figure 5 is a side view of the apparatus and an engine in contact with it, attucind to the last carriage of a train, and figure 6 is a plan of the same.

The aledge or retarder, A, is formed like a wedge, with its supurio? end turned up upon the inner side; flanges are formed, so as keep it upon the rails, the two sides are united together by the crossobar, , 1 , the plate, K, and the croes pieces, G G, and the sides are set to the same gange as the rails, so that an engine may run apon it without difficulty to the crom-bar, J; two buffers, $D \quad D$, are fired, wich correspond wlth other buffers, I, formed upon the frint frame of the engine, so that When the engine comes in contact with the retades these buffers receive the concussion ; the plate \mathbf{K} is used, in order to unite the sledge as near to the point as possible, and still to allow ${ }^{2}$ free passage to the flanges of the wheels; to the cross pieces $G G$, the spring pieces, B B, are fired, which form shafts for the wheels C C, npon which the apparatus is carried when out of gear ; \mathbf{E} is a countrebalance weight to counterpoise the weight of the sledge, so that a man can move it along the line, like a truck, with great facility; the coupling F is formed for the purpose of connecting the sledge with the train in the uanal way, by means of a joint and pin.
The ret_rder or apparatus, when out of action, and connected vilh a truin, is attached to the last carriage, as shown at L; theo the sledge riden above the rails, and is suspended by the spring piete B B ; but should an zocident happen which would stop the trin, one of the conductors immediately detaches the retarder, and runs bret with it, and places it 500 or 600 yards bebind the broken-down trait; then, should not the engineer of the following train observe the trin before him, and stop his engine, the engine would run into the retarder. and wonld become a sledge; the driving wheels, if not stopped by the great resistance which would now be opposed to them, wonld atid round in the retarder, and would have no power to move formande No violent conenssion would take place, but the engine would libe along a certain short distance in the retarder when the train rould be brought to a stand-atill ; a hanging frame, K, muxt be forned from bou engine frame, and the buffers usually placed upon the head boand transferred to the lower frames, or other buffers I, placed there. AI Ido not consider it would be the best plan to make the superior end of bo retarder, A, so high as to meet the buffers placed on the head boend is the usual manner, the flange of the sledge \mathbf{A} may be either continued all along, as drawn, or may be made in detached pieces at cerrid intervals io the length, as may be found the best. In the case of a mit trin overtakiag a slow one in a fog or at night, the switt enfien
monid rua inte the rotarder, and the same effect upon the engine and trais would be produced as before stated-viz., that it would be brought to a atand, and the only effoct produced to the slow train, behind which the retarder was travelling, would be, that it would be torn away trom ite fasteaings ; for the purpose, therefore, of meeting a case
of this mature, it will be advisable to make the fastenings sach, that it may be torn away withuut the last carriage being subjected to any violent shock, with this view the pin at F may be of oak, or hard wood strong enough to drag the retarder, but anfficiently weak to give way in the case mentioned.

CURTIS'S PATENT RAILWAY IMPROVEMENTS.

A break por arresting the progress of an engine or carriage.

Fig. 1, Side View.

H. 3. Top of Shoo.

Pr. 2, End Viow.

Fig. 4, Underaide of Shoo.

AN APPARATUS TO PREVENT COLLIBION BETWEEN TRAINS ON RAILWAYS.

Fig. 6, Bide View of Appartere.

Fis. 6, Piad of Apparatas.

CIVIL ENGINEERING EDUCATION AND REWARDS.
In our last volume, p. 369, we were induced, under this title, to give an answer to the many fallacies which were then afloat on these subjects, and particularly to the misrepresentations of writers in the Times and Athencum, by refuting the theories founded on the Poly. techuic Sclool. Not one of our arguments has been contradicted, and in no other periodical has any reply been attempted. The article has created some sensation, and we should not have recurred to the subject, having, in our own opinion, said enough to settle the guestion; but we have received so many letters respecting it, that out of deference to our correspondents we cannot avoid resuming it.

We particularly objected to the notion that engineering education could be taught only in schools, and expressed our conviction of the impolicy oiseparating it from the present system of practical instruction in the offices of engineers. We have thus unwittingly knocked on the head the favourite crotchet of some of these writers, and we have received a volley of letters in abuse of our arguments, but not in refirtation. The following takea a higher stand, and out of respect for the writer, we give it at length, curtailed only of an exordium giving a loug definition of criticism :-
Sir, - I cannot refrain from expressing both gurprise and regret at finding, in more places than one of the "Civil Engineer and Architects" Journal," an attempt to show that engineering instruction is either unnecessary in this country, or that it is sufficiently provided for. Both assertions are equally erroneous. I need only adrert to numerous instances of failite in engineering works, too well known and two severely felt by the prarties concerned in them, to show how absolutely inadequate is the knowledge of our civil engineers generally, and how necessary it is that those who intend following that important career be adequately instructed; and I need only observe that the faculties established at Durham, and in University and King's College, are, though eminently useful, but secondary objects in those establishments, to show that engineering instruction is very far from being sufficiently provided for in this country. I am not one of those who are disposed to see everything good that is done abroad, and everything bad that is done at home; but equally do I deprecate that erroneous and narrowminded prejudice which sees perfection in all that is English, merely because it is so, and can find wothing but sneers and ridicule for the finest establishments of other countries, because they are not English. The man who would endeavour to ridicule the Polytechnic Sctiool of France, must be the veriest-but no, as Peter Pindar has it, "at calling names I never was a dab."
I will not make invidious comparisons; I will argue the point of engineering education on other grounds. It has been said, that "the English student derives lis knowledge from private study in books, and not by oral iostruction from professors." I confess I had yet to learn that our English youth were so passionately fond of study as to require no teaching. It is elsewhere said, "if science were only to be gained from the dictates of professors, we should indeed be in a state of mental degradation;" and pray, I would ask, what are the books from the private study of which our youths are to become such perfect adepts, but the dictates of professors ρ Has the writer of such senseless sentences received no benefit in his lifetime from oral instruction? If so, he must either be very ignorant or a natural prodigy.

In the article on civil engineering education, to which I allude, there is a flaming paragraph setting forth our superior excellence in all things, which, as having nothing to do with the point in question, would liave been much better omitted; to praise ourselves is fulsome and undignitied. The writer goes on to state, "To whatever department we direct our search, it will not be very easy to find any symptoms of inferiority in the working of our present system." Indeed! lt is easy to see the writer has had none of his capital engaged in the thousand and one speculations which have failed for sheer want of the very first elements of scientitic kiwwledge. Again the writer falls into a comparison between France and England, in which, according to him. France has few or no great works. Were we so disposed, we could presently show him his very egregious mistake. Nay, let alone France, we could point out in othicr countries, countries we are disposed to despise as barbarous, works equal in beauty, magnitude, scien. tific combination, and practical skill, to anything we can boast; but we repeat it, we will institute no comparisons.

That we have many, very many magnificent works no one can or will attempt to deny; bu: what does this prove? That if we have been able to effect so much withont the aid of speciul scientitic knowIedge, we may fairly hope to achieve the greatest things if a proper xysicm of instruction be introduced.

Will any man be bold enough to say that the payment of a 10001 . to some celebrated engineer or architect, and that five or seven years "copying and transcribing in an office" are sufficient to qualify a young man to become a civil engineer: I appral to the writer of a paper in
the "Civil Engineer and Architect's Journal," page 159, rol. 1.; 1 appeal to every man of common sense. Is any one absurd enoogto imagine that an engineer or an architect of first rate emineuce, rbowe every moment is employed in his professional duties, cas by any poni bility devote any portion of his time to the instruction of the pupin placed under him? or is any man disposed to think himseff unfairy ireated because such instruction is not given to his son? Is it not in acknowledged thing, a tacit understanding between parties, that the 1000l. paid to Mr. A. or Mr. B. is solely for the privilege of suriog a! son wes in Mr. A.'s or Mr. B.'s office, and nothing more.

But will auy one be so doggedly ridiculous as to maintain that ment a system is all-sufficient for the education of our civil engineen, und that too at a moment when the amazing increase of indurtry cals lowd! for a whole host of fully competent engineers?

The English mechanic, it is said, "has no Ecole Royale to frequent, and no Conservatoire des Arts et Metiers in which to exhibit his pet. formances, but he can study in his own house, has his own periodicul? can learn from his brother workmen, and frequent a Meclanic's Inaitute in every town, while he has the free-born spirit of the Englist net to direct him, aod the statue of Watt to remind him how his fethor countrymen can appreciate lis labours." To call this anything bo! ridiculous bombast would be to misname it.

If the English mechanic has not the various advantages above stated, so much the worse, so much the greater shame to this rich and iodutrious country. As for the mechanic's study in his own house, il amounts to very little at most, and instruction from periodicals to will less. His brother workmen, with a few honourable exceptiona, ar littie disposed to teach him anything but the way to the gin-paluce, and nine times out of ten he understands not one word of the leccures given at the so-called mechanics' institutes; and as for his free-born spinit it directs him in too many cases, alas! to little else than to rail at all above him, and at the institutions of his country. Finally, as for the statue of Watt, I would like to know how many have seen it, and bor many from the contemplation of it have risen in their career.

Bit now come we to the point. Hitherto we have been told that instruction, other than private reading of books, is useless; that mithout any systematic education we have done wondera; but now we bave a recommendation of the course proposed by the English colleges, and, despite the ridicule just thrown upon oral instruction, we are now whd that " the practice of the students attending philosophical lecturs rill prove an important help to their professional education, while we ye to deprecate any attempt wholly to educate them, whether in an English academy, or the Ecole Polytechnique itself, whinh might tum out 2 very good surveyor's lack, but which would not be very litely tw produce a Smenton, a Brindley, or a Watt."

Now, Sir, I would ask-not to advert to the preposteruns idea thu the instruction of such men as Monge, Biot, Francoeur, Hatchet, 1 , Place, Legendre, La Croix, Prony, Hassenfratz, Fourcroy, Bertbolet Chaptal, Gay Lussac, Thenard, \&cc. \&c., can only turn out surveyon' hacks-what, 1 would ask, is all this but the puff direct of the clewt of civil engineering lately established in some of the English collega! -the puff exclusive-the puff ridiculous, inasmuch as coutradictor of what was before advanced-the puff mischievous, as it deprecates the only means by which solid instruction can be given in civil engineriog -viz., special tuition in an establishment organised solely for the purpose of creating efficient engineers. None ean see with grester pleasure than ourselves, that attention is being directed to the pecesity oi particular instraction in civil engineering. Tine establishment of the classes alluded to, sufficiently disproves ihe assertion with which the writer of the article we are commenting sets out. Too long, in deed, have we been guided by dear-bought experience and expensire blind experimentalizing. It is high time that theory, which is nothing more than the resuits of the best practice, methodised and redaced to axioms, be combined with practical operations to enlighten them, while practice, in its turn, points out the possibility of fresh improot ments, with this advantage, that by a knowledge of scientific trutus they are founded on certain priaciples, and are not derived from rague and indefinite conceptions.

Indeed, the necessity fur scientific knowledge is forcibly pointed oot in an article headed " Mining and Mines," in the "Civil Engioeer zas Architect's Journal," p. 419, vol. 1 ; and what is essential to miners most be still more so to the civil enginecr; for mining is buta part-a sectionof the attributions of the civil engineer, whose profession cxtends from the laying dowa of a gaspipe to the construction of a jetty ; from the fixing of a ctane to the construction of a locomotive engide; from the paving of a court-yard to the construction of a railway; from the tracing of a drain to the connexion of seas by a canal; from the buitdiug of a porter's lorge to the erection of the most extensive manuffetory; from tho draining of a cellar to the draining of a coudry of of a nine. Jlis knowledige mnit be general as his labours are multifarions. Of mineraly, unctals, and regetalle substances, he most
know both the nature and the nse; the chemical and physical properiea and actions of bodies, he must be intimate with. He has to ecoploy forces of every kind, and must hold them under his control, which he can only do by thoroughly understanding them. In a word, his knowledge must not only be general, but perfect, as ignorance in any one correlative object paralyzes or counteracts the effects of his Lnowledge in the rest. Can this be denied P and will any one, in the free of such truths, maintain that science is unnecessary to the civil engineer. or that it is amply provided for among ns ! The preface of the "Civil Engineer and Architect's Journal" contains an ennmeration of several establishments as teaching civil ragineening. In every one of these, certain branches of engineering knowledge may be taught : indeed, it is hardly possible to teach any hing with which the civil engineer shonld not be acquainted, but we have no ruch thing as special schools for civil engineers. Particular classes are highly useful, no doubt, as auxiliaries, and we are happy to see them established; but to say that they are sufficient, or that more adequate knowledge is Mkely to result from such unconnected, and, therefore, imperfect studies, than from a regular course in an establishment where all the elements of a goud engineering education are cumbined, where all the efforts tead to the one main point desired, would be to say an absurdity too palpable to be for a moment dwelt upon.

In conclasion, sir, I will merely observe, that engineering education is, with ns, wofully deficient; that, at no period was it ever mure loodly called for; and that, jodging by what has been effected without it, we may fairly anticipate incalculable henefts when proper scientific instruction shall guide our practical skill. Let schools, then, be established, and let us not, to favour any particular interests, dissuade the pnblic from a "consummation so devoutly to be wished," as the establishment of special schools for civil engineering.
I ani Sir, yours, \&c..

We pass over the reflections in the above letter on ourselves, for we feel conscions of having doue our duty to the profession, and the magis amicus truth; as to any assertions of venality, it is unnecessary to protest against them when our venal arguments remain unanswered; but re can assure the writer that we are neither shareholders in the universities, nor interested in the professors' fees, and that, still more, we are not on the look out for a berth in any college, to be or not to be.

We are next assured that the man who would endeavour to ridicule the Polytechnic School must be the veriest, (magnus hic deflendus hiates,) but no! as Peter Pindar has it, "at calling names, I never was a dab." Now, we never ridiculed the Polytechnic Schoolat all, although we are not aware what sacred protection it should have in the eyes of Englishmen. Then it is asked-what are the books from the private study of which our youths are to become such perfect adepts, but the dictates of professors? We never said that they were not, or that the dictates of a professor on proper subjects were not of use, but we feel indebted to our correspondent for this argument in favour of the use of books. By and bye he assures us, that he can negative our comparison of the inferiority of French public works, and hints something about a barberous nation. We can only assure him that we should willingly have received the refutation, and paid equal attention to it. We next learn an important fact, that engineers' pupils are not expected to learn anything, but only to pay their money. The writer then introduces a political declamation against our English mechanics, which every man of experience can contradict, and in reply to which we can do no better than recommend him to study that amusing work, "Hints to Mechanics," by Mr. Claxton. We never said that instruction, other than the private reading of books, was useless and consequently need not advert to such a gratuitous assumption. We have read with due attention the long muster-roll of names, almost equalling the enumeration of Homer, and we give full credit for the industry in assembling all the names of profesors, living or dead, that could be found; the names are very good, certainly, and include many eminent chemists, mathematicians, astronomers, philosophers, \&c., but we should like to know how many engineers? We can find plenty of colleges in England to furnish a list of well-known names, but we do not see what that has to do with engineering. The writer then falls into a farther mistake, when telling us that special tuition must be given inan establishment organised solely for the purpose, he instances the Polytechaic school, believing that it is entirely devoted to civil engiueering. By referring to our first article he will, however, see that it is no such thing. The concluding definition in also racher loose; it informs us that duties of civil engineers are to construct locomotive engines and build porters' lodges, and manufactories. We alrays thonght that such things belonged to the practical engineer and the arelitect.

We shall now enter into a farther consideration of the subject, and shall Arat endearour to ascertain how far the nature of the profession of eivif engineer influences his education. It appears to us that the
course pursued in one profession does not necessarily involve its application in another, but that each requires a system adapted to its peculiar pursuits. If we correctly undleratand the question, civil engineering is essentially a profession of genius, having to deal with many new and unforeseen cases, and that as decidedly as any branch of the fine arts ; it is therein distinct from law and medicine, whlch are principally aystems of the application of old processes. No one by force of genins cunld become a lawyer, and it would be very difficult in the eame way to obtain a qualification for the practice of medicine, although the study of physiology affords opportunities for the exercise of the exercise of the bigher faculties of the mind. Genius we consider to be the ground-work of civil engineering, and the means of carrying out designs are drrived from general philosophical studies and the use of technical processes. All these are intimately enwoven togetner, in tho same manuer as in painting. Genius must be united with the mechanical handling of instruments; as in architecture the conception moust equally be instructed to be carried out in the treatment of style and its adaptation in construction.

For the attainment of this practical instruction we imagine no man of sound judgment would prefer a school to an engineer's office, while to engraft education upon a theoretical instead of a practical basis, or to consider practice as merely the handmaid of theory, inatead of its parent, would be nodoubtedly to destroy all the advantages which we now so eminently enjuy. It is an error among pedants to substitute theory as superior to practice, instead of remenbering that theory is only a classification of the results deduced from it, and that practice in engineering holds the same rank with regard to theory as the observation of phenomena does in philosophy. It would be a similar error in politics to considrr laws as existing before the population from which they arose, and it is from one of these pedantic conceite, in supplanting langrage by grammar, that the study of literature is so much thwarted in modern education. Theory, like practice, properly speaking, is oaly the representation of one faculty of the mind, and does not constitute the whole; practice resembles perception, and theory is an extension of the power of abstraction and generalization.

As to the instruction in theory, it must be remembered that facili. ties exist in England in the shape of private teachers and scientitic institutions, which the system of universitary police does not alluw in France and other parts of the continent. There, consequently, thicsretical instructions uust be given wholly in public establishmente, or it is difficult to introduce it as an accessory to practical studies. Thu way in which we look upon the collegiate classes in England, is only as they resemble and supply the place of that system of instruction which already exists, being rendered subsidiary to the general course of education.
To show that the views which we entertain, however erroneous, are not without some support from other members of the profession, we shall refer to the view entertained by the Institution of Civil Engineers. In their regulation for the admission of candidates, they expressly recognise the force of native genius, "which commenced the profession with a Brindley and a Smeaton, and was in our own time exemplificd by a Rennie and a Telford." They proceed upon the basis of considering practical instruction as the gronndwork of the profession, and require from candidates that they should either have served the usual time of pupilage, and then had subsequent employment for five years, or else that hrey should have practised on their own account for five years, and have acquired considerable eminence. What great names would English architecture be able to produce, had they excladed Wren, Aldrich, Vuuburgh, and so many others ? Where would the arts havo been withurt those names which have sprung from the ranks of genius, a higher schonl than all the acadermies which were ever founded? Schools are limited, and genius is widely dispersed; so that the more you restrict your boundaries, the less chance you have of acquiring great meu, and the greater certainty you have of falling into that general decay which the mannerism of schools and restricted competition prodace.

The present proposals of giving a preference to theoretical instriction are peculiarly ill-tined, when it has been an strongly felt in otho: cases that a greater attention to practice was the only sure guide to eminence. It is well known that the medical world are strongly inclined to abolish the unnecessary distinction between physician and surgeon; and that they are more than ever coavinced of the importance of the preparatory instruction acquired in apprenticeship. As to the idea of making civil engineers in colleges, it is one of the most preposterous which ever entered the head of a theorist. We know winat bas been the success of attempting this system in the fine arts, and we can see what a plentiful crop of daubing mannerists it has produced. We may thus form some idea of what would be its result among the civil engineers; there would be no lack of them, certainly, but thete would doubtless be a terrible deficiency of talent and a greatabundance
or mediocrity. There is one defect attendant upon collegiate education, which has done that to damp the energies of atudents which no other exertions have been able to remedy. Collegiate instruction soon becomes so expensive as to come only within the range of a certain class ; and while the selection is thns limited, the effect on the stadents is, that often possessing a competence, they have no other ambition than to pass through their course with as little trouble as possible. It must be conceded, on the other hand, that collegiate instruction effects a considerable saving in time ; but it should be remembered, that selfstudy, like a mechanical power, makes up in strength for what is lost in time. Even in professions where knowledge is communicated by lecturea, the benefit of individual instruction begins to be appreciated, and in the opening speech, last session, of the Dean of the Medical Faculty, at King's College, he strongly recommended this course to be adopted. The idea of teaching civil engineering solely in colleges we cannot but look upon as absurd, and we know no means of expressing our views more strongly than by repeating the words we used in the preface to our last volume.
"The system of teaching by lectures, it has been found by experience, cannot successfully inculcate every thing; and while it has been abandoned at our older universities, in medical studies it is accompanied by demonstrations and clinical instructions, such as can never be applicable to mines or engineering. We can have no dead railways to diesect, no prepared veins and lodes to illustrate; and although construction may be partially learned from models, yet it is in the open feld of practice that its application must be eequired."

MEMOIR RELATIVE TO THE COURSE OF THE SHINGLE ON THE COASTS OF SUSSEX AND KENT, AND THE LAWS BY WHICH IT IS GOVERNED.

By J. H. Willians, Lieut. Colonel, Royal Engineers.

1. The general bearing of the coast from Beachy Head to the South Foreland, is from W.S.W. $\frac{1}{2}$ south, to E.N.E. $\frac{1}{2}$ north, by compess.
2. Shingle of a similar kind, produced by constant detrition of the Beachy Head Cliffs, and augmented by detritus from the Kentish Cliffs, is found in large quantities all along the shore from Beachy Head to the South Foreland.
3. It is ordinarily drifted along the shore from the westward to the eastward, though subject to occasional interruptions.
4. Wind and wave are the principal propelling powers. The latter closely follows the course of the former, though at times deflected somewhat more southerly; and a light air and undulation are sufficient to carry the shingle in an opposite direction to a atrong tide.
5. The shingle is invariably borne along in the direction of the scute angle, which the waves form with the shore; and the dritt is more or less rapid, in proportion to the strength and direction of the wind, and the height and velocity of the tide.

Fig. 1.

The Shingle borne to the Eastrard. A, Angle of Wave, 46°. BB, Line of Ware.
6. The easterly and wonted course of the shingle is the effect of the great prevalence of westerly winds in the English Channel. The quantity put in motion, and the rate at which it is borne along, are grealest on the Hastings shore, in a gale from the south-west, accompanied by a spring tide, when the wind and sea impinge on the shore, at an angle of about forty-five degrees (sce fig. 1).
7. When the wind blows from the eastward of south, a motion of the shingle to the westward is speedily perceptible, and in a gale from the south-east considerable quantities are moved in a westerly direction.

The Shingle borne to the Weatward.
BB, Line of Wave.
8. When the wind sets directly on or off the land, the shingle is quickly laid in ridges parallel to the shore, and there is no indicaica of any drift of shingle along shore at such times. The truth of this view of the subject will scarcely be doubted by any ane who will carefully watch the action of the shingle about a groin perpendicalz to the line of shore.
9. The foregoing data clearly prove that the motion of the shingie is strictly governed by the direction of the wind and wave, and us these prevail from the westward for nearly nine months in the yes; and storms are most frequent from that quarter, it follows thi: shingle must be carried to the eastward in great excess.
10. The force-propelling beach to the eastward may be considend to be exerted between the west-south-west and south-by-west point; and therefore allowing for an action of the wave somewhs mane southerly than the wind, no harbour on this part of the coast shoold be open to any point of the compass west of south, nor should the relative positions of the pier-heads be such as to receive the ne of the sea between south and west.

Fig. s .

The Shingle is mored up and down the Blope, but in nother exriel to the 8ent nor to tha Wiet
11. Any projection of magnitude must cause a permanent alters tion in the form of the adjacent shore. The utmost care shoald therefore be taken, in carrying out a pier or breakwater, that the pel line of beach may lay as nearly as possible at right angles to the point of the compass from where the wind blows, that causef the greatest drift of shingle. By such a disposition, the most effectul counteraction will be given to the easterly passage of the shingte that can be obtained; but if this principle cannot be fully camed out, let the nearest approach be made to it that circumstances mill permit.
12. A chart upon a large scale will show that there are infeciout of the const where shingle must be heaped up, and cannot drit, 4 the very times where it is borne along the general line in the grealod quantities. The shores on each side of the Point of Dungenest ve examples. The extension of the Point to seaward, and ita enlater ment, may, it is presumed, be adequately accounted for by the theory advanced in the preceding remarks; and, assuming such to be the fact, a very decisive corroboration of the system here propounded is obtained.

RALPH REDIVIVUS.-No. XV.
 THE TORE COLUMN.

The aspect of the planets happens now to be so favourable, if not to monamental columns at least to discussion relative to them, that perhaps I cannot possibly do better than make choice of the York column for my present subject.

Notwithstanding the force of classical authority it seems now to be admitted by a great many that an insulated pillar, more especially one borrowed from any of the orders employed in the construction of buildings, has no very great propriety to recommend it, it being offensive, because quite unmeaning, when detached from that of Which it forms merely a portion, and apart from which it is consequently no more than a fragment, while, as the support of a monumental statue, it is most injudieious, because it necessarily elevates the figure so greatly that little is to be discerned of it, except its mass alone. Neither can this inconvenience be counteracted by increasing the size of the statue, because the column itself must be increased correspondingly, or else the other will appear out of all proportion to it, and extrsvagantly large. Thus in order to be properly seen at that height from the ground the statue of the Duke of York ought to be, at least, twice its present dimensions, more especially as, so placed, the object requires to be viewed at a distance exceeding its elevation from the ground, since otherwise it will be beheld too much foreshortened.

In regard to the column itself, it is the least eligible that could have been made use of for such purpose; because so far from having anything whatever to recommend it as an ornamental object it is utterity destitute of embellishment, not very pleasing in contour, and what few mouldings and members it has serve only to make us feel all the more sensibly the extreme dryness, stiffness, and poverty of the ensemble. Capital it can hardly be said to have any, the part intended as such finish being little more than a clumsy-looking equare platform with an iron ruiling, above which the shaft of the column is continued, forming the cippus or circular pedestal, on which the statue is placed. The rails just mentioned may be termed light, but then so far from contributing to the idea of lightness, in the favourable sense of the term, they rather produce actual paltriness of appearance, having no more dignity nor beauty than the wires of a birdcage. Surely, in such cases, where an external gallery above the columu is made a sine qua non, it would be infinitely better to deepen and hollow ont the abacus itself, making its sides answer the purpose of parapets; or, which would be still better, there might be a gallery within the capital, the latter having ornamental apertares sufficiently large for a person to put out his head and look down while standing in perfect security. Certainly an external gallery, unleat masked so as not to show itself, is a blemish, and in itself rather adds to than at all diminishes the general solecism of employing a column where it seems a tower is wanted. Otherwise them as a belvedere, from which the surrounding prospect may be beheld, a gallery upon the abracus is useless; for as to secing the statue itself from that situation it is perfectly out of the question, while it requires same degree of nerve to attempt to get a glimpse of it by leaning back against the railing.

Another great disadrantage attending the practice of surmounting a monumental pillar by a railing, which though slight even to paltriness in iteelf gives the capital a strangely encumbered look, is that it requires the statue to be raised much higher above the capital than there would else be occasion for; and it would, I conceive, be greatly better in all such cases were the figure raised no higher above the capital than what would allow the ahole of it to be seen from below, under an angle of 45 degrees, or, perhaps, somewhat nearer. Instead of being hoisted on an excrescence built up above the capital, the statue would then appear to stand almost immediately upon the latter, which it ought to be made to do as nearly as possible.

Although comparatively unimportant as to size, how imposing as to character and effect are the two granite pillars on the Piazzetta at Venice, and how greatly would their dignity be impaired were they sarmounted by anything besides the figures they respectively support. In fact, those are veritable columns; not hollow constructions, zoade to resemble them, but solid monolithic pillars, and inferior only, perhaps, to such enormous monoliths as Pompey's Pillar and the Alexander Column at St. Petersburgh, whose heights are respectively 80 and 84 fect, but the latter of far greater magnitude than the other, owing to its diameter being so much stouter.

Whatever be its appearance to the eye, a tower built to resemble a column can hardly affect the imagination so strongly as a solid shaft of equal or even lesser dimensions; it would, therefore, be perhaps advisable not to let the hollow shaft proclaim itself as such, but to omit, as far as possible, every indication of its being so, and not to let

NO. 19.- Tol. II.-APRIL, 1839.
it be seen that that it is a lofty circular tower, surmounted by a square, overhanging platform. If there must be an abacus, or something answering to it, surely, instead of the usual square member, it would be better to substitute a circular one. In columns, the square abacus has great beauty and and propriety, its office being to afford a broad surface, on which the architrave rests; but, with regard to a monumental pillar, the case is widely different, that having no horizontal mass to sustain. I may here quote Hosking, who speaking of the Monument and the lofty shot-tower by the southwest angle of Waterloo-bridge, says--"They are both of cylindrical form; but the one is crowned by a square abacus, and the other by a bold cornice which follows its own outline (i. e., of the tower); the greater simplicity and consequent beauty of the latter, is such as to strike the most unobservant." The contrast here objected to between the shaft and abacus, is certainly not unpleasing in itself, quite the contrary; yet although such combination is both agreeable and appropriatc, where the abacus is no more than a member of detail, it becomes almost an incongruity, when the whole is so magnified that the single square stone slab placed on the column to receive the architrave, becomes a terrace or platform, whose angles overhang the the circular structure on which it is raised.
The utmost that can be urged in extenuation of such enormity is, that it is in strict adherence to classical precedent. The York Column, however, might very well have been allowed to deviate from precedent in that respect, since it differs most widely from its prototype, precisely where resemblance to it would have been a meritnamely, its monumental character as an historic trophy. While it is, architecturally, an imitation of the Trajan column, it is utterly devoid of all ihat gives magnificence and gragdeur to this latter; neither does it offer anything whatever in lieu of the embellishment thus omitted by wholesale. Instead of having anything ornamental in its character, of displaying richness of any sort, or in any degree, it is stamped by the most chilling blankness, the most parsimonious plainness. Consequently, it is little less than a positive absurdity; for surely absurdity it must be allowed to be, to erect what, as a structure, is perfectly useless, and, at the same time, mean, and so far disgraceful as a work of art. Yet ugly Brobdignagian columns of this description are now stuck about in many parts of England and Scotland; and Glasgow and Edinburgh have their full share of them. To say that we build as fine things of the kind as the funds raised for them will permit, is no excuse, although our inability to erect anything better than what we hitherto have done, would be a most sensible plea for not building anything of the kind again. Nothing is more contemptible or more ridiculous than the blundering mixture of prodigality nud parsimony we generally witness on similar occasions. With just enough to provide a statue and its pedestal upon a scale of grandeur, our ambition is satisfied with nothing less than hoisting up the figure, and perching it upon a gawky, unmeaning column, as plain as a post. Supposing the shaft of such column to be fluted, that does not at all mend the matter; because, when so preposterously enlarged, the fluting itself becomes only an absurdity. Almost as well might we think to decorate the front of a building by striating or futing it with channels, as to adopt them guite contrary to what taste or propriety would naturally dictate, for a cylindrical shaft forming a slender tower; surely the far more sensible mode would be, to form narrow, slightly projecting stria, having the appearance of strengthening the shaft, instead of scooping out hollows to weaken it.
As far as the York Column is concerned, no fault of the kind can be alleged against it, it being totus, teres, alque rotundus, without channel or wrinkle, hollow or projection to break the uniformity of its surface. It is perfectly innocent of fancies or whims, of basreliefs, twisted à la corkscrew, after the fashion of both Rome and Paris; that is, of the Trajan and its two imitations, the Colonne Vendome, and the Colonne de Juillet.
So far from having any decorations, it has nothing whatever to indicate its purpose. To be sure, there is a figure on the top of it, which may be that of the Duke of York, but then it might serve as well for the Duke of Wellington, or for Sir Walter Scott, since there are no symbols nor other marks by which this monument can be recognized as that of a military man. But what most of all surprises me is that those fastidious critics who discern such outrageous absurdity in the fine campanile of St. George's Bloomsbury, on accoun t of the statue which forms so picturesque and graceful a termination to the whole mass, can so quietly put up with the infinitely greater absurdity of sticking what is not intended as an ornamental accessory, on the top of a pillar, without any pretensions to beauty in itself, and erected, it would seem, merely, that the effigy of the person so honoured, may be seen to the utmost disadvantage. Wherefore their taste should be so excersivcly scandalised by the lesser absurdity of the two, it is for them to explain.-But stop; a young
critic, only five years old, at my elbow, has solved the mystery, by observing-"How very funny to see a man on the top of a church, where you know they always put a weatherceck ${ }^{\prime \prime}$

CANDIDUS'S NOTEBOOK. FASCICULUS III.

"I must have liberty
Withal, as large a charter as the wind, To blow on whom I please.'

I. I do not know how our scrupulous copyists of Grecian architecture can reconcile it to their consciences, or to their taste, to omit, as I may say they are in the habit of invariably doing, those decorations that enter into an order, which, if not absolately indispensable to the building itself, are, nevertheless, quite as essential to the effect and character of the ensemble,-or I might say, very far more so than those subordinate mouldings and other niceties to which such extreme -aven superstitious-attention is paid by them. Like many other folks they strain at a gnat, yet can swallow a camel. Therefore, though they would deem it absolute heresy to make any alteration in the form of a base or a capital, they allow themselves to leave out what, not being uniformly the same in all specimens of the same order, is not considered as inseparably belonging to and forming a part of it. Look at any or all our modern imitations of the kind, and you will find them, almost without an exception, entirely to lack that richness and finish which the buildings of Greece itself exhibited, and which, so far from being at all superfluous, are indispensable to the due effect of the style itself, since deprived of those qualities, it becomes one chiefly marked by both disagreeable baldness and monotony. At first, perhaps, it might be considered a sufficient achievement to produce fac-simile copies of Greek columns; but the time is now past when any degree of merit can be imputed to such feats. They have ceased to be prodigies-in fact, have begun to pall upon us-yet we still persist in continning the same mill-horse round, without advancing a single step. Is not our Anglo-Grecian architecture precisely where it was when we first took it up? Do our later works in it manifest greater mastery over it-such increased knowledge of its esthetic principles as to be able to proceed with the the same spirit and feeling, wherever we are at a loss for actual precedent in the models furnished by Greece itself?-or rather, are we not as bungling tyros and apprentices just where we were at first p Circumspice : let any one compare some of our first attempts in that style with some of the last, and prove, if he can, that the latter exhibit great mastery over the same elements of design.
II. It is very possible for a building to be free from any thing that can be alleged against it as a positive fault ; it may, to a certain degree, be even pleasing, and yet so far from being particularly creditable to its author, may chiefly serve to show that he is devoid, not only of invention, but of the ability to communicate any thing whatever of spirit and expression to his design. It may be correct, but then it is also géné. It resembles a lesson got by rote, or, as it is generally termed, got by heart, although except when a man's heart happens to lie where his tongue should be, the heart has no concern in the matter; which seemingly very impertinent remark is here apropos enough, for I mean to say that there is no heartiness, no cordiality, no feeling in such lukewarm productions.
III. I met the other day with an account of St. Andrew's Hall, at Norwich, which describes it as "a neat, grand, and elegant" building. Neat and grand! In the name of fire and water, oil and vinegar, cat and dog, were ever the two epithets so tacked together before? In addition to which odd character given of the architecture, we are further enlightened by being told that the columns are all uniform, " being covered with lead!" If that be true, no doubt they are very extraordinary columns, but how they should on that account be more uniform is not explained. Quare: Was not the writer thinking at the time of his own columns, which seem to be overlaid with plenty of that metal?
IV. Of my contributions to the Architectural Magazine, the "Literary Gazette" is pleased to say that I am " clever and caustic," than which I desire no better praise. I abominate rour water-gruel style of writing, fit only for literary milksops and those excessively cautious "by your leave" gentlemen, who invariably make use of the most sugary expressions. Palatable or unpalatable medicine must be administered, and should the patient's case require bark it is of no use attempting to render it agreeable by mixing it up with flummery. Yes, but some folks cry oul, your bark is sometimes downright barking. Assuredly; and, after all, one had need have the three heals of Cerberus himself to bark loud enough and long enough to produce any effect-to rouse up the sluggards and the
slumberers, the good people who sit comfortably dozing and nodding over art, though all the while tolerably wide awake to-their own interest.
V. It is greatly to be wished that some of our Greek architects would bite some of our Gothic ones, because, in that case the latter would no doubtalso become infected with that scrupulous precision and preciseness which constitutes the rabies of the others. Yet no sach rabies discovers itself in the rage for Gothic architecture. Tout a contraire, your modern Goth makes no scruple of paring down the mullions of his windows until they are scarcely thicker than the bers used to be in our old sash frames. But your Greek will not bate you a hair's breadth in any one of the dimensions of a coluron: he is as inflexible on that point, as Shylock himself in regard to his bond. Perhaps I shall be told that, for such matters of detail, no such strict rules have been laid down for the Gothic style, as for the other; assuredly not; but then it does not exactly follow, that, because there are no precise rules, there are neither any laws whatever to be attended to. Truly, there are no precise rules to teach people how to walk in the streets, yet should you choose therefore to thrust your fist into a man's face as you went along, he would soon convince you that if there be no rules, there is not only such a thing as law, but a confoundediy plaguy deal of it too.
VI. Although not so intended, it is a far greater compliment than they deserve, to compare some of our recently erected churches to barns. A barn is neither a disagreeable nor a ridiculons object. On the contrary, it is generally a pleasing, ofttimes a pisturesque one, while of the other class of buildings not a few are the most anti-picturesque things conceivable; as architecture, vulgar, -not simple, but paltry, pert, and mean; without elegance, withoot solemnity, without soberness, without even the negative merit of unpretending homeliness. Dapper formality, and spruce insignifcance are, for the most part, their distinguishing qualities, and awfully bad is the distinction they confer.
VII. Somehow or other there is a most obstinate prejudice in favour of admitting as much light as possible into rooms. To be sure, the upholsterer does his best to exclude half of it by his ample window draperies, without which most apartments would have a particularly dreary, chilling appearance; no shadow in any part of them, and, consequently, very little architectural effect, since to that shadow is almost indispensable. It is for this reason that vestibules, corridors, and such places, where the light is generally admitted fur more sparingly, and frequently confined to nearly a single spot, are apart from anything else in their design, so much more pictorial than apartments, splendidly furnished perhaps, yet without any coobtrast of light or shade. To an artist's eye-and it should be so to an architect's-the one is as requisite as the other. Light there mus be, but there should also be shadow : in other words, there should be just as much and no more light than effect demands. A few gleans of sunshine glancing into a room, give a far more brilliant and and delightful appearance than a blaze of it does. But then there will be dark corners ; so much the better; there is no occasion to sit in them if you want to read; and as few people sit, like sentries in their boxes, all over a room at the same time, a person mas place his chair in the light as well as out of it. A room which is not 100 strongly lighted, has also a great recommendation in its favour: is is next to candlelight, the very best thing imaginable for a lady's looks and complexion. If you donbt it, ask Mrs. Candidus; and, however much we may differ on every other point, she agrees with me, heart and soul, on this.

ON THE GENERAL THEORY OF THE STEAM ENGINE. No. 2.
by aristides mornay, esq.
In resuming the investigation of the theory of the steam engine we feel it necessary, in the first place, to define clearly in what we consider that theory to consist. It is unquestionable that there are certain fixed laws, based on the principles of natural philosophy and mechanics, which determine and modify the development of the power of steam, and its action when applied through the mediarn of the steam engine to produce any required mechanical effect. The ensemble of these laws constitutes, of course, the general theory of the steam engine, and no theory which excludes any one of them can claim that title. Our present knowledge of the above mentioned sciences is sufficient to enable us to point out the various phenomens which take place during the working of the steam engine, and on which its action depends. These phenomena may be divided as follows:-

1. The generation of steam in the boiler and the circumstanes
sttending it, viz., its temperature, elastic force and density, and the caloric absorbed during the evaporating process.
2. The transmission of the steam from the boiler to the cylinder, and the changes of state which it undergoes during its transmission.
3. The pressure exerted by the steam against the surface of the piston at every instant of its stroke.
4. The nature and intensity of the resistance, which consists in general of the useful effect and the various resistances arising from the mechanical construction of the engine, inclading the resistance of the steam during its efflux from the cylinder.

We have already stated that M. De Pambour, in his proposed theory, entirely disregards the laws of the transmission of steam through pipes, which the following quotations from his pamphlet will prove. He says (page 44), "Let us, however, remark that, mathematically speaking, the pressure P of the steam in the cylinder can never be quite equal to P, which is the pressure in the boiler; because there exist between the boiler and the cylinder conduits through which the steam has to pass, and the passage of these conduits offers a certain recistance to the motion of the steam; whence reaults that there must exist on the side of the boiler a trifling surplos of pressure, equivalent to the overcoming of the obstacle. But as we have proved elsewhere, that with the usual dimensions of engines, this difference of pressure is not appreciable by the instruments used to measure the pressure in the boller, the introduction of it into the calculations would render the formula more complicated nithout making them more exact. For this reason we neglect that difference here.?
It should be observed that the above remarks are only intended to spply to the case of the minimum velocity of an engine, or its maximum of useful effect ; in every other case the author not only neglects the excess of pressure necessary to force the steam through the condaits, but rejects altogether the supposition that any relation whatever can exist between the pressure in the boiler and that in the cyinder. In page 19 of his pamphlet he uses the following argoment :-
"Finally, in looking over our experiments on locomotives, it will be seen that the same engine will sometimes draw a light load with a very high pressure in the boiler, and sometimes a heavy load with a very low pressure. It is then impossible to admit, as the ordinary calculation supposes, that any fixed ratio whatover has existed between the two pressures. Moreover, the effect just cited is easy to explain, for it depends simply on this, that in both cases the pressure in the boiler was superior to the resistance on the piston; and it needed no more, for the steam, generated at that pressure or at any other, satisfying merely that condition, to pass into the cylinder and assame the pressure of the resistance."

We alluded to this opinion in our first paper, when we also stated our acquiescence in that part which relates to the pressure in the cylinder, but showed at the same time, in a general manner, that the pressure in the boiler is not perfectly indifferent, the piston acting in some measure as a safcty valve, and thus having a greater or less influcnce over the pressure in the boiler, according to its velocity.

With this exception, the ifluence of the above nentioned circumstances on the action of the steam engine is generally acknowledged. The two first depend on the nature and properties of steam, which should, therefore, be understood before we proceed any farther.

Steam is an invisible clastic fluid, similar in its physical propertie, to common air, or any other permanent gas.

It is well known that if water at 212 deg. fahr. be exposed to a higher temperature under a pressure of 30 inches of mercury, which i_{s} about the ordinary pressure of the atmosphere at the level of the sea, the caloric absorbed by the water will not raise its temperature, but will convert it gradually into steam of the same temperature, viz., 212 deg. The caloric thus absorbed withont raising the tem. perature of the water is called latent keat, and its amount is estimated at about 1000 times as much as would increase the temperature of the same weight of water by one degree. The latent heat of steam at 212 deg., is, therefore, said to be equal to 1000 degrees; and from experiments made by Watt and Southern, it appears, that a eertain quantity of water, at any given temperature, requires an addition of the same quantity of caloric to convert it into steam, whatever may be the temperature of the steam generated, so that the latent heat at any temperature t will be $1000+212-t$, and the snm of the sensible and latent heat will be a constant quantity, viz., 1212 degrees.

When steam is generated in alimited space, that space will shortly become saturated, provided there be a sufficiency of water present; and the quantity of water which a given space can contain in the form of steam varies with the temperature. When any given space is thus saturnted with steam at a given temperature, the steam laving then attained the greatest density which it can acquire at that tempersture, is called saturated steam, which term originated in the idea
that steam which is not in that state, if brought in contact with water at the same temperature as itself, will, with the assistance of heat, dissolve a certain portion of the water; which action will cease as soon as the steam has attained the maximum density corresponding to its temperature, whence it is then said to be saturated with water.

From what precedes, it follows that if a certain space were filled with saturated steam at a given temperature, and the space were suddenly extended without the admission of steam or water, or any gain or loss of heat by radiation, the increased space would be no less filled with saturated steam, but, of course, of less density, for there.would be the same quantity of water in the gaseous state and the same quantity of caloric contained in it. The temperature of the steam would, therefore, fall to the degree corresponding to its diminished density.

The most important property of steam is its elastic force, being the source of all the power obtained in steam engines. We have mentioned that steam is generated at a temperature of 212 deg. under a pressure of 30 inches of mercury : this steam, therefore, exerts a pressure cquivalent to the weight of 30 cubic inches of mercury, ar about 14.7 lbs. on every square inch of surface with which it is in contact.

It would be extremely inconvenient if we only knew the clastic force of steam at those temperatures at which it had been determined by direct experiment, nor should we be able to judge of the accuracy of experiments made for that purpose without reference to some law, whether founded on reasoning, and coinciding in general with the best experiments, or deduced from the experiments alone, of which they serve to correct the irregularities, and so complete the series by interpolation. It is, however, very improbable that a formula constructed by the latter method should be applicable far beyond the limits of the experiments from which it was drawa.

Mr. Southern proposed the following formula, which he derived from the results of his own experiments:-

$$
f=\frac{(t+51 \cdot 3)^{5 \cdot 13}}{8734+000000}+\cdot 1
$$

or by logarithms,

$$
\log \cdot(f-1)=5 \cdot 18 \log \cdot(t+51 \cdot 3)-10 \cdot 94123
$$

in which f is the elastic force of the steam in inches of mercury, and ℓ its temperature by Fahrenheit's thermometer. By this formula we arrive at too low an clastic force, for all temperatures except 212 deg. and by Tredgold's formula,

$$
f=\left(\frac{t+100}{177}\right)^{6}
$$

or

$$
\log \cdot f=6[\log \cdot(t+100)-2 \cdot 24797]
$$

we obtain too grent an elastic force for all temperatures above $\mathbf{2 1 2}$ deg. and too little for those below it.

The following, which was adopted by M.M. Arago and Dulong, in their report to the Royal Academy of Sciences at Paris, agrees very well witl their experiments between 4 and 24 atmospheres, above which their experiments were not carried; but gives too high a result from 212 to about 300 deg., and tos low from 212 deg. downwards. This formula is

$$
f=30[1 \times \cdot 003974(t-212)] s
$$

Dr. Ure remarked that the elastic force of steam at 210 deg., being 28.9 inches, that of steam at 220 deg. would be found by multiplying the former by $1 \cdot 23$; that the coefficient for the next interval of 10 degrees would be $1 \cdot 22$, and so on, diminishing the coefficient by 01 for every ten degrees that the tempersturc is raised. The equation would thus be

$$
f=28.9\left[1.23 \times 1.22 \times \ldots \ldots \times\left(1.23-\frac{t-220}{1000}\right)\right]
$$

This formula is in every case inconvenient, and is besides obviously inapplicable at high temperatures, for it gives the same elastic force at 440 deg as at 450 , and would show that above the latter temperature the clastic force diminishes with every rise of temperature, which is absurd.

From a comparison of Dr. Ure's experiments Mr. Ivory derived the following equation :-

$$
\log \cdot \frac{f}{30}=0087466 t-000015178 t^{2}+0000000024825 t^{3}
$$

This is also rather difficult to apply, and becomes very erroneous at high temperatures.

The formule devised by MM. Arago and Dulong, and by Tredgold, are simple enough; but these, as well as all others hitherto proposed, contain some one or more constant coefficients, whose origin cannot be pointed out, for which reason no one of them can be regarded as representing the natural law. We therefore propose in the ensuing paper, to present a formula which may possibly be the expression of the law sought to be determined, as it contains no coefficient of which the origio cannot be traced.

IRISH RAILWAY DEBATE.

Parliamentary measures on that pernicious invention, the Irish railwas job, commenced on the lst of March, by Lord Morpeth moving the appropriation of $£ 2,500,000$ for this purpose. The subject mas very appropriately preceded by some aparring relative to the partiality of the government. Mr. Lucas forcibly called attention to the injustice of the proceedings to the Central Irish Railway Company, and claimed on their part that they should be heard by counsel at the bar of the House against the recommendations of the jobbery. He pointed out the elastic rule by which they measured traffic, extending it in one instance, and reducing it to the narrowest limits in others. Mr. Hodgson Hinde called attention to the report of the committee on railways, and the proceedings of government on the Morecambe Bay and the Scotch railways, when they refused even to appoint a commissioner to decide on their relative merits. Mr. Hinde observed there was certaiuly one species of justice toward this country, and amother species of justice to Ireland. Colonel Perceval called the attention of the House to the notorious change of the clause with regard to joint stock compauies on the renewal of the commission. Lord John Russell and Viscount Morpeth both replied to this charge, that the ministry were unconscious that the change was mave, and thus afforded a glorious proof of the system of ministerial responsibility.

The business of the evening was then commenced in earnest by Lord Morpeth, and never did ministerial hack have a more unfortunate cause to plead, or pronounce sophistries so palpably diaphanous. He boasted of the unanimity with which all parties in Ireland had hailed this measure, and called upon the House to grant money to those who proved their worthiness of it by their readiness to reccive it. Henceforth a gift is not to be determined by the willingness of the donor, but by the openhandedness of the recipient! The noble viscount gave a fearful state of the poverty of Ireland compared to England, and pointed out the solitary railway in one, and the sixty millions' worth in the other ; that Ireland had only 400 miles of water navigation, and England 4000; and upon this he attempted to base a claim for the deficiency being supplied at the national expense. If this system be indeed adopted, it is one to which no limit can be assigned but the entire destruction of the resources of the empire, and establishing Ireland as a pet farm of the imperial government. We begin by making all the railways, and it will be but justice to make up the deficiency of canals, and what will follow next heaven knows; but there can be little doubt that, were this system once pursued, there would be no falling back in the merits of Ircland, and that we should be saddled with a perpetual premium for their poverty. If such claims he but admitted, it must be recollected that England herself has millions of acres of waste land, of which the interests of a pauperised population imperatively demand the cultivation, and that Scotland has abundance of barren hills and glens, which would look more beautiful with forests raised from English gold. The next claim is, that large sums of money have been spent on the Caledonian and Ridean canals, nnd with a want of merit surpassing that of Irish misery, the ministry dare to appeal to measures which are the most convincing proofs of their incapacity and extravagance. Belgium was again brought forward, and the apparent success of the government plans was triumphantly relied upon; but it would be a silly act to be allured by even the most attractive examples to place in the hands of government the controul over the whole traffic of the country. By the poor law, the administration hold the working population of the country at their command, by the police they keep them in coercion, and by monopolising the means of transport, they wonld then obtaia an equal power over the whole traffic of the country, and all the resources of the farmer and the manufacturcr. Instead of a government suspension of bank payments, let us have another William Pitt stop at once the whole communication of the country, and we shall then see how the industrial classes will be paralysed by the weapons they themselves have forged. Lord Morpeth most strongly acknowledged the resources of Ireland, and the manner in which they repaid the exertions of public enterprise : and yet, with manifest inconsistency, he subsequently endeavoured to depreciate them; the ancient satyr would have felt horrificd at this blowing hot and cold. The unfortunate lord favoured the whole Houso with a recitation of the sentiments of the open-mouthed candidates for the 'tin,' passed at
their public meetings, and thus adopted them as his owh. One of these sets of suitors 'in forma pauperis' urges that-
"Capital would be obtained at a much lower rate of interest, and the enormous law costs, and those consequent upon parliamentary infedigations, almost entirely saved ; while the professional assistance to be obtained in the several public departments would be calculated mate rially to lessen the general expense."
This is, verily, Tom Thumb's making giants and then killing them; and our Government Glumdalca first oppresses the railway compunis by the standing orders, and then urges against them the misery pro-duced-like as we enslaved the negroes, and then degraded them forthe results of our oppression. The noble viscount did, however, acknom. ledge that the country was immensely indebted to the energy (') the skill (!!) and the enterprise (!!!) which those companies (the English) had displayed.
Still farther "going the whole hog" in this stream of inconsisteces. it is not wonderful if the unlucky animal should give a few digs againat its own throat. Attacking the English railways (quod et eumden eat as the future lrish jobbery), he says :-
"It is now beginning to be ascertained, that great as are the adrastages which have resulted from these undertakings, there are to be found among them some of those abuses and mperfoctions which yonopoly and irresponsibility seem, as it were, by the lav of nature, to bring about in time !!!"

Taking advantage of the experience gained by the failures of the early English attempts, the self-denying minister is not contented with employing the results of their labours, but he blames them for the rety imperfections which by their exertions he is enabled to avoid. Te should like to know if, as a part of the ex-Irish Secretary's adrocary of Belgian principles, he is prepared to carry out their system in all it admirable details, particularly that part on which he dwells, of the wasinterference of private interests, which it is well known no foregm gorernment ever allows to interfere with its object, as the noble lord migit learn from some of the proprietors on the Belgian lines. Mat pathetically did Lord Morpeth recite the expenditure to which the English railways had been subjected, and never did crocodile so beman its victims :-
One of the great items of expense regarding railways was that of condmetint them through Parliament. That expense glone, even in very long lion, exceeded 1,0002 per mile. (Hear, hear.) The parliamentary expenses of the London and Birmingham line were 72,868l. : of the Great Weatern, 88,701, of the London and Southampton, 39,000l. ; of the Midland Counties' Ruib road, 28,0001 ., which (with some others mentioned by the noble ford) amounted to $2 \frac{1}{2}$ per cent. on the gross expenditure. Another greal erpense was the enormouk amount of compensation given to individuals posessiof large parliamentary interest. The statement which had beet made by be Member for Leicester touched upon that point. He stated that estes sere known in which individuals postessing large parliamentary interat receired ten times the amount of compensation that did other individaats in precinty the same circumstances. In one case, which had been made the wubjet of trial in the Court of Chancery, it appeared that a nobleman had withdrawndis opposition to the bill in consideration of receiving 100,0001. for iajury dose to his estate.

And yet for all this, the jobbery advocate talks of the expense of lines executed by private individuals, and talks as if the same rexuld would be produced in Ireland. He can best tell haw far the lich companies will be subjected to the Parliamentary screw; hut as to the value of land, or that of wages, there is an immense difference in fivour of Ireland. He speaks with great unction of the generous gifts of land by Irish proprietors; but, if the noble lord be repurted correctly, the same thing has been done in England, where in one county donstions were made to the extent of 50,0001 . The noble lord could not of course, omit that beautiful argument about private companies screving the profits to the highest pitch, and the devoted conduct of Gorersment, which never asks more than the lowest farthing. He forgoh however, to furnish any illustrations of this; but we are happy to supply this deficiency by alluding to that admirable institution, the Post Office, which does not indeed take the lowest farthing, but, by a bealtiful metonymy, realises the words of Scripture as to the last forthing Lord Morpeth cited one fact with regard to Belgium, which migth impress upon many of our companies the policy of a reduction in theit fares:-

The returns from Belgium showed that in 1837 a popalatios of 238,000 made five trips per annum. In England there was en increase over the travelling by the former modes of conveyance of 218 per ceut. In Belgives previous to the formation of the railway, 80,000 personi paced on the ald rand paying 43. and 2s. 6 d . With a change to 2 s . 6 d ., and 18., there being the railway prices, the travellers amounted in the year 1837 to 781,000 , which wil an advance of 876 per cent, being an increase $9 \frac{1}{2}$ times greater chan the formet amount of travelling.

After har ${ }^{v i \mu} g$ made a great deal of palaver about those wicted dofl,
the Joint Stock Companies, choosing the best lines for themselves, in the first instance, and leaving others only the bones to pick, and eulogising the conduct of the government in taking fat and lean together; lo! we fud at the last moment, that the teetotals do not like bone-picking any more than any one else, and that their measures in the first instance are to be restricted to the grand trunk lines! The good-natured lord very candidly admits that the line now proposed to be adopted is of snfficient magnitude to test the value of the intended experiment. Tel no question of that, for choosing one of the best lines, the government will appeal to its productive results prepared to spend money, and the non-paying lines also. With equal generosity and with all forgetfulness of his former story, that "Jack Sprat could eat no fat," he now very kindly expresses his intention of leaving a portion for private enterprise. A work of true charity, stealing an ox and giving the hide among the poor! As an encouragement to the English farmer, and an inducement to the corn law supporters, he informs them that the most striking beneft would be, the agricultural produce coming from Tipperary, Cork, Limerick, Clare and Waterford. A very striking feature truly, and one which may well prevail upon John Bull to disbume the money for the procession, although to vulgar minds it might appear more equitable, that if such landholders are so fond of giving locomotive powers to their cattle, that they might do it at their own expense. The principal inducement to commence the first line, the ridiculous line from Dublin to Cork, is that there are neither canals nor navigable rivers in that part of the country! Perhaps the acumen of another twenty-thousand-pound commission might enable the noble lord to find a still more eligible site, one in which there would not be even any people at all! As a bouns to the Liverpool people, Lord Morpeth informs them, that his plan will open a communication between the Lancashire manufacturing district, and the south of Ireland; but in the dregs we find that, as Cork is much resorted to by vessels tradiog to America, it will be in effect facilitating the communication with the United States. Cold comfort this for the Liverpuddlians, and it is very doultful whether this piping will have any effect in conciliating their sweet voices. We should like to know, however, why Cork is to be made an American port at the national expense, when no interference was exercised in the recent instance of Aclantic steam navigation, which by the means of private enterprise is so much promoting the American trade of Bristol, and so competiog with London and Liverpool. We hear nothing either in these plans about any benefit which is to accrue to the South of England by these splendid plans, or what possible inducement can be urged on them for their promotion. Surely the Munster people might be satisfied with their agricultural trade dirongh Bristol, without forcing us to pay through the nose for giving them an outlet to the north. The noble lord vaunts the disinterestedness of ministry, and their non-interference with the patronage of the Irish Board of Worky. We shall leave others to decide how this may be, but it is a strong argument against the nonsense of superior responsibility. The various ministerial arrangements would have the effect, he trusted, of preventing a profuse expenditure of public money. We should be very willing to believe this, but "wolf" has been cried so often, and we have so many instances of their extravagance before us, that we regard them with the same eye that we do a prodigal son, applying to his parents for another supply of money. It will be a very great consolation to those companies, the merits of which have been disparaged by the job-ation, that Lord Morpeth believes that the operators have purposely underrated the amount of profits. A silver plate on their coffins, or a statue to a poet dead of starvation, are just about as gratifying as this testimony of the resources of Ireland, which have been ruined in the eyes of all capitalists. The noble lord concluded by developing a plan, which he had very probably received like the armour of A=hilles from his goddess mother, or perhaps from QueenMab as a specimen ofthe manufactureof Messrs. Cobweb, Peasblossom, and Mustardseed. England is not to advance one farthing, she is only to accept the bills, and the security is most eligible, for if the drawers, i. e. the railways, do not pay, the amount is to be reimbursed by the Irish themselves. It is needless to say, that this most flimsy coutrivance will only ensnare people who like to be robbed with their eyes open, for there is no great genuis required to foresee that the railway grants must go the way of the tithe million, and so many other sums which wander like ghosts on Uhe Stygian shore, far from the land to which they owe allegiance. We do not tuink it necessary to state the impression which this speech made apon us, for in truth it was none at all, and we rather think that our coraments will make the greater impression of the two.
Mr, Redington acknowledged that the committee were very candid in their report as to his part of Ireland, for in page 45 they state, that with respect to railways westward they had not thought it necessary, under existing circumstances, to make any enquiry ; being doubtless engeged in the consideration of their jobs elsewhere, and not being desirous of exacuting the purpose for which they were alleged to be ap-
pointed, viz., to examine and decide ujon a general sytuem of railways.
Sir Robert Peel combated the measures of the ministry with his natural talent, and the aptitude he had acquired from his commercial connections. He pointedly remarked the scramble among the approved candidates as to who should have the first finger in the pie, and urged that if begun, the plan could only end in an extravagant expenditure of English money. The priuciple, he said, was neither more nor less than to take the capital of individuals in different parts of the country, for the purpose of sanctioning one particular scheme. He asked why, if poverty were to be admitted as a claim, Wales should not put in her demand, because her customs returns were even smaller than those of Ireland? The real question, said he, is
Whether or not it would be for the benefit of the country to teach it to rely on the intervention and support of the government, or leave competition free, and allow Ireland to follow the example of her neighbour, trusting for the same prosperity, and the same facilities of communication, to precisely the same means which had insured them in England. He found in this report ample proofs that if individuals in Ireland were enterprising and intelligent they would succeed. What said the report with respect to a single individual baving every difficulty to contend with? In order to convince him that it would be proper for government to interfere in a case of this kind, a report was produced having for its object to show how enormously profits and protperity increased by opening railway communications. That was one object of the report; and it did prove that position most conclusively. It took the case apparently the most surrounded with difficulties, the least tempting speculation any one could well imagine another individual to enter into; it took the casc of a nalive of Milan with very little capital, who determined to settle in the county town of Tipperary, undeterred by all the accounts of violence, and all the prejudice which might operate against him-a foreigner, single, unsupported, ignorant of the language, bringing intelligence and industry to individual enterprise, and acting by that love of profit which actuated all speculators; and what was the result? "With a capltal little exceeding the expense of the outfit, he commenced," sayn the report, "running a car between Clonmel and Cahir,"-then in a disturbed state. "Fortune, or rather the due reward of industry and integrity, favoured his first efforts, and he soon began to increase the uumber of his cars, and has now 94 public carriages in constant work, and the distances traversed by them exceed 3,000 miles per day." "These results," said the report, "are the more striking and instructive, as having been accomplished in a district which has been long represented as the focus of unreclaimed violence and barbarism, where peither life nor property can be deemed secure."

As to the absurd claim of deficiency of public works, Sir Robert justly observes, that they might as well call for the establishment of cotton factories in Ireland, because England has a great many, and Ireland none.
It really was a great insult to the people of Ireland to suppose that they were not capable of appreciating the beaefits of railroads, and that it was necessary for a public department to introcuce aroong them all the improve. ments which had taken place in that mode of communication. He knew how plausible it appeared at first sight to advance English credit in support of such an undertaking; but, although he took no objection in point of expense, his firm belief was, that the moment goveinment interposed and supplied its credit, it must inevitably disparage native intelligence, industry, and enterprise, besides being a moat unfair interference with the capital already in the field.

The introduction of goverument capital, he said, was an unfair competition, which no private individual could sustain, although he might be ready to abide the consequences of fair contest with individuals or public companies. Sir Robert calls on the landholders of Ireland themselves to execute these lines, if they are so convinced of their advantages, and boldly urged the moral bearing of the question.

When they shall have done that, the moral improvement produced upon the people of Ireland, from its landowners relying upon their exertions, will exceed lenfold that which would be produced by a Government Board with cnormous patronage, interposing in such a concern, and proceeding on the old assumption, so much deprecated on the other side of the house, that the inbabitants of Ircland are an inferior people. He called upon the government consider well what they were about to do. They were reversing all the principles on which they ordinarily relied. They asked the bouse to grant municipal corporations to Ireland, on the ground that it would enable its inhabitants to superintend and manage their own concerns, and yet, in the present instance, they called upon the metnbers for, and indeed upon the whole people of Ireland, to consent to their own disqualification in so important a matter as the formation, construction, and supervision of their railroads, and to abstain from doing those things for themselves, which had been done in the poorer districta of Great Britain.

The political consequences, and the manner in which the working of this plan might be used as a cat's-paw, are shown with equal force.

They would convince bin that this measure would be for the permanent improvement of Ireland be would at once withdraw his opposition to it; but if the employment which it was to give to the people of Ireland was only to be temporary, and was merely meant as an sdjunct to aid the operation of
the new system of poor laws recently introduced into that country, then be was convinced that even if it did not work immediate harm, it would not Work any permanent good. The employment, which arose from the natural course of events, and from the spontancous application of capital, would confer more permanent advantage upon Ireland than the application of countless millions, which would only give employment for a time to the people of Ireland.
Mr. Spring Rice followed in a lame-duck speech, in which he called upon the House to persevere in the erroneous system, which, for the last forty years, they had adopted; and because they had hitherto spent so much money on Ireland, be called upon them to disburse more. He would have done better to have shown what had been the industrial and moral results of this system, to have pointed out that while Ireland had been deprived of its energy, and induced to depend upon the government leaning-stock, that she has only 400 miles of canals instead of 2,000 , and that she is in arrear in all public works. The right honourable gentleman very wisely confessed that he did not wish to defend the Caledonian and Rideau canals, which his colleague had so unnecessarily conjured up before the presence of the bouse, as if to call witnesses from the dead to expose tbe incapacity of the government and the inanity of their strongest promises. With regard to temporary employment, he observed, that he beHeved

That temporary employment of such a character would be productive of more evil than good to lreland. He believed that the temporary employment which the formation of the Caledonian canal created in Scotland had not done any good to that country. He had been informed that it had rather introduced into Scotland a number of Irish labourers, than given any additional employment to Scottish labourers.

Mr. O'Connell expressed his sentiments in a rambling speech, rather at variance with his original sentiments. We can, however, in consideration of his anciety to pocket so much money for Ireland, for give his inconsistency, but that does not induce us to place any confidence in his opinions. Mr. O'Connell is not Aristides, or he might acknowledge that, although a measure may be very advantageous to his country, it may be very unjust. He however enforced the importance of private enterprise, by pointing out that, in the case of $\mathbf{M r}$. Bianconi, he had recelved no support from government. Mr. O'Connell, of course, urged the example of Belgium and other states, and proved his knowledge of the subject by asserting that there is not a freer constitution in existence than that of Belgium! He forgot, bowever, to allude to one feature of government administration of public works; that in time of war governments become incapacitated, and augment, by all means, the revenues derived from these sources, while private enterprise has been so deadened, that, like poor Smike, it can never get out of its leading-strings.

Mr. H. Grattan made a noble exhibition of Irish patriotism; he said that-

They did not wish in Ireland for English money ; all they said was," Give us back some part of the sums drained from us by absenteeism." He could prove, by documents which he beld in his hand, that the amount spent out of Ireland in this way was not less than $273,000 l$. per annum. This was what the Irish wished for; but if they could get that, they would be content with the assistance of government in the undertakings now under discussion.

Thus, admitting this calculation of the loss by absentecism to be correct, and making no allowanco for its annual diminution, nor fur the difference made up in England by agricultural produce exported, Mr. Grattan very kindly, by way of instalment, proposes to take ten years' annuity in advance, or, instead of 273,0001 . per ycar, $2,500,0001$. As a part of the compensation question, this gentleman consistently concludes by saying that-

It was indispenamble to have English capital. The English capitalist would lowe nothing by the outlay; while that ouliay, at the same time, would repay the Irish for some part of what they had suffered.

Mr. Lucas called upon Government to come to some decision as to the two western lines, which, however despised, were ready to carry out their plans with their own money. This gentleman proposed that if government were determined upon the general job system, that they should require that one half of the outlay should be disbursed by the landowners of the line, and the government expenditure thus reduced. Mr. Lucas lauded the arrangements of the French government:-

France als, was in advance of us in this feld, baving found means of obtaining security for tha public against those effects of monopoly which so many here complained of. In every act (if ho might so spoak) which passed tho Chambers, he was told there was a provision inserted for imposing apon the the company a maximum of fares-that was to say, they were forbidden to exceed in their charges from 20 to 25 per cent. over and above a remurncrating prioe. For imstance, if 7s. would barely dofray the expenses of carringe, they whe nable to ask more than about Os, for their farc.

This certainly appears at first sight a useful and economical prorisica; but nothing in its operations can be more injurious, for the maniman adopted in France is so low that while few undertakings can keep up to it, even those which do, offer no inducement for the further prosecstion of such designs. While in England, however the public may appeas at first to suffer, the large dividends obtained act as a stimulus even for the formation of non-productive undertakings, and this is the true cause of the great number of canals and other works in England, and their paucity elsewhere, Mr. Lucas might also have told the House that the French Chambers rejected last year the principle of government administration, and that so far from this principle baving made progress, it received a check.

Mr. Wyse wished to know why the line proposed should stop at Clonmel and go into Waterford?

Mr. W. Roclie inferred that the expenditure in Ireland, in the wny of improvements, had met with most abundant returns, and he relied upon the increase of traffic which must result from the promotion of public works. Indeed the jobationists, in their ridiculous and variable calculations of traffic too often forget its certain increase, but treat it like ore raised from the mine, as if it were independent of the gold which is to be extracted from it.

Mr. Joseph Hume delivered a quantity of his nsual twaddle, in which he appeared very much in the position of a tame tiger, which is expected to exhibit its ferocious propensities, and is yet kept in order by a sop ip the pan. He vibrated like a pendulum, between his old notions and his anomalous Irish position, and a most strange harlequinade was tho result. Among other things he confessed that the house was for the first time called upon to undertake a general work for a mercantib speculation, and it behoved them to ascertain well to what extent the plan was to be carried. Among the useful matter which could be extracted from his soporification, he assured the house from his personal experience that Belgium was ne example to this country, for insteed of government administration being admitted as a fixed principle it wat only adopted on an emergency, and that most of the state vorks in A merica were executed with English capital, and that consequently it was quite different in this country which supplied the money to itself. He believed also that England had litherte been burthened by Ireland, and not as Mr. Grattan said, was indebted to her.

Sir Robert Inglis said :-
As one who took also into consideration the interests of England, be shouid he glad to learn from the Hon. Menber for Dublin, if be sbould succeed is obtaining a repeal of the union between the two countries, what secority would be given for the repayment of the proposed advance. (Hear, hear, and a laugh.) If there should be distinct legislatures, it was natural to expect that the finance department of the two countries would be separate. In that case, he should like to know what security this country would have for the repayment of the money, when the new Parliament should be sitting in Collegegreen!

To this Mr. O'Connell replied that he would give him his own.
Sir Edward Knatchbull observed, that he very much feared that as to the security offered by the learned Member for Dublin, that when the matter came to be considered in Ireland, some flaw would be found by which the engagement would be considered void, and, as he had aid, not one penny of it would be repaid.

Mr. Slaney showed tie advantages of Ireland as to the price of Labour, by stating that men were glad to get employment for $8 d, 7 \alpha$, and even as low as 5 d . per day.

Sir Gcorge Strickland deprecated the government interference in railways; and said that if they did this in imitation of France and Belgium, he did not see why they might not be called upon to imitate them in other respects, by setting up monopolies in particular trades. All government speculations in public works had been failures; they had proved so in roads and canals in Scotland and Canada, and would equally fail in Ireland.

Lord Sandon remarked, that while agricultural produce was depesded upum as traticic in Ireland, experience had proved a contrary reault in Eag. land. There were many works of great public utility which could be carried on in Ircland, by the aid of government, with much more advantage to the country than railroads. Some few years ago it was proposed to grant a sum of froni 150,000l. to 300,0001 . a year for opening the resources of ten complies of Irelind, by improving the navigation of the Shannon, but the Chancellor of the Exchequer threw every obstacle in the way of the grant, and now be supported the present very large sum without any thing like the same provpect that its npplication would be succesoful. If government winhed to improve the risources of Ireland, let them extend ite water communicationslet them give their aid in opening the navigation of the Suire, the Barrow, and the Shannon, and he was sure that the house would not be backward in affording the necessary pecuniary aid; but he did not think that it ought to suppnit an experiment arising out of the mauia for railronds. Unleas the picent plat was part of a whole acheme for carrying on railroads by goversmeut aid iu all the British islands, he thought they ought not to take this step
witiont due coarideration. If they carried this, he did not see how they could weit the elaims of Scotiand for aid in similar works.

A diceossion afterwards ensued as to the conveyance of goods on railways in which Mr. Ashton Yates denied the correctiness of Lord Sandor's views, but most unjustly, for it is a matter of notoriety to all conpected with railways.

After a parting addreas from Lord Morpeth the diseussion ended by the House dividing on the motion, which was carried by 144 to 100 , or by a majority of 44 ; but it is considered that the success of this experiment is not such as to induce the ministers to persevere. All farther measures are now delayed until after Easter.

We need scarcely say that nothing has occurred in this debate to alter the views that we have maintained throughout the discussion of this question, in which for a long while the Times and ourselves were the ooly parties engaged in opposing its idjurious consequences. Every thing has teaded to confirm us in the impression that it is as unwise as it is uncalled for. This is not a question of money, but of principle; oot one of so many millions, but of the moral prosperity of the empire; and while we may regret any support which we may give to this innoration. Ireland, however apparently benefited, cannot fail to be in. jured by that genuine deprivation of resources, the incapability of availing berself of them. Indeed, if we wished not to treat Ireland as 20 equal, but as a subsidiary provinee, we could not do better than to imitate the old Roman policy of enervating those whom we wish to keep in chains. Quem Deus uull perdere prive densentat. As regards its financial bearings, experience has but too well impressed upon us the fraiky of the proposed security, and the much more probable contiagency of having to disburse the anoney from our own sources. Ireland can urge no moral claim to this participation in the general revenues, for instend of bearing an equal degree of taxation, she is free trom many of the burdens to which England is subjected for the advantage of the sister country ; and we cannot but impress both upon Irish and Engtish the impolicy of a measure which, both in its moral and financial bearings, is equally unsupported by sound reasoning or compensating advantages.

MODELS AND DESIGNS FOR THE NELSON MONUMENT.

If not particularly satisfactory in itself, this competition has been atteaded with one exceedingly important result, one that is likely to prove an effectual step towards a better and more trustworthy mode of proceeding in future upon all simitar occasions. The designs for the Houses of Parliament were exbibited subsequently to the final decision on the part of the commissioners; those for the Nelson Monument after the premiums had been awarded by the sub-committee-but, fortumately, in time to admit of their judgment being repersed, when, instend of ruifying it, the public voice protested against it. So far there is very great room for congratulating ourselves on the precedent thas furaished, and which we may reasonably anticipate will henceforth be followed, with this improvement upon it, namely, that the pablic will be admitted to view the models and drawings before any premiums be avarded or any selection made. Gladly, therefore, do we hail what has been done in regard to the present competition as a most favourable augury. If, in the first instance, no very great judgment was shown, there has been no unfairness, no obstinacy, no selfish determination to abide by the choice originally made ; or if such determination existed anywhere, it has been quashed by a counter-determination emanating from some higher and more honourable quarter. But for the circum. stance of the designs being exlibited, and public opinion attended to, the Thole busidess would have been settled, as hitherto, behind the curain, and almost the first positive information we should have had in regurd to the matter would lave been the preparations for carrying into effect the design to which the first premium has been a warded.

In regard to the premiums which have been bestowed, we will say nothing, except that that part of the business liolds out a most wholesome caution against any similar precipitancy for the time to come; became it is in itself hardly worth a moment's consideration in come parison with the raost important point-the laudable resolution evlnced to obtein, if posaible, such design as shall be in every respect creditable to the arts in this country.
Siecerely do we congratulate professional men, both sculptors and erebiteces, on what luas now for the first time eccurred. It is true they bave been tumed back like sehoolboys, and sent to get their tasks better; and so far it must be allowed to be somewhat mortifying to the actual competitors. Still we congratulate the profession as a body; becanse that very circumstance affords proof how much importance the public attach to the matter, whereas the time has been when the public would not have troubled their heads at all about it. Farther we most hearily cengratulate them, because should the system thus begun be-
as we devoutly hope it will-persevered in, there is now an end to all favouritism, all jobbery and jobbing. There will be fair play fer talent, because when manifested it must be recognised-at all events, it cannot possibly be thryst into the background by any mancuvring; to say nothing of the reaponsibility which those with whom selection resti, would find attach to them. Hitherto such responsibility has not existed; we may in many cases suspect that there luas been either very great want of judgment, or else very undue partiality, unlens we choose to suppose that, unworthy as it may be, the design adopted was nevertheless the best among those offered for selection. Could we behold all the designs sent in for various buildings, and compare them with the buildings respectively executed, we should, no doubt, in meny instances be filled with utter astonishment. For all general competitions the invariable rule ought to be a public exhibition beforehand, whence a certain degree of responsibility on the part of the judges would follow as a matter of course; while fer limited competitions, that is, where a certain number of architects are applied to for desigas, each competitor should be separately examined before a commiteee, and called upon to explain thoroughly all his drawings, and his ideas of the subject, and also to answer whatever questions may be put to him.

We have spoken somewhat more at length than we intended, upon what, after all, does not belong to our subjeet as that of the exhibition itself. In considering this we shall be comparatively brief, because, even wert the whole matter not now in abeyance, and were it not therefore likely that many of the designs will come under our notice again in an amended form, we are not prepared to give our readers what we should consider a full and accurate review of the majority of snbjects after repeated examinations of them. We therefore profess to do little more than recond our impressions at one or two visils, singling ont for mention a few of the notabilities. Now, although we do not mean to deny that several of the models and designs exhibit great merit, many good ideas, and mnch beauty, in parts, we must be allowed to acknowledge there is hardly a singlo one we sbould wish to see adopted without some further modification. Among the models there are some very beautiful, considered as mod+le, and as these consist chiefly of sculpture, they would be noveltien, for at present we have no pablic embellishments of the kind, except single atataes, and those for the most part on a very moderate scale. On that account wa should be inclined to give the preference to something of the kind; more especially as it would be least likely to interfere with the surrounding buildings. As far, however, as regards adaptation to the particular site, we are not furnished with any means of judging what the effect would be except in one or two instances, where a perspective view accompanies the model, showing what would be its appearance when executed on the proposed scale, and behcld with the aetul architectural back-ground there would be 10 it . Now, we think it ought to have been made a condition that cyery model should be accompanied by such view, both because models taken by themselves, except of mere pieces of statuary, are apt to be fallacious, and because they overpower drawings, and render it exceedingly difficult to jndge fairly botween two designs shown by such very opposite modes of represeatation. It was, besides, a very great error not to cstablish one uniform soale for the designs-perhaps one for the dravings and another for the models; had which been done much inconvenienee might lave been obviated. It has been suggested in some newspaper-il we mistake not, the "Atlas"-that with regard to the models it would bave been advisable to have had them on the same scale, and then placed saceessively for examination in the centre of a model, showing the fronts of the buildings around Trafalgar-square. This would eertainly have afforded a most satisfactory test of their effect, and their adaptation to the site itself; while it would, we suspeet, in more than one in. stance have saved the compctitors considerable expenee, incurred by the models being on a considerably larger scalo than would then have been admissible. And in regard to the cxpenso which the competitore have been at, we will here remark that we do not see what that has at all to do with the matter. Some one has computed that the groses amount cannot be much less than 7,500 guincas. Be it 80 -what then $?$ each individual contributes towards it not one farthing more either of money or time than he would have done had it been only a tenth part of that sum. Therefore, as an individual, he has infinitely less reason to complain than if ho had fuwer associates in his misfortune. Every one knows beforchand that but one design can bo actually adopted, and surely it canvot be one whit more galling to be one of the hundred and forty-nino out of a hundred and filty, than one of the nine out of ten. Talking of tho aggregate amount, the " snm tottle of the whole," 28 Hume says, is all stuff. Besides, there are not a few designs which we think could have cost nothing at all, except a sbilling's worth of paper and couple of hours' of time.

Among the models, that by Mr. 'I'. Woodington, No. 8, struck us as recommending itself by its graceful simplicity, and the ploning
ooritrest in composition produced by the four recenment figares npon lefty socles projecting out diagonally from the eentral mass or pedestal. Breeuted upon a commauding acale, this design would form an impoing object in the centre of the square, without at all interfering with the surrounding buildings. Nevertheless we conceive it would have been greatly better, would have been mure appropriately characteristic, and possessed withal greater novelty of form, had there been only three figures, emblematical of the three grand victeries of the Nile, Copenhagen, and Trafalgar, forming the three points of a triangular plan below, the principal one of which, or that allusive to the battle of Trafalgar, should be facing towards Charing-cross; which dieposition would accord exceedingly well with the oblique line of the houses, right and lef, forming the embouchure into Parliament-street. To say the truth, we were not a little surprised at finding that in not one of the deaigns-not one, at least, which we observed-has the idea been adopted of indicating the three memorable victories, by a corre. ponding number of points in the composition ; although it might have been accomplished various ways, and apart from its significancy, with axceedingly good effect.

On the suliject of Mr. Baily's model we need not say much, as we agree in the opinion generally expressed as to its merit as a graceful assemblage of scu:pture, save to remark that, though abstractedly considered, it is exceedingly tasteful, it seems deficient in energy of meaning. A similar remark applies to that by Pitts, which, while it exhibits much talent and mastery as a piece of sculpture, is too enigmatical for the intended purpose. No. 38, by Westmacott and Nixon, has great merit as it is, yet would be improved by being somewhat simplified. And in No. 40, by C. H. Smith, there is considerable cleverness and originality; yet thit, too, would, in our opinion, be improved by hollowing out the blank arches on three sides of the basement, 80 as to convert them into rccesses for the figures, which are now merely placed before them. Very likely this would require some further modification of the whole of the lower part, so as to obtain sufficient depth for the purpose, yet very little difficulty, we conceive, would attend such alteration. Mr. E. J. Papworth's design, No. 36, a column on a perforated rock, within which are figures, would, on the contrary, havo been better, had only the sides of the rocks been hollowed out.

We do not profess to anderstand Mr. Patrick Park's model, nor have we seen his explanation of it, wherein, we are informed, he speaks at length of tbe "principles" which directed him indesigning. Very possibly it may be replete with meaning, or what is intended as such, but it is certainly far too recondite; and therefore, as a design, it struck us chiefly as a strange array of figures posted about, which jumbled appearance is further increased by a number of liuge lions walking in a circle round the whole. Whatever ingenuity there may be in the idoas intended to be thus exprosed, the result is any thing but a bappy one, Which remark applies to several other designs wherein parts or ornaments, intended to bave a symbolic meaning, produce more or less awkwardness of form. However appropriate the ideas attempted to be conveyed may be in themselves, they had better in all such cases be abandoned, if they cannot be reconciled with beauty of form-with cither picturesque or architectural effect. It is poor satisfaction, when we look upon incongruous whims, to be told that they are intended to indicate such or such qualities and circumstances, especially as, after all, merit of that kind, unless accompanied with refined artistical fecling, is of too fantastical a kind. Most unquestionably the mind ought to be satirfied, but at the same time the eye ought to be satisfied equally well-certainly not offended.

While comsidered as a model, that by Salvin and Smith, is one very striking in point of size, and exceedingly beautiful in execution; it is very far from recommending itself as a design, being an ornamental siructure in an exceedingly florid but impure style of architecture, and, therefore, on that account alone would be highly exceptionable for such a situation as the centre of Trafalgar-square, where it would be altogether out of keeping with the other buildings, and would cause them to appear more naked than they do at present, while they in turn would occasion it to look whimsically grotesque in taste. The same observation applies even still far more forcibly to the design, No. 44, with the motto, "England expects every man will do his duty." In this drawing extraordinary diligence lias been employed in producing an assemblage of all the most licentious caprices of the Italian school, at its most corrupt period. It is an Italianized pagoda, bedizened out from top corrupt period. It motiom with as marchitectural hinery-such as it is-as could be crammed into it. It is the very quintessence of that gorgeously bad taste which is now gone out of vogue, even in Italy itself; and as a taste which is now gone out or
moument to Nelson, Gibbs's church in the Strand, would be about as appropriate.

There are others who have proposed buildings, and not merely ornamental structures, but such as, if exccuted, would totally change the
character of Trafalgar-cquare. A mong the rest is Mr. Haydon, Whase design-forming a most gingular contrast to the one we bave just been speaking of-is for a plain Grecian-Doric building with a portico, and forming, within, a large hall, divided into two separate compartments by columns, each of which would be lighted from above, and decorted not with fresco paintings on the walls, but large historical pictures in framen, commemorating different events in the life of the hero. Whatever che may be thought of such ideas, it is characteristic enough :-" Vous etes orfevre, M. Josse, et votre conseil sent son homme qui a envie de se defaire de son machaudise." What may be the proposed dimensions we are unable to state; yet either it would be an insignificant little edifice planted by itself in the centre of the square, or if as long as the buildings around it, so large as to block up the square, and cut off the view of St. Martin's church, and the National Gallery, from Cockspurstreet and Spring Gardens.

No. 89 is another whimsical piece of absurdity, the author of which, however, has had the discretion not to reveal his name; which;is, the obly sensible thing he has done, for the design itself is neither more nor les than a square campanile in the Italian style, divided into severd stories; but whether a statue of Nelson is imprisoned in any part of the inside, we have not the means of saying.

There are not a few other extravagances-things without the slighteat mark or likelihood, and which are only curious as displaying poverty of invention, sterility of imagination, and exquisitely bad taste; thingsin short, at which the sub-committee must have stood aghast; although their oddness must, at the same time, lave extorted from them cordin smiles, though not of approbation. Not 30 No. 116, that being, at all events, no laughing matter, for a pfece of more egregious dulness than that strange house-front design does not present itself in the whole exhibition.

Well, of course the authors of all these deplorable performanes will now retire; and many, we have no daubt, will now be able greatly to improve their designs, should not entirely fresh ideas occur to them. One of the best of thone in which a colump forms the principal, if not sole feature, is No. 102, by Marsh Nelson, the perspective urawings accompanying which are remarkably clever. This design proposes that the whole of Trafalgar-square should be raised to a uniform level, forming a balustrade terrace, with a spacioms flight of steps towards Charing-cross. Still we are of opinion the better mode would be to obtain a level by sinking the ground on the north side, instead of raising it on the south, so as to convert the road in front of the National Gallery into a terrace, elevated above the area of the square, by which means that building would acquiro apparent lotiness, at least of situation, while the view of the square would not be obstructed, as by the ground beiug raised it would be, from Charing-cross. If we mistake not, this is proposed by Mr. Goldicutt's design, which is so far wortliy of being adopted; though, as for the design itself, which is for a huge glohe, with Nelson standing on the top of it, we cannot say that it is at all to our taste. A mong the more eligible designs is No. 36 by T. H. Nixon, a bold, sepia drawing-hung rather too highexhibiting a statue and richly-ornamented pedestal. There is also much to admire in No. 42, by T. Bellamy, fur simple elegance of taste, although it perhaps falls as much tou short of adequate decoration, as a great majority of the other designs err in being overlonded and crowded with it.

The subject itself is undoubtedly not a very easy one; nor is it the least difficulty attending it, that artists are left entirely to their own ideas, without anything to guide them, upon an occasion where the only existing precedents are confined to insulated monnmeatil columns; still we trust that, thougls repulsed, they will mot ait dews in despair, but that pome one will yet produce a design that ehall obtain the general suffrages of the public, and of artists thenselve.

SCHOOL OF THE ANTIQUE,

MARGARET BTREET, CAVENDISH SQUARE.

We took the opportunity of attending some of the lectires on enatamy, by Mr. S. 'r. Fisher, now in course of delivery at the School of Denign, in Margaret street, and we cannot but express our anfeigned gradification at the manner in which they are conducted.

We have never heard a lecturer on this branch of the arts, who, pesaening even greater talents and acquirements, aforded moh a clear view of ebe sub. ject as was presented by Mr. Fisher. He seemed to give up all thetive research and extenadve lnowledge, which he eridently poweamed, to derote himself to the inculcation of his instructions in the plajnest manner, and the youngest student could not have lef the lecture-room withont hering under. stood a subject, which men of greater name can only emberrass and confuan

These instructions were illustrated by most able drawings, casts, ikelotossh and the living model, and were conducted rith a completenems worthy of an institution, which both in system and material adrantages hat hiadity it parallel in London.

ON THE MEANS GENERALLY EMPLOYED FOR REMOVING RUINOUS BUILDINGS.

Wo possess many books which contain every information regarding the construction of building-from the laying of their foundation-stone up to the completion of their minor details. We are, however, not so well informed as to the method of taking these buildings down when they become ruinous, although it is often a more difficult operation than their erection; and the advantage of being possessed of information on this appareutly out-of-the-way subject is really greater than a zeneral observer is inclined to believe, more especially when it is con?dered that many of the house lately erected have sprung up in an incredibly short space of time, and have been constructed of materials not calculated to withstand the vicissitudes of our tempestuous winters, por to resist the effects of any sudden accident. It seems to us that the authorities of all large towns should be prepared with means for removing the walls of such buildings when they happen to be suddenly deprived of their usual support by fire, or the failure of any of their parts: and yet, so far as we are aware, no attention whatever has been deroted to tuis subject-and it is on these grounds that we renture to offer a few remarks on the methods generally employed on such cccasions.
In situations where the erection of scaffolding is inexpedient, the methods commonly resorted to are those of pulling down the walls an masse by means of chains, and of blasting with gunpowder.
We bave seen the first of these methods often put in practice, but never with such signal want of success as about two or three years ago, where a gable wall of rubble masonry, about so feet high, 150 feet hroad, and perhaps 2 feet thickness, had to be removed. Although forty or fifty persons were engaged pulling and tugging at the end of the chain, prefacing each effort with a nautical shout, which they seemed to expect would materially contribute to the efficiency of their exertions, they seldom pulled down considerable masses, and never succeeded in disturbing the equilibrium of the whole mass. There was, indeed, one cause that operated strongly against the success of the experiment, which was, the want of keeping time with the oscillation of the mass. Whenever the wall was thrown in the least degree from the perpendicular, the chain should, of course, have been pulled in concert with the ribrations, which, being always increased, would at last have thrown the centre of gravity of the greater part without the base, and the whole fabric would then have fallen to the ground. But instead of being pulled by a band of trained men, the rope was subject to the controul of the whole mob, who, by never pulling in concert, rendered their exertions worse than useless. After much time had been lost in these fruitless attempts, blasting was tried with perfect success. To those who had never witnessed the effects of gunpowder employed in such a way the plan appeared more hazardous than experience afterwards proved it to be, for not a stone was"thrown ten, or, at most, fiffeen feeh, from the bottom of the wall, and in no instance where it has been tried have we ever seen stones scattered to a greater distance.

From this account it will be seen that blasting is by far the most eficient and safe agent tbat can be employed in levelling ruins. Had the wall been thrown down by a system of pulling, the stones, from the impotus acquired in falling from a vertical to a horizontal position, would bave been scattered and thrown to a great distance, at the manifest risk of those who were balow, and. of the neighbouring bonces.

In blasting, the lower courses of the masonry are shattered, and a shock, sufficicat to disintegrate, and, sometimes, oven bodily to lift up the superincumbent mass, is propagated from top to bottom. The dapgers to be apprebended are, first, the possibility of one or more of the stones being thrown to some distance ; and, second, the possibility of ouly some part of the lower courses being blown out, while the remasodor is lef; so that the wall is apt to turn on that part as a contre; in which case it may appear probable it would fall in the direction in which there was no support.
Fint.-The danger of one or more of the atones being thrown to a ditance seems a probable onc; but, in to far as our observation has gone, this han never occurred. The action in blasting a solid mass of rock, is different, we think, from blowing up an artificial concrate-like mesony; for, in the one case, the gases formed by the explosion have no room to expand themselves, unless by reading the compect rock, whoe particles are cemented in the closest union; while, in the other con, there are numerous fissures, affording much greater room for expansion.
Second.-The second danger is little to be dreaded, as the whole of the lower conrses are always either completely removed, or else so shattered as to yield to the slightest pressure. But in every case which has come uoder our observation, the wall itself has boen at least parketly disunited from top to bottom, by the shook resulting from the blant.

Although we can easily conceive the possibility of either or both of these aceidents occurring, still we think oursolves perfectly justified in deridedly recommending blasting in preference to the other methode we have alluded to. We do so, not because we have arrived at that conclusion by any reflection on the subject, nor yet because we have beard it praised by those whose opinion, as practical raen, is to be valned, hut because we have ourselves been witnessers of its effects.

It must, however be observod, that without judicions supariatondonce, this powerful instrument (like all others) may, from incantions
 Pradence in the selection of situations for the bore, and caution in charging and firing are indispensable requinites for safety; avd oven where attention is paid to all these ossentials many unloresean circumstances niay, no doubt, occasion what all possible care could not prevent.

We may state, in conclusion, that although some may consider the removal of ruinous walls as not an operation in which engineers or architects are ever, or at least ofton, to be ongaged, we think that ought in no way to make these remarks the less important; for any sudden accident may reuder peremptory measures necessary, and apon the success of these measures valuable property, and even humea life, may depend.

PANORAMAS OF ROME AND THE COLISEUM.

The two subjects now exhibiting in Leicester-square have claim upon our notice, as being of considerable architectural interest; the one as a general representation of Rome, showing all the buildings visible from the tower of the Campidoglio, on which the spectator is supposed to stand; the other, of that wonderful fabric, the Coliseum, whose interior, with its arena, is shown as beheld from the top of its walls at its southern extremity, whence the eye also looks down upon the neighbouring arch of Constantine, and several other edifices. Although the smaller of the two, and of less variety of interest in its subject, this painting is more striking and captivating than the other, in regard to scenic effect and the illusion it produces. It conveys a most perfect idea-at least as perfect as can be obtained from the single spot to which the spectator is fred-of the structure in its present state, of its prodigious massiveness, and of the ancient Roman brickwork of which it is composed. The look of reality is quite astonishing, and the more we contemplate the building, or parts of it, the more does it increase. Yet it is puesling to account for the extraordinary relief, there being little of positive shadow, since even the parts on which the sun does not fall are shown as distinctly as in ordinary daylight, owing to the strong reflection which renders their local colouring visible in all its hues. The other view is not so remarkable for this deceptive quality, for though admirably executed it has not so vivid an air of reality, being apparently painted in a lower key. Perhaps, too, momething may be owing to the subject itself, as being less favourable to illusion. Still there are parts of prodigious effect-for instance, the two side buildings or wings of the Campidoglio, immediately beneath the spectator, seen as he looks down upon them from the tower in the centre one. Agrin, the dome of the small church, close by Trajan's column, is of most forcible relief. By specifying these instances, we do not mean to say that the rest of the picture is not so well painted, but the two buildings we have mentioned, being much nearer than most of the others, of course show themselves more distinctly. St. Peter's is too remote to be a principal architectural olject; but in a view taken from the Castle of St . Angelo, both that and the Vatican would be very prominent objects, and occupy a considerable portion of the scene. In our opinion, such other general vicw of Rome would be -we will not say worthy of Mr . Burford's pencil, siuce of that there can be no doubt-but eminentlyattractive to the public; nor at all the less so, because preceded by the one he is now exhibiting.

ISOLATED HARBOURS OF REFUGE.

In the last number of the Engineer and Architects Journal, p. 85, Mr. Rooke remarks that, as there is no tidal scour provided for the interior of Mr. Tait's isolated harbour, although shingle could be disposed of along shore, " might not," he says, "silt eventually choke up such a harbour ?"

Why, the very same remark might, with nearly equal propriety, be applied to a wet dock. Water admitted into a dock or harbour, mast be pure indeed not to deposit while there, in a state of comparative rest, a sediment of earthy or other matter in twenty or thirty years time. This of course was to be anticipated. It is obvious, however, that there can be no difficulty in removing such silt by dredging, or otherwise, at no great expense, whenever it siall be found to be incon-
venient; and it is important to obeerve here, that the process of dredging can be carried,on in the harbour during all hours and during all times of tide, until finished, without interfering, in any shape whatever, with the essential purposes of the harbour.*' Vessels are neither interrupted by it in coming in, nor in goiag out. The mouth of the harbour, if properly carried out, as it ought to be, into deep water, is kept free and open, and acceasible at all times and in all weathers. It would be a very different affair, however, if, instead of the scouring power boing confined and directed towards the rear of the harbour, as deaigned by Mr. Tait, it were allowed to cross the mouth or entrance of it, as at Dover, 8 cc . and a bar of shingle or sand allowed, in consequence, to be formed there. \dagger

Mr. Tait's principal object is to prevent the shingle moving, as it does, along ahore, from getting into, or even near the mouth of his harbour. This he proposes to accomplish by facilitating the passage of the ahiogle along ahore and in the rear of his harbour, and as far as possible from its entrance. He han, therefore, studiously avoided all ridal or any other scour whatever within tis harbour.

Mr. Rooke next says, "The uncertainty of the plan," (Mr. Tait's icolated barbour,) "its obvious expensivenem, its distance from the shore, and an exposed locality, bowever ingenious and able the scheme may be, involves objections which are more easily started than answered." If these remarks have special reference to the formation of a harbour at Hastings, they may perhaps be, in part, true. It is quite impossible, however, to form any decided opinion on this point, withont being well acqusinted in the first instance with the whole locale of a place: its tides, currents, prevailing winds, soundings, line of coast : its exposed projections, or sheltered indentations, \&c.
In order to have the mouth of an isoloted harbour in a sufficient depth of water, 30 as to be accessible at all times of tide, such a barbour at Hastings, would, very possibly, require to be carried out to some distance from the shore, and consequently to an exposed locality; attended, of course, with a certain proportionate increase of expense. But, as to its "certainty," Mr. Rooke may be assured, that its certainty would depend entirely on the strength and distribution of the materials, and workmanslip, \&c. used in its construction ; and would be totally independent of the prisciplo upon which the harbour is designed. The "certainty" jnvolves a mere matter of judicious calculation of the strength and disposition of certain materials capable of resisting certain permanent and probable forces. As to the "expensiveness" of such a harbour. Mr. Tait has never upheld his harbour on the score of its cheappess. Quite the contrary. But at the same time, there might be situations found, perlaps, (were that an object,) where an isolated larbour could be constructed as cheaply as any other. However, it muat be allowed that in ordinary circumstances, his harbour is much more likely to exceed, than to fall short of the expense, at which harbours, at the debouchnre of a stream, might be constructed on the old and exploded system of scouring by means of backwater, \&e. Cheapmess is not, in fact, the object aimed at. The chief object, in view, is to have a harbour, at a fair adequate expense, which shall, not be liable to be cloned up by a bar at its entrance, and be thereby rendered inacessible in the hour of need; but such a harbour as shall be opan to receive, and shelter, and protect vessels, in distreas at all times of tide, and during all kind of weather.

ZERO.

[The result of Mr. Tait's advocacy of the doctrine of isolation, vol. i., p. 837, has certainly been to insure its general reception as a principle of acience, and we have no doube that it will eventually be employed both extensively and beneficially. Mr. Rooke's communication has suggested a new feature, the construction of a barbour by a series of experiments, and it presents many useful points. There is little doubt that in Mr. Rooke's plan, vol. 2, p. 85, S. W. winds would produce a gronnd swell, or as it is called in the Channel Islands "a race; ;" but that is only one side of the question, for harbours are in this respect of two kinds, either of gemeral refuge, or shelter against prevailing winds. To provide shelter against the S. W. winds, we should recommend that in the harbour F, the entrance N should be stopped, and another opened at B, and if necessary the east groin A might be removed to G. With regard to the question of the silt, we cannot take upon ourselves to decide, as that will vary according to position ; the facts brought forward by Mr. Hyde Clarke prove the accuracy of the principle, although we have not yet sufficient data to ascertain whether the same results would be obtained upon the sandy coasts of England as in the depths of the ocean. By the progress of science, the engineer may be furnished with

[^6]power greater than is conceivable at present, and we have pointed out in our present volume, p. 38, the manner in which the success of Mitchell's screws may be brought to bear on this important subject. Ope useful lesson we may learn from this discussion, that engineering is not a mere matter of bricks aud mortar, and that as there is no book from which we cannot learn something, so there is no fact, however trivial, which does not belong to the domain of science.-ED. C. E. \& A. J.]

NELSON MONUMENT.

Sib, - Having carefully observed the marvellous inequality of talent manifest in the designs sent in competition for the Nelsoa monument; and that, with a fer splendid exceptions, those men who take anything like rank as artists or architects in general eetimation, have considered this contest of skill as beneath their notice, and left it for those who have bigher feeliny and lese conceit, as well as for mere aspirants to engage in; I have asked mytelf how or why it has happened that a call wbich ought to have aroused the most torpid, has, upon the whole, been so unproductive? And I cannot but think, that, gloze it how they will, a mean and sordid pride, a trembling, lest, by some mlschance, an unknown man should pluck the honour from their brows ; or, mayliap, a more selfial spirit still, has actuated them.

As an Englishman, I deplore that talent, which is known to exies, should thus miserably extinguish itselt ; and whatever be the result of this competition-be the design whieh is to have the first premium executed or not-as an Euglishman, I do hope that some mone ede quate mode of eliciting the talent of the country will be devised.

In this case, the committee began by eeting with the beat and noblest feeling. They advertised for designs. Their only error-and pardonable indeed it was-consisted in not at once definlng what species of monument they wished. Still, they left the rond open; and so fair an invitation would have lured many to try, confident that if their designs were best, they would not only have the bonour, bat the profit of its execution. Sonse evil spirit, however, affected the committee, and tbeir first right step was followed by a wrong one They again advertised, and offered premiums. This was bad enough, but they made it still worse, by adding, "but no further reward will be given;" thus distinctly and unequivocally giving the profesaioos occasion to infer, that, however good the design, however honourable the successful man might be, be was not to execute his own work, bat that some other man was to be fattoned on the honey which his labour was to create.

I, sir, have not the honour of being an artist; I may not be so sensitive as men of genius are apt to be, but that was my interpretation of the words immediacely that I sas them ; and I doaht not that others felt the same, and that their emulation was pelsied by it. Had not this been done, and had ample time, in the first inatance have been given, instead of driving artists to work upon the crade firt conceptions, that their designs might be ready in about two months, and theu adding six months more, I quite expect that a greater number of good designs would have been sent in. Rely upon it, sir, the wreath of fame has more and better followers than the purse of wealth; and be assured that many of the competitors were more incited by the hope that, notwithatanding the ill omen, they would be chosen to conduct their own design, than by the expectation of so much cash in hand. I cannot and will not doubt that the committee were actuated by the best motives in what they did. I only point out what I conceive to be the evil of their so doing; and, having done so, may I venture to propose, through you, to the public, that, in the event of other competitions being required, a middle course should be taken; whicb, while it may, to a great extent, secure the efforts of men of high rank, will not shut out others who may be equally talented and equally honourable, although not equally known to tho world; and thus 1 would say:-Let a committee select a dozen artists or architects of good repute, and covenant to pay each mome certain sum, sufficient just to cover the manual labour of making their designs, and engage to employ the successful artist to exeeute his Work. In addition to this, let them advertise for devigne, offering no definite premium, but promising that, if one of such designs be chosen, they will reward the author ; and, if he produce prouf of his ounstructive skill and integrity, they will also employ him to complete the work. It appeara to me, sir, that, by so doing, committe would not only secure good designs from men of ligh standing, bas have a fair chance of eliciting unknown genius, and that, in sorb a manner, as no man of good feeling, however high his professional rank, could object to. There is one point, however, I would beg to impress upon committecs-ihat, on no account shoold they admit drawings finished in any other than Indian ink or sepia. They should be neatly outlined, and the shades lighty washed in, and free from any of those dabs and touches, which are fiot ondy
untrue to nature, but give a meretricions effect to designs which are in themselves valueless. If it were not so, how do these very dabs, stainings, and sharp touches make "a landscape of a post p" I would next faliow the exarnple of the committee on the designs for the Nelson monument ; first adjudicate upon them, and then admit the competitons and the public to view; for I am quite assured that, let artists say what they will, the public, as a mase, are the best judges. Individuals may thiak oppositely, but a large number of conflicting opinions in some strange way neutralise each other, so that in the result the decision of public opinion is generally that which is most consonant with propriety and justice: and even if public opinion were erroneous, such a course would tend much, if not altogether, to remove those suspicions of favouritigm, and forestalled judgment, which in many instances, it is to be fared, have been but too well-founded. I am quite aware that oller practices than those of prejudgment exist, and practices against which nothing can guard but the utmost care that committees shall consist of men of honour. It is quite within their power to give one public st of instructions, and privately to give some favoured artist more detailed iuformation. It is quite practicable to send for an artist after the designs have beeo sent in, and direct him to make certain alterations thich shall improve his drawings or his model. These are dishonourable acts which, like other dark deeds, often betray their perpetrators; and they fall deeper than ever they rose higher in consequence of them. Such practices must in process of time prove their own correctors, and so that artists be but true to themselves, and every individual strive to keep his own honour immaculate, it will not be long before generous competition shall raise this portion of the repute of Britain, and rank her as high in art as the efforts of Nelson and Wellington have placed her in naval and military renown.

I have the honour to be, yours, \&.c.,
OMEGA.

BIRMINGHAMRND GLOUCESTER RAILWAY ENGINES.

Worcester, 8th March, 1839.

Sin,-In No. 18 of the "Civil Engineer's and Architect's Journal" for Marci. 1839, at page 116, you volunteer an editorial paragraph, onveying reflections upon the Birmingham aud Gloucester Railway Company.
Had you referred to the reports of the last half-ycarly meeting of this company, held on the 12th February, which reports were published in the Birmingham and also in the Gloucester journals of the same week, you would bave seen a correct statement of those facts upon which sout comments referred to have been erroncously made.
The facts are, that Mr. Norris, a loconotive engine-maker of high reputation in America, has engaged to send upon trial to England a locom.tive engine, which shall perform a much greater amount of work, under certain specifed conditions, than engines of similar class and expense are at present performing upon the railways of this country.
If this trial succeed, agreeably with the stipulations and to the satisfaction of the company's engineer, the company purclase the engine.
If the trial does not succeed, Mr. Norris pays the expenses attendant on the trial, and the company remain in the same situation in poiut of espeuse as that which they held before the trial was made; that is, they pay for nothing.
The company engage to take ten engines in all under the above conditions, which are applicable to each engine, as each arrives from America.
Having now given you the facts, allow me to add, in reply to your comments :-The Birmingham and Gloucester Company do expect that Englishonen will support their projects so long as those projects bear out the priaciple of procuring the best possible article at the least posible cost,-Do matter whether the cost be paid to an American for engines, or to a Norwegian for timber, the latter being a process by which (to use your own phrase) "the money subscribed gous out of the coantry," under the sanction of numerous railway companies, who appear hitherto to have escaped your condemnation.
The Birmingham and Gloucester Company do not "expect that the public will have any confidence in the safety" of these American engiues, until they shall have been subjected to the trial above referred to, whicts will fully prove this point; but the public may probably be amare of the broad fact, that safety, so far as the results of locomodice agines are concerned, is upion a par in both countries, and both the public and gourself will, I have no doubt, cordially rejoice in the adrancement of practical scicnce, which the results of these triabs, if suocestul, will evince.
1 apologise for trespassing thus on your space, and am, Sir, your abodient,
W. S. MOORSOM, Engineza.

THE ROYAL EXCHANGE.

Sis,-Is it possible that there can be any truth or approach to truth in the following paragraph, which I quote from the "Sunday Timen" "here the "Morning Advertiser" is named as the authority for it? "We are happy to learn that Mr. Baily's design for the New Royal Exchange is that which is to be adopted. The Gresham commitee have at leagth gielded to the views of the Chancellor of the Exchequer on the subject. Mr. Baily is the most distioguished artist of his day in his own peculiar walk ; and the admirets of genius must be grataful to him for asserting its rights in the person of Mr. Beily." Whether this be intended seriously, and merely a blunder, or whether it be intended as a joke, it is dificult to guess. It certainly would be very odd that Mr. Baily's, or Mr. Anybody-else's, model should be choeen before anything was known when designs were to be seat in. The writer of the paragraph, however, may know a gmeat deal more of the matter then any one ebe, for he knows, it seems, and is willing to let the world know, that "Mr. Baily is the moat distinguished artist of hie day, in his owa peculiar walk." Neverthelem, I must confess, I never heard the name before as that of an architect; therefore if distinguished at all, it must be by the obscurity in which it has been shrouded. Neither have I any idea what can be this most distinguished Mr. Baily's owr peculiar walk, unless it is meant that helias been in the habit of attending Change, and showing himeelf in one particular woll there. Another puzzle is to know to whom the admirers of geniug-chat is, of course, all of us, have to be grateful to for aserting its rights in the person of Mr. Baily ; is it to the dirtinguished artist himself, or the Chancellor of the Exchequer?

Pray endearour to unriddle the whole of this enigmatical matter, if only that we may get out of debt at once, by paying our gratitude in the proper quarter.

In the meen while I remaid,
 Your most undistinguished

READER.

SAVERY AND TREVITHICK.

Sin,-Several periodicala, last week, gave an analygis of an esany, that had been read by Profeasor Regaud, before the Ashmoleen Society, on some circumstances in the history of Captain Severy, the inventor of a steam engine. I read the analysis in the Literary Gazelte, the editor of which observed, thet Savery wrote the Miner's Friend to draw attention to his engine, and that this book "is now a very rare volume. It is in the British Museum, and we believe copy will be found in All Souls College Library. Surely in the present day of science, and of scientific mining in particular, a republication might be very useful: and would be infinitely mote valuable if the professor of ustronomy (the only person we kaow who is calculated, from his love of minute research, and the vast acervinlation he has made of materials, to do justice to ecientific biography,) would prefix his notices of the author and his invention."

From the recommendation in this paragraph, it is clear the editor of the Literary Gazette has never seen the reprint of the Minar's Friend, made in 1827, by Mr. Robert Meikleham, from a copy of Savery's book in his possession. The first edition, dated 1702, is in I2mo, and has one large folio engraving, showing a perspective view of the engine. This engraving was either borrowed from Harris's Lexicon Ledinicum, or Savery gave the plate used in the Miner's Friond to Harris. The impressions are identical. Mr. Meikleham's edition is in 18mo, and when compared with the original, it hassome pretensions to elegance : it has three engravings, and eighteen ornamental vignettes. A small number only were printed, which were purchased, I think, by Mr. Reid, bookseller, Charing-crose. Some of the copies had a portrait, designated as that of Savery. This, however, is a misnomer, occasioned by the letter-engraver affixing the name to a wrong portrait; and the mistake was not diacovered till it was too late to rectify it. Mr. Meikleham had an original portrait of the Captain, which he procured in 1816 from a Mrs. Boughton, of Boughton, who was connected with Savery by marriage. At that time she was very aged, and having outlived gome benevolent relations she had fallen into great poverty. Mrs. Boughton knew nothing of Savery's history; she remembered her father-in-law speaking of him as having had the reputation of being a very self-willed and passionate man; very niggardly and selfish; and that he had been sheriff of Devon. This, however, was a palpable mistake. The portrait in her possession had been peinted with considerable freedom, and when Savery might have been between thirty and forty years of age. Although much mutilated, the face was perfect; so was the upper part of the peruke, and a part of the cravat. It had not been preserved from a feeling of its value, but for its convenience as a piece of furniture. The effigy had served as a chimney-board. On cleaning it, there was found written on the
canvas frame: "No. 7. Mr. Savary, ingineer." It had certainly at one time been in some inventory, perhaps in a sheriff's. An engraving was made from this portrait for my compilation, but, the artist not having made a passable transcript, his copy was cancelled.

Professor Regaud also mentioned, that no trace of Savery having been a partner with Newcomen is to be found in the Rolis Office. This may be. In a search made twelve years ago, to ascertain the point, I could not find even Newcomen's patent. Perhaps I inquired in the wrong quarter, in the Patent Office of Extortion. I gave, in a note, Swebre's account, which he wrote twelve years after Savery's death. In the text I said that, "His (Savery's) interest was consulted by associating his name with that of Newcomen and Calley in the patent." Mr. Richard Lovel Edgworth had used the same words in a letter to the editor of a periodical, in some discussion on the history of the mechanism. But after all, Savery may have been a sharer, as Switzer says, in the profits, without his name appearing (as I, perhaps, wrongly express it) in the patent. The date of Newcomen's death has not been ascertained. In 1730, he is spoken of as the "late Mr. Newcomen." Calley died two years after Savery. The professor styles Savery a "military engineer." I know not what that profession was in Savery's time. He assuredly was a civilian. Sir Isaac Newton, who knew him, calls him "Mr. Savery." When 1 was engaged, in 1825 , in the preparation of the "Anecdotes of Steam Engines," Mrs. Broughton became an object of great interest. I anticipated being able, with her assistance, to get into some channel of information respecting Savery, but all my enquiries then to learn where she was, or if alive, were unsuccessful; every trace was obliterated.

I was highly gratified with the memoir of Mr. Trevithick in your Journal for March. I believe, but I speak from an uncertain recollection, that the inte Dr. Tilloch, editor of the "Philosophical Magazine," had some share in the project of sending high pressure steam-engines to Peru. He lost money by his adventure, for the most magnificent Spanish promises would not "take up" the smallest acceptance on the silver mine-engine account, in London. Among Mr. Trevithich's inventions was an elegant machine for producing a reciprocating motion by a fall of water, without losing the effect of a single dron of the fluid !! He exhibited a model of his machine of which I have a drawing. The water acted on the piston like the steam on the piston of his engine. It was a kind of pet project among mechanics at this period to supersede water-wheels! Trevithick's column, a thousand feat high, would be just the thing now in Trafalgar square. It would be a worthy monument to a truly great man, designed by one much greater. Some account of this, f doubt not, would amuse your architectural readers. Your correspondent, who, in lis memoir, has done such good and acceptable service to all mechanics, must be in possession of many anecdotes concerning his friend, and he will indeed do great injury to his memory if he fail to chronicle them. The slightest incident in the life of such a man as Trevithick is invaluable, for his name is an historical one, and his fame is interwoven with that of the greatness of his country.

19th March, 1839.
ROBERT STUART.

THE DYNAMOMETER.

Sir,-Having never seen an instrument of this kind which I conceive well calculated to prove the draught of a plough or road carriage in a satisfactory manner, I beg leave to trouble you with a description and sketch of one which I think might answer the purpose.

The common Dynamometer is deficient, as it only shows the strain at a particular moment, and is constantly varying during the trial, so that at the end of the experinent the average strain cannot be calculated. To ascertain this it would be necessary during a trial to note every variation indicated by the instrument and its time of duration, which sometimes might amount to several, in one second of time.
Such being the case, the desideratum scems to be an instrument that will sum up in one the whole force exerted during the performance of a piece of work, or during a given time, at a certain rate of speed. Suppose, for example, the plough to be tried, I would have the instrument to slow what strain was exerted in drawing a furrow from one to the other end of the ridge, taking care always to note the time in which this was performed. If tried upon a carriage, either upon a rail or common road, take, for instunce, a mile or two, at any rate of speed most convenient, the instrument wanted is to collect into ore, and exhibit at ore view the power expended during the triad.
My plan is as follows :-To make a strong brass tube, of any convenient length, bored perfectly smooth within, and of such a diameter
as might be found to answer ; this tube to be open at the one end to admit a tight-fitted piston with a polished rod, which would go throogh a collar or small opening at the other end; the apparatus would in fact, be a model of the cylinder, piston, and piston rod of a mean engine. The following sketch will better explain it; the tube is meant to be filled with water, which, by the draught at A, is to be ejected at the small bent tube \mathbf{B}, at a very small orifice.

This arrangement being made, the instrument is yoked to the plough or carriage at C, and the power applied at Λ, the piston D advances slowly towards E, forcing out the water in a very small $j t$ at B, the discharge of which will always be in proportion to the strain applied at A, to overcome the resistance at C. Now, at the end of any given time, or given distance, the water discharged would be the measure of the force exerted in drawing the carriage of plough, and which of the machines in competition that perfomed the work in the same time, with the least discharge of water in 8 given space, would be that of easiest draught, in other words, be best plough or carriage.
As there would necessarily be a considerable degree of friction in this instrument, on account of the tightness of the piston and collsr, required to keep the water from escaping, it might be proper to ascertain the amount of this, which could easily be done by pating the instrument to a balance or steelyard when emptied of the mader, which would soon determine the friction in pounds.
The strain exerted in any trial of any machine might also be determined, and an average in pounds taken, by attaching thejimbtroment in the same manner when full, to a steelyard or balance, and by loading it with such a weight as would causey to discharge the same quancity of voler in tha same time as was dofle in the expriment with the cart or plough. The friction, as a matter of course, would be to take from each to determine the positive strain.

A scale might easily be attached to the instrument to determine the exact distance the piston might move in any trial.
There may, perhaps, be some difficulty in making the instrument perfectly water tight at the piston and collar, but in my opinion a slight leakage would be of little consequence as this would almags be in proportion to the strain to which it might be subjected, sad, therefore, not affect the result.

I am not aware that such an instrument has ever been tried excepting what I have myself done, and that was upon a very manl scale; but I humbly think that were such an instrument perfected that it would be bighly useful for the proving of plough and ear. riages of every description, as then the merits of two competing machines might be proved and determined in such a mamer as to prevent all cavil, being, in fact, brought to a mathematical demos stration.

Should you think this communication worth a place in your excellent journal, I may, perhaps, trouble you again.

I am, Sir,
Your most obedient Servant,
N. H.

Roxburghshire, Scotland, March 15, 1839.

RAILWAY CURVES.

Sir,-Having made use of the plan recommended by "A Sub", in your January number, and being convinced of its practical utility, I make no apology for forwarding you a few remarks upon the objections urged by your correspondent R. W. T. Your correspondent's observation "that if the curvature is not equable some part of it must be sharper than if the same radius were uxd all through" is incorrect, the object being (if I understand correctly the plan of "A Sub.") to begin curving sooner, and make the radi of portions of the curve greater. I must also dissent from the esseftion that when an engine is entering upon a curve it will not be affected by the nature of the path it was previously describing; fos if this be the case, why is the effect of wear and tear of the octar rail at the COMMENCEment of a sharp curve less when the previous path is a curye in an opposite direction (forming an S) than when is is anstraight line? Again: Gravity acts upon a locomotive with the same effect as upon a projectile, viz., to bring it to a state of ret: Now althought an engine cannot, like a cannon ball or other projectile, approach nearer the centre of the force acting upon in, gith prima facie, the vertical pressure upon the rails increases as ithe
oquates of the velocities decrease. The cares, therefore, are not so dissimilar as I was at first led to believe from your correapondent's obserrations.
March 15, 1839.
J. ELY.

RAILWAY CURVES.

$\mathrm{Sxm},-\mathrm{As}$ a subcriber to your truly valuable journal, I trust you will not deem me too presumptuous in seeking for the following information through your journal :-

Query-The most correet mode for placing a curve of 100 chains rediss between ($?$ to form) an S curve, as in the following example,

would it not be desirable to reverse the curve towards b ?
Mr. Bruft's mode for setting out half-width (when sidelong) for a hive of railway is pary tedious. I wish be would inform us if there be dot a shorter mode than working, as he says, from wery centre peg.
Query. - Which is the most correct mode of getting out railway curves?

The method adopted on many lines of railway for determining the offict of curves at every chain is thus-tangent squared, divided by sadius, will give the versed sine.*
For example- 160 chains radius $\frac{t_{2}}{r}=\frac{12}{160}=00625$, the decimal proportion of a chain $=$ versed sine at one chain. By reducing the decimal to inches will give 4.95 inches for the versed sine.
This will be, I believe, 1 foot 8 inches for 2 chains. If I am correct, thus, $2^{2} \times 4.95=19.80$ inches, or nearly 1 foot 8 inches.
Hoping to see these matters explained in your next pumber, I remain, your very obliged servant,
15th Mareh, 1899.
An Absibtant Enginera.
[We have altered our correspondent's communication, so as to make it better understood by our readers; and we also referred his letter to Mr. Bruff for an explanation of that part relative to setting out "widths," and have received the following reply; and we have also obtuned Mr. Weale's permission to copy from his "Scientific Advertiser" Mr. Charlton's communication on setting out railway curves, which we have given below.-Editon.]

Sin,-In reply to your correspondent, "An Assistant Engineer," as to the most correct method of carrying iato effect the question he propounda, I am not sufficiently in possession of the case to answer it with matisfaction to him or myaelf. From the hurried glance I have given at his letter, I presume the two curves a, a were intended to have met, und he now proposes to effect a junction, by laying out another curve of 100 chains radius. If this is the case, why not connect them with a tangeat? or if this is not possible, with a short tangent and a curve reversed; but if he is compelled to connect by a S curve, most undoubtedly it should be reversed as your correspondent suggesta. If the S curve had been situated thus-

a, a, the two curves, and b the point where the junction was desired, it could easily have been connected by adopting a single curve of less radins, having a common tangent at the connecting points.
With respect to your correspondent's complaints of the method I have communicated of setting out widths on sidelong ground being tedious, and requiring a shorter method, "I have no help for him." Oo around that is at all variable, even a distance of 100 feet is too great for cross sections, and I often take one or two intermediate vections in that distance when in cutting; in embankment I consider such aicety of little mement. I have for some time past had clarge of a nilway contract of something less than five miles, the whole of which is on sidelong ground of a very abrupt character; and, after trying ranious plans for taking the cross sections, (which was here absolutely Decesary in determining the extent of ground to be taken,) I was fully
satisfied that the method I have detailed in your journal was not only the most correct, but the quickest and most easy of execution of any that I am aware of or have seen practised. I have levelled centre stakes throughout this distance, and determined the widths as I have described, and as a great portion of the works have now been carried inte execution, (the cutting in some places being as much as 50 feet,) I can speak with increased confidence of the accuracy of the method.

The methods adopted for laying out curves are various. Your correspondent, by referring to the "Railway Magazine" for January, Febnuary, and March of last year, will find several excellent methods detailed, as also in "Weale's Scientifc Advertiser" for May last.

I remain, yours, very truly,

Peter Bedtr.

Charlotte-street, Bloomsbury, March 21st, 1899.
Thefollowing communication we extract from "Weale's Scientific Advertiser:-

The all-important subject of railways seems to engross the almost exclusive attention of both the scientifle man and the practical mechanic. Railways at present are only in their infancy, and probably many of the methods now in use for laying down rails, setting out carves, \&c., will in a short time give way to other inventions better adapted for practice, and of more general utility. The different methods adopted for setting out curves seem to demand much more attention than engineera have bestowed upon them. To have a curve on a railway, is at best a misfortune, and ought never to be resorted to unless to avoid some greater evil. Admiting the curve to be a true circular arc, and correctly set out, oach carriage in a train will have a continual tendency to fy off, and that tendency wili be increased or diminished in proportion to the diameter of the circle of which the curve is a segment. The distance between the wheels on each side of a carriage is a straight line, but the wheels and carriage are forced to move in a curvilinear direction ; the friction, therefore, between the wheels and the rails, especially in an arc of a small circle, must retard the progress of the train, wear the materials, strain the carriages, and greatly increase the chance of accidents, trom the trains being thrown off the rails. All this will necessarily take place when the curve is correctly set out ; but what must be the consequevee when the carve is not uniform in its curvature? Probably some portion of it nearly a straight line, another portion of a four-mile radius, anot her a segment of a quarter of a mile radius, and another of no known curve whatever. A train forced along a line thus formed with the usual speed, runs a great risk of being thrown off, besides the incalculable injury dene to the carriages. It is, therefore, of the deepest importance that engineers and snrveyors should have a true method of setting out curves, and it is worthy of remark that tbe methods founded on true principles are easier than those founded on falme ones, and require much less trouble in practice. The foregoing readers a theodulite unnecessary, nor does the surveror require any instrument except a chain and two or three poles. In hilly countries it is only necessary to ascertain the elevation or depression of any place above or below the point where the curve commences, and that will be the side of a triangle, the ratio of whose sides are given. To illuatrate this without a diagram, suppose the slope in a cutting rise 2 feet in 3 , and that the elevation of a bill above the point of commencement, or the last point found by the survegor, should be 10 feet ; then, having ascertained a point on the hill as if it were explained according to the foregoing method, say as $2: 3:: 10: 15$ feet ; this 15 feet must be messured back from the point already found in a direction perpendicular to the line of railway, and thus a true point in the curve in its progress over the 'ill will be readily ascertained.

The rule made use of in several railways is, to divide the tangent in inches by twice the radius of the circle; or, which is the same thing, divide the square of the tangent by the diameter of the circle, and the quotient will be a perpendicular offset to the curve! To any person at all conversant with geometry, this method will be seen to be manifeetly erroneous: however short the tangent. it is not true; but if, as mentioned by Mr. Terry, in the "Railvay Magazine," a few months back, the tangent should be five chains, then this method of finding an offset is grossly erroncous, and, in a matter of such consequence, ought at once \mathfrak{l}, be abandoned, and a true method substituted. It was lately decided by the Chancellor, in a railway case for libel, that the acquirements even of the secretary of any public company were legally subject to be fairly inquired into. If such then be law as it respects a secretary, surely the acquirements of the principal engineer of a railmay, touching his mathematical snd mechanical know.edge, are a sulject of fair and legitimate inquiry, and more especially when it is considered that want of such knowledge on his part may affect the interests and property of the parties amounting to millions of money.

a practical method of setting out a circular RAILWAY CURVE,

Let A be the commencement of a circular curve: perpendicular to the radiue $A O$ measure any distance $A T$, and from n the middle of $A T$ measure n m equal to $A n$ or $n T$ meeting $T m=A T^{9} \div \sqrt{A T^{2}+2 A O^{2}}$, then will m be a point in the curve. Again, measure in the direction of $m m^{\prime}$ to T^{\prime} making $m T^{\prime}=A T$, and from T^{\prime} the middle of $m T^{\prime}$ measure $n^{\prime} m^{\prime}=n^{\prime} T^{\prime}$, or $x^{\prime} m$ meeting $\mathrm{T}^{\prime} m^{\prime}=\mathrm{T} m$, then will m^{\prime} be another point in the curve, and thus any number of equidistant points may be found.

Demokbtration.-Because $\mathrm{T} m \times \mathrm{BT}=\mathrm{AT}^{2}$, and $\mathrm{TB} \mathrm{B}^{2}=\overline{\mathrm{AT}^{2}+2 \mathrm{AO}^{2}}$, we have $\mathrm{T}_{m}=\mathrm{AT}^{2} \div \sqrt{\mathrm{AT}^{2}+2 \mathrm{AO}^{2}}$, then will m be a point in the curve. Again, join $0 m$ and $A m$, then since $T n=n m=n A$, the point n is the centre of a circle passing through $\mathrm{A}, m, \mathrm{~T}$; therefore $\Lambda \mathrm{m}$ is perpendicular to $T m$, and $n m$ a tangent to the curve at m.

The method of proceeding on the concave side of the curve is equally easy, and depends on the same geometrical principles. The foregoing supersedes the necessity of taking any angles. The methods given for hying out curves in the March and preceding "Railway Magazines," though fopnded on true principlem, require efther a theodolite or a table of sines and tangents, while this method requires neither, and appears simpler and more fitted for practice than any I have reen.

HISTORY OF PAPERHANGINGS.

Extracts from a paper by Mr. Crace, read before the Royal Institwte of British Architects.
(Continued from page 100.)
In the former paper I endeavoured to trace the history of the art of paperstaining up to the present time, and it is now my purpose to describe the manufacture, and give some account of the modern improvements that have been introduced.

In that paper I showed, I trust satisfactorily, that the flock papers, or rather hangings, were introduced into England in the time of Charles I., and that a person named John Lanyer obtained a patent for the invention in 1634. I aloo cited an article from an old French dictionary of commence, proving that the coloured paperhangings were made at any rate in that country in the beventeenth century, and referring to statutes relating to them even of the date 1586.

There were formerly three modes in which paperhangings were manufactured. By printing the outline with blocks and then colouring by hand; by stenciling; and by blocks alone.
The first of these methods is that described in my former paper, under the bead of Dominoterie.

The second, stenciling, is performed by cutting out either in paper, teather, or other materials, the patten intended to be represented, and thes, placing this on the prepared ground, brushing it over with the proper colour. This mode gives an imperfect outline, and is now discontinued in paperstaining, and merely sometines employed by plasterers to ornament coloured walls.

The third is the mode now almost universally adopted in this manufacture, whereby every colour is applied by a separate block, according to the tints and shadows fintended to be represented.

I have before said that Lanyer's patent did not even mention paper among the wibstances on which flock could be applied, as it was at that period of too rotten and bad a quality to bear the weight of the woollen material. But paper has now been brought to so high a degree of perfection that it is the only substance employed, and has thus assisted greatly the operations of the papertainer. Till within the last twelve years the pieces
of paperhangings wore formed of sheets, each about three quarton of yard long, pasted together till the proper length of twelve yurds wis can. pleted. This method was attended with many inconveniences, the joins rising, or being imperfect, and generally showing, all which evila are num remedied by the pieces consisting of one perfect length of paper, withoo: any joints whatever; the width, too, can be enlarged to two or three times the ordinary size, as is now repentedly done in France, as these examples will show, though we have not as yet adopted this plan.
The modern coloured papers are almoet all worked in distempen, a colour mixed with size to bind it, instead of with oil or ramiab, which whe mors employed formerly, and is now, in fact, used in the manufr. ture of the washable paperhangings; the effect of them, boweere, is p : nearly so clear and brifliant as in those worked by the former methot.

Distemper, or body colorr, is generally thus prepared:-Whing fuct powdered and soaked in wor is first well mixed, as stiffly as it can be worked, and then stained with the proper colours well ground in watr: when the desired tint is produced, double size melted with about en cqul proportion of water is added, till the colour is about the consistency of cream, and when chilled it is fit for use.

Commencing with the more simple papers, the first process is that of laying the groumds; to do this, the paper being placed on a bench atonst twelve feet long, the workman with two large brushes filled with reltst, one in each hand, prsses them over the paper with a circular motion ad as each piece is completed it is supported and carried by the attending boy on a stick, and placed on the rack to dry.

An inganious machine has lately been iuvented, in which by throe brusers acting, one with the other, the grounds are completely and ovenly caloured, and in a much more expeditious manner than by hand.
Tho grounds being prepared, we will procced with the prining thich ig performed by means of blocks. They are carved most generally in peas tree, mounted on white deal; the design being first iraced on the rod, the engraver or cutter, taking care to follow the exact outline, cuts perpotdicularly to the depth of ouc-eighth of an inch, and then stopes off iill he gets to the deal. 1 should add that where very sharp lines or dots are required metal is inserted in the block.
The colour with which the printing is to be performed, being mired b the proper tint, is syread with a brush on what is called the siere-s wouden frame covered with a blanket-the block is pressed on this and then applied to the paper, on which it leaves the impression of be dean There is a method of printing by a patent machine, inveated by deass. Archer and Taverner, whereby, by placing the blocks on the siere and tha on the paper is performed with great exactness, with the labour of meedy turning a lever handle, which is done by a boy. It was found, howertit, too cumbrous to move.
In the first case the pattern is given to the paper by a single block, br: as in the second, where there are two shades of colour, two blocks 4° necessary. Now in order that the second block may be placed exactir it its proper situation, you perceive that there are pin marks in each biod corresponding with each other, and on the marks printed by the firt biod the pins of the second block are placed, and the patiera is thos compliend with the required correctness.
In another case a very delicate and shaded effect is given by a sing improssion, which is produced by what is called pin-work on a cylindu.
The pattern is formed by small brass pins of various sizes, fixed on a wodes cylinder at different spaces, according to the depth of shade required. Tiik, fixed in a machine, is made to revolve so as to be supplied with colour figf a blanket, and at the same time print the piece of paper very sperdit without any interruption. This process, only lately apphied to papersainns is derived from one much resembling it, in use in calico printing, only thit the latter so far differs that the colour is contained inside the cylinder, and the pattern represented by holes pierced in it instead of pins fxed on in
In other cases the pattern is worked on what is called a blended graud; this is also a modern invention, originating, I believe, in France. Thi blending is performed by a machine purposely constructed. A vist trough, the length of the breadth of paper, containing about twenty dir. sions, has in those divisions various tints of colour, according to the best. ing required; a long narrow brush is then dipped into the trouqh. and being filled with colour, applies it to a roller, from which it is colleckd by a large cylindrical brush the same length, which is made to revolve, wil when it is properly supplied with colour it is then brought to bear upa the paper, on which it thus places the grounds, though in order to male : sufficiently perfect it is uecessary to be done twice.

A common marble paper is printed by blocks in the ordinary way, and afterwards varnished with turpentine varuish, by which process it is embin to bear washing, water not injuring it.
There is an improved imitation marble paper, made by Archer ani Taverner, in which, if assisted by a few veins laid in by hand, the effect is certainly much superior to the last. The operation is considered scrat but it is eusy to be perceived that the mode of making it nearly resembles that employed by the makers of the bookbinders' nurble paper io whath thickly gummed colours are made to float on the surface of watir, 10.1 being stirred in various forms, are thus absorbed by the paper when appitit to them.
In an imitation of wainscot the ground is combed as in the unel painted imitatious of this wood, and the veins are afterwards printed.
The satin ground paper is a great improvement on the common groubl and ennbles the manufacturer to produce imitations of silks und satins, want have a very elegant appearunce. I have made every exertion to disioted
the date of the introdvetion of this improvement, bat unfortunately withcout acoem. The oldeat in the trade have never heard of it as a recent invention.

The atin ground is laid with satin white, a compornd formed of lime and alum, and it can be coloured to almost any tint. After being laid like the common gromend, powdered Prench chalk is rabbed on it with a hard bruah till tho glow is produced, and it is then giazed with clear size.

A procen has been invented in Angland within the last five or six gears which adds materially the bearaty of the satingrounds; this embosoing, where imitalions of watered and figured silks, stamped leather, \&c., are produced. The embossing is performed by the paper being passed between two rollers, on one of which is the engraved pattern, and which also being lighthy heated thos stamps the required design on the paper.

A kind of paperhanging in which the English designers seem to excel is called chintr, and has been introduced in imitation of the printed cottons and mosios, which seen to have been copied from Indian designs. There ere is seatral several cotours in these patterne, requiring many blocks and moch delicacy in execution, though the number of blocks is sometimes much lememed by printing wash coloure; wach as yellow on blue making grean, yellow on red orange, and lake os blue purple.

A mannficture of Archer and Tavernar is one of the most creditable attempts in modern English paperstaining. It is an imitation of Chinese paper, and is composed of eighteen sets of blocks, each set containing cour, altogether seventy-two blocks. It will be perceived thet the flowers in that paper are shaded, which is effected by a proeess resembling that omployed in blending the grounds. The long narrow brush is dipped in the troagh coataining the proper tipts of colour and apreads these on the sieve. The block with the 首owers engraved on it is then applied to the sieve thon arranged in shades, and afterwards prints the flowers in the tints, which are blended. This is a modern invertion, first practimed about fire years ago by the Mesas. Harwood, the oldest flrm at precent in the trade.

Anothor inportant mechanical contrivance was invented about twenty jcas ago, whercby atriped papers are oxecuted with great eractnese and clearness by a machine in lieu of blocke, which orring to the working alway mado an imperfect line. In this machine a copper trough, in which arrow slite of the required breadth are cut at the t ottom, being flled with this colowr, is applied to the paper, which is made to pass over a revolving cylinder, and draws the cotours through the slits in the trough, by Which the etripes are formed.

The ground of another specimen is crimson, and in laid with a staining colour instead of distemper. This colour, prepared principally from cochineal, is applied to the paper in the form of a wash, and is generally hid six times to produce a fine stain, the first coat being done with gamboge. In working the pattern it is printed before the staining is done, and thus acquires a mach greater richnces of colour.

The next example is a Hock paper, a kind of hanging originally introduced as an imitation of the wove tapestries and velvet damasks. It has been employed in England more than 200 years, but about sirty years ago the art was almost lost, and only revived forty years since. The mode of working is very simple, although much mystery used to be observed respecting it. Flock is composed of the outtings of white or bleached woollen cloth cut up in a mill to the neceseary degree of finenom, and then dyed to various tints of colours. It is applied to the paper in the following manner:-The ground being prepared, the design is first printed with the block in size, in order that the oil may bear out rhen applied; when this is dry it is then printed with a composition of boiled oil and japan gold size, and while this is still wet the paper is laid on the drum (a kind of box abont five feet by three feet, with the sides of wood and the bnttom of ticking); the flock is then sprinkled over the paper, and the workman, with a cane, beats the under side of the drum, which causes the Hock to spread evenly over every part of the pattern, to which it is fixed by mans of the japan composition. Sometimes one flock is applied over another, this is casily accomplished by merely repeating the procesa after the first flock is perfectly dry.

In the next specimen a beautiful imitation of tapestry is produced by the introduction of flocks of various colours, and is done exactly as in the former examples, each flock being separately printed after the former onee ase properly hardened and set.

I now take up the last of the three kinds of paperhangings, wherein metals are omployed to produce imitations of gilt leather, rich brocades, or lightly etched ornaments. It is to these papers that our manufacturers ceem now to devule their chief attention, and they work them with great beauty and richness, at a comparatively muderate price. I stated in my furmer paper that the gilt loather was cmployed in England even in the trae of Henry VIII., and that the English were aftervards famed for its manufacture. I have overy reason to suppose that gold and silver and metal leaf *ere introduced in the early paperhangings as an infitation of the more expensive leatherhanging, although I have not been able to disevrer the exact date of their frat application. In addition to these there id another material of much more recent introduction, called bronze or initstion gold dust, which is now very extensively employed. This bronze 2n the invention of an artist at Nuremberg, named John Halitsch, who was bom in 1595 and died in 1670 , and his descendants have continued the manufacture to the present time. It is prepared by sifting the filings of diffornt metals, washing them in a strong lye, and then placing them on a piato of irun or coppor over a strong fire, where they are continually stirred till the colous is altered. Thoee of tin acquire by this process
shades of gold colonr, copper, red, and flame colours; iron and steel, blue and violet; aind tin and bismuth, shades of a bluish white. The dut tinged in this manner is then put through a flatting mill.

A bronze paper is thus worked:-The design (as with flock) is first stamped with size, and afterwards with boiled oil and japan gotd size; this preparation is allowed to dry, but while it still retaing a trek the bronze is brushed over it with a hare's foot or soft brush; it thus adherea to the gold size, and the paper is in the state exhibited.

In another paper a mach move oplendid effeat is produced by a motad, in imitation of gold leaf. A gold size, resembling that for bronze, is first applied, and while it has a tack the metal leaf is laid on. This metal, sometimes called mosaic gold or Dutch metal, is prepared in Germany, and is an amalgan of tin and coppor. The effect of it on the paper is very much improved by embossing.

When coloured flocks are united with the metal pattern very splendid hangings are produced. The metal, too, is sometimes shaded, which is done by stains formed from berries, of which various kinds are used; and nietal is also applied on a bronze ground, but the process is aimply that already described. I need not add that in all cases where the metal is employed gold leaf may be substituted, but it is rarely used on account of the great increase in price. I have not described the washable paperhangings, or Delarue's patent paperhangings, because they are similar to those of which I have alrcady spoken, with the exception that they are worked with japan gold size and turpentine instead of distemper, and the latter by being embossed in horizontal lines forms, by embossing alone, a pattern similar to that produced by printing.

I have made particular enquiries as to how the manufacture of paperhangings is conducted in France. I have visited the factories, and have the pleasure of being acquainted with the most eminent manufacturer at Paris, Monsicur Dauptain, and from all I can learn I do not find that the French employ other means than those known to us. In those papers of such large dimensions they have double sets of blocks, and in the decorative papers the mode of working is the same as our own; look, in fact, at what was done by our Eriglish manufacturers, Echardt and Sherringham, fifty years since; their works equal those of the French at the present day. Whence then arises our inferiority in this art ? for that we are inferior all must confess. In the first place our manufacturers complain that, supposing they go to a great expense for an omamental design it is liable to be pirated with impunity; and they say that were they protected by a patent right they should be able to bring out designs of much greater extent and perfection. This act of justice, I trust, will soon be granted to them; but even supposing this, I much fear we should still be behind our neighbours. In Paris the workmen have a better eye for colour than ours, they acquire, as it were, an imperceptible cducation in taste from the solendid works so continually before thers; yet not depending on that alone the principal manufncturers there, constantly retain able artists, who, besides drawing the designs, arrange the tints and direct the working. Here, the task of the French artist falls to the hands of a mechanic, who, however able he may be as a workman, is still ignorant as an artist. What is the result?-the present mortifying comparison-can we now produce pepers in which the flowers are so delicately tinted-can ve arrange colours with the same science and harmony displayed ? I repeat that though the Prench manufacturers use the same simple machinery, yet that their productions are far beyond our own-each tint, each shado of the numerous colours exhibited in the arabesques are stamped by a separate block. The expense of getting up these decorations is of course considerable, but instead of every jear bringing out as we do, some fifty patterns, they are content to produce, perhaps, only one, or two, or three, each of which will always attract by the beauty and taste displayed. What I now write, I have often said to our manufacturers themselves, and some of them have replied; supposing no other obstacle, where can we get artists of the class to draw for us the designs you speak of? And here indeed is the difficulty-at present an insupersble difficulty, for, traty, there is not at this time in this country a class of decorative artists available for the paper-stainers. Those of any talent are so very few that they demand too high a price for the manufacturer. And yetiof what consequence is it, not only in this, but in other manufactures, such as printed cottons, wools, figured silks, china, ornamental metal work, that we keep paee with other nations in regard to the taste displayed in these productions. How did the spiritand enterprise of Wedgwood raise the manufacture of porcelain in this country; where before his time we imported even for our own use- he caused his productions to be csteemed in all the conntries of the globe for the clegance of their forms and the bcauty of the designs which adomed them, and thus has enabled the manufacture to be carricd to an extent never before anticipated. There are not many Wedgwoods. How trifling is the encouragement extended to our decorative artists, both for the true and proper education in their art and their cmployment afterwards! In any of the new pulaces, in any of the modern grand national monuments, even in the national gallery itself, is there introduced any specimen of historical, allegorical, or decorative painting? Look at France, the new galleries of Versailles, where every room is decorated, the Bourse of Paris, the Madeleine. Look at Berlin-look at Murich. There the art is encouraged, the artists numerous. and their productions catcemed. It appears presumption in one so humble as myself to address thus the Institute of British Architects, but yet with them in a certain degree must rest the remedy. It is in your power to introduce in your desigas the sister art of Painting. By oncouraging that, the evils of which I complain would aoon disappearworking schoois, the only effective ones, would thus be formed, and besides adorning our buildings, you would be the means of more widely diffusing
and perfecting a departraent, which, 1 think, all will agree is of such vital consequence to the character and importance of our national buildings, and to the success and well-being of our manufactures.

LUBRICATION.

(From Dr. Ure's Dictionary of Arts, Manufactures, and Mines.)
The following simple and efficacious plan of lubricating the joints and boarings of machinery by capillary auraction, has boen kindly commu. nicatad to me by it ingunious inventor, Edwand Woolsey, Esq.:-

Figure 1 is a section of a tin cap, which has a small tin tube A, which passes through the bottom, as shown by the dotted lines. Oil is poured into the cop, and one end of a worsted or cotton tbread is dipped into the oil, and the other end pasaed through the tube. The capillary attraction causes the oil to ascend and paas over the orifice of the tube, whence it gradually descende, and drops alower or quicker, according to the length of the thread, or its thickness, ontil every parlicle of oil is drawn over by this capillary syphon. The tube is intended to be put into the bearings of shaits, \&c., and is made of any size that may be wished. If oil, or other liquids, is desired to be dropped opon a grindstone or other surface, this cup can have a handle to it, or be hung from the ceiling. It is frequenly required to stop the capillary action when the machinery is not going; and tbis has been effected by means of a tightening screw, which passes through a screw boss in the cover of the cup, and pressea against the internal orifice of the tube, preventing the oil from pasing. As I find when these screw-cups are used upon beams of engines and moving bearings, that the screw is apt to be tightened by the motion; and siso, an I think the action of the screw is uncertain, from the workman neglecting to acrew it down sufficiently, it answers best to take out the capillary thread when the lubrication is not required; and to effect this easily, I hare a tin top to the cup, with a round pipe soldered to it; tbis pipe has a alit in it, like a pencil case, and allows a bolt a to slide easily in it. In figure 2 the bolt is down; in figure 3, the bolt, which is a piece of braes wire, is drawn up, and there is no capillary action between the thread and the oil. In figure 3 it will be observed, that the bolt is kept in ite place by its head c, reating in a lateral slit in the pipe, and it cannot be drawn out on account of the pin E . One end of the thread is fastened to the eye-hole at the bottom of the bolt, and the other end is tied to a small wire which crosses the lower orifice of the tube at \mathbf{d}. By this simple contrivance the capillary action can be stopped or renewed in a second, without removing the top of the lubricator.
The saving by this plan, ingtead of pouring oil into the bearings, is 2 gallons out of 3 , while the bearings are better oiled.

When you wish to see the quantity of nil remaining in the lubricator, the bolt must be dropped as in figure 2, and you can then lift the cover a little way off, without breaking the thread, and replenish with oil. The cost of figure 2, in tin plate is 8 d . The figures in the wood-cute are one-third of the full rize.

CALEDONIAN CANAL.

We are heartily glad to see that a committee of the House of Commons has been appointed on a subject so important to Scotiand, and to the commercial intereats of the kingdom, as the improvement and completion of the Caledonian Canal. The report of Mr. Walker, to which allusion has been made, is an elaborate and valuable document. Mr. W. inspected the works of the canal by order of the Treasury, in consequence of some suggestions and statements made by Mr. May, the resident engineer and superintendent. After a careful survey, Mr. Walter was convinced that an extensive plan of repair and improvement was necestary, to give the undernaking a fair chance, and to carry out the original design of the late Mr. Telford. That deaign was worthy the genius and the fame of our distinguished countryman, hat he was thwarted and confined by what now appears to have been a misplaced economy, and by that "ignorant impatience of taxation" (as Lord Londonderiy used to term it) which manifested iteelf so strongly after the clome of the Ite war. The government of the day was forced to yield to the reiterated opposition which was experiencel in Parlimment, and it was with the utmost difficulty that means could be obiained for putting the canal in such a state as to admit of its being opened for the imperfect accomandation of that amall
class of vessels to which the trade has hitherto been conflued.. same niggardly parimony, the worke were hurried over in a supel perhaps careless manner, the result of which now appears in premature andidation, and in frequent obstructions, even to the present limited traffic. Mr. Walker proposes to increace the avallable depth of water to seventeen faet This is short of what was designed by Mr. Telford, bot is amply sumeient for the accommodation of all desoriptions of commercial trading vesselin. IHentwo proposes (what has been often recommended in our columins) the enblish ment of steam-tugs, on the lakes and estuaries, by which the partage would be rendered certain and expeditious under every condition of the weathen Vessels would thus be enabled to pass from one side of the kingdon to the other in two or three days. If we consider the imraense and daily-increaciet traffic which takes place between these extremities, such a facility of comant nication must be reckoned an important national benefit.
The leading object of the Caledonian Canal is, briefly, to save it the cornmunication between the opposite parts of the kingdom, the present circmito and dangerous passage by the Pentland Frith and Lavd'a-end, on bosh af which the most serion delays and loses are well known to ocexr. Tht range of internal pavigation includes on one hand the intercourse of the eastern ports of England and Scotland with America; and on the other band it embraces the traffic of the western ports with the Balic and the ont of Europe. A similar object is attempted by the Forth and Clyde Camal, oo which the trade is very extensive, but only for small vessela, and these anhjed to heavy rates. Yet high as the rates are, they are not considered an oberehe when compared with the safely and certainty of the passage, for versels and exceeding eighty or a hundred tons burden. Now, it is precisely to astead the same advantages to all classes of maritime traders that we deaice to tee the Caledonian Canal completed. Mr. Walker calculates that in onder to accomplish these objects effectually an expenditure of neary 169,004 monn be necessary. This is a large sum, but it must be remembered that the vecte absolutely require repair, and the completion of the deaigra would be ecterdet with great and permanent public benefits. Indeed, ibe money alreads hid out must be considered as entirely thrown away, if the objects which the canal was desigued to secure be not realised to the public. It is like building a house without roofing it in : however magnificent be the outline-howeve excellent the original plan-the superstructure is useleas, and most crumbla to decay. Another important considerstion is adverted to by Mr. Werter: from the extensive changes in the physical condition of the valley, caunad by the construction of a canal of so unprecedented a magnitude, and its eomaection with the extensive inland lakes, it would be attended with newny as ruat an expense to shut the canal as to complete it! It would be necemery, in finct to undo almost all that has been done. "Dams and outhets", meyn Mr. Walker, "would have to be made, permanent bridges to be buint, the locke filled up or fenced, other works done, and compensations to be made which it is extremely difficult to calculate, and which might equal in amoont the expense of a proper repair"-and all this independent of the public inconvenience, the cessation of intercourse and traffic in the west Highlands, and the breach of faith which such a proceeding would involve. Mr. Walker adducets variuus reasons in support of his decided opinion that the canal, if property finished and supplied with the requisite facilities, would realise all thet ite most sanguine supporters have anticipated. One of these illustrations is to be found in the case of the Forth and Ciyde Canal, of which the axpepre aho far exceeded the original estimates, and which for thirty yearn remained in that unfinished and unserviceahle state in which the Caledonian Canal as present, until a public loan of 50,0001 . was eventually obtained, by mease of which it was completed and brought into beneficial operation. This sum bee long been repaid with interest, and the undertaking has proved one of the most profitable conceras in the kingdom. May we not fairly hope for the same result in the case of the Caledonian Canal 9 Mr . Walker expresas. himself with the utmost confldence on this head, and we agree with him in the farourable opinion he entertains of what the canal is likely to be at a future period. It has never been placed in a condition to insure succes-it has not had even a chance-and ali its bearings and prospects are completety altered by the introduction of steam. "The evidence given previous to to formation, and much less its workings aince it was opened," mas Mr. Waiker. "have but little to do with its present prospect"-an opinion so ressonable in itself and backed by the high professional character of Mr. Walker that it must have considerable effect on the committee, and on the nation an large. We shall rejoice to witness the full completion of a design $s 0$ hodourable to the country, and to the eminent engincer by whom it was planoed. and so likoly to be fraught with permanent national advantage.-Inverne Coxrier.

The Treffry Viaduct.-On Welnesday, the 0th ultimo, the first atone wras haid of the intended viaduct, which is to cross Rocks' Mill Valley, it was perfirmed by J. T. Treffry, Esq., in the presence of a large and highly reapectable convpany. the viaduct is for the purpose of carrying a line of railway across the valley frea the termination of the l'ar canal, (which canal is about three miles loog frem for breatwater,) to Roche, a dixtance of about seven miles; and the wholo is nadertaik at the sole expense of Mr. Treffry, whose public-spirited exertions in worta of utity to the connty at an extraondinary outlay of private wealeh and ivdividoal secribes, are the theme of every one's praise and almirstion. This viadnct will exted acrom Rocke' Mill Valley, in the parisher of Lanlivery and Luxukina. Its bagetion to be 640 feet between the abutments, and it will cousiat of 10 archens the gian of each of which will be 40 feet. The leight from the foundation will be abopt fert, and the width of the lase of the piers will be 20 by 10 feet 8 idchen The tep of the riadnct will be 10 feet wide; and the whole, when complete, will preat et very beautiful appearuce, and be a great reliof to the otharwiee rugged fate
 is the engineer, and Mesars. Bennoti and Rowe are the contrection.

REVIEWS.

A Letter to Lord Viscount Melbourne on the Rebuilding of the Royal Exchange. By Thowas Hopper, Architect. London: Weale, 1859.

Profeming to be upon the rebuilding of the Royal Exchange, this pamphlet bears quite as much upon tha Post-Office, or, in fact, the latter is the principal subject, being that which is here illustrated by five plates, wherein the present editice erected by Sir R. Smirke, and Mr. Hopper's competition design for it are compared together, for the purpose of showing how matters were managed on that occasion.
Respecting competition generally, the writer says : "No modern work strods sufficiently high in public estimation to warrant the appointment of any architect from his previous works, and competitions have been so unforturately conducted as to raise a strong feeling against them; and vet, ulat seems the most reasonable way of proceeding, if sufficient precaution were used to prevent intrigue and jobbing."
Now, in regard to intrigue and jobbing, we are of opinion they might be effectually prevented, at least rendered almost next to impossible, by adopting a properly devised system-the chief difficulty is how to enforce such a system ; or, we may be wrong in calling that the chief difficulty, whien another most perplexing one remains, not to be got over by all the fairpess in the world; for, supposing every thing to be conducted in the most open and honourable manner, without either the slightest win to show cavour to any one, or the possibility of doing so, still yith the very best intentions, and the determination to choose entirely accordmg to merit, the selection must depend upon the taste and judgment of the umpires. So far there is a very great chance of error after all ; oor will there be any remedy for it, until architecture itself shall become, 1 branch of the fine arts, which is a very different thing from its being taken up as a professional pursuit, one of the studies included in a gentleman's education. Then, and not till then, can architecture be properly encouraged, because, not till then, can talent manifested in it, be apprecisued by a sufficient number whose voices can be admitted as those of a public competent to express their opinion, and to decide lotween merit and mere pretension. In the mean while, and the soomer a beginning is made the better, something may be done towards endiliading a fuiret and more effectual system of competition. Perhaps, were the following regulations adopted, the evil now complained of would be in a great measure removed :-First, it should be imperative thut all the designs should be drawn to one scale, and merely shaded : and that all perspective views accompanying them should be taken from the same station or stations. Next, that in case of models, all should likevise be arade to onescale, and each accompanied with a perspective view, sbowing what would be its appearance when executed, and seen in combination with the buildings or other objects belonging to the proposed aite ; because in themselves models are most fallacious, and moreover capkivate and delude the eye by a certain prettiness that would not belong to the buildings erected from them. Next, it should be made an invarable rule that the designs should be publicly exhibited afrore sny one be selected, or any premiums awarded. This would save an immense deal of trouble to the Selecting Committee, inasmuch as they mould be able to compare the designs more leisurely, and also have the benefit of learning public opinion in regard to them; not that they need, therefore, be amoolutely dictated to by that, ahould they have sufficient remons for disseating from it. This parliamentary ordeal being gone through, the next step would be to select a certain number of designs of the greatest mark and litelihood, and closely inveatigate their merits, throwing out from time to time such as appeared leas eligible, until unly two or three remained for final choice and decision, after diligent inquiry into their respective claims. Nor ought such decision to be reported to the public merely in its result, but the votes-Ayes and Noes-ought to bespecifically recorded; since each individual would then feel himseff responsible for his own opinion, while another advantage would be that incompetent persons would be rather more shy than at present of putting themselves upon such committees, more especially if each member were compelled to allege his reasons for his decision, in mriug.
Like many other excellent schemes, this of ours may be too Utopian to be edopted, aeither do we recommend it with any such expectation, tat simply with the view of showing, that, were there a sincere disposition to manage suct matters faifly and honourably, and not only bocourably, but without even any suspicion of intrigue, it would sot bo quite so difficult to devise an effective system as is now generally imarined. The public exlibition of the designs for the Nelson Monumanh, by alowiag the utility of affording the public an opportunity of enpresing theis opinion, while it can be offered in the shape of remonansoce inatead of unavailing reproach is a case in point. Another, and not the leat advancege which might fairly be ancicipated from the system
above recommended, is that incompetent persons would be deterred from entering into competition, being tolerably a ware that there would be little chance of success for them, were it made an inviolable rule to exhibit all the designs publicly beforeliand ; or even of any notice, except for their decided inferiority. On the other hand, it would operate as a stimulus to men of talent, because, whether ultimately successfil or not, they might distinguish themselves with éclat, and obtain numerous suffrages from the public.

But we seem almost to have forgotten Mr. Hopper ; therefore let us now resume, by saying that he holds up as a warning the proceedings connected with the competition for the 民ost-Office, for which building he himself sent in a design. Wherefore he should now for the first time bring that matter thus publicly forward, is easily explained. In fact, the secret belonging to it has been recently divulged by no other than Mr. Sidney Smirke, the architect's brother, and the author of the account of the Post-Office, in Leeds's new edition of the Illustrations of the Public Buildings of London, where it forms one of the new subjects, and the only one of them not described by the editor himself. In that account Mr. S. Smirke has very incautiously made a disclosure, that while it slows how unfairly all the competitors were treated, reflects no very great credit on Sir Robert himself, because, we are informed that he did not gain the preference by any superiurity of talent he had manifested; but, none of the designs sent in being found exactly suitable, "to relieve themselves from this embarrassment the Lords of the Treasury commissioned Sir Robert (then Mr.) Smirke, who had not himself hitherto entered into the field, to make himself thoroughly acquainted with the business of the Post-Office, and to make the experience so acquired the foundation of a plan for the new building." Coming from such source the truth of this admits of no doubt, but it is a most extraordinary instance of sincerity. We certainly do not mean to insinuate that Sir Robert himself was reprebensible on that occasion, but it is clear enough that he was favoured to injury of others; since, surely if a fresh design was absolutely requisite, the proper course would have been to have commissioned the author of the best one that had been sent in, "to make himself thoroughly acquainted with the business of the Post-Office;" and then, either modifying his first plans accordingly, or else laying them aside, to prepare an entirely new design.

Whether accidental or not, there is certainly a strong general resemblance between Mr. Hopper's fagade and the one erected. Theorder is the same, and the chief difference is that the former has a much greater number of columns, the portico being octastyle, the end pavilions hextstyle, and the intermediate parts decorated with half columns; the pavilions also form porticos, with an entrance in each of them. Still, as regards the centre portico, we prefer the one executed, because no windows are introduced into it ; but, as to the respective plans, we think that more might have been made of Mr. Hopper's, where a wide central corridor runs through the centre of the building from wing to wing transversely, to the great hall, in passing through which a fine architectural vista would have presented itself on each side, provided, that avenue (upwards of 300 feet long) had been suitably embellished and the light thrown down from above at each extremity of it.

We presume that the other elevation by Mr. Hopper, here publishod " in the style of a favourite design," is intended, whether satirically or not, to allude to Mr. Barry's design for the terrace-front of the new houses of Parliament.

The London and Birmingham Railway. By Thomis Roscoz, Esq. assisted by Peter Lecount, Esq., F.R.A.S., Civil Engineer; with a Map of the Line, 18 fine steel plates, and numerous 1000 d engravings. London: Charles Tilt. Birmingham: Wrightson and Webl.
We have several times made extracts from this very interesting work, which is of that sterling character that it may be read with pleasure either by the professional or general reader. The description of the immense works carried on during the progress of the railway shows the vast expense, great outlay, and antagonist difficulties with which railway companies have had to contend from the first projection of the company to the conclusion of the work. It also shows with what great perseverance it was necessary to combat the bigoted prejudices of various partien, some even interested in the progress of railuays. We have read the work with considerable pleasure, and doubt not that it will be perused by our subscribers with equal interest, while, to give a specimen of the genersl character of the volume, we shall occasionally give a few more extracts.
The plates and wood engravings (we ought perhaps to have mentioned before) are particularly deserving of notice, as they illustrate the description and show some of the stupendous works on the railway, the map at the commencement, reduced from Cheffin's large official map, will be found particularly useful to the traveller. Before
we dismiss the work we must call the attention of the reader to consider the vast talent and discrimination that has been bestowed on the works of the railway by the several resident engineers on the line; and it would afford us much pleasure if we could see on the various parts of the railway some tablet or inscription stating the names of the individuals to whom the works were intrusted by the engineer in chief, Robert Stephenson, Esq. To this engineer, however, no inscription is necessary, for the railway alone will be a sufficient monument to hand down to future ages the name of Robert Strphenson.

Roscoe's Book of the Grand Junction Railway, from Birmingham, Liverpool, and Manchester, with sixteen Engravings, and four Maps. London : Orr and Co.
During the progress of this work throught the press, we have lad occasion several times to speak of it, and its conclusion fully justifies what we have before said in its praise. The various engravings are beautifully executed, and present faithful representations of some of the principal works on the railway, together with views of the adjacent country. The letter press contains much useful and interesting information connected with the progress of the railway, and descriptions of the towns and villages in the vicinity of the line.

Certainly, however much authors may regret the destruction of the picturesque by railways, they must admit that these works have not been without some benefit to the literary world, for on the Birmingham road alone a hundred guide books must have been written, and some, as in this instance, uniting the highest resources of the sister arts.

Popular Instructions on the Calculations of Probabilities; translated from the French of M. A. Quetelet, by R. Beamish, Esq., C.E., F.R.S., \&c. London : Weale, 1839.

The doctrine of probabilities is one which has for a long period occupied the attention of philosophers, and the work of M. Quetelet is the latest, and at the same time, one which assumes the merit of a popular form. M. Quetelet has certainly not shown a very great power in effecting his object, and from the skill displayed by Mr. Beamish, we should have preferred an original work to this translation. Indeed the whole work wants a recast to adapt it to English habits and English social progress, and in its present state while some parts seem redundant, others require explanation. Mr. Beamish leaves several things to be wished for with regard to style, and there are many points which he has left unelucidated, where a simple note would have cleared up the subject. It ought to be explained that a pack of cards on the continent, as for piquet in England, consists of 32, rejecting all cards under the seven except the ace. The questions at the end of each chapter are a superannuated process which had better be dismissed; the first and second chapters are too diffuse; in the treatise on lotteries Geneva is confounded with Genos: and the chapter on assurances is almost inapplicable to this country, as is that on the decisions of tribunals, where we have no judges of facts.

Mr. Beamish has in the notes exhibited an ability which we should have liked to have seen better employed than as a satellite to M . Quetelet, and indeed his labours confer on the work a value independent of its original merits. The bearings of the law of prolabilities on hypothesis is an important department of mathematical philosophy, and one which no one engaged in study or investigations should neglect, while in this small volume may be found useful information delivered in a clear and plain manner, which, while it cannot fail to be beneficial to all classes, to most readers must be highly valuable.

The Year Book of Facts in Science and Art. By the Editor of the "Arcana of Science." London : Simpkin and Marshall, 1839.
The Editor of this work had in the course of his labours on the "Arcana of Science," the opportunity of acquiring an experience, which he has happily devoted to carrying out the same plan on a more extensive scale. In the small space of this dnodecimn the onward progress of science and art is chronicled, and binth the practical and theoretical student can appreciate how far the wheels of the triumphant car have been driven in their successful course. The new inventions in mechanies, and the useful and speculative arts are registered from the most authentic sources, and we feel happy to sce that we ourselves have been able to contribute in some degree to the general store. The editor has long labonred in the school of cherp and good literature, and he has in this instance produced a work worthy of hin former axertions, and propitioes to his future career.

Theory, Practice, and Architecture of Bridges. The Theory by Jayes Hann, of King's College; and the Practical and Architectural Trealise by Wiliiam Hosking, F.S.A., \&ic. London: John Weale, 1859. Part 1.

From the specimen number before us, this promises to be an innaluable work, and one that was much wanting. It is surprising that England, which can boast of having the grandest bridges in the world, has not a single treatise on their construction. We regret that we hase not space in the present number to enter into the character of the work, but in our next will enter into it more filly, by which time we hope to see one or two more parts published. The first part contains an admirable engraving of George Stephenson, besides three outline engravings of an American timber bridge; a bridge over the Calder and Hebble navigation; three plates of the Wellington Dean viaduct bridge; two of the Ouse-burn viadact; one of the Victoria bridge on the Durham junction railway; and a bridge on the London and Croydon railway. We must impress on the attention of both the editors and the publisher, the necessity of giving full specifications and estimates of the bridges as far as possible, for to the profession they will form the most valuable part of the work. The unusually low price at which each part is published, and the excellency of the engraving, must ensure it a large aale, which there appears every endeavour on he part of the publisher to merit and obtain.

Illustration of Mechanics. By the Rev. H. Mosglay, M.A. F.R.S. \&c. London : Longman and Co., 1899.
We hail with pleasure the first volume of a series of "Ilustrations of Science, by Professors of King's College, London." Such works will do more to enlighten the student than any works with which we are acquainted; they will form invaluable references and asistance to those who may attend the lectures of the professors. In our next Journal we shall enter into a more minute enquiry into these works, and the system of edncation adopted in the class of Civil Engineering at the college.

Observations upon the Report of the Irish Railvay Commissioners. By George Lewis Smyth. London: Hooper, 1839.
This is a most able summary of all the arguments on the moral and political bearings of this nefarious job. Mr. Smith fully prores that the government, from all past experience, is totally incompetent for such a trust, and that, even if they were, that their interference has been attended with the most fatal results to the lish people, inducing a blind dependence on the government, and deadening all their enterprize and exertions.
The subject is treated clearly and efficiently, and there is such a collection of documentary evidence as might even conrince one of the principal jobationers. We are happy to hail the co-operation of Mr. Smyth, and cannot but express our sentiments of the service which this work is calculated to do in exposing that ridiculosi abortion of selfish interests and public jobbers.

LITERARY NOTICES.

We have reserved our notice of Mr. Hay's work On Coluur until our neat number.

The Popular Lecturer is the title of a periodical published by Paul, whicil for the price of a penny weekly, gives lectures delivered at the different in. stitutions by men of eminence. The parts before us contain lectures by Messrs. Bowring, Birkbeck, Col. Thompson, Grainger, \&c, and the subjects are illustrated with numerous wood-cuts. Like a buoy floating on the set, this publication shows the state of things below the surface, and is an excellent omen of the progress of litertery institutions in the metropolis, and of the manner in which they are diffusing popnlar information.

The Sepulchral Monuuents, by Carl Tottie, we noticed individually on the apparance of the first parts, and thone since received maintain the stine character. The plates are beautifully engraved, and the designs are infinitely superior to anything of the same kind which has yet been presented to the public. Their merit is simplicity, but this we regret two oflen degenerates into nakedness; the artist is evidently deficient in a correct eye for proportion. leaving large spaces unrelieved, or when this fault is remedied, it is often by the introduction of some extraneous feature which is an equal diaparagement to the design.

A Letier to the Shareholders in the Great Frestern Railsay, by Bdward Ryley, is an undigested pamphlet, from such sources as the Irish Railauy Commission, and Wood and Hawkbhaw's reports, brought forward aprop to Kollman's patent railway. The writer's motto, from Virgil, is That Tyrimsue mihi nullo discrimine agetur, which, translated, signibes, "I cate noither for Trojan or Tyrian, but for agomet,-I, by myself.'

ARTESLAN WBLLS.

This mbject is, once again, exciting a good deal of attontion. The old schemea have been rerived, for supplying oonsiderable districta, indeed whole parishee, of this thirnty metropolis, with water, by sinling wells through the Loudon elsy. When the project was heretotore inder discrasion, we brought together auch evidence as appeared to it conctusive against it. But on the importunate appealern to onr oreches pocketa are not ensily to be got rid of, we thought, under these circumstances, that oar reecless might desire to hear the opiniou of a geologint; and as Mr. Webster, who is at present delivering a conrse of lectures on Geology at the Ruseell Inntitution, hilly cunsiderol the question last week, in a lecture on the tertiary Cormations, we mrient an absirect of no much as referred directly to this subject.]

Mr. Webster obeerved, that an Artesian well is produced by boring lirough strata impervious to water, down to another stratum containing water, and so placed that this fluid will rise up throngh the bore by hydrostatic pressure; that is, by the pressure of another part of the water on a higher level. He then pointed out what he considered to be the true source from whence the water found below the London clay is derived. We must firt imagine a geat depression in the chalk stratum that covers the chief part of the south-east of England, the boundaries of which depression or basin is marked by the North Downs, Marlborough Downe, and the Chilton Downs, where the chalk is on the surface. Within this depression, we mash, then, conceive a great siratum of sand, lying in the chalk, but less extensire,--or rather several strata of sand alternating with several beds of roarse pipe-clay, but in a very irregular manner. Thiy bed is named the and and plastic clay; and this sand contains a large quantity of water, so as to be, in some places, almost of the nature of quick saud. Over these tast strata lies a very thick one of dark blue clay, called the London clay, which being less extomsive still than the sand, leaves a portion of the latter exposed in a belt or outcrop all round the basin. Now when rain falls upon the chalk dowus, it descends the slopes in streamlets towards the centre of the bain: and when it meets with the sand uncovered, it sinks into it, peaing downwards below the London clay. In conrse of time, from this cause, the whole of the sand stratum has become full of water, and inust rontinge we bo, except the latter should be drawn out; and it is evident that this water stralua can be exhausted only by raising out of it a quantity uf vatar greater than the supply it receives from the hills all romd. The rain which falls upen the London clay cannot add to the water beneath it, siace this clay is impervious; and, therefore, landsprings only are found on the top. If a boring be made anywhere through the blue or London clay, down to the stratum of sund containing water, the latter will rise in the bore with considerable force, to the same beight or level as the outcrop of cand between the Londun clay and the chalk. If this boring be made at a spex which is on a lower level than this source, the water will spout up like a fouthain; but if the boring be made in a place where the surface of the groud in higher than the source, then the water, though it will rise, will not reach the surface and this accuunts for the various heights to which the viater aucends in various Artesian wells. (We omit the description of the mineralugical characters of these strata, and of the fossils they contain, and confine ourselves to the circumstances connccted with the water.) During the last twenty years, a great many perforations have been made thriugh the Lundon clay, from its haring been found that simple boring whi an auger is sufficient when a small supply only is required: and caulugh has been done, fully to establish the truth of the geological principle, that the sand stratum bearing water extends all under the London clay; and that the metropolis stands upon a chalk basin containing an immense quantity of pare soft water, sufficient for the supply of many breweries, and numerons private houses, Ac. But now comes the question: is this pure sul water sufficient in quantity, not merely for the consumption just mennooed but for the supply of the whole metropolis, or of sereral parishes, or of a single parish? With respect to the actual quantity of water in the bain, it is impossible to calculate it with any certainty; for although we cus estimate the extent of the sand and water atratum from the map, yet re cannot asccrtain its thickness, since this raries in different places. In by far the greater number of borings the thickness has not been taken account of, because the work generally ceases at the top of the sand, when ayter appears: to say nothing of the impossibility of knowing the proporhons of water and asnd. Mr. Webster went on to prove that the stratum of sand and water is extremely imegular, and that we cannot have a clear ides of ith acmal natyre, except a much more accurate account of the burings were kept than had been the case. The sand stratum is sabdivided, tu all probability, by bands of clay : and it is incurrect to assert, as has bren done. that it is possible to predict success in sinking in one place, because a successfil boring has been made in another; or that the supply Gwater will be the same in all places. All mention has been omitted, when spevalating on this project, of the well-known failure of many Artaian tella : and it is rertain that, in several caves, one well has taken the Fiter from another, proving that the supply in that lorality was limited. Hr Webster next adverted to an experiment which had been made by the hex River Company, in endeavouring to arail themselves of the water Lelow the London clay, by sinking a large shaft or well at their reservoir an the Hampatead Road. At a depth of 170 feet they came to the stratum of mod and water, which rose up together, as is uelual, into the well; but tindony that they could not sufticiently soparate the water from the sund, which io the chief ditticulty in forming wells on a great scale in the Lundon clay, thes pasaed through this running or quicksand, by means of cast-iron chinders, at an expense of 4,0001 ., independent of the 8,0006 . Which the Tell ocke, hoping to obtain watar by sinking into the chalk below. They
found water in that stratum, but in quantity too inconsiderable for their object; and hence this well has been represented as a failure. Mr. Webster stated, that, considering this experiment as an important one, ho applied to Mr. Mylne, engineer to the New River Company, for information respecting it, and received from him all the infurmation be required. A remarkabla discrepancy had appeared in the public statements respacting this well; or one side it having been termed a failure, whereas information was given to the restry of St. Pancras by one of the workmen who had been employed, that water had been obtained at the rate of $6,350,400 \mathrm{gallons}$ weekly; this Mr. Mylne explained by stating that the term failure had been used, not as implying that they had not got water, but that they had not procured it in sufficient quantity to answer their purposeas mottor of trads: the actual quantity being only 650,000 gallons per week, instead of $6,350,400$, less than one-ninth part of what had been reported! Mr. Mylne likewise stated that, so far was the supply from being constant, they were ablo to work the pump in raising the water only one-third of their time; because, when they had procured what water trickled in slowly through the chalk, they were ubliged to wait until a sufficient quantity was again collected. Mr. Webster secmed to consider the idea of a certain supply of water in the chalk, independently of that in the sand stratum, as a fallacy, or at least extremely problematical; and that the water found there had proceeded from the sand stratum resting upon it, and which had forced its way downwards through numerous minute fisures in the chulk. He observed that the procuring much water at a number of points considerably diatant from each other, by no means demonstrated, as had been asserted, the certainty of raising the same quantity by means of a single large well; and he further observed, that since it was a manifest and great advantage which the inhabitants of London now possessed, and which was unknown formerly, that they can have numerous supplies of fine spring water only by boring, it wes well worth consideration whether the sinking large shafts, and employing powerful machinery to raise water, might not disturb the sand and water stratum to some distance, so as to destroy or injure the subterranean channels by which weter reaches thoee wells, which are already the property of individuals; while at the same time no reliance can be placed on the castinuance, without interruption, of supply on so great a scale as is contemplated from this source. Upon the whole, Mr. Webster gave it as his upinion, that proper and sufficient data had not yet been collected, to eatablish, upon good authority, the existence of water in sufficient abundance o afford a constant supply to the metropolis, or even a considerable district, by raising it in a single place from below the London clay, notwithstandiay borings or Artesian wells, dispersed through London, fultil their object in furnishing manulactories and many private bouses with wetor.
With respect to the present supply of water to the metropolis. Mr. Webster observed, that although the subject did not come properiy within the scope of his lecture, he would just state, that a considerable degree of misapprehension still existed on the subjoct. The Thames water is often represented as of bad quality. There is no doubt, that in its progress through the capital, it is rendered very impure; but it has been abundantly proved by the accurate analysis of the most eminent chemists, that when the supply is taken sufficiently high up the river, and conducted iato the town in a proper manner, it is of great purity. At present the parishes of Marylabono, St. George's, St. James's, are supplied from parts of the river much beyond the influence of the London drainage. Posseasing this, and other excellent cources, we cannot be said to be unfavourably situated by nature reapecting a necessary of life of the first importance.-4thenawm.

LNSTITUTION OF CIVIL ENGINEERS.

Feb. 12, 1839.-The Presmenst in the chair.
The following gentlemen were elected:-Robert Hawthorn, Nioholes Harvey, and William West, as Members; J. R. M'Clean, at a Graduate; E. W Brayley, as an Associate; and General Sir John F. Burgoyne, R. E., as an Honorary Member.

On the Properties and Composition of the Past and Reain Fual." By C. Wye Williams, A. Inst. C. E.

The nature of the fuel being of great importance in the menufacture of iron and the arts generally, it is interesting to inquire into the ralue of pest for these purposes. Peat may also be used for railroad angines, and with peculiar advantage, being free from many of the impurities of ges coken: it may also be used in combination with resin, or other bituminous mbstances, as a fuel for long voyages. The bogs of Ireland were, netrly thirty years ago, desipnated by a Mr. Grimths as miaes abore ground; Who remarked, also, that the iron fonnders in Dublin might probably, are long, be supplied with turf-charcual. Which is superior to every other for their purpose. The attention of the author was directed to the use of peat for the steamers un the shannuh, where coal is neceaserily dear, and peat was at lirst usrd uniy fur economy; the impediments to its use, from its bulk aud dampness, being great. The property of holding and absorbiug mointure is also a great impediment to its nse. particularly in wet seasulus, the ouly remedy for which is great care during the proceas of drying and in its subsequent preparation, any care being amply repaid by the diminished consumption. The evils of its bulle and low specific gravity mey be obvipted by compreaing it when dry; when cocapzesead perfockly dry,
and kept free from moisture, it will preserve its bulk. From some observations of Tredgold, respecting the earthy impurities and odour of pest when burnt, it is obvious that he experimented on peats from the lower atrata; but the author, in opposition to several eminent philosophers, maintains that turf coke may be made more effective than wood charcoal. 'The anthor, in his first experiments, came to the same conchasions from using the lower though impurer strata, simply becouse they were the denser, and rejecting the lighter kinds. The lower strata sometimes coutains peat of a tolerable purity, but generally the upper and lighter portions are superior in the purity of the carbon, the intensity and quality of its heat, to those portions which have acquired density by time and natural pressure. When the density is acquired by artigicial pressure, we have a substance superior to any other for all purposes of metallurgy.

The difficulty in the conversion of turf into rake has hitherto lain in depriving it of its volatile substances so as to make a pure carbon, and in avoiding waste by partial combustion. This is effected by an union of the distillatory with the stifling process; the volatile substances are expelled in the oven, and when sufficiently charred the stifling process is adupted. Turf for the forge must have a greater density than that acquired by this process. This is effected by pulverising or bruising it, so as to destroy the tibrous character, and bring the component parts into closer and more permanent contact. By the union of these processes, any density may be given to the fuel which will combine the purity of vegetable charcoal with the density of mineral coke. The specifie gravities of the turf hard pressed (water being 1000) is 1160 -of the coke from the hard pressed 1040. 'Thus, tho hard pressed turf is denser than the densest wood, and the turf coke double the density of charcoal and equal to coal coke.

The test adopted by the author, after Berthier, of the culorific power, or relative power of absorbing oxygen, is the quantity of metallic lead reduced from its state of oxide by giving weights of the several fuels. Pure carbon gives 310 grains, wood charcoal 307 , turf coke 277, best coal coke 277.

Thus we have a measure of the relative quantitics of heat; but intensity of heat is often of more consequence than quantity, and intensity depends on the density of the fuel. Berthier remarks that the superiority of coke to wood charcoal is owing to its density. In the above comparison, no account is taken of the impurities of the fucls; consequently, furf coke, being free of sulplur, has great advantages. 'lhe anthor finds that iron worked with turf coke is sooner brought to a welding heat, works softer, and comparatively free from scales.
The author then describes the resin fuel as an artificial coal produced by imitating the process of nature, in the best combinations peculiar to coal. Natural pit cosl consists of bituminous, carbonaceons, and various foreign ingredients, of which sulphur is in abundance, and very injurious. The resin fucl consists of resin, the purest available bitumen, and turf coke, the purest vegetable carbon. Thus, the greatest heating power exists in the smallest bulk, and the excess of bitumen and deficiency of carbon, as in cannel coal, or excess of carbon and deficiency of bitumen, as in anthracite, may be avoided. Resin, notwithstanding its price, is used in stem navigation, but very disadvantageonsly, in combination with cinders, $2 s$ it melts and passes off in a state of vapour, not entering readily into combustion with the oxygen of the atmosphere. But in the resin fuel, in consequence of the extraordinary attraction which subsists between carbon and oxygen, the resin has its full combustible and calorific effect. In the furnaces of boilers, a solid cinder is requisite, which may be produced by adding some of the inferior bitumen, as pitch and tar. 'The fuel is manufactured by adding turf coke, in a state of powder, to the bitumen in a melting state, and in such quantities as to saturate each other. The average price of the fuel is 30s. to 40 s . per ton. lits use was fully tested in the voyages of the Royal William, in which 20 cwt. of coal, with 2 cwt . of the fuel, did the work of 26 cwt . of conl. The suddenness of the action and the great increase of heat for a small increase in its conmumption, render it of great value in cases of emergency. The author concludes by expressing his conviction, after ten years' experience, that the turf bogs of Ireland may be rendered available for many important uses in the arts.

> Fcb. 19.-The Paesident in the chair.

The following gentlemen were elected:-J. A. Galloway, as a Member; E. Birch, as a Graduate; G. Moore, C. Robinson, and S. Reed, as Associates; and Captain Sir E. Parry, as an Honorary Member.
"On Railways in America." Communicated in a letter to the President. By S. W. Roberts.

The writer describes the various metbods which had bsen adopted of leylng down Hailmaya in America duing the last twelve years. First, timber rails with light fiat iron bars were tried; thene were found cheap, tut not durable. Next, stone rails, or sills similarly plated. Next, heavy irou rails laid on blocks of stone; the violent vicissitudes of the seasons soon deranged the foundation of these, and caused the track to spread. The heavy iron rails were mext haid on foundation of timber. The Alleglanny Portage Railrced was laid four years ago by the writer with hewn white oak timber, 10 inches equare, imbedded in the ground; upon these cross sills of locuat timber, 6 by eight inches, and $7 \frac{1}{2}$ feet long, notched and trenailed. On the top of thene croas sills, and directly over the longitudinal timbers, the cast. iron chairs which supported the ralls were bolted. The track was thus effectually prevented from spreading. The rails are from 45 to 60 lbw . per yard, from 3 to 3 inches in height, and from 3λ to 4$\}$ iaches on the base. On roads with dimicult curves "bogie" engines are used. Each locumotive tan eix wheeln, The hisder part is supported by a pair of driving wheele,

4 to 5 feet in diameter, aud the front part rewts upon a bolater on the Eoine, which bas four wheels of about 33 inches dianeter. Each passengerears 36 feet long and holds finy persons, and warmed by a stove. The loop ar are adopted as less likely to upset than those on six wheels. The avenue speed, including stoppages, is 15 miles per bour.
"Manchester and Leeds Railway Section." By Francis Whishaw, M. Inst. C. E.

This section, prepared under the direction of Mr. Whishaw, is designed to affiord a novel and useful method of embodylag a great man of the details required by an engineer when giving evidence before a Puria. mentary Committee. This section wns constructed before the lat shading orders, and the author had here anticipated them in putting upon this aection much of the detail now required. By sections thus prepared the eogiaptr can always answer any questions which may be pat to him.
"Account of Boring for Water through Granite." By Frederick Hollod. Communicated by Apsley Pellatt, A. Inst. C. E.

A holc, 6 feet wide and 7 feet deep, wis first dug, and a wooden cjlinde: lined with bricks inserted. Two pieces of cast-iron pipe, 6 feet in leogth and 8 inches in diameter, turned smooth at both ends, and uaited by a wrought-iron hoop ring, so that when the whole number of pipes wre driven, a continuous pipe, perfectly cylindrical, boilh on the inside ad on the out, was formed. Nine lengths of pipe were connected and driven, and then the boring commenced, and contiaued through a hard yich specia of rock or granite, having all the component parts but not the completnex of granite. The boring was continued to a depth of 175 feet. The supply has been regular at the rate of from 48 to 50 gallons per minter, a lew perature of 48° F., the external air being $521^{\circ} \mathbf{F}$.

Mr. Brunel stated, that the advance of the Thames Tunnel was now e the rate of 3 feet per week; they were now 64 feet from low-water mark. He presented some specimens of sand, which, when mixed with a certain quas. tity of water, was exceedingly troublesome. They frequently purh the poling boards before them: last night not less than 60 square fee was pushed before them. They fight their way on with dificulty, but coss. tinuously.

Fel. 26.-The Pegrident in the clair.
The following gentlemen were elected:-G. Grove, J. B. Redman, is Gradustes; S. M. Peto, T. Grissell, and Rev. S. King, as Accociates.
"On the Economy of workiog expansively in Crank Engines." By Jotin Wrtt.

A letter from Mr. Watt was read on the economy produced by worim steam in large steam engines expansively, in which the author detaik the result of some experiments on a high pressure engine, employed for bloring furnaces. The steam cylinder of the engine in question was 38 inches io diameter, the blowing cylinder 122 inches, length of stroke 9 feet, presurt on the piston 41 lbs. , end in the boiler 45 lbs . per square inclu, the pumber of strokes about 12 per minute, and the pitlar of blast $2 \frac{1}{2}$. A targe fy-mbet was attached, and on fitting the steam engine with an expansive apparatio and cuting off at half stroke, the performance was greater than at any pic vious time, with a saving of 25 per cent. of fuel. The author refers this to the fact, that all the moving parts, with the exception of the fly-whed, ire brought to a state of rest at the conclusion of each stroke, and that if thi steam be allowed to enter throughout the whole length of the stroke, the pis. ton will have to draw from the fly-wheel momentum sufficient to overcome its own momentum, and to alter the direction of its reciprocating pars; but the steam being cut off so that the momentum be destroyed by the time the piston terminates its stroke, the retum stroke will be commenced withoot checking the unnecessary inmpetus which exists when the steam it admines to the end of the atroke. Thus it is observed, that engines worting esparsively pass the centres more casily than when working full pressure througtout the stroke. The momentum which has to be destroyed is created at the expenditure of more than half a cylinder full of steam; and the checkingthis motion is also accompanied by a still further waste of steam. Mr. Watt had altered an engine driving rolls for rolling iron, and the result of cutting off at half stroke was here also attended with a saving of 25 per cent. of fuet.

March 5. - The Presidrant in the chair.
The following gentlemen were elected:-Thomas Chalmers, Andrew Burb. as Graduatea; and John William Lubbock, as an Honorary Member.
" On the Comparison between the power of Locomotive Enginex, and the effect produced by that power at different velocities." By Professor Balow. Hon. M. Inst. C. E.
In this paper the author doea not attempt to explain an exact method for computing the power of locomotive engines, but only one tulerably approsimate. The method lie pursues is this:-"If we know experimentilly the nunber of cubic feet of water evaporated in any given time by an engior, the space passed over in that time, the length of stroke and the capacity of the cylinder, we hence know how many cubic feet of steam have been ear. ployed, and, consequently, the mean number of cubic feet of steam prodaced from one cubic foot of water: hence, again, by experimente that hire beto made by different writern upon the power of steam, we know the presure per inch on the piston, and then making due allpwance for the gesistance of the atmonphere on the piston, the friction of the engine-gear, \&c., we bary left the force that ought to be effective. And this being redueed to the circumference of the wheel, it should be equal to the resistance oppowed by bre load, which, on a level plane, consists of axle friction, road resiatenoce, add the resistance of the atmosphere to the engine and carriages. But this s manming a perfect action to the engine without any Faste, which, thouf
mech to be desired, is certainly seldom the case." The author then goes on to solect some experiments from those made on the North Star and Harvey engines, as reported by Mr. Wood to the Directors of the Great Westetn Rail. way. He also gives snch columns from Mr. Wood's Tables as are requisite, tegerher with additional columns resulting from the computations above indicaled. And after treating upon these at some length, he concludes his paper ly making a few observations on the effect of gradients.
"The Description of a Floating Clough." By George Ellis, Associate last. C. R.
This machine was used for scouring a channel which leads from the Winctiad Drainage and Haven of Patrington into the River Humber. It was canstructed in the following manner:-The frame is made of timbers 6 incbes by 4,12 feet long, 9 wide, and 6 deep. 'This frame is covered with planking, two inches thick, and tbrough the middle of it a culvert is formed, with plapks 2 feet 6 inches in width, with a small lifting door at the end. Connected with the bottom and projecting in front are two long beana called feelers, which keep the machine in its course; at the bottom in front are frames of wood, shod with rough iron like the teeth of a saw, and these are connected with racks which can be raised by a lever. At each side of the macbine there is a wing which is made to fit the slope of the banks, to dress the mud from the sides and to keep up the water behind the machine.
At high tide the machine is moored in the middle of the channel, the wings are extended and kept so by ropes, and when the tide in at half ebb the plugs are tuken out, and the water rises about 2 feet in the machine, which causes it to sink; the plugs are then replaced, and thus it remains till full ebb, when the inop shod frames are let down in front and the tide forces the whole machine, which is like a great dam, gently down the stream, scraping with it all the mud down to the river, where it is emptied, and floated back with the reture tide, the whole distance, about 3 miles, is performed in two hours.
A simitur machine has appeared in the 2nd vol. of the "Tranactions of the lositution of Civil Engineers," p. 181; only the former was used for a drain, and the latter for navigable rivers.

March 12.-The President in the chair.
The following gentlemen were elected:-Philip Bemjarsin Scutl, as a Graduate; Thornas Cubitt, Samuel Enys, and Robert Mallett, as Associates.

A description of the Rhymney Ironworks," accompanied with a " Drawiog of the Pudd ling Forge and Mill," from Mr. Ricbards.
These works wers erected by the author for the Rhymney Iron Company; and be describes the various processes neceakary for converting refined metal into finished iron. He states lhat each furnace receives 41 cwt . of refined metal es a charge, which is worked into slx puddled balls in about a half an hour. These balls are then taken to a shingling hammer, weighing about $4 f$ fons, with a fall of 20 inches, and the balla are subjected to about twenty. five blows. Instead of this process the balls might be talen to the gqueezer, but this method is not so effectual in removing the impurities of the iron; it is beo paseed to the poddling rolls, where it is gradually reduced to the required size, when it becomes puddled bars. These are then, whilst hot, cut into lengths, and subsequently piled into weights and sizes according to the description of the iron that is about to be rolled. The piles are then brought to a welding beat in heating furnacee, and passed through roughing rolls, till they are reduced sufficiently to go through the finisbing rolle, where they are made into bers of the description required. The same operation of shearing, pling, and heatiog of these bars, and rolling through other solls forms the railwiy bars.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

At an ordianry general meeting of the members, held on Monday, the 4th of March, $1839, \mathcal{B}$. F. Robinson, V. P., in the chair, the following gentlenan whe elected an asociate:-George Ward, of 22, Penton-place, Penconvillo.
The report of the Council respecting the adjudication of the medals for the prise extays whe read.
Resolved,- That the recommendation of the Council be approred, and that Medals of Merit be awarded to the authors of the papers with the mottocs "Roma fuit," and ": Respice ad Palatinum montem vasti rudera."
The letters, besring the mottoes of the successful candidates, having been opesed, the authors appeured to be as follows :-
Willias Willmer Pocock, Associate of the Essay with the motto "Roma fuit."-Edward Hall, 12, Brown-street, Mencheater, of the Essay with the motio "Respice ad Palatinum montem vasta rudera."
The following papers were read:-Description of various specimens of metal sash-bary, manufactured by Mr. Clarkc, of Lionel-street. Birmingbam; formarded by Mr. Jones. - Description of a superior quality of crown glase, macofectared by Messra. Stock and Co., Birmingham. - Description of varions norts of stone used for building purposes in Belgium, by Mons. Serrure, Hon. and Cor. Mem. - Description of double gateway to the city of Patum, with a restoration and remarks illustrative of the military architecture of the Greeks, by T. L. Domaldson, Hon. Sec.
Mr. Domaldion read the following extract from a letler he receiced from Mr. Charles H. Gregory, engaged on the Manchatier and Birminghasn Ruibay. Mancheater lies nearly at the north of the red sand-stone district. In ithe impondiate neighboarhood, on the north side, we come into the coal-beds and earboalferoan limestone; on the west the rand-stone in cominued throughout the graler pert of Cheshire to Flint, whert wo pass through strata of limethote to the day tiate; on the anst side, 10 or 12 miles bring as to the borices of Yorkinire and Derbyshire, aud to that ridge of moor-bilis which
has been termed "The Backbone of England;" it is bere that the summatistones are obtained, being a strong grit, and the best building atones for orth. nary purposes used in Manchester. The best of the summit stowes for strength and durability comes from the Blackstone. Edge Quarries. Thls stone mach resembles the Branley Fall stone, and will bear nearly as much. The Saddle. worth stone is another of the summit stones, but the quarry is not half worked, so that it cannot be so well trusted as the Blackstone Fidge. The price of the summit stonc at Msnchester is from 10 d . to Is . per foot. Another stone, much used bere for Ashlar work, is a red sand stone, obtained at Rancorn, on the Mcrsey, a few miles from Warrington. The Runcorn atone is raiher cheaper than the summit stone (1 think it is sold at 6d. per foot at the quarries) ; it works well, but there is a great deal of waste, the stone abounding in clay spots. For cornices, mouldings, \&c., where much work is to be put on the stone, the Huddersfield stone is the best suited. This is a vory fine sand stone, approaching in texture to tbe Yorkshire landings-it is very free, and good for tooling; it costs $1 \mathrm{~s} .6 d$. jer foot here.

We leave Manchester (on the Manchester and Leeds Raikray) by a viaduct, for about $1 \downarrow$ mile in length; for a considerable part of this distance the piers are now up and the imposts laid, waiting for the spring weather before the arches are turmed. In the midst of this rinduct there is to he one skew bridge of iron, of about 130 feet span (if I remember righty).-The next large work along the line is the Stockport Viaduct, about 100 feet high in the highest part, and ruther more than one-third of a mile long. The foundations are now being cxcavated for this work, and it wlll probably be in active operation in about a month's time.-Tbe siaduct at Congleton will be a still larger work, and is to me more interesting, as I have boen actively employed in the preparation of it. The length will he 3,078 feet. the greatest height to the rails $\mathbf{9 8}$ fect 6 inches; it consists of $\mathbf{4 2}$ arches of 60 feet span, cuch with piers 10 feet in thickness between them. It will contain about 62,000 cubic yarls of brickwork, and 620,000 cubic feet of stonc. I do not remember the precise amount at which it ls contracted for, but I think it is about $£ 113,000$.

Monday, March 18th, 1839, P. F. LRobinnon, V. P., in the Chair. The meeting proceeded to the ballot for tho removal of Sampson Kempihorne, Associate to the class of Fellows, who war declared to be unanimoualy elected.

A letter was read from the Siguor Gaetuxo Beria, of Milan, acknowledging his election as honorary and corresponding member. Also from the S or Atberilolli, of the same place, and from the Signor Klangabe, Secretary of the Archnological Society at Athens.

It was annonnced by the Becretary that a copy of Professor Phillipt's work on Geology, published in Dr. Iardner's Cabinet Cyclopadia, 2 vola., 8vo., would be presented by a member to the most ample and accurate abatract of the conrse by any associate or student.

The first of a Coursc of Six Irectures on the Geology of the Sowth Easf of Eng. land, was then commenced by G. F. Richarusor, Ese., of the British Musenm, Those able treatmeni of the subject was admirably supported by the ulegance of his style and the barmony of his deiivery. The illustrations were most effective, and among them were a series of drawings of the cares of Adelaberg, near Trieste, which had never before been seen in England.
"Geolugy," said he, " is a science interesting because it is now, and as Columbus excited the strongest sensations in the old world, by discovering to them the new, so in our days we have, as it werc, laid open to us a new creation in the re-discovery of the old. This science has been frequenly defined, hut nover perhaps to sufficient extent, for it is a science which is not restricted to a few ohjects, but considers the past, the present, and the future, the living and the dead, the whole organic and the inorganic world. It may be disided iuto dynamical portions, or geology proper, which considers the operation of forces; and palacontology, or the natural history of the antediluvian era."

Geology in a science, which, while too nany regand it as merely spernla. tire, is a science of the lighest practical utility,-one equally iroportant in mining, agricultare, and the arts. It is by the character of the strata that we determine their mineral deposits, as in granite we fond tiu, in the transition series lead, and in the alluvial gold; so wo have equally pointed out to us the positions, in which, as tbey are destitute of productions, rescarch would be fruituess. Inattention to these has been too often alteaded with vexation and loss; and in one instance, within his own experience, the lecturer stated that the late Duchess of Dorvet was induced to expend $\mathbf{1} 10,000$ in the useless attempt to find coal at Bexhill, in Sussex, although, now, any geologist could have told that the exprion would be as abortive as it is absurd. We regret that, from misconceptiou, Mr. Kicharlson, in endearonring to inculcato the utility of a Government school of mines, as on the Continent, stigmatized our present minlng operations as the suggestions of avarice and ignorance, for the vilest purposes of jobbery, instead of reengnising the wonderful power of that great principle which has enabled Joint Stock Compenies to place England in a prouder position, an a mining country, than any of ber neigh. bours, and which, not contented with the native field, has sougbt a new thestre of exertion across the great Atlantic deep. The importance of geology in deter mining the productiveness of soils is of paramount atility, and interveues is all oparations in druining; by attending to the fissures in the strata, if they are of a porous nature, we may, by directing branch. channels into them, save more extensive operations; while we can ancertain if the strata be impervioas, by observing whether they abound in land-springs. The subject of Arteriau wells is one of great intorest in this particular district, and it is well deserving of attention in many places, whenever, in scasons of drought, nuwhars of catle perish from the want of the great neceskary of life. In road-making, in the vicinity of I,ondon, we had long pursned an erroneons conrse, by employing gravel and round pebbles, until, under M'Adam's direction, the
use of angular atones was introduced, and new.road-materials were furnished from the trap-rocles of Leicestershire.
On the profescion, before which this lecture was delivered geology has a particular claim; for is it not from neglect of its precepts that buildings erected only two canturies ago are severely injured by the weather! This arises from using a calcareons sand-stone, which, imbibing moisture, is decom. posed by the agency of the carbonic acid in rain water; while the use of granite is not free from the same defects, the felspar, one of its ingredients, belng an equally perisbable material: in fact, it is only such stones as siliceous candstone, which are capable of renisting that insinuating destroyer. The legislature has indeed recognised this connesion of geology with architecture, by sending Mr. de la Beche on a mission through the stone-producing districts of England, to ascertain which possesses the best stone, for the construction of the new Houses of Parliament. The sculptor is also interested in the qualities and durability of his material, and many are both the modern and ancient statues polluted by the iron ritain, which spots some of the finest works. The painter cannot disregard this science with impunity; for what can be more improper, than in the representation of some historical event in the undulating scenery of the south of England, as the signing of Magna Cherth, or the imprisonment of Charles I., to see it accompanied with the sharp peaks and straggling rocks of the primary or transition strate! A literary friend, a lady of some celebrity, bad committed this error; she had demeribed in one of her works the Isle of Sheppey, with the fanciful attributet of chally cliffs and whitened walls; but, having occasion subsequently to visit it, what was her astonisbment to see none of the things she had represented, but only shores bordered with mud! Nor, in its general relations, is geolngy bean attrective than in its physical utility, for most truly does it show us the omnipotence of the Creator, and teaches us to find sermons in stones, and good in avery thing. To the architect the whole world offers the contemplation of a hindred work, one mighty temple, reared by Nature to her great Creator : its details beautiful as they are rogalar; its grandeur towering to the clouds, and its chambers replete with all that can be nseful to the favoured people Who inhabit it; in truth, a worthy monument of the Great Architect.

In giving a limited sketch of geology, it is impossible to embrace the Whole science, and indeed lectures may more truly be regarded as incentives to study, than as supplying the place of study itself. A geologist is indeed called upon to narrate, in the narrow space of an bour, revolutions of centuries, and the bistory of a million years. Heis, in truth, like a traveller carried at railway speed through a delightful country, and has only time to enamerate the objects which he cannot describe.

In nature, as in revelation, all is regular, all is systematic, and every apparent dirergence serves only to confirm the wonderful provisions of the whole. The dislocations which occur in strata, so far from being produced by confusion or blind chance, are purposely placed, like magazines, to supply us with the riches of the mineral world; and here we bave stored up resources which otherwise wonld have been sunk far beneath our means of search. The terms used in geology, however difficult they may appear in name, are perfectly simple in their explanation; as, when we use the term antictinal strata, wo only express that formation which resembles the ridge made by the roof of a bouse. Many of these terms have no existence in nature, but are employed, as in other sciences, to assist the imperfection of our mental powers; thus-we say primary, transitive, secondary strata, as in music we nse bars to mark the time, without any reference to the existence of such in the execution of the piece. Geology, however, is a science in which, like astronomy, we must doubt the evidence of our senses, and perpetaally expect results for which on first impressions we are unprepared; like as in that we are taught that the sun, apparently ever moving, is yet a stationary globe, so here we are told that what was once land is now sea, and that the firm ground on which we stand was floated over by the monsters of the deep; that the hard and ponderous rock was once as son and yiolding as the quicksand ; and that the very stones before us in former days walked the wind as things of life. The inquirer into geology finds himself like Aladdin in the cave; at first the rocks seem to close around him and shut out all hope, but no sooner has he gained the talisman of science, than a fairy land of wonder breaks upon his view. To the man of the world no science can be more practically usoful, to the philosopher nothing more agreeable, and to the Cbristian nothing more satisfactory; for bere he finds tho fleeting existence of man chronicled as surely as in holy writ, and here he sees the etemity of the Great Creator, when he witnesses the successive destruction of rocks that almost seem to outvie time, and powers that seem as they could conqucr it.

Monday, March 25th.-H. J. Robinson, Esq., V.P., in the chair.
Mr. Richardson gave his second lecture on Geology, in which he considered the rocks with reference to their zoological reiations, and their adaptation to the necessities of mankind. Tbe lecturer commenced by recapitulating the topics of his introductory discoursc, and enforcing the definition of geology as a science which requires the investigation of every branch of organic and inorganic nature, which in the extent of its disquisitions is occupied with the past, the present, and the future. He again recalled its moral tendency, the manner in which it proves the perishability of matter, by ahowing the successive decay of crery substance on the surface of the carth, and the powerful lesson which it tenches us of referring evergthing to its first cause, and looking to the great Creator as alone immutable, eternal, imperishable.

The greater portion of the crust of the earth, and the secondary and tertiary portions in particular, Mr. Richardson showed not only to be derived from the deatruction of previous bodies, but absolutely from living beings. These remains are not confined to the gigantic relics which strike every eye, but they are to be traced in those minute organizations which are scarcely rei
cognizable even by the microscope. Piles of rocks, beyond cakeniation and imagination, are formed by the infusorial insects and the coral tribes, tand, as if to show the vastness of his power, it is by means of these tiby labouren that the Almighty has called into existence his most magnificent works. The pebble that we hold in our hads may once have lived in a thoumnd ireath. ing forms, and seen the history of centuries; and, as Young says,-

Where is the durt that wes not once slive?"

The very rocks that now upheave their crests to heaved, once crambed is earliest forms upon the earth, and from insecte which we should wask in the height of our fancied power, greater Being bas devoted to fabricure bus nobler monuments. Even the primary rocks themseives bave nox ben supposed to be exempt from the alloy of animal remains; and the obserntions of the Rev. Mr. Reade, of Clapham, bave induced him to suspect thei pro sence in mica and opal of porphyry. In mice he has perceived, by hin miano. scope, annular or ringtike imprestions, which he randot but refer to the re mains of infusoria, although, from the constifution of primary rockh crystalized by beat to their minutest motecules, this result has been doobed by many. To the microscope, however, we must look for ibe elucidation of this subject, and even when we are far from having availed oorselves of is present powers, we may look forward to a period when it will have minined a greater perfection, while only recently its powers have been ampented 50 per cent.
In the primary rocks no well-defined organic remains appear, and it intox until we came to trilobitic echist that we obtain antiafactory teatimony of ther presence. This stone derives its name from the tritobite, an amimal of the crustaceous tribe, most nearly allied to the king-crab, and which is chirfy remarkable for the beautiful structure of its eye. This organ, which bas 3 or 400 lenses, Dr. Buckland, in his "Bridgewater Treatise," bas adduced to prove the similarity of constitution bet wreen the atmosphere and ocean of the ancient world and that which now exists, proving that it bas remained unaltered in its properties in all the immensity of time. The secondary rocks are indeed most important in their zoological character, and bere it is then we meet those anomalous animals, the ichthyosaur, or fish-lizand, and its wy the plesiosaur. In the oolite, which is most important for its constructive uses, we find the megalosaur, or great lizard, thells, ammonitea and otber ver tiges of its marine formation. It is from this class of rocks that webtew Freeatene, Bathstone, and Portlandstone. In the Wealden formation which succeeds it we find many interestlng features. The Sussex marble is formed almost exclusively of snail shells, such as lived in the great river of whicb the Weald district was once the bed. This marble affords some mon beautiful columns to Chichester Cathedral, and it is the material of which the archhishop's throne at Canterbury is formed. To the same class also betoogs Purbeckstone. We now come to the chalk which is the boundary of the secondary formation, and is distinguished by the presence of the spirolimite: a microscopic shell, allied to the nautilus and the argonaut, for the discorety of which we are indebted to that eminent philosopher and amiable man the Marquis of Northampton, President of the Royal Society, who was pretent ut the previous lecture. In the tertiary strata we find vestiges of the marine and freshwater animals which formerly inhabited the site of these deposits, and oo district is more interesting than the London clay. In this and in the frabwater rocks of the Isle of Wight we find the nummulite, so called from trs resembiance to a Roman coin, and it is of stone formed of this shell thal the great Pyramid of Gizeh is conatructed. Strabo noticed the appearanoe of this shell, and lue attributed it to the remains of the lentiis on which the workmen fed, and which he supposed, having been thrown on the spot, had been petrifted. This nummulitic rock is one of the latest formations, and yet, as if to stamp man a parvenu oi the earth of which be boasts himself master, the earliest of his works are but nature's last.

Having thus cxbibited the manner in which the zoology of a rock detnonstratea its character, the lecturer proceeded to illustrate the application of geology to the practice of construction. He truly observed, that this sience, by showing the advantages and defects of strata, became of the highest importance to the arcbitect and the engineer. It would be absurd, he said, for him, to teach architecture to architects; but, while on this subjeed, he might perbaps be permitted to make one cursory allusion bearing ou this subject. In the 14 th chapter of Leviticus, from the middle to the end of the chapte, there are some curious provisions, not geperally observed, with regand to the leprosy of a house, as derived from defects in its position or construction, and showing the attention which the inspired legislator devoted even to this wibject. With regard to the influence of strata upon foundations, be uppoed those points to be well known; and as time did not admit a longer detail, be must run cursorily over some few points which he should have wished to hare given at greater length. Rocka, he remarked, are divided into two great classes from their origin-the igneous from fire, and the aqueous from water or slate; and the different kinds of useful stone range from the primary stats upwards through evcry gradation-from primary limestone to alate, andstone, magnesian limestone, and oolite. The main qualities for a good buidding stone are firmness and consistency, and one of the best empirical rules by which an architect can judge of the stone of a district is by observing its oldest buildings, which, if affecied by the weather, are principally injured oa ith north and west sides. The best way to ensure the greatest degree of realatance in a stone is to place it in the same way as it in in the quarty, that is, borizortally ; and this is partlcularly necessary in laminated strata and thore of the tertiary formation, of which most of the buildings in Parts are construeted. Argiliaceous limestong also, which comes sof from the quarry, and herders afterwards, requires reat carc and attention. Stones of unequal colow, spotted, or veined, arenot so strong an thove of maiform colour, and atould be
${ }^{3}$ roided, as they are dangerous; and sometimes, as in the cave of arches, one roat of this description will, from its failure, ruin the whole work. Spots of aude of iron or of manganese are equally bad omens, as the stones on which thes exiat are linble to action froun the weather. Argillaceuns stones generally contain mica, and this is so sunceptible of wet, an greatly to deteriorate from theit qualities. Brown or black stones generally exfolinte in lamines, from their ready absorption of moisture, so that they should ooly be used in places under cover, where they are secure from this dangerous agent. Moisture, indeed, ftom the compactpess of its atonss when frozen, injures stones appurently of the atrongest comatitutions, and this is the weak side of grapites, syenite, porphyry, and breccia, which frequently, from thia cause, exhibit fissures. Stunes, therefore, which are to be ised above the surfice, should not be of maint teadercy, but suoh should be reserved for subterranean purposes. The coseryence of mborption of maisture, ss before observed, is liability to gajary from frost; and, to nscertain this susceptibility, one of the simplest mabods is to allow a piece of the atome to remain in water, and then to weigh It, to find out the quantity imbibed. Another metbod recently introduced is to take astand cube of atone, dip it in a solution of some salt, and then to bang it for a few days over the veasel containing the salt, so as to allow the att to crystallize on its surface; this procass is to be repeated for five dafs, sod then, if the stone be good, bo mand or fragments of the stone -idl be discoserable in the solution; but if it be liable to injury from frost, then comers of the cube or and will be deporited in the vessel over which it husig. Wet stones, when brought from the quarry, should be dried, beacose it is found that the mortar will not adhore to them, and that if the wane be wet it will always remain so. Stones should also be left for twelve montias before they are used, in order to see in what manner they are stifected.
Granite formued of mica, felspar, and quartz, is liable, from its first constituent, to dentruction by weather, although it is a raaterial susceptible of the bughet uses. Not to speak of the many magnificent works formed from this material in Egypt, we have noble specimens in Waterloo Bridge, and the kiag's Library in the Muserm, in which latter four columas of Aberdeen granite cost each 1,5001 ., or 16,0001 . for the set. Syenite is composed of the me comatituents as gradite, with the substitution, however, of hornbleade fot mice, and derives its name from the city of Syene, in Egypt, by the people of which it was much used. Gneiss is a slaty granite, and is, from this definition, not very useful. Quartz is principally adapted for subterranean localities, and is used for foundations. Porphyry was used most extendively by the Egyptians, and so was the striped stone called serpentine, of which even cups and vases were formed. The volcanic rocks are divided into besallic and traclitic ; the basaltic contain a portion of iron, and are taed for fortifications, and also in the Cathedral of Cologne; the trachitic rocks arc also used most extensively on the banks of the Rhine, even for the purpose of milestones. Of the white marble of the lias formation-that teasure of the British Museum-the Birth of St. John, by Albert Durer, is executed.
It seems as if, by Divine interposition, the very arrangement of the strta is made conducive to buman convenjence and advantage; from the primary and transition strata we derive our hardest materials, and from the secondary and tertiary, our limes and cements. All, iadeed, leads us opwards to the Deity, through Nature to Nature's God; and our investigation of his glorious works is one of the best acknowledgments we can make of tis power and love, and of the manner in which be has devoted the most wonderful agencies to be blessings to us during our stay on earth.

ARCHITECTURAL SOCIETY.
The following donations were announced:-
Emilesr's Troctise on Ecclesiastical Architecture in England, by H. Roper, Eng.
Chapman's Obsecrations on Capal Navigation, by H. Roper, Esq.
Voyage Pittoresque ——dans le Province d' Yucatan, par Frederick de Waldrock, by William Tite, Esq., President.
Latior to Ledy Dancannod, by Thomas Hopper, Esq.
Sir Edward Cust's Pamphlet, by Thomas Hopper, Esq.
Mr. Brayley delivered a lecture "On the Chemisal History of Cersents, and of the Arificial Subatances employed as Substitutes for Stope," being the thind of a course now in progress of delivery.
Tre Cbairman ennounced "That the next public meeting of the Society woald bo beld on Tueaday evening, the 9th April, when Mr. Brayley would deliver bis fourth and concluding leoture. The sabject to be "On these phyical end obernical properties of Building Stunes on which their use essentrily depends."
That the meeting to be held on the 23d April would be a public meeting lor the ineroduction of visitors, and that Mr. Jeffreys, the inventor of a now grue for effectually warning rooms, \&c. would read a paper "On the Warming ad Ventilating of Rooms."

THE MANCHESTER ARCHITECTURAL SOCIETY'S CONVERSAZIONE.

The irst convaraszione of this society, in the present season, was bold on Wednexday evening, the 6th ultimo, when the new rooms of the society, No. 4, Ceoper-stnet, were opencal. Mr. Andrew Hall, who had recently been chand preaident of the society, took the chair, and congratulated the meem-

circumstances. Mr. J. W. Hance, honorary secretary, stated that the rooms would, in future, be open from nine in the morning to seven in the evening, for utudying from casts; and that the library would be accessible, from seven to nine o'olock, every Wedmesday and Saturday evening. He had also great pleasure in adverting to a circumatance, bigbly gratifying to the society, and honourable to the individual to whom be was about to refer. A letter had been received from Mr. Thomas L. Donaldsun, bonorary secretary of the Royal Instiute of Britiah Arcbitects, stating that the council of that body had awarded their medal to member of this saciety, for his successful essay. Mr. Hance then read the following letter, addressed to Mr. Edurard Huli (epplause) :-

" Sth March, 1839.

"Sir, -I have the bunour to inform you, that, the council having mado their report upon the easays sent in for the medal of the institute, th the ordinary moeting, held last evening, the members aparded to you the medal of merit, for the essay bearing the moth,- Respice ad Palatinam Montemvasta riudera.' I shall communicate to you the day appointed for the disuribation of the medals us soon as the council bave appointed the time, which will prubably be shortly.-Believe me, sir, very faidufuily yours,
"THOS. L. DONALDSON, Honorary Secretary.
The subject and title of the essay, as tixed by the British Institute, is "An analytical investigation of the peculiar characteristics, in design and con. struction, which distinguished Roman from Grecian architecture, with particular reference to ancient Romm examples." Mr. Hance added that Mr. Hall, who was present, was, as they were all aware, a very young man; and he (Mr. Hance) trasted that his inerit and success would stimulate othera. He boped that this society would in time be enabled to offer bonorary rewards for drawings and cssays; the council had wisbed to do so, but they felt that their exertions must first be directed to selling the society in their new premises. The chairman briefly acknowledged the kind wiabea expressed towards his son, of whose success he had only heard a few bours before, on his own return from Irelaud. Mr. Hance next expressed the pleasure of the society at the presence, for the first time, of resident artiath It would be seen by the walls that the conversarione was not limited to architectural subjects; and it was intended to place works of art, generally of standard merit, on the walls and tables, without distinction or resarve. He expressed his regret that another seriea of conversazione had fallen into disuse, and the bope that, with the aid and support of artists and amateurs, those of this socisty, proposed to be held quarterly, would assume a rank creditable to all parties. In conclusion be uxpressed the thanks of the society to Mr. Andrew Hall, its president, for his kind interest in and attention to its welfane. The greater part of the evening was agreeably apent by the members and visitors, in looking at the drawings and works of art upon the walls and tables. Mr. R. 'Tattersell contributed saveral interiore of halls, library, \&cc. and designs fur a churoh, and for a club house. Mr. J. W. Hance had dravings of the pump.room at Chellenham, the hall of the Manchester Royal Institution, a desigu for a new post-office, exchange, bank, and other public offioes (whicly, it was stated, was about to be publisbed), and a design for a picture gallery. Mr. J. W. Fraser contributed a number of pleasing landscapas in oil, and drawings ; Mr. T. W. Atkinson, an intcrior of Sefion churoh, and an architectural design. Mr. Horner sent a large oil painting decoration for a room, and there was another very fine decorative piece in a new style. Mr. J. C. Grundy contributed a number of paintings and drawings, amongst which we noticed a fine landscape by Carmichael; and Mr. Agnow also sent some. There was a very neat isometrical view of Hardwick Hall, Derbyshire (a seat of the Duke of Devon. shire), contributed by Mr. C. J. Julott. Mr. E. Corbett an elevation for a bank at Liverpool. There was a very good full-length portrait in oil, amall size, of Mr. C. A. Duval, artist, painted by bimself; and we noticed a pretty little oil-painting of a village inn, by Chester. Mr. Calvert and other artiats also sent water-colour drawings; and the collection generally was a very pleasing one. On the tables were various portfolios of engravings, tllustrated books on art, including Riclardmon's Illustrations of the Architecture of Elizubeth and Jumen I.; Flaxman's designs; Robert's Spain and Morocco; Stansfiald's sketches, \&c., \&c. Mr. J. E. Bowman placed on the table a number of the photogenic drawings of ferns, lace, icc. and a copy produced by this newly.discovered means, from a small copper-plate engraving. In conclasion, we are happy to state, that every one present at thia very agreeable conversazione seemed to he highly gratified with the objects of interest provided for their inspection.-Manchester Guardian.

ROYAL SOCIETY.

Feb. 28.-Observations on the Parallel Roads of Glen Ruy and of other parts of Lochabar, with an atlempt to prove that they are of marine origin. By Cifarles Darinin, Esq., M.A.
The author premiscs a brief description of the parallel roads, shelves, or lines, as they havo been indefinitely called, which are most conspicuous in Glen Roy and the neighbouring valleys, referring for more detalled accounts to those given by Sir Thomas Dick Lauder, in the Transactions of the Royal Society of Edinburgh, and by Dr. M'Culloch, in those of tho Geological Socicty of London Both these geologists endeavour to explain the formation of these shelves, on the hypothesis of their resulting from depositions of the margin of lakes, which had formerly existed at those levels. The author buwever shows that this hypothesis is inadmissible, from the inanperable dificultien opposed to any conceivable mode of the construction and removal, at ancomive periode, of soveral barriers of immense size,

Whother placed at the mouths of the separate glens or at more distant points. He does nct, however, propose the alternative that the beaches, if not deposited! by lakes, must of necessity baro been formed by channels of the sea, becaise be deems it more satisfactory to prove, from iudependent phenomena, that a sheet of waler, gradually subsiding from the height of the upper shelves to the present level of the sea, occupied for long periods, not only the Glens of Lochabar, but the greater number, if not all, the ralleys of that part of Scotlund, and that this water must have been that of the sea. It is argued by the anthor, that the fluctuating element must have been the land, from the ascertained fact of the land rising in one part, and at the same time sinking in another; and therefore, that this change of level in Scotland, attested as it is by marine remains being found at considerable heights both on the eastern and western coasts, implies the elevation of the land, and not the subsidence of the surrounding waters. The author next shows that in all prolonged upward movements of this Hind, it might be predicted, both from the analogy of volcanic action and from the occurrence of lines of escarpment, rising one above the other in certain regions, that, in the action of the subterranean impulses, there would be intervals of rest. On the hypothesis that the land was subjected to these conditions, it appears that its surface would have been modelled in a manner exactly similar, even in its minute details, to the existing structure of the valleys in Lochabar. Considering that he has thus established his theory, the author proceeds to remove the objections which might be urged against its truth, derived from the non-extension of the shelves, and the ubsence of organic remains at great alttudes. He then shows how various details respecting the structure of the Glens of Lochabar, such as the extent of corrosion of the solid rock, the quantity of shingle, the numerous levels at which water must have remained, the forms of the heads of the valley, where the streams divide, and especially their relation with the shelves, and the succession of terraces near the mouth of Glen Spean, are all explicable on the supposition that the valleys had become occupied by arms of a sea which had been subject to tides, and which had grudually subsided during the rising of the land; two conditions which could not be fulfilled in any lake. From the attentive consideration bestowed by the author on these sereral and independent steps of the argument, he regards the truth of the theory of the marine origin of the parallel roads of Lochabar-a theory of which the foundation-stone may be said to have been laid by the important geological researches of Mr. L.yell, establishing the facts of continents baring slowly emerged from beneath the sea-ms being sufficiently demonstrated. The author states, in the concluding part of his paper, the following as being the chief points which receive illugtration from the examination of the district of Lochabar by Sir Thomas Dick Lauder, Dr. M'Culloch, and himself. It appears that nearly the whole of the water-worn materials in the valleys of this part of Scotland were lefi, as they now exist, by the slowly retiring waters of the sea; and the principal action of the rirers since that period has been to remove such deposits ; and, when this had been effected, to excavale a wall-sided gorge in the solid rock. Tbroughout this entire district, every main, and most of the lesser inequalities of surface are due, primarily, to the elevating forces, and, secoudarily, to the modelling power of successive beachlines. The ordinary alluvial action has been exceedingly insignificant, and even moderately sized streams have worn much less deeply into the solid rock than might have been anticipated, during the rast period which must hare elapsed since the sea was on a level with the upper ahelres: even the steep slopes of turf over large spaces, and the bare surface of certain rocks, having been perfectly preserved during the same lapse of time. The cle. vation of this part of Scolland, to the amount of at least 1,278 feet, was ar tremely gradual, and was interrupted by long intervals of rest. It took place either during the so-called "erratic block period," or afterwands; and it is probable that the erratic blocks were transported during the quiet formation of the shelves. One of these was found at an altitude of 2,200 feet above the present level of the sea. The most extraorlinary fact is, that a large tract of country was elcrated to a greal height, so equahly, that the ancient beach-lines retain the same curvature, or nearly so, which they hud when forming the margin of the convex surface of the ancient waters. The inferences drawn by the anthor from these facts, and which he corroburates by other evidence, are, that a large area must have been uplifuc, and that its rise was effected by a slight change in the conver form of the fluid matter on which the crust of the earth rests: and therefore that the fluldity of the former is sufficiently perfect to allow of the atoms moving in obedjence to the law of gravilation, and consequently of the operation of that lav modified by the centrifugal force: and lastly, that even the disturbing forces do not tend to give to the earth a figure pidely different from that of a spleroid in equilibrinm.

March 7.-The Marquis of Nomtilampton, President, in the chair.

George Gulliver, Esq., and George Godwin, janior, Esql., were elected Fellows.

The following papers were read :-

1. Researches in Physical Geology, Thind Seriza,' On the Phenomena of He.
cession and Nutation, anoming che interior of the carth to be a heterogencous fluid,' by W.Hoprins, Esq. M.A.
Having, in his last memoir, completed the investigation of the amount of precession and nutation, on the hypothesis of the earth's conaisting of a homogeneous fluid mase contained in a homegencous solid ahell, the suthor here extends the inquiry to the case in which both the in. terior fluid and external shell are considered as heterogeneous. After giring the detaila of his analytical investigation, the remarks that he commeaced the inguiry is the expectation that the solution of this
problem would lead to results different from those provioualy obssined, oo the bypothesis of the earth's entire solidity. This expectuion vas fomand on the great difference exiating between the direct action of a force on a molla, and that on a \#luid mass, in its tendency to produce a rotatory motion ; fa. in fact, the distarbing forces of the sun and moon do not tend to prodace directly any motion in the interior fluid, in which the rotatory motion coasing precession and nutation is produced indirectly by the effect of the mos forcea on the position of the solid shell. A modification is thase prodeocal in the effects of the centrifugal force, which exactly compensater for the man of uny direct effect from the action of the disturbing forces; a compenmion Which the author considers as scarcely less curious than many others abready recognized in the solar syatem, and by which, amidat many confictiog causes, its harmony and permanence are so beantifully and wooderthly preserred. The solution of the problem obtained by the anthor desteon lio force of an argument, which might have been arged against the bypoimen of central fluidity, founded on the presumed improbability of our being ably to account for the phenomena of precession and natation on this hypothoti, ea salisfuctorily as on that of internal solidity. The object, however, of physiod researches of this kind, is not meraly to determine the actuna state of the glow, but also to trace its past history, through that succemion of ages in with the matter composing it has probably passed gradually through all the stagat be. tween a simple elementary state to that in which it has become adapted to the habitation of man. In this point of view the author conceives the problem he proposes is not without value, as demonstrating an important fact in the bistory of the earth, presuming its solidification to have begun at the frafice -namely, the permanence of the inclination of its axis of rotation, from the epoch of the first formation of an exterior crust. This permanence hes fre. quently been insisted ou, and is highly important as connected with ter apeculations of the author on the canses of that change of temperaure which has probably taken place in the higher latitudes; all previous prook of thith fact baving rested on the assumption of the earth's entire solidity, an as sumption which, whatever may be the actual state of our planet, can nomer be admitted as applicable to it at all past epuche of time, at wrich it may have been the habitation of animate beinge. The anthor conclades by in. pressing a hope that he may be enabled to prosecute the inquiry raill farther, and to bring before the Royal Suciety, at i fature time, the montured realu of his speculations.
2. 'On the Male Ongans of some of the Cartilaginous Finhes; by Jons Ditt, M.D.
In this paper, which is wholly occupied with anatomical delails, the anbere refers to his paper on the torpedo, which was published in the Philowopticul Transactions for 1834; and also to Muller's work, ' De Glanduleram Seor. nentium Structura Penitiori,' whose descriptions and riews are not in 4 -. cordance with those given in that paper. In the present memoir he adotom evidence of the accuracy of his former statements, and offers come con. jectures respecting the functions of several organs found in carieginow fishes, but does not pretend to attach undue importance to hia specrintions.

Mfarch 14.-J. W. Lubsock, Esq., V.P. and Treas., in the chair.
G. W. Featherstonhaugh, Esq. was re-elected; and Clement Tudruy Swanston, Esq. was olected a Fellow.

The following papers were read :-

1. 'An Eaperimental Inquiry into the Formation of Alhaline and Earth Bodies, with ref. rence to their Presence in Plants, the infuence of Candown, Acid in their Generation, and the equilibrium of this Gas in the Almoaphere; by Robrrt Rigg, Esq. Commanicated ly the Rev. J. B. Rende.
The object of the author in the present memoir is to show, that the solid materials which compose the residual matter in the analysis of vegetable mb. stances, and which consist of alkaline und earthy bodies, aro actanlly formed during the process of fermentation : whether that process be exciled artificially by the addition of a small quantity of yenst to fermenteble mirrame, or take place naturally in the course of vegetation, or of spontaneons of. composition. His experimente also tend to show, that this formation of alkaline and earthy bodies is always preceded by the absorption of carbonic acid, whether that acid be naturally formet, or artificially euppled. Be finds, alan, that different kinds of garden mould, some being calcarems, others siliccous, and others aluminous, exposed in retorts to aumospheres consisling of a mirture of carbonic acid gas and common air, absorbed lare quantites of the former, combining with it in such a manner as not to ationt any traces of this carbonic acid being disengaged by the action of otber acills He considers the result of this combination to be the formation of an alle line body, and also of a colouring matter. This combination takee pitere to a greater cxtent during the night than during the day; and in general, the absorption of carbonic acid by the toil is greatest in proportion as it is more abundantly produced by the processes of vegetation; and conversey, that it is least at the time when plants decompose this ges, appropriating it basis to the purposes of their own system. Hence, he conceives, that there is establisbed in nature, a remarkable compensaling provision, which regelates the inumtity of carbonic acid in the atmospbere, and rendess its proportion constant.
2. 'Note on the Art of Pholography, or the Application of the Chemical Rays of Light to the Purposes of Pictorial Repretentation; hy Sir Joan F.W. Henscrel, Bart.
The anthor states, that his attention was first called to the subject of M. Daguorre's concealed photographic procemaen, by a note from Capt Beanfort
dated the 22ad of Jannary last, at which time he was ignorant that it bod been considered hy Mr. Talbot, or by any one in this country. As as enigma to be solved, a rariety of procesaes at once presentied themedren, of Thich the most promiging are procespet at once presentiod thenmedren,
oridistag power of the chemical rays in their action on recently-precipitated chiorlde of silver; secondly, the tustant and copions precipitation of a mixtare of a solution of moriate of platina and lime. water, by solar light, fraing an tomolable compoand, which might afterwards be blackened by a vartety of agents: thirdly, the reduction of gold in contact with de. oridisiog agenta : and forrthly, the decomposition of an argentine compound, solsble in water exposed to light, in an atmosphere of perozide of chlorine, ether pare or diluted. Confining his attention, in the present notice, to the employment of chloride of silver, the author inquires into the methods by which the blackoned tracen can be preserved; Which may be effected, be observes, by the application of any llquid capable of dissolving and washing of the unchanged chloride, bat of leaving the reduced, or oxide of silver, notoocbed. These conditions are beat fulfilled by the liquid hyposulphites. Pare water vill fix the photogreph, by washing out the nitrate of silver, but the tint of the pictare resulting is brick-red; bat the black colour may be restord, by washing it over with a weak solution of hyposulphite of annmonia. The anthor found that paper impreguated with the chloride of direr was oniy sligiblly susceptible to the infinence of light; bat an accidental obeervation led him to the discovery of other salis of silver, in which the acid, befing more volatile, admeres to the base by a reak affinity, and which impart mach greater sensibility to the paper on rhich they are ap-pliod-anch as the carbonate the nitrate, and the acetate. The nitrate requifes to be perfectly neutral ; for the least excess of acid lowers, in a remarkable degree, its suaceptibility. In the applicution of photographic procemes to the copying of engravings or diamings, many precautions, and minate attention to a number of apparently trivial, but really important ciremonances, sre required to insure success. In the first tradsfers, both light and shadow, as well as right and left, are the reverse of the original ; and to operate a second tranafer, or by a double inversion to reproduce the original effect, is a matter of infinitoly greater dificulty, and in which the anthor bas only recently ascertained the cause of former failures, and the remedy to be applied. It was during the prosecuition that theso experiments that the apthor was lel to notice some remarkable facter relating to the action of the chemical rays. He ascertained the contrary to the prevailing opinion: the chemical action of light is by no means proportional to the ymatity of Folet rays transmitted, or even to the general tendency of the tiot to the riolet end of the spectrum; and his experiments lead to the conclation, that, in the same manner as media have been ascertained to have solations suigeneris to the calorific rays, not regulated by their relations to the rays of illumination and of colour, they bave also specific relatioes to the chomical spectram, different from thow they bear to the other kinds of spetra. For the anccessful prosecution of this curious investigation, the 6rat step mast consist in the minute examination of the chemical actions of all the parts of a pure spectram, not formed by material prisurs, and he potnts out, for that parpose, one formed in Frauenhofer's method, by the interference of the rays of light themselves in passing through gratings, and fixed by the heliontat. He notices a carious phenomenon respecting the ection of light on nitrated paper; namely, its great increase of intensity under a certatn kind of gleas strongly pressed in contact with it-an effect which cannot be explained either by the refection of light or the presence of moisture, but which may possibly be dependent on the evolution of hest. Twenty-thre specimens of photographs made by Sir John Herschel ac. company this paper; one a sketch of his telescove at Slough, fixed from its finge in a lens, and the rest copies of engrariugs and drawings, some reverse, or firbt transfert, and others second transfers, or re-reversed pictures.

GEOLOGICAL SOCIETY.

Feb. 27.-The Rev. Dr. Buckland, President, in the Chair.
The following communications were read :-

1. "On Jmpressions of Drops of Rain on Slabs of New Red Sondstone, in the Storeton Quarries, Cheshire, and cocral with the formation of the Strata:" by Mr. John Cunningham, of Liverpool.-In a paper read before the Saripty on the 3rd of December, an actount was given of the impressions of footsteps of several species of aminals in the new red sandstone of the Storeton Quarries, about threo miles south-west of Liverpool. In examining some of the slabs of stonc, extracted at the depth of above thirty feet, Mr. Cumingham observed, that their noder surface was densely "nvered with minute hemispherical projections, or casts in relicf of circular pits in the immedistely subjacent layers of clay. The origin of these marts, he is of opinion, must be ascribed to showers of rain, which fell upon an argillaceous beach exposed by the retiring tide, and their preservativn to the filling op of the indentations by sand. On the same slabs are umpressions of feet of small reptiles, which appear to have passed over the clay previously to the shower, since the foot-marks are also indented whe circular pits, but to a less degree, and the difference Mr. Cunninghan explains by the pressure of the animal having rendered thowe portions of the clay less easily acted upon. That rain fell during remote ages of the wotd, lue authorstated, no person aequainted with geology will dispute: a, to the destructive and transporting agency of rain-waters many of the sedimentary strata owe their origin. The vast forests also, which grew at a prod anterior to the new red sandstone, and are now treasured up in our coal helds, conld not have flomrished withont abundant supplies of aimospheric waters; and, that the effects of drops of rain mny be preserved iu a odid fonm, he proved by reference to an accomint given by Mr. Scrope of n showe which fell upon extromely fine volcanic ashes thrown out by liantion during the graption of 1892 . The drops of rain formed smald
globules, which hardened into pellets, and accumulated in some places at the foot of a slope, in beds a foot or more in thickness, and were often so agglutinated that it required a sharp blow from a hammer to break the mass.
2. Extracts from two lefters addressed to Dr. Buckland: one from Mr. John Taylor, jun., on the occurrence of a slab of sandstone containing impressious of Chirotherium Hercules at the house of Mr. Potts, of Chester; and the uther by Sir Philip Egerton, on the peculiarities of the impressions. When the slab was first laid down there was no appearauce of the remains which have been gradually developed by the action of the weather. Sir Philip Egerton is of opinion that the weight of the animal compressed the yielding saud near its foot, and that the priut being afterwards filled with the same materials, the stonc became nearly homogencorns in composition. The effects of the weuther would necessarily remove the softer uncompressed portions, but the denser part acted upon by the animal's weight, would resist for a time the same operations, and present in relicf the outline of the foot. The slab contains the marks of threc hind and two fore-fect, the latter bearing the same proportion in size to the former, as in the other species.
3. "On the Occurrence of Swallow-holes near Farnham, and on the Drainage of the Country at the Western Extremity of the Hog's-bact," by George Long, Esq., commuricated by Mr. Lyell.-Immediately to the north of Farnham, rises a chalk hill, capped by tertiary strata. No peremnial main-springs occur on the face of the hill, but the gulleys are, for the greater part of the year, occupied by superficial land-springs, which occasionally become formidable torrents. These rivulets pour down the hill upon the surficic of the tertiary clay, witil they arrive at the chalk, where they are entirely absorbed in swallow-boles, except during great rains, when a portion of the water flows along chanmels in the chalk. Seven of these holes, betwech Clare. Park and Farmhan Park, were described in detail by Mr. Long. The water absorbed by two of them is supposed to well out in great force at the Boume mill-stream; and, though sof where it sinks under ground, it is hard when it re-appears. The drainage, described in the second part of the paper, is effected by a stream, which passes through a gap at Rumfold, the western extrenity of the Hog's-back hill, and flowing northward through the chalk, carrics off the surplus waters of a tract bounded on the north by the Hog's-back, and on the south by a semi-circular range of low hills, extending from Scal, on the east by Crooksbury, to Moor Park, on the west. This gap in the chalk has hitherto escaped the observation of geologists, but deserves to be recorded among the apertures through the North Downs.
4. "A Letter from Capt. Charters to Mr. Lyell, dated Cape Tou'n, Nor. 12, 1838."-During a very extensivc tour through the colony, Captain Charters's attention was particularly drawn to the occurrence of greenstoue remting upon the horizontally stratified sandstone, which constitute so large a portion of the country. The localities mentioned in the letter are in the neighbourhood of Fort Beaufort, on the Kaffir fronticr, the small town of Cradock on the Great Fish Rirer, the line of route from the Tarka district behind the Winterberg range to Shiloh, and to Colesberg, near the Orange River, and thence by the Schneeberg to Graf Reinet. In some places the trap presented thick deposits, more or less traversed by irregular cracke; and, in others, heaps of weathered or spheroidal masses, resembling transported boulders.

ASIATIC SOCIETY.

Feb. IG.-Sir Georoe Thomas Staunton, Babt., M.P., in tho Chair.
Mr. Wilkinson read a paper, "On the Differeace between the Buropean and Indias Methods of making Steel, and on the reasons which induced him to ascribe many of the properties of iron, and much of the variety in its gunlity, to the action of electricity." After adverting to the extraordinary discoveries of Professor Elirenberg, of Berlin, who has showu that the bog iron ore, from which the beautiful Berlin castinga are made, is composed of minute animals, that Tripoli powder is of a similar nature, and that tho ditches about Berlin abound in such animals, Mr. Wilkinson stated that these wonderful animals had recently been found in England also, and that in localities so near as IIampstead and Highgate. Mr. Wilkinson then entered into a description of the mode of manufacturing iron, and of tho process by wheh it is converted into stecl, both in England and India, which differ essentially; the English process being chicfly exposure of the iron to strong heat, in close contact with charcoal; while the natives of India put the iron into crucibles with dried branches of a certain shrub, and green leaves of others. Mr. Wilkinson then adduced arguments corroborative of the opinion, that the different properties of iron and stcel depend on currents of electricity, which, hoverer, he admitted were nut conclusive; and he cxpressed his intention of instituting a set of experiments, with a view to ascertain its truth, and its applicability to practical purposes. He hoped shortly to obtain some specimens of Indian steei, and to reccive replies to several queries on the subject, sent. by him to India through the medium of the Society, which would cuable lim to proceed with more certainty.
Mr. Heath said, that a copy of Mr. Wilkinson's queries lad been sent to him by the Madras governmient, to whom the Society had transmitted them in 1837; that his labours were at that time tno great to admit of his giving close attention to the subject; but that on his vuyage home he had written a paper, which he conceived embodied all that was required on the subject, and which he would now read. Mr. Heath's paper entered largely into the nature of tho Indian ore, and the operations of the natires in manufac-
turing it into iron and steel. He said that the ore used was the magnetic oxide of iron combined with quartz, in the proportion of fifty-two of oxide to forty-eight of quartz; that it occurs in the district of Salem, the prin. cipal seat of the manufacture, in the form of low hills; and that the quantity exposed above the surface of the country is so great that it was not likely that underground operations would ever be required. It is prepared by stamping, and then separating the quartz by washing or winnowing. The formace is built of clay alone, from three to five feet high, and pear shaped: the bellows is formed of two goat-skins, with a bainboo nozzle, ending in a clay pipe. The fuel is charcoal, upon which the ore is laid, without flux ; the bellows are plied for four hours, when the ore will be found to be reduced: it is taken out, and when yet red hot, cut through with a hatchet, and sold to the blacksmiths, who forge it into bars, and convert it into steel. It is forged by repeated heating and hammering, until it forms an apparently unpromising ber of iron, from which an Euglish manufacturer of steel would turm with contempt, but which the Hindu converts into cast steel of the very best quality. To effect this he cuts it into small pieces, of which he puis a pound, more or less, into a crucible, with dried wood of the Cassia nuriculatn, and a few green leaves of Asclepias giganten. The air is then excluded by a cover of tempered elay rammed down close into the crucible. When dry, about twenty crucibles are built up in a small furnace, covered with charcoal, mand heated for two hours and a half, when the process is complete. Mr. Heath observed, that the quality of the stecl was excellent; but that the process of smeltiug was so imperfect, that of seventy-two per cent., of which the oxide is com. posed, ouly fitteen per cent. of iron was obtained by the natives. The discovery of steel by the Hiudus appeared one of the most nstonishing facts in the history of the arts; it secined too recondite to be the effect of chance, and yet could only be explained by the lights of modern chemistry. In Europe the case was otherwise. In the early times, repeated hammering after refining, appears to have beeu the only process; and cementation by charcoal was not adopted until chemical investigation had shown that steel was a compound of iron and carbon. Two patents had been taken out within the present century ; one for making steel by the application of "any substance containiug the carbonaceous principle;" and another, by exposing the iron to the action of carburetted hydrogen gas at high temperatures; and it appears that the Indian process combined the principle of both these methods. The antiquity of the Indian mode was proved by the present of thirty pounds weight of steel, made by Poras, to Alexander the Great ; and the ignorance of the Western world was shown as well by this as by the fact that the arms of the warriors of ancient Europe were com. posed of alloys of copper and tin. The tools by which the Egyptian obelisk and temples of porphyry and syenite were cut, were undoubterily nade of Indian steel. Mr. Heath concluded with observing, that he did not think the Hindu process influenced the quality of the sleel; but it cnabled the manufacturer to accomplish with very imperfect means that which it would be hopeless for him to attempt by European processes.

SIR CRARLES LEMON'S MINING SCHOOL IN CORNWALI.
It is hardly necessary to repeat the observation that the proposed course of instruction is not undertaken with the view of teaching Mining, for that can only be acquired in the mine itself, and the best opportunities are already aforded in various and extensive warks throughout the county. Bat with respect to those arts and sciences, which, from their close connexion with mining, are most valuable to a Curnishman, equal facilities do not abound, por are they generally within the reach of that large class of minlny agents, engineers, and others, who would be chiefly benefited by them. It is proposed experimentally to supply this deficiency; and to afford facilities for attaining useful scientific and practical knowledge in the midat of the Comish mining district, on the following plan :-

The principal course will commence carly in July, and will comprise separate meries of lectures aud examimations in Mathematics, Mechanics, Metal. largic Chemistry, and Mineralogy-a detailed programme of this cuurse will be submitted to the public in due time. At present it is only necessary to point out by what steps the student may prepare himself to enter on theme studies with the best effect.

Probably two classes will bo formed, according to the attainments of the pupils. But, as the professors conducting this course can remain in the county only a few months, it is of the greatest importance that, as far as possible, the studonts should be prepared at once, to take their places in the higher class.

The subjects tanght will compriso Algebra; the olements of Geomelry, which forms the only basis on which an accurate knowledge of planning and drawing sections of mines or machinery can be obtained, and which is indis. pensable in the execution of many most important works connected with mining.
The Elements of Land and Mine Survrying will be ntudied with reference to general principles; and tiw stadents will also be required to asaist in actaal surveys, and will beinstruchel in the construction of Geological phers and sections.

RAILWAY SOCIETY.

A private meeting, very uumerously attended by the doputations from most of the leading Railway Companies, was held on Saturday last, at the chumber of Memrif, Burke and Vemables, in Parlimaninifret, for the
purpose of considering the propriety of forming a aciety for promoting and advancing the scientific improvement of railways throughout the kingdom, and for protecting generally the interents of railway proprielors.
Mr. George Carr Glyu, the chairman of the London and Brighton asd North Midland Railway Companies, was called to the chair, and opened the proceedings by adverting to the great and manifest importance of the proposed society, as afordiug a means of bringing the united experiemce and influence of the principal persons connected with railwase to bear upon all questions which may arise respecting them.

The houourable chairman further alluded to the very great iguorance which cxists among many, even at this day, on the subject of radways, and the consequent prejudices, whieh prevail against thena, and pointed out the great advisability of having some regularly organized association which would be looked up to as an authority on all subjecte in which their interests were involved.
The meeting was subsequently addrcssed by several other genllemen present, who all concurred in the importance of the proposed association. and dwelt on the advisability of forming, at its outset, a collection of mapa reports, models, and other scientific and statistical details relating to raiways, which should be accessible to the several members of the society, and which would in time become mont valuable and interesting maserim of reference on matters connected with railways.
Some discussion took place as to the amount of the subscriptions, and the name to be given to the proposed association, viz. whether it shoold be called the "Railway Socicty:" or the "Railway Institute," but eventrally this, with all other matteri of detail, was left to a committee of management formed of some of the directors of the principal railway companies present, who were empowered to add to their number, if they should see tit.

Resolutions, embodying the substance of the foregoing remerks, mere unanimously passed, and the several persons present, having enrodied their names as the first members of the society, the meeting separated.

MEETINGS OF SCIENTIFIC SOCIETIES FOR APRIL.
Royal Society, Thursday, lulf-pasi eight, x P., llth, 18 th, and 25 th.
Society of Antiquaries, Thursday, eight, \mathbf{p}. m., 11th, 18th, and 23th.
Institution of Civil Engincers, 25, Great George-street, West, Tuesday: eight, p. N., 23th, and 30th.
Kuyal Institute of British Architects, 16, Grosvenor-street, Monday, eight, r. M., 8th, and 22th.

Architectural Society, Tuesday, cight, p. s., 9 h .
Society of Arts, every Wednesday, half-past seven, r. M., 9 h .
Ditto, Illustration, Tuesday, eight, r. M., Thh.
Geologicil, Wednesday, half-past cight, p. M., 4th and 25 th.
Royal Geographical, Monday, nine, r. m. 8th, and 2yth.
Graphic, Weduesday, eight, r. M., 25th.

New Locomotice Engine. We have received a letar from a friend io twerve calling our attention to a new locomotive engine calculated to ascend an judund plane, a model of which he has seon. The following is a brief account of it, wo far an the inveutor will at present alluw it to be made public; ior it appears he had not precured a patent for it. It is described as a locomotive engine of eight or ten woors weight, cylinder 12 by 18 inches, of the ordinary constraction. In ascending ar descending inclinet plunes, the driving wheuls are raised from the ordinary urack, mod the locomotive is partly sustained on small wheels (well represented by the ordipary huls of a carrizge) on raised rails each side of the track two feet high. The iurention cunsists in a morle of gaining adluesion, which can be increased to any extent wilh very little increase of friction The power being transferred from the lagge driving wlieels to small ones, the velocity will of course (in rsceuding) depread upous to steepness of the asceut, which will rogulute the size of the shmill wheels. We anke. late, according to Pambour, to ascoud a plate of 200 feet rise in the uifo, at the me of forr miles the hour, with 100 tous burden. The apparatus to gain the adberwn cannot add 300 dollars to the cost of the lucomotive; it is never in action except when overcoming inclined planes; will last longer than the lucornotive, is zinple, easily managed. and not at all liable to get out of order. The expense of thr ratsed rails will depend upon the materials used in their constrnction, whith may be of wroal or iron. Two hundred feet in the mile is the maximun of mesent recommended, but by reducing the velocity and luad, 400 or more may be overoome. The apparans is widhin the locomotive, which, with the raised rails, constituto all that is necervery to overcume the ascent. There will be no time lost in commenciug dise menat.Scotaman.
Blasting by the aid of Galvanisw.-An experinuent was made with complete suceme with one of Daniel's galvanic batteries, under the superintendence of Colonel Pasley; of the Royal Engineers, at halr.past two oclock last Saturday, of the gun. What, Clintham. 801bs. of powder were exploded in about 10 fathoms of wather, the leaget of the wire conveying the electric fluid being 50% feet; it caused a most tremendoun explowion. Three amaller ones were afterwards tried, but only one succoeded. Thero wes a numerous aseamblage of apectators. The Royal George, at Pormarouth, we understand, is to be blowi up in a similar manuer, and this experiment whs preparatory to the attempt-Maidelone Jowrral.
Iron Houses.-The efficiency of iron to the application of oteem-veanels has been an successfully introduced, thet we notice an elegrant plau of a sea-cuast cottege of that dencription hung up in the Toutine Coffec-room, which seams so admirally eikped that we have no doubt they will soon be in very general nse. The plan refirchat to seems to have aix rooms, kitchon, and laundry, aid other convenionces, for the smon sam of 2501 ,, or if a dontle house of fonrteen roons, 5001 . This is not lialf the price of a common house withi nimilar accommolation, and can be resdy to ponease in swo monche. The iron tudia of this nelghbourhood should each set dowe opo by way introducing thom-G4apoen Chroniet.

PARLIABTATKARY PROCBEDDNGS.

Elose of Cormons.-List of Petitions for Prirate Brlls, and progress therein.

\bullet	Petition presented	Bill read Girst time.	Bill read steond time.	Bill read third time.	Roral Assent.
	Feb. 6.	Feb. 27.	Mar. 12	-	-
Abelua Elarbour	Feb. 8.	Mar 15	-	-	
EPenter Rillway	Feb. 12.	Mar. 14.	-	-	
Buant watworts	Feb. 21.	-	-	-	
Dele Cometery	Peb. 22.	-	-	-	
Bethet Watarworks	Feb. 22.	-	-	-	
Brimpara Caxal	Feb. 20.	Mar. 15.		-	
Bramitume Gloocester Railway	Fel. 21.	Mar. 15.			
Finhop Authland to Weardalerimy.	Feb. 22.	Mar. 18.	-	-	
Blichineth Cometary	Feb. 22.	Mar. 18.	-		
Brased (York) Wever worke	Feb. 21.	-	-	-	
Briteen Ges	Feb. 21.	Mar 18	-	-	-
Briphom Conetery	Feb. 21.	Mar. 18.		-	
Biviricd GhoncentorshireRailway	Fel 21.	Mar 7.	Nar. 19	-	-
Bronh Mavom Buildings	Fel. 22.	-	--	-	
Rrocepton Now Rond	Feb. 22.	Mar. 18.	-	-	
Cuminhem Waterworks	Feb. 22.	Mar. 12.	Mar. 22.	-	-
Comencial (London and Black- midi) Ruilway. .	Feb. 14.	Mar. 8.	Mar. 21.	-	-
Dma Poreat Railmay	Feb. 19.		-	-	-
Dapked Fier	Feb. 22.	Mar. 18.,	-	-	
Doplort Pror Junction Railmay	Feb. 22.	Mar. 20.	-	-	
Depered Steem Ship Docks	Feb. 22.	-	-	-	-
Elimburgh, Leith, and Newhaven pelmay	Feb. 10.	Mar.ll	-	-	
Bymonth Harbour	Feb. 12.	-	-	-	
Pramburgh Harbour	Fel. 20.	-	-	-	
Gmeral Cametery	Feb. 20.	Mar. 11.	Mar. 21.	-	-
Gravesod Gas.	Feb. 21.	Mar. 18.	-	-	-
Grat North of England Railway	Fob. 18.	Mar. 13.	-	-	
Grat Weatern Rail ray	Feb. 14	Mar. 4.	Mar. 13	-	
Grat Contral Irinh Railmay	Mar 12.	-	-	-	-
Buntonditive and Gloucestorshire	Feb. 20.	Mar. 13.	-	-	
Herso Gas	Feb. 22.	-	-	-	
Boblint $\mathrm{O}_{\text {a }}$	Freb. 11.		-	-	
Liverpool Docils	Febs. 21.	-	-	-	
Lirepeol Buildings	1els. 21.	-	-	-	
Lerepool and Mancheater Extenmon Reilway	Feb. 14.	Feb. 28.	Mar. 12	-	
Leodoa and Birmingham Railway	Feb. 8	Feb. 22.	Mar. ${ }^{\text {b }}$	-	
Leodon Bridge Approarhes, dsc.	Feb. 19.	-	-	-	-
Lendor mad Croydon Railway	Feb 19.	Mar. 18.	-	-	-
Lembo Caxetery	Yeb. 19.	Mar 18.	-	-	-
ladon ma Greenwich Railway	Feb. 21.	Mar 18.	-	-	-
lowher aed 8outhampion (Gnild led Breach) Railway	Fer. 22.	-	-	-	-
Lomba and Southampton (Purts. goith Brach) Reil war	Feb 0.	Feh 25.	Mar ${ }^{\text {\% }}$	-	-
Masmertit BituinghamRail way	Ftb. 18.	Mar. $1 \times$	-	-	-
Mroteatar and Birminglam Ex. Ralen (etome \& Ragby) Rsilwhy	Feb 11.			-	---
Mamimera and Leeds Railwoy	Febs 18.	Mat. 8.	Mar 10.	-	
Mariebone Gas \& Coke Company	Feb. 22.	Mar. 18	-	-	
	Yeb. 12.	Mar 14	-	-	
	Fipb. 21.	Mar. 15.		-	
Nowith	Feb. 14	Feb. 28.	Mar 11.	-	
Nowenterpon.Tyne and Nurth (Extomion) Rrilwny	Yeb. 14.	Mar. 18	,	-	
Nertherit Ematorn(No 1) Railway	Feb. 22.	Mar. 18.	-	-	-
	Fob. 22.		-		
Now menued Reilway	Frb. 11.	Mar. 4	Mar. 14.	-	-
Nura Orion Radway	Feli 22.	-	-	-	
Noteliman Inclowure and C'nnal	Feb. 10.	Mar. 18.	-	-	
One Dimima ${ }^{\text {a }}$	Feb. 21.		-	-	
Pate Retotrr and Narigation	Feb. 14.	-	-		-
Porehind Fyor	Feb. 22	-	-		
	Fch. 6.	Feh. 20.	Mar. 0.	Mar. 10.	
Prome end Wyro Railway	Fel. 6.	Yeb. 20.	Mat.	Nar. 10.	-
Pravent Wedre Railway, Her.					
bever, med Dock .	Feb. 21.	Mar. 18.	-	-	-
Roter (to. 1) Einrbour	Feb. 10.	-			
Reder (No. 2) Harbour	Yeb. 22.	-		-	-
Ritwind emervoirs.	Feb. 21.	Mar. 6.	Mar. 22	-	
derworks	Feb. 7.	Feb. 21.	Mar. 6.	-	
patere Commary	Feb 22.	Mar.]8.	-	-	
man Iard Mridge and Road	Fcb. 21.	Mar 18.	-	-	
anding	Fob. 12.	Mar. 18.	-	-	-
Rellway :	Feb. 11.	-	-	-	
(Deviation) Railway	Feb. 22.	Feb. 27.	-	-	
	Feb. 14.		-	-	-
Jutim. . . .	Feb. 22.	Mar. 15.	-	-	
	Feb. 21.	-	-	-	
moncmal .	Feb. 22.		-		
Eupivay	Feb. 21.	Mar. 18.	-	二	
	Feb. 21.	-	-		
-	Feb. 12.	Mar. 14.		-	
	Feb. 18.		$\underline{\square}$	-	

Marcr 7.- Caledonia Caral.- Select committee appointed "with a view to consider and report to tie House, what steps it is adrimble to take with rempect to the present atste of the Caledonian Canal.'
Manca 1.-Irish Railacuys.-Motion made, and question proponed, "That her Majeaty be emabled to authorise Exchequer Bills to al amount not eeceediag 2,500,000l., to be made out by direction of the Lords Commis sioners of the Troesury, and to be by them advanced for the constrection of a railway or railwiys in Ireland, the sum so advanced being secured, and the interest and sinking fund to be secured on the profits of tbe works, the deficiency, if any, being provided for by an assessment, on the several districts through which suca railway or railways may be carried, or what may be benefitted thereby."-Qacstion put, Ayes 144, Noes 100.

LAW PROCBEDINGS.

PAVING ACT.

Marlbonocob-btreet.-A matter of some importance to paring bourds and proprietors of land was argued on Saturday, 2d ult., before Mr. Contant and Mr. Dyer, the sitting magistrates.
Lady Montfort, the lessee of a mansion in Park-lane, appeared by connsel (Mr. Clarkson) to answer an information laid under Mr. A. Taylor's act, by the trustees of the parish of St. George, Hanover square, for an alleged violation of the act, in breaking np the pavement to the leagth of eight inches, whereby her ladyship had incurred a penalty not exceeding 10%.

Mr. Clarkson said the question between the parties was onc of great public importance. Lady Montfort, in order to have a magisterial decision on the point at incue, had caused to be taken up a portion of the pavement before the house to which she laid claim as private property, and as belonging to the site of the house leased to her.
Mr. Dodkin, on the part of the trustees, said that in 1831, Lady Montfort rebuilt the house, and at that time she applied to the paring board to open a grating before it, but she was refused. Bince the refusal, in order to raise the present question, sle had broken the ground, and the trustees in consequence had adopted the present proceedings.

Mr. Clarkson said it was true that Lady Montfort had applied to the parement board for permission to open a grating, and had been refused. But her application was for 18 inches, an extent of ground which he admitted Lady Montfort could not claim. Lady Montfort, in the present instance, had broken the pavement to the extent of eight iuches, which she was prepared to prove by hor lease was part of the ground belonging to the house.
The lease was then produced, by which it appeared that the extent of the ground in feet and inches was specified. The present mansion occupied the entire space, with the exception of eight inches, which the parish authorities some time back had paved over.
Mr. Bodkin said the parish proved their right by paring the ground in 1831 .

Mr. Conant asked who was the freebolder of the ground ?
Mr. Clarkson said the freehold was vested in the Dean and Chapter of Westminster. It was true the parish had pared over the eight incles now claimed since 1831, but that act did not rest the proprietorship of the soil in the parish. What answer would it be to the freelolders, because the leaseholder had not chosen to take in the eight inches when rebuilding the house, that the parish had paved the place and takcu the soil? Though the parish had paved the ground, the frechither, he coutended, could resume it when he pleased.
Mr. Bodkin said, if it were competent for a person to go buck to old documents to prove that at one time a portion of ground belonged to him, what, for instance, was to duinder Lord Grosvenor from resorting to the same course with respect to his property, and to say to the parish, "I had this ground, and 1 will break up the pavement and carry out a portico in assertion of my rights?"
Mr. Conant said, as lord Grosvenor had been referred to in the way of illnstration, he would carry the argument further. Suppose the parish chose to pave before his lordship's house, they might then set up a clain to the ground. 'This appeared sumewhat of the nature of Ludy Moutfort's case.
Mr. Bodkin said, the question was very important, and the parties were ancious to have the matter reviewed in a solemn way by an eppeal to the superior courts.
Mr, Couant said, he thought the trustees were bound to show on what grounds they paved the portion of land in dispute.
Mr. Canningham, the late surveyor, was called, but he could state nothing more than that he had paved flush up to Lady Monlfort's liouse, in compliance with the orders of the paving board. He could not suy whether the eight inches now claimed did not form part of the ground claimed by the frecholder.

Mr. Conant said, the matter for the court to decide was not whether the ground was public or private property; the question was as to the jurisdiction of the act of Parliament, and whether the present procecding was such an encroachmont as subjected the party adjoining it to a penalty. It would hare been very material had the surveyor been able to show the ground on which the trustees had ordered hin to pave the place, or that the eight inches in question did not form a portion of the private freehold; but the suryeyor could do no more than proye that for about cight yeara be had
paved the disputed piece of ground. Now, the time during which the parish had paved the place was too short to give the parish a right to the soil, or to permit them to levy a penalty on an attempt boing made to resume an alleged right; for if the parish could claim under such circumstances, then any one might have his property paved over by the parink, and be called upon to pay a penalty if he attempted to take up what the parish had laid down. With this view of the case he must dismiss the whformation.

STEAM NAVIGATION.

ERICSSON'S STEAM.BOAT PROPELLER.

The experimental iron stoam-bomi. Robert F. Stockion, constructed for tenting Captain Ericsom's propeller, which we noticed some time aince, being on the eve of departure for the United States, at the request of a number of ecientific gentlenien who were desirous of witnessing her performance, the proprietor consented to another trial being made, and on Saturday, the 9th ultimo, a largs party was invited for this purpose. Among those present Were Major-General SirJohn Burgoyne, Major Robe, of the Royal Engineera, Mr. Janes Terty, of Dublin, Messirs. Vignolles, Delafield, Reld, Napier, and Thomas; several Swedish naval officers; Captain Stockton, of the United States navy; Mr. Ogden, Consal of the United States at Liverpool; Mr. Young, an American civil engineer, \&c., and about thirty other gentlemen were oresent, and the result of the trial gave universal satisfaction.

Une of oar correapondents having before described the coystruction of the new propeller, we will now more particalarly direct altentior to the effect produced during the trial, which appeared quito conclusive es to the success of this important improvement in steam-narigation. The distance from the West India south dock, to a point opposito Woolwich church and back, measuring 37,000 feet, was passed in forty-five minutes precisely (twenty oue minules with, and twenty-four minutes against the tide), the boat towing at the time a heary city barge on the one side, a large wherry on the other, and another wherry astern. The speed of the engine being repeatedly timed hy Mr. Young, it was found to average sixty-aix revolations per minute, or 2,970 during the forty-five minules. The inventor demonstrated by accurato working drawings, that the spiral planes of the propeller are set af such an angle, that had the resiatance of the water been perfect, the progress of the boat could only have been 132 feet at each revolution, or 39,204 feet during the tume, instead of 37,000 actually performed, thus showing a loss of less than 6 per cent. Respecting the engines for working the propeller, it was observed, that thoy may be made much strongar and more compact than ordinary narine engives, in consequence of the power being applied directly to the shaf which works very near the bottom: this for sea-going ressels will bo very important, and their original coat must be considerably reduced, as all the paraphernalie of shafts, wheels, wheel-guards, \&c., will be dispensed with. We were struck with the great regularity of the motion, not the slight. est jar being perceptible. The engines consiat of two cylindera sixteen inchen in diameter, with eighteen tuches struke, and are worked by stenm, of a pressure varying from 351b. to 5.jlb., to the square inch; their construction is extremely simple. and evinces a knowledge of steam machinery in the inveutor which is calculated to give additional confidence in the success of his propeller in all the varietien of its application for canal, river, or ocean navigation.Times.

Greal Western Steam Ship.- A Lulf-yearly goneral meeting of the proprictors was beld in Prince'thstreet, Bristol, last week. Mr. Maze took the chair. Mr. Claxton read the report, rricich stated that die compeny's first whip had diaproved all un farourable anguries, aud prouplyy rewardex the enterprise of the projectors. It was imposuble co mpeak too highly of the qualities of the Groat Western steam ship; afer having run 35,000 nautical miles, and encountered 36 days of heary gales, her seams requirel no cualking, and when the was dockel she did not show a wrinkle in her copper. The average of her passages out war 101 days, and home 13 days; the ahortent passage out was 14 f days, and the shortest home $12 \ddagger$. Abont 1,00 ; passengerx had gune in tha ship. Aher alluding ω the great expeuse neceasary to combiue apecil, security, and cujoynemt, it expreseel a liupe that through the liteo rality of the Americal Congreas ithe duty of 2 d . prer bushel on coala would be giren up, and thins a saring of nearly 1,0001. a.year would be effected. The company have decidel on consiructing their next veseel of iron, for which the prepuratious are far advauced. It sypeared from the statement of acconnts, that after paying 2,0001 for additions to the shir, and insurance to October uext, $1,500 \mathrm{l}$. for goods damaged in the lurricanes in October last, and upw srds of 2,0001 . being set apart for a reserve fund, there romained from the profits nufficient for a dividend of δ per. cent, making, with the former one of 4 per cent, 9 per ceut. for the year. The report was unauinoously sdopted,

Launch of the Steamer Nicholai.-The coremony of launching a splendid steam-vemel, unmed the Nictolai, took plece on Saclurday, the 10th ult., at Deptord, and, nothrithstanding the unsetided stato of the weathor, attracted a large concourne of spectators. Among those present mere Count Iabiuaki, Connt Woronzow, several nttachés of the Russian eribassy, and other foreigners of distinction, Bir J. Brand, Captain Hayman, Captain Rowiand, and many iofluential individuals connected With steam navigation. The Nicholai, which is 800 wons birden, has been buile for the Emperor of Russia, after whom it has been named, and whose lust, said to be an admirable likenese, adorns her figure heed. Sle is the lergest stesmer belongivg to Russia, and intended to ply an a packet between Lubeck and St. Poternburgh. This Nicholai was built in four monthis after laying her keel. The rensel has been ro novel to Mesars. Seawards eatablishiment at Limeliouse, sir the purpose of having her engines put on board, which aro to be of 240 horses powor.

The Star, a new iron steem boat, intended for the pasoege tracle between Shiolde and Newcastle, is reported to be a fiue vessol, and draws ouly 23 inches water. Sbe

A splendid litto iron steam loat, of about 120 toas burthen, wan on Mowdry, as
 Willbrook,

Steam Convyance to Americu.-Gorernment have entered into a contract for coovering the mails by large and powerful steam-vessets from Liverpool to Finfla, esd thence by branch steamers to Bomton, und in the summer to Qoebec. The mercaratio interests, not ouly in the North American colouies, but nleo in the ITarlod Btelea will be gratified to learn lluat, instead of a monthly commnnication, at formeriy. steamers will now be deepetched on tho lat and 18 L of asch month. The evere. prising contractor has engaged |rith thase ble aud scientifc buildert, Ient Frising contraction has ang Glasgow, to build three shipsof 1,000 tons esch, in which Mr. Bolent Napier is to place engines of 400 horse power. From the jest succes of Pitemers Wood and Napier we donbt not, when these reesels are on their station, tn April 1840, they will be quite unrivalled; and, moreorer, that the ncute obeerretion of " gan Slich," that "the route via Halifax is the shorteat way to Now York," will be verified to domonatration.-Glaegov Paper.

Royal Naval Steam Service.-A splendid building; under the name of the "Engioe Fectory," is nearly completed in Woolwich dock-yand, with a largo edjacent and tiuber pond, and a short canal cut for its communication with the great begin. with a cassoon and bridge to allow the steam.boats to be brought up aluogaide the factory, instead of being sent to the private manufacturers:. The boiler departant it not yel, howerer, organised.

Mcditerrancan Sicam Navigation,-The Austriat government continue to ply asoiduots attention to this important branch, and, by a recent regulation, they have obviated the necessity of quarantine, by placing a sworn government officer of beats on boand uach of their sleamers, - regilation which, it in to be boped, will be edoped by other powers.
Brazilian Steam Navigation.-Two boats of the Brazilian Steam Navigation Company have arrived at Buhia, where they have excited the greatest sonsation.

PROcRJGS OT EATRWATB

EASTERN COUNTIES RAILWAY.

Report of the Engimert to the Directort.
GYNTLEMEN,-In complimee wih your instructions, I ber lempe to wabsit the following report as to the mbate of the works, and the line, commencing at Lader and terminating at Springeald, adistance of thirty-onre miles.
The whole of the London Viaduct, commencing at Farthing-atreot, widuth suo hert of the terminus, has been let to four reepectabie contractors.

That portion between Derronahireatreet and Dog-row, for a length of 81 chening the whole of the foundationt are laid, and the abotoments and piats, are netry aill carried apringing ligh, and teveral of the arches ars turmed.

The iron-work for the thres bridgen, Doy-row, Ann-tireot, and, Glotelane, bit a very forward-state.
Nearly the whole of the portion from Dog-row to Winchester-street, a divace of 28 chains, is fonced off; several of the fonsdations so excerited, concrute formity, and brickwork for the piern and abatments commenced; lerge quaritise of gaterials are on the ground. A further distance of 11 chains, extending to Bectral Groen Workhouse, is in posesesion of the contractor, and the hoas no beint pulled down.
From Devonshire-street, eastward, to Asgol-iane, at Stratford, the whola of the embankment is furmed, with the oxception of amall portion adjoiming the Viencet: also small portion at Tredegar-square, in the Falr Field at Old Ford, and ent of the river Iea Bridge, in sll amownting to less than $80,000 \mathrm{cubic}$ Farde on, Which is beind supplisd from three diffirant places, temdering the completion rithin a fortuifite an ong-task.
I he embenkment from the River Lea Bridge to Angri-lana is balleated, end the permapent way laid.
Westwand of Lea Brdge, a considetable portion is bellanted, and the leying of the permanent rails is commenced.
By means of temporary stage or tipping frane this embanhment contining upwards of 270,000 cubic yardi, has been formod in less than nipe moerthe, nothwithatemding the winter season, and the more than ordinary dificaltion peeeuted by the Jielding nature of the marsh lands over which it croven, and wrich has occstioned a merions subsidetce for distance of nearly half a mike, and which wonld have rendered the formation of this ombankment an extromely difietlh, tardy, and expensive operation without the introduction of this uselial, and I am heppy to edd, aucceasaful expedient, which has not only onabled ns to doposit tho legto quantity of 281,000 cubic yarde ont of the above quantity over one tip in so ebert apace of time, but has been the means of completing the work much under the entimete.
It may be bere gratifying to remark, that , although the present mubsidence of the embentment is within but 15 feet of one of the great reeervoirs beloagios to the East London Weter Works Company, I huve eaccoeded in proventing any be jury to it.

The cutting from Angel.lane to the Ilford Valley is openod the whole distance, and the ballasting and yermauent way formed, all but twenty chains. The embealanent over the Ilford valley has been completed for more thin dix monthe; the ballasting mod yermanent way laid. The cutting eest of the valley, with tho axception of a amall portion in Curtis's feld, and the crosaing of the Emex turprike rosd, at the eighth mile-stoue, is open to the tenth milestone, and the permament riil laid through Ilford for distance of half mile from the valley. Abont it chains esst of this cutting, the'gullet leading to the Chad well cutting is opee. The cutting from Chadroll to Whalebone lane is completed, the roed batiated, and the pormanent way laid.

The embaniment at Whalebone-lane, extending towarde Romford, is completed abd the permanent way laid for a distance of 60 chains,

In order to expedite the formation of this embankment; a sile cutting contigwous to the Barrack field at Romford lias been opened. I tierefore anticipate thet in whole embentment up to Romford will be completed in leas than sis weatr.

Up to this point, the masonry commoncing et the east end of the lomduo Fieduct
is complet, wonciting of the namerous bridges over the rivers, add orer and vador the curpite and ocenpetion roads, acoounting in all to forts-thren, many of thern of coosiderablo magnitude, involving great expene in the construction of their foumjations.
Coatinuing eant of Rorosord, soveral other important works are comploted.
In addition to theer worka, the station of Angel-lane, Strationd, with the enginebowet, eoke-ihoda, and water-tanke, and Whalebone-kne and llford, are nearly complote.
The whole of the line eant of Romford, extending as far as Springfield, two milem from Cbolmsford, being 31 milee from the terminua at London, in lot to respectable contractors, with the oxceptinn of the summit cutting at Brentwood and Mountneesing, apd the Shenfiold and MountDessing embenkcpents.

The cantracta between Romford and Brentwood have been let nearly six montho, and the variou cutlings, eubbankments, and other works at Hare-atrees, Haro-lodge, Gubbing, Brookstreet, aad Brentwood, are sow in active progreas, having been materindy rotarded by the westher.
The contract drawiugn from Springfieht to Colchester are nearly ready tor wivertising.
In arder to ensure the early complotion of the works, six locomotive enginen are mployed day and night
Six parenger enginet will be ready within one month from the present time when wana mufticient nuniber of firat and second clasn carriages will completed.
A large supply of rails and chairs have been dalivered, sufticiant for upwerds of riven miles of doulle line.
Phana and drawinge for a complete Lomion atation, constructed in accorlance with the experience litherto gained, have been prepared, ready to proceed with the works when directed, far the entire oppaning of the line to Shorediteli.

I an Gienclemen, jour obedient sorvant,
JOHN B'RAITHWAITE.

BLACKWALL RAILWAS:

The Report of the Engiacers to the Directors.
Gextienen, The whole of the Works on your line of Railway being now contreted for, with the condition that the esecution shall be completel by the end of the prewent year, it afforde us great satisfaction to report, that looking to the progrean which has been made by Measr. Webb aince the lat of October when Uluey commeoced their constract, and to the character and resources of the geatlemen who have coatracted for the remaining portion of the line, wo nee not the leat reason to fear that your expect stions will be dimappointed in respect of thee arrangeanents.
On taking into account the united anount of these contracts, and adding theroto in cous of the permanant way, nof incluled in them, we fel onrselvee juatifed in steting our conviction, that the anticipated saving io be offected by the alteration of the width and bevele of this muil way will be fully borne out by the result.
The repective perties, who are under engagemente to turninh the engines tor the Wring of the line. are actively employed in their conatruction; at the mame tirne they are aleo prepering the Large drum and spur wheels for wiming the rope. We deened it desirable 5 deley to the latest period (consistontly with the early comple. tion of the worke) the specilicalion necenary for the constructiun of this portion of the machinery, is orjer that we might avall ournolree of every improvement, which a concioned and careful consideration of the anbject could auggest.
We bave unqualified satimfaction in being able to state, Alter going into extonsive detall on the subject of working by stationary evgions, which Fie have hed an oppor. tunity of doing in the course of various anquiries and calculations, that the annual cost it working by the propoed aystem, will be lene by eome thonamads por snamm than the amonnt asenmed in our first report to you. We luve now sufficient ground tw minfy onx minds that the annual cont of working your line will not exceed $\mathbf{8 8}, 000$ per agruma.
The fanpdacions for nearly one half of the proponed vieduct are now sctuelly com. Hetal, mod the piern are mont of them finished to the apringing bolght, many of the archen are comphetel, and the centree removed, and we caleulate that, form this time, wrea arches will be turnel weolly in Mearan. Webb's contract, and in the other contrscts in the mane proportion.

The work, it mist bo borme in mind, has hitherto been done during the lomet favourable lime of the yeer, and under one contrector only, bat when the ensergies of two athy contractors, with ample rosources, shell come into operation, the works will be so scoularated an to leare wo doubt of their being succemstully texmineted by the time spucifal.

Wo are, Geutlemen, your very obedient Servants,
Lomion, 204 Fobruary, 1899 (Signed) G. STEPHENSON,
GEO. P. BIDDER.

CROYDON RAILTEAY.

Report of the Engineer, to the Directors, read at the Hulf-yearly Mceting, held on the 5th wlt.
Gextienen,-Having received your instructiona, that I should report to you the state of the worky of the London and Croydon Reilway at the present time, I have to report ns follows :-
The stations at Croydon and Norwool, may be considered 'complele, and fit far pamengor tratic.
All the utations along the line are nearly finixbed, oxcept the erection of two lodgees, -hich will be construcied in a temporary mauner for the opening of the lime.
Fith the exception of the cutting at Forest Hill and the dressing of some slopes, th the earthwork along the line is completed; and on the Forent Hill culuing the rast side in cut Hurough with the exception of the slip nenr Owen's-bridge, and the weat side ramains to be bottomed out, and the alopen drespel down, for a distance of aboat 10 chains; on the woat side of this length the grealer portion of the slipt occurred in the winter, when Fo had to encounter great difficulties, but since the -mber ha become drier, and means have been rewortal to to prevent any further atepaion of the alipa, the works have proceeded more rapidly, and the slopes hava nosesined in the finished part in a perfectly mubstantial state; no slipping worth notime hen occorrad on any other part of the line.
The mation and workahopn at Now Crome are on the point of completion, and the caringes are about to be defivered thore.
The Ineion station will be in a sufficiently forwerd state ty the tine the permer onet rint are laid on the rent of the fine.

All the bridion wows the line except one cccupation bridge are equapletel, and of this the arches are urred, and a fortnight's fine weather will enable the contrector to finiah it.

The permanent road is being paahed on with all powsible vigour consiatent with sound workmanship and good draluage. There are employed in thin depertment npwards of 800 men, with an adequale quantity of horses, drivers, locomotive engines, to.
Of the permanest way there are laid,
Of the parmenotst way there are lain, 6 minge 1 chain of aingle road complete ;

$$
\begin{aligned}
& 6 \text { mine } 1 \text { chain of aipgle roed complete : } \\
& 1 \text {.. } 23 \\
& \hline 6 \\
& \hline
\end{aligned}
$$

so thet all required to complete the permanent way througivout will be,
6 miles 07 chanas, or 30,242 yarde of single liue to lay :
2 ... 1 .. or 3 sord to bellast
The quantity of earthwork rewalning to be excavated in the Poreat Hill contrect, tucluding extra slopes, slips, removal of apoll, clearing up bottom, ece, emounts to about 90,000 gerds; lut the opening of the rued neel not be delayed until the whole of chis is remboved, at more then two-thirls belong to the alopes andelips, not affecting the botlom, end will lon [nored after the complation of the permanmit

I am, Gentlomen, your obedient servant,
JOSEPH GIBBS.

THAMES HAVEN DOCK AND RAILWAY.

Ertract of Report read at the last Hal-yearly Meeling.

Your Directorn, at the half-yeariy meeting in Augant lant, reportod that they had enter d into a contract for the conatruction of the Dock at Thasies Haven; the workn have in consequence been proceeded with, to the pexteant of 400,000 seoto excavation; the contractorn have built coltagea to house 200 mon , and the turtber progreas is only delajed unili more land aball bo in poasension of the Company by an arraugement Fith the tenant, and the present meeting shall place it in their powar to continue. The Directors, would aviso the shereliolderm ω continue the operstions of the Dock, at a valuable batis, and an the sureat medtod of attaining the grand object of the undertaking.
The Directors have made several efforta to come to some defuitive terme of agreement with the Directors of the Eevern Counties Company, for toll; but an the amount demanded for paseengern would prevent any trafic on the Thames Hareu line, or any profit if carried; and ata the Birectorn of the Eastern Countien line have declined to malce any immediate terma whatover for goode or beary weights, an conls, Ace., which mast form a large portion of the traffic of the Thamen Haven lina; and as it is abeolntely emential that a fixed plan should be arranged by which auch articles can be socured far the Company; and as it also appears upon the report of your engineer, that two linee of rails upon the Eaplorn Countiee line will not eilmit of the anticipated traffic of the Thames Haven line with ita own ; and would If it could be managed at all, utterly preclude the posidility of alow speed trains, by which menns slone a profit cau be made by henvy goode, lut at which a largar conount will be derived than from pacsengors; and as they feel also that the incouvenience of one line of rond for two companies, places the company in a dependent, nncertain, and enpleasant powition, at the will of persons who may be indisposed to them, or ansious to give greeter facilitien to other partiet, which would cause an ondlesa source of lisigation and annoy ance to the pablic. Uider all the circumetances of the coue, your Directors have cansidereal lit better to be prepered with, and adopt any integril and diract lise into Iondoas. Ta thin end your roginear has survojed and laid down a line of roed from Themen Haven to the Minaries, where one of the best trermini in the motropolis can be modo- the ponition for all purpowen boing much anperior to that of the Eastorn Counlies, particularly for the tratic on yoar line. The rond is thereby shortened to $25 \frac{1}{2}$ milen, and the gredionts are 20 good as to bo for all working purposes almost a level. The advantage this would give for the carriage of great weighta is highly beneficial, and will onable the Compenny to carry out the principle they have catablished of low faren, which, wherever thes hare beep the principle they have establishad of low faren, which, wherever
supported by good management, have proved so entirely successul.

MANCHESTER AND BIRMINGHAM RAILWAY.

Report of the Enginetr to the Direclors.
Gentlomen.-In accordance with your instructions, I sobmit the fallowing report on the progress and state of the works. Those parts of the line which are contracted for and in progrees extend from Fairfieldstreet, in Mancheoter, to the south ide of Daw Bank, on the Cheahire aide of the river Merney, at Stockport. This distance is divided into five contracts, which are separately uoticed as follows, viz.:-
Contract No. 1, or F'airfield-atret Contract. - Counmenced Anguat 14th, 18s8. Time of completion, sighteen monthe. This contrect is 1,166 feet in length, and comprises the first portion of the viaduct by which the railway leaves the depit in Manchenter. It connists chiedy of arches of brickwork, varying in span frow 80 to 46 seet, and
 consiatent with the work being complated within the specifed time.

Coniract Nu. 2, or Chanoerylame Cuntract.-Commenced August 14th, 1838. The time for completion is oighteen months. This contrect is 2 , ise foet in langth and consitis of the second portion of the vialuct by which the railway leaves the town of Mancbester. The contrsetor has not yet hed possessiou of all the land, but is expected to have it in the cuurne of a few daya Lence, and the whole will be completed with ease in tha sperified tive.

Contract AU. 8, or Myde Roud Coniract, is 1,000 feet, and comprohonds the third or lest portion of the viaduct inguing frum the town of Manchester. It is not yat commenced, by reeson of the obntacles which have hitherto prevented the campany from obtaining pomension of the land; but, as it in expected that the contractor will hare ponmexion in the courie of a few daya, anch arrangements will be made at will ensure no dalay ariaing from this unavoidable poatponemeat of operations in this part of jour worka.

Cuntract No. 4, or Heatun Nurris Cuntruct, extends from the Hyde Road at the wouth and of No. 8 contract, to near the right bank of the river Mermey at the town of Stockport; its leagth is four miles twenty-sir chaius. It also inclades the bellenting and leying of the permmunt way upon contracts one, two, and three. It datee from seplember 11 th, 1838 , and the time of completion is 20 months. The heariet work on this contract is a cutting of 400,000 cubic yarda, the whole of which
is to be carried to enbankment; and 350,000 yarde of this quasity are to lo emrie. in one direction: About 80,000 yards hare beeu alroedy as cavaled. The contractor is proceeding actively and jualicimusly; on the 18 ch of this month, he will commence night work, and he is making wuch arrangements as will amable bim to cah:ulate apon corapleting the embankmant to the exal of the third contract by Noveinker next, when he will be ready for laging three miles of the parmanent way; and there appeans to be little doubt of his performing his contract in the apecified time, nempody, by be little dial
May, 1840.

Contract A's. 5, or Sturhport F"iuluct Condract, 山aten from November 1\$hh, 1838. The tinno for completion is two years. It consists of a viaduct of 22 archea, of 63 feet span each. The first stone of this atracture has been laid to-day, and the contractors are making arrangements thr procestiug vigorouly with their work.

Contract Nu. ©, or C'ongleton J'iaduct fontract. -This work las jukt been let, and is to be completed in two years sud a half. It consises of forty two arches, each of sixty frot span. Preparations lave commenced by throwing up clay for making abont $16,000,000$ bricks, during the present year.

This work is that which may lee expected to require a longer time for execution than any other ou the line; and therefore its being now commonced will facilitete the making of such arrangements in the future lettioge, an Fill tend to bring all the other parts of the railmay towards completion uearly at the same period.

I mm, (ienclemen, your obedient mervant,
Meschester, March Cth, 1K39.
GEORGE W. BUCK

BRISTOL AND EXETER RAILWAY COMPANY.

Fixtract from a Reportiread at the Genoral Hulf-yearly Afceting of this Company, heid un Tuesday, the Gth wh., al Bristul.
The Directors hare the satisfaction of stating, that although the sesson of the year since the autumnal halt-yearly neeting has been necessarily unfavourable w the rapid progreas of the works, they are, neverthelens, so far advanced as to warrant a confident hope that the great bulk of what remains to be done, in the construcrion of the line between Bristol and Bridgewater, will be finished in the course of the present year, and several portions of the line so far completed as to allow of the formation of the permanent way to be commonced before the end of this year, and the remainder proceeded with early in the apring of 1840 .
The princips! works are comprised in the two first contracta, chlefly at the western extremity of the Ashton-valley. In these extexsive progress has been made; and although more might undoabtedly have been done by the contractor, yex it is equally true that the statio of the works is such, that as the soason sdrancea a considerable force may be alvantageously employed, and a very largo quantity of work executed cluring the sumpmer months.
For some distance beyond this point the work is so light as to insure its early completion withont diffieulty.
At Puriton nome interraption has been caused by impediments in the purchese of land; but these difficulties being remored, the facilitien in the execution of the wort are such, as to preclude any possibility of further delay.
The numerous aud urgent representationa that hare been received, in favoar of an immediate prosecution of the rorks below Bridgewater, afford a gratifying proof of the increased and incressing extent to which the ralue of the undertaking is appreciated by the inhabitants of the Wentern Counties. With the sincere desire, howerer, to accede to the wishes of the shareholders resident in that district, with an unabated conviction of the magnitude and certainty of the advantages to be derived from the extension sought for, and with a fixed determination to adopt as speedily an possible every step that can conduce to the early continuation of the hine to Ex eter, the Directors are, perortheless, persuaded that they Fill most satisfactorily diecharge their duty by faithfully adhering to the resolation expressed in formor reports, to make expenditure and receipt go hand in hand, by au early opening to Bridgewater.
The construction of the bridge now in progress over the river Parret, may be jantly appoaled to as the best ovidonce of their anxiety to reach Tannton; a town of vory great importance, leas than teo miles beyond the bridge, appronehed through a fortile and populons dietriot, by a ront stmont level, and itenlf the focus of anch an arternsive unfic in peovigers and merchandim, as must at once place the quection of revenae beyond the ruch of doubt, and enable the Company to complete the ontire line 20 Exater, withotut inconvenience to the sharoholders.

RDINBURGEAND GLASOOW RAILWAY

Ertreot from the Report read at the lant Helf-yearly Meting, held at Glacpow.
Yonr Directors, at a very early period, turned their attontion to the letting of the Contrets for the more important works on the line.
The Almond Valley Contract, which comprehends the heaviest work to be executed and which had, at the date of the last general meeting, been just advertised, was thortly atterwards let to Messrs. John Gibb end Son, of Aberdeen, whose long standing and high character, as contractors, aford the best security for its completion within the lime prescribed by the Companr' Engineer. Yonr Directors are bappy to say, that the oxpense of this portion of the line, althongh it embraces the great stone riaduct over the Almond, of 48 archey of 50 feet span each, will, notrithstanding the recent rise in the price of masonry, iitle, if at all, exceed the proportional amount of the Parlimontary estimate. In conseqnence of the arrangements previonsly made with Mr. Hogg, of Newliston, your Directors were able to give Messrs. Gibb and Son immediate access to the ground at the Almond; and these parties have ever since been pushing forward their works with their unual promptitude and vigour. Not. withrtanding the unfarourable season of the year, the contractors have already removed a considerable quantity of earth, and smik two shafts in the Winchburgh Tunnel, and have founded one sbutment and several piers of the riaduct on the Almond; they have also laid down a great deal of bailding material, so as to arail chomedives of the earliest improvement of the weather in opring.

Your Directorn, after compieting the contract for the Almond Valley, next turnel their attention to the contracts for the tutnnels, se., in the neighbonrthood of Falkirk and of Glengow. These mere advertised to be let in four different lots, and althongh jour Directors experiencrid difficulty, in $t \pi 0$ instances, in procuring Contrectora, potseraldg tonfient capital and experience, they hare now the satisfiction of reportfol, that they are all lot on frroarable ter int, and to partion, of whose abitity to com.

 wards of 28 mite of the lime with be lot, sod in courte of esteutios: mill till
 coutracte lot for the reet of the liee.
Leeds and Bradfuril Railuay.- The report of Memars. Stephenson and Gent

 of rachut ground lying on the moase wich of Wellington reed, and betwean the med and the Whiwhall roed. From thace the line will crome the river Aive and is Leots and Liverpool canal, upen an embentroneat, a hitcie to the weat of se frope.
 Indge, and again crosaing the canal, parces a little to the wout of armly mine hthe taken the bow gromal between the anal and the river, and peown andr the Kirkstall-rosd, by Kirkstall Bridge, and continuing between the canal and be riwn leaves Kirkatall Forge to the right. At How Latels it eromes thy five. add how New Laithe Grange to the north. It then proceeds to near Rewden Low Ming mow on the north side of the river to mear Weathouse Orove, whieh in lewrom do the wouth mad will crom the river and canal, mad peon noder Birk Hili, by a tuond about three guarters of a mile in length. It will thea rum paralled to and on it south nide of the caoal to Shipley, where croscing the branch omod it with anr Brodford valloy, and procoetin newly a diveet how to the ewnh. The lermines and depor at Brablord wifl be in a fald ou tho low dide of ite quarry of Memat Cone and Thackray, and ncer to the worta of Miners. Huste and Borsa The lagit of do line will bewbont thirwon milea, end so inelination on the main line will excod tweaty foet por mile. The estimated cost of laying down the railway is tho, with, excluaive of stations, depots, engines, which, together with all other necesery machinery, will require a furthar amm of 50,0002 A nother important fature in in report is the formetion of a jnnction line between the main line and the Nork Mid land, which is intended to eroes the turnpikeroed neer Follingtou Bride, asd pasing between Menars. Marshell and Co.i worke and the village of Hotben, and between My. Raveell's pottary and the Toll-bar, and thence to the Korth Miamd
 thee quarters in leogth, will easbip pesengerts, sce. to paris on to the letter riloty witheort the leconvarience ased expenve of ehanging couverance. - Bradford Owrrwi.
Praton and Longridge Railway,-We understand that Mr. Wibie, the prasipal
 laying the permanent raths, so that, in all probability, the railway may be opened errif in the sammer. It is culculated that a sering of 2 d . per cubic frot npon the carrige
 will be effected by this meent--Prraton Chronicle.
Noweeath and North Shiedds Railwey. - The works on the line of the Noweralh and North shiolds Reilway are now rapidly drawing to a conctumion, and it is expected that the roed will be opened to the pablic during the enanagg spring Thow supendoas erections, the greet viaducts ovar the Ounebarm and Wilington Deans, are on the point of completion, and are exciting, as might be expected, the attentioe wid admiration of the ueighbonrhood and of alf strangers. Two grander and mare bewn iful erections are certienly not to be found in this kingdom. The bridge orer Filliug tom Dean in now finished, and from the magnitude forms a most atriking object io nat local seenery. It is composed of seren arehes each of 120 feet span, with tro mavt battrewess, apd in in leagth 1050 feet. The height of the roedway of the main urt over the small stren which flows beveath is serenty eight feet. The tridge over the Oqasobura Dean will be fimished in a very fow weekn. It is composed of fre arcbes of 116 feet apan, with two stone mechen at ecch end, to throw the embenkment tom the breast of the hill. The leight of the roedrany of this bridge from the bed of the oow barn is 108 feet. It is a mont magrifieent structure, but its more condined siambion cousea it to be a lea promipent object than that over Wlitagton Deatn. The pablix are daily taling more interent in this raikoad, and are eagerly antictpacing to inoreaned secomededioe and comfort it will afford theru. The ofotence, it in to be the itmetion of the Comptay to fix the rutem for the converence of pacions * at howis polar mincireumstinces will warrant.-Nrocasfle Journal

Pook and North Midllond Raibeay,--since oar lant nosce of the ant of H
 to be employed day and night, and the excaration of the rampart is now complatilt In addition to thome ceaployed in romoring the earth, workmen bed been boint employed in pulling down the wall than coclased Measrs. Backbouse's gardas. The focadetions of the welle tor the company's depots, near to the river, have been lik and the brickleyers are busied in the brihting of thone ralls.-Doncaster Chronicie.
The Londou and Brighlon Baihvey. - The worka, both at Balcombe and a Clayton, have been atropped for several days, in conemquence of the springe bing oot There are trom 60 to 60 feet of water in the Baicombe shent, and from 20 to 50 km in Clayton ahaft. Indeed we have heard that a very grave doubt exists whetber the line must not be altogether diverted, to svoid these dropaical hilla. A moligman whin recently down from London to view and inspect these apots, who declarod hist the aymptorns were more formidable than those which were the cause of 00 murh expence end delay on the Grest Westere line-Briphfum Guardion. There is pu truth whatever in the report that the operations on thin grand wort are likely whe formidably tmpeded by the eprings. It will be recollected that Mr Rastrick noticed. in his report, the water at Baleombe and Clayton, and the mode of geting id of it When the headinge are rm , the water at Baiccombe will fall into a brook to the mooth of the tranel; that at Clayton will sull into the Clayton brook. Nuthiag can prowd more astisfactorily than the whole of the worka on the line ; and it in culy from partien who are willing to cry down Brighton and lte prosperity thet a single word is weard againat thesm.-Brighlun Garelle.

Doncaster, North Midlond, and Goole Ratlvay.-We understand that the project for convectigg Goole, Thorne, and Doncaster with the Nurth Nxidman atud the Sherteld and Rotherham Railyajs, han been recoived with bigh prospects of mucceal. It will branch from the North Midfand at Kilnhurst, aud proceed uhmitgh or clowe to Dournater, extending inwards to the port of Grole. The pretiminur tope have atrecty been taken, and the line is now being aur ered ugider the silift direction of Mr. Swanwick.-Derby Reporier.

Curter and Crowe Railicay.-We leern that Mesars. Jacknon and Bean, who comploted a portion of the Birringhasn and Derby Railway, have undertaken the Bmparr and Wardle eonatrect, in length about ten miles, on the Chester and Crewe tine-Cheater Gacette.
Luadow and Brighfon Railway.-Great exertions hove been maling lately in order tu the complation of abont three and a half miles of roed on the Shoreham brench of this line. The late heevy rains, however, partially retarded the progress of the works, and the opening was in conmequence postponed.till Tuesday, 10th altimo. The conunctore will then re-conmmence active operations at the Hove cutting. The tannel therm will, we nuderstand, be completel in the early part of July.-Briphton paper.
Ruibecy sumetrary.-As the constable of Milfurd wes employed in conveying a man employed on the millway to gaol, on a charge of felony, he maneged to alip from the officer, and deacended inu, the Clnycrof tunnel, in which he conld not be found. The follow got into a cart coverod himself with earth and rubbish, and wan drawn out of the tunnel without being percoivel, and made his escape.-Derby Mercury.
Brahing in of the Hamicell. Hridge of the Great Wrestern Railicay, and Iosm of Lift.- From a Correspondent.)-Considerable alann prevailed on Monday, the 18th ukimo, about 9 o'clorf, on the line of the Great Western Railway, to the passengers who were coming to town in the train drawn by the Vulcan engine. On the arrival of tur traiz at the rienlact-bridge which passes ever the high road at Hanwell, they were thrown into the ntmost consternation by hearing a report resembling that of theary camon, which wis suppneod to be occasioned by the bridge over which they wete in the set of croasing having given way. On making an examination, it wes hannd this supposition was in a great meanare correct, as one of its principnl suppurters, conuinting of an iron bean of great dimensions, extending from one pillar of the bride to the other, had smapped in half, carrying with it in its doscent a rast quansity of the material of which the brddge was composed, leaving an open space andet a portion of the line. On the next trait coming up great delay was occasionod, in consequence of the apprehension that if it pasced over the rails would give way, bot frome the care of the engtneers and othere, such a resenlt did not take place. Im. uatime stope were tahen to repair the demage, und several of the workmen were emploged to shore it up. Whilst so engaged, a masaire piece of timber fell from the upper part of the bridge upon one of them, and almost immedintely killed hin.Tiows.

ENGINEERING WORTE.

NEW HOUSES OF PARLIAMENT.

The works cennected with the embankment for the new Houser are probably the most extensive hydraulic works now in progress, and the coffer-dam is certainly unequalled; dravings and descriptions both of the coffier-dam aod river wall were given in our first volume, and we shall now briefly deuribe what has been done up to the present time.
The coffer dam and other works were contracted for by Messis. Lee, to be exacuted under the direction of Messrs. Walker and Burges, Engineers, and Thatlea Barry, Esq., Architect. The coffer-dam was commenced in the month of October, 1837, and is constructed nearly similar to the drawings and specifcation before given by ns in Vol. I., page 31, with the addition of sorizontel struts of whole timber at the back of the brace piles, B, fig. 1 and 2, avd abutting against other piles driven just within the inner edge of the fondation of the wall. Considering the great extent of the dam it stand remarkably firm, and is tolerably free from leakage; it was finished on the 24th day of December last, when it whs closed, and operations commenced within. For the purpose of pumping ont the water, a 10 -horse power steamengine was erected, which is kept at work night and day; at the present time, the water in easily kept under by the aid of two 18 -inch pumps, each working 14 three-feet strokes per minute; since the closing of the dam the whole of the silt or mod lying at the botom of the river within the eaclosure has been removed, leaving a fine bed of gravel over the whole surfece; the gravel has been excavated for the foundations of the tiver wall, and nearly the whole of the foundations laid, and the shcet piltng protecting the footings completed, likewtse a considerable portion of the brickwork to the backing is eommenced. The granite intended for the corvilinear facing is in an advanced atate, a very large portion of it being already prepared and ready for setting. Too much praise cannot be bestowed on all parties for the activity with which the works have been conducted within the last two months; before another four months elapse, we liope that we ahall be able to anoounce the tiver wall to completed, and the new buildinge ready to be commenced.
The firt stone of the foundation was hid on the Sth ultimo, without any ceremony.

WESTMINSTER BRIDGE.

We before noticed a commencement of the works for the repair of West. mintier Bridge, in a former number; a dam has since been completed round tro of the piers on the Westminster side, and a beginning made with the piling roand thens.
The great extent of the coffre dam (being no less than 500 feet in circumferace), as also the difficulty experienced in driving the piles through a hard crout of gravel which neerlays the clay at this place, and the care that must hare been taten in doing the work, by so effectually shatling nut the water, sates it appear to us traly astonishing that so much bas been done in the ibott prion of eight montha, especially as all works of this neture depend Di" inry tunch upan the weather and tides.
Grat credif in due to the parties in charge of the work; and, if we may jodge from the earnent manner in which they are proceeding, the public till bave no cause agaln to complain of the tardy progress which bltherto marked rerything connected with this bridge.

Neither can we omit to state, that upon our late visit, the grati fication we experienced in witnessing the very dry atate of the work, and although the level at which they are now proceeding ts several feet below the bed of the river, there was not the alightest leakage; and we understand that the sarno bas been the case since the completion of the dam.

The plan of operation for protecting the foundation of the piers, from being undermined by the wash of the fiver, is, by surrounding the caisson npon which the pier is built with shert-piling, driven as close as it is possible to bring wood and wood together. The piles are driven fourteen feet into the solid ground below the bottom of the stonework; they are twelve inches thick, and the space between the pirr and the piles is afterwards filled in solid with concrete, npon which masonry of square stones of large dimensions is laid, the top of the piles being dreased off to a fair and aniform line, and further secured with a strong band or waling of timber, oneireling the whole tic, which is beld in if place by iron caisson bars, firmly faxed to the main timbers of the caisson.

By this plan very little obstraction will be offered to the corrent, should any further increase of depth in the rircr take place, and from what we saw of Ate care taken to make the joints close, there will not be, in our oplnion, the slighest apprehension for the safety of tho bridge, should the river deepen three times as much as it has since the removal of London Bridga-a circum. stance very unlikely to happen.

In comparing this method of work with endeavonring to accomplish the same object by diving bella (which was the plan till lately followed at this bridge), there cannot be a quevtion whieh is the best; in one all is done in the dark, or otherwise hid from view; while in the other it is eeen as the work progresses; in truth, the last is the only proper course.

THAMES TUNNEL.

Extract from the Report of the Directors at the lase General Meeting, held at the Lomdon Taxem, 6th March, 1838.
The plan upon which the works have been carried forward consisted of three principal features, viz.:-
lat.-To divert the Navigation from that part of the River immediately over the Mining operations.
2dly.-To gain the command of that part of the River, withomi inferruption, and to be thus ensbled to load and cover its bed, both over the Works in progress and tn advance of them; and to compress this artificial bed, directly over the Shield, by grounding upon it, at every fall of the tide, a vessel, when ballasted, of about 900 tous burthen.And,
3dly.-To make alterations in the auxiliary parts of the Shield, atill further to add to its security and power.
The brickwork of the Tunnel has been advanced, since the last Meeting, 90 feet, and is now within 60 * feet of low water mark; and if the game rate of progress continues, which there is every reason to expect, low water mark will be reached in the course of the autumn.

It will be clear to those who are best acquainted with the work, that when this is accomplished the most hazardous portion of the Tunnel will be completed; and that however novel, and even bold, the work which then remains to be dene, in order to realise the original design, yet its complation becomea comparatively safe and easy, and catculable within a reaconablo time.

- Since this Report wras road to the General Meeting, Ten feet have been excavite d the distance to low water is therefore only 30 feet.
suapenvion Bridgon.-The largent mapmicon bridye in that contry for that ecrone the Menai Strait, with a apan of 560 feat; the dext in point of aise, is that at Montrowe, which in cse faot to ypen; we have been mach greatied by the forpection of a repart end plan of a thited whioh will stral thowe atopendowe worke of art, both in magoitule and importance ; Cor while they hare but one rpan each, of the ebove dinentions, that to whicb wo are alloding projeoted by thet ablo eagineor Mr. J. M. Rendel, will have two of 460 feet each, and a whole length (with thie side opentags) between the obulunents, of $112 s$ feet. The site of the proposed bridge, is of Newn. ham, on the sovery in Uleuceuternkire, where thera is at prosent a ferry, which bes the great inconvenience of being entirely narigable ouly half an hoor before med after high water. The groat edvantages of such a work will be materially felt in the adjacent conntry, by the coml and other midea of Dean Foreat, becomint ansier of access, thereby producing a conaiderable roduction of price, beoldes the convetriaccess, it will secure of a direct route ecroes the Serern to the sonthwerd of Gloncestor. The various drawings by which the proposed bridge is illostrated are admirably ezecutel, and convey both in point of topographical, geologionl, and perspoetive detatl, as complete an ides of thie megnificent proposed work and its loceliky men be oxpresead by the artist on phper,-Nautical Magasine.
The Wrech of the Reyal (ieorge. - The experiment of blowing up the wreek of the Roral George, at Spithead, by means of 13 -inch shells, placed as lar into her in diffrrent parta as the divert can manage it. To prevent wocident to any boar, the er. plosion will be effected by the risiog of the tide operating on a buoy atteched to the shelts by a log.line.
Stoam Dock-yurds.-In bringing in the nary eatimates, Mr. C. Wood stated, that the governneent had luid in ample stores-bad added one-1hird to the dool- yards-and had mede preparations it Deptford, Wociwich, Portanowth, and Plymonth.

Orerland Indian Maila.-The contract fer a carriage conveyance over the demert between Suez and ('airo has boentaten by Mesars. Hin and Co., and by the 17 th of January, shere was to be a carriage for the conveyance of pasiengert from Caito to Suez, between which the distance is 90 miles, and the time is bboul 24 hourt.

NEW PATENTS.

LIST OF ENGLISH PATENTS GRANTED BETWEEN THE 28\&D

 FEBRUARY, AND THE 27TH MARCH, 1839.Gromar Avoustus Koliman, of the Friary, St. Jemesin Palece, Profeseor of Munic, for "Certain Improvertents in the Mechaninm, and general Construction of Piano-fortes, being an extomion of former lettern patent for the term of seven yeara." -2sid February.
Charlea Lovis Stanislas Baron Hpurtrionpp, of Queen Annstreet, for "Certain Improrements in Fire-arasa, aud in the Balls to be unal therewith."-23rd Febriary ; 0 manthe to specify.
Thomas Paatt, of South Hylton, Darham, Mechanic, for "An Improved Capatan and Winch for Purchacing or Raising Shipis Anchors, without the arplication of a Moneager, in which there is no Fleeting or Surging, or for drawing or working of Coals or other articlos, and thingn out of Coal or other Mines, and alan for the draving and working on Railroads, Ly drawing Pulleys with Phat or Round Ropes." -28rd Fobruary; 8 months.
James Ruasmle, of Hameworth, in the county of Stafford, for "Certain Improve. ments in Manuficturing Tubes for Gias aul other purpoees, being an extention for the term of six jears, granted to Cornelius Whitehouse."-20th Pubruary.
Mosss Poolk, of Lincoln's Inn, Gendeman, for " Improrements in construsting and applying Boxes to Wheels.:"-2dit February; 0 months.
Mosks Hools, of Lixcoln's Inn, Gentleman, for "Certain Improvements in Tan. uing."-28th February ; 6 months.

Jome Laxion, of Mancheater, Surgeon, for "An improved Mole of obtaining Carbopate of Loed, commonly callal White Lead."-28th Pebruary; 6 monthu.
Richasd Whrtoce, of Elinburgh, Manufacturer, and Groror Chins, of the ame place, Colour Maker, for " Further Improvementa in the Procens and Apparatus for the Prodnction of Regular Figures or Pattorns in Carpeta andother Fabricn, in reletion to which s patent was grunted to the said Richarl Whytock, on the Bth September, 1832, and generilly in the mode of producing Party Colours on Yarns or Threads, of Wornted, Cotton, Silk, and other fibrous Subatances."-lat March; 6 mouth.
Monitz Platow, of Polandatreet, Oxfordetreet, Engineer, for " Improvementa in Pumps or Engines for raising or forcing Liquids."-6th March; 6 msonths.
John Dickson, of Brook street, Holborn, Engiceer, for "Certain Improvements in Rotatory Steam.Engines,"-64 March; 6 montha.
Aunuete Victoz Jonbph Bazon D'Asda, of Millman.streat, Bedford Row, for "Improvemants in producing or affording Light, which he denominates a Solar Light."-6h March; 8 monilh.
Walten Hancock, of Stratford, Esenx, Engineor, for "Certain Improvements in Stom-boilere and Condensors."- 6 ih March; 6 months.
Gzozor Robert D'Hazcourt, of Howland-street, Fitzroy-square, gentleman, for "Certain improped artificial Granite, Stone, Marble, or Concrete, in which asid invention neither Asplatic nor Bituminous' Substances are used."一 ©ith March; θ months.

Wr. Viceres, of Firihill, Sheffield, Merchant, for "A Mode of oblaining Tractive Power from Carriaqe-wheols under certain circumstances."-8th March; 6 months. Jonn Clask, of U'pper Thamesstreet, London, Fingineer, for "A New or Inpproved Form or Conatruction of a Leg and Foot for propelling Carrigges on Rail or Common Reads, and a new Combination or Arrangement of Machinery tor Locomotiva Carriages, by means wherwof the weight of the Lond to be carried is rendered applicalle as a part of the Power for moring or propelling the Carriage on which it is supported or reats."-6th March; 6 months.
Ceanlra Schavrault, of Cornhill, London, Genteman, for "An improred Mathod of Scualting Copper Ore.".-6th March; 6 months.
Onlanno Jones, of Rotherfieh'-street, Islington, Accountant, for "Improvementa in the Manufucture of Starch, and the converting of the Refuse arising in or from such Manufacture to divers useful parpowes."-6th March; 6 montha
Gromge Holwoztry Palmia, of Surrey-aquare, Old Kent-roud, Civil Engineer, and Gromoz Beatir Patirson, of Hoxton, Engineer, for "Certain Improvementa in Gas Motern"-Gth March; 6 inonths.
Thomas Horton, of Prince's End, Staftord, Boiler-maker, and Thomas Smith, of Horseley Heath, in the name county, Mine Agent, for "Certaiu Improvementa in the making or constructing of Chalas for Pits, Shaft, Mines, or othor purposes."-0th Mereh; 6 months.
Eowand Pond, of Liverpool, Builder, for "Certaid Improvementa in conducting the Menufecture of Salt Cake, or Sulphate of Sode or Hydrochloric, or other Acide and Alkalies, or other Chamical Proveasem, wherein Doloterious Vapourn are given off, and in the Erection of Furnaces and Works connected therewith."-8th Marcb; 8 monthe.
Johiag Cenistopare Gamale, of St. Helen's, Lancaster, Manufacturing Chemiat, for "Improvements in Apparatess for Lie Menufacture of Salphate of Sode, Murialic Acid, Chlorine and Cblorides."-14th March; imontlus.
Elisea Haydon Colliea, late of Boston, in America, but now of Globe Dock Fectary, Rochorhithe, Ciril Engineer, for "Improved Machinery for Manufacturing Naila,"-14ch March; 6 months.

Ceriatorame Nicgela, of Yorikroad, Lambeth, Manufacturer, fur "Improvement in the Modes of Manuffeturing of Pabrics from Linen, Woollen, Silk, and other Fibrous Materisle." 1 bth March; 0 months.
Richand Lama, o! Davidetreet, Southwark, Gentleman, for "Improvements in Apparatue for supplying Atmospheric Air in the iproduction of Light and Heat."16 hh March; 6 monthe.
Alryandar Pancin Camparli, of Great Plumatead, Norfolk, Eequire, and Cganles Write, of Norwich, Mechenic, for "Cortain Improvements in Houghs."18 h March; 6 months.

Taonas Henry RyLand, of Birningham, Screw Manufacturer, for an "Lmproved Menufacture of Scrows for Wood, in Iron, Brase, Copper, or Any mixed Metals, commonly known as Wood Serewn."-18th March; 6 montha.

John Ruthyen, and Mopris Wrst Ruthikn, of Edioburgh, Civil Engiuegts, tor "Improvementa in Boilers for generating Steam, economiaing Fnul, aud propelling Vomela by Stoam or other Power, and ventileting Veasels, and which may be applied to Mines and Buildings."-20h March; 6 months.
Edwasd Law, of Downhameroad, Kingalend, Gen leman, tur " Certain Improvemants in ovaporating Sea Water, and other Floide, and in the Manuacture of Salt."0.th Marth; 8 months.

Joselil Aneabury, of Burton-croscout, Surgeon, for "Cettain Apparatus for tho support of the Haman Body." 20th March; 6 months.
 provensenta in the Mennfacture of Ropee for Cables, and other parposes to which Ropen are applicable."-90th Merch ; 6 monthe

Grozoe Nelson, of Milverton, in the Conlaly of Warwiel, Cbemint, far a ${ }^{4}$ Nem or improved Method, or new or improved Methode of preparing Gelative, which has the Proportios of, or resemblea Glue."-23rd March; 6 months
Fighen Salter, of Hallingabury, Sussex, Farmar, for an "Improved Mechine eur winnowing and dresaing Corn aud other G rain."-2srd March; 8 months.
Edxund Butike Rowlet, of Menchester, Surgeon, for MAn improred Stram. engine, applicable to Locomotive, Marina, and Stationary Purpoem."-28ih Narch; 6 manths.

Richard Rozyats, of Manchentar, Engineor, for "An Improvement or certrin Improrements of, in, or applicable to the Mule Billy Jeany Stretching frame, or any Machine or Machines, howerer deaignated or napued, used in spinning Cotton, Wowl, or other Fibrous Substances, and in which either the Spindles receio from, and approach the Rollers, or uther Deliverers of the said fibrous Subatadies, or in which such Rollers or deliverarn recedo from, and approsch the Spindles, being an extension of former lottors putent for the term of moven years. "- 20 th March.

Joberb Lerabr, Junior, of Manchester, Calico Printer, for "Certain Improse neonts in the Art of Priuting Calicoes, Muslina, and other Woven Fabrics, and iu cortain Procasses conuected therewith." - 20th Murch ; 6 months.
Heney Montage Gzoven, of Boveney in the county of Buckingham, Clerk, for "Improvements in Brewing, by the U'se of a Meterial not hitherto so used."-26ih March; 6 months.

Eilisia Halic, of the United Staten of America, now of Leedonhall-atreet in the city of Loidon, for "Improvemente in Umbrellas and Parasols."-27u Marth 6 months.
Wilifay Newton, of 66, Chancery lane, in the county of Middeser, Cinl En givear, far "Cartain Impruved Machinary for cutting and remoring Earth, which Machinary is applicable to the digging of Canals, and the levelling of Gronnd far Railroeds, or ordinery Roals, and similar Earth Worice."-27th March; 0 monha.

MISCELLANEA.

Fire at Rome.-A letter from Rome of the 8th of February, states that on dual des the Palace occupied by Count de Lutzen, the Austrian Ambassador, wailmot entirely destrojeil by fire.

Bishop Heber's Slatue.-The statue of Biahop Heber has arrived safely at Calcutth and has been deposited in the Cathedral.-India Gusette.
St. Germain Railuray.-This railmay has declared a dividend for the year of eeron and half par cent-Galignani's Messenger.

Iudian Silier Mfiner.-C'apt. Drumwond and an experienced minar hare ben deputed to the district in the Himmalaya (the immediate range between the DHadi and the Gori) where nilver is mid to exist, to ascertain tho fact.-Asiatic Journal.

Lourre Exhibition.-The exhibition of the works of liring artives opened on the 2ud March, with ebout 8000 works from 1500 artists.

Danube Canal.-An article dated Bucharent, Jad. 18, repesta that the projest for uniling by a canal the Dunube end the Black' See, will be carried into execrtion in the courne of next spring, in virtue of an agreernent between England, Austria, and Turkey.-Times.
Kilcooley Abbey.-The fine old Gothic mansiou of Kileooley wis consumed to auhes last month. It wan insured for $£ 13,000$.-Kilkenny Journal.

Egyptian Antiquitiea.-- The Fgyptian government have appointed aboarl for the preservation of the national antiguities.
Horticultural Society - The Horticnltural Society are now erectiag a grind consarvatory at Chiswick on a very large micale.

London and Westainster Banh.-The cont of the bnildings and fitings is about S50,000.
13^{5}

ErRA隹A.

 effective pressure, and invernely as the density." read "as the equare root of the effective pressure, and inversely as the aquare ruot of the density.

Page 98, column 1, line 16 from the bottom, for "will be greater," scer, read "rill increase with the elastic force of the steam admitted into the cylinder in shigher ratio than if the elastic force of atsan were proportional to its density."

Pago 08, columu 2, line 8 after engravings, for $G=H \frac{A B}{2}$ read $C H=A B$
Page 104, column 2, line 2 after the table, for " sketched, read "stretched."
Pege 106, column 2, live 2 of 3rd paragraph, for "hydraulic lime," reed "ront crete."
Page 116, column 2, line 1, Statue to Mr. Stephonson, for "Bobert," reai " George.
Page 110, column 2, line 9, Eastern Counties Railway, for " 200 yaris per day. road " 2,000 yards per day."

TO CORRESPONDBNTE.

We have been obliged to postpone some of our conmmaications and reriens until next month. We shall feel obliged to correapondents who may send dravings accompanying their communications, that they forward them early is the month.

We masi apologise to our architectural friends for a deficiency of engravings so L. nected with architecture. Wo intended to hare given the drawiog" of the "Are de I'Etoile," but in consequence of the considerable work in them, our rood eagraris conlu not hare them ready for the present number. They will be giren in cur pext

We shall feel obliged to our country correspondents if they will forward ns any acconnt of worka in progrees, or any nowspaper contaiuing articles connecled wibl the objocts of our Journh.

ATC DE LETOILE,

AT PARIS.

Scale of Freuich Xetres.

Notz - A Fribeh Netre is pqaal to 3-2300 Feet, or 3 Feet 31 Inches.
No. 20. - VoL II. - MaY, 1839.

Fig. 2.-SECTION THROUGA THE CENTRE OF THE ARCHWAY.

THE ARC DE L'ETOILE, AT PARIS.
Between the commencement and the completion of this stupendons mnnumental structure, just thirly years elapsed-in the course of which memorable period, the Napoleon dynasty crumbled away with a celerity equal to that of its rise. Of the many designs for it subnuitted to the then government, those of Raymond and of Chalgrin obtained the preference. That by the former of these architects, proposed twelve conpled Corinthian columns on each of the sides, supporting a magnificent entablature, on which would have been as many statues symbolical of the different cities that had been taken by the French, and between these, bas-reliefs of the chief victories. The interior would have been divided into four masses on its plan, by the principal archway or vauiting being intersected by the transverse one; and the design further pruposed that there should be seven halls in the upper part of the structure; viz., three smaller ones on each side, and a larger one in the direction of the principal arch.

Chalgrin's plan was tnuch more simple, though it reeembled is other in its general disposition; nameiy, in having two intersectiva vaults, and consequently an arch on each of its four froes.

Even before it was decided which of the two desigos shoald bo ultimately adopted, preparations were made for carrying one of cumr of them into execution, and the first stone was laid Augest 15th 1800. The foundations, which are 8 metres in depth, and 28 in brostiu (or 3 fraction more than 26 and 91 English feet, respectively) and aro fromed of blocks of Cyclopean masonry, were already far adranced when Ray. mond, whose leading illeas it had been determined to adopt, remolme rather to have nothing to do with the work, than consent to the aluar tions it was proposed to make in his designs. He aceortiogly give op his appointment as architect, in 1809 ; por did he long sarvist the chagrin he felt on the occasion.

Chalgrin, hitherto only adjonet to the primeipal arehitect, wor proceeded with the work according to bis own ident, and with all

Fig, 3.-The Ground Plad of one of the Piers.
Pig. 4.-Half the Plan of Upper Story.

alecrity, that they had reached the height of more than twenty feet sbove the ground, when, iu consequence of Napoleon's union with Maris Louisa, he was commanded tumake some alterations in his designs with regard to the subjects of some of the reliefs, \&c., but without ioterfering with the general idea for the monument. On Maria Lonise's entry into Paris, it was temporarily compieted by a framemork of timber ruised upon it, covered with canvass, painted to ruemble the decorations; and on this impromptu construction being remored, the works were prosecuted with all possible dispatch. Chalgrio, however, died in January, 1811, and was succeeeded by Goust, who continued the edifice conformab y with the designs of his predecemor, till 1814, at which time it had been carritd up as far as the impostn of the arch. Then came the reverse, whose history may be summed up in the four disastrous words-Moscon, Elba, Waterloo, St. Helena.
After a pause of nine years, it was resolved in 1823 lo proceed affesh with the work, but to convert it into a monament of the Duc d'Angroleme's Spanish campaign; andamong the alterations in consequence proposed, it was considurel expedient to remove thempedestals on each wide of the arch to the centre of the piers. Accordingly, both Goust and Buyot offered p:ans for that purpose ; and Huyot's was the one secepted by the committee, consisting of Tournon, Hericourt de Thery, Quatremere de Quincy, add Percier. This was, however, after-* varde at asi.e, and Goust was ordered to proceed according to Chalgrin's plan. But in 1825 be was superseded by Huyor, nad he hadearried op the building as far as the attic, which be intended to be decorated with thirty stalises on lofty perlestals, connected by 20 open banetrade; when the political events of 1830 interfered, and Louis Pliilppe ordered that the monument should record all the exploits of in French armies, from 1792 in 1815 . Huyot was dismissed, and Blowet, bis succensor, completed the monument as it now exists. Bat Chalgrin's idea, which he recommended should be carried into execulion, and acoording to which the whole rould have been surmoanted by a frue of Victory, in a car drawn by six horses, has not been realised. Altbongh the reliefs and other scuiptures are in themselves the most important features in the monnment, which, independently of such deconeson, aod lus colossal vastness, has nothing particularly striking in its deaign, we mall not enumerate liseir several subjcels, which would afier
all be a mere catalogue of names. In regard to them, therefore, we will merely state that M. Thiery, arench architect, is engaged upon a large descriptive monograph, in which ail the details and ornaments will be fully exhibited ingether with the constructive details, and the changes that were made from time to time in the works. We must not, however, omit to specify its principal dimensions; which, for the sake of greater convenience, we here give in a tabular form, both in metres and English feet :-

	metati	remt	mecres
Entise Height	49.483	162	4
Breadth	44.820	147	
Depth or Literal Breadth	22.200	73	
Height of Large Arch	29.420	96	6
Width of ditto	14.620	47	10
Height of Small or Lateral Arches	18.630	6	1
Width of ditto.	8.440	27	7

According to a return of the Miaister of the Interior, made up to December, 1896, the total disbursements frum 1806 to 1896 were $10,691,098$ francs 91 cent. From this sum deductions must be mede for altertations, caused by political changes 876,245 francs 83 cens. and for the ternporary canvass erection on the marriage of the Emperor 511,345 francs 29 cent. or $1,387,591$ francs 12 cent. Thus the arch property cost $9,303,507$ francs 79 cent. (372,140l.) ; of which four millions were spent under the Emperor, three millions under the Rentoration, and under Louis Phillipfe, three millions. The gasfittings cost 38,464 francs 50 cent. or 15381 .
The best way of estimating the cffect of such extraordinary dimensiens, is to refer to some well-inown object that will furnish a direct comparison in regard to size, and we find such comparison ready made to our purpose, in the second volume of the "Illustrations of the Public Buildings of London," (p.216,) where, speaking of Temple-bar, the Editor remarks that the whole of it, "with another building of the same dinensions above it might be comprised within the opening of the large arch of the Barriére de l'Etoile!" Looking therefore at Temple-bar, we may, without difficulty, form an adequate conception of the vast scale of the French monument, particularly when we take into consideration its dimensions in regard to depth, which are such,
that the void of the grent arch would contain eight Temple-bars, that is, four placed one behind the other, und ns many above them. How prodigious then must be the entire mass: Here akain we miny have recourse to comparison, and when we state that the lieight of this mass of architecture is only nbout twenty feet lower than that of the spire of $\mathbf{S t}$. Martin's church (measured from the street puvoment), and that the clock of the latter would just be on a line with the architrave of the Arc de l'Etoile, something like a feeling of a atonishment will be excited.

It would be interssting to delineate this monument, and some of our ownedifices drawn to the same acsle; and were we to do so with reyard to the Strand front of Somepset-house, we ahould find that even in width, it is lese than the edifice at Paris, and that, though composed of an order on a lofty basenient, its cornice is not quite so high as the groups of sculpture placed on each side of the arch. Consequenty, in this case, we should have to imugine more than another mass equal to the Sirand building of Somerset-ptace, reared above the one we now behoid. If wetake the Banqueting-house, Whitehall, one of the Ioficest of onr huifdings, exclusive of such structures ns steeples and spires, we find that it is not higher than the impost of the arch, which being the case, it is easy to juigge how diminutive even the Railway terninus in Euston-square would nppear liy the side of this colossal pule, the rop of its pediment being about six feet lower than the Banquetin t house. It is true we have several façades (among others, that of the Post-office), which, in mere length, greatly surpasses the siructure we are speaking of ; but they are altopether differentin character-display nothing of the anme ninss, or of the same scale of magnitude, being produced merely by continuation, without any amplification of the parts themselves. Hrre every thing is on the most gigantic scale, the very bas-reliefs in the panels being equal to one entire side of a large room; while each of the four piers formed by the two smaller arches iuter secting the large one transversely in the p lan, is cqual to a very lofty house, w ith a frontage of 50 feet one way, and 25 the wher.

RALPH REDIVIVUS.-No. XVI.

TEE PIMLICO LITERARYINBTJTUTUN, E日UETETREET.

In making choice of this building, for my present article, it is not so much with the intention of contining myself to it for my subject, as with that of taking it as a theme upon which I may enlarge with respect to one peculiarity in it. Very probably some of my readers mav have never heard of it before, and will therefore wonder not a little that I should condescend to waste any words upon a piece of such utter obscureness; and among them there may be those who will give me credit for being wicked enough to drag it forth into notice, for no other purpose than that of unsparingly ridiculing sonse poor abortive attempt at design which every body else would consider to be beneath criticism.

It must be confessed, the building itself has nothing at all in it to arrest the attention of persons in general, more than any thing else of the same kind and size; nor is it at all improbable that many have passed it without even so much as noticing the peculiarity for the sake of which it is that I am chiefly induced to speak of it. In the general elevation there is little remarkable, it being litule more than a pleasing composition in the Grecian Doric style;-a distyle in antis, with a lower and narrower lateral porti.n or wing on each side of the loggia. Although, as far as decoration is concerned, these lastmentioned parts contribute little or nothing to the design, they have considerable value in it, both by giving character to it, and by produring an agreeable contrast of solid and void, and liglit and shade. It is to the back-ground behind the external elevation,-to the inner part of the loggia we must look for that which confers novelty on this small fuçade, and distinguishes it from every thing else of its kind ; namely, the screen or low wall carried up little higher than the diorway placed in it; besides which the light is partially admitted at the sides or ends of the loggia between small square pillars. placed on the level of the rop of the scteen. Few and simple as they are, these circumstunces impart to the whole a newness, a playfulness and picturesqueness of appearance that may be pronounced almost fascinating, when compared with the unvaried sameness that pervades all our imitations of Grecian architecture, and allows of no other diversity than what arises fiom the order employed, and its accompanying detrills. It is true, the façade portheos of the Greeks themselves exhibited $s 0$ very little variety that they may be deacribed as all of them conformlng to one common established noodel, without other distinctions than those attendiug the columus and eutablature, and the greater and lesser nutnher of the former. Yet thin consrant repetition of one and the samt idea merely a litile differently modified, was not, I conceive, so much a merit as a defect in Grecian architecture; nor is it any

vidually, each example was excellent. We may have too much, eren of a good thing : toujours perdrix is a most unpalateable dish.

It is owing to this monotony that now its first novelty is worn away, the Grecian style has of late begun to be abandoned for others. Instead of endeavouring to infuse grenter variety and freedom into it, our architects have practically abridged its tether still more, and reduced its orders to mere stereotype fac-similies of certain exainples; whereas, although adhering almost without exception to one uniform plan, even the Greeks allowed themselves some little liberty in regard to matters of detail: nay, so far are we from aiming at any fresh combiostion resulting from plan, that I cannot call to recollection any one portio, where inner columus have been placed behind those in front, for which at least there is sufficient precedent in Grrecian buildings to satisfy the most timid and scrupulous. So far then we may be said rather sedulously to shun what is almost the only source of variety, or if not the only, the ehief one in Grecian architecture; reducing every design for a portico to a mere line of columns before a wall, winh no other difference than what is occasioned by there being windows of not, or by there being either a single door, or a principal aud lesser ones. All that is done beyond this consists in occasionally mating the portico recede within the building, as well as project from it ; of whid we have instances in those of the Post-office and the London University. At that point we stop.

One solitary example, however, of a single step firtber being taken, does now occur to me, and it is that furnished by the interior of the . portico of the National Gallery, where there are two columns within the break or recess containing the central doorway; yet, althongh as far as it goes, this circumstance alone produces considerable richnes. it hardly shows itself from without, until we begin to ascend the steps; because, owing to the portico being so elevated, it is almost concealed from the spectator when he is close to it, while seen at a distance all between the outer columns is veiled in obscurity.

With no more than these two instances before us, viz., the Natotal Gallery and the Pimlico Institution, it is easy to perceive what parious modifications and combinations might be obtained; the variety attending the furmer being that given to the horizontal lines or ground plan, while in the other case, it lies in the seccion or vertical plan, buth which species of variety might be resorted to, wherever a mote piquant effect than would be attainable by employing only one of them was aimed at.

In order to render this more intelligible by something like diret exemplification of the principle recommended, -and unless I doso people will hardly be at the pains of giving it any serious considerationI will here briefly point out one or two of the vumerous combination that may be obtained as soon as we break through the dull and weorsome fashion of placing one uniform plain wall belind columm, whone blankness is interrupted merely by the entrance or entradces. After admitting the screen in its simplest form-in which it presents itcen at the Pimlico Institution; the next step would be to hestom soxe decoration on it, and to place either a statue or large bust in the centre over the doorway. It still remains, however, a simple screet, dividing the lower part of the portico into an inner and an onter one. We must not stop here, or if we do we sliall lese not only that rariet? which serves to distinguish one design for another, but also those entrasts and complex effects which may be brought into a single desizn. It will be desirable therefore to admit square columons behind those is front, between the lower part of whose slisafts the screen wowld the in serted; another mode would be to employ columus, f.lacing them either immediately before or belind the screen, and eccasionally to combine both modes, letting columns be seen beyond it, as weil as in front of it; other variations pfesent themselyes in regard to the sereen itself, sine it does not follow that it must needs be of uniform height throughoutfor whether it be divided into inter-columns or not, it may rise up in the centre where the entrance is placed, so that its fascia sluall there coimcide with the cornice of the doorway. Neither is there ocension that such screen should invariably be carried the width of the inner elention of the portico: on the contrary, it might somelimes be confined to the centre, on vice versa; the doortay, in the latter case, being pheed in a wall carried up to the soffit of the general architrave. Light, agtis, miglit occasionally be thrown upon the part seen herond the screen, either from the side or from above; which would certainly greatly enhanee the effect, and produce that kined of display of which we have as yen no instance whatever; and if I may be allowed the tiberty of pointint out a portico where something of this kind could thave been iplom duced without going at all out of the way in order to obtain it, 1 woull refer to the portico of the Post-office, where had the compartmentia which the great door is placed been separated from the hall merely by a screen carried up as high as the consoles against the jambs of tian doerway, - which would have been even more economical than the piesent wall, - the upper part of the liall and its columas would bat
been seen over it in such manner as to produce a striking anchitectural sene. In fact, so much noveliy, so many combinations, might be thus produced, that although not at all difficult, it would be tiresome to point them out more particularly.

That any one will be induced by what I have said to take thrse ungestions into deliberate consideration, is what I do not expect: well am I aware that I migi,t all this while just as well have been "whistling jigs to the moon." Most people turn up their noses at "adrice gratis,"-architects among the rest : therefore they must go on to the end of the chapter, with their single row of copied columns in front, which constitute their classical porticos. All I have to remark is, that the sooner they conse to the end of that very dull chapter, the better.

CANDIDUS'S NOTE-BOOK.

FASCICULUS IV.

I must have liberty
Withal, as large a charter as the winds
To blow on whom I please.

1. Mnst persons seem to think that they have a right, when building. to commit what ever vagaries they please, and that it is excessively impertisent in any one to impugn their taste, be it ever so absurd. Certainly the legal glat cannot be disputed : legislation, which touches every thing else in this conntry, where freedom consists in the liberty of making some new shacklea for ourselves every day, has not as yet laid its lands upon taste. In building, a man has a most unquestionable riglit to please limself-if he can, whether be so pleases his neighbours or not ; yet so has he a right to wear either his own nightcap or his wife's bonnet instead of a hat; and other persons have the right to lough at him as much as they please in their turn.
II. For an experiment in polychromy on such a scale as should atisfactorily determine how far it is really valuable, how far consistent with good raste or the contrary, we have nothing so suitable as the York Colomn. In fact, it could not have been more so had the architect exprosuly intended it to be so finished up, for at present it strikes quite as mach by its bareness, and the utter absence of all decoration as by anything else. There are several circumstances which recommend it-I might say, plainly point it out as a fitting architectural subject for such purpose : its being iusulated in such manner, and its being of such form, that the effect which might be produced could not possibly violently interfere with any thing else : further, its being precisely the kind of structure to orm nment which may be applied unsparingly, with the greates propriety, or, rather, one which absolutely demands it. Yet, although Ine of opinion that the experiment might be made with perfect safety ato the result, by no means monld I advise that it should be a haphasard one : on the contrary, if it was int ded that it should succeed, the utmost study should be given to it beforeland. A model, at least ten or twelve feet high, ought to be prepared,-oue capable of showing dia minutext details of every piece of ornament; and this should not only exhibit the precise colours, but the same pigmente which aresmployed in polychromy. So, then. I actually propose that the poor York Column Hould not be whitewashed-as some have fancied Westminster Abbey ought to be-but daubed over of as many colours as a Harlequin's jecket displaye, by way of introducing the outlandish architectural foskion termed polychromy? To be sure I do:-though, of course, the "daubing" and the "Harlequin's jacket," would be re-echoed from all sides against such a scheme. It is hardly worth while to discuss how far painting and daubing are one and ule same operation; besides which, it might lead to some excessively odorous comparisons; but, as for the Harifquin's jacket, I enter my solemn protest against that comparison, which, were I to fling it any where I should fling at some of Turner's blue and brimstone pictures-daubings, I had almost said. No. I an of npioion that greys and warm neutral tints, with an inter minture of light bronze-colour, sparingly relieved by touches here and there of different brillinat hues, would be most suitable; if properly managed would produce soberness without dulluess, and sufficient eargy and vivacity, without either crudeness or garrish glare. The pasitive colours ought perhaps to be applied to the grounds of the arnameats, rather than the ornaments themseives, in such manner as that these latter would appear a rich broidery of figures, foliage, and other embellishments, through whose interstices differently colonred surfaces ronld apperar. As to the arrangement of the ornameuts, they should te in horizoutal cones, whether with plain spaces between them or not; but certainly dot in a continuous spiral from top to bottom. My projea in a very excellent and a very feasible one, and would certainly be renlied to-morrow, were 1 but lucky enough to pick up Fortunatus' -istingrep to-night.
III. It there be any truth at all in any of the representations I have seen of Abbotsfori, it is but a sad sample of Sir Walter Scott's taste, being a most Brummagem piece of architecture and antiquarianism, hardly a whit superior to Srawberry Hill. In the print he gives of the house, Diludin makes it a complete architectural scarecrow, such a mot: ley and beegarly jumble of odde and ends, that its look is any thing but inspiring. It is wonderfully anti-poetical in the fancy it exhibite, so muclis so, that one would imagine it to have been built by some retired cheesemonger, or other vulgarian of that grade. Had such been the case, its ugliness would have been a by-word to all the world. Nıw, if the public insist upon deifying Sir Walter, well and good; but as for Abbotsford, we may surely be allowed to give the taste shown in it. if not the house itself, to the devil.
IV. The author of the "Original" has some very peeuliar notions on ti:e subject of dining-rooms ; one or two to which I cordially assent, others fiom which I as endially differ. I admire the perfect good sense with which he is satiricalat the expense of those would-be-tlought genteel people who make the giving a dinneran affair of fidget and fussiness. and thereby often entertain their good-natured friends very far more than they intend to do. From the very firat you perceive the extraordinary state of things: all is masquerade, exeept the whole absurdity of the business-which stares you in the face withont any disguise. But this is a mubject I must turn over to Boz-who, I presume, is capable of doing it justice; and who, for aught I can tell, may have excercised his talent upon it already-for were I to allow myseff to run on upon in there would be no apace for any thing else in this number of the Journal. But all this is merely a scoppata.

Agreeing with Mr. Walker, that dining-rooms in London are in general very tasteless and uninspiring, I do not enter into his notions for rendering them otherwise ; neither do I at all approve of attempting to estublish rules, which however suitable they may be in some casesor even the majority of them-may prove quite the reverse in others. The only rule that ought invariably to be adhered to is to provide a side-board alcove ; for without this, instead of appearing to have been originally intended for its purpose, the room will appear to be merely made use of for dining in, for want of one better adapted to the purpose. Although proferable to none at all, a mere shallow recess for the sidehoard is little better than an apology for one. The recess ought to be deeper than the side-board itself, so as to have the appearance of being a space added to the room, capable of containing, besides the sideboard itself, whatever it may be convenient to have at hand during the time of dinner. If this be atteuded to there will always be a certain degree of character and effect independently of any thing else; besides which, within a deep alcove there can be a door through which servants can go in and out with less interruption to those at table than otherwise; and if the recess be wider within than towards the room, so that such door be more or less conccaled from view, all the better. But whatever others may think of it, I certainly do not at all approve of the worthy magistrate's whimsical idea of a 'quiet littla kitchen immediately adjoining the dinipg-room, and communicating with it by an entrance close to the side-board, closed during the process of dinner by a curtain only! I have no objection to his fixing the number of eight as the maximum for a comfortable dinner-party, if merely because that regulation would effectually prevent the nisfortune of there being thirteen at table; neither do I quarrel with him for recommending the least powible number of attendants, it being anything but agreeable to have a regiment of flunkies crowding the room, and reconnoitring the com, rany during the whole of their feeding-time. On the other hand, I certainly aee no reason whatever fur the arbitrary rule which would restrict the width of the room to what is just sufficient to allow the attendants to pass round the table without jostling against each other; in other words, the room ought, according to Mr. Walker, to be invariably a very narrow one.

This is absurd enough : and, in fact, all restrictions and positive rules in regard to colour, decoration, and other matters of a similar kind, are not only useless, but worse than useless; because were they attended to they would put every dining-room into a standard uniform, which is anything but desirable for there is at present far more monotony and sameness than one would wish to meet with. We rather want variety; and there is certainly ample scope for it. The only rule which ouglit to be received as applicable in all cases, without exception, is that evieby thino ouoht to be consistent thmodgout, to be in excellent taste, and to paoduce ab much effect as the actoal dESION wILL ADMIT OF. Instead of fettering the artist, and putting his ideas on a Procrustean bed, this rule leaves him at perfect liberty. So far from being required to be invariably sober, modest, chaste, or whatever else of the kind we style it, a dining-room may be as splendid as any other apartment in a house ; with this diference, that its splendour must differ in kind from that of the drawing room and boudoirs. In fact, sumptuousness, rather than the contrary, ought, in many cases,
to be the prevailing character, especially where there is a prodigal display of plate. Nor by sumptuousness do I mean gaudiness : bout aus contraire, the former may be made to exclude the latter. Let there be, for instance, in order to give something like a positive and tangible example, a deep alcore-semicircular perhaps in plan-lined with draperiea of purple velvet, to relieve the gold and silver plate on the side-board. Give this alcove a double screen of white marble or scagliola columns in front, between which would be placed lofty candelabra. The walls might be incrusted with scagliola of a darker tint than the shafts of the columns. The window draperies would of course match those of the alcove, at least in material, supposing a different colour to be selected for them ;-ceiling of an architectural design, either simply white and gold, or relieved by colours in its lacuuaria;-for ornamental furniture against the walls, we would have marble pedestals alternately supporting lesser candelabra, and gilt or alabaster vases filled with a profusion of flowers-but mind, artificial ones. Now I conceive that if properly arranged, so as to avoid all appearance of crowding together more than the space would allow, the kind of effect might be produced which would not at all be out of character for a dining-room, namely, the Festal. As for Mr. Walker's nice quiet little kitchen, I will take the liberty of shoving that under the dining-table.

RAILWAY CURVES.

Ste,-Like your correspondents in the journals for January and Maroh, I have been employed in making out Railway Carves; but in a conntry extremely unfavorable to the formation of railways, both as respects gradients and curves, and where, consequently, inclinations of one $\ln 200$ or 300 , and curres of one quarter mile radii, are looked on as favourable. On sharp curver, you must be aware, it is necossary to stevate the outer or longer side, one, two, three, or even mare joches, above the other, in order to as ist the cariages in travelling round them. In short, without such a practice, curves of nhort radius woukd be impasaible. But as the one rail must be raised above the level of the othor gradually, and as gradu illy desce:id to the level of the sume, the difference of level must be the greatest in the centre of the eurve, and therefore the tendency of the carriages to fly off the ralk, will, so far as it is affected by these means, be least towards the centre of the curve; or, in other words, to make that tendency uniform throughout, the curve must be made shaupest at its centre, and therefore leave the siraight line at a larger radins than it afterwards assumes; as recommended by your first correspondent: but, as in cuives of a mile or two radius, this reason does not obtain, I must agree with your subeequent correspondent on the subject, that, in general, the practice under diecussion would be not only useless but injurious.
By the raising the onter rail of a eurve above the inner, I know of a reiimas curve (of tine ordinary 4 feet 84 inch gauge) of only 5 chains redius, which is readily passable by locomotive and train; and a curve of about 1 \& chains radius on the same railway round which (thougb certainiy with considerable difficulty) heavy waggons are daily pulled by horses.
I know nothing of the modes usually adopted on laying ont railway curves, therefure, for what I know, what follows may be unworthy of notice on account of novelty ; but, for the sake of your junior readers, may possibly be worthy of insertion in your widely extending jonral.
$1 \mathrm{am}, \mathrm{Slr}$, very respectfally, yeur obedient servant, B. W. T.

1.- To mark out a curve of äcertain given redius.

Let AB be the straight line of a railway, B the proint where the carm is intended to commence. BC, 1$) \mathrm{C}$, \&o. radii of the curte to be described, $\mathrm{D} \boldsymbol{d}$ the deriation from the straight line at the end of sty convenient length $B d$, then $C d^{2}$ or $(C D+D d)^{2}=C B^{2}+B d$ or $\mathrm{CD}+\mathrm{D} d=\sqrt{\mathrm{CB}^{2}+1 d^{2}}$ i.e. $\mathrm{D} d=\sqrt{\mathrm{CB}^{2}+\mathrm{E} d^{2}}-\mathrm{CB}$, produce BD to e, making $\mathrm{De}=\mathrm{Bd}$, and draw TD t a tangex to the curve at the point D, then the triangle TDB will be $=$ add similar to the triangle D Bd, and the angle TD B is $=$ the engle D t being vertical; also $T D=i D$ and $C B, C D, \& c$., being very grex io comparison with BD, DE, \&ec., the triangles DiE, Det may becoosidered practically equal and similar, and therefore $\mathrm{E} t=t e=\mathrm{D} d o$ $\mathrm{E} e=2 \mathrm{D} d$, which may be found by the above formula, where CB ; the radiu: of the proposed curve, and $B d$, any conveniest leagth bet ween the several points B, D, E, \&c., is to be found.

The rule in words at length may be expressed as follows :-Add together the square of the radius and the square of the distanee apert of the points to be found in the proposed curve; take the square root of their sum, and take from it their radius: the result will be the amount of deviation from the atraight line in the given length-n hish will give the first point of the curve; after which the deviatios be doubled, to render the curve uniform.

2 - To change from a greater to a smaller radius, or vice wasc.
Suppose at the point F the curve changes its radius, having now the shorter radius F G, it is evident the curves RDEF and FRI, should have a common tangent at F, which tangerithe ground) by taking $\mathrm{E} t=\frac{1}{\frac{1}{2}} \mathrm{E} e$, and $t \mathrm{~F}$ will be the common tangent, then the direction of the tangent $t \mathrm{Fh}$ being found, the amonot of deviation ($h \mathrm{H}$) for the length $\mathrm{F} h$ and radius $\mathbf{G H}$ may be found a before; then by producing FH to i, and making the deviation Ii double $\mathrm{H} h$, another point I of the curve is found. In practice Ii \&c. may be measured at right angles to $\mathbf{F H i}$, \&c., the figures of course, being very much distorted; thereby rendering the angle $H i I$, which in protice might be taken as a rigbt angle.

3.- To describe an S curve.

Suppose I te, be the point at which the curve clanges; then the curves FHI and I J K must have a common tangent at I, which can be found as before; also the deviation $\mathrm{J} ;$, which being doubled, any undber of points, as K, L, may be found.

SKEW ARCHES.

Sir-The usual method of obtaining the spiral courses, in draviag of skew arches, is productive of much labour.
I have been led to believe that the following plan is much simpler. more expeditious, and consequently easier of comprehension; and although the same idea may possibly have occurred to others, it mu! not be so generally known as to be entirely unacceptable.

A spiral is defined as beif a line traced upon the surface of a çlio. der, by the extremity of a revolving radius, which radius bas alko 1 uniform motion along the axis.

Let AB, fig 1, be a cylinder, and DE any line making an ame angle with the axis, it is evident that the line $D E$, is the locma of point having a uniform motion, in each of the dinections DB, DF, wad if the line DE be wrapped round the cylinder, it will still posers the same property, only that the motion in the direction DF, will be trasformed to a motion round the cylinder, and the line will thas beome a spiral.
I have said this in order to show, as clearly as possible, that a stright line, when wrapped round a cylinder, produces a curve conformiag to the definition of a true spiral, and wili now proceed to explein dh simplest method I have fonnd of projecting this curve.
If a piece of paper, having a atraight edge, represented by the lion DE, be rolled round a cylinder, it will be fonad that all the points B, K, \&c. will approsech the cylinder, in vertical planes perpendicestat
fie aris, the edges of which planes are represented by the lines LH, MR.
Hence it will he seen, that to ascertain the position of any point H , when the line DE is wrapped round the cylinder, we have only to wrep rontod the line LH; this may easily be done by drawing an end rew G, of the cylinder, and taking NP equal to LH, finding NH' the loagth of the curve equal to $N P,{ }^{\circ}$ and projecting the point H^{\prime} to $\mathrm{H}^{\prime \prime}$, we obtain the position that H will occupy upon the cylinder. In the mem manner all the points in the curve mas be found.
We dow come to the practical application.

Pig. 2-Let ABCD denote the ontlines of the plan of the soffit of a skew arch, and let EFG be drawn making the proper angle \dagger with the fres.
Then by the plan I have just described, the line EG may be wrapped round the cylinder, and $\mathrm{E}^{\prime} \mathrm{FG}^{\prime}$ the curve generated, will represent one of the spiral courses. Now each of the courses of a skew arcla would, if produced, wrap itself round the cylinder, and present a curve similar to $\mathrm{E}^{\prime} \mathrm{FG}^{\prime}$, hence every one of the courses of the arch will be a portion of this curve ; if, then, a monld be cut to the curve $\mathrm{E}^{\prime} \mathrm{FG}^{\prime}$, it is evident that by setting on the proper distances, along the lines $A G^{\prime} E^{\prime} C$, and applying the mould to the correspouding points, all the courses way be drawn, as shown on the figure, with little trouble.
I velieve the common practice is to project each of these joints on the soffit separately; where the arch is brick, and each course shown, this is a work of minch labour.
The same principle, with a little modification, is applicable to the other riews of the arch, more particularly to the outline of the develepement of the soffit, only that in this case the operation is unrolling isutead of rolling the line.
In case any may not understand the preceding explanations, I vould recommend those who feel interested in the matter to try the experiments with the paper and wooden roller, and they will quickly perceive the principle.
B. 5 G. Rai/2cay-office, Your's obediently, Worcuster.
H. Spencer.

PLYMOUTH BREAKWATER.

A commanicatton from Sir John Renniz to T'. L. Donaldson, Esq., Hon. Sec., read before the Institute of British Architects, A pril Ilth, 1839.
Dandira,-I have the greateat pleasure in complying with your request, relative to the construction of the Breakwater in Plymouth Snond, and I shall always be extremely happy to forward the views of the the Royal Institute of British Architects in any way which may be considered most conducive to the welfare of that valuable society, in which you take such a laudable interest, and only regret ibat your application of yesterday had not been communicated to me earlier, in order that I might have been enabled to render the following aceount more complete, and more worthy of the society; and as I bave written this chiefly from memory as far as the shortness of the time would allow, I trust that every allowance will be made for any onimion, as I am about publishing a work apon Harbours, in which the sabject will be more fully explained hereafter: and I entirely $3 / r 0$ with you, that although strictly speaking, work like the Breakwater may not generally come within the range of civil arectisecture as now practised; nevertheless it is to be hoped that the zody of it may be found not altogether unprofitable; the more so, as Yitruvius, the earliest founder of the art, includes a knowledge of these tpd of works among the necessary acquirements of the architects. I atall now, therefore, proceed to the deseription of the work in tmation.

[^7]Plymonth Sound, from its extent, its depth of water, the numerons ereeks and rivers which discharge themselves into its bosom, and its proximity to the Atlantic Ocean, had long pointed itself out as one of the principal stations for the British navy; and at an early period of our history, Devonport was selected as the chief port for fitting out vessels of war for the western portion of the kingdoin; and althongh on account of the exposed nature of Plymouth Sound, a certain degree of inconvenience was more or less experienced during the infancy of the British navy, nevertheless, it nover became so apparent until the tremendous conflict of the last war, when it becarne absolutely necessary for self defence to increase our fleet to that extent, that more than ordinary accommodation became necessary; it was then that the danger and inconvenience of the Sound became most apparent, and imperiously called for a rementy; various idess had been suggented, and numerous plans proposed to obviate the existing evils, natil at last the Admiralty applied to the late Mr. Rennie, my father, who proposed to erect a detached or isolated breakwater in the centre of the Sound, which, after a great deal of discussion and opposition, was finally approved of, adopted, and ordered to be carried into effect ; and the first stone was accordingly deposited in the summer of 1812. The reasons for adopting the isolated or detached Break. water were ; first, because this part of the Sound was already obstructed, and to a considerable extent rendered unnavigable by the Panther, Shovel, and Tucker rocks: secondly, by placing it in the centre of the Sound, there would be an entrance at each end available for veasele to take advantage of either an easterly or westerly wind, which would considerably facilitate their entrance or departure to or from port: thirdly, by having two entrances there would be a greater facility for the reception, and discharge of the tidal and fresh watera, and thus maintain a more general and equal circulation of the current throughont the estnary and its various receptacles, and prevent the deposit and accumulation of medimentary matter, with which the waters are more or leas charged; and thus, whilst protection againat storms would be gained, the depth would still be maintaine3, whieh constitutes one, if not the most difficult problem in the construction of harbours. The correctness of Mr. Rennie's decision has been fully corroborated by the result, for, contrary to general anticipation, the depth of the Sound has not been found to decrease, but rather to augment; as otherwise, although the embankment of several maralee over which the tide used formerly to flow, and thus to contribute and augment the scour or backwater, might reasonably have been mupposed to hare produced a different result, and should if possible have been avoided.

Fig. 1.-Plan of Breakwater.

Scale of yards, each divison 100 yardg.

The span between A B, or eastern arm, is about 10 feet above low weter spring-tide : \mathbf{B} to \mathbf{C} is finivhed with rubble;-C to D is to be fraished wh masonry;-D to E is finished with masonry.

Fig. 9.-Transverse mection of the faished part of the Breakwater.

Scale of feet, each division 10 feet.

AA. High water spring-tides;-BB, Low water spring-tides;-CC. Original boltom, varylug from 40 to 45 feet below low water mark;-D, The Porehhore;-E, Sea slope;-F, Top 45 feet wide.

The first atone was deposited Ausust 12, 1812,

Total . 3,283,713

By referring to the plan, it will be seen that the Breakwater is composed of three arms, the centre being 1,000 yards, and the two onter arms 950 yards each, aṇd inclines at an angle of 20 deerrees to the main arm, and comprehending a total leagth of 1,700 gerds it
top, or 1,770 yards, or one mile, at the low water line. The exterior slope or inclination taken below the line of low water has been left for the sea to form, and is found to be at from three to four feet horizontal to one foot perpendicular, and in parts rather steeper, but from low water upwards, which has been set artifically, it is flve horizontal to one perpendicular. The inner slope or that next to the land is nearly two feat horizontal to one foot perpendicular from the base to the top, which is two feet above high water of spring tides, and forty-flve feet wide, rising one foot addilional towards the centre. In addition to the sea slope above described, by referring to the drawings, it will be seen that there is an exterior berne or foreshore thirty feet wide, at the extremity of the east end, fifty feet wide in the centre, and seventy feet wide at the extreme went end. This foreshore, it will be seen, rises from the toe or base of the outer slope to about five feet above low water at its outer extremity, and serves to break the waves before arriving at the main body of the work, and thus diminish their force, and at the same time to prevent the recoil or back stroke of the wave from undermining the toe or base of the slope, and thus making a breach in the body of the work, which at times might otherwise occur to a certain extent. Towards the centre of the inner slope or face of the Breakwater (see fig. 1.), it will bo seen, that there is a small jetty with a double returned head, for the purpose of enabling boats to land under protection. At the western exiremity it will be seen that there is a circular head 570 feet diameter, upon which there is to be constructed hereafer a lighthouse, so designed as to throw a complete light over the entrance, at the same time to point out the anchorage, so that vessels entering at night may come to their moorings with the greatest facility, without fear of running foul of any slips which may already be there. The general depth where the Breakwater is placed varies from thirty-six to sixty feet at low water of spring tides, which gencrally rise about eighteen feet, and neaps twelve to fourteen feet. The eastern entrance is half-a-mile wide, and varies from six to seven fathoms at low water, and the western, wbich is the principal entrance, is about half-a-mile wide, and varies from seven to nine fathoms deep at low water spring tides, and the anchorage, where there is floe liolding-ground, varies from eight to nine fathoms at low water spring tides.

The beaviest and most frequent gales come from the southward and westward, and the wind prevails chiefly from the latter quarter about nioe monthe out of the twelve; and during gales from this quarter, which ere very severe, exposed as it is to the uninterrupted reach of the Atlantic and Bay of Biscey, with such a range of sea and such a depth of water, it may readily be conceived that the sea must necessarily be very heavy, and require a corresponding degree of strength to counteract its disasterous effects.

The great mass or body of the work is composed of limestone brought from the quarries of Overton, lying at the mouth of the river Lary, call, d Cat water, about four miles distant. The stone is raised ill various sized blocks, from one quarter to ten tons and upwards in weight, which are thrown promiscuously into the sea as they are raisell from the quarry, in the line of the Breakwater, taking care that the greatest proportion of the large blocks are thrown upen the outer or sea stope, and that the whole, large and small, are so mixed to--gether, that the mass may be readered as solid as possible. In - addition to the smallar class of rubble abovementioned, quarry rubbish and lime screenings are thrown down from time to time in order to fill up tbe smaller cavities. You must observe, that during the progress of a work of this nature, to a certain extent, atorms are extremely beneficial, for they serve to wedge and consolidate the whole mass together, much more effoctoally and in much shorter time than human art could perform; and indeed it is desirable not to harry until the work, as ft proceeds, has been consolidated by the sea in the manner above described,-for antil this has been effected and sufficient time allowed, it is in rain to attempt, successfully, the erection of any superstructure. As I have already observed, the work commenced in 1812, and continued with considerable activity until 1824, during whicis period scarcely any storms of consequence occurred, and the great mass of the work had been completed below low-water mark, and abuut half of the superstracture from the eastern end towards the centre had been carried to the full height above high water, and, judging from what had passed, the able and excellent superintendent, the late Mr. Wheatley, one of the most experienced officers in the navy, concluded, that it was necessary to incur the erpense of an outer alope of 5 to 1 as originally proposed, and considered necessary by the late Mr. Rennie. The great storm, however, of Noy., 1824, completely established the accuracy of Mr. Reanie's calculations, for the sea increased the outer slope from 3 a 5 to 1 , and transferred with the greatest sicesy the superfluous rubble from the outer to the inner slope; the area of the one was nearly equal to the area of the other, making the requisite allowance that the former had become more consolidated by
time than the latter. In proportion as the work adivanced, is wa found that the sea became much more heavy towards the weatera end, and consequently rendered a more solid description of work necessary; I therefore recommended that the surface should be cand with masonry and a foreshore on the sea-side, encreating in substapese and strength as it approached the west end, where the whole from low water to the top is composed of solid masonry, dowelled, joggled, dore tailed and cramped together, and the foreshore to be regularly set m far as practicable, and using the diving-bell to fuyd the lower conm below low water. I also reconmended that air or vent-holes sbook be made on the surface of the casing where requisite, to enable tbe air cotopressed by the waves to escape and prevent it from blowing up the covering; although it was found by Mr. Stewart, the presentiotelligent and experienced resident superintendent, that where sufficient time had been given for the rabble below to become consolidated by the sea, and the masonry casing bad been carried up solid from hir water, that the vent-holes were unnecessary. By reffring to be drawings, yon will observe that the stones colonred grey repreent granite, which being obtnined in larger blocks than the limestane, being more tough and not so brittle, has been found to resist the shate of the waves much more effectuslly. The lower, or footing graits courses, upou which the rest of the superficial casing abota, are lid horiznntally on their beds, the better to resist any lateral throst which might otherwise result from sliding; the same may be observed of the middle, or bonding coarse, which is also of granite. The wboleot the three granite courses are dove-tailed together, as well as being lemind and bolted to each other, so that they may resist effectually erey shock to which they are peculiarly liable.

The mortar for the masonry is composed of one part Italing possolano, one part aberthan, or Plymonth lime, mixed up with tro parts of Gine sharp clean fresh water sand, the whole lucing thoruughly mised to gather, triturated under a mortar mill, and worked up with as litto mater as possible; this mortar very soon nets, and in a short time becomem as hard as stone. The exterior beds and joints for a fow inebos bo. wards are pointed with the beat Roman cement, which has the propeny of setting directly, which is encreased by using warm water, but then it has the disadvantage of being easily broken and not uniting afin, the other being decidedly preferable as soon as it has set. I aloo neoommended that a mass of concrete, composed of similar materivis a the mortar above described, only using five parts of sand, more or hex, according to the position, should be used in the interior of the wort to bed the blocks upon, near the level of low water; this kind ofoctcrete I have been in the habit of using for many yearu pat in nives maritime works with great success, and even below low wates, wher if protected and used in masses together so as to prevent the mow from actiog upon it until some time after it has boen depositod, noon breomes very solid and durable.

The loose rubble blocks are transported and deposited in thair pasition in the following manner:- after having been worked in the garries th y are transported by railways to the quay side, they are put on board of vessels built expresily for the purpose. These remels are ab ut sixty tons burthen and upwards, and have two railrays hid parallel to each, which traverse the hold of the vescel from ctem to stern, which can be made to open entirely-es the railways approach the stern-port they form an inclined plane, the last part of which is made to revolve upon an axle, with a cbeck to prevent the trock from going overboard with the stone; on the deck of the vessel there are find powerful crabs or windlasses. The blocks of atone, together with the trucks, are put on board the vessel, ranged in perallel rows on the ritways before described. The vessel then takea her departure for bof station at the Breakwater, the whole of which has been previouly marked out with a sufficient number of buoys; and upon her arrival at the particular spot where stone is required, she is immediately moored to one of the buogs in question. The crew then commenow their labours of discharge by heaving up the trucks containing thr blocks of stone, by means of the windlasses on deck; and when the truck arrives at the termination of the inclined plane at the stern of the vessel, its own weight tilts it over, the block of stope in dischergd into the sea in its proper place, and the truck remains; it is than placed upon the deck of the vessel, and there left; and in lite mapner each block is successively discharged, until the whole cargu bes been disposed of: this operation, which is extremely simpla, is vyl soin completed, seldom occupying above a quarter of an bour of twenty minutes; the vessel then returns to the quarry for another cargo, and, according to the state of the wind and weather, will make several voyages a day. At times steam-tugs are used to tike thew io their stations, which saves a goud deal of time; but as the wisd blon from the westward during a greater portion of the year, they geocrally sail back to the quarries. In order to ascertain the stace of hae nort below low-water, frequent seotions are taken ou the line of ths boost
before-mentioned at about every ten yarls, and a vegular register and joirnal is kept of the whole proceeding, so that the actual state of the work at any one period can be ascertained with accuracy.
The work has now been in operation nearly twenty-six years, but the great bulk or mass of the work, which renders the Sound a well protected roadstead, was completed ten or twelve years ago. The operations are now chiefly confined to the west end, where they are employed apon making the solid masonry foundation for the lighthouse, which is a work requiring a good deal of nicety and time to complete, particularly the foundation courses, which are to be laid by the diving-bell : but on account of the swell which so frequently previls there, many days elapse when it cannot be used, so that the Brakwater, with the exception of this part, may be said to be almost completed. The original estimate of the late Mr. Rennie for the rubble alone, without the masonry, casing, or lighthouse, was, I think, 1, $1,50,0001$., and these two latter works have been estimated at from 050 to $300,000 \%$. more, so that the whole will not exceed $1,500,0001$.; which I trust will be allowed as coming vary near to the original calculations, considering the difficulty of works of this nature, exposed as they necessarily are to the vicissitudes of the elements, which render them peculiarly liable to casualties.
for the above short sccount, I trust that I have fully complied with your wishes as far as the short period of notice you have given wouk allow. I believe that I have not omitted any very material point, although you are fully aware that there is a great deal of detail which conld not be included in such a neeessarily confined accountit is of less importance now, as it will be included in my work previously referred to. The accompanying drawings, from which the work has been executed with some slight modifications accoviling to circumstances combined, with the above descriptions, will, I think, render the whole subject sufficiently intelligible.

Believe me very sincerely,
London, April G, 1839.
John Rennit.

A TREATISE ON RESERVOIR LOCKS.

by j. a. boebling, civil fngineea.
(From the American Railroad Journal.)
By the term reservoir locks, is understood locks connected with reservoirs which receive and resecve a certain portion of the lockage water for the purpose of floating a vessel from one level to another, and which reserved portion of water is let into the lock-chamber again when another boat is passing the lock. As the reservoirs are altertately drawing and discharging a certain portion of the water, it is obriots that they may be so located as to use a far less quantity of rater for passing vessels through the lock than is commonly wanted.
These preceding remarks will be sufficient to attract the attention of engiueers, and lead to the suggestion that this kind of lock is of the greatest importance in a country where the summer scason is generally dry, and where the want of a sufficient supply of water for lockage often inuerferes with navigation; further, that by means of these locks expense vit he saved, and that a canal may be constructed, and kept navigable, where in the other case sufficient water could not be furnished for supplyiag common locks of ordinary lifts. An eminent engineer in England, where this subject is at present treated with mach interest, lately claimed to be the inventor of these locks, but without any right. - As far as the writer of this is informed, but one lock of the kind in question has ever been constructed until this day. This lock was built in France, under the reign of King Louis XIV., by an eminent engineer at that time. M. Belidor, in liss "Architectura Hydraulica," gives a brief account, and a cross section of that lock, which has aboint twenty feet lift, and stands at the point of junction of two canals. The level of one canal lies twenty feet above the level of the other, and the lower canal is supplied with the necessary water by the upper one. The ground at the junction, in the direction of the lower canal, drops down at once, and offered a favoumble opportunity for the construction of a ligh lift-lock, with reservoirs. The head of that lock is constructed in two offsets, with two upper gates to divide the pressure of the water against the gates. This lock answers the purpose in every respect, and draws not quite seven feet water from the upper level, for pasing a boat through the chamber. About three ininutes of time more are repuired, when the two reservoirs are used, than when not, fur the pascing of a boat, and there is no more stamping of the boats during the passage than in a lock of seven feet lift, as the head of the nater-pressure is never above seven feet.
The first locks of this kind, in this country, are now being conEHucted on the Sandy and Beaver Canal, under the direction of Mr. E. H. Gill, Cliief Engineer on that line, who by this improvement will monsiderably add to the already well established credit which that work \&really deverves, for the superior construction of its splendid locks and
$\mathrm{Na}, 18 \ldots \mathrm{YoL}$
dams, and, in fact, for the solidity of all the works. Mr. E. H. Gill occasioned the writer to examine into the nature of this ohject to es tablish its theory, and demonstrate formule for computing the best dimensions of the reservoirs, the loration of the communicating culverts and valves, and the water saved. He afterwards experimented with a model, to see how the theory agreed with the reality, and satisfipd limself in every respect as to the practicability and the utility of reservoirs.

As the saving of water depends on the number of reservoiss attaclied to a luck, their areal extension, and on the placing of the culverts and valves, this matter must be rightly understood, and all dimensions must be fairly calculated, which calculations, however, are very easily performed. I offer here a general demonstration of the theory of this object, which for its plainness will easily be understoud.
The number of reservoirs attached to one lock, may be one, two, three, four, and even more; a greater number than four seldom will be required, and found applicable : in most cases two reservoirs will answer the purpose. But there may be locations found where the ground offers sufficient room, and suits well for the construction of four reservoirs, two on each side of the lock, and where by these means a very great saring of water will be obtained.

The annexed drawing, fig. 4, shows the cross-section of a lock of fourteen feet lift, with a rescrvoir of 5,400 superficial square feet, on each side. The diagrams 1,2 , and 3 , are likewise to represent cross. sections of the lock chamber and rescrvoirs on each side. By the linear shadings are represented the different stages which the water will alternately occupy in the chamber, and in the reservoirs. The lines A B and $S M$ represent the upper level, and the lower level, in all the diagrams; and by the lift of the lock, is to be understood the elevation of the upper level A is ahove the lower level S M. These two levels are supposed to be altays permanent, and not to be altered.

Fig. 1.

To make the case more simple, it is supposed that cach reservoir is to be as long as the lock-chamber is in the clear, and twice as wile, so that the area of each reservoir be equal to twice the area of the chamber. Let the required height which the water will occupy in the upper reserroir, be denoted by the letter x; the height of water in the lower reservoir, be denoted by y.
Hy examining the first diagram, any one will admit the following suppositions:-

1. When the valve of the upper reservoir is opened a quantity of water ABCP of the chamber will enter the reservoir and will flow in. till the water surface in the chamber and reservoir, CP and PD, form one level. Now, suppose this rescrvoir slut, and the valve of the lower reservoir openell, the quantity of water marked by $\mathbf{C P Q} \mathbf{Q}$ will escape and enter the lower reservoir, till the water surface is sunk to an equal level $G Q$ II. After the lower reservoir is shut, there remains a quantity of water in the chanber, marked by the letters Q IS SA, which lies above the lower level, and of course must be drawn off into the lower canal, in order to clear out the boat.
2. Now, take the case reversed; when a boat is to pass from the lower level to the upper level. After the boat has entered the chamber and the lower gates are shat, open the paddle of the lower reservoir, and draw the reserved water into the chamber. All dimeusions being right, this quantity of water should exactly fill out the space S M O K, so that the top water line, OK , and the bottom of the reservoir, I O, be in one level, and no water remains in the reserveir above that level. The boat will now be raised to the level of 0 K . After the lower reservoir has discharged itself, shut it, and open the paddle of the uppler reservoir, and draw off its rcserved content of water. This quantity of water should exactly occupy that space in the lock chauber marked by ENOK, so that no water remains in the reservoir above the level of $\mathbf{N} \mathbf{F}$, representing the bottom of the upper reservoir. To raise the boat to the level of the upper canal, a quantity of water A BEN is yet required, which mast be drawn from the upper level into the clamber, after the valve of the upper reservoir is shut up.
In the first case, that quantity of water which, has actually been drawn from the upper level, is marked by the lines S MOK, the quantity of water sayed is markied by ABQH.

In the second case, the quantity of water actually spent, is marked ABEN; and the quantity saved is marked SMEN. As the area of each reservoir is supposed to be equal to twice the area of the chamber, the space which a certain quantity of water occupies in the chamber will be twice as high, or deep, as the space required for the same quantity of water in one of the reservoirs. Hence it follows, that

$$
\text { and } \quad \begin{aligned}
& \mathrm{BP}=2 \mathrm{PN}=\mathrm{NK}=2 x \\
& \mathrm{CQ}=2 \mathrm{QO}=\mathrm{OS}=2 y
\end{aligned}
$$

The whole lift AS, or

$$
L=A C+C Q+Q O+O S
$$

$$
\begin{array}{cc}
\text { or } & \mathrm{L}=2 x+2 y+y+2 y=2 x+5 y \\
\text { and likewise is } & \mathrm{L}=\mathrm{BP}+\mathrm{PN}+\mathrm{NK}+\mathrm{KM} \\
\text { or } & \mathrm{L}=2 x+x+2 x+2 y=5 x+2 y \\
\text { Hence } & 2 x+5 y=5 x+2 y \\
\text { or } & 3 y=3 x \\
\text { consequeatly } & y=x
\end{array}
$$

The quantity and stage of water in each reserroir aro therefore required to be equal.

Fig. 2.

Let the ratio which Indicates how many tirnes the area of the lockchamber is contained in the area of each reservoir, be denoted by the letter R, 20 that whes the area of the chamber is equal to $90 \times 15=$ 1350 square feet, let the area of each reservoir be expressed by $R \times$ 1350 square feet.

By examining the diagran fig. 2, it follows now, as a matter of course, that $\mathrm{OS}=\mathrm{R} \boldsymbol{x}=\mathrm{Km}=\mathrm{K} n=\mathrm{QC}=\mathrm{PB}=\mathrm{AC}$

By adding the different altitudes, which constitute the lin, we find

$$
\mathbf{L}=\mathbf{R} x+x+\mathbf{R} x+\mathbf{R} x=3 \mathbf{R} x+x=(3 \mathbf{R}+1) x
$$

$$
\text { an therefore, } \quad x=\frac{L}{3 R+1}
$$

which expression gives the stage of water in the reservoirs, provided there are two. Without any further examination we can employ the following expressions as formulx for the other required dimensions :-

1. The elevation of the bottom of the lower reservoir R.L above the lower canal level, or $\mathrm{OS}=\mathrm{R} x=\overline{\mathbf{3 K + 1}}$
2. The elevation of top-water line of the lower rescrvoir $(\mathbb{R}+1) \mathrm{L}$ above the lower canal level, $\mathrm{QS}(\mathrm{R}+1) x=$
$3 R+1$
3. The elevation of the bottom of the upper reservoir $2 \mathrm{R} . \mathrm{L}$ above the lower canal level, or $\mathrm{NM}=2 \mathrm{k} x=\quad \overline{3 \mathrm{~K}+1}$
4. The water saved, marked by the space MSEN, or 2 R. L $\mathrm{BAHQ}=\mathrm{AQ}=\mathrm{MN}=2 \mathrm{R} x=$ $3 R+1$
5. The water used is marked by MSQH or $A B E N=S Q R+1) L$ $=\mathrm{BN}=(\mathrm{R}+1) x=$
$\overline{3 k+1}$
By examining the formula No. 4 for the water saved

$$
\frac{\mathbf{2 R L}}{\mathbf{3 R}+1}
$$

Wo find that the saving increases with the ratio R, though not as fint. When we suppose $\mathbf{R}=\infty$, that is, the area of each reservoir to be infinitely great, so that x, or the stage of water in each reservoir, will be almont reduced to nothing, the formula will then be

$$
\frac{2 R L}{3 R+1}=\frac{2 \infty L}{3 \infty+1}
$$

As the quantity 1 does not increase an infinitely great quantity,

$$
\text { it follows, } \frac{2 \infty L}{3 \infty+1}=\frac{2 \infty L}{3 \infty}=\frac{2 L}{3}=\frac{2}{3} L
$$

The greatest asing of water by two reservoirs is therefore equal to two-thirds of the lift of the lock. However, this mach can never be gained in reality, though we can come near to it, without axtending the reservoir too much, which would imply other inconveniences, as jncrease of cost, loss of time, and lope of water by grenter evaporation.

The foregoing result of the maximum of water-saring will become aleo risible ly mere examination of the diagrams, fig. 2. We see that when the stage of water in the reservoirs, or $x=\mathrm{PN}=\mathrm{QO}$, becomes, by being spread over an infinitely great surface, reduced to an infinitely small height, the points P and N, and Q and O, will be brought so near together, that they may be regarded as being reduced to the single points N and O, and therefore is

$$
\mathbf{S O}=\mathbf{O E}=\mathrm{EA}=\frac{1}{2} \mathrm{~L}
$$

and the water saved $=\mathrm{SE}$ or $\mathrm{BH}={ }_{3} \mathrm{~L}$ L.
For a given lift $\mathrm{L}=14$ feet, and $\mathrm{R}=4$, or the area of each of the two reserveirs to be equal to 5400 square feet, where the lock-chamber is supposed to be 90×15 in the clear, we find

$$
x=\frac{L}{3 R+1}=\frac{14}{3 \times 4+1}=\frac{14}{13} \quad=1.077 \text { feet }
$$

The elevation $O S=R x=4 \times 1.077$

$$
=4 \cdot 308
$$

The elevation $N M=2 R x \quad=8.616$
Water saved $=2 \mathrm{R}_{x} \quad=8616$
Water used $=(R+1) x$

$$
=5 \cdot 385
$$

By means of two reservoirs of 5400 square feet ares each, a boat may therefore pass a lock of 14 feet lift, and not use more than $5 \$ 85$ fett water, drawn from the upper level, where formerly, without reservoin, a body of water of 14 feet height had to be used.

The following table shows how the quantity of water saved increses with the area of the reservoirs, supposing two reservoins attached to the lock :-

For $\mathrm{R}=\frac{1}{6}$ the water saved, or ${ }^{2} \frac{\mathrm{R}, \mathrm{L}}{\mathbf{R}+1}=\frac{2 . \frac{1}{2} . \mathrm{L}}{3 . \frac{1}{4}+\mathrm{i}}=0.285 \mathrm{~L}$				
$\mathbf{R}=\frac{1}{2}$	"		a.	0.400 L
$\mathrm{R}=\frac{8}{4}$	"	"	"	0.461 L
$\mathrm{R}=1$	"	"	"	0.500 L
$\mathrm{R}=1 \frac{1}{6}$	"	"	"	0.545 L
$\mathbf{R}=2$	"	"	"	0.571 L
$\mathrm{R}=3$	"	"	"	0.600 L
$\mathrm{R}=4$	"	"	"	0.615 L
$\mathrm{R}=5$	"	"	"	0.625 L
$\mathrm{R}=10$	"	"	"	0.644 L
$\mathrm{R}=100$	"	"	"	0.664 L
$\mathrm{R}=1000$	"	"	"	0.6664 L
$\mathrm{R}=\infty$			"	0.6666...L

When only one reservoir is attached to the lock, the formule for all the required dimensions will be found :-

1. The water stage in the reservoir, or $x=\quad \overline{\mathrm{L}} \overline{2 \mathrm{R}+1}$
2. The elevation of the bottom of the reservoir above. R.L

$$
\text { the lower level, is expressed by } \mathbf{R x}=
$$

$\overline{2} \mathrm{R}+1$
3. The height of the water saved is $=\mathrm{R} \boldsymbol{x}=$
4. The beight of the water saved is $=(R+1) x=\frac{(R+1) \cdot 1}{2 R+1}$
5. The maximum of water saved by one reservoir is found

$$
\begin{equation*}
=\frac{\infty}{2 \infty} \times 1 \times \mathrm{L}=\frac{\infty}{2 \infty} \times \mathrm{L}= \tag{1}
\end{equation*}
$$

By means of one reservoir, therefore, noarly one-half of the locksge water may be saved io reality.

Fig. 3.

When four reservois are attached to the look, as diagram fig. 3 thow, we find the lift

$$
\mathrm{L}=\mathrm{R} x+x+\mathrm{R} x+\mathrm{R} x+\mathrm{R} x+\mathrm{R} x=(5 \mathrm{R}+1) x
$$

and therefore

$$
x=\frac{\mathrm{L}}{5 \mathrm{R}+1}
$$

1. The elevation of the bottom of the lowest or the first reservoir above the lower level $=R x=\frac{R . L}{5 R+1}$
2. The elevation of the bottom of the second reservoir above the lower level

$$
=2 \mathrm{R} x=\frac{2 . \mathrm{R} . \mathrm{L}}{5 \mathrm{R}+1}
$$

3. The elevation of the bottom of the third reservoir above the lower level

$$
=3 \mathrm{R} x=\frac{\mathrm{B} \cdot \mathrm{R} \cdot \mathrm{~L}}{5 \mathrm{R}+1}
$$

4. The elevation of the bottom of the fourth reservoir above the lower level

$$
=4 \mathrm{Rx}=\frac{4 . \mathrm{R} L}{5 \mathrm{R}+1}
$$

5 The water saved is

$$
=4 \mathrm{R} x=\frac{4 \mathrm{RL}}{5 \mathrm{R}+1}
$$

6. The water used is

$$
=(R+1) x=\frac{(R+1) \cdot L}{5 R+1}
$$

7. The maximum of water saved is represented by

$$
\frac{4 R \cdot L}{5 R+1}=\frac{4 \infty}{5 \infty+1} L=\frac{4 \infty}{5 \infty} L \quad=\frac{4}{8} L
$$

This demonstration shows that by means of four reservoirs attached to one lock, nearly four-fifths of the lockage-water that is wanted by a common lock, may be saved.
The annexed drawing, fig. 4, represents a cross-section of a lock of fourteen feet lift, connected with two reservoirs; each reservoir to have 5,+00 supeficial square feet area. It is immaterial how the bottom of the resertoirs is formed, and it is necessary tn have it below the level of the culverts, in order to prevent the dirt from being raised and carried into the lock-chamber. The bottom of each reservoir should be at least one fout below the month of the culvert, or lower, so that at least one foot of water remains in each reservoir, after the reserved water is discharged. The main object in constructing the culverts is, therefore, to have the points N and O , or the highest point in the bottom of the culverts so bixed above the lower canal level, that their elevation answers the expressions given by the foregoing formula.

Fig. 4.

The culverts in the lock-wall embankment are represented in the drawing to be of wood. The culverts in the wall itself must be constructed either in the form of rectangular syphons, or straight linear inclined, so that the mouth of the culvert of the lower reservoir opens into the lock-chamber, below the lower canal level; and the culvert of the upper reservoir enters the look-chamber at an elevation equal to $2 \mathrm{R}_{\mathrm{r}}$, above the former culvert. The reservoirs may be formed either by excavation or embankment, as the ground suits best. Where the natural ground is pretty level and square to the centre line, and the lock-walle are to be raised abont one half their height above the natural ground at the middle of the lock, it requires but very little excavation and embankment te form the reservoirs. It often occuse that a depression in the ground, or a natural basin, near the lock, can be used to great advantage as a reservoir, requiring nothing but a little more culvert. Where there are two reservoirs, they must be located either, one on each side of the lock, or both on one side, as the ground suits beat. In the latter case, the two reservoirs must be separated by a dem, ether formed by excaration or embankment. The bottom of the reservoirs, and their side slopes should be covered with coarse gravel or slaty material, if such material can be had conveniently, in order to teep che water more fresh and clean.
The paddleas are best plaved in the upper parts of the culverts, as represented in the drawing, in order to prevent a great pressure of the witer from the reservoirs towards the lock-chamber, and to keep the mater safely shut up. The paddles should fit very close, and move in iron frames.

Whenever the supply of water is plentiful, the boats may pass the locks without using the reservoirs for saving a little more time. However, the excess of time which is required by using the reservoirs, is very trifing, and the passage can be effected with far less inconvenience and injury to the boats and locks, when the reservoirs are used, than when not. The objections which any engineer has against high lift locks, will be entirely removed by the construction of reservoirs. Reservoir-locks will be found very useful on slack-water navigation, where it is a great object to reduce the number of dams. If in such a case the river bank on the side of the lock offers no favourable opportunity, and not sufficient room, without romoving great obstacles, as snlid rock, \&c. for the location of the reservoirs, the required width can always be obtained by shifting the lock a little more into the river, and by owitting the lock embankment. A bridge built along the lock-wall over the reservoir, will serve for a tow-path in this case. The attendance of a reservoir-lock requires no more skill than a common lock, as the state of water in the reservoirs and the chamber regulates itself, and the lock-keeper has nothing more to observe than to open the paddles, and to shut them as soon as the water-level gets settled. When the upper and lower levels are raised in time of a flood, the water will then occupy a different state in the reservoirs, and the contemplated saving of water will not be obtained exactly. In such a case, however, to save water is no great object, and the reservoirs will prove just as useful in all other respects.

THE NELSON MONUMENT.

Ma. Editor,-The unexpected decision of the Committee, to reopen the competition, unfettered by premiums, not only awakens the hope that now men who rank highest in the scale of art will deem it a prize worthy of their practised arms, and enter the lists with an earnest desire to distinguish themselves as artists and as Englishmen, but gives the public and the professions breathing-time, so that the soreness of the one, and the asperity of the other may be softened down.

I am quite old enough to recollect, that in the hey-day of exultation after the victory of Waterloo, the Honse of Commons came to something like, if not exactly, a vote that a large sum of money should be devoted to the erection of a public monument to commemorate it; and I am quite certain that desings for Nelson and Wellington monuments were advertised for in 1817. I know that designs were sent in, that they were kept some weeks, that artists were then desired to take them away, with an intimation that they might again be sent in, some three months afterward: and I apprehend you will find, upon inquiry, that the preminms were adjudged to Mr. Smirke and Mr. Wilkins. Why they were not executed your informant knoweth not, but mayhap those gentlemen will favour the public (if what I state be fact) with a view of them. If I mistake not, Mr. Flaxman proposed, as a fit monument, a colossal statue of Britannia, and published a pamphlet descriptive of the design, and of the mode in which he would construct it. These things are desirable to be known, and seen if it be practicable, that the public may ascertain whether art has receded or progressed since that day. Even did it no other service, it would caution critics to be more sparing of their censure, when such a man as Flaxman failed. But whether this can be done or not, in the absence of properly qualified persons, to undertake the task, will you allow one. who may rank as something intermeaiate hetween an amateur and an artist, and who has ngaln and again, however feebly, considered the subject, quietly to state the difficulties which occur to him, that, if his opinions be well founded, the competing artists may not be spirit-broken by unfair and ignorant censure. I will first take the peculiarities which attend this competition. The Committee have never stated what kind of monument they think best fitted for the purpose. This alone is sufficient to paralyse the efforts of the most talented; for who can bring his mind efficiently to bear upon a subject which he is almost absolutely certain is but a will-o'-wisp? Sculptor and architect, each must fear that the sister art may be preferred, and consequently all labour bestowed upon the other will be thrown away. In emphaic, though common language, each feels that he is "working a dead horse." I do in my heart believe that few of the Committee can tell what they want, and am quite certain that not one of them can carry out his own ideas, so as even to satisfy himself: how then can it be expected that artists can remotely guess at what may perchance be something likely to suit their fancy?-Sooth to say, sir, I frar the selection is vastly like that of a lady in a cap-shop. Another difficulty is created by the situation which is pointed out for its erection. At first view it seems exceedingly easy to design a monument to be-set up in Trafalgar-square; but we first have to consider whact is to be done with the ground, which falls from north to south some eleven feet at one end, and only about four feet at the other : and next, how a space
about inree hundred and ninety feet by two hundred and ten is to be laid out, so as, along with the monument itself, to grow into an appropriate picture; each feature bearing its part in the scene: and, suppoaing all this satisfactorily udjusted, we arrive at the questions, "What kind of monument is fitted for the site?"-" In what architectural style ought it to be ${ }^{\circ}$ or, if sculpture should be considered fitter, "Should it be broad and low, or should it be narrow and high ?" The answers will be something like these-If narrow and high, the National Gallery will be cut in two-illustrating, it is true, one of Nelson's favourite mancuvree of breaking the enemy's line, but doing ne great service to the building; and if broad and low, it so lappens that even a height of fifteen or twenty feet would cut off about two-thirds of the portico of the Gallery; for if you stand upon the southen footpath, you will find that the trifling ridge of the ground shortens all persons walking on the footway at the Gallery, by the length of their legs. Then, as to architectural style: I have seen it suggested that it should assimilate with the surrounding buildings. Pray with which? There are but three buildings which can be said to have any style :St. Martin's Churcl, the National Gallery, and Northumberland
House;-the last is out of the picture, and consequently need not be cared for. The Gallery, whatever it may be in itself, is quite unfit to be worked up to in a naval monument; and St. Martin's Church need not be much leeded, for no style can injure that. Artists may erect whatever they please, that structure stands alone in its integrity, calmly scorning all the egotistical attempts around it. The questions, then, as to what style? and what kind of monument is fittest ? can only be answered by going into a very difficult ençuiry, involving a consideration of the distinct capabilities of architecture and sculpture, or of both combined; and how far they can be made to speak a widely understood language. There are certain simple forms prevalent among many nations, which, whether derived from the practice of one original stock, or inherent in the human mind, bring with them melancholy ideas. We, as it were, instinctively know a tomb; we feel that denotes a place of sculpture, and we reverence it as such :-but beyond that, it has no power of expression. To denote whether it be raised to commemorate a male or female, architecture has no resource but to call in the aid of sculpture.

There are certain other forms, which, although approximating to the sepulchral, yet appear to designate, not that liuman remains have there been interred, but that they have been set up in memorial of some event ; but the architectural form conveys no iden to the mind of the event which is denoted, if sculpture have not, by her clisel, given to it a tongue. And there are other forms which, by their simplicity, solidity, and calmness, appear evidently intended as sacred places appropriated to the worship of the Deity. Architecture can erect temples, memorial stones, and tombs, with little risk of lier meaning being misunderstood; the forbidding gloom of a prison, or the festive gaiety of a banquetting-room, can be characterized by her to some certain extent; but how, as some seem to expect, slie is so forcibly to depict the qualities of the human soul, that all men are at once to understand the structure commemerates a hero, is far beyond my compreliension-it is in fact beyond her power. From the stone of Bethel set up by Jacob, from the obelisks raised by the Egyptian kings, down to the loveliest conceptions of Grecian art, and thence onward to the military columns of the Romans, and of the Place Vendeme, all have required either the aid of inscription, or of sculptire, or of tradition, to point out what they mean; and where these have failcd, as in the case of the Egyptian obelisks, there we stand gazing in utter ignorance. To come closer home.-Does the Monument on Fish-street-hill, divested of its sculpture and inscription, by aught in its aspect tell us that it memorializes the burning of Iondon? What does the column in Waterloo-place tell us? What do all the columns and monumental structures over all England, set up in commemoration of Nelson, tell us of his cbaracter? The column of skulls piled up by the Tartar chief, unequivecally spake of an enormous slaughter; the projected Russian column of cannons and mortars might be supposed in some way to denote a victory, yet even these are not, strictly speaking, architecture; they partake more of the character of sculpture in its most barbarous form. But by what magic genius has architecture been made "trumpet-tongued," to tell of Nelson, the energetic, the fearless, the affectionate, the open-hearted, the generous, the devoted, the heroic? We may indeed be told of breadth, and height, and strength, and massiveness, ns calculated to denote the warior chief; but alas for the National Gallery if any one of thesc demons be conjured up, and woe to the paltry sum which is said to be available for the purpose. Sculpture has a more extended range, and greater power than her sister art, for she can call in the expression of the lhuman form, and add explanatery embellishnients in her own pictorial language; but even her power is limited, and needs written language to tell the whole tale.
It is in her power to erect a statue, which, without being much beyond
the fmman size, nay, it may even be very much below it, shall impress the beliolder with the most sublime ideas of the being it represent. It is in ber power to compose a group of statucs, which shall, with the most impassioned eloquence, spell-bind the soul. It is in her power, by a well-conceived line of relievo, to carry out the whole of a continuous history; slie, like Painting, can, to a vast extent, realize the poet's seraph-song. and bid the dumb stone start into life ; but, notwithatanding all this her strength, there is a limit to her resources-she has one source of weakness, and that, I fear, will render all her art unavailing if she attempt to erect an isolated monument. All her works are necessarily and in themselves only embellishments, are only appurtenances: however firmly cramped to a building, they form no part of it ; howeverdeeply rooted in the earth, they are still nothing but moveables; but, independent of this, they are not calculated to be viewed from more than one, two, or three points advantageously. Owing indeed to the absolute perfection of all the Almighty's work, any correct imitation of the naked human figure, or of any animal, singly and in itself, must be beautiful, view it from any point; bat when brought together in a group, so as to tell a story, the insufficiency of art is manifest. Sculpture, in fact, can only make pictures in stone wood, or other material; those pictures, when so placed, as that the spectator can only see them in front or a few degrees sidewise, especially if within a building, and the quantity, colour, and direction of the light, be skilfully adjusted, may be made to produce the most wonderful effect ; but, in an isolated monument, and that in the open air, it is altogether different. However well-composed the grouping, however grandly conceived the attitudes, and however admirably calculated to convey the artist's meaning, all its effect is likely to be marred, even if it be not inade absolutely ridiculous, by the spectator taking it in flank, or viewing it from behind. It is in vain to say that the spectator ought not so to do. In its very nature an isolated monument should be calculated to look well from any and from every station ; and therefore, if I be right in my showing, a gronp of sculpture only is not available for the Nelson monument.

If so, I apprehend the conclusion will be that the proposed erection must either be a statue (not a monument) more or less colossal, standing on a pedestal or block, more or less high, and more or less embellished, and those embellishments, made by the artist, to bear an important part in his picture; or an architectural monument, decorated with such sculpture as may be necessary, clearly and fully, and yet without confusion, to tell, as far as art can make it tell, the wherefore of its erection.
The mere statue woild, in itself, be no insuperably difficult task. It must be colossal, or in a space of some five hundred feet in widh. from house to house it will be lost; it ought to be calm and dignified, and especially no violent action ought to be attempted, or it will be ridiculous. An architectural monument is by no means so casily to be composed: it will require more ability than fulls to the slare of most men,so to unite architecture with sculpture, that neither shallanduly predominate, but both distinctly and forcibly assist in forming a fit basis for the hero's statue, for such, after all, I apprebend it must be. The object will not be attained unless that be the leading of ultimate feature, and the great art will consist in gradually leading the eye upwards until it rest upou that main object, without being distracted in its progress by intrusive ornament, and without finding the structure broken into steps as it were, and not forming one integral work, but so many separate pieces piled upon each other; or, shonld the artist deem a comparatively low erection more appropriate, it mitt not be so broad as to stretch beyond the field of distinct vision. If. however, breadth be deemed desirable, then can it be little more than a series of terrace steps, else will the National Gallery be destroged. If height be deenaed requisite, and it be made square, polygooal, or circular, it will either resemble a pedestal or a church-tower, or castle. turret, and no profusion of decoration can divest it of one or other of those characters, unless, indeed, it be made so high as to be columnsr: and much I think that any desire to make it an arcbitectural object must content itself with the columnar form. As to the kind of column, I apprehend that only. the Ionic isinappropriate, for that is not calculated to stand alone, its fronts and flanks being dissimilar. Much has been said against Corinthian columns, but I think with very litule justice or good taste. It is true that the substitution of the Jupiter Sutor column for the Doric of Fish-street Hill, is no design atall, any cabinetmaker's apprentice could have done as well ; bit I think it may be possible even to make a Corinthian column form a very appropriate object, yet it must be ably treated, and made to meem what is really will be, nothing more than a standard to support a statue. Concluding then that the proposed memerial must either be a column surmounsed by a statue, or a statue standing upon a block, or an arditertural pedestal, the fit style of decoration is next to be considered.
A column of any order admits of but little ormament except upon
its pedestal, and even there it is not peculiarly fitted to show advantageously. Mayhap the spiral reliefs on the Trajan column are the fittest for a military structure; but, independent of the cost, they could not be made very distinctly visible at more than a hundrod feet in beight, and in a London atmosphere not so high as that for any long period. But any attempt to surround the base of a column with either standing or sitting figures must end in its appearing at a distauce, like an illumination candle stuck in clay. It is a ridiculous comparison I allow, but I cannot divest myself of it. The base of a statue will, if 1 think rightly, be capable of much and very appropriate decoration. I would certainly eschew all Neptunes, Britannias, and Victories; all very well in themselves, but mish too common-place for such a work. Stould groups of statues, or pannels, or other recipients of bassi-relievi be introduced, I strongly think that the great art will be, as much as possible, to make them, as it were, grow out of the masoury, in suchwise as to appear an integral portion of the pile; so that, although Hey might indeed be removed without injury to the stability, yet still that taking them away should detract from the completeness of the work. There should be no flutter, no pinnacling in the outline; all should be in calm and dignified repose; and the whole mass be such as that, while at a distance its harmonions proportion should delight, upon a pearer view its sculpture should be instructive and interesting, and upon the closest inspection found to be wrought in the highest style of art.
If I have rightyly read the relics of ancient art, such was their principle. The same correct principle will, upon careful consideration, be fouod to prevail throughout styles, in many respects as wide asunder as the antipodes; but wherever it has prevailed there will grandeur and beauty be found combined.
I feel the subject has led me far beyond my original expectation, so far indeed that fear few will care to follow it ; but if they do, I think it will be felt that of all difficult tasks the composition of an isolated momment is incalculably the most difficult, and that it will be extremely unfair harshly to censure failure in such an attempt.
It is to be recollected that all competitions are in themselves tasks; that in such a competition as this the mind is, as it were, overwhelmed with the greatness of the character of Nelson, and overreaches itself in stiving to grasp at an imaginary vigour of expression. It is also to be borne in mind, that if such men as Nelson and Wellington arise but with centuries between them, artists equal to the task of commemorating their deeds are of similarl) rare growth. The enrapt spirits of Homer, or Eschylus, or Milton, might shadow forth their achievements ; the mighty genius of Flaxman could almost soar a kindred flight, but even he failed in comnemorating Nelson, marvellons as were his compositions on other subjects. Even if, in this second competition, not one of the designs should be fitted for the purpose, it will ill become critics to censure the failure so harshly and unfeclingly as has been doue. They, as authors, must be aware that the happiest thonght does not come for the sceking, that it is often the lightning glance from heaven, darting when least expected; and common charity should teach them forbearance from unnierited insult. I have already said Hest I do not believe any onc of the committee can carry out his own ideas of what Nelson's monument ought to be, even if he be able to form any idea at all. I fearlessly say the same of others, and would advise them to think so, at least until they have fairly set to work and wrought out such a design as shall far excel those of the men they sneer at.
1 know my own weakness, my own inability, and can therefore make large allowances for failure in a task so difficult ; still do I not despair of the genius of Eaglish art, and shall most cordially delight in the sucress of any of my countrymen.

I have the honour, Sir, to be
Your constant subscriber,
OMEGA.

THE ROYAL EXCHANGE.

Sir,-The system pursued of late years in the management of architectural competiditons, has been attended with manifold evils, and, beyond all doubt, franght with gross and palpable injustice. Hastily add inconsiderately commenced-under the control of persons unfltted to sit in judgment on the various designs referred to their decision, they have in too many instances been attended by results, injurious to tho beot interests of Art-unfair and unjuas to its professors-and onfevernble to the public at large.
In making these remarks, I do not of course, intend to attack the principles upon which competitions aro besed,-properly conducted, their tenderoy is unquestinnably, not only to call out the talent and geains of the experienced artist; but to rouse a spirit of emulation in the yeong professor, and eacourage that rising merit, which without
such a stimulus would remain undeveloped, and without such a means of exercise, noknown and unappreciated. But the thing which I wish most anxiously to press on the attention of the profession at large, through the medium of your columns, is mainly this,-The extreme defectiveness of the present system; the total want of security, Which there is under its operation, that fairness and impartiality will be strictly observed towards all, and the urgent necessity which consequently exists for a searching and efficient remedy.

It would be needless to go into any leagthened proof of this assertion; the voice of public opinion has frequently been most nnequivocally expressed in denunciation of the present mode of conducting architectural competitions ; and, to mention no others, the whole proceedings connected with the new Honses of Parliament, speak with sufficient clearness to all, by way of warning. Upon that point, however, it is not my intention to cnlarge; and I only make the allusion in order that architects may gather from the recollections and experience of the past a valuable lesson for their guidance and direction for the future.

Architects have been invited to send in plans for re-building the Royal Exchange, and as a preliminary, they are compelled to pay one pound to obtain the requisite instructions. I pass over the nnreasonableness of this demand, which makes all the competing architects, except the successful three, actually pay one pound, in order to have the opportunity of embarking their time, talents, and labour, on what must prove to them unrequited exertion. I have more important considerations to urge, of paramount and leading interest, to all who intend to compete for the proposed edifice.

Aad I ask them plainly, what guarantee have they, that the preseat competition will be conducted on the principles of fair dealing, impartiality, and justice? On what grounds are thoy convinced (for the act of cutering the competition shows that they have that convictien) that it is the intention of those upon whom devolves the duty of adjudication, to go into a strict and searching examination of their designs; making their decision according to merit, and merit alone; and selecting only thase, which while they conform to the instructions, are distinguished alike by the beauty of the exterior facade and the convenience of the internal arrangement. I say, deliberately, that at present, there exists no such guarantee, either in the wording of the published advertisement, or the printed instructions of the Gresham Committee : and yet, unless architects can obtain from the authorised parties some pledge more explicit-some statement more distinct-some promise more definite, it is really madness in any ose who values his time, station, or character, to embark in so uncertuin a venture, when, perhaps afler having spent months of concentrated effort, together with a vast amount of anxiety, fatigue, and money, in getting up his designa, he may be coolly superseded, by some favoured rival; who, without being able to lay claim to any extraordinary degree of taleut, yet possesses a larger amount of personal interest and local influence.
What then is the duty of architects at this juncture as professors of a liberal art, and men of spirit and independence? Undoubtedly it is to bestir themselves, and act with unanimity and firmness.

Should they accept the present indefinite invitation, which contains no guarantee beyond that which the Parliament House Competition included, and which will probably-unless something be done,be productive of dissatisfaction to all parties concerned, and disappointment to the public; they will have none but themselves to blame, in having, contrary to repeated advice, and with all the experience of former competitions before their eyes, tamely submitted and sequiosced in the terms proposed, when by the adoption of a more vigorons course of conduct, they might have effected an altogether different result.
In 2 report upon public competitions; lately published by tho Royal Institute of British Architects,-every architect is recommended, individually, to address in writing to the Secretary, or other authorised party, the most searching inquiries upon every doubtful or indistinct point, and not to rest satisfied with any answer which fails to place everything necessary to be known, in the clearest point of view. This mode, however, secms open to many serious objections, - as it would not only give the Secretary of the Gresham Committee a great deal of trouble to answer the innumerable queries that would be put to him by individuals: but also; being in all cases strictly private, no information would thereby be afforded to the profession generally, of the intentions of the Committee, - Which information, if it could be obtained, migbt be a boní fide pledge on their part, of their determination to act with strict fairness and impartiality.
l.ct then the architects-as the only alternative-convene a public mel ling; let the leading members of the profession attend: let them dely ;ate a cortain numbor of their most influential men to request of the 'iresham Committee, a fuller and more minute explanation of their inteptions in reference to the Exchange Competition ; let them inquire
who are to be the judges ? - Whether a strict adherence to the isstructions is a necessary preliminary on the part of the architects, to secure his plan, an inspection 9 .-Whether all designs, which cannot be executed for the sums estimated, shall be laid aside? -Whether a public exhibition shall precede as well as follow the decision of the judges ? And, whether the author of the chosen design shall be allowed to superintend the erection of the work, provided his standing in the profession, and experience as an architect, entitles his so doing! And, till these inquiries are satisfactorily answered, let it be the unanimous resolution of the Architects of England, that they will not enter into the present competition-that they will not lend it their sanc-tion-norgiva it the beneft of their talents and support. And if they thus act firmly and unitedly, a better system of things will be ultimately adopted, and the cause of truth and justice must eventually triumph.

In coaclusion, I have only to add, that I feel quite assured, that some such proceeding as this, would not only tend to raise British artists in the estimation of the prblio-and secure, in a great measure, a fair and free competition-but would also induce many of the leading architects to contribute, who at present-being fearful of unfair deal-ing-have no such intention; and would moreover be the means of obtaining a design for the Royal Exchange, worthy of the metropolis it is to adorn, and an honour to the taste and genius of the ago.

I remain, Sir, your obedient servant, and constant reader,
A pril, 1839.
An Abchitect.

FLOATING HARBOURS OF REFUGE.

Sis-I do not recollect that I have seen any observations in your interesting work relative to the principle of floating harbours or breakwaters, and I am led to notice the subject from having read with great pleasure the article by Hyde Clarke, Esq. C. E., upon Isolated Harbours of Refuge, in your last number.

No question can exist upon the advantages of natural harbours as described to be at the island of St. Micbael, and I am induced to think that observations made upon Porto do Ilheo, led Admiral Sartorius to think of making a floating harbour at Terceira, upon which he corresponded with the patentee of the floating break waters, but which his expedition from the Azores most probably prevented lis attempting to carry into execution. 'The principle of harbours of refuge is advan. tageous in proportion to the practicability of carrying the protections they afford into deep water. The construction of masonry, or the accumulation of stones, is expensive in a progressive proportion to the depth of water-hence the saving attending floating substances secured so as to form harbours in deep waters must be very great.

The successful experiments which were tried in ${ }_{1} 1824$-though discountenanced by the Admiralty on account of the apprehension that they were favourable to smuggling-demonstrated that no objection ought to be raised against a floating harbour, if composed of rafts situated in a position where they could never ground. Julius Ceesar found out their advantage when he employed them, as described in his Commenturies, as follows:-
"Cossar sat down, on the 9th of March, before Brundusium, with six legions, three of which were composed of vetcran soldiers, and the rest of new levies drawn together on his march. He had sent Domitian's troops directly from Corfinium towards Sicily, not caring to bring them near Pompey's quarters. The Consuls had sailed on the 4th with thirty cohorts, and there were still twenty in the town with Pompey. Nor was it certainly known whether he continued there for want of shipping to transport his troops, or with the design to keep possession of Brundusium, that he might be master of the whole Adrintic Sea, the farthest parts of Italy, and the country of Greece, in order to make war on hoth sides the gulf. Cexsar having lost all hopes of an accommodation, and fearing that it was his intention to keep footing in Italy, resolved to push the war with vigour, and to deprive him of the adrantuges he might reap from the port of Brundusium. The following works were contrived by him for this purpose. He carried on a mole on each side of the haven where the entrance was narrowest, and the water shallow. But as this undertaking could not be carried quite across the port by reason of the great depth of the sea, he prepared double floats of timber, thirty feet square, which were each secured by four anchors, to enable them to resist the fury of the waves. These, which were to extend all the way between the two moles, were covered over with earth and fascines, that the soldiers might pass and repass with ease, and have firm footing to defend them. The front and sides were armed with a parapet of hurdles, and every fourth float had a tower of two stories, the better to keep the enemy's ships at a distance, and to guard the work from fire and the shocks of vessels."

I have not the advantage of having seen the Port of Brindisi, but the extract sufficiently explains the nature of the works. There are numerous position on our coast which are well auited to such an opes
ration, and if a harbour were constructed with stone jetties in the shallow water, and floating break waters moored seaward, there can be little doubt of the purpose being effected.

I have the honour to be, sir,
Your humble servant,
An Abcbitect.
[The employment of floating harbours is very important, and by means of Mitchell's screw moorings might be applied in many powi-tions.-EDitor.]

HARBOURS OF REFUGE.

The counter ran. The true run of the tide.

The Line of Coast on Shore.

Sir,-Seeing by the public papens that the Lords of the Treanry have sanctioned the constructing of Harbours of Refuge for bes Majesty's smaller vessels of the Royal Navy, against the eacterty gales on the const of Essex, Suffolk, and Norfolk, in these worts of the government, it is not intended to prevent private companies from making inner basins or inland harbours.

I have sent you a Plan, which I shall feel obliged if you can find room for in your next Journal : it is entirely new, and adapted principally for a coast which is composed of beach or shingle, and theis construction would be about half the cost of harbours as they are now built. By this plan you will perceive that it is in the formation of the Pier-heads which locks up a body of beach or shingle against their sides, and causes the tide to be embayed by whichever pier it sets against ; this, with the run of the true tide, would propel all the arplus beach or shingle which was in motion several fathoms out serward beyond the pier-lieads, avd prevent any bar forming at its eto. trance or around it; a large body of beach, \&c., will be accumulated at the foot of both sides of the harbour, and form the best berrier in protecting it. These harbours of refuge would be very beneficial around our coast, for the protection of our seamen, ships, and com. merce ; and an encouragement to our fisheries, independent of the protection it would give, or afford, to her Majesty's steam-vesels.

I am, Sir, your humble servant,
W. Kinaspord.

Buckland, near Dover, April 10, 1839.

BRITTON'S DICTIONARY.

Sin,-There is a homely proverb, which says, "the proof of the pudding lies in the eating," and it applies exceedingly well to Britton's Dictionary of Architecture, for whatever commendation the book may have obtained as soon as it comes to be fairly tested it will be found most egregiously deficient and defective, nor least of all so where information is most wanted, and where there was, consequendy; ample opportunity to supply what previous works of the same kidd had neglected to do. Undoubtedly it was perfectly optional on the part of the compiler to limit its plan as be pleased, or as mighe bert suit his own convenience, however he might, by so doing, lessen its usefulnese; still, whatever he had once adopted, he ought to bare considered himself bound to adhere to consistently throughoul. Now this, most assuredly, Le has nos done with regard to terms connected with classical architecture; since, besidea being very insufficient and unsatisfactory in themselves; what there are, amount to no wore than a meagre sprintling of them, and precisely of those of which a mere explanation will hardly be nought by any one. It avails not to say that this Dictionary is intended to elucidate chiefly the architecture of the middlo agens swh axemo boing altogather argatory, and aliow
equivalent to saying that the other terms-at least such of them as oocur, are brought in, not because at all called for by the professed object of the book, bat merely to swell it out, and to induce persons, upon a hasty inspection of it to imagine that it is far more copious and complete than its title gives it credit for being.

What, however, I most strongly protest against is the disingenous and ercn trumpery artifice, for I can give it no better name, of pretending to give the corresponding terms in other languages, but invarinbly omitting them in the case of strictly teclunical words, whose meanings are seldom to be ascestained from consulting Frencl, Italian, or other dictionaries; whereas had they been uniformly introduced, and also indexed, so that their English meanings might be instantly ascertained, the Dictionary would inave been really useful for reference; even in reading foreign architectural books. What is not the least surprising is that these omissions extend even to such terms as belong peculiarly to Gothic architecture, for instance, " corbel," "hoodmoulding;" " mullion," "pendant," " spandrel," " transom," "tracery,' in fact to almost all the terms of that closs, although more especially required, because for the foreign ones which answer to them, it is almost useless to look in dictionarics. I lately met with the German terms "Dobel," "Glaspfals," and several others (of which I may at some other time, perhaps, send you a list, as some of your correspondents may possibly be able to explain them) they evidently refer to parts of Gothic windows, but what may be their precise meaning I cannot say, nor does Britton's Dictionary afford me the slightest clue, for in vain have I there referred to all the English terms, with which the ones above-mentioned are at all likely to correspond.

On the other hand, of what use is it, I ask, to give the French, Italian, \&.c., of such general terms ns "architect," "house," and a hundred others, which the commonest dictionaries supply, and for which no man, who at all understands the language in which they occur, can have uccasion to refer to a dictionary at all. The truth is all that Mr. Britton has done in this respect amounts to more than idle, and I may add, exceedingly silly parade, since nearly all the foreign words are moreor less distigured by blunders that convict Mr. Britton; of being utterly igoorant of the languages themselves, some of these blunders may be errors of the press, but then it is evident that he was unable to detect chem, because an author's attention is always more particularly directed to such matters as foreign words or quotatious, it being there that compositors are most likely to make mistakes. In addition to blunders of the above kind, which areso numerous, as to be on that account alone quite disgraceful, there are others which prove more completely that he compiled without the least understanding what he was copying. Should he ever have any German or French readers how will they stare at finding "raum," and "chambre," given as the words respectively adowering to our English one of room. A Frenchman would, I conceive, more frequently than not employ the term "piece;" certainly in speaking of a buildıng architecturally, while if a German were to make use of the term "raum," he would not be understood at all. The above is far from being a solitary instance of the kind, but it will rerve to show what reliance is to be put upon a dictionary, the compiler of which speaks, in lis preface, so 'd'haut en bas,' of other works, of which he las, nevertheless, availed himself so largely, that to them be is indebted for almost all that is of any value in it.

Arous.

ROYAL EXCHANGE.

"The Jolnt Gresham Committee beg to inform Arebitects who are deslions of saboltting Designs for the Intended Rojal Exchange, that they may obtain a 1ithograptie Plan of the fatended Bite, with othes pardculars, apon payment of une pound, at the offee of the Surveyor to the Commltite, Mercers' Ball, London."
A very great delay has certainly taken place asoto the progreas of the Excbange itself, but the severa! conmittees, in their laudable anxiety to leep the public amused, have either by themselves or their frie ids, appropriated the site to a temporary shrine of Pasquin. Lately, sone wag anoused himself with a caricature representing the aise to be let, natil weuted, for a Royal Exchange; but now we are indebted to the joint Gresham Committee for a much better burlesque.
At the head of our article will be found the announcement on what terins architects can obtain the necessary information; and that fur the inodest disburscment of a sovereign, they cau Lhave a lithographed plan of the sile, and the printed particulars. The modesty of these terms cannot be sufficiently lauded, for we doubt if even any priatseller could have contemplated such profte of more than cent. per cent. At any rate, for 501. a thousand copies of the plan unight have been struck of, and as many of the proposals; aud supposing all these to have been applied for, still it would have made but 50\%. The Gresham Comuittee, bowever, "a poor but honest man,
my Lord" could not afford the expenditure of such a sum, and still less could it resist the temptation of pocketing the difference from the two or three hundred competitors.

The paltry theanufsy of such a shabby imposition is as contermptible as it is dishonest, and it is equally a gross dereliction of public duty, and an offence agailst the conventional laws of common courtesy. Do not the nembers of the Gresham Committee know, that instead of conferring a fivour that they are certainly cutailing a heavy expense upounincty-nine out of a hundred comptitors? or can they consider themselves as arting with common justice towards persons who are already exposed to a heavy outhy? Many individual architects will be put to 4 mucla greater expense than the Gresham Cummittee merely in preparing their drawings, independently of the loss of time consequent upon their attention to them. There are sacrifices made it is truc for a personal ohject, but still as certainly conducive to public advantage, and alenost as incontestibly productire of individual loss.

The commoditics supplied for this nefarious bargain are admirably in keeping with its othcr details, and are as remarkable for their incompletencss as they are fur their worthless character. There are uo sectious of the stree:s or sewers in the neighburbood, so as to show the depth necessary to go for foundations, and no information as to the comparative heights of the neighbouring buildings, which $m a s t$ exprcise an important influence on the design. To an architect in the country these must be serious iupcliments, and the very formetion of the site is beset with sufficient obstacles not to require the intervention of nore. The Glube lisurance-office, however new, ouglat to come down, so as to leave the vite unrestricted to its present bug-like appearance. It may be very doubtful alao, whether the site selected for the perspective vicw is positively the brst, and whecher it might not have been preferable to have raade the elevation fronting the Bank the principal facade.

We regret to see that this print-shop is set upin a place where last of all we should have expected to see it. It is melancioly that one of the most respectable members of the profession, also a Yice-President of the Architectural Suciety, should have allowed himself to be made the medium in furthering such an insult and an imposition. It was his duty towards the profession, so far from fostering such a job, at once to have resisted it, and to have denounced to the Committee such a barefaced insnlt to his brethren.
We think that there is a loxity in the opcrations of the Royal Institute of British Architects, or, taking such an interest in competition as they assume to do, they should have been more active with regard to this edifice. Uniting unong themselves many of the most eminent architects of the empire, they ought to take a decided part in the regulations of competitions, on which, by the byp, the ir last report is by no means satisfactory. To exercise a beneficial intluence on public opinion they must be more decided; and one of the best steps they could take on she occusion of a competition, would be to send a deputation to the Managing Committee to effect a proper arrangement of the manner and termis of competition.

Belonv, we give a copy of the regulations of the Gresham Committee, and at our office inay be scen a copy of the plan from which any member of the protession is at liberty to take a tracing. It will always be our eudeavour to resist proceediugs injurious to the profession, irom whatcver quarter they come; land we call upon our readers to show an equally strong opposition to an attempt at imposition so barefaced and so iniquitous.

Resolutions of the Gresham Committee, as Instructions to the Architecto.

1. That arohitects be invited to offer desigas for the re-building of the Royal Exchange in general competition, and that premiuma be offered for three derigns adjudged by the committee to be the best.
2. That the lithograplic plan shows the site approved of by the Lords of her Majeaty's Treasury, and that a copy of such plan, with the resolutions and instructions, be given, on the payment of out pound, to any architects wishing to furnish designs, on his applying at the office of the Gresham Trust, Mercers' Hall.
3. That the new building be of the Grecian, Roman, or Italian atyle of architecture, having esch front of stone of a hard and durable quality,
4. That the deaigny offered by the soveral candidates must all be drawn to the same seale, vix., ten feet to one loch and a half, exhibiting the plans of each story, with an elevation of each front, and loagitudinal and transvarse sectlons, together with an interior elevation. Tbat a oopy of tbe lithogra. phic plan be also seant by each candidate, drawn in Indina ink, to the same scale ts the designs, and showing correctly the outline of the proposod buildiug, the sito thereof tinted red, aud of all adjacent buildings, in Indian ink; that all the drawings seat by each candidate shall be tinted with brown Indian ink only, and that no perspective drawinge of the design shall be reovived, except two, which shall be taken frow the situatiens specified on the Lithographle plan to be delivered to the parties.
5. That no model, sketoh, perspective, or coloured drawiog (save iwo such perspretive drawings as are described in the previous rewolution) shall be receired.
6. Thint a specification be required to accompany each design, giving a general description of the building, and such other information as cannot be clearly shown on the drawings, stating also what stone or other materials are proposed for use in the different parts of the building, and specifying particularly the estlmated expense of carrying the desigas into exccution in the mose substantial and complete manner in every respect for occupation, the expense not to exceed 150,000 .
7. That no seal, motto, or other distioguishing mark be atlached to any of the drawings or specifications, and that any draving or other paper heving such mark shall be rejected.
8. That the designs be delivered at the office of the Gresham Trust, at Mercers' Hall, on or before the 1 it of August next ; that each design heve a number attached to it on delivery, and that a corresponding ticket and number be given to the person delivering the same.
9. That a sealed letter be delivered with each design, containing the name and addresa of the candidste, the tame to be returned unopencd to unsuccessful parties.
10. That for the design to which the Committee shall award the first premium the sum of $300 l$. shall be given; that for the secund design the sum of 2001. ; and for the third the sum of 100%. The successful competitor to whom the first premium is awarded shall not be considered as having necessarily a claim to be entrusted with the exceution of the work; but if not so employed, and his designs are carricd into expention, a further sum of b00l. shall be paid to him-the Committee retaining possession of all the drawings for which the premiums have been given.
11. That if reatonable doubis should arise in the minds of the committee as to the practicabillty of carrying into execution the succeseful design for the amount of the estimated expense of the building, the committere shall be at liberty to call upon the party to give sufficient and satisfuctory proof of the accuracy of the calculations, and to withho!d the premium and reject the designs unless such proof be furnished.
12. That the following further instructions be adhered to by the arcbitects in preparing their design :-

First-That no part of the several fronls is to be advanced before the line shown in the lithographic plan, and coloured red, the samo being considered as the extreme projection of the stone-work at the level of the pavement.

Second-That the basement of the building be appropriated to vaults, cellars, strong rooms, \&c.

Third-That the ground-floor be appropriated to shops or offices, so far as the amme can be adapted to the design.

Fourth-That eacl part of the building proposed to be held as a distince tenement is to be completely separated by brickwork or other materials equally fireproof from every adjoining part, on either side, or abore or beneath it.

Fifth-That the area or space for the meeting of the merchants and others be about 20,000 superficial feet, of which about 7,000 be open.
13. That the statement annexed hereto of the proposed dimensions of the rooms and offices, \&cc., required, be adhered to in the designs; but as the several measurements whicb have been given are stated with a view of affording a gencral guidance to the architects in preparing their plans, not restricting them to the precise dimensions given, the architects will be at liberty to suggest such forms for cach room, office, \&c., as may appeser to them most convenient, observing that the superticial areas should not be less than the sizes specificd. They are also to provide in the remaining portion of the building as many additional offices as postrible, to be let as distinct tenements.

The following rooms and offices are required:-

In addition to the above, not necessarily on the same story, one room, a kitchen, and a bar, containing togetter abous $\mathbf{2 , 3 0 0}$ superficial feet.

The above is exclusive of a staircase, or staircases, lobbies, landings, walcrclosets, urinals, washing-rooms, walls, and partitions; also strong rooms on the basement.
Tue following rooms and oftices are further required :-

Those marked not neecssarily on the same story.
The abore is exclusive of a staircase or staircaser, lubbirs, landings, water-closets, urlnals, washlng-rooms, walls, and partitions; also strong

The following rooms and offices are further required :-

In addition, three waiting-rooms, rater-closets, and washing rooms.
The abore is exclusive of a stairease, or staircases, lobbies, landings, arimak, walls, and partitions; alsostrong rooms on the basement.
14. All designs will be excluded from the oompetition which are not in striet conformity with the preceding inatructions in every rapect.
N. B.-- The architect of the Gresham 'riust and him partner do not intesd sendiog in any design.

railway, Canal, and road travelling in france.

The current estimates of the French Board of Works, which amounted
 in 1837. This very considerable sum is devoted to the maiutevance of the roads, bridges, and canals. An chgincering overseer, who is attached t" the administration of ench department, directs and manages the works to which the money is applied. Besides these current estimates, a law, pasod in 1833, pave fise to a vote of extraordinary supplies for publie works, whieh provides for the more important repairs, the completion of undestakings still mfmished, and the construction of new lines of commancation. This additiomal vote, which has becn increased by similar laws, pasied in the years $1835,1836,1837$. and 1838 , has now reached as large n sum as 350,000 , (0)0f. ($14,000,0001$. sterlinge.) Out of this fund the Chambers hate granted $27,000,000 f$. for the improvement of harbours; $64,000,001$ f. for the amelioration of the river navigation; 6:3,000,000r. for the completion of canals began in 1832; to which has been added a vote of 85,000, (N)ff. for a latcral canal to Garome, between Toulouse nud Bordenux, and a jurtiou cimal between the Maine nod the Khine; lastly, the high roads have obtained a grant of $107,(00),(0) 0 f$. The conscils-gencraux in the varisus departments lave voted for the extension of the departmental roads ant less than $G 0,(W 0,000 f$. When the works now undertaken, and in propres, are finished, there will be in France nearly $8,(\mathcal{O})$ lengtes of high react of the first chass (routes royales), 8,500 leapntes of high roads of the scond class (routes departmentales), and 850 leagues of camals. An mbrokm line of intermal navigation will be opened from Harre to Marselles, and from Strasburgh to Haver. The prineipal deficiency in the means of contmunication in France is celerity. The stcan-boats have preat difficulty in nsecuding against the stream of the larger rivers. The only canal on whith the system of fly-buats has been borrowed from the Ecotely and Enflish canals, or, at least, burrowed with success, is the Canal du Midi, from Toulonse to Cette. The minis, indecd, are transported at an average speednf three leagues an hour. The use of the tclegraph is confined to the busines of the Govemument. The railronds which have been execoted, on to the present time, are inconsiderable, and the railroads at this moment in execution are for very short distances, their whole united length not excerding forty four leagucs.

CALEDONIAN CANAL.

Copy of Mr. Walker's Report to the Bourd of Treasury.

Instructions.-In compliance with the instructions contaived in your lentr of the 28th December 1837, after the accident to the lock at For Augutus, I procceded without delay to the Caledonian Canal caily in January; and, after passing through the Crinan Canal in company with Mr. Jobn Gibb, who bad met me by desire of the Commissioners, I surveycd tho line of the Caledonian Canal with Mr. Gibb and Mr. May, the resident engincer and superintendent of the canal. While upon the survey I wrote tau letters to Mr Spearman, to inform him niy cpinion that ne immediate denget of magnitude wras to be dreaded from the state of the works at the west end of Loch Lochy, or from the accident at the Fort Augustus Locks, to repair which, in a temporary way, orders were given. These repairs have aince been exccuted, so that the recess wall that gave way is now as accure as the other parts of the lock for the purposes of the present limited traffic. 1 also requested Mr. Mny to take such measurements and surveys, as might enable an estimate to be made of the works that appeared to me necestary for the repair or for the completion and improvement of the canal, and to make certain inquiries as to the exteut and nature of trade by which the canal, if completed or improved, might be used, to enable me to repart more fully to the Lords Commissioners of the Treasury on all the points of your letter.

Since my return from the north, I have been in cosstant communication with Mr May, who has notwithstanding the extreme severity of the weatber, been most diligent and ferseveriog in his surveys. On these being conpleted, we met in Edinburgh, and went into detaihs of mensuremeats and estimates. It is now my duty to report my opinion on the various poids, with estimates, dividing the congideration, as directed by you, into two bends; viz.
" 1st. The repair of the lock injured by the late accident, and welh farther works as nuy be necessary to avert inandation.
" 2 d . The improvement of the canal, by rebuilding what mey io appe-
bended to be defective in its original construction, altering the depth, procuring tow-vessels, and ollier measures not urgent, however important."
I shall adhere to this division as closely as 1 can, premising that the two subjecta are $n o$ connected and so bleaded with each other, that it will be very difficult to draw the line between them.
On the 8 th February I also received from Mr. Spearman instructions to report sach information as I had in my recent survey collected on the sutjoct of the narigatlon of the Crinan Canal; and, in conversations with that genttemnn, I have been requested not to confine my report strictly to the points above stated, but to embrace any information respecting the Caledonien or Crinan Canal whleh I might be in possession of, and which 1 might think likely to be asofal, when the general question of the canal thooid come to be considered by their Lerdships.
The general bistory of the Caledonian Canal, with its objects, difficoltics and defects, are very ably stated in Mr. May's report of lat November 1837, addressed to Mr. Sanith, secretary to the Commissioners, and in Mr. Smith's letter to the Chancellor of the Exchequer, dated 22d December 1837. These are most inportant and useful documents, the facts of which I found fully confrued by my survey. The principal defects there referred to are, howcrer, chiefly in the original schemo and construction of the canal, which bave thercfore, with the danger attending them, existed front the time of the canal being opened. I name this as a reason against any very sudden alarm; sthough I fully agree in the necessity for prompt measures of security, in which the canal is certainiy defective, probably from the great excess of cost above the estimates, the consequent loss of time, and the diffleulty of obtaining funds for the purpose previous to its being opened, all of which are fully atated in Mr. May's report.

gervey first division

Hest End Culcertx,-Beginning from the west end, the first danger arises from the culverts made between the Bannavie Locks and Gairlochy, a reach of six miles, to carry the mountain floods under the canal into the river Lochy. The masonry of these is certainly very rough, but they are altugether in a better state than I expected from Mr. May's meport, the leakage through the nork being very small and partial, when, bovever, the scrious effects of a failure in ore of these culverts, which would emply the reach of water, is considered, their perfect security, as the locks at present are, is most important.
Gairlochy Luck.-At the head of the reach is Gairlorby Lock, which has the important office of keeping up the waters of Loch Locby. This lake contaius an area of 6,000 acres, the water of which was rnised 12 feet above its atural level for the purpose of the canal ; in its ordinary state it is 6 to 7 feet, and in times of great floods 10 to 12 fret, above the present level of the conal in the reach below. If at this time any of the culverts were to gire way, so as to empty the reach, an addition of 16 fect would be added to the pressuse upon the gates of Gairlochy Jock, making a vertical head of it to 28 feet, which would, to say the least, place them in danger, and if they should then give way, the contents of the lake, for a depth of 27 feet, would be discharged upon the valley of the Lochy, the general surface of which is much below the level of the canal. The destruction of the canal works, and of property, and perhapa life, would be very great, and therefore the importance of sccuring the culverts, particularly as the works of the Gairlochy Lock are by no pleans in the best state. But my decided opinion, in which Mr. May agrees, is, that the renewal ofthe culverts would be but a patial remedy, and that completc security cannot be obtained here but by another lock at the ent-ance of the lock to the eastward of the present lock. By this neans also the trade of the canal, which, with one lock is liable to he entirely stopped by any necident that would prevent the working of any one of the gates, would be secured. As thinge now are, a ship or steam. vewe coming up to the lock wlth any way upon her, and striking the gates, might produce this stoppage of the canal for a considerable time, and incur danger, as the drpendence must then be upon one pair of gates. Considering all circumistances, I think it fortunate that this has not bappened ere this timr. I was delayed some time in my passage througlt the Crinan Canal by a ateant-boat having, in the course of the preceding day, run anims ind seinonsly danagent one of the gates: a similar accident to one of the Gairlorly fates might liave very serious consequences. When at Gairlochy, I advistd Mr. May, as a temporary precaution, to atretch a strong chain seron the lock at each cod; this has to be lowered to enable vessels to pest, but, when drawn up, stope the vessel before she gets to the gates. The atimate of this lock, with the dams and other works, is 15,950 . If exeruted, the culverts in the reach below may, with a little repair, be lef in, a the failure of one of them would then be confined to the discharge of the -ater in the reach of six miles.
Wate W'eir for Loch Oich.-A better provision for letting off the flood miten of Loch Oich is the second work required for preventing danger from iroudation. In the flood of November 1834, the water rose 7 feet 3 inches abore the 20 feet watcr-nark of the canal, or 15 inclses above the gatea of Aberthalder lock at the east end of the lake. An extension of the length of the waste weir, and widenlng the passage for the walers under it, is all that will be required; and lisen the present weir can be raised, 10 as to prevent the raste of water through it in droughts. The expense of this will be 1,2871.
Fort Augustus Locks are next in order. The mamonry of the five locks n is geperal very bad, but only the lower lock comes strictly under the proment convideration. To repair it, a dam will be requidite against Loch Nest, the sill of the lower lock being 15 to 20 feet under the water of the late, and then the opportunity should be taken to repair the second lock
also. I calcuhto on taking down to the bottom and rebuilding the recess wails, renewing the segrents and other works, which will amount to $7,590 l$.

I think the above are all that come noder the bead of preventing damage or inundation, without reference to the mere stoppage of the canal, which would be the consequence of a failure at any of the Fort Auguatus Locks, and from whicb, owing to the defective masonty having strained and tojured the gatea none of them are by any means secure.

The collected amount of the first division is $24,327 l$.
In the above, and in all that follows, I bare calculated upon the available and standard depth of water being only 17 feet, which is less by 3 feet than the original design. To obtain 20 feet would be a work of enormous magnitude, difficulties and expense, and would much increase danger, without by any means a compensatling advantage. A laden vessel of 38 feet benm (the available width of the locks) doea not draw more than 18 feet, and 17 feet is sufficient depth for a ship of 400 to 500 tons," and few, if any ships in the Baltic or American trade exceed this size.

EECOND DIVISION.

Finishing Cunal and remedying Defects. - With the expenditure of $24,827 l$. for averting inundation, and for the repair of Fort Augustus Lock, the canal will still be left in a very unfoished state, liable to stoppages, inconvenient for business, portions very leaky, and many of its works much out of repsir. All these, however, come more properly usder the second head, of "finishing the canal, and remedying what is defective in the original construction," which come now to be considered. These, though not urgent as respects security to the country, are most of them essential if the canal is to be kept open, and to prevent still greater expense, which will be the effect if the repairs be delayed. With the present disadvantages, imperfections and want of convenience, it is rasher to be wondered that there should have been cven the trade there bas been; and the fact of there haying been even a small trade, certainly goes to prove what there would be if the canal were finished, and convenience given.

In explaining the particulars of the works required, it is so very difficult to separate repairing and finishing from improvements, that tbe better way may be to state the articles in detail, as I have taken them, with the catimate of each : this will also afford information as to what is the nature and extent of the repairs, and what appear to me to be required in the way of jm . prorements, to render the Caledonian Canal complete and convenient for as great a trade as can be carried on upon it.

The repairs, improvements and machinery as detailed, \dagger amount to 104,490l, and with this expenditure 1 ?consider that the canal will be complete and proper for work as originally proposed, and combining additional anfety, but with the difference of 17 feet in lieu of 20 feet depth.

Steam Twgs.-As yet I have included nothing for steam-tugs, which, although no part of the original plan, appear to me quite indispensable fo: the proper working of the canal, as respects either the accommodation to tradc, or the probable chance of a return for the great expense incurred in its construction.

> PREAENT DIPFICULTES.

Lakes.- One of the temptations to make a canal at all, and particularly of this great size, from Loch Eil to the Beauly Frith, was the apparent facility afforded by the thrce lakes, which lie in alroost a continuous line, and are for the most part of ample width and depth; viz., Loch Lochy, 10 miles; Loch Oicb, 4 miles; and Loch Ness, $23 \frac{1}{3}$ miles; together $37 \frac{1}{2}$ miles; thus leaving of the whole length of $60 \frac{1}{2}$ miles only 23 miles of canal to make. That the cost of making the canal bas been much reduced, probably more than half, by the lakes, cannot be doubted; but it is equally apparent, its fully stated in Messra. May and Smith's reports, that they are now great hindran. cen to the passage of vessels. From lying in the trough or hollow between two ranges of mountains, the wind blows always parallel to the line of the canal, so as necessasily to be a foul wind in one direction. From the rocky nature of the banks, and their crooked irregular shape, tracking through the lakes is impossible. The widu of Loch Lochy and Loch Ness is sufficient for vessels of about 100 tons to work when once fairly in the lakes, but there is a grent difficulty in warping against a strong bead wind to reach tbis, and great danger also from the rocky shores in casc of a vessel missing stays. Therefore, working or tacking tbrough the lakes is seldom attempted, and the consequence is, that the passage of 60 miles, which, were tracking practicable for the whole length, might be accomplisbed gencrally in three to four days, often takes as many wceks; even a inonth is not unusual, and cases of fivc weeks have been known. The evil is increased by the westerly winds which prevail for eight or nine monthe of the year, and are opposed to the direction of what ought to be the greatest trade on the canal. To prevent passage of vessels proceeding from the east to the west end, which the is delay, sometimes three or four months, of going through the Pentland Frith and round Cape Wrath during the westerly winds, was one of the principal objects of the canal, which is thus in a great measure defeated. When 1 was upon my survey, sevcral vessels were waiting for a change of wind at the east end of Loch Oich, and another number at the east end of Locin Nese, none of them above 135 tons burthen. A very few hours of a steam-tug would have set the whole at liberty. The approaches to the canal from the estuaries at each end are subject to the sume inconvenience.

The urant of Depth in tho caual and portions of the locks is another great

- The late alteration in the moanuring for register has tended to reduce the depth of British ships built since the passing of the Jlegimer Act.

The report contains it detailed estimate, which we have here omittcy, in consquence of the great length uf the report, but, we will eqdeavour to gire it in the next Jourza.-Evitor.
drawback upon the use of the canal. This arises partly from the excavation of the canal never hering beon completed, partly from the weirs at the ends of the locka not being sufficient to suppert the depth of water, and partip from the great leakage in parts of the canal. Mr. May states that II feat in the navigable parts of Loch Oich, and 12 feet in portions of the canal connected with Loch Ness and Loch Lochy, is the depth after a continued drought. Last winter was an extreme case, and as the canal was shut up by the ice, there was no practical evil from the above cause. The water in Loch Oich on that occasion sunk to 5 foet, and Loch Ness to 11 feet, which evidently shows the want of a weir to support the water. I bave alroady named that the reach above Muirtown Locks requires the discbarge of 10 sluices, which is 24,000 cubic feet por minute, to supply the leakage of tho bunks: so great a leakage is perhaps unknown in any olher canal navigation; it forms no maan river of itself as it flows by the eide of the river Ness, claiming an equality even in ordinary times, and in short water time the leakage much exceeds the river. The sinking of Loch Ness lessens the supply for this leakage, and the canal sinks in consequence. This diminution of depth is objectionable, also by bringing the sbips in contact with the rougb banks, and injuring the sides, particularly of large vessels, if coppered.

Notwithstending all these disadrautagea, Mr. May states that the delay in going round the northern cosst is sometimes such, that there have been cases of vessels having come south and gone through the canal after trying for weeks in vain to make the roundsbout passage. This, however, and that there is any trade in the canal, is proof, not of the canal being good or convenient, which certainly it is not, but that the ether passages, the shortest of which is 200 miles longer than the canal, are from their length, and the dangerous navigation, most deairable to be avoided; and the fair inference from this alone is, that if the canal were in a good working state, a much greater proportion of the trade between the two \&den of the island and Ireland would use it.

Trade upon Casal.-The average of tonnage passing through the canal, exclusive of steam-boats and local traffic, has been about 25,000 tons per annum, without much increase or diminution, during the last ten years: its increase has been checked by various unscasonable interruptions during that period, caused by the imperlect and unfinished condition of the works, similar to what recently occurred at Fort Augustus.

From the accounts collected hy Mr. May of the trado of several ports it would appear that the present trafic on the canal is not probably 21 per cent. of the whole trade going through the Pentland Frith; and, from what has been scen, the camal is not capable, in its present at ite, of receiviug vessels of any considerable tonnage, which, indced, never attempt it. During the last sever years, only one vessel of 240 tons has made the passage.

Reveuue.-The gross receipts of the canal bave not exceeded $£ 2,500$ since tho rates were reduced from a halipenny to a farthing per ton per mile; the expense of repairs, working, and superintendence, have exceeded $\mathcal{E 3}, 000$, an amount which is considerable for the trade done; but it is to be observed, that the cxpense is increased by the bad repair and unfinished state of the worka, that the canal works are made for a trade of much larger vessels, and that the expense of them is almost the same as if such vessels, to ten times the present number, were to pass. If the works were finished and put into good repair the expense would undoubtedly be lessened.
If, thereforc, the canal is to be kept open at all, I think there is no doubt as to the propriety and policy of doing the repairs and fnishing, which it has been seen amount to $£ 129,317$, great as this sum is; and I have as little doubt that the effect would be very much to increase the trade, probably beyond what at present there is an idea of.

Steam Thgs,-After all the finishing and repairs are done, still the heavy disadvantage of the lakes will remain, and vessels must wait, as now, for a perfect calm or a fair wind. Indeed, the larger the vessel, the more this objection operates, and the only complete remedy for it, as respects either the accommodation to trade, or the probability of a return for the great expense incurred in the construction of the Canal, is the asing of steam-tags; so mucb so, that did we not know of the Canal having been projected, and even begun, before steara navigation was introduced, it would be difticult to suppose that steam tracking was not in contemplation, so defective aud imperfect is the Canal without it, owing to the lakes, which are, on the contrary, great advantages with it. To make the establishment proper, I thlnk three steamvessols should be calculated on for the Canal, viz., one for Loch Lochy of 40 horses power, for Loch Oich of 40 horses power, and one for Loch Ness of 50 horses power. Two of these might besufficient, but not so well as three; and in case of one of them being out of repair, the third would be useful to take its place. The expenso of these, with coal-sheds upon the Canal, may be taken at 7,2001 . ; the expense of supporting and worting them, supposing they are kept pretty fully at work, Mr. May cstimates (from the experience of which ho has furnished me with the details) at $1,000 \mathrm{l}$ each per annum, which would be a very large addition to the ordinary carrent expenditure. To do full justice to ths navigation, and add to the certainty of despatch, there ought almo to be a steamer in the Murray Frith, to bring vessels from Fort George to the castern entrance, and from Corran Ferry, or even the Sound of Mull, to the western entrance. This would require an additional capital of 6,0001 , and incur an addition of 2,0001 . to the annual outlay, but the accommodation would be mott complete.

Gross A mount. -Tbe amount for steam tug-boats, with 10 per cent. for contingencies, added to the repairs and improvements before stated, make a gross amount of $143,837 l$, or in round numbers 160,0001 , for puting the Canal in complete ropair, making it proper for all vessels of 38 feot beam and 17 feet draught, providing machigery ard atensils, and aleo a camplete establishment of ateam-tugs. Probably a lons number of steam-tage might do for a trial, and would be extromely neeful; but I bave thought botter, in this as in
the other items, to tske what I consider a full amount. With these improvements and additions, the passage from Fort George to the Sonnd of Moll might gencrally be depended on to be made uithin four days, and certainly, even in foul weather, within a week.
Discontinuing Canal Paseage.-And now the question presents iself, what, under preaent circumstances, is best to be done? Ought the narigation of the Canal to be discontinued? If so, this might be donce either by keeping up the works, or destruying them. The former would require vearly the same establishment for preservation, and watching for the sceurity of the country, as with the trade; part of the repair I bave calculated on must be done, and an annoal repair afterwards would be indispensable, all without any income. The other plan, viz., the permanently stopping up or destroying of tho works, would require dams and outlets to be made, pe:manent bridges to be built, the locks filled up or fenced, other works done, and compensations to be made, which it is extremely difficult to calculate, ond which, as Mr. May states, might equal in amount the expense of a proper repair, to say nuthing of the public inconvenience and the breach of faith which such a proceeding wight involve. Might, then, the works necessary to prevent inundation and the minor repairs be done, but the Canal left in its present unfinished and imper. fect state, with its present inconveniences ? This would, in fact, be contioning the system which has existed since the Canal was opened, but which could not be continued much longer; and, as the works are yearly becoming worse, some general repair must at once be done. The want of funds having probs. bly obliged the Commissionera to expend as little as possille, the defects bare been allowed to increase, and, in the course of a short time, it would be found that to have faced the repairs and done them properly would have been a cheaper plan. Certainly there would be no absolute necessity es respects security for adding to the present depth, or for other improvements; but on refe. ring to the detail I have given, I find that only about balf of the whole sum (exclusive of the steam-tugs) can be placed to the head of improvements; and I am opinion that, as respects the convenience of trade, or even atrictly as a question of expenditure and revenue, the finishinge are worth doing long with the repairs ; and both, be it observed, can be done cbeaper at onf time, when the water is out of parts of the Canal than piecemeal. Here I tuke the opportunity to state that, to do the work effectually, or near the estimata, 1 season would be necessary for preparation, making plans, entering into cos. tracts, and getting castings and materials to the ground through the Capal, to as to bring the neccasary period of interruption to the navigation within the shortest practicable limits.
buccers of canal.
General Opinion.-The original objects for making the Canal are well known. Some of them, as giving employment to the Highlanders and preventing their emigration, it has effected partially. In improving the value of eatates through which it passed, and that district of the counary genernly, it bas, with the excellent roads and inns, proved highly beneficial, particulaty since the introdaction of stoam-packets, which ply regularly twice a week to and from Inverness and Glasgow, through the Canal. As a facility for rade, in presenting the long passoge through the Pentiand Frith and round Cape Wrath, it has hitherto been a failure. This is not, however, if steam is included in the consideration, to be ascribed to the design, which has nover yet bad a fair chance, the works being incomplete and imperfect in the way I hare stated. If the Canal were completed, even to 17 feet water, and steam-tugi stationed upon it, my decided opinion, from all I have seen and have beel able to collect, is, that the Caledonian Canal will prove a most useful and inportant public work, for the general cossting trude of the Kingdom, and for the trade betreen the Baltic and the west coast, including the Clyde, Liverpool, Ireland, aud for vessels bound to America from the castern ports of the Kingdom. When it is considered that, in the one case, there may be almost a certainty of the vessel making her passago without danger, and with but little wear or tear, from the Murray Frith to the Sound of Mull, within a wech in any state of tho π eather, unless when the Cunal is frozen, in piuce of the dangerous passage of 300 miles by the Pentland Frith, which varics in time from a week to three or four months, with an insurance which, if the cargo bo of much value, would alone do much more than pay the Canal rates, and with the expense of lights, there can, I think, be little doubt of the fact being al have stated. Taking the present rate of one farthing per ton per mile the Canal charge upon a vesscl of 200 tons is about 131 ., which is from two to three days of the wages, provisions, wear and tear, \&c., of a vesiol of that size; and if the average difference of time between going round the ports const and through the Canal be taken at ten days, as was stated in evidence, and is probably nearly correct, wages and wear would amount to threo times the Canal rates, independently of the risk, the detention of the cargo, uncertainty, \&c. In some cases, as in sowing-linseed from the Baltic for Ireland sce., the detention is so great, that the sowing season is entirely lout. I mo informed that the losses to the merchant, as well as to the lrish furmer, through want of good seed from this cause, are considerable.

On the subject of insurance I subjoin a letter from Mr. Alderman Pirie, of London; by this, it appears that the difference of insurance between ibe Caual and the Pentland Frith may be taken at 20s. per cent on an average This, upon a ship of 200 tons burthen, the value of which and cargo (which in Mr. Pirie's opinion may be taken at $6,200 l$.) makes the saving of jusurnese alone on such a ship and cargo 65 l.

A letter from Messrs. James Miller and Son, Leith, to Mr. May, on tho sume subject, ls also annexed; by this, the return of premium on going through the Canal is stated at about half the above only.

The lighes form another item of difference, but leas considerable. A ship passing through the Pentland Frith has to pay the following lights ; rim Puntlagd Skerries, Dunaet Head, Cape Wrath, lalaed Glare, Burn fine
od Sterryvore; each one halfpenay per ton, if British, or 1d. per ton if oreign. By passing through the Candl there will be only two lighte to pay, in. Tnrbet Ness and Lismore; being a asving of 2d. por ton, if British, and d. Taton, if foreign.

Io casc of war, and the English Channel being infested by steam privateers, be canal will afford a passago of comparative safety for the trade between the Het lodies or America, and the east coast of Great Britain.
1 have not sad that the Caledonian Canal is, as a money account, cver to be - probitable concern, but that it will be a useful pablic work; chat being sade, thero appears to me no alternative but to finish it; and (this granted) sat to finish it properly will be, even as a money account, the proper course to dopt. The time, bowever, may come, and may not be very distant, when, rea as a money speculation, it will appear in a very different light from the wsent; this partly from the increase in the quantity of tonnage, and partly ron the rate. The act allows 2 d . per ton per mile, the present charge is a irthing; to raise it without affording increased facilities, would reduce the rade, but with betuer accommodation; the facts I have stated would justify an iddition to the rate.
The Forth and Clyde Canal is a parallel canal, and in some degree a parallel zee, Uithough comparatively mmall, the locks being only 20 feet wide, with a lepth of eight feet; it is therofore suited only for amall craft andor 100 tons. this canal was opened in 1777, and was at wort for 80 years before it paid lay interet. The tolls ere charged not upon the tonnage of the vercels, but at rious rites upon goods. On referring to the table of tolli, I find that by far be grestest namber of artieles is charged 2d. per ton per mile, which is the sighent rute allowed by the Caledonian Canal Act, or eight timen the present nie charged apon the intter. The trede and profits of the Forth and Clyde Casel are now such that the chares which were originally $£ 100$, exclusive of mesmalited interest, are now $£ 600$ in the market. The accumulated intorest upon the original share of $£ 100$, taken, 1 suppose, at compound interest, soomats to four times the originnl sum, but still shows the canal to be a proterble invecurent.
Mr. May bas, at my request, prepared a table of the tonnage to and from he encern prosts, 10 show the extent of trade, a portion of whioh he considers rould be likely to use the canal; it is so great, that a small portion of it raudd make the concern not only usefal, but profitable. I dislike the appearing to calculate profit, which is not my department, and ought always to be reseived with caution, as a basis for any calculation. I would only remerk, has, at a halfpenny per ton, the riues upon 100 tons would amount to AP 10 s ; and that 400 toma paning deily would produce a grosa income of lis,u0y por anoam, without any material increase of the present outgoings, π rubet the contrary, if the works be put in repair.
The limit to the number of veasels passing is cassed by the eight continuous ock at Bumparie, near the west ond of the canal, throsgh the whole of which, ming to their being no cbember or pasiag.place, a veasel moust pase up or losn before another can enter in the opposite direction. This is a great delay od eril; ith effects might partly be remedied by dividiag the trade, the necending mesels one part of the day, the descending vensels the other part. Δ more effectual, bat more expensive remedy, as respects money and water, makld be making a siding or pasaing-place in the middle of the chain of locka. Mu bowover, with its preseut imperfections, the locks can pasas more than four limes the trade I have named, 400 tons per day, I have not included in the ruimete any thing for an alteration in theme locko.
Mf. Gladitoce, whose long and extensive mercantile concorns and general toisiodge are well known, having applied to Mr. May to know if his vessel of 30 toma, bound for Liverponl, could be pereed through the canal, was referred * we by Mr. May. After a conference at his desire, I requested Mr. Glad. tses to fayour me with his opiaion, which be has kindly done. His letter has pree su no reason to change the favsurablo opinion I cortainly have of what bus ceal is likely to be at a future poriod. It has never yot had a chance, and locevider int all its bearingi and prospecte are completely altered by the atodaction of steam; so that the evidence given previous to its formation, and such lews is worting, sisce it was opened, hims but little to do with the present propect.
(The report concluden with some remarks on the state of the Crinan Canal which we ihall give in the noxt Journal.-EdiTos.]

BLASTING BY THE AID OF GALVANISM.

imtresting extemiments on blabting at craigleita guarby.
(Front the Edinburgh Advertiser.)
On Tuesday, 2sth of March last, a large party of gentlemen assembled in Crapleith Quarry, to witness some cxperiments on blasting by means of alranism, which sere made at the request of the Directors of the Highlusd and Agricultural Society of Scotland by Martyn Roberts, Esq.
It has long been known that the ignition of gunpowder can be very effecinaly produced by the application of the electric fluid; but Mr. Roberts 14 verceded in producing an apparatus for this purpose, which is simple ?: rructure, rery portable, and which, above all, is ersily managed. He \therefore dinn, in the application of this apparatus to blasting rocks, introduced ism inodifeations of its arrangements, and effected great improvements 2 die mode of charging.
The apparalus consists of a small trough, about n foot in length, and four ung anure on the end, and a battery conlaining ten pairs of plates. Abre the batiery runs a bar npon which a tin disc slides frecly. This disc, Fos drowa to the end of the bar, touches another disc, and this completes A cmaciva betreean the oppotion poles of the battery. To prevent acci-
dents, the sliding dise is kept in the middle of the bar by means of a spring of coiled wire; and it is impossible to put the battery in action although sunk in the trough without shifting the plate along the bar to the opposite end of the trough. The copper wires which convey the electric fluid to the gunpowder are kept separate during their whole course by a sheath of cotton thread, which is wrapped closely round them in the same manner as in the strings of a guitar, or as in the wire which stiffens the rim of a lady's bonnet. At their termiuation these wires are bent outwards, and their extrenuitios are cunnected by incans of a finc stecl wire half an inch long, so as to form a small triangle, like the Greck capital delta. This triangular end is inserted into a mmall tin cartridge, and lgnition of the powder contained in the cartridge is produced by the deflagration of the steel wire which connects the ends of the two copper wires. So rapid is the progress of the electric fluid, that it is impossible to measure the interval of time Which clapses betwecn the action at the trough aud the explosion of the cartridge. The cost of this apparatus is only about fifteen shillings; and the price of the materials required for the solution is such, that a shilling will cover the expense of kecping the trough in a working state for months. The copper wire which, if properly slicieded, may last for years, costs about one farthing for each yard. In applying this apparatus to blasting, Mr. Hoberts makes the following arrangements:-In regard to the mode of charging, which is perhaps the most important peculiarity of his method, he leaves a space of about one foot, containing atmospheric air, above and below the gunpowder; and thus obtains, over and above the effect of the gunpowder, all the power which the sudden increase of its volume produces; and thus the same effeet is obtained from a smaller charge. He also inserts the tin cartridge into the heart of the charge of powder, and as the cartridge explodes at both ends, the guppowder is much more instantancously ignited. Iastly, in tampling, wo vent-hole is lef, as in the common system, by the withdrawing of the needle; but the tamping is pressed closely round the wire which conveys the electric fluid from the trough to the cartridge. When the tamping is completed, the battery is plunged into the trough, which is at the distance of 40 feet from the bore-hole, and may of course be removed as far as may seem desirablo, by glving a small increase to the powor of the battery if required, which lis easily effected by adding a pair of plates. The spring of coiled wire stlll keeping the tin dise in the middle of the bar, there is no risk of an unexpected explosion, a danger which occasionally happens by the too rapid ignltion of a train or fuze in the common method of blasting. Every one having retlred, a person sfationed at any safe distance, pulls a string, which makes the tin dise pass along the bar, and the instant the connection of the opposite poles of the battery is established, the exploslon takes place. We shall briefly detail the chief adrantage of this new system of blasting, which wo conceive to be as follows :-

1. Freedom from the dangers which always attend blasting is obtained from varlove causes. In the common system, the fuse or train must be fixed at or very near the hore-hole, long trains being expensire and uncertain in their action; and aceldente, from the too rapid burning of the fuze, are unfortunately very common. But in Mr. Roberts' system, the porson who palls the string which puts the battery in action, may be stationed at any convenieut distance. In the ipresent system, perliaps the most common source of accident is the withdrawing of the needle; and this is completely avoided in Mr. Roberts' plan. Lastly, there is less chance of failure, and when failure does occur, the borohole may be at once, approached withont risk of eccident, as the moment the string is slackened, the action of the battery ceases.
2. The nexl advantage is, the great facility which this mode gives for blating under water. This is oue of the most inconvenient, expensive. and uncertain of all engineeriug operations. It involves much trouble asd expense in laying hoses for the train or fuse, which are destroyed every time; and after all, there are, perhaps, three failures out of tea trials. All this is avolded by Mr. Roberts' syatem, which is as efficient under.water as above it, and involves not one, farthing of loss under water more than on land.
3. The great adrantage of a much more rapid ignition of the gunpowder, which incloses the cartridge on ali sides, and receives the action of the flame uver the greater part of its surface at the same instant, gives the new symtem a great anperiority. This is a most important element in the effect of the charge, as its full force is thus secured. In the present mothod, on the other band, the powder is fired from the top, and when hard rammed frequantly burns eway in a series of smaller explosions, produciag successive shocks, eaparated, it is true, by impercaptible intervals of time, but yet produoing an effect greatly less powerful than they could bave done if concen. trated in one shock, so as to act simultaneoudy.
4. There is absolutely no vent-hole in the mode of tamping pursued by Mr. Roberts, which mode cannot be applied to the present aystem of blasting. Tbis is an important gain, the vent-hole being a decided ioss of power, which is well known to gunners, and to counteract which, the Turks are in the habit of eovering the touch-bole of their guns with a beg of sand the moment the priming is fired.
5. The advantage of enolosing a column of atmospheric air, an practised by Mr. Roberts, is obrious, for the force exerted during its expansion is added to that of the gumpowder itaelf. What that oxpanion may be it is diffcult to tell, as we have no good means of ascertaining the increase of teropersture which acompanies the explonion of gunpowder: but ta the volume of atmonpheric air is doubled for every ingrease of temparature of 450 deg. of Fabrenheit, the corce produced by the expansion of the inelosed colanin of atonospherio air muth form an important addition to the effect of the gunpowdex.
6. It follows neoessarily from what has been said above, that the combined efficts of the instantancous ignition of the gunpowder, the absence of all vent-holes, and the expansion of the enclosed column of atmospheric air must cause a much greater effect than the explosion of the powder alone in the common system con produce, and consequently that a great economy in the article of gunpowder must result. This is a far more important item in the expense of quarrying and roek excavation than is generally imagined by those who are unacquainted with such works. In the excavatioa for the Pbiladelphia Water Works, for example, vearly 3000l. Were expended in gunpowder, and at the rock-cutting for the new approach to Edinburgh, by the Calton Hill, 1000t, was spent in this item alone. In granite quarries the powder for a single sloot often costs $3 l$. If lie methud of Mr. Koberts produces a maving of about two-thirds of the quantity of gunjowder required for Llasting, as would appear from the experiments which were made on Tuesday, some idea may be formed of the great economy which would follow on the adoption of the new system.
7. The system of Mr. Roberts makes the simultaneous firing of several blasts casily practised : and in many situations where the removal of the men to a place of safety is difficult, thin is an important advantage.

The following details of the experiments mads on 'Tuesday, by Mr.Roberte, are chiefly taken from the notes made by Mr. Inverarity, of the Madras Engineers.

No. 1. Bore of the hole, $2 \frac{1}{2}$ inches; depth, 3 feet; powder used, 2 lbs.; column of air left in the bore, only 3 inches in beight ; line of least resistance, 18 inches; the effect was good; the rock was much splintered, and some fragwents were thrown into the air.

No. 2. Bore of hule, $2 \frac{7}{4}$ inches; depth of hole, 8 feet; half the usual clarge of powder used ; column ofair left, 2 feet in beight ; effect enormous; immense mass moved; few fragments thrown into the air; deep rents all round, and large masses loosened.

No.3. Bore of hole, 27 inches; depth 6 feet ; two-thirds of the usual charge of powder: colunin of air left 18 inches in height; few fragments thrown into the air; but large masses lonsened.

No. 4. Dimensions of bole, same as the last ; charge of powder less than one-balf the usual quantity; coiumn of air lef, g feet in height; effect ${ }^{*}$ very good indeed ; much rock loosened; no fragments thrown into the air.

No. 5. Bote of hole, $2 \boldsymbol{t}$ incbes; charge of portder, two-thirds of the common charge ; column of air len, two feet in height; effect excellent; about 300 tons of rock supposed to be torn away; much rock loosened, and deep rents observable; no fragunents thrown up.
Nos. 6 and 7. No account of bore-hole taken ; powder, one quarter of the usual cbarge; effect of both was good.

No. 8. Experiment under Fater. In this experiment, 3 lbs. of powder were put into a bladder and sunk to the depth of ten feet under the surface of the water, in a deserted quarry, west of ciraigleith. Tho string was drawn, and the effect was instantaneous; a dull red globe of light, caused by the explosion of the powder under water, was observed, and immediately there followed a cousiderable shock which was sensibly felt on the margio of the pool, at the distance of about 100 yards from the explosion ; a mase of water, about 10 feet in dianeter and 2 feet in height, shaped like a fiat dome, rose above the surface of the pool, and immedintely after jt disappeared, the mud and burned powder boiled up from below like a cauldron.

The Directors of the Highland Society in attendance, and all present werc higbly pleared with the complete success of the experiments.

EXPERIMENTAL BUBTERRANEOUS AND EUBAQUEOLS EXPLOEIONS AT CHATHAN by the voltaic battery,

From the Timer of April 9, 1839.

For several months past the Royal Engincers at Chatham, under Colonel Pasley, bave been trying experiments in firing gunpowder by the voltaic battery, ehiefly under water; and, afcer many vicissitudes of partial success and of falure, they have at last succeeded in bringing this process to as much perfection as it seems capable of-that is, to as much certainty as the former methods of firing mines in dry soil. They have repeatedly fired gunpowder at the distance of 500 feet, with their conducting wires either buried under ground or led entirely under the water, excepting a few feet connected with the battery, which in their subaqueous explosions was in a bost on the Medway, the powder being lodged at the bottom of that river. In their subterraneous explosion they blew up a field-work, and in one of their subaqueous cxperiments they blew to pieces a veasel representing a wreck, the fragments of which being of fir timber came up to the surface of the Medway immediately after the column of water thrown up by the explosion. On Saturday last they applied their voltaic battery to the blasting of rock under water. Two very large and heavy pieces of hard sandstone were each prepared with a hole three inches in diameter by a borer, after which a charge of three-quarters of a pound of powder was put into each, and the upper part of the hole was tamped by fouring in small fragments of broken stone round a cone fixed over each charge, in a new and ingenious manner, first suggeated by Mr. Howe, clerk of the works of the Royal Engineer Estahlizliment, more than five years ago, which does not seem inferior in resistance to the common mode of tamping, but is much anfer and far more expeditious. The conducting wires were led from each charge to the battery, which was placed on the fun-wharf, whilst the stotes thus prepared and loaded were lowered down from a crane to the botlom of the river opposite, where the water was dourtren feet deep at the time. The first stone, being of a compact form,
was blown to piecet, and the rope sling by which it had been lowere, and which had not been removed, was broken. The second stone, being of 3 more irregular shape, and much thinner, so that there was not soffieint resintance above and below the charge, was brought up by the crathe afte ite explosion, which had only blown out the solid part of the stonobelow the bottom of the bole, apperently without injoring any other part of it Anotber oharge wat therefore placed in the same hole, which wrat tamped both abore and below in the mode before described, and the stone Fas thea agaim down to the bottom of the river, and after firing this second charge, on being houled up by the crane it was found to have been broken into thret part, one of which did not reach the surface, whilst the other two, being still hald together by the slings, after being raised nearly to the level of the fhaf, separated from each other, and fell to the bottom. One of these charge ris contained in a tin cylinder fitted to the size of the bole, the two othen in canvass bage of the same form covered with waterproof composition. Thex last experiments, which like several of the former, were witbessed by armi number of spectators, chiefly military, have proved that the roltuic batter! may succeed for blasting rock under water, as well as for blowing wrecks to pieces, and in the former supposition the boles in the rock would be frand and the charges placed by means of the diving-bell.

The resulta of this course of experiments may be of great importarce, en pecially for defeusive military minea, beeause the voltaic battery affurds the only possible means of firing several such mines, not only iastentaneondy tu: simultaneously, and at the very moment when an enemy's colunn adrawiog to the assault is over the spot where these mines bave been prepand; wheres by the common mode of firing military mines, by a piece of portine or der match connected to a powder hose, there can be no certainty of their tatiog effect at the precise monnent required, so that the enemy's troops might eibet bave passed over, or not yet reached the spot, at the period of explaioo: ard the simultaneous explosions of conjunct mines by this method is out of the question, for no two pieces of portire or powder hosen, though cut to the gane length, were ever known to burn exactly alike. For subaqneous explonious the superiority of the valtaic battery is still more striking-so much so , the Colonel Pasley has ropentedly declared, that if he liad boen possused of the same voltaic apparatus, and had known bow to use it last year in his oper tions in the Thames, it would have saved a great deal of trouble and π. pense.

Nothing can appear easier than to flre gunpowder under water by the rol taic battery, as exhibited in a lecture-room or scientific institution, but the mode usually adopted on such occasions, of passing the conducting wire into the charge through a cork conted with sesling-wax, and of insulating the trmaiuing length of each wire by enclosing it in small India-robber tubco is inadequate and inexpedient, for practical purposes in a rapid tidens and in deep water. In Colonel Pasley's experiments at Chachum, eats and sealing-wax were rejected, the former is being too weak, the luter from being liable to crack, and India-rubber or caoutchoue was alo π jected, as being far too expensive; instead of which a compoaition of pitch, softened by beeswar or tallow, was edopted, the remarkable efficianc of which was proved by keeping one of those experimental charges lea dyy under water before it was fired, when the powder wats still perfecily dry. Each pair of conducting wires used in these experiments mes atray attached to a rope or line, previously saturated with boiling ter, to prewer it from tearing asunder the soldered joints of the witas, by its alverote contraction and expansion when wet and dry, an effict which on ane occasion actually took place before the rope was so saturated. The two wires and rope were bound together by tape and served rousd with hewp yarn, and in this stato they had the appearance of a single rope capable of being coiled and reered out conveniently. Une of the most important puint. necessary wat to prevent all atrain acting upou the conducting wirs from without, and thereby breaking the very small delicate platinum wis witin the charge, which, by interrupting the circuit, would readererplocionimpos sible. To guard against this cause of failure in the shoeks to which the conducting wires may be exposed in a rapid cideway appeared at frat a rry difficult task.

The voltaic battery used was of Professor Daniell's improved soostrucion, which, from retaining its energy much longer than any former voltaic bather, be has named the coustant voltaic battery, and which Colonel Pasley fousd to be much superior to tho best of the former constructions, at least for the peculiar purpose of firing gunpowder, either under ground or under water. Sergeant-Major Jones, and the non-commissioned ofleers and privater who have been employed in these experiments, are now as expert in the ued this battery as can be desired, and, being artificers, they are able to matr a well as to use auch batteries.
Having described these recent interesting experiments of the engineery a Chathan, we may add a brief historical notice of what has been done befrtNo doubt small charges of gunpowder must have been fired by the roluic battery, as a matter of experiment and of curiosity, almost as soon ao the firt rude battery of that demeription was invented, but the merit of having bra applied it to practical purposes is due to Dr. Hare, of Philadelphia, whow proceedings were published some yeari ago in Sllliman's Americon Journh of Sicience (vol. xxy. page 139), and more recently in a paper commuriened to the British Asociation in $\mathbf{1 8 3 6}$, and published in vol. v., in the transer. tions for the sections of that ycar, page 45. Dr. Have states that be nad it in blasting rock for the purpesen of building, and that he hes even fred treto blasts simultaneously at the distance of 150 feet, by a powerful volaic battry of a very ingenious and peculing construction, which be calls a calurimetr. He says that the same process might be applied for blasting under wata, but
be dies not mention that he had ever done so himself. Colonel Pasiey, after comprise Dr. Hare's modo of firing charges simultaneously, with other modes which be also thled, oonsiders the Doctor's method of soldering the virts together in two parcels, one to bo led to one pole, and the other to the ather pole, of the valeaic batwery, to be the bett, and not likely to be improved opon; but he hats not adopted any of the Doctor's other arrangementa, as they an cot applicablo in suburueous explosions under difficult circumatanoes, and be meither untes the large nor the sinall iron wires, nor the fulminating powder necommended by Dr. Hare. His own experiments for firing several cbarges aimultaneously have as yet only succeeded at very short distancea, beanra he had not a sufficient quantity of thick copper wire in his possension; and therefore was obliged to employ common bell-wires, only 1.16th of an iact in diametef, which are eomparatively useless, the best conducting vires being those of $1-5$ th of an inch in diameter, which should always be aned far great explosiont, and none less than le8th of no inch even for small exploniona or for blasting. The offeer who witnessed the varieus experi. wente at Chatham are therefore of opinion that it would be alusolutely impraticable to fire gunpowder under water at the diatance of $30 C$ or 400 yards by six of Professor Daniell's cells, with conducling wires only about as thick as a common bell wire, as was asserted in a paper on the subject of blasting rocks Dy galranism, published in a scientific journal for the month of May, 1838 ; instrad of which, they think that to produce ignition by such wirgs at the lest-damed distance would require the operator to go to the enormous expense of providing himself with a most unwicldy battery of far greater power then has ever yet been used within the memory of man; for in their own experiments they never succeeded in firing a subaqueous charge, eren at the didsace of 100 fept, by kewer than eight cells, with common bell-wires: wherens, in uning the lange wires, the same number of cells was found capable of producing ignition at five times that distance.

We shall conclude by mentioning with due applause the extraordinary wecent of Mr. William Suow Harris, of Devoaport, wbo did wonders in firing gemporder by wires led through water at a great distance by the common electrical machiue in 1823. But fur a detailed account of the intereating experiments of tbis justly celebrated electrician, which astonimbed a number of diatinguished naval officesw and other apectators at Devenport, at the period alladel to, we must refer to the British Press newspaper of the 17th of Mareb of that jear. Notwithstanding this brilliant suceezs, the voltaic batery must be considered preferable to the electrical machine, because the batter requires a much longer apprenticesh p to use it properly; and one cancot expeat such akilful manipulatiou as Mr. Harris has displayed either from military or from civil miners; besides which, that gentleman worked from a warm dry cabin, which is indispensable to the success of the electrical machime; whereas in the experiments of the engineers at Chatham the charges were atways fired from Daniell's voltaic battery in the open air, ohen when exposed to havy rains, and on one oceasion during a rery violent noow storn.

EARLY GREEK SCULPTURE.

at the entibi museld.

(From the Times.)

The cats frem the Fgina marbles, of which some time since we gave a full deecription, have within these few days been placed on the pediment which has beo crected for thens ; it is in that part of the gallery of antiquities called the Prigalian room, and is an exact representation of that portion of the temple of hepiter Panhelleaius, in the island of Agina, in the rnins of which the stares wave diceorered. The composition is of brick stuccoed. Although a grat improvement on the former shelf, as being deeper and bolder in the relief, and also as heving she ornmmented fgures placed on the apex, yet it is much whe regretted that the altuation bas not been more happily chosen-irst, became it in not erected at a sufficient height from the pavement to give the full cfeet to the statues, and almo, as the width of the apartment does not afford meficieat space for the angles to be carried out, they are necessarity cut off, which given the whole an nofinisbed and unconth appearance. Neither, from the locality, can the spectator tako that distant view which is requaired to bring out the beanty of the whole. Boub in the Vatican and in the gallery of Flomase a great effoct is given to the master-pieces of antiquity by assimilating the edikes in which they are contained with the works exhibited, and avoiding a moch as ponsible the warehouse look which a namber of statues of all sorts, sises conditions, qualities, placed in jaxtaposition must always, in a certain degres, give to the building, which reduces the effect on the beholder, at it preveras the morite and beaties of the sculptures being obwerved, creates conhaion in his mind, wbo, if he efterwards sees a cast of any single one, is sur. Priced that be has overlooked or forgotten it. The statae of the Apollo in the Vatican, and the Vanas do Medicis in the Ducal gallery tof Florence, would lose half their grandeur were they republicanised amidst the heterogenous draisens of the apacioun halle of the Brilish Museum. The trath of this may aily beroved: let any one observe the supert statue of the Vonus found in an baths of Claudius at Ostia through the entrance of the terre-cotie room, and be canoor fail to be struck with its beauty; bat he will find on entering - that otber aculptures placed around, of different character and dimensions, ma. urialls redoce the effect. We are well aware that it would not be posaible so to arrapge that every sculpture of consequence shouid possem its divtinct apertanat : but here the contrary practice has been carried to excers. It is strange that as one of the principal defects of the National Gallery consists in the dimipalive proportions of its rooms, to that printings which require both light
and space so be vicwed with adrantage are deprived of both, that in the satue galleries of the British Muscum nothing but spacious balls are to be found, and that there is not one chamber a- onstructed as to bear resemblance in its proportions and its "dim religions ilert," its "solitude of silence," to thoce sancturics in which many of the tues exbibited were originally placed. We mention this, bocause thero tuations in the Museum where, at least with regard to those Agina figures, this object might have been effected. In the great centre saloon it would have been oasy to have made the partition columns harmonise with the pediment, by which it would have been placed at a safficient elevation from the pavement; or in the new building which is to oc. cupy the ground the twelfth room now covers and about to be rebuilt. Of the whole collection within the walls these statues are alone as a group per se perfect, and had they been placed to adrantage would have giren to the general visitor a far better idea of the grandeur and benuty of ancient art than the beadless, armless, and legless remains contained in the EIgin saloon. We protest, also, against the unseemly impalement of the horses, which creates a foeling of horror in the mind, and which might easily bare been obviated by attaching thern to the walls with iron rode invisible to the spectators; also the wall within the pediment forming the back ground should have been made to resemble stone, and not hare had the glaring colour it now posseases. On the opposite side of the apartment a similar building is preparing, in whico are to be placed tho nine figures that ornamented the eastern front of the same Temple of Japiter whence these wre taken.

Within a teraporary building opening from the finh room are the censts from the marble metopes of the great temple of Jupiter Olympius, at Selinus, in Sicily. Valuable as they are, as belonging to a school of art prior to that of Egina, and probably of a date coeval with the earliest Egyptian, a short notice of them may not be unacceptable, as no account of them is to be found in the synopsis, and to the public in general, although subjects of great curiosity and inquiry, the legend which they tell, and their appearance are altogether as unacoountatie as mysterious. At Selinus, in Sicily, there are the remains of six temples of the carliest Doric, within a short distance of each other, and it was during the researches into the ruins of the largest, called the western, and the one furthest from it, named the eastern. by Messrs. Harria and Augell, in 1892 , that these ancient sculptures were found: anong them there were no single and perfect statues as in the temple at Agina, which probably arose from the neighborrhood being well peopled, and they had no doubt been repeatedly ransacked. These temples may be reckoned among the largest of antiquity, being equal in their dimensions to those at Agrigentum, in the fluting of whose columas there is sufficient space for a man to stand. Imme. diately after the discorery, application was mado to the Neapolitan Govern. ment to allow them to be shipped for England, but permission was refused, and they are now in the Royal Gallery at Palermo; casts were allowed to bo taken, and they are these we now describe. They are probably of as early a date as any that have reached our times, and are of different styles of art: thome which belonged to the Temple called eastern, whence the sculpture of the head of the dying warrior, and the chariot drawn by horses, were taken, possess much of the Rginitan character; those of the western aro of a ruder age, in most of the figures the anatomy resembles that of the earlicst coins, but different in many respects from the Greek sculpturss; and there is a short and foll character in the faces approaching the Eggptian. From the short proportions, the seahy part of the thigh overcharged, and the peculiar manner in which the hair is arranged, they might be taken for specimens of Aginitan art; but on a close inspection it will be found, that they are the work of artists educated on difforent principles. At a much later period it is known that the artists of Fgina were employed by the kings of Sicily, and these therefore are not unlikely to have been the work of Carthaginian sculptors brought to decorate a city in allinnce and newly founded, wbich will account for the EgJptian character given to the whole. The cast, which conaists of the body and head of a dying soldier, a part of a female figure behind, formed the thind metope of the eastern temple, and ia a most raluable and curious fragment, and detormines the style and character of the sculpture of the semple. It bears a marked rememblanco to some of the hea is in the Atgina marbles, bat it has much more expression ; the artist has evidentiy intended to mark the agonies of death, by the closed eyes, the mouth slightly opened, and the tongue appearing between the teeth; the hair and beard are most carcfully and symmetrically arranged and most elaborately finisbed, the helmet is thrown beck, and is of the kind called " reicon," part of the crest " $\lambda 0 \phi_{0}$ "" is visible under the left shoulder of the figure. The fragment of the female is very spitited, and evidently in atrong action. These motopes, like those of the Parthenon, are in high relief, and in some parts detached. Thormalsien has pronounced them equal in execution to the 太igina.

The next, which consints of three figures, one of which has a horse under the arm, is particularly interesting, from the illustration it presonts of the death of the Gorgon Medus. Peraeus, emboldened by whe presence of Minerva, is represented in the act of slaying Medusa; his eyes are averted from the object of his honour, while his right arn, guided by the goddess, thruate his aword into the throat of the monster. Pegasus, a winged foul, springs from her blood, and Meduse presees him to her sido with apparent solicitude. The monstrous face of the Gorgon is finely represented; the large round head and hideous face rise from the shoulders without the intervention of a oeck; all the featores are frightfully distorted, the nose in tat and spreading, and the moath is nearly the whole width of the face, and is armed on eacts side with two immense tuski; the hair over the forehead is curiously shown, and almost appoars to bave represented the serpent's, to which it was changed. Tho fisure of Minerva on the right is draped with the " $\omega \in \pi \lambda^{\prime \mu}$ " and has tio Monander orament on the edge. The figure of Perseus is in the centre;
he is armed with the harp of Mercury and the helmet of Plato, which latter has a pendant falling on each side; the "arךva $\pi \in \delta i \lambda a$," or talaria, are re. presented as covering the fect entirely, and bear some resemblance to the ancient greaves; the front part is attached to the ancle by thongs. The form of the young Pegasas is exceedingly beautiful; be scems bounding from the earth. The metope containing the figare bearing two others on ita shoulders represents the adventure of Hercules, surnamed Meinmpyges, from the black and hairy appearance of his loins; the story is as follows:- Passalus and Acheman, two brothers, reviled their mother, who warned them to beware of a man whose loins were covered with black hair; they attempted to rob Hercules while asleep, and from that had the name of Cercopes; in the attempt they failed and awoke him, and he bound them hand and foot to his bow, with their heads downwerds, and carried them in that manner; they began laughing on the accomplishment of their mother's prophecy; Hercules asked them why they laughed, and on their telling him the reason, he also laughed and liberated them. The figure of the god is represented as atrong and mus cular, and tho two prisoners have a very ludicrous appearance; in the reverned position, the bair falls in a curious manner; the whole group has been painted in various coloars, and in the countenances much of Egyptian expression is to be observed. The borses which draw the chariot formed part of the centre metope of the Eastern Temple; it is very imperfect, and is supposed to represent the celebration of the race of Pelop sand Enomans; they are drawn full of fire and coarage, and are finely, fore-shortened; they have the cropped ears and manes which are observable in those of the Parthenon.

These sculptures are valuable as specimens of the third period of the art, the earliest of which is probably the Hindoo; the great resemblance both these and the Egyptian bear to that style is remarkable, and gives warrant to suppose that it was the original school. Of Hebrem sculpture there are no remains ; the command to form no graven image prevented the art attaining the perfection which it reached in the neighbouring country of Syria, and would seem to account, that within the land of Judea no statve bearing marks of great antiqqity bas been discoverod. The Egyptian, the Etruscan, the Selinuatine, and the Egina schools, furnished tbe models for the Grecian; and the careful observer bas it in his power within the walls of the Muscum, to trace, step by step, the progress of the art, till it attained its meridian splendour in the production of those senlptures, whose dilapidated remains are there preserved, and which the accumulated knowledge, genius, labour, and talent of 2,500 yeara has never yet been able to surpass.

On the walls of the building containing the sculptures we have described are a splendid collection of architectural models and casts from the antique, which were collected by Sir T. Lawrence, and purchased at his death. lu the centre is a model of the sbield of Achilles, by Flaxman, taken from the Iliad, and justice has been done to the conception of the bard. Under glass cases are some very curious models of Druid quoits; the limits of this notice will not allow us to describe them.

ECONOMY OF FUEL.

Perhaps there is no subject of more general importance, both in a scientific and a national point of view, than that which forms the title of this paper, more especially at the present time, when owing to the vast and rapid.augmentation of steam-power, whether as applied to mines, manufucturea, locomotive or maritime puiposes, the consumption of fuel has increased to an almost incredible extent. When to these are added the enormous quantity consumed in the iron-works, besides that which is annually exported to India, the Colonies, and foreign parts, we cannot but contemplate the probability of the exhaustion of our coal-beds (there being no reproduction of coal in this country, since there are no known natural causes in operation to form other beds of it) otherwise than as a national calamity, involving the destruction of a great portion of our manufacturing and commercial prosperity. Nor is the period so very remote when the coal districts, which at present supply the metropolis with fuel, will cease to yield any more. The number and extent of all the principal conl-beds in the north of England have been ascertained, and calculations made, by which it would appear that the supply will be probably exhausted in a period of from $\mathbf{3 5 0}$ to 400 years.

Professor Buckland, in his evidence on this subject, estimates the duration of the coal in these districts, at the present rate of consumption, to be 400 years.

Professor Sedgwick, who is well acquainted with the coal strata of Northumberland and Durham, gave his opinion respecting the duration of the coal of these counties, as follows :-

I am myself convinced, that, with the present increased and increasing demand for coal, 400 years will leave little 'more than the name of our best coal seams.

And he further adds :-
Our northern coal-field will probably be in the wane before 300 years bave elapsed.

Already this event has occurred in the coal-fields of Staffordshire, Warwickshire, and Leicestershire, once amongst the most important in the kingdom, and now nearly exhausted; owing to which cause the manufacture of iron, for which these districts were for a long time cele-
brated, has been nearly discontinued in those counties, and the chiref seat of the iron-trade is now removed to Monmouthshire and Glanor. ganshire; in which two counties alone there are upwarde of 100 bistfurnaces for the smelting of iron at present at work, which may be equal to the production of about 400,000 tons of iron a year. Now it is a known fact, that from five to six tons of coal are required for the production of one ton of iron, consequently $2,400,000$ tons of cal would be consumed in Soutb Wales in the iron-works alone.

The quantity of iron made in Great Britain in the year 1898 is stated in the "Mining Journal," of October 7, 1887, to be about onn million of tons, in the manufacture of which six millions of tons of coal would be consumed.

The total consumption of coal in 'Great Britain in the year 151 ; was stated to be 22 millions of tons, and the quantity exported to India, the Colonies and foreign parts about two millions of tons. Lix probable, however, that even this amount was considerably under the actual quantity consumed ; and if we take into consideration the in. mense increase that has taken place since that period for the purposer oi: steam-navigation and locomotive engines, we shall probably be concidprably under the mark in stating the whole quantity of coal coosomed in Great Britain, exclusive of that which is exported at $80,000,003$ of tons, to which must be added one-third of the whole anonnt of $10,000,000$ of tons, for coal left and wasted in the mines. (Ere "Holme's Treatise on the Coal Mines," who states the waste of small coal at the pits' mouth to be one-fourth of the whole, and thi: in the mines one-third.) This enormous proportion of coeil lef and wasted in the mines seems so incredible as to require some further explanation, and this cannot be better given than in the words of os eminent geologist, Dr. Buckland, in_his "Bridg water Treatise," wh says:-

We bave for many years witnessed the disgraceful and pamost inceribit fact that more than a million of ahaldrons ($1,350,000$ tons) per andum, betit nearly one-third part of the best coals produced by the mines near hescas:le have been condemned to wanton wraste, on a fiery heap, perpecoily blazing near the mouth of almont every coal-pit in that district. This deantu. tion originated mainly in certain legislative enactmenta, providing thu ene in London should be sold, and the duty upoo it rated, by meazure and aoshy weight. The smaller coal is broken the greater the space it fils; it bease, therefore, the interest of every dealer in coal to buy it of as large a ins tiod to sell it of as small a size as he was able. This compelled the popriens of the coal-mines to send the large coal only to market and to coasige tir small coal to destruction.
In the year 1830 the attention of Parliament was called to these erils, ad pursuant to the report of a Committee, the duty on coal was repealed, and we directed to be sold by waight instead of by measure. The effect of tis change has been that a considerable quantity of coal is now shipped for the London market in the state in which it comes from the pit, that after lado ing the cargo the small coal is separated by skreening from the rest, alf answers as fuel for various ordinary purposes, as well as much of the cal which was sold in London before tbe alteration of the law.

The destruction of coal on the fiery heaps near Newcastle, although diminished, still goes on however to a frightrul extent; that ought not to be pes. mitted, since the inevitable consequence of this practice, if allowed to ato tinue, must be, in no long space of time, to consume all the bedanantert it surface, and readiest of access to the coast, and thus enhance the price of cxi in those parts of England which depend on the coal-field of Neweastle fo: their supply ; and, finally, to exhaust this coal field at a period nearet by least one-third, than that to which it would last, if wisely economised.

The concluding observations of Dr. Buckland, on this important subject, are so much to the purpose, that it will be a sufficient apology for introducing them bere. He prooeeds thus:-

We are fully aware of the impolicy of needleas legialative interfermat, but a broad line has been drawn by nature between commodities annuslly of periodically reproduced by the soil on its surface, and that enbterranesa treastre and sustaining foundation of industry which is laid by nature in arte of mineral coal, whose amount is limited, and which when once exhaused. 11 gone for ever. As the law most justly interferes to prevent the wation in struction of life asd property it should seem also to be its duty to prerent all needlest waste of miaeral fuel, since the exhaustion of this fuel would irtsos verably paralyse the industry of millions.

The tenant of the soil may neglect or cultivate his lunds, and dispose of bi produce an caprice or interest may dictate; the surface of his getds is ar consumed, but remains susceptible of tillage by his successor: had he the physical power to annibilate the land, and thereby inflict an irromediable ir jury upon posterity, the legisiature would justly interiere to prevent sacti destruction of the future resources of the nation.
This highly fevoured country bas been enriched with mineral tresure is her strata of eoal, incomparably more precious than mines of sijver or of godd. From these sustaining sources of industry and wealth, let us hetp cormetve abuadantly, and liberally enjoy these precious gifth of the Cretoor; but bit ou not abuse them, or by wilful negleot and wanton wate, destroy the foundation of the induatry of future generations.

Might not an ensy remedy for this evil be found in legialative earat ment, that all coals from the ports of Northwaberlaud and Durham, nouh be shipped in the state in which they come from the pits, and furbid
ding, by bigh penalties, the skreening of any sea-borne coals, before they leave the port at which they are embarked. A lam of this kind mould at once terminate that ruinous competition among the coal-owners, which has urged them to vie with each other in the masteful destruction of amall coal, in order to increase the profits of the coal merchant, and gratify the preference for large coals on the part of rich consumers; and would also afford the public a supply of coals of every price and quality, which the skreen would roable him to accommodate to the demands of the various classes of the commanity.
A farther consideration of national policy should prompt us to consider how for the duty of supporting our commercial interests, and of husbanding the resources of ponterity, should permit os to allow any extensive exportation of coal, from a densoly peopled manufacturing country llke our own; a large proportion of whose present wealth is founded on machinery, which can be kept in actien only by the produce of our native coal-mines, and whose prosperity cas never survive the period of their exbaustion.

At the last meeting of the British Association at Newcastle, Dr. Buckland read a paper on the application of small coal to economical purposes, in which he referred to the well- known enormons annutal waste of coal at the mouths of the various pits near Newcastle, and stated that, owing to what he had said on the subject in lis Bridgewater Treatise, the attention of a benevolent individual had been called strongly to the subject. That individual had succeeded in agglutinating the small particles of coal into a firm compact mass, by a process at once simple and cheap; and he believed he had taken out a patent for the method. There would be even an economy in using this coal for many purposes, as it occupied one-lhird or one-fourth less space, when packed in boxes, than coal in its ordinary state. Specimens were exhibited, which liad a firm compact appearance, and Dr. Buckland stated that by the direction of government, trials had been made under the inspection of competent persons, and that success had been complete, the combustion being at least as productive as that of coal in its common state.
The experiments alluded to by Dr. Buckland, took place at Woolwich Dockyard in August last, under the superintendence of Messrs. Kingston and Dinneu, two expericnced engineers. The "prepared fuel," as it was termed, is a composition of skreened coal, river-mud and tar, cast into blocks of nearly the size and shape of common bricks. One great advantage attending this form is that a much larger quantity, weight for weight, may be stowed in the hold of a sea-going steamresel, than of common-coal, and it is besides not liable to slift its position, like the latter. An Engine was worked with this prepared fuel, and the consumption for 6 hours 45 minutes, was 750 lbs . The same engine required 1165 lbs of north country coals to keep it going tor the same tione, showing a saving of 415 lbs in favour of the prepared fuel.

At another experiment, Welsh coal was used, and 1046 lbs. were cousumed, while 680 lbs . of the prepared fuel easily performed the same work in the same time. It was also remarked that it required about 501 l . less of the prepared fuel to get the steam up, than of common coal, and that the steam was maintained by it at a more even temperature, with very little feeding.
It would seem, therefore, that there can no longer be any excuse for a continuance of the wasteful practice of consuming the small coal at the pit's mouth, to say nothing of that which is thrown aside is useless in the pits themselves, and which never sees the light, since $b y$ this infyention, that which was before considered as mere reluse, has acquired a certain fixed value, and it is to be hoped that this disgraceful practice is now completely put a stop to.

Of the various substunces which have been used as a substitute for coal, where that article is scarce, peat stands foremost in the list. Our peat or turf beds are of great extent, especially in Ireland, and contain a valuable reserve of fuel, applicable, when properly prepared, to all the purposes of mining or mannfactures. An important feature in this fuel is, that, unlike cosl, of which we know of no instance of repreduction, turf or peat is continually being reproduced; in fact, in many parts of England the growth exceeds the consumption, and consequently the turf beds in those places are on the increase.
Before being used, however, this fuel requires to be thoroughly dried by exposure to the sun and air, during which process it contracts considerably in its dimensions, and increases in density, so much so as frequently to approacll in hardness and appearance to common coal. This, however, is only the case with bog peat, or that which is saturated with water, but turf may be made so by placing it at first in running water, and then suffering it to dry. Artificial means have been used for compressing peat; and a machine for this purpose, invented by a patriotic nobleman, Lord Willoughby de Eresby, has been attended with complete success. The chief advantage of this invention is the great saving of time effected in the conversion of the fret peat into a solid dry fuel.

In France peat is extensively employed, both for domestic purposes and in the different metallurgic processes, after having been converted into a charcoal by placing the peat to be carbonised in a furnace, where it is ignited, and smothered up in the usual manner. The iron made with this peat charcoal is described to be of a superior quality to Swedish iron, being more malleable, and more ensily welded, owing, as it is supposed, to its comparative freedom from sulphur, which is known to exist in large quantitics in coal, and which is not completely driven off by its conversion into coke.

Very lately this peat-coke has been introduced into some of the transatlantic steambeats, in consbination with a certain proportion of resin. This resin fuel is not used alone, but when about $2 \frac{1}{2} \mathrm{cwt}$. of it are mixed with 20 cwt . of coal, a much better combustion of the coal takes place ; and the effect is described as being equal to that which would be produced by 27 cwt . of coal. The mode of using it is by throwing it in front of the fire with each charge of fresh coal.

For many years the attention of scientific and practical men has been directed to a method of using a valuable description of coal, the use of which, owing to its peculiar properties, has been, until lately, confined within a very narrow compass.

This fuel is the "anthracite," or stone-coal of Soutl Wales. Its chief properties consist in its frcedom from sulphur or bitumen (being composed wholly of carbon, mixed with a slight proportion of oxide of iron, silex, and alumina), its great durability and steady heat, burning clearly without smoke or flame. These valuable qualities have long secured to anthracite a very extensive use in the drying of malt in many districts of England, where it is preferred even to coke or charcoal; but it is only within the last few years that it has acquired the high rank of importance, in a pational as well as a domestic point of view, which it now possesses.

Dr. Arnott, for whose stoves it is exclusively recommended by him, has declared that it is a blot in the police regulations of London, that all great manufacturers are not confined to the exclusive use of this description of coal, its non-emission of smoke and noxious vapours, tending so much to preserve the purity of the atmosphere in the metropolis. Since, so long back as the reign of Elizabeth, the burning of coal was prohibited in London during the sitting of Parliament, lest the health of the knights of the shire should suffer during their abode in London (so careful was this queen of the health of her subjects) ; it is surely incumbent on us in the present day, when from the immense increase of the number of manufactories of every description, the atmosphere of London is never clear from smoke, to pass some legislative enactments, to remedy the growing evil. Experiments have satisfactorily proved that anthracite gives out in combustion 30 per cent. more caloric than coke or bituminous coal.

In America, this valuable mineral has been long and extensively employed, not only for manufacturing processes, but also in steamnavigation, and for locomotive engines; also for the warming of apartments, and for every other domestic purpose : indeed, its cheapness, the intensity and durability of the heat which it produces, together with its perfect safety and freedom from smoke or smell, give it a decided preference over every other species of fuel.

Mines of this coal have for some years been extensively worked in Rhode Island, Massachusetts, and other states ; but it is in Pensylvania that it is found in the greatest abundance : there the anthracite coal formation covers a tract of country many miles in length and breadtl, extending across the two entire counties of Luzerne and Schuylkill. Throughout this region it is obtained with very little labour, being situated in hills from 300 to 600 feet high above the level of the surrounding rivers und canals, and consequently easy of transportation to all parts of the Union. It exists in horizontal beds, from 15 to 40 feet in thickness and covercd merely by a few feet of gravelly loam. This coal has been found in several European countries, and exists abundantly in Ireland; but the great supply of anthracite for this country is found in that part of the great coal formation which environs Swansea and Carmarthen Bays, and which forms a part of the great coal-field of South Wales. Here it exist in immense quantities.

It is, however, but very recently that the attention of engineers has been turned to the use of this fuel for locomotive engines : a short time since, a trial of it was made under the sanction of the directors of the Liverpool and Manchester Railwry, and the following is the report of the talented engineer of that company:-

In the first instance, the engine ran out with a load about 6 miles, and the coal was found to do very good duty without any difficulty being experienced, eitber with the fubes, or in the getting up of the fires. The engine brought back a load of coal waggons from the Hetton Colliery, and acquired a speed of 21 miles an hour, thus loaded. Another trial was made in the evening with the same engine for the whole distance to Manchester, taking 5 loaded waggons; the journey was performed in 1 hour and 29 minates.

The consumption of anthracite was only isf cot: although a large portion was wasted from the Are-bars being too wide apart for the economical use of this fuel. The engine would have used upwards of 7.3 cwt . of coke for the same journey, with the same load."

The trisl with locomotiven, then, must be considered quite conclusive and the next object most deserving the atuention of practical men, is the application of anthracite to the manne engines of yea-going steam vessels. When it is considered that 30 per cent. at least is saved in the stoarage by this description of fuel, the importance of this subject will be at once made manifest, and there can be little doulst that with oertain trifling alterations, in the coustruction of the boiler and furnace, the object may be attained.

It is not suprising that, considering the importance which has of late years been attached to every means of economising fuel, the attention of scientific and practical men should have been directed to varions methody for mocomplishing this object, and numerons alterations and improvements have been effected in the furnaces and boikers of steam engines, by which the heat given forth by combuntion has been made more available, but much remains yet to be done, ay a very large quan. tity of heat is loat from; the smoke which is wastad, the heat which passes up the chimney, and from the imparfect manner in which coal is generally consumed.

An ingenious invention for intercepting and returning to the boilerfire a large portion of the heat which would otherwise pass up the chimney and be dissipated, was brought into notice in England a few years ago, by a German named Schauffelen, and was denominated "Schauffelen's Het-air Furnace Feeder." 'Ihe iavention consists in the use of a number of metal pipes or tubes open at the buttom, but closed at the top. These pipes are placed in a vertical position in the chimney, and the air in passing through them becomes bested from the current of hot air passing up the chimney, and in this state is supplied to the fire, all ingress of cold air being carefully excluded by means of closely fiting iron plates attached to the aslo-pit.

With respect to the amount of saving in fuel effected by this apparatus, it is stated by the inventor as varying from 20 to 25 per cent., when in good working order, and its advantages are not entirely confined to a eaving of part of the heat which would otherwise escepe up the chimney, but moreover a more intense heat in the fire-place is maintained, and consequently a more complete combustion of the fuel and smoke takes place.

Another invention of great simplicity fur the economy of fuel, and the prevention of smoke, is described in the Mining Reciex of August 31, I838. The process consists merely in the introduction into the furnace of steam in small quantitiew, throngh 3 tube taken from the boiler, and discharged over the fuel at any convenient place. Tle end of the tube should be formed with a fan-shaped termination, perforated with minute apertures, so as to throw the steam in small jots down upon and over the fire. One effect produced ls the absolute prevention of smoke; another, the operation of the fire is fully doubled, and the ateam emploged itself consumed. The employment of steam also greatly increases the draft of the climney.
"It is held by competent anthorities, that llb of Newcastle coal (supposing the whole of the heat omitted by its combustion was made available), should drive off iu stean lilbs of vater. This however, is very far beyond what is actually done in practice, by ordinary steam-engine boilers. Indeed it is found by experience to require as much as lilb of coal to convert into steam 4 to 6 lbs of water, $6 i b$ being considered a high product. By means of Mr. Ivison's method however, it is found that an average of 18 lbs . of water are evaporated by llb. of ordinary Scotch coal, thus more than doubling the results heretofore obtained, and consequently effecting a saving of upwards of 50 per cent of fuel.' - Mining Review, August. 31, 1838.

Our great source of loss of heat and, consequently of fuel, in most large establishments where steam power is extensively employed, urises from the radiation of heat which is constantly taking place from the boiler, where, as is most frequently the case, no means are adopted for preventing it. When pre consider the large surface that is exposed by each steam-eugine boiler, and that from this there is continually going on a powerful radiation of heat into the surrounding atmosphere, it is evident that the loss from this source alone, must be immense. If, therefore, this large body of leat can, by any means, be intercepted and returned to the boiler, it is clear that there will be a saving of all that fuel which was required to raise that heat in order to disperse it again. The methad of doing this is simple, and attended with very little expense. All that is necessary to be done is to surround the boiler with a jacket or casing of wood or brick, leaving a space of a few inches between it and the boiler, to be filled with some substance which is a slow conductor of lieat. The material that has been employed for this purpose, is a mixture of sawdust and ashes, rammed in o as to lay close to every part of the boiler; and where this system.
is carried to its full extent, which is in the large pumping engines. used in the mines in Cornwall, not only the boiler, but also the chin. der and the steam-pipes, are, in the Cornish engines, completely encased with some non-conducting material, which renders the engine and boiler-houses as cool as the interior of a dwelling-honse, where thete are only ordinary fires,-a sure proof that litule or no heat is lost by radiation.

A nother proof of the efficacy of this system is, that even after due engine has been standing still for 12 hours, very little leat is lost, and if it is necessary to start it s.utdeuly, as in case of emergency, scarcely any time is lost in raising the steam, and one fourth the fuel only is required; whereas in the common engines and boilers, where even vessel containing steam is exposed to the atmosphere, it takes from 20 minutes to half an lour, firing hard, to rase the steam to the requisite pressure.

It would occupy too much time, and swell these remarks to too incoo. venient a length, were I to enter into the details of all the infentions that luave been proposed for economising fuel, althougti many of them are of great value, as their general adoption sufficiently testifien; mits others, either from the complexity of their parts, or their general inapplicability, lave soon fallen into disuse. It is hoped, lowerer, that sufficient has been said in this paper, to point out the great in. portance of the subject, and to show, that however much may hare been hitherto done, mnch yet remains to be done, befure we can confidently state that the whole inherent rirtue residing in one pound weiglit of coal or other fitel, is made available.

FREDERICK S. PEPPERCORNE.
15, Buckingham-street, Adelphi. April, 81889.

PUBLIC COMPETITIONS.

Royal institete of bilitisil architects.
Extract from Report of the Committce appointed to consider the mbjew of Publie Competitions for Archite ctural Designs. Laid before the Special General Meeting, held 24th Jannary, 1839.
Tur Committee appointed on the 9 th Octuber, 1838 , to consider the subjert of Public C'ompetitions for Architectural Designs, beg leave to report.
The arguments advanced in favour of competition are sufficiently forcible. Emulation is said to be the soul of excellence in the arts and sciences-the recognised talents of the elder professor are supposed to be maintained in activity and progressive improvement, and his eapployens to be proteced from the routine manner, which security in public patronage and pristr practice are too apt to produce : - While an upportunity in attorded to the young aspirant, to take that place in public estimation to which his talents may entitle him.

The formation of the programme, up on which competitors are requird to frame their designs, lecomes the first essential point fur consideration, add a deficiency on this point is perhaps the most genernl evil in the prescot arden. The precise objects to be attained, the most desimble means of atiaiaing them. the circumstances that must control the plan with regard to the site and ober localities, the sum of money to be expended, and many other perticulan of which every case of competition brings its own, are seldom amcertised nod settled, $s 0$ as to lay the groundwork of well-defined instructions upon whd competitors may proceed. When the decision is to be made, the jodge dis cover for the frst time, that they have been igrorant of their own intentions: their loose and ill-digested instructions are abandoned allogether, and the archilect, who has acted with the greatest good faith in adbering to them, is the first to be deprived of his reward. In another view of the case, an architect, who may have suggested a design not reconcileable with the crade, undigested, and perhaps contradictory preconceptions cast into the progranmp: may virtually exclude himself from the competition, and his employen fom the adoption of his ideas.

When we consider arclitecture as a combination of science and art requiring great expericnce and taste, together with the important esseatial in its professors. of character and conduct in the exocution of their rorkswhen we consider the variety of attainment necessary for the production of an architectural desiga, it is not too much to expect some corremponding qualiticutions, together with deep and patient consideration, an the par w those, who take upou themselves to ait in judguent upon it.

To read a plan is admitted by the most practited to be the resolt of great experience and knowledge. To pursuc the clue through the debyrioth of ichnography, and to fullow out arraugoment and economy of space, and the combination of convenience and beauty, require not only great incellgenco and discrimination, but a long counse of analogous study. Ewnt the experienced professor must go throngh the whole subject inisutedr. How often does any scruple or duubt of thieir own cumpetancy embert** a comnittec appuinted to judge of architectural designs : Du they rub. sider any further qualification necessary, when they have asumed to them. selves the undefined and flattering altribute of tave y

Again, it is well known to experienced architects how difficult it is to fum a correct judgment upou designs on different scales anal in difierent ot les of drawing-and yet committees do not hesitate to select a design, mithout ank pecting it in the slightest degree, that they may have been colptirited by the
meretricious allurements of the artist, and that they may have admitted the sccersories of pictorial representation to have the weight of argument and reacon, particularly when coloured views and scenery; aided perhaps by false perspective, or taken from imposnible points of sight, are introduced to the destroction of any common ground of comparison. The delusion is only eventually detected when it is past remedy.

Another evil, which the necessary inexperience of committece, as at present constituted, renters it difficult for them to mect, is, that a design may be selected for its decorative character, which it afterwards proves inexpedient to carry into effect, on account of the expense attending it. In this case it frequently happens, that, in preference to enconntering the inconveniences of retracing their proccedings, the committee sufter the design to be stripped of every thing, which originally recommended it to their notice; thus disappointing the expectations of the public, and inHicting a flagrant injustice upon the other competitors.
In proceeding to consider what remedies may be suggested for the vils here enumerated, they will be found to arise naturally out of the statement itself.
It is not to be doubted that the proposers of competitions may prescribe any terens they think fit. Whether, therefore, they prefer laying down preciee instructions on every point, or leaving themselves a certain latitude artheir decision, or making it entirely open to competitors to offer any sugestions that may occur to them, it rests entirely with the professor to decide fur himself, whether the conditions, and the personal character of those who propose them, are satisfuctory.
But whatever the conditions inay be they ought to be clear and explicit, that the competitor may know precisely and unequivocalty upon what he has to rely. Whenever it may be expedient to lay duwn definite instructions. they ought to be strictly adhered to. When judgment is to be founded upon them, and every design rejected, which shall be found not to conform to them

In framing instructions care should be taken to distinguish accurately between the objects to be attained, and the means of attaining them. The former cannot be too accurately ascertained, or too explicitly described; bot the latter should be left as much as pussible to the architect, for othertise a proper scope will not be affurded fur the exercise of a rariety of rugestions, and one great end of competition will be fiustrated. If, howerer. there should be a decided bias in favour of any particular style or mode of composition, it ought to be ascertained and stated in the in. irections.
As the formation of definite preliminary insiructions, and a decision etrictly founded upon them require more experience and knowledge of architecture than miscellaneous committees may be gencrally supposed to powess, it is suggested that in all cases competent professional adrisers atould be referred to upon these and other points connected with the doties of the Committee: but without taking the final decision out of the hands of the original parties to the competition, or relieving them from its cepronibility.
Profesaional opinions are especially requisite in regard to practicel conrouction, also to minute arrangemeuts. as of light, ventilation, and warming, in referenep for example to prisons, hospitals, and places for public meetings. The maximum amount of the intended expenditure should be fren, and when a selection is made, proper means should be cmployed to ateriom that the cost of expruting the design will not exceed the eximate.
In order to assist the judgment by establishing an uniform comparison. the drawinge presented for competition should always be made to one sele; and limited to one style of finishing, as in lndian ink, with no colonp, anless for such a purpose as that of distinguishing different mate. natin sections. Perspective drawings, if correctly made, are certainly dexisble to nhow the proper effect of designs; but they should be rearicted to specified points of view. Models should be received with cution, ne not being unexceptionable eests of the merits of a design.
But they must advocate the principle, that as much publicity as possible abould be given to the procpedinga in all cases. For although the public at lage cannot be accepted as a competent judge upun cases requiring pecoliar attefition and information, ye: the cahibition alone of the drawuses aecompanied by the instructions upon which they are founded, cannot fuil to render those. to whom judgment is confided, both diligent and scrupulous in the discharge of their duty. To affect this object, howerer. experience has shown. that the expression of the public opinion must preof doangn, previously, the decision of the judges. The public cxhibition of derigne, previously to the final decision upon them, inight reuder it expedieat to follow gencrally the practice, now only partially ndopted, of cobcetion the names of competitors under a motto or rypher. On any other ground the practice is scarcely worthy of mention, and is liable to the objection of being deceptive; tur your Comniltee have sulficient endence to prove, that, though apparently fair, it is absolntely futile in
effect.
Altheugh the inquiries, which may be addressed hy professional men to the institutors of competitions, must necessarily be dictated by the peculiar circurastanoes of every rase, yet the following, although merely proposed as explanatory of the intentions of the committee, may be found generally applicable.
Hy whom ase the designs to be examined and selected ?
Anve any derignt been hid before the parties previously to the competition

Have the parties any arcbitect, or perbon professing to be an architect, in their employ?

Will any means be adopted to ascertain that the designs can be executed for the sums estimated?

Will the parties undertake to lay aside all designs which cannot beexecuted for the sum estimated?
Is it the intention of the parties at once to exclude from the competition all designs not in strict conformity with their instructions in every respect?
Will the arehitect, whose design is selected, be employed to execute the work, provided his character and standing in the protession be such as to render bim unesceptionable?

REVISW8.

Illustrations of Science by Professors of King's College, London; Mechanics. By the Rev. H. Moselex, M. A., F. R. S., Professor of Nat. Philosophy. London: Longman, Orme and Cu., 1899.
One of the nost convincing arguments perhnps in this commercial country against any single institution for engineering elucation in this city, or indeed in any other, is the listlessness which results from the want of competition. Competition is one of the grand princlples evolved by the investigations of the political economists,--perhaps the truest, and one that influesces not only trade, but many other economical pursuits. Lord Brougham, applying this to politics, has, in his recent work on Eminent Statesmen, pointed out the mathematical operation of this law, if we may so term it, by asserting that the result is to produce an action neither of one side nor of another, but compounded of the two, just like the movement of two physical powers. We may leave to others to discuss that question, but perhaps some of our philosophical friends unay be able to demonstrate that thus of two wreng courses a right one may be produced. If we consider the working of this competition in other branches of professional education we see at once in what a different position we stand from other countries. At Paris there is the only medical school for all France; and it certainly presents opportunities for ensuring the selection of the bighest talent, and concentrating everything in one magaificent establishment. In Londen there are no less than fuurteen complete schools: at Dublin three; besides nearly a score provincial establishments. The effect of this, some would say, would most certainiy be to ensura inediocrity, by the employment of so many individuals, while the dispersion of talent would very much enfeeble the whole course of medical education. The operation, on the contrary, is, by the maintenance of an energetic competition, ever to elovate the standard, and ensure the ascendancy of men of talent; and every school is obliged to make the greatest exertions to command pupils, since it is only by securing able professors that they can maintain their standing. It must be remembered, that none of these schools bave the privilege of giving licenses to practice, and that the examining body is totally distinct from the instrnctive. At Paris it is a principle something like this, and totally distinct from the system adopted, which maintains the superiority of that school; for froma the turbulence of the pupils, they as specdily put down an obsoxions professor as the incipient surgeons of London; and thus counteract the evils of a stagnant system and government control ; although it is not an impossible ocenrrence for a professor to be absent from his chair a year, or oven two. The beauties of a nod-competiag syatem were most admirably illustrated in the recent proceedings at Uxford, and bear almost too much the appearance of irony even to be quoted with serionsness. The case was briefly. this; Professor Daubeny, and other teachers of the natural sciences-who are the enly professors who teach at all, in consequence of the miserable paucity of their auditors, (Daubeny's chemical class being eleven!!) brouglit forward a law to render attendance on one of the scientific courses imperative on students proceeding to a bachelor's degree of arts, and making in consequence some proformal alterations, increasing the number of lectures of the professors. Upon which proposition, the decision of the learned authorities was, that no compulsory attendance on the courses should be enacted, but that the proposed regulations as to more frequent lectures should be enacted; by which solenn farce, an important question was eluded, and well-deserying men werc entrapped jinto unnecessary duties. The zcal of such men as Daubeny, and his collcagues, cannot indeed be too highly commended; when, instead of profiting by the do-nothing example of their brethren, they continue to devote their talents to audiences of eleven, in the Frast University of the World.
To come, however, to the instance presented by the volume before us, we have every reason to congratulate ourselves upon possessing the house divided within itself, instead of that fuunded upon the rock, or rather pillow. Univerity College came first into the field pledged to the adoption of the mast enlightened principles; and King's College was brought in as its opponeat; and most nobly has the centent
been carried on. Universitg College las been equally unfettered, buth as to principles, and as to men, while from its very constitution the other establishment at ouce imposed apon itvelf leaden chains; at best placed in a go-cart, in the way of right, and certainly hampered by mary superstitions and absurdities, it was additionally fettered by being obliged to select its professors from those very establishments whose stifling influence was most songht to be evaded. The result, however, even those who hoped mast for its success, could never have anticipated; ant the conductors of King's College, supporters as they are ereofficio of vepotism and paronago, deserve the lighest credit for the diserimination and disinterestedness which they have shown in the choice of professors, who by finding out new paths, have emancipated themselves from the trammels in which they had been placed, and secured their own fame and the prosperity of the institution. It is not our desire to elevate the one institution at the expense of the other; and if from deference to the work before us our remarks are restricted to King's Collrge, it muat not be considered'that we detract from another establishment the labours of whose members have ensured it a ligh merd it fame.

We cannot better illustrate the justice of the remarks we have made than by referring to the outlines of the courses, which are those proposed to be delivered before the class of Civil Engineering, and they mark a new era, when science is no longer to be conventional, but practical; when it is to leave off its Procrustean propensity of an artificial standard, and to adapt itself as it ought to do to every capacity and every pursuit. Yedantry of all kinds is most disgusting, but the pedantry of science is positively injurious, for it causes a waste of time to the practical man too often irreparable, and it is indeed time that we should get rid of this clog upon our progress. The courses proposed for this year are of course introductory ; and all, like those on mathematics and natural philosophy, special : we have occasion afterwards to revert to Professor Moseley, on "Natural Philosophy;" so that we shall at present consider some of the other subjects.
Professor Daniell has arranged his course in a manner totally different from the general run of university lectures, and with an ability which shows his desire of promoting the instruction of his pupils rather than maintaining the dogmata of science, merely filling up the dull routine of official duty. His filst year's course contains a preparatory view of the forces which concur to the production of chemical phenomena. An endeavour, says the Professor, will be made to systematize what the beginner already knows from common experience, and to lead lim on to increase this knowledge gradually by the results of experiment; to teach him the inductive method of reasoning from phenomena; and to explain to him the general views and theories of the science. The display of these forces in the grand operations of nature will form principal objects of illustration, and particularly in the constitution of the atmosphere, the phenomena of thunder and lightning, winds, rain, \&c. In the second year it is proposed that the students shall attend a course of practical chemistry, in which the application of the science to the arts will be taught, and the processes of the different manofacturers, of metallurgy, and of domestic economy will be explained and illustrated. This is a method which ought long since to have been adopted, and it is one which promises to rescue the physical sciences from being a mere set of empirical processes, and placing them in the hands of the students as theyought to be-sciences, and not arts. Science is one, but arts are many; and so long as the student is only taught a series of processes, without being properly grounded in the principles, so long will his progress in science be limited, and he remains a journeyman where he might be a master. There are few sciences indeed, of which many important principles are not sown in the human mind by obserration, and it wants but little instruction to bring out these, and systematise the stores of knowledge. Instead of considering the mind of the student as ground entirely to be made, anotlier course should be adopted, and it should be regarded as a soil which possesses many of the elements of fertility, and to which only the complementary addition is necessary to make it productive. Taking, too, nature as a basis, the student is put on the road not only to learn from the experience of the past but to profit from the events of the future; for there is perhaps no science in which the observation of nature is not the grand foundation of all greatness and all excellence; because, indeed, in nature, as in a storelouse, we find treasured up the perfections of an omniscient and unerring Deity. The discovery of the principles of specific gravity by Archimedes-musical mathematics hy Pythagoras, the pendulum by Galileo, and terrestrial gravitation by Newton; all of these (and many more might be accumulated) are derived from the observation of the commonest phenomena-the bath, the blacksmitlis anvil, a swinging cord, or a falling apple-while from them have been derived lavs from the constitution of a universe to the arrangement of the most plodding machine. Teaching the students likewise, as Professor Daniell proposes, to reason on the plenomena
presented to them, affords them a perpetual and available resource in all difficulties; and one, than which nothing could be more appropriate to the mental habits of an engineer. It is to be regretted indeed that in too many cases it is thought sufficient to cram a youth witha quantity of facts, and leave him to digest and apply them in what manner he can, as if man were supplicd with a whole stock of logic from nature.

The other courses are also marked by the same happy desire to obtain the most effective ends by the application of the solundest principles, and they cannot fail to promote the results they so zealously attempt. In the program to the course on Geonetrical Drawing, where, under most circumstances we should be the last to expect to find such an admission, Professer Bradley truly observes, that considerable facility in the power of drawing by eye, with precision and freedom, is requisite to constitute a good dranghtsman, and is to be attained by constant practice in sketching objects of any kind from nature. It seems however to be thought generally, both by arclitects and engineers, that to stick a rule and compasses in a boy's hand is quite enough to qualify him, although, independently of the artificial training which is thus effected, no attention is paid to the fact that the human eye is the most delicate instrument in nature. Professor Wheatstone takes up the subject of experimental philisophry. and it can be believed, by those who know him, with what practicability and good effect. Professor Tennant lays ont an admirable course on Geological Mineralogy ; and indeed the whole arrangements are admirably calculated to effect the objects proposed on the institution of the class. We are happy indeed to see that there is no pretence to teach civil engineering, but that they wiscly lcave to those best qualified to teach those parts which are susceptible of being com. municated by practical instruction, and only take on themselves such accessory portions as they can effect with credit to themselres and without injury to the pupils.

We may now come at last to the work before us, and we shall lare no reason to regret any attention that we may pay to it, as it is quite worthy of the ability of the well-known author. The professors of King's College, it seems, have deternined upon publishing a course of works on science, for popular instruction and they have acted very justly in confiding to Mr. Moseley the task of being their herald in the field; and, as his introduction may be regarded as that to the whote course, we think that we cannot better express its objects than by favoring our readers with some extracts from this able production:-

The author has proposed to himself the development of that system of experimental facts and theoretical primeiples on which the whole superstricture of mechanical art may be considered to rest, and its introduction, under an available form, to the great busimess of practical education. To effert this ubject, and to recuncile, as far as it may be possible, the stritdy scientifie with the prpular and elementary character of the undertaking, a new method has been sought, the nature of which is sufficiently indicated by its title-Illustrations of Mechanics. The work consists, in fact, of a keries of illustrations of the science of mechanics, arranged in the order in which the parts of that science succeed each other, and conuected by auch explanations only, as may serve to carry the mind on from one principle to another, and enable it to embracciand combine the whole. Throughout, an attempt is made to give to the varions illustrations an entircly elemeniary and practical character.

It is an idea which presents itself to the mind of every man who has children to cducate and provide for, which is a constant subject of comment and discussion, and which prevails through all classes of society, that a portion of the school life of a boy ought to be devoled to the acquisition ot those general principles of practical knowledge of which the whole business of his subsequent life is to form a special application; that there ought, in fact, to be commenced by him at selool a common apprenticeship to those great elements of knowledge, on which hang all the qucstions of interest which are to surround him in mature, and which are dentincd, under the form of practical science, to take an active share in the profession, trade. manufacture, or art, whatercr it may be, which is hereafter to becone the occupation of his jife.

It is the ohject of this work, and of the series of which it forms parn, to promote this great business of practical education, by supplying to the instructors of youth a system of elementary science, adapted to the orlinary forms of instruction. No one can doubt that the same capabilities in the sclolar, united to the same zeal in the master, which now suffice to rart the elements of a classical education to the very refinements of philolopical criticism, wonld be equal to the task of instruction in the nomenclature of the physical sciences, their fumbamental experiments, their elementary rasonings, and their chief practical results; not can it be questioned that the ordinary intelligence of youth, and common diligence on the part of their teschers, would enable them to master the secreta of the more important of the arts, and the chief processes of the manufactures; and would plare within their reach the elements of natural history, the gevernl clasaiforion of the animal and vegetable kingdoms of nature, and their various aninistries to the uses of man. These are eleutents of a knowledge which is of inas. timable value in the aftiairs of life; and the interests of this great commercial and manufacturing community claim that they should no longer be left

10 find their way to the young mind (if, indeed, they rench it at all), rather es a relaxation of the graver business of education than as a part of it.

The illustrations of the mechanical properties of matter and the laws of force are drawn promiscuously and almost equally from art and nature. It i* not by dexign that examples taken from these distinct sources thus intermingle, but simply because they suggest themselves as readily from the one sonrce as the other-from nature as abundantly as from art. There is a relation between art and nature-a relation amounting to more than a resemblance; - a relation by which the ege of the practical man may be guided in that God who works with him in every operation of his skill, and mechamical art elevated from a position which is sometimes unjustly assigned to it among the elements of knowledge. It is from this relation between the Author of nature and the being in whom the works of art hare their origin that arise those relations, infinitely remote, but distinct, between the things themselves, of which the eridence is every where around us. These are necessary rclations: it is not that the works of art are made by any puppose or intention in the resemblance of those of nature, or that there is any unseen influence of nature itself upon art; the primary relation is in the causes whence these severally proceed. Thus it is possible, that in the infinities of nature, every thing in art may find its type; this in not, however, necessarily the case, since the causes are infinitely removed, sinee, moreover, in their operation, these causes are independent, and since nature operates upon materials which are not within the resources of art. How full of pride is the thought, that in every exercise of human skill, in each ingenious adaptation, and in eact. complicated contrivance and combination of art, there is included the exercise of a faculty which is akin to the wisdom manifested in creation! And how full of humility is the comparison which, placing the most ingenious and the most perfect of the efforts of human skill by the side of one of the simplest of the works of nature, shows us but one or two rude steps of approach to it.

The arrangement of the work will perhaps be better understood by leaving it in the author's own words, so that we have selected for our readers the following detail of it :-

Matter is composed of elements, which are inappreciably and infinitely minute; and yet it is within the infinitely minute spaces which separate these elements that the greater number of the forces known to us have their only sensible action. These, including compressibility, extensibility, chasticity, strength, capillary attraction and adhesion, receive their illustration in the first three chapters of the following work. The fourth takes up the Science of Equilibrium, or Statics; applies in numerous examples the frndamental principles of that science, the parallelogram of forces, and the equality of moments; then passes to the question of stability, and to the conditions of the resistance of a surface; traces the operation of each of the mechanical powers under the influence of friction; and embraces the question of the stability of edifices, piers, walls, arches, and domes.
The fifth chapter enters upon the Science of Dynamics. Numerous camiliar illustrations establish the permanence of the force which accompanies motion; show how ft may be measured; where in a moving body it may be supposed to be collected; exhibit the important mechanical propertics of the centres of spontaneous rotation, percussion, and gyration; the nature of centrifugal force; and the properties of the principal axes of a body's rotation ; the accumulation and destruction of motion in a moring body, and the laws of gravitntion.

The last chapter of the workl opens with a series of illustrations, the object of which is to make intelligible, under its most general form, the principle of virtual velocities, and to protect practical men against the errors into which, in the application of this universal principle of mechanics, they are peculiarly liable to fall: it terminates with various illus. trations of those general principles which govern the reception, transmission, and application of power by machinery, the measure of dynamical action, and the numerical efficiencies of different agent-principles which receive their final application in an estimate of the dynamical action on the moring and working points of a steam engine.

The Appendix to the work contains a detailed account of the experimente of Messrs. Hodgkinson and Fairbairn upon the mechanical properties of hot and cold blast iron: and an extensive series of tables referred to in the body of the work, and including, I. Tables of the strength of materials; 2. Tables of the weights of cubic feet of diferent kinds of materials; 3. Tables of the thrusts of semi-circular arches under various circumseaners of loading, and of the positions of their points of rupture; 4. Tables of ro-efficients of friction, and of liniting angles of resistance, compled and ealeulated from the recent experiments of M. Morin. The results of these admirable experiments, made at the expense of the French coremment, are here, for the first time, published in this country.

A Dictionary of Arts, Manufactures, and Mines. By Andew URE, M.D. London. Longman and Co.
We have now come to a final notice of this work, and we cannot dismiss it without presemting to our readers a few more extracts. The following is from the article on slate, and gives a brief sketch of the localities in which that inaterial is found :-

Clay-slate.-This substance is closely connected with mioa; so that nointerrupted transitions may be found between these two rocks in many
mountain chains. It is a simple schistose mass, of a bluish-gray or grayishblack colour, of various shades, and a shining, somewhat pearly internal lustre on the faces, but of a dead colour in the cross fracture.

Clay-slate is extensively distributed in Great Britain. It skirts tho Highlands of Scotland, from Lochlomond by Callender, Comrie, and Dunkeld; reating on, and gradually passing into mica-slate throughout the whole of that territory. Roofing-slate occurs, on the western gide of England, in the counties of Cormwall and Devon; in rarious parts of North Wales and Anglesea; in the north-cast parts of Yorkshire, near Ingleton, and in Swaledale; as also in the counties of Cumberland and Westmoreland. It is likewise met with in the county of Wicklow and other mountainous districts of Ircland.

All the best beds of roofing-slate improve in quality as they lie deeper under the surface; near to which, indeed, they have little value.

A good roofing-slate should split readily into thin eren lamine; it should not be absorbent of water either on its face or endwise, a property evinced by its not increasing perceptibly in weight after immersion in water; and it should be sound, compact, and not apt to disintegrate in the air. The slate raised at Eigdale, on the west coast of Argyllshire, is very durable.

Cleaving and dressing of the slates.-The splitter begins by dividing the block, cut lengthrise, to a proper size, which he rests on end, and steadies between his knees. He uses a mallet and a chisel, which he introduces into the stone in a direction parallel to the folia. By this means he reduces it into several manageable pieces, and he gives to each the requisite length, by cutting cross grooves on the flat fuce, and then striking the slab with the chiscl. It is afterwards split into thinner sections, by finer chisels dexterously applied to the edges. The slate is then dressed to the proper shape, by being laid on a block of wood, and having its projecting parts at the ends and sides cut off with a species of hatchet or choppingknife. It deserpes to be noticed, that blocks of slate may lose their pros perty of divisibility into thin laminte. This happens from long exposure to the air, after they have been quartied. The workmen say, then, that they have lost their waters. For this reason, the number of splitters ought to be alrays proportioned to the number of block-hewers. Frost renders the blocks more fissile; but a supervening thaw renders them quite refractory. A new frost restores the faculty of splifting, though not to the same degree; and the workmen therefore avail themselves of it without delay. A guccession of frosts and thaws renders the quarried blocks quite intractable.

This account is, however, rather meagre, as it totally omits one of the great districts, that of Furness, in Lancashire, which supplies slate of excellent quality, and much used in that neighbourhood. There is no distinction made between the several varieties, and the manner in which the locality is determined by the colouring of the slate, the slates of Cornwall and Westmoreland differing totally in respect to colour. The application of slate also as a paring material, and its applicability in solemn decoration, as for tombstones, library chimneypieces, slabs, \&c., are not alluded to. The ensuing account of the manufacture of stalned glass is rather more chemical than practical :-

Stanised Glass.- When certain metallic oxides or chlorides, ground up with proper fluses, are painted upon glass, their colours fuse into its surface at a moderate heat, and make durable pictures, which are frequently employed in ormanenting the windows of churches as well as of other public and private buildiugs. The colours of stained glass are all transparent, and are therefore to be riewed only by transmitted light. Many metallic pigments, which afford a fine effect when applied cold on canvas or paper, are so changed by vitreous fusion as to be quite inapplicable to painting in stained glass.

The glass proper for receiving these ritrifying pigments, should be colourless, uniform, and difficult of fusion; for which reason crown glass, made with little alkali, or with kelp, is preferred. When the design io too large to be contained on a single pane, several are fitted together, and fixed in a bed of soft cement while painting, and then taken asunder to be separately subjected to the fire. In arranging the glass pieces, care must be taken to distribute the joinings so that the lead frame-work may interfere as little as possible with the effect.
A design must be drawn upon paper, and placed beneath the plate of glass; though the artist cannot regulate his tints directly by his pallet, but by specimens of the colours producible from his pallet pigments after they are fired. The upper side of the glass being eponged over with gum-water, ffords, when dry, a surface proper for receiving the colours, without the risk of their running irregularly, as they ronld bo apt to do, on the slippery glass. The artist first draws on the plate with a fine pencil, all the traces which mark the great outlines and shades of the figures. This is usually done in black, or, at least, some strong colour, such as brown, blue, green, or red. In laying on these, the painter is guided by the same principles as the engraver, when he produces the effect of light and shade by dots, lines, or hatches; and he employs that colour to produce the shades, which will harmonze best with the colour which is to be nferwards applied; but for the deeper shades, black is in general used. When this is finished, the whole picture will be represented in lines or hatches similar to an eneraving finished up to the highest effect possible; and afterwards, when it is dry, the citrifying colours are laid on by means of larger bair pencils; their selection being regalated by the burtt specimen tints. When he finds it necessary to lay two coloun adjoining, which are apt to run together in the kiln, he muat apply one of
them to the back of the glass. But the few principal colours to be presently mentioned, are all fnst colours, which do not run except the yellow, which must therefore be laid on the opposite side. After colouring, the artist proceeds to bring out the lighter effects by taking off the colour in the proper place, with a goose quill cut like a pen without a slit. By working this upon the glass, he removes the colour from the parts where the lights should be the strongest ; such as the hair, eyes, the reflection of bright surfaces and light parts of draperies. The blank pen may be employed either to make the lights by lines, or hatches and dots, as is most suitable to the subject.
By the metallic preparations now laid upon it, the glass is made ready for being fired, in order to fix and bring out the proper colours. The furnace or kiln best adapted for this purpose, is similar to that used by enamellers.-[See Enamel, and the Glaze-kiln, under Potteny.] It consists of a mufthe or arch of fire-clay or pottery, so set orer a fireplace, and so surrounded by flues, as to receive a rery considerable heat within, in the most equable and regular manner ; otherwise some parts of the glass will be melted; while, on others, the superficial film of colours will remain unvitrified. The mouth of the muffle, and the entry for intro. ducing fuel to the fire, should be on opposite sides, to prevent as much as poosible the admission of dust into the muflle, whose mouth shonld be closed with double folding-doors of iron, furnished with small peep-holes, to allow the artist to watch the progress of the staining, and to withdraw small trial slips of glass, painted with the principsl tints used in the picture.

The muffle munt be made of very refractory fre-clay, flat at its bottom, and only 5 or 6 inches high, with such an arched top as may make the roof atrong, and so close on all sides as to exclude entirely the smoke and tlame. On the botion of the muffe a smooth bed of sifted lime, freed from water, about half an inch thick, must be prepared for receiving the pane of glass. Sometimes several plates of glass are laid over each other with a layer of dry pulrerulent lime between each. The fire is now lighted, and most gredually raised, lest the glass should be broken; and after it has attained to its full heat, it must be kept up for 3 or 4 hours, more or less, according to the indications of the trial slips; the yellow colour being principally watched, as it is found to be the best criterion of the atate of the others. When the colours are properly burnt in, the fire is suffered to die away, so as to anneal the glass.

The description of an Artesian well, at Mortlake, is interesting, but it appears to us that it should be received with some caution as an oxample, for it seems by no means satisfactory as a general rule that water would be found in the soft chalk.

Artesian Wells.-The following account of a guccessful operation of this kind, lately performed at Mortlake, in Surray, deserves to be recorded. The spot at which this undertaking was begun, is within 100 feet of the Thames. In the first instance, an auger, seven inches in diameter, was used in penetrating 20 feet of superficial detritus, and 200 feet of London clay. An iron tube, 8 inches in diameter, was then driren into the opening, to dam out the land-mprings and the percolation from the river, A 4 -inch auger was next introduced through the iron tube, and the boring was continued until, the London clay having been perforated to the depth of 240 feet, the sands of the plastic clay were reached, and water of the eoftest and purest nature was obtained; but the supply was not sufficient, and it did not reach the surface. The work Tas proceeded with accordingly; and after 55 feet of alternating beds of sand and clay had been penetrated, the chalk was touched upon. A second tube, At inches in diameter, was then driven into the chalk, to stop out the water of the plastic sands; and through this tube an auger, $3 \frac{1}{2}$ inches in diameter, was introduced, and worked down through 35 feet of hard chalk, abounding with flints. To this succeeded a bed of soft chalk, into which the instru. ment suddenly penetrated to the depth of 15 feet. On the auger being withdrawn, water gradually rose to the surface and overflowed. The expense of the work did not exceed 3001 . The general summary of the etrata penetrated is as follows:-Gravel, 20 feet; London clay, 250 ; plastic sands and clays, 55 ; hard chalk with flints, 35 ; sont chalk, $15 ;=$ 375 feet.

We cannot leave this work without again expressing our opinion of its general utility. Executed as it is under the guidance of one man, it must necessarily partake of the defects of his limited experience; but in all those departments which may be considered Dr. Ure's own, the matter possesses more than average merit. The chemical portions are essentially good, but in many of the technical parts a want of acquaintance with the, latest processes is observable. In our own branches we bave before remarked on this deficiency, and of collrse the same obsercation extenda to many arts and manufactures beyoud the limits of ou r critical sphere. Thus, the article on button making is extremely erroneous, and in that on black dyes we find no mention of the French processes, although it is notorions that chere is a marked difierence between their method and our own. Generally we think that the Doctor might have paid more attention to the French and German Encyclopedias of Trailes, from which many interesting illustrations mixht bave been obtained. As the firsi work of its class in the field, however, it possesses merits peculiarly its om, and a right of exemption from blame where one has done so well; and it unay be

British Critic and Theological Revieu.-No. 5n.

Do not let our readers be startled by this title, or imagine that weare going to edify them by a theological disquisition; no, we merely call their attention to the last number, because it contains two architectural papers, which might, hut for our doing so, quite escape their notice. One of them is entitied "Interior Decorations of English Churehes," the other is a review of "Pugin's Contrasts ;" and it is to this lattes that we shall confine our remarks, not having as yet perused the first one, except in a very hurried manner. Whether Welby Pugin will think proper to bring out a pamphlet in reply to this article, as he did in answer to-or, rather, by way of attempt at answering-certai Strictures upon lis book in Fraser, remains to be seen. But the re viewer certainly does not spare Mrs. Candour Pugin, as he has bees styled in some other publication; the most he does is to thror him a sop by praising his drawings, which, he says, "exhibit an exquivite traste, and confirm us in our previons opinion, that Mr. Pugin is the firs Gothic architect of the age." It is difficult to make out whether his be intended as ironical or not : yet, if it be actually intended as praise. it puzzles us still more, for coarser scratches then are the plates to the "contrasts" can hardly be imagined ; while, as every one at all acquainted with the style must admit, no little of the character and charm of Gothic architecture depends upon the beautifinl forms and execution of the details. It is, besides, chiefly with respect to detail and decoration -in which he is said to be unsparing-clast Mr. P. has much pretemaion to the name of architect ;-at least, we have not seen any designs, or hand of his having ever done any thing, except in mere fittings up. We do not say that he is capable of achieving nothing more, but merely mear that there is no evidence to show that he is fairly entitled to the praise of being " the first Gothic architect of the age," since, had he executed any thing which would sanction it, it would hardly remain a secret: unless Mr. Pugin's buildings are to be classed among those thiogs whose fate it is " to be," as some one has observed, " exceedingly famous yet little known." A little further on lie gets another sop, where it is said, "Homer was blind, and Mr. Pugin cannot argue ;"-it might hare been added, nor can he spell. The reviewer has pointed out his peculiar mode of spelling Windsor on one of his plates, and in another be has converted Mr. Brayley into Mr. Bragley, which horre er may passas one of those unaccountable intentional blunders people are apt to fill into. The principle upon which Mr. P. planned his "Cuntrasts"is well exposed, and shown to be one by which any person may make goodany argument, merely by bringing forward all that makes for it and uting no notice of the ugly facts that make against it.
"Of the remaining 'Contrasts,""says the reviewer, "we will only ask whether it is fair to compare a common cast-iron pump with a bandsome stone conduit, or Sir John Soane's house with the work of any sensible architect of any age or country ${ }^{\prime \prime}$. That last remark touches us to the very quick, for it puts us quite out of conceit with the "house, No. 18 , Lincoln's-inn Fields;" which, belonging as it does, or is fancied to do, to the public, is the house of every Englishman.

However, we will venture to prescribe the article to our readert Who nay wasli it down either with "Vin. Port," or "Aq. pucra."

Pemy Cyclopadia: Article," London."

The 74th part of this publication deserves to be pointed out by us to our readers, as containing, under the head of "London," an able though brief architectural review of the principal buildings in the metropolis; accompanying which there is an excellent table of them, arranged chronologically in centuries, with the reapective dates and architects' names, and further remarks on them in a separate column. Such an architectural synopsis is a quite novel and no less happy iden; and it is so exceedingly useful for reference, that we have no doubt the same plan will be benceforth adopted in other works. Such a table ought, in fact, invariably to accompany the Guide Book of any city, if merely to serve as an index, pointing out at a glance all the buildings most worthy of note, and the architects by whom the? were erected.

The table we are now speaking of does not profess to be a complete list of all the public edifices in the metropolis, but merely of such 85 have pretension to rank as works of architecture; whereas in the other case, a great many would have been included which possess no architectural interest whatever. It is, as we have said, divided into centuries, beginning with the seventeenth; and of the serenty-three buildings mentioned in it, no fewer than fifty-three have been erected in the course of the last thirty years, or from 1808 to 1838 ; a tolerably striking proof how much more than at any former period has been done in our oun time, especially if we further take into account atreet architecture and general improrementa. As s specimen, we thall extract this table:-
table of public buildings most worthy of fotice for taeir architecture.
Sbventeenth Centcry.

	Date.	Architect.	Remarks.
Whitelall Chapel	1619	Inigo Jones	Chiefly admirable as the finest specimen of pure Italian,
York Stuirs .	1626	Dituo	
St. Pand's, Covent Giarden	1631	Ditto	Tuscan, distyle in antis.
Temple Bar	1670.2	Sir C. Wren	
The Monament ${ }^{\text {a }}$	1671.7	Ditto	Fluted Doric column ; total height, includiug pedestal, \&c., 202 feet
St. Stophen's, Walbrook .	1672.9	Ditto	Exterior concealed by bouses; interior over-praised; chielly remarkable for its dome.
St. Patils Cathedral, begun	1675	Ditto	Extreme length, 500 feet; beight to top of cross, 360 .
Elohtbenta Centory.			
St. Paul's finished -	1710	J. James	Style Italo-Roman; exterior both magnificent and pictureaquc, though not facilless.
St. Goorge's, Hanover-square	f. 1724	J. Gibbs	Porlico bezastyle, Corinthian.
St. Martn's	1721.6	Dito	Portleo herastyle, Coriuthian; the general style bad.
St. George's, Bloomsbury	f. 1731	Hawhsmoor	Ditto, ditto; Campanile excellent.
Mendion Hopse -	1739-53	Dence	
Weatalater Bridgo	1739-50	Labelye	Length 1066 feet.
Ironmongers' Hall	1748	Holden	Itallan Ionic on basement.
Hare Guends .	1751	W. Kent	
Blackfitars Bridge	1760.70	R. Mylne	Length 1000 feet.
Excise Office	1769	James Gandon	Plain in design, but of most sommanding aspect.
1delphat.	1770	Adams	Admirable in design and character
Nergate -	1770.82	Dance	Though poor in parts, a good example of Italian. River front $\$ 90$ feet.
Somerset House	1776	Sir W. Chambers	East front handsome.
Clerkenwell Scssions House	1780	Rogers	Very picturesque in parts.
Bank ${ }^{\text {a }}$	1789.1826 1709	Sir J. Soane	Hexastylo loggia, Grecien Ionic, sculptured frieze and pediment.
India House	1799	H. Jupp	
		Ninetere	
Civent-Ganden Theatre	1808.9	Sir R. Smirike	Grecian Doric; tetranyle portico.
Drary-Lase Thestre	1811.12	B. Wratt	
Opers-House, altered	1818	Nash and Repton	
Bethlehem Hospital	1812-15	J. Lewis	Portico herastyle, Ionic. Length 560 feet.
Waterico Eridge	1811	J. Rennis	Length 1326 feet.
Mint .	1811	Sir R. Smirke	Grecian Doric on a basement.
Custom House	1813	D. Laing	The Long Room and centre of the river front guite alterad afuer the acci. dent in 1826. Longth 484 feet.
Landon Institution	1816-19	W. Brooks	
St. Pancras Church	1819.22	W. and H. W. Inwood	The fineat copy of Athenian Ionic.
Post.Office .	1828.9	Sir R. Smirke	Hexastyle, Ionic portico; extent of front 390 feet.
Hanover Cbapel, Regent-atreat	1823.5	R. C. Cockerell	Tetrastyle Ionic portico.
British Nuseum (new buildings)		Sir R. Smirke	Telrasyle Iomic porico.
Backingham Palace . -	1825	Nash and Blore	
College of Physicians and Union Club. House	1825.7	Sir	
Board of Trade	1824.6	Sir J. Soan	Roman Corinthian.
Colosteom.	1824	D. Burton	Hexastyle, Groctan Doric portico attached to a polsgon 130 feet diumeter.
Iondou Bridge	1825.3i	J. Rennic	Length 920 feet.
St Narks, North Audley-street	1825.8	Gandy-Deering	Florid Grecian Ionic ; fagade small, but of rich design.
St. Kalherine's Hospital	1826	Poynter	Chapel Gothic; the rest Uld English Domentic.
Eall, Clrist Church Hospital	1826	J. Shew	Later Gothic.
Souch Church, Regent-square	1827 -8	W. Tito	Gothic.
St George's Hospital	1827	W. Wiltrins -	Portico tetrustyle, with equare piilars.
London University	1827.9	Ditto	Fagade not completed; decastylo portico, and dome.
Vew Corn Exchange	1827.8	G. Smith	Grecian Doric; with pleasing originality of deatgr.
St. Paul's School - .	1827 9	dto	Hexastyle, Tivoli Corinthian on a bascment.
Lam Institution, Chancery-lane Archway, Green Park	1827.9	L. Vulliamy	Grecian Ionio besastyle.
Finhoongers' Hall	1827.34	H. Ruberts	Grecian Ionic.
A Shenrom Club	18\%9	D. Burton	Its bas-relief frieze, the only specimen in London.
Goidsmiths Hall	1829.35	P. Hardmick	Itallan; maqnificent, yet comerhat heavy, and bascment poor.
Exeter Hall	18:30.1	Gandy-Deoring	Greco.Corinthian, distylo in antis.
St. Dumstan's in the West	$18: 30.32$	J. Sbaw	Golbic; handsome Lourre tower.
Yart Colamn -	1830.36	B. Wyatt	Total beight, including statue, 137 feet 9 inches.
1, onther Arcade	1830	J. Turner	Greco.Italias, with pendentive domes.
Hangwford Market	1831.3	C. Fowler	
Travallers' Clab	1831	C. Barry	Choice specimen of the bert Italian style, particularly the detign of garden front.
Charing-Croas Hospital ${ }^{\text {a }}$	1830.1	D. Burton	
St. George's, Wuburn-square	1832	L. Vulliany	Gothio ; handsome spire.
Nestminster Hospital	1832	Invoods	Modernized Gotbic.
Netional Gallery . . ${ }^{\text {a }}$	1832.7	W. Wilkins	Grocian ; total extent of front 458 feet.
Eeale. Paper Otice, St. James's Yark.	1833	Sir J. Soane	One of bis chastest productions. Style, Italiay.
	1831	S. Smirke	Sider
Shave for lndigent Blind	1831.7 1835	J. Newmun J. Field	Stylo Tudor, white brick and stone ; central tower of rich design.
Coltege of Surgeons	1835-6;	C. Burry	Style Elizabethan, red brick and stone. Italianized Girecinn.
l'nited University Club	1836.7	Sir K. and S. Smirke	Stylo a modified Italian; bas-relief pauels.
St. Jumes's 'Thealre	1836	S. Bea\%ley	
Raiway Terminus, Eucton-squars	1837.8	P. Hardnick	
I.ondou and Weatminater Bank	1887.8	Cockerell and Tita	Style modified Italian; singular but pleusing.
Pragogue, Great 8t. Helen's	1837.8	J. Davies	Stylo Italian ; intcrior rich and tastuft.
fretorm Club - . .	1 1838	C. Barty.	Italian.

1. The Laws of Harmonious Colouring. By D. R. Hay. London : W. S. Orr. 1839.
2. Lectures on Colour. By Hyde Clarike, Esq.
3. Transactions of the Society of Arts for 1888.

The subject of light and colour is one of the most important wihich nor engages the scientific world; and in consequence of the sensation created by photography, hardly a day elapses without some new or startling discovery. It is only, indeed, of late, and we hardly know if we may say unanimously, that a theory of light bas been adopted which is at all satisfactory. Hypothesis and system, like the marshalling of an army, is the first step for the advancement of a science, and we may well wonder, after so many brilliant discoveries made by the greatest men, to find the science of light less advanced than chemistry and geology, which are things of yesterday. This has arisen primarily from the adoption of a bad system, which is tantamount to no system at all, or worse; for until recently, the corpuscular theory, or that which teaehes the direct procession of light from the sun, ruled with all the weight which the nawe of its great patron, Newton, could give to it. Its supporters also forgot the principles of their master, the man who considered himself like a loiterer, picking up pebbles on the shores of the rast ocean of science, and blindly maintained the justice of his opinions, without any compunction that he too might err; and it seems, indecd, a principle derived from the weakness of human nature-that we must ever worship men, and not truth. This ridiculous calling ourselves of Paul and of Cephas was never perhaps carripd to a more extraordinary length than when lately before the Ashmolean Society a defence of Newton's opinions was read, and it was endeavoured to be provid that he was a supporter of those principles which now bave the predominance. A blind result of our wretched ignorance, that we cannot judge fur ourselves, but must follow a leader; whom, if we had but judgment, we should know how to be guided by ; but one error found out, rather than again be exposed to the consequences of our neglret, we dash our once-favoured idol on the ground. Anotherimportant cause which has doubtless contributed to the retardment of this science bas been the circumstance that it has been courted primarily and almost exclusively by mathematicians; whereas, from its being the disposition of naturalists to observe, and of mathematicians to reason, the wholesome course of a science is to collect facts, in the first instance, and to arrange them afterwards. In good truth, optics bas been atudied as by a foreigner, who trusting to his memory rather than his knowledge, speaks English from a vocabulary, instead of with the freedom of common life.

It is doubtless from this waut of progress of the science, and from its not having attained a popular and practical form, that we must attribute that continued neglect of colour in decoration, which was first caused by the puritanical destruction of the arts. Even the connmonest principles of contrast and harmony, which would net take an hour's teaching in a cormmon schoul, are not diffused, and it cannot be astonisning if we suffrr from a universal ignorance in our houses and our manufactures. The Egyptians, however, possessed by observation what neither science nor obscrvation has taught us; and although they used only the simplest colours, yet the manner in which they were applied in their temples and in their tombs may justly excite our admiration. Although so restricted in the number of their colours, the Egyptians produced many bold effects, when they had comparatively no media to soften down their great masses. Harmony is the general characteristic of Greek decoration, and, by the employment of weak tints, they managed to attain great delicacy of expression. Blue, from its coolness, they used very much in masses, and it greatly aided the purity of their designs. They were very happy, too, in the management of black and its contrasts, yellow and white, and used them much more aptly in the decoration of objects than we do. They also made colour a liandmaid to the sculptural aris, as may yet be seen on some of the statues in the British Museum, and in other places; and they even mixed different coloured marbles for such objects, as the leopard with black marble spots in the Museum at Naples. They used painting also very extensively on the exterior of their edifices, and with the most happy effict. Wiib regard to the manner in which the Moors used this delightful vehicle of harmoay, notbing can be more attractive than the specimens of their internal decoration with which we are acquainted. We are happy to see the increasing use of fresco, but we want more public examples, such as may animate the public taste which already exists. The painted ceilings at Greenwich and Hampton Court never fail to attract the attention of the public, and there can be no doubt that they would fully appreciate whatever might be done. No places can be more appropriate for this improvement than the public museums, and how. ever wretched may be their condition we still feel more comfortable in the old rooms at the British Museum than in the barren walls of the new. The walls indeed should be a running commentary on the con-
tents, like the Glyptotheca and the Pinacotheca, or like in the 4 alace of the Conservatori, in the Capitol at Rome, where the, Roman statuar is accompanied by friezes illustrative of the history of the republic. If cannot be said that this would detract from the contents of the Museum, as we have the example of the Lousre, where no one turns away from the immortal works to the gorgeous ceiling. By this emplogment of painters and sculptors an impulsive force would be given to architec. ture, and architects would more than regain what they might expend in the first instance. The fine arts, indeed are not to be promoted like the livers of French geese, by an artifical plethora of one member, Dor are they like a tree where the remaining limbs prafit by the pruniug down of the rest, but they must be cultivated in common, and to ne: lect any individual branches is to strike at the roots and deatroy the nourishment of the rest.

The operations of colour are deternined by strict mathematical laws, and colours possess, if it may be so termed, an atomical constitution. Newton, it may be remembered, determined by the prisomic experiment that there were seven simple colours, because be could not decompound any of them; but practical artists had long rejected this doctrine, from being able to produce the whole from three. Before the determination of this question Mr. Hay had performed some very ingenious experiments, which he gelates, by which he mixed the pellof and red rays and produced orange. the yellow and blue green, and so on through the others; thus producing by synthesis what Nemon could not effect by analysis. The subject has now been determined by Sir David Brewster, and it is now taught that light is composed of only three simple colours, yellow, red, aod blue; that if these be refleted in their due proportion, which is in an active state, white is produced; if absorbed, which is a passive state, black is the result.

The powers of these, as determined by Field, are yellow, thres; red, five ; and blue, eight. Mr. Hyde Clarke has given an anayzis of the prismatic spectrum, by which much the same result is produced Arranging the simple and compound colours under the heads of yellow, red, and blue, and dividing them by twenty, the following is the result :-

Simple . . Yellow.	Red. 45	Blue. 60
Orange 10	17	
Green 16	0	44
Indigo, ke. . . 0	64	66
Divide by 2074	116	170
3	δ	8

These three simple colours, by their combination, form the secos. dary, red and yellow, orange, 8 ; yellow and blue, green, 11 ; red and blue, purple, 13. The simple colours are sottened down by the secoodaries which they form in combination with the other two colous, yellow by orange and green; red by orange and purple; blue by green and purple; and they are contrasted by a combiuation of the two colours, necessary to make up the triad, which forms the compliment of the colour with ic; as yellow 3 by green 13, 16 ; red 5 by greed 11 , 16; and blue 8 by orange 8, 16. The same principle presais iw nature in many extraordinary phenomena, as, for instance, in that dis. covered by Buffon, when if you look stcadily for some time on a spot of yellow colour, placed on a black or white surface, it will appear surrounded by a purple tinge; and so in the pheoemena of polarised light also, if the ordinary ray be red or blue, the extraordinary ray will be green or orange. Sir Jolin Robison related before the Preach insitute a remarkable instance of this centrasting power in nature: a surgeon of his acquaintance bled a patient \ln a porcelain basin baring green flowers at the bottom, and some time afterwards it was observed that on the surface of the blood were formed red flowers correspondiug to the green ; and this experiment was repeated several times to ensure its not being an accident. In music the same thing occurs, where there are three simple notes, $\mathrm{C} E$ and G, and if any one of them be sounded it will be accompanied hy the other two as the harmonios; this may be perceived in the sound of a bell in succession, and in an accompaniment on the string of a violincello. From the combinatiou of the secondaries proceed the testiaries, orange and green form citron, 19; orange and purple, russet, 21 ; and green and purple, olive, 24 . These act with regard to the secondaries as the secondaries do to the primaties, and their neutralising power is 32 : thus orange, 8 , is contrasted by olive, 24 ; green, 11 , by russet, 21 ; and purple, 12 , by cition, 19. Besides their perfect intensity, all' the colours can be raised towards darkness, which is called shade, and lowered comards light, called tint; and the compound colours have besides the varision of hue, by which is meant a greater admixture of any of the compor sing colours-thus orange may be made from the yellowest to the red.
deit. In a composition a strict equality must be preserved in these variations of shade, tint, and hue.
Light holds a most intimate conaection, both in its constitution and operations, with all the other sciences, and must ultimately attain a most important rank among the sciences, and repay back to thenm what it has received from them. Many of the phenomena are only to be explained by reference to hydro-dynamic principles, and it is from them that the undulatory theory, under the fostering care of Young, attained its present preponderance. The relation of the laws of light to acoustics and music are most astonishing in their resemblance; and Field, has arranged octaves of a musical and chromatic. The phenomena called polarised light, however beautiful, are not contined in their application to an entertaining exhibition, but present philosophers with the most delicate instruments for ascertaining the constitution of bodies. It is an uptical law that all transparent bodies become coloured when they are formed into plates attenuated beyond certain limits, and moreover, that the particular colours, which under these circumstonces they show, are dependeot upon the degree of attenuation. It was thas that Newton determined that the thickness of the thinnest part of the soap-bubble, when colours are first visible, is no more than $\frac{1}{2 s c o u}$ of an inch, and that before it bursts it attenuates to $\frac{1}{4000000}$; and by the same means we know that the transparent wings of some insects are not more than $\frac{1}{100000}$ of an inch in thickness. For an admirable explanation of the laws of interference, and for a beautiful apparatus for polarising light, for which he received the silver medal, we cannot do better than to refer to the paper, No. 1, of Mechanics on the "Transactions of the Society of Arts," by Mr. Goddard, of the Polytechnic Institution. In this he ably demonstrates all the paradoxes of waves producing stillness; sound, silence; and light, darkness.
The chemical relations, however, present featurcs which becone of practical interest to the architect and engineer, and their full extent is yet noascertained. M. Mizzeherlich observed that light influenced crystallisation, and produced dimorphism, and from prismatic forms changed the crystals of sulphate of nickel into that of the square octahedron, wishout any apparent change in external form or appearance. Light appears to possess two properties, sometimes separate and sometimes conjoiued; samely, that of illumination, and that of warmth. Herschel, Wollaston, Ritter, and Scheele have shown that there are rays transmitted from the sun which do not illuminate, and yet produce more heat than the visible rays, while there are other invisible rays distinguished by their chemical effects. Seheele discovered that a glass mirror, held before the fire, reffected the rays of light, but not those of caloric ; but that when a metal mirror was placed in the same position, both light and heat were reflected. Nerschel found that the invisible rays emitted by the sun lave the greatest heating power. In an experiment on the heating power of the different rays of the spectrum, he found that when the thermometer was placed out of the range of the colored rays, it rose still higher than in the red ray, which he considered the strongest; the heating power of these invisible rays was greatest at the distance of half an inch beyoud the red ray, but it was sensible at the distance of an inch and a-half. The relative powers of colours in absorbing light and heat vary very much; and Franklin's experiment illustrative of this is well known :-He laid on the suow four pieces of paper, white, yellow, blue, and black, and when he went to see the eftect, he found that the black paper had sunk an inch or two deep, the blue a good deal, the yellow very little, the white not at all. The relative chemical power of the several colours is not however known, very few experiments haviug been made, and those conflicting. Mrs. Somerville considered the violet ray as the strongest, and the green as the most sluggish; and the experiments of Mr. Robert Mallet, related last year before the British Association, are to the same effect. He gives the following as the period of complete decoloration of recent solutions of caustic potass, by the chemical action of light under differeut shades:-

The recent experiments of Sir John Herschel, however, lead us to expect very different results, and the establishment of more satisfactory law!. The way, in which his law ofcolour acts as an agent or reagent in economical pursuits will perhaps however be better illustrated by extracts from the following able paper by Mr. W. Kemish, carpenter on board H.M.S. Victory, at Portsmouth, at p. 101, of the "Transactions of the Society of Arts:"-

There is nothing that will prove this ovit more than by observing the black streaks of a ship after being in a tropical climate for any length of time. It will be found that the wood round the fastenings is in a state of decay, while the white work is as sound as ever: the planks that are painted black will be found split in all directions, white the frequant necessity of caulking a ship in that situation likewise adds to the common destruction; and 1 am fully persuaded, that a piece of wood painted white will be preserved from perisbing as long again, if exposed to the weather, as a similar piece painted black, especially in a tropical clinate.

I bave heard many men of considerable experience eay, that black is good for nothing on wood, as it possesses no budy to exclude the weather. This is, indeed, partly the casc; but a far greater evil than this attends the use of black paint, which ought entirely to exclude its use on any work out of doors, viz., its property of absorbing heat. A black unpolished surface is the greatest absorber and radiator of heat known; while a white surface, on the other hand, is a bad absorber and radiator of the same: consequently, bluck pain is more pernicious to the wood than white.
Wood, having a black surface, will imbibe considerably mure beat in the same tenperature of climate than if that surface was white; from which circumstance we may easily conclude, that the pores of wood of any mature will have a tendency to expand, and rend in all directions, when exposed under such circumstances,-the water of course being admitted, causes a gradual and progressive decay, which must be imperceptibly increasing from every ehange of weather. The remedy to so great an cvil is particularly simple, viz., by using whitc, instead of black paint, which not only forms a better surface, but is a preventive to the action of heat, and is more impervious to moisture. The saving of expense would also be immense, and I an convinced that men of practical experience will bear nie nut in uny nssertion.

Two striking circumstances, which have fallen under my own jommediate notice, deserve mention. The first was the state of H. M. Sloop Ringdove, condemned by survey at Halifax, N.S., in the year 1828.
This brig had been on the West lidia station for many years. On her being found defective, and a survey called, the report was to the effect that the wood round all the fastenings was totally decayed in the wake of the black, while that in the wake of the white was as sound as ever; a striking proof of the different effect of the two colours.

The next instance I shall mention telates to H. M. Ship Excellent, of 98 guns (formerly the Boync).

This ship is moored east and west, by low and stern moorings; consequently, the starborid side is always exposed to the effects of the sun, hoth in summer and winter. In this situation her sides were painted in the unal manner of a ship of war, viz., black and white. of which by far the greater part is black ; this latter portion on the starboard side I found it impossible to keep tight; for, as often as one leak was apparently stoppod, anothar broke out, and thus baffled the skill of all interested. In the meantine, the side not exposed to the rays of the sun remained perfectly sound. I then suggested to Mr. Kennaway (the master ciulker of her Majesty's dockyard at Portsmouth), who had previously given the subject consideration, the advantage lihely to te derived frou altering the colour of the ship's side from black to white Captain IIastings having approved of the alteration, the ship was painted a light drab colour where it was black before, upon which the leaks censed, and she has now continued perfectly tight for more than twelve months; and, indeed, I can confidently state that the ship will last as long again in her present situation, as she had begun to sbriuk and split to an astonishing. extent when the outside surfice was black, and which bas cotinely ecased sinee the colour was altered.

This result of black we may readily believe, when we recollect Saussure's experiments on the $\Lambda 1 \mathrm{ps}$, when he placed on a mountain a box, lined with black cloth, with the side next the sun, elosed by three pancs of glass at a little tistance apart the one from the other, and found the thermoneter rise 300 in two hours from the concentration of the sun's rays. We might give a greater number of examples, and particularly of the manner in which it bears upon agriculture, but it may perhaps be sufficient if we remind our readers that Mr. Kemish's experiment is going on at a fearful scale on many extensive pieces of woodwork, to which the attention of architects and engineers might be directed.

Mr. Hay's bouk is the fourth edition of a work decidedly esteemed fur its practicability, chcapness, and the sonndness of its principles, and to it is added in this edition an excellent Treatise on houso-painting. It is indeed the cheapest and best work on the subject, and oue to which our readers of all classes may refer with advantage and delight.

To diffuse a tasto for this neglected branel of art, and we should be indeed pleased to sec the people waken up from this lethargy and call on our architects to revive the beauties of internal decoration. Kiug Lonis' arclitects are alive in Bavaria, painting houses, inside and out, in lithochromy, and why should painting in England remain where it was in Sir James Thornhill's time, at the top of the dome of St. P'al's, iustead of being in our palaces, our public buildings, and our houscs.

A Practical Treatise on Bridge Buidding. By E. Cresy, Esq. Arcl. C.E., F.S.A., \&c. London : John Williams.

We lail with pleasme the appearance of this work on Bridges, which is got up with great carc, and with numerous plates, beautifully
and clearly engraved. The first part now before us contains twenty plates, which will be found of great value both by the architect and the engineer.
The first series relates to London Bridge, constructed by Sir John Rennie; a work with which we kuow no other that can stand in comparison, except perhaps Waterloo Bridge. It is a monument indeed equally interesting from its grandeur, the boldness of the span of the arch, the simplicity of its style, and the durability of its material ; one which must command admiration in future ages to as great a degree as it does now. It is interesting, no less from its own merits, than as a triumph over the obstacles which it had to overcome. The drawings consist of the plan, elevation and section, drawn to a small scale, and of the cofferdam, section, and centre, of one of the arches, the elevation of the centre arch, and section and plan of an abutment, drawn to a scale of twelve feet to an inch.
We have next the drawings of Stoneleigh Bridge in Warwickshire, constructed by the late John Rennie, and consisting of one arch, with two land arches in the abutments. The design of this work is beautifully balanced. We have also another drawing of a bridge by John Rennie over the River Earn in Scotland, consisting of three elliptical stone arches.

Of Bow Bridge, constructed by Messrs. Walker and Burgess, there are two plates. In our last number we gave the elevation of this bridge; but of course these engravings exhibit the design far better than our wood-cuts.
There is a plate of one of the brick arches of 70 feet square, constructed by Mr. Braithwaite, on the Eastern Counties Rallway, for a viaduct over the River Lea. This bridge we have often admired for its symmetry and simplicity, and for the excellency of the workmanship. As a pendant to this is a plate of the Iron Bridge, constructed by Mr. Buck, over Fairfield-street, on the Grand Junction Railway : it is of 128 feet span, and 35 feet wide, and exhibits much ingenuity and peculiarity in its construction. We shall not be content with this single plate, but we expect, in the subsequent part of the week, to see more of the details. A few wood engravings of the iron-work, drawn on a large scale, and interspersed among the text, would exhibit it to advantage, and render it a peculiar object of study and interest.

We then have one of Pcrronet's celebrated works, the bridge of Saint-Maxence in France. This consists of three stone arches of 76 feet 0 inches span, and only 2 feet 7 inches rise. We are however by no means favourable to this mode of construction ; for the arches are rendered so very flat, that the stone-work may be considered little better than a stone girder. If, too, the abutment should give way in the slightest degree, the disarrangement of the whole bridge would undoubtedly follow; nor are we greater admirers of the centering, for the fewer pieces of timber in a center is far better than having them cut up into short lengths and distributed as they are in the design before us.
Three plates exhibit sections of the naves of Bath Abbey church and of Wells cathedral and of Wells Chapter-house. These exhibit very clearly the construction of the vaulting and the advantages of the buttresses. Mr. Cresy has bestowed considerable pains in obtaining their correct dimensions from admeasurements taken on the spot, and he has endeavoured to slow by diagrams the peculiar method adapted by the old architects in constructing the vaulting of our great churches. We regret that we have not time or space to devote to the examination of his portion of the work at present, although it is apparently of some value to architects, but we shall on a future occasion toke a more extended view of it.
The present number seems rather to be intended as a sample of the future volurne, than as a defined part of the work; the plates being taken indiscriminately so as to show the intended mode of procedure. As a specimen it excites high expectations, and if the remainder of the work exhibit the same skill it cannot fail to be an important accession to the libraries of both professions. The letterpress we understand will form one thick volume, and we shall look forward to it with some anxiety for the specitications and the descriptions of the plates; for until they arc given it is almost impossible for us to enter satisfactorily into a consideration of the several bridges published in this work.

We have much pleasure in recommending the work to our professional readers, aud doubt not that they will derive the same gratification from it, which we have ourselves. We must earnestly recommend to the Editors, as we did in noticing a similar work last month, the great utility of giving the specifications and finl descriptions of the works, interspersed with wood engravings, showing the details at greater extent. Another most important feature, which cannot be neglected without injury, is, to give a particular description of the difficulties which occurred in the progress of the work, the peculiarities of the
construction, the nature of the foundations, the velocity of the rivers and the thrust of the arch. Such particulars go fer to decide the in. dividual character of each work, are of incalculable use to the profes. sion, and can not fail to render the volume doubly valuebie.

Appendix to Railway Practice, containing a copious Abstract of the whole of the Evidence givent upon the London and Birmingham ond Great Western Railway Bills, when before Parliament, by S. C. Brees, C. E. \&cc. London: John Williams, 1839.
The advance of engineering as a profession, of course increases the extent of its social relations; and it bas now, like many others, a body of jurisprudence, cxclusively its own. The knowledge of this profcssional law is essential to the engineering student moch more than to any other class of professional men; for the engineer is necesarily called upon to support, in their progress throngh parliament, bills forpublic works; and the manner in which evidence is giveu, and the effect which it produces, must of course depend upon the witness's acquaintauce with previous practicc. He is engaged too repeatedly in similar pursuits, before the courts of law, at the Quarter Sessions, and the other local tribunals; and has, in fine, much more to do with hw than the surgeon, or any profession which bas its own peculiar code.

For one branch of this pursuit the work before us presents us with a preparation, and it is executed with an ability which makes the prafession bighly indebted to Mr. Brees. He has here presented us with a condessed abstract of the evidence given on the London and Birmingham, and Great Western Bills, which in the original reports occupy threc or for volumes. Mr. Brees has effected this by suppressing the irrelerant nonsense of counsel, and the repetition of the same questions, which it is sickening to read, and painful to lear.
Appended to the work is a very useful Glossary, sc as to render it equally valuable to the non-professional reader; and at the ead are six plates, r presenting the details of a six-wheel locomotive engine, constructed by Messrs. Hawthorne, of Newcastle-upon- Tync. Tbete plates are copied from the original drawings, furnished by the inventors, and give a very clear view of the arrangement of the machines.

Hins'relative to the Construction of Fire-proof Buildings, and on the Failure to produce Sound and Estimable Architecture by the means of present usually adopted. By Alfred Bartholomev, Architect. London : John Williams.
This is a work written in a terse style, which will doubless prose intoresting to the profession. It contains much valuable matter on the present modes of construction, from which we make the following extract relative to fire-proof buildings:-
2. Buildings both public and private as now usually conalructed, with thair bond-timber, beams, rafters, joists, floorings, and othor combustible materids, are, in fact, like little clse than so many enormous fire-grates with wood und coals laid and prepared in them ready to be ignited by accident or devign, to spread loss and ruin, and often the cruelest of deaths \boldsymbol{y} and if the shelli and other parts of buildings be of stone from Portland or from Bath, or of ordians marble, or from any other of the calcarcous quarries, such buildings form in fact but lime-kilns, ready to be brought jato use by the first application of flame; and in this respect, edifices willed with the most beautiful calceroctu free-stones and marbles fare the wort.
3. Sometimes in modern works, a pretence is made of rendering buildiggs firc-proof, by the adoption of a breastsummer, a girder, or some other smill part of their fabrics, of castiron; but there applications, amid confagnation becoming heated by the masses of flaming timber about thern, have the sauc effect as the insertion of an iron in a grate of blazing coals, and indeed incresse the beat and danger, and genaraly by the application of water while bot map and increase the ruin.
4. Secarity in public buildings can alone be obtained by the total abolition from them of combustible substances, except for the most immaterial parta of them : - centuries ago our ancestors having made this discovery, by the conly and immense loss of most of their sacred fabries, rebuilt them with scurcely any wood in their composition, except in their roofs; and to this wiadom of experience, we almost owe the very existence of most of our churches.
5. The most poignant feelings of regret must take bold upon wh, whon nt reflect, that our museums and other national and municipal depositories, anc but expensive pyres for the future inmmolation of Grecian and Italian marbles. of Indian, Egyptian, and Mexioan reliques, of Oriental and Europasn machscripts beyond price, and of scarce and irrecoverable literature gleaned from the whole world.
The timber floors and roofs of the Royal Library, that noble relict of the virtuoas Georgo the Third, are fated, notwithatanding the admirable cars of the learned oficers of the British Museum, piteoualy to perform its Sutte,-lor fires mostly occur where they are least expected, and ravage most amid deposts the most precious.
Some persons may fancy, that to erect buildings fire-proof, will of nacessily render them uncouth, inconveniont, and un-architectural:--nothing could bo more crroneous.

Is the Partheon at Rome aither uncouth, inconvenient, or un-arebilectural? Do the ame condemations apply to the vaultings of SL. Paul'g, London, and to thope of our other catbedrals? or, indeed, is the new lath and plaster ceiling to the minster of York arohisectural ?
It may rather be said, that beauty of form and structure absolutely require tiom to be made firo-proof.
10. Roof-trusses may be made ontirely of cast-iron, as are those to tha new choir of St. Saviour's Church, Soulbwark; and a covering of tiles, of slates, or of metal, may be laid upon horizontal rafters of iron, without the intervention of any combustible material whatsoever.
14. One of the excellencies of vaulting is that in addition to affording the meass of rendering edifices fire-proof, it adds very great architectural beauty wo fabrics. There is soarcely any form which may not be coverod in a gracoful manner vith vanlts and domes, so as to fit exactly the walls, and afford the meses of spanning every side of an apartment, whatever be its shape, with correct and strong arches, wibbout distortion either on the plan or in the eleration, and combining justly with the architecture of the editice. In fact, mben an attempt is made, with deal, lath and plaster to render a modern opartment respectablo in its decorations, it is frequently performed but by a costly yet fragile and consumable imitation of fire-proof radtings.

We hope to have occasion, at a subsequent period, again to refar to it, and shall for the present dismiss it with a recommeudation of its utility and conciseness.
Theoretical and Practical Essay on Bitumen; setting forth its uses in resado ages, and revival in modern times, and demonstrating its opplicability to various purposes. London: Effingham Wilson.
This is a very useful pamphlet describing the various asphalte, their properties, and its applicstion. We shall, in some future number, eramioe into the qualities of asphalto introduced in London, and see how far that material is applicablo to engineering and architectural purposes.

MLXTURE TO PREVENT THE INCRUSTATION OF STEAM BOILERS.
 memoranduas.

Admiralty, 8th Jan., 1839.
The Lords Commiseioners of the Admiralty, in calling the particular atreation of all officers in command of steam vessels to the annexed abstract if a report from Lieut. Kennedy, late commanding Her Majesty's steam resel Spittire, and Mr. Juhns, the first pngineer of that vessel, are pleased n direct that the mixture therein described, which has bcen proposed by the latter officer to prevent incrustation on the inner surfaces of boilers, bo fenerally made use of for that purpose in all Her Majesty's steam vessela. The directions as to the proportions of black lead and tallow are in be atrictly followed, and the mixture is to be applied as often as circumetances will admit of it, every opportunity being taken as heretofore to remove from the boilers the small deposit which will still be formed.
Report of Lieut. Kennedy and Mr. Johns, engineer of Her Mejesty's Item reseel Spitfire. - We bcg leave w state that the proportion for a first class meanar should be about sixteen pounds of melted tallow and twoof pow: defed black-lead, well mixed and laid on with a common tar-brush over the raside of the tubes and fireplaces, and other inside parts of the boilers that ean be got at, every time ufter a passage of any length, as the more often it is done the beltar. The boilers are to be blown out as uswnl cuery two hours, for it is not to be supposed that, without proper uttention being paid in this necessary duty, this mixture will prevent the incrustation from formtof: the blowing of takes great part of it away while in solution, and what tinains, afler short trips, may be swept off by band with a piece of oakum; and after long trips, should a thin incrustation remain on the plates, the shichlest blow will cause it to fall off in large flakes covered with black. lead on the inner side, without the use of the clipping bammer, which nonly makes the plates rough and more ready to receive and retain the deposit, and otherwise injures the boilers, causing much labour to the men. Ten pounds of taliow and one and a half of black lead wonld be enough for the smaller steamers after each voyage; or, after a very long vorage, that quantity used twice.
The Spitire ran from Malea to Corfu, from Corfu to Malta, from thence in Gibraltar, and back to Malta, with only one application of the mixture, from want of time.

We consider that the said mixturc, if frequently and properly applied, the sume attention being paid to blowing, nff as before will cause the boilers :s last at least a fourth longer, and will be found a great saving in cogls and labour, doing away with the necessity of fresh water, (the Spitfire having had caly one supply in her boiders for cightecn months); and we find that the longer and more often it is used the cleaner the boilers look inside.Nawical Magazine.

FAILURE OF THE HYTHE BRIDGE AT COLCHESTEIR;

Mr. Braithwaile's Report thereon to the Corporation.
Tbis bridge was erected from the plans of a local architect, over the river Colne, at a place called the Hyth, adjoining the town of Colchester, and up to which point the river is navigable for sailing vensels. The structure was completed, and the soad formed and open for traffic by the latter end of March is the present year; although up to that time the centres had not been eased.
On the lat of Aprij, on their attempting to remove the centres, the arcla
followed it; and in tbeir cutting away a bracing-piece the wholc atructure suddenly fell in-the centres being then unable to sustain the weight thrown upon them. The dimensions of the bridge were as follows ;-Span of the arch (which was segmental,) 58 feet-the rise or versed sine being ten feet thickness of arch throughout 1 foot 6 inches; and from face to face of ditto 23 feet. The longitudinal depth or thickness of the abutments 10 feet; vertical thickness of the abutments 5 feet-risting on planking laid transversely insills, which were bedded in a foot and a half of concrete, below which, was a loosish strata of gravol. The arch was turned in four half brick rings in cement, with about ten pieces of hoop-iron, bedded longitudinally between each ring, and four iron tye-rods with washers placed transversely through the arch; the spandrells were filled up with loose earth, and two small counkerfeits, which were carried up in spandrell walls (with the addition of the face walls) hed to resist the whole thrust of the arch. Mr. Braithwaite, the Engineer in Chief of the Eastern Counties Railway, was applied to by the corporation to report on the cause of the failure; and, after minutely examining the plans and remains of the structure, he geve it as bis decided opinion, that the former were so radicaily bad that it was impossible for the structure to have stood ; and on the other hand, that the workmanship was so defective, that with the best and most carefully prepared plans, it must have fallen. Mr. Braithwaite's estimate for a new bridge is $£ 2,200$-the cost of that just destroyed, was about $£ 1,300$.

The reverse quoins of the abutments have subsided about an inch and a half; the cement in the arch, it is apparent, was quite killed by the too great adinixture of sand; at the keying-in of the arch, such a monstrous want of care was exbibited, as to be worthy of notice,-it appears they did not guage their courses, or if so, did not work to it ; as, when they arrived at the course of key bricks, there was a space of about $4 \frac{1}{2}$ or 5 inches len: now instead of taking out about half-a-dozen or more courses of bricks-picking out the largest, laying them dry, and then grouting them in_they keyed-in with three-quarter ragged batts, laid longitudinally!

PUBLIC WORKS IN BELGIUM.

The public works projected in Belgium in the course of this year are numerous and of great utility, both in Brussels and the principal cities. The capital is to be embellished with four remarkable monuments; the new palace of justice, the plans for which promise one of the finest buildings of the kind in Europe; the glassed gallery of the passage St. Hubert, which will surpass in anchitectural beauty any thing of the kind either in Paris or London; the new public hospital of Et. John; and the house of industry in the quartier Leopold. This last-named district is likely to be ornamented with a great number of hotels and first-rate houses, especislly if, as may be expected, the Palais de Justice is erected in it. The new streets opened during the last year to the Faubourg of Saint Josseten Noode will be entirely finisbed this year, and at their point of union the new housc of industry of the Faubourg will be built.

The construction of the station des Boyards, and that projected in front of the rue Ncuve, will give birth to two other quartiers, traced on a regular plan, and ornamented with spacious squares and wide streets. A fourth quartier will be formed beyond the Boulevard of Waterloo, and several now streets are marked out in the fuuxbourga d'lxelles, de Scharbeck, and de Flandre. Finally, it is proposed to complete the Boulevards, the abattoire, and, generally, all the public works which the state of the finances of the city have hitherto suspended. Twenty thousand workmen will net suffice to execute all the plans proposed to render Brussels one of the finest capitals in Europe.

At Glent a new casino is to be built, which will nct yield in beathty to that built two years since after the plans of M. Roclaudt. The new Palace of Justice and the new theatre will be conipleted, and in front of the railway station a new and large square will be constructed, in which scveral new streets will terminate. It is probable aiso, that the foundation for a new nospital will be laid this year.

No city in Belgium, however, will protit more by the advantuges of peace than that of Iiege. Vast plans are projected for the enlargement and embellishment of this rich city. A great nuinber of new strects are to run through the old quartiers, and the works for the extension of the Meuse will add a new guartier, and constitute one of the finest parts of Liege. Amoug the pablic establishments which will be erected in the course of this year, are the new botanical garden and the conservatory of nusic in front of the facade, of which will be raised the statue of Gretry.

At Antwerp the quays on the Scheldt are to bc finished, and a new fish. market will be built, together with the interior station of the railroad, and several streets leading to it. The colossal statue of Rubersh will be cast this year, but will not be raised on its pedestal before 1840 .
At Louvain the public hospital will be entirely rebuilt, and replaced by an edifice as remarkable for its extent as the beavty of its architecture. The wide extent of land at present in cultivation, which extends from the Porte du Pare, to the Porte dc Diest, is already being covered witb buildings, and will shortly become onc of the most populous frontiers of Metonia. This new feature will be principally owing to the railroad.

At Mons a new thearte is projected, also an abattoir, covered markets, and the opening of several new streets, which will afford the necessary communication between the different parts of the city. At Courtui also, numerous improvements will take place, and without entering into any further enumeration, we may say that the confidence produced by the approach of a settled order of things, will sufficiently manifest the wisdoun of that division, which, leaving Belgium integrally free, leaves her at the same time the mistress and the architecl of her fulure glory, Courier Brlge.

PROCEEDINGS OF SCIENTIFIC SOOIETIES.

INSTITUTION OF CIVIL ENGINEERS.
 March 10, 1830. The President in the Chair,

On Mr. Smeaton's "Estimate of Animal Potur, extructel from his MS. Papers," By John Farey, M. Inst. C. E.
The amount of mechanical power has been frequently over-stated, in consequence of the conclusions being drawn from efforts continued for too short a time. Desaguliers estimated the power of a man as equal to raising 5507 lhs one foot bigh per minute ; this was found by Smeaton to be too high; several experiments are recorded, in which different values are assigned to the power of a man, and be ultimatcly fixed it at about two-thirds of the above, or 3672 lbs. Several experiments are recorded of the estimate of the power of a horse, and of the quantity of water raised by various machines.

The commanication is accompanied by a letter in Mr. Smeaton's handwriting, dated 21 st F'eb. 1789.
" Account of the firing of Gumpoater mmer Hiter, by the Tollaic Bathery at Chatham, Warch Ib, 1830, untler the Lircetion of Col. Pasliy." By F. Bsasah, Jun. A. Inst. C. E., and C. Maner, A. lnst. C. E.

Exp. I.-A tin canister containing 45 lbs of powder was sunk in deep water, and the coil containing the conducting wires, one-fifth of an inch in diameter, by which the porderwas to be fired, was vered out to its whole length of 500 feet from the boat in which the voltaic battery was placed. The connexion being mado the explosion was instantaneous, and the concussion was felt very sensibly on the shore.

Exp, 2.-Threc canisters, each containing a charge of a lbs., were sunk at a distance of 50 or 60 feet from each other, and a pair of counecting wires, 100 feet loug, were attached to each; the ends of these wires were soldered together by threes, and on the connexion being made only onc of the canisters was fired. The wires in this exporiment were of common copper bell wirc, about one-sixteonth of an inch in diameter. The voltaic battery used was one of Professor Daniell's improved construction. The preparation of the conducting wires, and the mauner of discharging the battery, appeared the Eame as described in Mr. Bethell's communication of last Session.*

March 26, 1839. The President in the Chair.

The following were ballotted for and elected; G. A. Oldban, as a Gira. duate ; Sir Johu Scolt Lillic, Captain Vetch, and J. C. Shaw, as Associates. "Description of a Saving Machine for culting of Rualway lars." By Joserb

The adrantage of having the ends of the railway bars cut as nearly square as possible, that they may truly abut against each other, is so great, that many attempts have becn made to effect it. The author in this communication describes the method which is adopted at the Butterley Works in the manafacture of the rails for the Midland Counties IRailway. In general the ends, rongh and ragged as they come from the rolls, arc scparately reheated and cut off by the circular saw; but the accuracy in this case depends on the workmen presenting the bar at right angles to the plane of the saw. As this cannot be insured, the difficulty may be obviated as follows :-The axis of the saws and the bed of the macline, which is exactly like that of a slide lathe, are placed at risht angles with the line of the rolls in which the rails are made; the saws are fixed in headstecks and slide upon the bed, so as to adjust them for cuttivg the rails to the exact length, and are three feet in diancter and oneeighth of an inch thick, with tecth of the usual size, in circular saws for wood, and make 1000 revolutions per minute; the tecth are in contact with the hot iron too short a period to receive any damage, but to prevent all risk the lower edge of the saw dips in a cup of water. The saw plate is secured between two dises of cast iron faced with copper and exposed only at the part necessary for cutting through the rail, The rail on leaving the rolls is hastily straightened with wooden mallets on a cast.iron plate, on which it lies rjght for saring and sufficiently lot; thus a considerable saving of time, labour, and heat, is effected. The rail is brought into contact at the same time with the two saws, and both ends are cut off by one operation. If the saws be sharp and the iron hot, the 78 lb . rails are cut through in twelve seconds. The rail, on leaving the saws, is placed in a groove planed in a thick cest-iron plate; thus all warjing is prevented. The author then de. scribes certain mechanical arrangements, which are exbibited in detail in the drawing accompanying the communication.

"A Description of the Turnbridges on the Hercfordxhire and Gloucestershire C'anal." By Sifpaen Ballard, A. Inge. C. E.

In taking to pieces the old turnbridges on the Hercfordshire and Gloucestershire Canal, the author observed that the spikes used to fix the planks down to the carricrs had caused the decay of the timber; that the balance weights of stone confined in a box under the planks kept the timber very moist; that the timbers near the ground where there was not a free circulation of air, and the wood wherevor it ras picreed with iron, were decayed.

In the bridges now deseribed, no spikes arc used to fix down the planks, but the planks are held in their places by two flat rods extending the whole length of the planking. Tho author then describes in detail, by reference to the drawing accompanying the commuuication, the peculiar incthod of construc-
tion which he bas adopled. The planks are three-eighths of an incl apart 20 that dirt and wet may not lodge in the joints. The bridge is balanced by twe stones hung st the ends of the swing pole of about six ewt. each. The fous principal carriers are supported by three cast-inon bearers fixed to a grooned circle, which rests on cast-iron balls running in another grooved circle. By this construction no planks are pierced with spikes; the box of stones is got rid of, and a frec access of air is oblained; and the peculiar causes of devtruc. tion to which turnbridges arc exposed, are, it is conceived, in a great measure obviated.
"Description of an Inxtrument for setting out the Width of Cutfings and Erabarke.." of Railuays, C'anak, or Raods, as particularly apphicable bo falling or siden.."; ground." By Henry Carr, Grud. Inst, C. E.
The object of this instrument is to facilitate tho operation of determining the distance of the outer lockepit from the centre line of a cutting or embsankwent, by avoiding all calculation, and reducing the usual threefold operation into one. The principle of its construction is the formation of a half cross section, which may be casily altered to suit all cases with regard to base, side slope, and inclination of surfacc. The construction of the instrument is described in great dotail by reference to the drawing accompansing bis communication. The author states that be set out a portion of the Eouth Eastern Railway with this instrument, and found it answer exceedingly vel. The experience of the first instrument has suggested some improvement iv is construction, which is represented in another drawing,

Olscrtations on the present Mode of executing Railicays; uith Suggestions for a more econoinical, yet equally efficient Systom of botis executing and uorking them. By Francis Whishaf, M. Inst. C.E.
The author, at the commencement of this paper, alludes to the priacipel causes of the great differences between the original estimate and cost of railways. Among these ho enumerates the imperfect knowledge of the strata, which occasions the cuttiugs and embankments to be formed miti slopes, which are dangerous, and add to their cost; the imperfect foravtion of the embankments, especially in clayey soils, which, in the opinive of the author, ought to be cartied up in lagers or coursos of from oare and a half to two yards in thickness, suffeient time being allowed for subsidenoe before the nert layer is added; the cost of stations, which, in some of the great linef, forms a considerable proportion of the whole cost.

The author then proceeds to suggest means for effecting a consiberabie saving in the original cost of railways; a ccrtain method of preventiog ac cidents by collision; a saving in the annual expenditure; and a beter adap. tation of the lecomotive ongine to its work.

With these views he propuses a single line of rails; that the lise siould be divided with intermediate engino stations (threc on the Londan and Birmingham, for instance), the engines at ach being suited to the prevaiing gradicat of each. Thus a line of railway may be more easily laid our. as one or two unfavourable inclines will not affect the working of the whole. At cach station there must be a emall portion of an audisional line of rails, and also at other convenient intervals. The mode of korking such a line is as follows:-Engines start simultaneously in each dircetion for the terminal and intermediate stations. These engines will pur each other at one of the portions of the double line, and the engine beicg turned, and taking the other train, will return to the station whence it started, when another exchange of trains takes place. Thus there is a regular interchange of loads throughout the day, and each engine is cows. fincd to its own portion of the line, and then it is impospible that a collision can take place. Equal accominodation would be afforled to the pub lic, and the engine-man, from being always confined to the same suant portion of the line, would be perfectly cotversant with every part of it. The saving which would on this system be effected on the original cost, is cstimated at more than 500%. per mile.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

At an ordinary meetigg, held on Monday, sth April, 1839, H. E. Kfwinat, fellow, in the chair, Monsicur Zocher, of Haerlem, member of the Instifute and lioyal Acadeny of Fine Arts at Anisterdam, pursuant to the recommendation of the Council, founded on the application of Monsieur Meijers, of the Hague, was elected honorary and corresponding member.

The following donations were announced :-V'rom Cavalicr Pietro Biaudi. honorary und corresponding member, a drawing of the plan and section, and ongravad view of the great chureh of S . I'rancesco de l'aolo, at Naple, erected by him. From Signor Nicolini, of Napies, specimens of Niskil Litofagi. By H. Gally Kinight, Eaq., M.l', a copy of his illustrations to the Normans in Sicily, ontitled Siracenic and Norman Remains, folio, \&e.

Mr. Donaldson read a description of the Breakwater at Plymouth, by Lir John liennie, accompanied by drawings at large, illustrative of the subject, which we have inserted in another part of the Journal.

Mr. Smith, of $2 j$, Great Charles-street, Birıningham, attended, and (s. plained several samples of locks and other furniture.

Mr. Richardson continued bis scries of lectures on Geology-sulject, the tertiary formation, gcographical extent and distribution of the tertiary depe. sits; classification of Mr. Lyell; Eocenc; Miocene: Pliocenc; bexias of I.ondon, Paris, and the Isle of Wight; organic remains of the Euglish and Paris basins; Cuvierian Pachydermata; Palaotheria Anoplothenia; deposis of Aix Eningen, Monte Bolca; extinct volcanocs of Auvergne; of the Rhiac; tertiary deposits of North and South Americen \&c. \&c.

As in my last discourse I entered on a consideration of the Zoological rela. tions of the ntrate and the connection which they bear to animated nature, I purpose, in the discussion of this evening, to consider the rocks as mo much inert matter, edapted, however, for the purposes of mankind, in particular as regards that art of which you are professors. We commence then with a oiew of those subatances which are comprised under the conveniout name af rocks, and whiob, in fact, chiefly consist of indurated sands, clava, and limes-which, as I have already atated, once existed in the atate either of sand, or mud, or fluid; and I will commence by pointing out the nature of these subatances and the principles by which they are combined together. All bodies are divided by the chemist into simple and compound; simple substances being those out of which nothing different from themselves can be obtained ; the compound, those which contain tro or more elemeats. The number of elomentary bodies at present recognised is 53 , the arount was formerly greater, but has been materially reduced by the investigations and experiments of toodera science, bodics, which some time since were considered simple, being proved, by recent andysi, to be compound. Although the number of elemense arnounta to 53 , yot that of minerals, which they form, doess not reach 400 ; a fact which a erds a beautiful analogy, with similar resurictions imposed on the animal kingdom. Wo know that certain limits are assigned on the production of animals so as to prevent the intermixture of species and the consequent confusion of races. In like manner the multiplication of minerals is goverued by strict laws, with the obviously similar design of prerenting the confusion which would arise from their combination being left m bally unchecked. The chief ingredients of the rocks are the nine eurthen, silex, alumina, lime, glucine, zircon, yttria, barytes, strontia, and magneeia, which, with the non-metalio substances, oxygen, hydrogen, nitrogen, carbon, sulpbur, chlorine, flaorine, and phosphorus, with polasium and nodium, countitute the priacipal part of the generally prevailing minerais and rooka. The comman sedimentary rocksiare usually composed of the three first of the above named materials; flint, clay, or lime; and they each possess a peculiar clearage or fracture, which is invariablo in cach class of substances. Thus, if flint be broken, it has a glassy or conchoidal fracture, and a cutting edge; but if chalk ar marl be fractured, thoy have a dull or earthy adge, while on fracturing a chrystal of carbonate of lime every fragment preserren more or less distinculy a rhomboidal form; a fact which shows the powalessnest of man over nature, and bis subjeation to the laws which ragulate matter ; since it las justly been observed we cannot break a stone bnt in one of mature's joinings. The lecturer then pruceeded to the subject of atratification. He observed, that a atratified rock is one whose bounding surfaces are parallel, or nearly so, for great distances, thus composing a larger or tabular mass, which is called a stratum or bed; and a number of these strata, possessing a common character, and having a common origin, are called a formation-as the chalk fermation, lias formation, soc. The beds, as already mentioned, must have been deposited in a harizontal position, but they bave sipce been subjected to so matiy chaoges and revolutions, to so many liftings, sinkings, and movements, by a farce acting from below, that they may either be borizontal, inclined, vertical, curved, consorted, or even as Mr. Murchison has lately shown, reversed, and completely oferturned. Stratitied rocks are unually large, and sometimes especially lacustrine deposite, thinly laminated. The unstratified roeke present sone of this parallelism of bounding surface, they exbibit in general the sppearauce of sbapeless lumps, and though they are sometimes divided into blucks-grauite in particular, which assume the appearance of beds-this structure may be distinguished buth by the character of the ruck itself and the comparatively small extent to which these extend. When the height of these blocks very much exceeds their breadel the suucture is called colunnar, as is frequently the case with basalt, porphyry, and grecastonc. Veins and fisures in modern rocks are filled with bones; in ancient with minerals, is bilver, lead, tin, \&e. If the fissure be such as to cause a displacement of strata, it is called a fault; these have their disadrantages and advantages; they counteract the tendency of beds to plunge to depths inaccessible to buman power aud skill; they divide a bed of coul into several stages, and render it accessible; and when filled with clay, act as a dam to keep out water, and prevent the mines from being tlooded.

Geugraphical distribution is most widely developed on the continent of Eurupe-Frauce, Italy, Germany, Hungary; on the continents of Asia and Anerica, and in Australia. They present, among other phenomena, the fact Lhat from the prevalence of lacustrine deposits the beds of vast bodies of freib water, this part of the world appears to bave been for a vast period the aite of lakes as vast as those which exist in the North American continent at the present day; and from the remains of extinct volcanoes, volcanic power weems to have been called forth to an immense scale. In this country we have only pliocene represented by the crag of Norfolk and Suffolk, a vast accumulation of sand and gravel deposits lying in chalk. The miocene is alcogether wanting in any well-defined bed. Eocene exists in the Loudon becia. This vast gulph of an ancient sea of chalk is bounded on the south by the North Downs, the hills of Reigate, Sutton, and Godstone, and extends on the west beyond High Elm Mill, Berkshire, and on the north-west is fianked by the chalk bills of Wiltshire, Berkshire, Oxfordshire, Buckioghamwhire, and Hertfordshire; it spreads over Easex, a considerable part of Suffolk. Epping, and Hainault forests, the whole of Middlcsex, and a portion of Buckinghomshire. On the east it is open to the sea, the Isle of Slieppy being an outwork of the same deposit. It is conceived to linve been an extury, from the vast number of fossil fruits and other spoils of the land. The suif blue or black clay, called London clay, contains marine exuvia, wells, sharks, teeth, fish, sec. The beaths in the neighbourbood of London ast masime sands, as Bagahot, Frimly, Purbight, and Hampatend.

In alluding to the geology of Auvergne, Mr. Richardson observed that, in addition to the other attractions of Auvergne, he was indebted to Mr. Delabehce for information that the architect will there flad samples of the earliest style of Byzantine architecture. Nr. D. adds, that as an architect is compelled to travel, in order to complete his education, an attention to geology will enable him to understand the nature of the stone employed in architecture, and the reasons why employed. And allow me to add, that thesc advantages will not be confined to mere prafit; but will tend to invigorate our faculties, and extend the horizon of our mind. If, as who can doubt, the aphorism of Lord Bacon be true, that all study is valuable, what study so instructive, so fitted to improve us, as that which teaches us the comparative insignificance of ourselves, and the wisdom and power of our great Creator?

22d April, 1839-EArl de Grey in the chair.
The searetary anoounoed that the Council bed admitted Alfred Batson as student. Robert William Mylna, Esq., of New River-haad, and Samuel Lepidge, of Derby-streat, Westainster, were elected associates.

The following donations, \&c., were announced:-By the Institute of Civil Engineers, Trausactions of the Institution, Part 1 of vol. 3. By M. Carl Tottie, Blevation of Rojal Palaco at Stockholm (drawing) ; copy of Ist voll of Sopulchral Monuments. By B. Wyon, Esq., engraviug of the great sea. of England. By H. E. Kendall, fellow; select viows of Raman antiquities, by Georgo Wightwick: Palazii di Genova, Jacobi; Lauri Autiqua urbis splendor. By Sir Jeffry Wyatrille, hon. fellow; Terra cotta agare of luigo Jones. By Ruysbeck ; original bust of James 'Wyatt, architect. By Rosei ; architectural allegory, by Angelica Kauffman; and the Transactions of the Society of Arts, 85 vols. By T. L. Donnldsan, hon secretary, Vitruvius Bipontine edition, 1807. By J. B. Papworth, fellow, Vitruvius Delaet cdition.

Mr. Godwin took occasion to mention tho establishment at Oxford of a socipty for promoting the sudy of gothic architecture among the clorgy, and commented on the probable good results. . Mr. Fowler and Mr. Donaldson spoke on the same subject.

His Lordship, the President, then proceeded to distribute the medals awarded as follows:-In delivering the medal to Mr. Robinson, V. P., the representative of the first candidate, absent in the country, bis lordship observed that he felt happy in conferring another tribute of respect on the same indivldual who had again deserved it. As it was the desire of the Institute that a candidate who received two medals should consider the second as an advance upon the first, they lad granted the augroentation of a gold rim, which he felt happy in caying that Mr. Sharpe highly deserved.-To Mr. Pocock, the Earl remarked, that it was also for the second tiuse that a distincLion was conferred on him, and that in order not to relax competition, the lostitute had determined in all cases of candidates previously distinguished, gaining a prize, to confer a similar one also on the candidate next in merit. If, said the noble Earl, addressing Mr. Hall, we feel a pleasure in rewarding our own members we feel one equally sincere in conferring our prizes on those from a distance, as thus we are assured of the extension of our influence, and particularly in a case where your father holds the higls position of president of a similar institution at Manchester.

We felt great plensure at secing the numerous attendance, and among the company we rocognised the Marquis of Northampton, Sir Heury Ellis, and Sir Jeffrey Wyatville.

To Sarauel Sharpe, associate, for the restoration of the baronial castle of Sheriff Hutlon, the Soane medullion with a gold rim.

To Willian Willmen Pocock, associate, and Edward Hall, of Manchester, for their essays on the peculiar charactoristics which distinguish Roman from Grecian architocture, with particular referonce to the works of the ancient Momans-tho medals of merit.
A paper was read by Atrbrose Poynter, fellow, on the parallel styles and periods of Gothic architecture in Fravce and England.

Tho lecturer commenced by apologising for intruding upon the attention of his audienco on a subject so hacknied as the progress of the Gothic style in England, but observed that this progress was most efticiently illustrated by referring to the course of architceture in France. It is then seen that through a great portion of the architectural bistories of the two conatries that there is a great coincidence in each is the durations of epochs of style; and, in fact, in many instances we can oniy explain the phenomena of architecture here by ite cognate work: in the Norman prowinces of France. This relation the accompanying table will serve to illustrate, of whicb the lirench purtion is derived from M. Comon of the Antiquarian Socicty of Caun, and the Eugliwh is modified from the works of Mr. Kickman.
compabative chaonology of fhench and english medievala

In the middle and South of France there still exist many remains of Romanasque of a very early date. In Auvergae, Baron Taylor remarked a curious church of that era, of which the aroh waa decorated with the chevron moulding. At Pontoise, the oathedral, although altered in the sixteenth century, still show marks of great antiquity, and to the tower in particular it is impossible to assigu a datc.
We then come to the Transition period corresponding to our Norman, and wo yee its progress from the Romanesque. We can perceive as it were, the priaciples of Gothic architecture developing themselves in an infant existence. These are after all inseparable from the Transition styles, and although they may, like colour, in some cases be unimportant, yet they are still an exsential of the design. The identity of the Norman and the Anglo. Norman is perfect, although in the lattor loss advanced. At the same time, the English style is free from that meanness which too often degrades the original Norman, and is ortremely perceptible in St. Etienne, at Cieen, and St. Julien; the elaborate doorways also, which we pouciess in England, are rare in France. The differeace in the execntion of the ornamental details it is difficult to account for, anless on those principles of the subdivision of labour, which we know to have prevailed in Gothic architecture. Thus these details being left to native artists, there is a considerable diveraity between them. In France, the Byzantine atyle loag exercised an influence peculiar to that country, and we see, in the Anglo-Sason miseals, that the English possessed a.mode of decoration having its diatinct peculiaritios.

The period of the transition, from the circular to the pointed arch, is the same in the two countries, although undoubtedly earlier in France, yet not to the extent which the zeal of the Normar antiquaries would endeavour to make us believe. No sound proofs have ever bean brought forward by them of the anthenticity of the dates they asaign to the origin of the pointed atyle, and we cannot therefore, in the absence of such ovidence, recognise these oxtraordinary chams. In the middle of the twelith century, we find the lancet arch coming into use, although the round arch was rotained in both countries for occasional use. The Cathedral of Lisieux is one of the earliest specimens of this style, and the porch bas some remarkable dovetail mouldings. The Cathedral of Coutances, In Brithany, be it said, without offence to Salisbury, is one of the beat examples of lancet architecture, and it also has the rare circumatance of aislet in the transept, greatly conducing to the beauty of the effoct. Perhaps not six English travellera have secn this building, and it is one which is as interesting as it is rare.
We now oome to the rayonnant corresponding to the decorated Engliah style, one of the earliest and best specimens of which we ree at Amiens. Thece atyles we find appearing together both in France and England, and gradually developing their beauties. This peried the Freneh authorities divide into two epochs, of the first of which the Seinte Cbapel at Parls, is an example. This building also is remarkable for containing some of the earliest and most extansive specimens of painted glams, well worthy of the attention of the visitant. In the second epoch we find the finest cathedrals in France constructed, but in attemptiog to mark itu limits we must not suppore that these are to be defined by any strict line, nor that these eras practically exist, but like the epochs of geology are conventional arrangemetns for general conveniesce. In the gradual development of this period, it is remarkable that its influence was not exerted upon those members which are usually affected, but that it wa removed to others. Thus the windows of the choir, which are a general criterion, suffered little change in this time, as we may see for instance in Eseter. This period in France derives its name of Rayonnant from the ornaments of the windows being formed by the evolution of circles so as to give the appearance of rags, as the Flamboyant does from its forms resembling tames. The church of SL. Ouen at Rouen is one of the noblest examples of this period, and the eastern portion is particularly worthy of attention.
In the fourteenth century we find the connection between English and French architecture to ceasc, and that each folluws an independent course. The ciaius of the English perpendicular style have perhapa been overated, if indeed it poseess sufficient distinction of character to claim for it the title of a style. It seems indeed as if it were conceived, but miscarried, and is everywhere full of the grossest anomulies. Even its proudest examples, the cathedrals ot Dorchester and Gloucester, and Merton College, Oxford, are open to the severest criticism. The Flamboyant has adopted the depressed arch like the perpendicular style, but is principally characterived hy dividing the windows from three centers, four being rarc. It has the appearance of being composed only of windows and butresses and hence its imposing effect; its fault, however, is an exuberance of decoration. It inust be observed that although during its career it maintuived a superiority over the English Perpendicular, yet that it fell into a degeneracy, to which the latter was never subjected. The tower of the church of Verneuil is well worthy of attention, and is even a greater rarity to English travellers than that of Coutances.

Mr. Poynter concluded by pointing out the peculiarities in the composition of the Flamboyant stgle. Five aisles are common in France, although in England we have no such inatance except at Chichester, otherwise they affiaded a range of external chapels, and both of ahese processes graaty tend to destroy the outlinc. The l'rench raised the dowrway in the west front, while the English lowered it, and the former made their portals occupy the centre compartmant. The spires in Nurmandy, of whatever it period, seem to be cast in one mould, and possess a general uniformity which is viry remarkable. Thus those of St. Etienne at Caen, and St. Leu at Coutances, and many others, although of different epochs, have much the
. same appearance. In raulting the English have a great superiority, and their fine ceilings are without rivals In France, although the deficianey of the Frenoh did not proceed from ignorance. The French oburches aizo ase remarkable for being without battlements. In conclusion, Mr. Pogates remarked that be presented these notes as the results of his own oberrations, and expressed his gratification if be sheuld bave contributed to the stors of knowledge, which must increase from such contributions like the actu. mulation of geological massen.

ARCHITECTURAL SOCIETY.

Mouthly Meating of the Society, held on Tuesaday Evening, the Mh of Aprit. Wu. Tite, Esq., President, in the Chair.
E. W. Brayley, jun., Esq. F.G.S., F L.S., delivered his fourth and con. cluding lecture of his present course; the subject of which was, "On thoer Phynical and Chemical properties of Buildingostones, on wbich their une essontially depends."-This lecture, like the former ones, entered very fulls into the matter under consideration, and was very clearly exemplified by tubles of experiments, by drawings of various kinds, and by apeoimeas of bi stopes themselves.
Afler the lecture, the President called the attention of the meeting to te skotches produced hy the student members for the subjecta announced at the latt meeting: he then announced the subject for the next sketch as fol. lows :- viz., A Design for an Ornamental Bridge in a Park-to be in anc Arch of 50 feet span, and the style to be either Gothic or Italian.
Some very beautiful specineass of locks and other fatenings of a superior nature were lying upon the table, and were furnished by Messrs. C. Smith and Son, of Birmingham. Many of the hinges and fastonings were exceedingly clever, and oblained general approbation.
There were also several other specimeas of art besides drawings artaged about the rooms. Among the latter was, one by Mr. A. W. Hakewill, ahowing the manner proposed for laying out the grounds of the Royal Horicultural gardens at Chiswick.
At the conclusion of the meeting the President gave notice that a apecial meeting of the members would bo held on Monday ovening the 15th Aprii, to tule into consideration the printed resolutions of the Gresham Committee, isued is instructions to architects furnishing deaigns for the New Royal Exchange.

ROYAL SOCIETY.

Mabca 21.-The Marquis of Noathampion, President, in the chair.
Thomas Willinm Fletcher, Esq., and the Rev. Thomas Gaskin, were elected Fellows.
The following papers wore road:-

1. Description of a Compensating Barometer, adapted to Mcteordegina: Purpases, and requiring no Corrections either for Zero or for Temperadure. by Samuel B. Howlett, Esq.
In the instrument bere described, there is provided, in additian to the ordinary barometric tube inverted, in the usual way, in a cistern of mereury, a second tube of the same dimensions, placed by the side of the former, and likewise filled with mercury, but only to the height of twenty-eight inches above the level of the mercury of the cistern. This tube is closed al its lomer end, and fixed to a float supported by the mercury in the cistern; and it bear at its upper end, an ivory scale threc inches in length. The elevation of the mercury in the barometric tube is estimated by the difference between is level and that of the mercury in the closed tube, and is measured on the ivory siale by the aid of a borizontal index, embracing both the tubes, and sliding verically along them. As tho float which bears tho closed tube to which the scale is attached reats frecly on the nucreury in the cistern, and consequently alfars adjusts itself to the level of that fuid, no correction for the zero point is needed; and, as every change of temperature must similarly affect the columa of mercury in both the tubes, after the scale has been adjusted so as to read correctly at any given temperature, such as 32°, which may be offected by comparison with a standard baroneter, cvery other reading will correspond to the same ternperature, and will require no correction. The author consider; the error arising from the difference of expansion corresponding to the differcht lengths of the two columns of mercury, and which will rarely amount to ore four-bundredth of an inch, as too smell to deserve attention in practice, being in fact, far within the limits of error in ordinary observations. Subjoined io the above paper is a letter from the author to Sir John Herschel, consaining a statement of comparative observations made with a mountain barometer, and with the compensation barometer, from which it appenrs that the use of the latter is attended with the saving of a great quantity of troublesome calculs. tion. The comparative observations are given in a table, exbibiting a nage of differences from +.012 to -. 016 of an inch.
2. An Account of the Fall of a Mcteoric Stone in the Cold Bukkered, Cupe of Good LIope; by T. Maclean, Esq., in a leller to Sir J. F. W. Hersihel.

The appearance attending the fall of this aerolite, which happened at half past nino o'clock in the morning of the 13th of October, 1858, was that of a meteor of a silvery bue, traversing the atmosphere for a distance of about sixty miles, and then exploding with a loud woise, like that from artullery, which was keard orer an area of nuore than seventy milet in diameter-ithe air at the time
being calm and sultry. The fragments were widely diapersed, and were at frot , osoft as to admit of being cut with a knife, but they afterwards spontaneously heardened. The entire mans of the aerolite is estimated at about five cubic feet.
3. Chemical Account of the Cold Bokkeveld Metcoric Slome: by Michafle Farraday, Esq., D.C.L., in a letter to Sir Jobn F. W'. Herschel.

The stone is stated as being soft, porous, and hygrometric ; having, when IFy, the gpecifc gravity of 2.94 , and possessing a very small degree of magnetic power, irregularly dispersed through it. One hundred parts of the stone in its a aturnl state, was found to consist of the following constituents : namely-

Water	6.5	Alumina. 6.22
Sulphur	4.24	Lime............... 1.64
Silica	28.9	Oxide of Nickel 82
Protoride of lron.	33.22	Oxide of Chromium . 7
Magnesia.....	19.2	Cobult and Sode, a trace.

4. Nofes respecting a neto kind of Sensitive Paper: by Henry Fox Talbot, Esq.
The method of preparing the paper bere refcred to, consiats in washing it oref with nitrate of silver, then with bromide of potasium, and afterwards again nith nitrate of silver ; drying it at the fire after each operation. This paper is very sensitire to the light of the clourls, and even to the feeblest daylight. The author supplies an omission in bis former memoir on photogenic drawing, by meatiouing 1 method he bad invented and practised nearly five yeara ago, of imitating etchings on copper plate, by smearing over a sheet of glass with a sotation of resin in turpentine, and blackening it by the smoke of a candle. On this blackencd sarface a design is made with the point of a needle, the lines of which will of course be transparent, and will be represented by dark lines on the prepared paper to which it is applied, when exposed to sunshine. The sume prineiple may be applied to make numerous copies of ang writing.

GEOLOGICAL SOCIETY.

March 13.-Rey. Dr. Beckland, President, in the chair. A paper was read :-
On the Geology of the North western part of Asia Minor, from the Peninsula Cysicus, on the Coast of the Sea of Marmora to Koola, with a deacrip. tion of Ketah kaumene;' by W. J. Hamilton, Esq., Sec. G.S.
The line of route taken by Mr. Hamilion from Cyzions (lat. 40 deg . 22 min .) ascends the valley of the river Macetus to its sources, near Simaul, then crosses the Demirgi cbain (lat. 39 deg. 5 min .), and afterwards passes by Kuskreai and Selendi to Koola, on the eastern confines of the Katakekaumene; the whole of the distance being about 170 miles. The principal physical fatare of the district is the Demirgi range, which extends from Pergemmon on the west to the lofty mountain of Ak Dagh or Shapkan Dagg on the east, tot the country is intersected by varions ranges of hills, mometimes exceeding 1200 feet in height. The geological atructure of Mr. Hamilton's line of route is simple, being composed of only schistose rock, with maccharine marble, a compart limestone, resembling the acaglia of Italy and Greece, ltriary anditones and limestones, granite, peperite, trachyte, baralt, and other igreont rocks. Between Kespit and the foot of the Demirgi hillm, se also remsins of an ancient lacustrine deposit, and in the valleys are expanire elluvial accumulations. The schists consist of mica-slate, gradma, and clay-slate, and they occur chielly near Cyzicus. The atrata dip at high angles from the granite, to the protrusion of which the inclination is uparently dne. The marble was formerly worked to a very great extent, and Cyzienswas indebted to it for boing ranked among the most splendid cities of antiquity. The compact limestone, reaembling scaglia, wan obsersed soly at the foot of the hills north of Maniyas. It is associated with beds of shaie, and is apparently deatitute of orgauic remains. The micaceous sudntome is extensively distributed south of Maniyas, also towards the eavern extremity of the Demirgi mountains at the point croseed by Mr. Hamiton, and between it and Koola. The atone is fissile, and alternates sometimes with shale; and the bedsare, occasionally, much dialocated by the protrarion of igeneons rocks. About half.way between the pass orer the Demirgi range and Koola, the upper beds of the sandstone alternate with the bover hayers of an overlging deponit of peperite. Mr. Hamilton hat no Lonbe that thia formation belongs to the one which himself and Mr. Strickhand axamined between Ghlediz and Ushah. The white tertiary limestone, Mr. Hamilton consideri to be a part of the great lacustrine formation, which extapies an large a portion of Asia Minor; hut within the rarate of country described in thia memoir, it appearn to be totally devoid of organic remains. i_{1} is sometimes sof, resembling chall, bnt, at its contact with the igneous Firks, it becones hard, and at one line of junction, a layer of serpentine was i aterposed betreen the two formations. Thin bells of white opaque Hints, Fexembling thone of the lacustrine limentione of Anvergne, were noticed by - br aothor a little month of Kefsut. The strata have been, in many places, Very much dislocated by the protrusion of trachyte. The granite wan boeerved only near Cyzicus and in the Demirgi chain. It is composed of - phartz, felspar, and mica, bat it contains large masea of hornblende, and is triversed by seins of felspar. Tbe achistose rocks are thrown of by it near Cyzirus at high angles, and with a quiquavernal inclination. The perperite, - ${ }^{2}$ rokcatic cuf, appenrs to be of intermediate age between the micaceove mealetoon, sud the white limentong, as it routs opon the former, and is overiaid

2ometimes earthy, occasionally conglomeratic, and not unfrequently hard or semicrystalline. It is chiefly developed south of the Demirgi range. The beds are generally horizonial, or slightly inclined, but they are disturbed where igneous rocks have been protruded through them. Trachyte and basalt rise to the anrface at many placen between the Demirgi hills and Kools, dialocating the stratified deposits, aud producing changes both in their structure and hardness. On the banks of Hermus, basalt orerlies the white limestone. Mr. Hamilton also degcribed the hot springs, siti a ed about seren miles to the east of Singerli at the northem font of the Denirgi chain. Their temperature, lie conceives to be equal to that of boiling water, and they are discemible, at a considerable distauce, by the great volumes of steam Fhich ther throw off. Extensive accumulations, several fret thick, of a white fibrous sidiment, occur around the month of the springs. A strong aulp hurous smell accompanies the cmission of the water; but, at a point where the stream had lost enough of its temperature to be tasted, no peculiar fiavour was perceived. After turning several mills, and at the distauce of a mile and a half from the spring head, the water is collected and used by the Turks as a warm bath. Copious hot springs are likewise thrown out near the Katakekaumene: the water is tasteless, and the temperature 123 deg . of Fharenheit, but no sediment is lepoaited around the months. Mr. Hamilton then proceeded to describe the Katakekaumene,-a district singularly interest. ing on account of its extinct volcanoes, and its great resemblance to Auvergne. He frat risited it in company with Mr. Surickland, who laid an account of some portions of it before the Geological Society, in 1836. The district ertends from Koola, westrard, about ninetecn miles, and for about eight miles from north to south. The formations ivcluded within this area, aro the schistose rocks, and crystalline limestone, which orcur near Craicus, the white jacustrine linestone, basalt, and lavas of two perfecuy distinct ages. The leading pliysical fentures of the district are ridges of schistose rocks, with intervening allurial plains. On the former are seated all the anctent volcanic cones, or craters, and in the latter the molern. This important distinction, Mr. Hamilton is of opinion, may be explained, on the smpposition that the eleration of the schistose ridges produced fissures, through which, an lines of least resistance, the first pruptions of lava found vent. That these openings becoming, aftermands, plugged up, by the cooling of injected molten matter, the schistose ridges were cendered so compact, that, when the volcanic forces again became actire, the line of least resistance wat transferred to the ralleys, of the relatire periods when the eraptions took plece, no opinion can be formed: the more modern must lave been long anterior to tradition, though the streams of lara present all the ruggedness of the most recent coulecs of Etna and Veanvius; and the craters preserve, to a great extent, their form and internal cavities. The more ancient lava. currenta are covered by sedinentary matter, and are, therefore, considered by Mr. Hamilton to hase been, at one period, corered with water ; the cones have also lost, in part, their form, the craters being nearly obliterated. The paper concluded with a comparison between this part of Asin Minor and Auvergne, as described by Mr. Scrope. 1. The great ancient volcanic group of Mont Dore, the Cantal and Mont Mezen, Mr. Hamilion conceives, ie represented by Ak Dagh Morad Dàgh, the trachrtic hills east of Takmak, Haman Dagh, and Mont Argens. 2. That the more modern rolcanic period of Central France may be compared with the Katakekanmene, both as respects the composition of the laras, their arrangement at diferent levels, and the cones being scattered, and not collected in great mountain masses. 3. With respect to the disposition of comparadively receut volcanos being coincident with the strike of the granitic ases, from the interior of which ther hare burst forth, Mr. Hamilton atated, that the Katakekaumene afords additional illus. tration. 4. In central France, as well se the district described in this paper, there ane depoaits of lacustrine limestone, which have been separated, by the action of bodies of Fater, into table lands anmounted by beds of basalit and lava; and, in both countries, corrents of lava, of more modern date, have flowed into the intervening valleys. In two points, howerer, there are differences between the volcanic phenompaa of Asia Minor and central France. In the latter, atreams of igneous prodncts may be traced from the most ancient system of cones, or that of Mont Dore; bul, in the former, none have yet been discovered which issued from AL Dagh, or the other contemporaneous volcanic monntaina. In France, also, trachitic eraptions took place during the deposition of the lacustrine limestone; but, in the Katakekaumene, they appear w hare preceded the deposition of the white limestone, or ary aspociated with only its loweat beds.

MEETINGS OF SCIENTIFIC SOOIETIES FOR MAY

Royal Society, Thursday, half-past eight, M. P.. 2nd, 9hh, 23rd, and 30th. Society of Antiquaries, Thursday, eight, p. M., 2nd, 9 th, 23 rd, and 30 th. Institution of Civil Enginoers, 25, Greal Gporge-street, Wpstminster, every Tuestay, cight, P. M.
Royal Institute of British Architerts, 16, Grosvenor-street, Monday, eight, P. M., 6th and 20th.

Society of Arta, every Wednesday, half-past seven, P. N

LUBRICATOR.

In our latat number we gave an axtract from Dr. Ure's Dietionary, dascribIng a lubricator, which the Doctor seates was kindly communicated to him by Edward Woolsey, Esq. We understand that Mr. Barton was the original
 lanity sueerell.

PARLIAMIMNTARY PROCERDINGG.

House of Commons.-List of PeLitions for Private Bills, and progreas theroin.

	Petition presented	Bill read first tlme.	Bill read second time.	$\begin{gathered} \text { Bill read } \\ \text { third } \\ \text { time. } \end{gathered}$	Royal Assent.
A berbrothwick Harbour	Feb. 6.	Feb		April 15.	
Aberdeen Harbour	Feb. 8.	Mar. 15.	April 16.		
Ballochney Railway	Feb. 12.	Mar. 14.	April 8.		
Bamaley Waterworks	Feb. 21	-	,		
Bath Cemetery .	Feb. 22.	-	-		
Helhast Waterworks	Feb. 23.		- 12	-	
Birmingham Canal	Feh. 20.	Mar. 15.	April 12.		
Birmingham \& Gloncester Railway	Feb. 21.	Mar. 15.	April 8.		
BishopAuckland \& WeardaleRiry.	Felb, 22.	Mar. 18.	April 16.	-	
Blackheath Cemetery . .	Febi 22.	Mar 18.	-		
Braiford (York) Waterworks	Feb. 21.	-	-		
Brighton Gas .	Feb. 21.	Mar. 18.			
Brighton Cemetery	Feb. 21.	Mar. 18.			-
Bristoland GloncestershireRailray	Feb. 21.	Mar. 7.	Mar. 19.		
British Muscum Buildings .	Feb. 22		A pril 12		
Brompton New Road .	Feb 22.	Mar. 18.			
Cheltenham Waterworks	Yeb. 22	Mar. 12.	Mar. 22.	-	
Commercial (London and Black. wall) Railway	Feb. 14.	Mar.e	Mar. 21	-	
Dean Forest Railway	Feb. 19.		-		
Deptford Pier	Feb. 22.	Mar. 18.	-		
Deptford Pier Junctien Railway	Feb. 22.	Mar 20.	-		
Deptiord Steam Ship Docks .	Feb. 22.		-		
Edinburgh, Leith, and Newhaven Railway	Feb. 19.	Mar. 11			
Eyemonth Harbour	Feb. 12.	-	April 8.		
Fraserburgh Harbour	Feb. 20.		April 8.	April 18.	
General Cemetery	Feb. 29.	Mar. 11.	Mar. 21.		
Graverend Gas	Feb. 21.	Mar. 18.		-	
Great North of England Railway	Feb 18.	Mar. 13.	Mar. 25.	-	
Great Western Railway .	Feb. 14.	Mar. 4.	Mar. 13.	-	
Great Central Irish Railmay.	Mar. 12		-	-	
Herefordshire and Gloucestershire Canal	Feb. 20.	r. 18			
Herne Giss	Fels. 22.				
Liverpool Docks	Feb				
Liverpool Buildings	Feb. 21.			-	
Lirerpool and Manchester Extension Railway	Fel. 14.	Feb. 28.	Mar. 12	-	
Loudon and Birmingham Railmay	Peb. 8.	Feb. 22	Mar. 0.	-	
London Bridge Approaclies, \&c.	Feb. 19.	Aptil 11.	,	-	
London and Croydon Railway	Feb. 18.	Mar. 18.	April 8	-	
Iondon Cometery	Feb. 19.	Mar 18.		-	
Iondon and Greenmich Railiray	Feb. 21.	Mar. 18.	April 8.	-	
London and Southampton (Grildford Braneb) Railway		-		-	
London and Southampton (Portsmouth Branch) Railway	Feb 8.	Feb. 25.	Mar. 7.		
Manchester * BirminghamRailway	Feb. 18.	Mar. 18.	April 23	-	
Manchester and Blrmingham Ex. tension(Stone \& Rugby) Railway	Feh. 11.				-
Manchester and Leerts Railroy	Feb. 18.	Mar. 8.	Mar. 19.		-
Marylebone Gas \& Coke Company	Feb. 22.	Mar. 18.			
Moniland \& Klrhintlloch Railway	Feb. 12.	Mar. 14.	April 8	-	
Necropolis (St. Pancras) Cemetery	Feb. 21	Mar. 10			
Nenarla Gas	Feb. 14	Feb. 28	Mar 11	April 18.	
Newcestle-upon-Trne and North Shields (Extension) Railtay	Feb. 18.	Mar 13		,	
Northerne Eastern(No 1) Railway	Feb. 22.	Mar. 18.		-	-
Northern\& Eastern(No.2) Railway	Feb. 22.	Mar. 27.	April 10.		
North Midland Railmay	Feb. 11.	Mer. 4.	Mar. 14.	-	
North Union Railmay	Feb. 22.		-	-	-
Notúngham Inclosure and Canal	Feb. 19	Mar. 18.			-
Over Darwen Gas .	Feb. 21.	-	A pril 12.	-	-
Perth Harbour and Narigation	Feb. 14.	-			-
Portishead Pier	Feb. 22				-
Preston Gas	Feb 8.	Feb. 20.	Mar. 6.	Mar. 19.	
Pretton and Wyre Railway	Feb. 6.	Feb. 20.	Mar. 4.	Mar. 15.	
Preston and Wyre Railway, Harbour, and Dock	Feb. 21.	Mer. 18.	April 12.		
Redcar (No. 1) Harbour	Feb. 19.				
Redear (No. 2) Harbour	Feb. 22.	Mar. 27.			
Rishworth Rewervoirs.	Feb. 21.	Mar. 6.	Mar. 28.		
Rocidale Waterworks	Feb. 7.	Feb. 21.	Mar. 6.		
Rochester Cemetery	Feb. 22.	Mar. 18.			
Sawmill Ford Bridge aud Roall	Feb. 21.	Mar 18.	-		
Slamanuan Railway . .	Feb. 12.	Mar. 18.	Mar. 27.		
SonthEastern Railway ${ }^{\text {South Eastern (Deriation) }}$ Railsay	Feb. 11.	Mar.	Mar. 26.		
South Eastern (Deviation) Railway Teignmonth Bridge .	Feb. 22.	Feb. 27.	-	-	
Tyne Dock .	Feb. 22.	Mar. 15			
Tyne Steam Ferry	Feb. 21.	-	-		
Wabsall Junction Canal	Fob. 98.				
West Durham Railway	Feb. 21.	Mar. 18.	April 8.		-
Westminster Improvement . Whehaw and Coltneas Railway	Feb. 21.			-	-
Whataw and Coltness Railway. Wyriey and Enaington and Birming.	Feb. 12.	Mer. 14.	April 8.	-	\cdots
ham Canal	Feb, 18.				

gTEAD NAVIGATION.

Steam Communication to Anterica by Mer Majesty's Mails.-Tbe shiph, as fnally detormined on, are to be upwards of 1,200 tons register, propelled by eagines of 430-horee power, nll of the most substantial and approved construction, combinlng speed, safety, and easy sea-going quallies. The work is already com menced, sad there is now no doubt of thels belig ready to start for Boscon and Hallfax on the lst of April, 1840. There will be splendid sccomodations for about seventy cabin pussengers, with room for carrying a Imited quatity of goods. Passengers to Canada and New Brunawick, loamedintely on the artifa! of the steamship at Hallfax, will be conveyed by coaches to Pieton and Wind sor; from Pictou other stemmessels will be ready to start for Miramichi Quebec, and from Windsar to St. John's, St. Andrew's, \&c., thes afording passengers to our American colonies an opportunity of atriving at their resper tive deatinations in the shortrat possible time, while those for the States, on thelt arrival at Boston, will be able to reach any pisce In the Unlon by the ration rallwaya, canals, \&c. from that city.-C'nited Scrice Gazelte.
Iron Steamer C'nion. - This aplendld steam vessel has left the Broomlelvo on her vojase to Santa Martha, In New Grenada, commanded hy an experieherd captaln, with a full complement of engineers, and other mechanics. She was bullt by Messra. James and William Napler, engineers of known celebrity in this city, expressly for the navigation of the river Magdalina; uader the direstlons of Messrs. Plock and Logrn, of L.ondon, who are the agents of the Angion Grenadlan Steam Navigation Company; and her construction is to pecalian, that the proprletors are senguine she will reach at least 800 miles ap that me niffent river: where it may not be improper to inform the public, the trade has been hitherto carried on in a most laborious manner, by heary fiat bots, wanatracted in the country, whose arerage passages in accending the river was from three to fonr months; but is now calculated tbat the Unlon, wlib ber powerful machinery, will perform the royage in less than seven dagh. π_{l}, therefore, wish thls interesting expedition tbe success it merits, for we ande;: stand that nopains nor expense has been spared in fitting out this rewelGlangew Chronirlc.

PROGRESS OF RAILWAYS.

Hull and Saby Railmay,-Of thes important undertaking Te are cosbled ts give some particulars from a correspondent who lately went over the thole oi the line. Considerable activity pervades every department. and as the whole of the land required is now in the company's prossession, there is nothing to prerent the contractors proceeding with their respectire contracts as rapidly to the veather will admit. With regard to the principal station at Hall, the buildap connected wittb lt are commenced, as are also the worksbope and other eteetion required for tho future accommodation of the traffic. On the embankment of te Foreshore, next the river Humber, near Hull, a great number of men are em. ployed, s large portion of the stone facing is carried op to its full heigha add the embankment is nearly ready for the rails. For the next three miles to fessi, the earth. work bas been ready for ballasting for some time, and is no to be immediately finished. The cattings through Hessle-cllf and Fertby-bll are alto well advanced,and the stone from the former is ased in the worki of the Forshore and for balleating the line, and the excavation from the latter for wahing op the low ground. Two bridges in this district are completed, sud a third in a rij advanced state. The rallmay for the next alix milles is in coorse of being formod, and a part is ballasted, ready to recelre the rails; a small portlon howeres, of de embsnkment near the Market Weighton Canal remalns to be finibed. The bridge over the canal is completed-it consiats of brick abatments aith an anh of cast lron, 70 feet span, and has a very light and pleasing effect. After pansing this embankment, the line is nearly level for seven miles, which is now belag ballested, white the bridges for pasuing the several ronds over the railway ut either finlshed or nearly so. This brings us to the river Derwent, which the ralliway is to be carried over by a ceast fron britge of 50 feet span. ralred somcientiy high to allow the navigation to pass under. Of thls bridge one aborment is buitt, and a coffer-dam is being constructed on the eatbern side for itr other. The foundations of the plers for the flood srehes are also commenced: and the forward state of this work ensares the entire completion of this brive In the course of the summer. The railway between the Derwent and the ries Ouse (a distance of about five miles) is in course of being forned, and an es. tenslve deviation of the York turnpike ruad la commenced. Over the firet Ouse a bridge of considerable magnitude is being constructed of four archer; ort 46 feet apan, is to open, for the passing of vessela going up to York. Th ebatments and pleya have been ready for the Iron work of the aperstactan come time, batoowing to the land waters In the river, a beginoling was onit made during the lest month in fixing the iron work. This portion of the goth Till apeedily be completed, as the ohole of the castings for the piers are apor the groand, and the fron worl of the arches is in a very advanced state at th Butieriy Iron Warks, where the whole will be pat together before belog broupl to the spor. Thla work is also expected to be Anished duriog the ratum The compang bave made contracts for the grenter part of tho fron wort is the ralls, a large proportion of which are now on the ground. The tamber the longitudinal silis and sleepers is also contracted for, and dellveries vill made in the course of a month, so that there is every probability of the sailas: being opened for passengers in the early part of next spring. The locomotr engives and carriaget are all In s very forward state; the former are from th factory of Mesmes. Fenton $\&$ Co. of Leede, where several of them are to be bet complete.

Croydon Railecay.-It la stated tbat thls rellway will be opened on the 14 instant.

Grea! Wistern Railway. - That part of the rallway between Maidembed ad Reading is expected to be finlihed in the course of the month, and reedy to : opened to the pabilc.
Morecambe Bay Embankment. - We are enabled to state, on undoubtod arthan rity, that SIr John Rennie has expressed a very deelded oplaion with reppet1 the practicmbility of crossing Morecambe Bay, on the plen and priadplat th

Great IFestern Kailway. - The grentest activity continues to prevall upon that portion of the llae between Reading and Dldcot; and the rallway la progressing so rapldly cowards completion, that we should not be surprlsed if that part of the road is ready fur trafic before the opeaing of the line from Maidenhead to this tonn, Reading. We think that the public have great reason to complain of the anrowaess of the bridges which the company heve bullt in those places Where the rallvay crosses the turaplke road; and if this princlple is gencrally sulopted, many accidents may be expecred to occur. Mcesra. Frissell and Peto are the contractora for that portion of the work between "Ifttlejohns," near Reading and Strentley; from whlch place a bridge is crectling; and the sallrond then traverses to the Oxfordshire side of the river to Southstoke; this part is contracted for by Mr. Castans. From thence to Dideot, Messrs. Bedborough, of Windsor, bare the formation of the, road, nearly the whole of which, is, we anderstand, in a very forward state, and will In all probablity be completed wiore the explration of the tlme orlginally agreed on. The extensire aature of the cuttines at shooter's-bill, and the embankments at Pangbourn have been recuted by Messrs. Grisbell \& Peto with such cxtraordinary rapldity, as to excite auirersal gurprise, strongly contrasting with the numberless hindrances and inpediments exlsting elsewhere. The cuttings at Sunning-hill, under the dtnetion of Mr. Brotberbood, the contractor, are proceeding as ligorously as the mitare of that great andertaking will admit, and the most energetic efforts are pat forth to speedlly complete li, and thus open n dircet IIne of communleation bet ween this town nind tbe metropolis.- Berhshire Chrnnicle.-Nothwithstanding the temporary obstruction to the traflic, enused by the accident at the Hanwelltoad bridge (not the Viaduct, as riported In the papers), the number of pasangers on this line during the last week, amonnted to nearly 8 , (MK), and the recipts were larger than in any wrek since October. No impediment to the ngular passiog of the trains w ml take place from the removal of the defectice tron trier, the cost of replacing which falls wholly upon the contractor. The laging of the permanent way to Twyford is now procecding steadily, the rails being alrendy ladd from the Maldenhead station to the bridge over the Thames. The earern arch of this bridge has been reconstructel with improved materials, and now stands perfectiy soand, the centerings baring been completels cased for come weeds. The Dlrectors have just taken contracts for the construction of abont 14 miles of the line extending from Dideot, near Oxford, to liflington, the boundary of the London division of the line, on which the contract works are so light as not to average more than 0,0001 . per mile. The Bristol Dlrectors have aiso adivertiged for tenders for four mlles of the line between Bath and the Box-tunnel, and it is expected that contracts for the whole of the remainder of this divialon of the llac beyond Chippenham, will soon be entered Into. Weare glad to bear that the bill for which the company are applying, for the purpose of completing the required capltal, has passed the committee of the IFouse of Commons withont any opposition, and will be read a third tlme immedately Atep the Easter recess.- Bristol Giazette.
Easters Counties Railuay. - The deepest part of the cutting for our railway in the viclnity of thls town, we understand, will be near Whdford-mill, where the rails will be laid at a depth of about sixty fect below the present surface. The London conch road at the crossing will pase orer the cutting by a bridge, and there will also be bridges across Crozier's and Cherry Garden lanes. At the termination of the cotting the low lanil and river will be crosecd by a viafuct aboat fire hundred feet in lencth, and the railway will be continued upon an embsnkment until withle a short distance of King-street, Cheimsford, where there will be another viaduct, upon which it will agsin crocs the high road to the town or Fair Field, where the atstlon will be formed. Soil for the embankwenta will be brought from a cutting through the villige of Springfield, opon treporary ralls, which, we understand, will be laid early in the summer. Etuer Jlerall.
 repidy towatis completion. and the ilne to North Shields will, it ls fully expected, be opened to the public in the eerrly part of the month of June. The company contemplate extending the llne to Tynehouth: and a bill for that papose ls now before Parilament. Extensive preparations are being made by the company in order to afford the public every accommodalion; and for that parpose they hare entered into contracti for the supply of several first-rate engion, embracing all the latest Improveraents and discoreries in mechanical sience. A aplendid engine, called the "Hotspur," from the manufactory of Metrs. R. and W. Hawthorne, cipll engineers, of this town, was placed on the tine near Heaton on Monday; and a similar engine will shortig be dellvered from the manufictory of Meagrs. Stephenson and Co . 8everal other powerfol eagines are in the course of erection. The carriages for the conveyance of passeggers are being wanofactnred in irst-rate style, and will combine every mprovement which call add security, or contribute to the cobrenience and comfrit of those tho may travel in tbem. Neucuttle Journal.
London and Brighton Railucay (Shoreliam Branch).-It Is expected that the Ghorebsm Branch of the London and Brighton Raliroad will be completed by Augest. The engine performs from fifteen to eighteen Journeys in the day, okiag on each occation about twenty Waggons laden with earth. The conorwis of people to the spot. -isussex. Advertiser. - The works on the railway woreeding with Increased actlvity. Nrw England fatm has becn so altered fa appearnnce, by the progress of the cutting commenced on Easter Monday to Doaect the Shoreham branch with the terminus, is to be scarcely recognised. The tunnel is rapidly lengthening, and the cutting in Mr. Chatfield's farm is ant approaching Lashmar's mill. A recond engline, called the "Shorelame" erived in Brighton the 17 th ultimo, and will commence running in a few days.
Shrffichi mud Rotherham Railway.- We hear that the dlrectors of tho Sheftield Wind Rotherbam Rillvay, peer wlahful to gire satisfaction and safe accommodaZon to the pnbllic as far as possible, are nbout to place three or four additional -rinee on their IIne; and, in order to ensure the greatest posalble degree of fety to the passengers, have ordered them to hare flupges on all the six whecla, Whe Jriving wheels as well as the others, thereby diminighing the risk of an
angine getting of the ralls in the proportion of cent. per cent. Even If any of give getting of the ralls in the proportion of cent. per cent. Even If any of albo-an excellent armagement as compared with the old plan of only four

Birkenhead and Chester Railway Company-The Bebbington contract embraces a distance of two miles and 32 chains; the earth work amounted to
258,000 cublc jards, of which 82,000 cublc yards have been already executed, 253,000 cublc jards, of which 82,000 cublc yards have been already executed, leaving 171,000 yet to be done. The Brombrongh and Eastham contract extended to Plumyard Brook, a distance of 3 milles, and 37 chains. The arthWork comprised in this contract amonats to 288.000 cublc yards, of Which 116,000 cobic yardi havo been executed, leaving 172,000 yet to finish. Post and rill fences are erected throughont neariy the rbole of thls contract; 220 men and 41 horses are employed on this portion of the line. The 8utton contract, s distance of 5 miles and 17 chalne, is also proceeding satsfactorlly, slthough some delny has arlsen la opening new quarries, and waiting for bricks; but with due dilggence on the part of the contractors, the whole may be finished during the snmmer; 150 men and horses are employed In thls district. The Mostyn.and Chester confract extend : milles and 39 chalns, and contrins the greatest quantity of unexecuted work. It was let in Aggust last to contractors who did not prosecute the work in a satlsfactory manner, and, after remaiolng in their hands for upwards of six montlis, the company commenced working it in their hands for upwaris of six montis, the compans commence working of the summer proring favouralile, little doubt existed that this part of the line would be ready by May, 1840 . There are 447 men and 22 horses employed on this division. The total number of men employed throughout are 1,117; horses 98. - Extruet from the Eugincer's Report.

Londim and Southampton Railicay.-We feel great plensure in being able to announce, on competent anthority, that it has been positirely determined to open that portion of the rallway extending from thla place (Southampton) as far as Winchester during the coming sumpor. We may therefore $\& x p e c t$ to be shortly in full possession of the nelvantages of railway communleation. The prection of the terminus on the Marsh ls proceeding with extraordinary rapldity. - Hampshire. Indepewleul. - The bulldings and works for the rallway station here (at Basingstoke) are proceeding with great rapidity; a number of hands are cmployel, and the scene at fresent is one of tbe utmost bustle and activliy. The site selected is on a gentle eminence, within a stone's throw of the ohd chapel ruins and of Brook-street, commanding a fine riew of the town and the hlghly pleturesque acenery adjacent. It is already a consplcuons object from a distance, and wli! speedily form an lmportant feature of the landscape from the neighbourlog hills. A spacious carrlage-wny ls forming to connect the station In a direct line from Onk-strect. which will be the leading thoroughfare ; other rouds and footways are in progress, to render it of convenlent acceass from various parts of the town.-Salisbury Journat.

POREIGN INTELLIGENCE.

Paris, -A prellminary lnquiry has been commenced by order of the Manicipal Council of Paris on proposals for establishing two rallroads from the capltal, one to St. Muur, and the other to Sceaux. The first is intended to commence at the Rue Traverslere St. Antoine, passing throngh Bercy, St. Mande, Charenton, and VIncennes; and the second at the Place de l'Obseryatoire, ranning through Gentilly, Arcuell, Bagnleux, and Bourg la Relne.

Most of the great works commenced In Parls are at present suspended. Commerce.
IIare Railroul Company.-At a late meeting it was decided, at the pressiug instance of M. Aganudo, that, In case it became inpossible to give entire execu. tlon to the undertaking, It should be carried lato effect as far as Ronen, and that the road should terminate, not at St. Serret, as originally Intended, but on the helghts of Beauvolsin, passing by Blainville, and the branch lines on Louviers and Elbeur being guppressed. This decision was deanltely adopted, and no consideration, it is sald, will induce the cempany to modify it.
Railuay befureen the Danube and the Black Sea. - The establishment of a rallroand between Tachernowods and Kosteadsche, whlch was to open a direct and speedy commanication between the Danube und the Black Sea, will not be continued thls year, or even for some time, and in fact will not be completed till the Purte gires its assent to the project. The marshy ground unfavourable to canallsation has been inspected, and the operation compared with the measurement already made by come Prussian officers in the Saltan's gervice, but the project of openlag a canal appenrs to be abandoned. The rallzoad in question is not to go from Tischernowoda, but from Hirsowa, which is nt no great distance, to Kostensche, where the rumpart or wall of Trajan formerly commenced, ${ }^{\text {a }}$ spot famous in anclent history as the place of Orid's exile. Meantime the rajlroad in ita present state is to be made use of for the transport of goods and provisions. Were the rallroad once executed, a diatance off more than two daya would be palned, and the undertaking would also be of great importance for the trade and navigation of the Lover Damabe.

The Foung Egyplians. - Of the twenty Egyptians sent to this country hy thelr government about nlae years ago, to leara our arto and sclences, the last of them, Seld Achmet, left thls on Monday, list ultimo, for Liverpool, to return to his natire country. He had been five years learnlog willwright work under Mr. Graham at Partick, and clvil englneering for about three geara, ander Mr. Macquisten. Tbe climate disagreed with some of them, and they remalned but a short time in this coantry. We onderatand two of them died; four paid their attention principally to plamber-work, two to ahip-bullding, and the others chlefly to machinery-making and cotton-spinuing. The Pache wisely left them to choose trades or professions to sult their own tates, and he pald for their education liberally. It is rather sorpsisiag that only one of them had the lilea of studying ciril engineering, being a profeaslon so much required In that country, and where it is generalig belleved to hare had les origin, but bas long since been extlnct; and it is rather an odu clrcumstance that this young gearleman should have been taught In Glasgow, and that when be returns to Egjpt be will be the first mative clill engloeer who has appeared there for many generations. He is a very interesting young man, apd was ruch esteemed bere by people of all ranks. A number of renpectable and scientific persons took leave of him at the steamer, and his former feltow-wofkmen fired a farewall salute from a number of guns as the steamer passed the Kelpln,-Glasgow Herald.

MISCELLANIA.

Nelson's Monument al C'ostle Townernd.-" Sometimes," aays Lady Chatterton, in her Rambles in the South of Irrluad, "we caught gilmpses of the distant rocky headiands which render thls part of the coast so magnificent. At the summit of one fis a lofty arch, ertected to the memory of Nelson by a party of offictra. It is formed of large stones without cement, and I was told wat entirely constracted after charch one Sunday. If this account be trae, it reminde me of the marvellons tale related in Ireland of every colosal atructure, that it was the work of a night! This wonderful arch, however, forms a fine object in moat of the views sbout Castle Townsend, and aa I first gaw it toweriog above the mist which concealed the base of the mountain height on which lt atood. its appearance was supernatural.-E'rening paper. [We have reason to know that this was the first monument erected to the memory of Nelcon; it was akatched and planned by Captain Joshua Rowley Watson, R.N., who at chat time commanded the Sea Fenclbles on that part of the Irish coait, and built by them, as above atated, in one day, after great preparations, under his superiatendence. Times. $]$
Druidical Remains..-In the monntalns of Ardes, some very curious remains of Draidical worship have been found. The spot is very wild, and is supposed to have been the site of a forest now deatroyed. On digging below the grass, a layer of charconl, mired with a pounded vitrified substance, presented itself, in the midst of which was burled an urn, containing a second, also ritafied, and of a square form, In which were placed those fragmenta of bones which were not consumed by fire. Roand this vase, at equal distances, are three lamps. Within the exervation are fragmens of vuses of different forme, resembling the most beantlfnl Roman Pottery.

Aleranilria, 8 h March. - Mebemet All has ordered the construction of barracks, \&c., for the reception of troops at Fazonglou, which he intends to atution there for the protection of the engineers who are to be tent thither for working the gold mines which either hare been discovered in that part of Africa, or may he so hercsiter

The Bey of Twnis is conatructing a magnificent palace at Tonis, at the cost of upwards of 2,000000 . Almoat all the materials are stated to have been bronght from Europe, as well nis the furniture, which has been mado in great part at Parls. Thousands of workmen are daily emploged on the edifice, the Inhabitants being forced to contribate thelr personal Jabours, or elee to find substltutes for this parpose.
Sirabhurgh. - The statue In bronze to be erected at Strasburgh in honour of Gnttemburs, the inventor of printing, is fast progressing. The operation of the moulding ls already terminated, and in a few days that of the casting whl commence.

Encroachment of the Sea.-It has been proved by recent surveys that the comsta of Upper Normandy lobe on an arerage a foot every year by ibe action of the sea on their entire development, and that it if under the truth to estimate at 400,000 cnbic metrea the coll washed annually by the sea into the llttle roadstead of Hayre, at the entrance to the port, a ad on the banks of the Selne, close to that town.

Seatiosh Martyrs.-A monument is proposed to be erected at Edinburgh to the memory of the martyrs who suffered at that place before the Reformation.

New Light for Lighthouses.-A letter of the lOth March from Trieste, states that a new system of producing light for lighthouses bas been invented by a serjeant-major In the Austriag artiliery, named Selckonsky. The apparatus consists of a parabolic mirror, C2 inches by 30 , with a twelve-Incb focns, and the light is produced by a new kind of wax candle, invented by M. Selckonaky. It has been tried under the Inspection of the Austrian Lloyd's Company In the port of Trieste, by belog erected on the mast of a ressel. The light is sald to have illuminated the whole of the port and the surrounding parts of the town equal to the moon at fall, and at the distance of six hundred yards the finest writiog could be read. A second trial has been made in bad weather, and the result was proportlonably favourable,

LIST OF ENGLISH PATENTS GRANTED BETWEEN THE 8rd APKIL, AND THE 25TH OF APRII.

Willian Oterton, of Shovel Alley, St. Gforge's-intheEast, for "Cerrain Improrements in Machinery or Apparatus for making Ship's Bread or Biscuits."Patent deted Srd April ; 0 months to specify.

Tnomas Edtiarns, of King-street, Holborn, uriting and dressing-case manufar. turer, for "Improvementa in the manufucture of Hinges."- 9 rd April; 6 montis.

Hugi Lef Pattivson. of Beasham, near Gateshead, Durham, gent., and Wil. biak Septimis lons, of Walker, Northmberland, gent., for " Improrements in reducing Metalic Ores."-Brd April: 6 months.
Joniah Marshall Heati, of Allen Terrace, Kensington, gent., for "Certain Iropmerments in the manufacture of Iron and Steel."-Sth April; 0 wonths.
Josp Francisco Carios t'Abtens, of the Haymarket, gent., for "improve. ments in Maclinery for transmithing Power, wherebs the effect of such Poner is incrensed $\begin{gathered}\text { fithout losi of Speed."-Gth April ; } 6 \text { months. }\end{gathered}$
Saves Nas3rith, of Patricron, near Mancheater, engineer, for "Imprormenty applicable to the heariugn or journals of Lommotive and other Stean engines, which Improvements are alen applicable to the bearings or journals of Machinery in general.-9th April; 6 monflas.
Geonoz Stucxer and Jonpph Bentiey, both of Birmiogham, punmakers. fur "Certain Improvements in Guns, l'stola, and other ilennmination of Fire Arma."9 th April: 8 months.

Chazles Amplphe Roedenee, of Stranlurgh, but at present residiug in Wel-lington-street, City, for "An Improved method, or process of manufacturing or preparing the Chemical Sults, called Acetates."-0th April ; 6 month
Tmoxas Panz, of 22, New Bridgontrwet, Blachfriars, ougineer, for "Improvemants in Boilrosed and other Carrigen, in Wheols for auct Cerrioges, and in Ronds and Ways on whict they are to aravel."-9th April; © mondte.

Thomas Bonsor Chompton, of Tanwerth, Bolton, Iancanter, for "Impron ments in the mannfacture of Paper."-9¢ April; 6 montbs.

Lemiel Wellifan Wriaut, of Manchester, engineer, of an oxtension for the term of Seven Iears of Letters Patent, granted to him for "Certain Imprormanis on Machinery or Apparatus for Washing, Cleansing, or Bleaching of Linems, Cotuon, and other fabrics, Goods, or fibrous mibiances."- 4 th April.

Jamen Ciement, of Liverpool, carter and gilder, for "Improvements in prepe ing Mouldiags, and in prodacing the efferts of Chasing or Emboeving veions Dotime or P'utternn and Pramen, and other wark."-10th April ; 6 months.
Jusbepil Gisioutt, of Birminglam, ateel pen-maker, and Thomas Walifr, of the same place, zuachinist, for "Improvements in Fuginen, and in Carriagen to be woted by Steam or other motive Power."-134i April: 6 months.

Lot Faclenkr, of Cheadle, Chester, calico-printer, for "Certain Improremenus the mode of vorking P'unps or Valves, and which Improvemente are also applinhes to Fire-engines and other similar apparatus." -1 ith April; 0 months.

Havir Crusles, of Hooper-square, London. C.E., for "A new manfertine d Paper."-15th April; 2 months.
latrince Rofe, of Brentford, soap-maker, for "Improvementa in the manaia ture of Sulphate of Sode. "- 18 th April; 4 months
Henry Cerzon, of Kidderminster, machinist, for "Improvements in Presen"_ 16 th Aprit; 6 months
Hesre Dinnington, of Nottinglamo, lace manufacturer, for "Improrenent on Machinery employed in making Framework Koitting, or Stockiug Faitics - ! April : © months.
Juny Sifindells, of Manclester, manufacturing chemist, for "Certaid Inpan. ments in the maunfacture of Prussian Blue, Mrussiate of Polash, and Prumint it Sode."-loth April ; 6 months.
Jimes Ferocsson Sacyprrs, of Nex Bond.atreet, gent., for "Improperentio the manufacture of certain descriptions of Paper, Mill-board, Papier Mache, aud abe matters of that kind, capable of leing produced from anch description of Php Pulp."-20th April; 0 months.
Willian Crufta, of Raiford, lace manufacturer, for "Improvements in V chinery used in making Bobbin-net Lace, for the purpose of maling Figured of Ont mental Bobbin-net Lace, and Lace or Net of rarious textures. - $201 b$ Apml, months.
Johs Potter, of Ancoats, Manchester, spinner, aud Williak Hobsfill w Manchester, card-maker, for "An Improvement or Improvements in Cards factid ing fibrons substances, part of ahich Improvements may be used as a sobstitute for Leather."-20th Aprij; 0 months.

Javes Davis, of Walcot-place, Lambeth, Esq., for "Improvementa in ibe meno factire of Soap,."-20:h April : B moaths.

David Stesid, of Great Winchenter-street, London, merchant, for "Ao famerit mole or method of Making or Paring publir Streets and Hightays, and pobir uj private Roods, Pathe, Courts, and Bridges, with Timbur or Wooden Block!"-2 April: 4 months.

Atfred Sviger, of Vauxhall, potter, and Henty Pizher, of Wandsworlh Ront Artist. for "Certain Iwprovements in the preparation and combination of Eartee ware or Pore lain, for the purpose of Mosnic or Tesselated Worl."-33nd April. i mouths.

Jons Millfa, of Bolton, machine-maker, for "An Improrad Drillig Vit chine."-23rd April; 6 months.

David Napier: of Mill-mall, pugineer, for "Improvetnents in Iron Stem-lows" -23rid April: 0 months.

Elimail Gallonar, of Water?ane. Tower.street, engineet, for "Improtedens: Steam-engites." - 23 rd April ; 6 inonths.

Antonto Movilitow, of Dorset-place, Dorset-square. gent, for "Improrecents: Machinery for propelling Ships' Boats, and other Veraels, on whter, deaigned to mpit sede the use of Paddle-whepls."-29rd April; t monthe.

Grorge Holwortuy I'ilmer, of Surfey equare, Old Kent Rom, Ce. for " Io provements in Paddle-wheels, for propelling Ships' Boats, and other Vemels an. gated by Steand or other notive Power. - 29 rd April ; © months.

Williay Ebxcinuson and Jasies Eipxicx doson, both of Manchenter, equineth for "Certain Improvements in the Machipery or Apparatua for the mannatite: Wood-mrews and Screw-bolts."-23rd April; 6 months.
Job Ccticr, of Iady Pool-lane, Birmingham, getrleman, for an "Impors Mcthod or Methods of Constricting clasins for Suapension Bridgen, Cablen, Xinime. arthothor Mretiodas ord for an " Improred Method or Methods of rantiag she Bers. Liuks, and Bols thereof.'-23rd April; 6 monthes.

Jayps Birlow, of Birmingham, hrasa founder, for "Certain Improremeats io the Conatruction of Candlenticks."-25th April ; 8 months.
Jons Jonrs, of Westfield-place, Shettield, for "A Ner Frying pen and Orillap pan for the Cooking of Steaka, Chopa, ant other Meats."-26ih April; 0 month.

Johm Brotrse, Eny, of Cartle-street, Regent-street, for "Impruredebu in Sx dles and Stirrupa for Horses and other Animals, parts of which Improvemente at applicable to Apparatus for Carrying Parks by Men.-26th April ; 6 monthe.

ERRATA.

In our last number. in the article headed "Savary and Trevithick," p. 187, liss9 for "Regaud" read " Ripund.

Line 21, for "Lexicon Ledicimm," read "Lexicon Technicam.
Line 20, for "Al'Reid, Charing Cross," read "M"Nosth, Bookseller."
Line 32, for "of Boughton." read "or Broughton."
Page 138, line 1, for" " 7 "' read " 17. ."
Line 11, for "Swebre'i" read "Sritzers."

TO CORRESPONDENTS.

The commutication of a "Surveror" was received too late for insertion in thit month's Journul: it ahall appear in the next number.

We shall feei obliged to cor coumiry correapondenu if chey ofll onsard us anl
 the otifect of our Jowral.

BUNNETT AND CORPE'S CONCENTRIC STEAM-ENGINE.

Fig. 2. A Loogitudinal Section taken through the centre of the Engine.

The letters of reference me the same in both mections.

- Is the fixed shaft in the centre of the engine, on which the connecling arms supporting the piston rod, and carrying a cross head or pin for the connectiog rod to oacillate freely upon.
B- Beam chamber in which the piston reciprocstes.
C- Pinton.
D-Circular piston rod, which is made of square steel, admituing of metallic pecking to the stufting boxes.
E-Btockings agninst which the oatside covers of the cylinder are bolted, and aloo carrying the metallic otufing boxes.
PP-The slide valves ahewn at one-third of the atroke.
G-The Bxhaus.
HH-The pipes conveying the steam to the slide valves.
II-The connecting arms oncillating on the fixed centre shaft, and carrying the weight of the piston, piston rod, ste.
KK-Are the ateam ports.

BUNNETT AND CORPE'S NEW PATENT CONCENTRIC STEAM-ENGINE.

Mearrs. Bumnett and Corpe, of Deptford, the patentees and inventors of the improved iron safety-shutter, now in such high estimation and extensive use, have lately taken out letters patent for a conceotric steam-engine, drawinga of which we have given above. We shall first state the action of the engine, as we saw it at work in the paten. tees' manufactory, and then proceed to point outt its advantages. It will be ween, that in appearance it is similar to a rotatory engine, but its action is of a decidedly different character. The circular case, as ahown in figures 1 and 2 , forms in the lower part the steam-chamber, in which is accurately fitted a square piston, with Barton's patent metallic packing. Through the centre of the piston, and attached to it, is a concentric or ring-like piston-rod, which at a point opposite to it (the piston) is firnly embraced and supported above by two con. necting arma, having a double bearing upon a fired shaft in the centre of the engine; on wheh they oscillate sufficient to allow the piston to reciprocate freely. The piston-rod is made of square steel, and works through two metallic-stuffing boxes in the top of the steamchamber; and from theside of one of the armas above mentioned projects a pin, to which is attached the connecting-rod transferring the power of the engine to the crank of the fy-wheel and gear. On each side of the steanchamber are two distinctslide-valves, worthy of particularnotice : they take their motion from an eccentric on the crank shaft, and have two slideboxes or covers, by which means no steam is last by exhauation in the pasages, as in the single slide, the exhaust is abso fully open at the

[^8]Fig. 8. Transterse Section
tuken through the ceatre of the Englae.

commencement of the stroke, and remains co to any subsequent part of it that may be desired. By this arrangement of the valves, the steam can be worked expansively or not without cams, tappet, or gear of any kiod, the slides of themselves cutting off the steam at any part of the stroke. Haviug thus explained the structure of the engine, we will now proceed to show its mode of operation. The steam-valve being opened, and the exhaust-valve closed on one side, and the contrary on the opposite side, the steam is admitted, and propels the piston forward to the opposite side, when the steam-valves clange their position, and the steam is admitted on the opposite side, which again propels the pisten back to its original position,-and thus, by the backward and forward motion of the piston, it passes through two ares of a circle, similar to a pendulum, and carries with it the annular piston-rod and the arms attached to it, thereby sets in motion the connecting-rod ; the piston being entirely carried or suspended by the arms attached to the fixed centre shaft, is relieved from all tendency to wear irregularly, there being in fact, вo pressure upon it beyond that of the springs necessary to keep the segments in their places.

By the simple arrangement and working of the engine the connecting rod has a direct action, withont the intervention of guide rods or parallel motion of any kind, and during the time that the greatest force is required upon the crank, it never forms an angle of more than flve to ten degrees; its reciprocating motion describing an are of a circle, which so nearly assimilates tn the rotatory action of the crant, the changes of motion are effected with sarprising ease and rapidity; and whether it be from the direct appliration of the foree upon the crank alone, or the absence of parallel motion, or from the power bring communicated as it were, upon an inclinod plane, direct to the connecting rod, or by a combination of all these, very great power is most certainly gained.
The patentees have made several experiments, some of which we witnessed, proving the advantayes of tho'position of their connecting rod and crank unction over the methods now in use in locomotive and other engines, we have annexed a table of these experiments. By these it will be seen that in some positions of the crank, it having just passed its contre, nearly double the power is obtained, and taking the average of a whole revolution of the crank an advantage of more than one-liird is gained ; the experimental engine was set in motion in our presence, and with a piston of 24 inches superfices and a pressure of 20lbs. only on the square inch, it exhibited great power, driving several lathes, drilling machines, \&c., while without any load the crank performed apwards of 260 revolutions in a minate. It is tho
intention of the patentees to carry out these experiments to a practical result in a locomotive engine they are about to build, and they are also now engaged in executing orders for fixed engines, which will afford an opportunity of fully testing their power.

We strongly recommend the engine to the notice of engineers, and adrise them to avail themselves of the opportunity of forming their own judgment of its merits, by examining the engine at work at the premises of the patentees, who will be happy to explain its action.

The following is the Table of experiments above alluded to.

Anount of Fozce required to move a crank, having a nine inch throw, through one-fourth of its revolution, commencing at an angle of 5 degrees from its dead centre, with a l4lbs. weight suspended at the end of the throw.				The same experiment with out any weight suspended.		
Degreer.	Old Prin.	New Prin.	Difference.	Old Prin.	New Prin.	Difference.
5	179	98	81	50	27.5	22.5
10	96	54	42	29	$17 \cdot 5$	11.5
15	66	39.5	26.5	18.5	$13 \cdot 5$	5
20	53.5	34	19.5	14.5	10.75	$3 \cdot 75$
25	$40 \cdot 75$	29	11.75	12	9.75	$2 \cdot 25$
30	35	26.5	6.5	10.5	$8 \cdot 5$	2
35	$29 \cdot 5$	23	6.5	925	$7 \cdot 75$	$1 \cdot 5$
40	24•75	21	3.75	$8 \cdot 25$	7	$1-25$
45	21	18.25	2.75	7	6.5	-5
50	18.5	16	$2 \cdot 5$	$6 \cdot 5$	$5 \cdot 5$	1
55	16	14	2	$5 \cdot 75$	$4 \cdot 75$	1
60	14	12	2	4.75	$4 \cdot 25$	$\cdot 5$
65	11.5	. 10	1.5	$4 \cdot 25$	$3 \cdot 5$	$\cdot 75$
70	$9 \cdot 5$	$8 \cdot 5$	1	$4 \cdot 125$	2.75	$1 \cdot 37$
75	8	$7 \cdot 25$	-75	$3 \cdot 5$	$2 \cdot 25$	1.25
80	6.25	5:75	- 5	3-25	$1 \cdot 75$	$1 \cdot 5$
85	$4 \cdot 75$	4	$\cdot 75$	$3 \cdot 125$	1	2.125
	682	420.75	$\begin{gathered} 211 \text {-25 } \\ 3 \end{gathered}$	$202-25$	134*5	$\begin{gathered} 67 \cdot 75 \\ \mathbf{3} \end{gathered}$
			$633 \cdot 75$			203-25

ON THE THEORY OF THE STEAM ENGINE. by aristides mornay, esq.

In oar April number we promised to lay before our readers a new formula for calculating the force of steam at different temperatures, which it seemed possible might represent the true law, since it contans but one arbitrary constant, and that a very simple one, and agrees pretty well with those experiments which appear most worthy of confidence, between temperatures very far distant from each other. It presents likewise, as we shall show in the ensuing number, facilities in calculation not to be met with in any other formula which has as yet been proposed; not in calculating simply the force of steam at different temperatures, (Tredgold's rule being simpler for that purpose,) but in calculating the force corresponding to different densities, or rather the variations of elastic force occasioned by changes in the density of the steam. This is principally useful in eatimating the effect of expansive steam engines, for which the formula was specially sought, and if it does not give the actual density with perfect accuracy, the error, which cannot be very great in any practical case, may be almost entirely eliminated in its application to that object.
Our formuls is founded in part on the two physical laws discovered by Gay Lussac and Mariotte; the former hat elastic fluids receive, under a given pressure, for every additional degree (Fabr.), an accession to their bulk equal to one 480 th of the volume they would occupy, under the same pressure, at the freezing point of water; the latter, that the elastic force of gases is directly proportional to their density, or inversely as their volume. If, therefore, we divide the volume of a given quantity of any elastic fluid at 32 deg. info 480 equal parts, its volume at 0 deg. will be equal to 448 of those parts, and at any temperature $t, t+448$. Thus, if a given quantity of fluid occupies at the temperature t^{\prime} and under the pressure p^{\prime}, the volume v^{\prime}, it will, at any higher temperature t, and under the same pressure p^{\prime}, occupy a space equal to $\nu^{\prime} \frac{t+448}{t^{\prime}+488}$; but if confined to its original
volume, it will support a pressure equal to $p^{\prime} \frac{t+448}{t^{\prime}+448}$. If now we suppose it compressed into a still smaller space, so that its density shall be increased from d^{\prime} to d, its temperature being still t, its elastic force p will be

$$
p=p^{\prime} \frac{d(t+448)}{d^{\prime}\left(t^{i}+448\right)^{2}}
$$

and if we take the density of steam generated under a pressure of 30 inches of mercury for unity, and make in the above equation $p^{\prime}=30$, $d^{\prime}=1$, and $t^{\prime}=212$, the elastic force of steam at any temperature t will be

$$
p=30 \frac{d(t+448)}{660}=\frac{d(t+448)}{22},
$$

the density d to be hereafter determined.
Having by this formula calculated a series of densities from the experiments of Dulong and Arago, the density seemed to increase in a geometrical ratio, while the temperature increased in an arithmetical ratio; but a formula constructed on this principle gave by far too high results at high temperatures, in consequence of which we introduced the divisor $t+448$, which in a great measure corrected that fanlt of the formula. It then became

$$
\begin{equation*}
\log \cdot d=\frac{5(t-212)}{t+448} \tag{II}
\end{equation*}
$$

Combining the equations I and II, we obtain finally

$$
\begin{equation*}
\log p=\log \cdot(t+41 \%)+\frac{5(t-212)}{t+448},-1.3424227 \tag{III}
\end{equation*}
$$

The following has has been constructed for the purpose of comparing the results of experiment with those calculated by Tredgold's rule and by the alove equation, affording a comprehensive vew of their variations and discrepancies up to an clastic force of 24 atmospheres:-

Tempe rature.	Elastic force by Rexperiment.		Differeaces.	$\begin{gathered} \text { Mean } \\ \text { Diferences. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Elanstic } \\ \text { force by } \\ \text { Formu- } \\ \text { Fa III. } \end{gathered}\right.$	Differ. encer	Mean
32	$\left.{ }^{(125}\right) 1$.	$0 \cdot 17$	$0 \cdot$		29		
6	${ }^{1.751}$ -	6.3	0.12-		$0 \cdot 83$	0.0	
96.00	$1.95-$	1.81	$0 \cdot 11$ -		$2 \cdot 12$	$0.17+$	
132.(0)	507	5.07	$0 \cdot 00$		5:39	$0 \cdot 32+$	
$173 \cdot(90)$	$13 \cdot 19$	$13 \cdot 16$	${ }_{0}^{0 \cdot 2 x}+$		13.69	$0.51+$	
21	$30 \cdot 01$	310 (0)	$0 \cdot 00$		30.00	0	
$222 \cdot 00$	$31 \cdot 20$ $31 \cdot 95$ 1	34.92	$0 \cdot 72+$	\} $0.345+$	3.485	$0.65+1$	
230 (0)	11-51	4200	0.19		41		
234.32	45.00 C.	$45 \cdot 11$	$0 \cdot 11+$		$45 \cdot 20$	$0 \cdot 2$	
(10)	50.40 T .	50.21	$10 \cdot 24+$		4996		
212.7	52.50	52.75	$0 \cdot 2$		$52 \cdot 45$		
$2.30 \cdot(0)$ $2.00 \cdot 30$	${ }_{50}^{5012}$	$\begin{aligned} & 59.9 \\ & 6 \cdot(4) \end{aligned}$			59.38 5969		
$250 \cdot 30$ $2: 0$ 20		$\begin{gathered} 60 \cdot(0) \\ 60 \cdot 60 \end{gathered}$	$\left\lvert\, \begin{aligned} & 0.010 \\ & 0.60 \end{aligned}\right.$	0	$\begin{aligned} & 59669 \\ & 60 \end{aligned}$		
2.1 1-66	(64.20) D.A.	15420	0.52		6.4.2.5	$0 \cdot 0$	
269×7	52.50 C	-3.26	10.76)	82-6.5	0.15	
${ }^{2710} 0$	K2.50 T	-3.45		$0507+$	E22.72	$0 \cdot 2$	
$271 \cdot 94$	86.12 D.A.	N6.10)	1		85.34		
272 (9)		86	$2 \cdot 70$		85.42		
$275 .(x)$	$90 \cdot 00$ C.	$90 \cdot 14$	${ }^{0} 111+$		89.62	0.38 0.76 1	
	1975 T.	9792 99 18		$\} 0 \cdot 330-$	96.99 98.13		
$292 \cdot 91$	$120 \cdot 04 \mathrm{C}$.	1196.	3. ${ }^{1}$		118.41		
$293 \cdot 10$	120.00	124.50	$10.50+$		119.29		
$307 \cdot 54$ 307 309.9	150.00 D.A.	$149 .(x)$	1 (\%)		147-29		
$320 \cdot(0)$	179.40 T .	17x 5			176.22		
	$1 \times 0 .(6) \mathrm{C}$.						
$320 \cdot 36$	1 $\times 1.00 \mathrm{D} . \mathrm{A}$.	1794.4	05		$177 \cdot 13$		
331	2100.-	21050)		207.54	$2 \cdot 46$	
331	225 - 40	${ }^{2226.09}$			222.77		
$\begin{aligned} & 3.36 \\ & 340 . \end{aligned}$		226.30)	130	7	-222.99	$2 \cdot 01-$ $1.43+$	
311.78	$2.10 \cdot(1)$ D.A.	24177			238.08		
$3.11 \cdot 83$	$240 \cdot 00 \mathrm{C}$	241.93	1.93		238.24	1.76	
351.78 351.32	270.00 D.A.	${ }_{2}^{27}$			26836		
351.32		27.1*3			271527		
359.60	3(1) (k) C.	306.51	65	$\} 5.075+$. 1.00		
374.00	$360 \cdot(0) ;$ D.A.	$36 \times \cdot \times 3$			361.30	1	
398.4	$480.00-$	498.	$18 \cdot 9$				
$\left\|\begin{array}{\|c\|} 418 \cdot 4 \\ 435 \cdot 56 \end{array}\right\|$	${ }^{6(20)} 000$	631.61 $767 \cdot 38$	$17.38+$		$\left.\begin{array}{\|c\|c\|} \hline 611 \cdot 96 \\ 739 \cdot 48 \end{array} \right\rvert\,$		
1	2	3	4	5	6	7	

The letters placed on the right of the second column indicate the authors of the experiments, viz:-D, Dalton, T, Philip Taylor, S, Southerm, D. A., Dulong and Arrago; and the numbers in the second column which are followed by a C are taken from a table published by Clément-Desormes, and are probably calculated, but we have placed them among the experiments for the sake of comparison.

On examining this table it will be manifest in the first place that Dalton's experiments above 212 deg. cannot be very accurate; for at 2220 deg, both Tredgold's and our formula give higher numbers, at 272 deg. both give much lower, and at 340 deg. again both give higher nnmbers, slowing a want of regularity in Dalton's results; besides which, the latter differ more from other experiments at the above named temperatures than either of the formula, but on the other hand it hardly seems likely that Dalton should have made en error of five inches in 231 at 340 deg. of temperature, which renders it probable that Tredgold's rule is in excess about that temperature, particularly as it also exceeds Dulong and Arrago's experiments at that and all higher temperatures, the difference increasing very rapidly with the temperature, as shown in the table, amounting at 435.56 deg. to 47.38 inches of mercury, or nearly one atmosphere and seven-twelfths of an elastic force of 24 atmospheres. It appears to us on the whole that Tredgold's rule gives an elastic force which increases too rapidly with the temperature, and consequently that, being exact at .212 deg., it gives too low a result below, and too high a result above that temperature, most of the differences in the table seem to prove, the few exceptions between the temperatures of 271.94 deg., and 320.36 deg., as well as those at 132 deg., 173 deg., and 220 deg., being attributable to inaccuracy in the observations. The results of our rule, on the other hand, surpass those of experiment below 212 deg., and fall short of them, in genersl, from that temperature to about 360 deg., above which they again exceed the experiments, the differences increasing in an almost uniform progression, until at 435.56 deg. our formula exceeds the experiments by 19.48 inches, or nearly two-thirds of an atmosphere, which corresponds to a difference of about 2.45 deg. of temperature, while the excess by Tredgold's rule corresponds to a difference of 5.66 deg.

It is obvious that, our formula being founded on the law of the dilatation of elastic fluids, the results must bear reference to the degrees of the air thermometer.

MACRAE'S PATENT HYDRAULIC GAS-HOLDER COUNTERBALANCE.

Some discussion has lately arisen respecting Macrae's Patent Hydrastic Gas-holder Counterbalance, assimilating its action to that of the domestic bellows, "regulating the ascending and descending motions of a gas-holder, by means of an liydraulic counterbalance," or " hydraulic tonk," as he calls it.

The object of the patent is doubtless a most desirable one, It has long been a desideratum in gas establishments to relieve the gas-holder of a great proportion of its intrinsic weight, while the gas from the retorts is flowing into it ; and, on the other hand, to restore its weight, or as much of its intrinsic weight as may be requisite, while it is seading forth its contents of gas into the street mains.

The advantages of these two conditions of the gas-holder are, if attainable, abundantly manifest to the gas manufacturer. It is quite notorious that by the present system the weight and consequent resistance of the gas-holder, while it is admitting gas from the retorts, several parts of the machinery are materially injured; time is lost in clurging the gas-holder, a very unnecessary quantity of fuel is consumed in the furnaces, and the gas is not only wasted, but, by not being allowed to escape from the retorts with sufficient rapidity, it is deteriorated, in its illuminating properties, by being exposed too long to the intense lieat of the retorts. Frequent and dangerons reactions are also produced from the same cause.

Many attempts have been made, at various times, to obviate these defects, and, with that view, patents have been taken out by Messrs. Malam, Outhot, Parks, and Broadmeadow. They have all been failures, and we very much apprehend that the contrivance of Mr. Macrae will not turn out to be a bit more successful than the schemes of his predecessors.

The chief objections to it are, 1. That, if there be no natural head of water existing above tho utmost height to which his "hydroulic Lank' will rise, there will necessarily be imposed the labour of pamping up water cvery twenty-four hours to this height, in order to till the "hydroulic tank" every time the gas-holder has to be charged with Gas. 2. That this "hydraulic tank" must necessarily disctuarge its contents of water, so far below the surface of the water in the gasomacter tonk, as to require another process of pumping in order to get rid of it.

Uader ondinary circumatances, therefore, lure are two operations of
pumping every twenty-four hours; the one in charging, the other in discharging the gasometer. After this, it would appear to be entirely out of the question to add to the labour (as Mr. Macrae suggests) by "supplying the required weight of liquid to his liydraulic tank, every time the retorts are drawn."

It will hardly be credited that for a single garometer of 50 feet in diameter, by 22 feet deep, and working at an inch pressure, an hydraulic tank, on Mr. Macrae's plan, if of a cylindrical shape, would require to be about 40 feet below the surface of the water in the gasometer tank !-or if it were a cube of two feet by six feet, still its depth below the surface of the water in the gasometer tank, would require to be 17 fect-either of these depths being considerably below the surface of the ground, consequently requiring the water to be pamped out every time the hydraulic tank empties its contents into these shafts, or wells.

To show that there is no exaggeration in this, it is well known that the ordinary balance-weights for a gasometer of the dimensions we have supposed, working at an inch pressure, would require about 13 cubic feet of cast iron, independently of the chain, or a cube of 2 feet $\times 2$ feet $\times 3.3$ feet. If this balance weight, however, were to be made after Mr. Macrae's plan, and instead of being composed of a solid cube of east-iron, it consisted of a box, filled with water, its dimensions would be 2 feet by 4 feet, and 11 feet deep: for if we take 5943 lbs. as the weight of the 13 cubic feet of iron, and allow 468 lbs. for the Feight of the box to contain the water, and divide the difference by $62.5 \mathrm{lbs} .$, the weight of a cubic foot of water, it will give 87 cubic feet as the dimensions of the box,

$$
\frac{5943-461}{62 \cdot 5}=87 \text { cubic feet }
$$

or 528 gallons. This is the weight only of the balance weights at present in use. But it is to be supposed, that Mr. Macrae proposes to use a much greater weight as a counter-balance than this: perhaps $\frac{9}{6}$ or $\frac{4}{4}$ of the weight of the gasometer. In cast iron, then, $\frac{s}{3}$ would be equal to 28 cnbic feet, and 208 cubic feet, or 1,248 gallons, if filled with water, including its containing box, or hydroulic tank. Now it has been already stated, that a eylinder adequate to hold the necessary quantity of water, according to Mr. Macrae's plan, would require to be 40 feet below the surface of the water, in the gasometer tank. But if the cylinder were only $2 \frac{1}{2}$ feet in diameter, it would require to be more than 40 feet in depth : for $2.5 \times 2.5 \times 11=4.91 \times 40=$ 14
196.40 cubic feet only, instead of 208 cubic feet.

It will be quite obvious, that if the water discharged into this well, of upwards of 40 feet in depth, be not pumped out of it before the gasometer begins to fall, the gasemeter will be able to descend only a few inches, until it become stationary: for the still undischarged load of the counter-bslance (being $\frac{4}{5}$ of the whole weight of the gasometor), will provent it from descending further.

Mr. Macrae's echeme, though crude and unsuitable, is not without a considerable portion of ingenuity. The object aimed at is docidedly one of great importance to the gas manufacturer.
A.

The Oxford-atreel Experimental Paving.-On Saturday, the 18th ultino, in aecordance with the arrangements made hy the Merylebone Veatry, tingiting the pariod of the trial of the respective exparimontal pavements laid down in Orford atrect until the month of May, Mr. Kensett, as chairman of tho Paving Committee, laid before the board the state in which cach of the experiments was. The following is the resolt :-On examining the bitumen laid down by the Bastennc and Gaujac Bitumen Company, they found it had stood the test of the severo wear and tear of the vehicles passing that road duriag the whole winter, without any maberial altaration. That portion laid down by the Val de Travers Company, which had bean studded with atone, had stood, uut that portion in which the broken granite had been set in their liquid had totally failed, and must be removel immediately. The Aberdeen granite cubes laid down by the parish had proved to be in most excellent condition ; that more prarticularly which had been set in Claridge's Asphalto was in a state of superior order, and the stones appeared immoveable. Hobinson's bitumen had been talicn up some months since in consequence of having proved a decided frilure. The scotch axpheltum had beet repaired once, and had again beconae so dilapidatel as to render the portion of the roml which it occupies dengercus. The wrooden block pavement, which had betu laid down five months since by the projector, Mr. Steed had excited the minute attention and admiration of the cummittee. It appeared, on examination, that the blocks formed a road of a moot even anfuee, and carriage passed over without the alighteat noise, and of the 12 inches, the lergth of the blocks, it was found they had not been diminished one quarter of un inch. Their attention, howeter, was particularly directed to tho botwan of the blocks, which, to the extent of abont threesfourths of an inch, appeared discoloured by a blue stain, intimating (?) thet the first ayproach of decay was making its appearance. I considerablo division of opinion existed anang the connmittoe upan the ahovo appearance being that of decay; they were, howeror, of an unaminous opinion that a further trial was necessary, in order to cnable the vestry fairly to bo sutistied as to the durability of the pavencut which might ultimately to decided upot, and that any decision ought to bo deferred till the antamu. It was stimately deciderl in the restry that the application of a Mr. Geary to lay doun a woalen parretsent. upon an inproved principle, should bet relerred io the commituee, and that the thand deciaion upon the experimonts should be deferred to the first Saturday in Soptember.

RAILWAY CURVES.

Sir-Being myself one of those who are willing to proft (through your columns), by the experience of others, I take the liberty of forwarding a system for setting out curves by ordinates, which, being perfect in theory, only requires great exactness in the execution, and depends but litule upon instruments; it is, I believe, in frequent ase, but which I have recently adopted from my own dednctions; these remarks may be found useful by some of your younger readers, and may lead to something better from elders in the professiod.

Let $A B$ and $C D$ be two straight lines, which are required to be united by a curve; say for convenience of a mile and a quarter radius, or 100 chains; by producing the two lines the angle AFD must be ascertaiued with great exactness; (the angle of its supplement being much less, may be taken with less liability to error). With EC for the radius, the angle CEF may be ascertained, for supposing AFD is 148° 20^{\prime}, EFC is $74^{\circ} 10^{\prime}$, and therefore CEF is $15^{\circ} 50^{\prime}$. By this means CF \& BF will be found 2836 links, $B \& C$ being the commencement of the curve. These points having been measured off from F, commencing with the odd links, viz. 36, and leaving pegs at every chain, the ordinates may be set off at right-angles according to a table to be calculated in the follewing manner, and which will do for any curve of a similar radius.

In the accompanying diagram, EG is the radius. GH is the sine. BH is the co-sine, and : HB the versed sine, of the arc BG.
Now HB $=$ GF and BF $=\mathbf{G H}$, therefore the ordinates will be versed lines, where the length on the tangent is equal to the sine.

Again, $\mathrm{HB}=\mathrm{EB}-\mathrm{HE}$, and $\mathrm{HE}=\sqrt{\mathrm{EG}}{ }^{2}-\mathrm{GH}^{2}$, therefore $\mathrm{FG}=$ $\mathrm{EB}-\sqrt{E G^{2}-\mathrm{GH}^{\prime}}$; or, with o for ordinate, r for radius, s for sine, and v for versed sine; $o=r-\sqrt{r^{2}-r^{2}}$, the table is then calculated thus at every chain.

The ordinate at 100 links $=100.00^{2}-\sqrt{100.00^{2}}-1.00^{2}$ and with the assistance of "Barlow's Tables of Factorg' Roots, \&c,"' a table may be made to any useful length in a few hours, thus-

$$
\begin{aligned}
& 10000^{2}=100000000 \\
& \text { again } 10000^{2}=100000000 \\
& -100^{2}=10000 \\
& 99000000 \\
& -200^{2}=\frac{40000}{99960000}
\end{aligned}
$$

sq. root of which $=9909-4998$
sq. root of which $=9997.9998$ deducted from $100^{2}=5002$ of a link. deducted from $100^{2}=2.0002$

To obtain the square root of the above numbers it is convenient to drop the last four flgures of a, and alter the decimal point in the root two figures:

The result of these calculations will be-

	links		links		links
at 1 chain	$\cdot 50$	at 11 chains	60.68	at 21 chains	222.98
2	200	12	72-26	22	24500
3	4.50	13	85.86	23	268909
4	8.00	14	98.48	24	29227
5	12.50	15	$118 \cdot 13$	25	317.54
6	18.01	16	$128 \cdot 82$	26	349.91
7	24.53	17	145.55	27	371-39
8	32.05	18	$163 \cdot 38$	98	40000
9	$40 \cdot 58$	19	182.15	29	42974
10	$50 \cdot 12$	20	202.04	30	46061

These ordinates may be made available on the curve of any ndiun, by multiplying the length on the tangent, and its respective ordiaute by the multiplier of the radius; thus for 80 chains the multiplier is $8-$ so at 80 links the ordinate is 40 at 160 ___ 1.608 sc
But it would be better to use a table calculated at every chain, and it might be worth while for some party with a little spare time to publish a set of ordinates at every useful radius, say from 10 chains to 500 .

The greatest accuracy is required in taking the angle, as othervise the starting of the curve will be incorrect, and the curves in the centre will shoot past each other.

Where the augle of the two tangents approaches a right aggle, it may be adrisable to work the ordinates as far as they can be comedily done, and then, by reversing them, to lay off another tangent.

I am your obedient serrant,
Suarziol.

4 SUBSTITUTE FOR A RAILWAY TURN TABLE.

(From the American Raitroad Jownal.)

Having been led, by the objections attending the running of loos motives backwards, or with their driving wheels in front, to consider some method of turning them and their trains more efficiently thas the common turning-table, which only admits of one or two cara beiog turned at 2 time, and having devised a plan which would, 1 think, effect this desirable end, I take the liberty to solicit for it jour thad attention.

That locomotives do not run as well backwards as forwardi, will ! think be readily conceded. That the liability to run off the trilk, and that the wear of the driving wheels is much increased, have beea proved upon a road which has come under my observation, boyond the shader of a doubt.

The plan would, I think, be found simple and effective, The aring of time and menual labour would. I doubt not, be found to be considerably over the common turning-table, and at the same tive it would be fourd to answer very well the purpose of turn-oats at wites stations. The preceding diagram will explain the plan in question.

Let us now suppose the track laid, and provided with swithen al the intersections, and a locomotive, with 2 train of cars behind it, at A. It moves over the first half of the turning track, B (which is the quarter of a circle), and stups at C , where the track is made strigtt for 150 or 200 feet, or for the purpose of receiving or dischargiog freight quite out of the way, the straight line may be extended to ayy convenient length. The switch is then, changed at D, and the loom motive, with its train moves backwards, over the other half of the turning-track, E, into the main trunk at F, thus having boen turood completely around.

That additional room would be required is true. By adoptiag, however, a radius of curvature for the tarning track of 400 feet, wideh would be quite sufficient, and making 150 feet at B_{1} atraight, the whole distance out of the main trunk would be but 550 feet

Weahington Co. Geo Janeay 5, 1839. . F. B. HOLCOMB.

Fig. 1. Szc fion of Piez, showing the new Sheotpiling and Stone-capping.

Fig. 2. Plam of Prea, ohowing the Sireel piling and Srome-apping.

WESTMINSTER BRIDGE.

Before noticing the improvements which are at present being made on this structure, it may not be uninteresting to give a brief account of its canstruction, taken from a work published by Mr. Labelye, the engineer, in the year 1751.
Io the jear 1735 a petition was presented to Parliament, the purport of which was to have a bridge erected at the Horse Ferry, or at such other place as the House thonld think fit.

On the 20th of May, 1736, an act for this purpose received the royal assent. the commissioners appointed under it were nearly 200, and there was granted the sum of 100,000 . to be raised by a lottery. This lottery baving proved unsuccessful, a new lottery was granted by a second act in 1737.

In August, 1737, the commissioners received plans from different periona for the proposed bridge, and Mr. Labelye was ordered to explain his method of laying the foundations of the stone piers of a bridge below the surface of the bed of the river, which he did in the following September, by means of a model, when it was resolved, - That this board do approve of Mr. Labelye's design, and are of opinion that he is a proper person to be employed in casc the commissiomers proceed to the laying the foundations of stone piers."

A third act was obtained in February, 1738, by which the position of uhe bridge was fixed at or mear the Woolataple, a little lower than New Palace Yard. In the same month Mr. Labelye again explained his method to the commissioners, which was as follows: "That the foundatios of every pier should be laid on a strong grating of timber planked undermeath ; that this grating of timber should be made the bottom of a vemel, sucl as is called caisson by the French ; that the sides of this caison shoold be so contrived as to be tatien away after the pier. should
be finished; that the bed of the river shoold be dug to a sufficient depth (none of the caissons to be laid at a less depth than flve feet below the surface of the bed of the river), and made level, in order to lay thereon the bottom of the caisson."
Shortly after this the commissioners resolved that the bridge should stand upon atone piers, and fixed the number and dimensions according to Mr. Labelye's design for a stone bridge; they also appointed him engineer, but the superstructure was to be of oak wood, according to a design of Mr. James King, with whom, and his partner, they contracted for such superstructure for the sum of 28,0001 .

On the 29th of January, 1739, the tirst stone of the bridge was laid by the Right Hon. the Earl of Pembroke, and on the 23rd of April the first pier was finished. In December of the same year a aevere frost put a total stop to the work till the following February. The ice carried off 140 piles, and broke above one-half of them. The commissionern, after this accident, determined to dipp the design of a wooden, and resolved upon an entire stone bridge.

Mr. Labelye furnished the designs from which the present bridge was built, and the work proceeded without interruption till its completion in 1746.

On the 25th of October in that year the last stone was laid by the Earl of Pembroke, and on the 14th of November, 1747, the bridge, roads, and streets on both sides were finished ; the whole was performed in seren years, nine months, and sixteen days from the laying of the first stone.

The Commissioners intended soon after this to have opened the bridge for the service of the public, but were prevented by the failure of one of the piars, which occupied a conslderable time in being restored.

Mr. Labelye, after giving a highly intereating account of the work
during its progress, proceeds, at the request of the Commissioners, to answer the different objections that had been urged against his mode of construction. He puts them in the form of "Objection" and "Answer." 'The experience of 100 ycars has now tested the accuracy of his replies, and in only two instances las it proved him in error. We will give these here, as they are intimately connected with the present works.

3rd Obsection._." Why could not the foundations of the piers have been laid by the help of coffer dams, such as are called by the French Battardanx?"

ANSWER. - After explaining the construction of coffer dams, he states-" The first inconveriency attending this manner is, that if the enclosure be not strong enough, or not sufficiently propped or braced in the inside, it will not be able to support the pressure of the external water (especially if the water be agitated by stormy winds), which, by breaking and bursting in, often destroys many lives, and entirely defeats the intentions of the projectors that have not taken the necessary precautions, of which I could give a great many instances, some of which I have been an eye-witness to. But if this method had no other inconveniency, it could easily have been remedied in the execution of the intended bridge,-England, and London especially, abounding with excellent artificers of all kinds. But what would have rendered it entirely useless or ineffectual, is the nature of the bed under the river Thames, which at the place where the bridge is, is everywhere a gravel, covered over on the Surrey side with a soft loomy sand, all which would suffer the water to ooze up (notwithstanding the sides of the battardeau, or coffer dam, should be perfectly tight) so fast, especially the gravel, as to put it out of the power of any engine or engines to drain the battardean or coffer dam. Indeed, where the ground under the foundation is a stiff clay, or an earth of a sufficient consistency to hold water, battardeaux or coffer dams have been used with success, though attended with an immense expense and trouble, and what I would have used if I had not foreseen that in this place it would have been in vain to attempt to come at the bottom, and much more so to reach several fect under the bed of the river by any such means. Those that have seen (or liave been concerned in) buildings erected in water when the ground is a gravel, or a loose clay, or a sand, well know the inseparable difficulties that would have arisen if such coffer dams had been attempted on the Thames over against the Woolstaple, where, besides the agitation of the water, occasioned by the winds, the height of the water is perpetually increasing or decreasing from six feet to about twenty-three feet perpendicular height above the surface of the bed, which two circumstances alone would make it difficult and very expensive to provide proper materials, and construct a coffer dam sufficiently strong to resist such unequal pressures so as to keep out the ambient water."
"As to the oozing in of the water through the pores and interstices of the gravel, loose clay, or sand, it may easily be shown, that if all the interstices in the bottom of the foundation of one of the piers taken together amount only to a hole of six inches square (which is a supposition much under the truth) ; and, supposing the tide or liead of water above the foundations, as it is at a mean or an average between the highest and lowest, about 15 feet perpendicular, it would give 770 tons per hour, which is more than 70 men could pump out, even supposing them to act always with the same strength as they do at first, and to work day and night without ceasing, and more than 150 men or 30 horses could do working as they commonly do."

7th Onsetion.-"Notwithstanding all the precautions that have been taken to render the foundations of the piers as firm and solid as if they were built upon dry ground, they will always be in danger of the water gulling underneath and carrying away the ground from under the planked gratings on which the piers stand."

ANBwER-He enters into an explanation of the effect of running water on the beds of rivers, and into calculations respecting the consequences in case London Bridge should be removed, and concludes with, "I her suspect (with regard to the river Thames and Westminster Bridge) the reverse of the objection will happen; viz., that the piers will in time be more and more buried in the ground by the silting of the river which must accumulate in a long course of years, for in all tide rivers (at least in those that have no extraordinary declivity towards the sea), we find their beds continually rising, and in the Thames in particular, it is well known that the bed of the river (especially above London Bridge) is several inches higher than it was one hundred years ago, which I conceive to be occasioned by the tide of ebb having so long a time to deposit its settlement, and every tide of flood preventing in a great measure part of that settlement from being carried down to the sea."

It is needless to offer any remarks on these opinions of Mr. labelyc. He appears to have acted with the greatest consideration while engaged in this arduous undertaking, and if ve bear in mind that
an engipeer at that time had very little from the experience of others to guide him, and that this was unquestiouably the greateat and most difficult work that had ever been attempted in this country, it must feel more inclined to admit the genius of its author and to git him praise for the amazing skill and ingenuity displayed in its constur. tion, than to cavil at any errors he may have committed.

We now pass over a period of seventy years, during which there is nothing worthy of notice. The proposed removal of one of the piers of old London Bridge appears to have been the first thing to call the s. tention of the Commissioners of Westminster Bridge to the serurity of its foundations, for we find that in May, 1823, the late Hi. Telford was called on by them for bis opinion as to the probabte effect which might be occasioned by such removal. In bis repor, be mentions that the platforms upon which the piers rest, which vere do scribed by Mr. Labelye to have been placed none less than five feet do more than fourteen below the bed of the river, are now found to rangebetween threeand seven; and if London Bridge be wholly removed, the cossequences will most likely be fatal to Westminster Bridge; he then reawmends certain works to be done for its safety. These works procedd under his direction during the remainder of his life; they consisted a piling round some of the piers and protecting them with masont ty means of a diving-bell, rebuilding some of the cutwaters and octzoos, 8 c.

In August, 1835, notwithstanding what had been done by Mr. Telford, we find, when Mr. Cubitt was called on to report bor fr the proposed embankment for the New Houses of Parliament woot affect the stability of the foundations of the bridge, he states that the foundations were still far from being in a secure state-and in June, 1886, he reports "on the present state and best manner of rendeni;" secure the foundations of this bridge."

He points out three modes of securing them :-
lst. Depositing heavy rubble stone round them.
2d. Surrounding each of the piers with sheet piling of oat or casiron, coming up above low water, securing them to the piers and filling the space with stones and cement.

3d. Paving the whole space under the arches, and driving dheef piling on each side of the bridge the whole way across the river.

This last plan he estimates at not lews than $120,000 \mathrm{~L}$, and nox more than $150,000 l$., and to completely restore the superstructure beisa, in all from $150,000 l$. to $200,000 l$.

In February, 1887, Mr. Walker reported on the same subject. His instructions with reference to the present bridge, he states, were-
"That I survey Westminster Bridge, and report my opinion on the state of its foundations, and what I deem necessary to be done to put the existing bridge in a state of permanent security, with an etimste of such repair."

His opinion is-
lst. That the best mode of securing the piers of Westminstet Bridge is by coffer-dams, then pumping out the water, and piling round the piers.

2d. That the expense of this for all the piers will be : 870,00
3d. That renewing the ends and spandrils of all the piers in the way already begun, will cont

4th. That the present parapet ought to be taken off and a lower one subetituted, and that the inclination of the road may and ought to be improved; the cost of theae will be

Total cost

£103, 等
Shortly after this Mcsars. Walker and Bunges prepared plane ands specification for the repairs of the bridge, and the Commisionets x cepted Mr. William Cubitt's tender in May, 1838.

The specification is formed into two divisions:-
The first contains the coffer dams and securing the foundation α eleven piers, deepening the bed of the river, at the bridge, after the pias are secured; putting in a new cornice and a new parapet for its rtuit extent, lowering the carriage road and footpath upon the bridge, niweng the appreaches at each end, and repairing the footpaths with new surt.

The second embraces the repairs to the masonry of the supetinx. ture; such as restoring the injured faces of the slones of the arches and piers, reboilding such of the cutwaters and octagon piers as may k ordered, and also repairing and rebuilding the spandril walls of the arches.

Mr. Cubitt immediately commenced operations, and in eighs monts completed the coffer dam round the 18 and It feet piers on the Hiest minster side; and notwithstanding all that had been said about'the impossibility of keeping the water out, and that it would require \mid b men to pump constantly in a dam round one pier only, it appars tal one man, working two or three hours during the day, is sufficient in this dam round two piers.

When the mull which bod scounalated draing the exeption of be
dam, and the coveringsof gravel were removed, the caissons were found in a perfect statc, the wood (fir) even retaining its resinoos smell : their construction agrees very nearly with the description given by Mr. Labelye. The sill is formed of whole timbers extending longitudinally under the pier, and framed at each end, so as to run parallel with the cutwatere. Upon this the grating is placed; it is composed of timbers $10 \mathrm{in} . \times 10 \mathrm{in} . ;$ its outer frame is of the same shape as the sill, but seven inches less in width all round, thus forming an offset or footing; the transverse timbers upon which the pier rests are one foot apart, and firmly morticed and trenailed into the frame, and trenailed into the sill. Round the pier a curb of planking 6in. thick and 2 feet 8 broad, was fastened to the grating-this has since been removed, to make way for the stone-work.

The accompanying plan and section to an enlarged scale will explain the method pursued in securing the foundations (the dotted line on the section shows the fall of low water since the removal of old London Bridge). The sheet piling which surrounds the caisson is, beech 12 in. thick and 15 feet long; the waling is 8 in. thick by 12 in ; ; every third pile is bolted to the wale with a $1 \frac{1}{3}$ inch screw-bolt, the head countersunk into a cast-iron washer; the wale is bolted to the caisson by $1 \frac{1}{4}$ ioch tiebolts, 6 feet long, let into the timber ; the inner end has a cast-iron carriage, bedded as shown in the section; the angles of the waling are secured with wroughtiron straps. The space between the sheet-piling and the caisson, and also between the timbers of the grating is filled in with brickwork, thus forming a wilid bed for the parement, which is of roche Portland stone, six fret in depth of bed, and 18 inches height next the pier, bevelled off to 12 inches next the piles.

We intend to continue our notice of the works as they proceed.

CANDIDUS'S NOTE-BOOK. rascictive v .

> - I must have liberty

Withal, as large a charter as the winda,
To blow on whom I please."
I. It is perfectly moxlicable to me, that notwithstanding the excessive admiration protesed for Palladio, no views are ever taken of his buildings-models, wes re assured, of refined taste, and every kind of architectural elegance and grace, and replete with, that captivating non so che which defies both definition and description. I am not acquainted with a single instance in which any building by him has been given in such works as those of Clochar, Schuelt, Rulil, which profess to select What is most worthy of study in Italian architecture. We have of late had a tolerably smart shower of Italian views of one sort or another, both in Anpuals and elsewhere, yet nove of them have cared to show us the glories of Vicenza; while the Piazzetta at Venice has been represented over and over again, till it has become absolutely stale. Yet, if poor Vicenza is very scurvily treated, Sienna docs not fare much better being quite shyed at by all onr travelling and view-taking folks. Even Woods bestows only a couple of pages upon it, in which he confines himself almost entirely to the cathedral, bating what he says of the pronunciation of the people, which we could very well spare for something more akin to the information the title of his book promises. Poor Woods! not only did he somehow or other "miss seeing" one of the greatest lions of its kind at Genoa, the Saloon of the Serra Palace, but, horresco referens! neither did he see even the façade of the Piccolomini Palace at Siennn, a most majestic piece of architectureone incomparably finer than anytbing Palladio ever designed. This facade and the picturesque cortile would alone suffice for the fame of any architect ; yet the name of Francesco di Georgio, to whom it is attributed, thongh Rumohr claims it for Bernardo Rossellini, is scarcely ever heard of among us ; yet whether by Di Giorgio or Rossellini, the design is one of frat-rate excellence.
11. Whatever study an architect may bestow upon the design of a mansion, a very great deal is, after all, left to be done entirely a discretion, as the French say, that is, to the risk of the most flagrant iadiscretion. Beyond cornices round the cellings, doors and chimney pieces, and perbaps a few columns, an architect considers that he has pothing farther to do with the thterior, after the building is once erected. The chief thing to De said in excuse of this disregard of character and effect on his part, is, that at least it is attended with no demer of any kind of effect being, put out, or character destroyed, for the simple renson, that his uniformly plain four-sided rooms have Borling whatever of the kind : indeed, it is but reasonable that all masters of mere taste should be left entirely to those who have to pay Gor it, and who, it may be presumed, know far better than any one else their. own particular likings and dislikings, and who can at all events
buy fashion-a most delightful thing, although not exactly an article that "will wear well for ever, and afterwards be better than at first." Wherefore should a man, because you lave employed him as your architect for the walls of your house, be allowed impertinently to dictate to your taste, and tell you there must be this and there must not be that; to tell you that'such or such a thing will quite cut up and kill something else? Officious jackanapes!-he deserves to be killed bimself and cut up afterwards, in terrorem, to the whole profession. It is some consolation to know that in this country the profession are generally persons of far more discretion than to belave themselves after such very unseemly manner. They leave you to have it all your own way ; you may paint, paper, carpet, and do every thing else d discretion, without giving themselves any concern about it. Perhaps they are rather too pococuranti, but then they save themselves a vast deal of trouble, and other persons an intinity of vexation and annoyance. In fact, it is little short of a downright insult to tell people, even by implication, that you consider your taste greatly better than theirs, or rather that they have no taste at all; almost would it be a lesser affront to tell them they have not common sense, nor common understanding. Ne sutor ultra crepidam: let the architect stick to his concrete, his brick and mortar, his columns and proportions, and all the cabalistic words of his rocabulary; perfect ignorance of all such vulgar matters may be confessed not only without shame but with perfect self-complacency, and with a glow of conscious superiority. But to suffer yourself to be dictated to or even guided in matters of taste, is a thing not to be thought of. What, are you such an absolute Goth in your ideas, such a vulgar plebeian in your notions, as not to know, without being told, what is quite comme il faut, and tasty or not?
III. It is very extraordinary-I mean it appears unaccountable, for the thing itself is a matter of course-that notwithstanding the vast number of designs for buildmgs, or of views of them, scarcely one in five hundred shows any part of the interior of a building; so that, did we not know to the contrary, we might suppose that the mansions of our nobility, and all our other edifices both public and private, were merely outside show, whereas many a one which is as plain and uninteresting as can possibly be externally, contains some apartment or other within it worthy of being made known. I question whether there is any ugly house of any size, or one that has acquired a vulgar sentimental notoriety as that in which some poetical luminary was first fed on pap, that has not had its likeness taken, to edify and delight the fanciers of such mawkish rubbish? Besides being a very preposterous superstition, I am afraid that it is one which leads to a very great deal of mystification on the part of those who provide the public with such highly interesting mementos, and who not being always so scrupulous as their customers are curious, manufacture a view of the "House in which the celebrated So-and-so was born," or "died," and pass it off as genaine. Perhaps the house that Jack built, could any one but find out where it stood, would be a greater curiosity of the kind than all the others put together.
IV. Whether it be the intention or not of the Gresham Committee to act with perfect fairness in the competition for the new Royal Exchange, certain it is that they hold out very little encouragement for any one to engage in it. There is not the slightest manifestation of any anxicty to obtain a design of stperior merit-no pledge given that the decision will be according to unbiassed judgment, that that judgement will be not only impartial but most deliberate, and committed to, at least assisted by, those whose opinion will have weight with the public, and who are willing to be responsible for the selection they shall make. Further, instead of anything like readiness being shown in furnishing as explicit instructions as possible-notwithstanding that a positive charge is made for a plan of the site, the information supplied is so vague as to leave entirely out of view nearly all the most important points that require to be clearly understood; at the same time, there is a most extraordinary precision indeed as to others, although they must be entirely dependent on circumstances of plan, for some of the rooms are limited to the esact dimensions of 13 feet by 13 and 6 inches! Does not this look very much as if a plan had been made by some one, and that the sizes of the rooms which happen to be in it, are expected to be adhered to most punctually, no matter whether any other design can be so adjusted as to bring them in without taking away or adding a single inch? To be sure, tolerable latitude is allowed the compecitors in another respect, because the principal area may be about 20,000 square feet, which about seems to imply that one or two thousand more or less will not be regarded.
V. Sufficient distinction is not made between the esthetic value of a particular style, and the listorical interest which may be attached to it ; and yet there may be much of the latter where there is very little of any of the former. Such is the case with Elizabethean architecture ; for thongh the extant examples of it deserve notice, and are not altogether without attraction in themselves, very seldom indeed do they
offer anything worthy to serve as a model ; while modern imitations of them merely give us the uncouthnens of taste they display, without any of the counterbalancing recommendation they possess. By no possibility can any reminiseences of other days be made to attach to a "spick-and-span" new edifice, any more than a lineage from the conquest can be bestowed upon a new-made city knight, tho perhaps does not know, or does nat care to know, who was his grandfather.

What may be venerable in an old country church either for the historical evidence it afforde, or as belonging to the most ancient part of the structure, may ponaibly become barbarously mean whea copied in a modern one. Few things are more disgusting in architecture than the affectation of simplicity,-chan a spruce, pert-looking edifice, impertinently aping the unassuming modeaty and humility of a primitive place of devotion.

ON CHALK EXCAVATIONS.

BY SAMUEL HUGHES, C.E.

Fig. 1. Elavation of Bridge-Section of Bridga.
Pig. 2. Plate of Aberniat.

Fig s. Section of Abutment through \mathbf{A} to B .

Hy. 4. Section of Catting.

[The interior liness show the syntem proponed by Mr. Ractrick, and the exterior shown the syrem of cutting end benching propoeed by Mr Gibbe.]

ON CHALK EXCAVATIONS.

By Samuel huehrs, C. E.

On Crudh Excavations, and the means adopted under different circumsances of intersecting the Great Chalk Ridges of England, for the pmoposes of Raitroay and Conal communication.
The extent and position of the chalk formation in this country are so well known as scarcely to require description. The ridge of chalk surrounding the London clay, and forming the basin in which this latter has been deposited, extends through the counties of Norfolk, Suffolk, Cambridge, Hertford, Bedford, Buckingham, Oxford, Wiltshire, Hampshire, Surrey, and Kent. The entire length of the outer boundary of this ridge from Hunstanton, in Norfolk, to Folkstone, in Kent, is about 350 miles.

At Salisbury two branches diverge from the main formation, the one extending in a south-easterly direction by Winchester, Chichester, Brighton, and Newhaven, as far as Beachy-head, a length of about 92 miles; and the other extending in a south westerly direction to a short distance beyond Dorchester, a length of about 50 miles.

The chalk of Lincolnshire and Yorkshire commences on the north side of the Wash, opposite to Hunstanton, and extends by Scamblesby and Caistor across the Humber, by Market Weighton and North Grimston, to the sea at Hamboro' Head, a length of Ibout 100 miles.

Around the outer side of the London Basin, the chalk, except where broken through by the passage of water, is elevated with a bold precipitous escarpment, whilst from the summit of the range towards the centre of the basin the dip is more gradual. In the county of Norfolk, however, the range is se much depressed that no escarpment is observable.
Without entering into any geological theory to explain the original deposit and formation of the calcareous substance so univeraally known under the name of chalk, it can hardly fail to attract the observation of the most superficial, that the escarpment of the Whole chalk range has formed at some time the margin of an immense lake. It would seem that the water thus bounded has overfowed its benks, carrying with it vast quantities of the material composing the upper part of the range. Thus we find the flint gravel which has been washed from the top of the chalk hills distributed eatirely over the Loidon Clay Basin, and along the southern side of the South Downs throughout their whole extent.

The chalk formation is divided.by geologists into two groups, the upper chalk with flints, and the lower or grey chalk, which contains no Aints. The firestone, although appearing from its position immediately under the lower chalk, to form a part of the same group, is ranked by geologists as the upper bed of the green sand formation, and the propriety of this arrangement will be evident on examining the structure of the firestone: it is evidently composed of an arenaceous grit, and appears not unlike some varieties of the Oolite or Bath stone.

The principed railways which intersect the chalk range of the London Basin, are the Northern and Eastern, the London and Birmingham, the Great Western, the London and Southampton, the London and Brighton, and the South Eastern. Amongst these various lines, my attention has been more particularly directed to those laid out into the south of England, on which a greater extent of chalk country is passed through than on any of the lines in the direction of north or west. The lines to the south enter the chalk at the distance of about 10 miles from London, and continue in this stratification as Gar as the eacarpment of the Surrey Chalk Downs. The line of this escarpment may be accurately traced by the towns of Farnham, Guildford, Dorking, Reigate, Westerham, \&c., the lowest passes in the range between these pqints being at Dorking, the Valley of the Mole, ofherwise known as the Vale of Mickleham; at Mersiham, in Lhe line of one of the present conch roads to Brighton; and at Oxted, where the raad from London to Lewes crosses the chalk.

In addition to passing over from eight to ten miles of the chalk district, composing the Surrey clask range, each of the lines of ruilway proposed between London and Brighton, intersected the South Down range, in which the lowest passes near Brighton, are nt Shoreham, through the Valley of the Adur; at Saddlescombe, a litcle east of the Devil's Dyke; and at Clayton, where the present mail road from Londen crosses the chalk. The lines of Brighton railway intersecting in their course of atrout 50 miles the two most important chalk districts in the country, and passing over not less than 18 or 20 miles of this stratification, will naturally furnish some important information as to the facilities of overcoming, for the purposes of internal communication, the great natural barrier pretented by the chalk ridges of Surrey and Sussex.

Commencing at the northern end of these lines, it has been
already stated that the principal passes in Surrey are at Dorking, Merst fam and Oxted. These ithree passes, with the particular comparative merits of each, have been very prominently brought before the notice of Parliament in the Session of 1837.

The Dorking pass was the one adopted for Mr. Stephenson's Brighton line, in its course from the Southampton Railway by Epsom and Leatherhead to the Holmwood Common, beyond Dorking.

The Merstham pass was fixed on by three engineers, ench engaged for a separate line, as the most eligible for the required objects. Thus the several lines proposed ly Mr. Vignoles, by Sir John Rennie, and Mr. Kastrick, and by Mr. (iibbs, all passed through Merstham, with very trifling deviation from ench other in any part of their course, through the chalk district.

The Oxted pass was adopted for the South Eastern Railway, but this part of their line has been abandoned, and this railway is now to commence by a junction with the London and Brighton at a point between Merstham and Redhill.

It may now be advisable to view separately each of these passes, the first in order being the Dorking. At this place the river Mole forms a complete outlet through the chalk; and as the river rises on the south side of Dorking, and flows over the chalk as far as Leatherhead in a northerly direction, il would seem natural that a line adopting the valley of this stream through the chalk range should encounter no considerable summit in its passage through the chalk. Accordingly we find that Mr. Stephenson's line passed over the London clay as far as the south side of Epson Common, and then ealirely over the chalk to Dorking, without rising more than 160 feet above higlh-water* mark; this simmit occurs at about 15 년 miles from the commencement at Vauxhall-bridge. The works through the chalk are very inconsiderable, with the exception of the cutting on Leatherhead Common; the chalk passed through by this line is remarkably dry, and the firestone and gault brickearit are entirely wanting as they have been broken through by the river Mole, or rather by those waters which on bursting through the chalk originally formed the Vale of Mickleham. The greatest height to which the chalk rises on this line is 230 feet above high-water: namely, in the cutting through Norbury park, where the surface of the ground rises from the river Mole to the height of about 120 feet alove the same, with a slope of not less than 2 to 1.

Of the three lines proposed through the Merstham pass, Mr . Vignoles' rises' to a summit of 304 feet above high-water; the summit on Sir John Rennie's was 324 feet, and on Mr. Gibbs' 281 feet . The highest summit of chalk on Mr. Vignoles' line was 464 fect, on Sir. John Rennie's 435 feet, and on Mr. Gibls' 522 feet. The greater height of the summit on Mr. Gibls' line was occasioned by the direction taken in order to preserve a straight line through the tunnel. The line of Sir John Rennie and Mr. Rastrick, commonly called the direct line, and which, as well known, is now in course of execution under the direction of Mr. Rastrick, was laid out through the lowest ground that could be followed consistently with the nature of the curves, which were limited to a radius of not less than one mile, the intention at the time the bill was before Parliament being to open cut entirely through the chalk district. On Mr. Gibbs' line, however, a tunnel three-quarters of a mile long was proposed, and it being obviously of little consequence how high the summit might be above the tunnel, it happened that the ground through which this was carricd rose to a height of nearly ninety feet above the highest point on the direct line.
The Mersthnm pass has been very minutely investigated, in order to discover the nature of the chalk, and the subordinate beds of firestone and gault. The greatest height to which the gault rises in the neighbourhood of Merstham is 290 feet athove ligh water mark, and the firestone which rests upon it is alout seventy feet higher.
The following are selected from a variety of borings and shafts Which hive been sunk immediately upon the chalk:-

Shafts sunk close to the Turnpike-road at the Joliffe Arms Inn, Merstham, commenced at surface 364 feet above high water mark-

The rock chalk continues-

[^9]Shaft sunk by the side of an old chalk pit, in a field opposite the Star Inn, Merstham, 374 fect above high water. ft. in.

15	0	Strong lumpy chalk much shaken by
4	0	vertical fissures.
4	0	Fine strong chall.
0	2	Layer of plate flint.
7	0	Firm rock chalk.
26	2	

Rock chalk continues-
Shaft sunk at the end of a plantation in the parish of Chipstead on the road from London to Brighton, 320 feet above high water.

ft. in.		
8	0	Loam and fint gravel.
6	0	Clean clayey loam.
3	0	Loam and flints.
23	0	Solid chalk.
40	0	

Rock chalk continues:-
Boring at Dean's Farm commenced at surface 402 feet above high water:-

f. in.		
10	0	Loan and gravel.
21	0	Chalk much shaken.
31	0	

Bolid chalk below this depth.
Boring in Coulsdon Parish commenced 292 feet above high water:-

ft. in. 6 0\quad Chalk marl.		
20	6	Chalk much shaken.
26	6	

Bolid chalk below this.
Boring in a field belonging to Sir William Joliffe in the parish of Merstham, commenced at 375 feet above high water :-

From the above it will be seen that the chalk of Merstham consists mainly of the inferior beds of rock chalk. One of the borings indicates a layer of flint, and this is, probably, the lowest of those layers which are exposed in the quarries of Smitham Bottom, near Croydon. It is true that flints are abundant in the upper part of the chalk, even at Merstham, but they are in a loose, unstratifled state, and have evidently been washed from their natural position, which is considerably higher than where found at present. Below the chalk marl in which the loose flints are imbedded, the rock chalk is at first considerably shattered, but at a greater depth is extremely firm, and might be used for building where it can be protected from the action of air and water.

Numerous quarries are worked in the neighbourhood of Merstham, and the excellent quality of the lime burnt from this chalk is well known. In the quarries south of Merstham the chalk is much shattered by vertical fissures, which appear to separate the whole face into rectangles of about six inches wide. Considerable quantities of debris have fallen from the face of the chalk which rarely stands upright for any length of time. In one quarry which I have visited the depth of chalk is about 60 feet, and the slope nearly one-third to one, and in another, rather nearer to Merstham, but still on the south
side, the chalk face which here also is about 50 feet in height, stands upright from the bottom to within 20 feet of the top. The fire-stone is oltained at Merstham from galleries worked under the chalk, and extending a considerable distance under ground. A large shaft has also been sunk down to the firestone, and considerable quantities have been brought to the surface, and used for the ornamental work of Lord Monson's house at Gatton, from which estate the firestone is principally obtained.

A great deal of discussion arose during the struggle between the various Brighton lines in the session of 1837, as to the best method of forming the chalk excavations. It was argued by one party that a slope of from to 1 , to 1 to 1 should be adopted for the cuttings, white another proposed to make the sides nearly vertical, contending that a slope of one-sixth to 1 was sufficient. A third party proposed a system of benching at about every 15 feet in height, the successise ateps to be vertical, and to be faced with rock-chalk. The accompanying drawing (fig. 4) exhibits the two designs proposed respectively by Mr. Rastrick and by Mr. Gibbs.

Of the Oxted Pass, which was selected for the south-eastern line, I am not able to say much. The Oxted chalk, on the south side of the summit, is of a brittle, friable nature, and does not appear to stand well in the quarries at a less slope than about 1 to 1 . This may be observed in the great Oxted quarries, and in a small pit about 40 yards from the line. The gault lies upvery high beyond the chalk at this place, and several springs may be observed at the junction of the gault and the firestone. Close to the road leading over the chalk hills at Oxted is the celebrated Riddlesdown quarry, the property of Mr. Atkins. The deepest face of chalk in this quarry is, standing at a slope, something steeper than $\frac{f}{f}$ to 1 . The chalk here is in very large blocks, and contains no flints. The frost occasionally brings down masses of this chalk, the face of which, after a fall, presents a rugged irregular appearance, in consequence of the fall. ing out of occasional loose blocks, while others have been too firmly wedged in to be thrown down. In addition to the preceding principal passea, a number of others have been tried, mainly with the object of discovering a spot where the chalk, although rising to a conaiderable altitude, should yet be narrow in the direction of the line intersecting it. Thus, armitting that a tunnel were necessary, it will obviously be possible that the very highest summit of the chalk may be found most eligible, because the ridge at this summit may be narrower and more compressed, thereby occasioning, at the ends of the tunnel, less work than on a line which penetrates a much more depressed part of the range. Although certainly not justified in raging that this condition was answered by any of the trial-lines through the more elevated parts of the Surrey hills, it may nevertheless be useful to record the result of these trials, one of which-the Oxted-has been already mentioned, the others being at Betchrorth, and at Bletchingly. The Betohworth line was intended to cross over a corner of Epsom race-course, touching the park of Baron de Tessier, and thence passing between the villages of Betchworth and Buckland, The summit of the railway in the chalk was 300 feet above high water. The chalk of Betchworth is remarkably dry, and appears to be firmer, and not so much shaken as that of Meratham. With respect to the line by Bletchingly, I am unable to give anything more than the height of the mummit which was tried, and which, in connexion with the approach on each side, was found so comparatively ineligible, that all idea of carrying a line in that direction was immediately absandoned. This summit is at the southeass comer of Platt Green, on the road leading thence to Tupwood Common; height above high water mark, 730 feet.

The first pass in the South Down range which I propose to notice, is that through which the River Adur flowṣ to its embouchure at Shureham. The lines through the Adur valley entered the chalk at Beeding, about 5 miles from Shoreham, and, as the tide flows in the Adur as far as Bine's Bridge, which is seven miles higher than Beeding, it may readily be supposed that the chalk in this valley is depressed to i very uncommon extent. Accordingly we find that the four line9 severally laid out by Mr. Vignoles, Mr. Stephenson, Mr. Gibbe, and Mr. Cundy, nowhere rose more than 25 feet above high water mark in their course through this valley. The general features of a section through this pass, taken in a straight line or a line whose curves are not incompatible with railway travelling, consist of low ground forming the marshes on the sides of the river, alternating with steep banks of chalk which flank the marshes, and which, it may be presumed, presented a greater resistance to the original force of water than the adjoining parts of the chalk which have been swept away towards the ses.

The valley of the Adur affords the engineer many instructive opportunities of observing the conditions under which slopes of chall may be expected to stand, and it may not here be out of place to
recond the result of some observations made to ascertain the practicability of inducing vegetation on steep slopes of this material. In favour of the practice of constructing chalk excavations with slopes approaching to vertical, it has been urged that the danger of alips would be very much lessened, if not entirely removed, were it possible to cover them with any kind of grass, which would have the effect of holding and tying together the minute fractured parts occupying the face of the slope. This notion is plausible, but would scarcely seem to be supported by the state of natural slopes now exFsting, and which, therefore, present an unexceptionsble ground work for judging on the subject. The following are the observations before alluded to. :-

The old Shoreham windmill stands on a summit abont 180 feet above the road to Brighton. The face of the chalk at this place is very ateep and the vegetation is partial; grass, however, whas growing undisturbed at an inclination of 1 th horizontal to 1 perpendicular. On a slope of 1 to 1 , regetation is partial, and in many places the soil has been carried down by the rain, which has formed small gulleys or rarines down the slope. The summit at this part of the chalk district is not mare than 150 yards from the base of the hill, consequently neither the removal of the soil from the face of the slope, the formation of the small gulleys, nor the consequent barrenness exhibited at this place, can be attributed to an extraordinary extent of surface drainage washing over the slope. On an inclination of l_{1} n to 1 , slight patches of vegetation appear, but the grass is very stunted and thinly seattered; while on la slope of 1 to 1 , no trace of vegetable growth could be found. The soil covering the chalk is of a light clayey nature, and varies from 5 to 8 inches in depth.

Gigher up the Valley of the Adur, and nearer to Beeding, the thee of the hills rising from the valley at a slope of three to one is extensively covered with timber. Ash and elms thrive well here, and the underwood is strong and healthy, consisting chiefly of white and black thorn, brambles, elder, and iry, accompanied by nettles, thistles, and strong coarse grass. The chalk in this district is of a rubbly description, full of veins, cracks, and fissures; it is, however, strong and heary, stands well in an upright face, and contains numerous flmts.
As an example of the natural slope of loose chalk in embankments I may mention that, at a considerable excavation near Beeding the robbish or refuse chalk wheeled into spoil, and teamed over head to a depth of fifteen or eighteen feet assumes an inclination of 1_{18}° horizontal to 1 perpendicular. On this slope, which has no covering of soil, and contains no mixture of mould, there are slight traces of vegetation ; it is, however, very coarse and unhealthy in its growth, consisting of a dry brown coloured description of grass, very short and mused with moss. The chalk of the excaration, from which this spuil bank was made, has been worked to a great extent for the purpose of being burnt into lime, the quality of which is excellent. The greatest depth of this excavation is not less tnan 160 feet, with a face which is nearly upright, and which stands well, although the chalk is by no means so firm and compact as in some other parts of the range. The fissures are numerous in this pit, and parallel veins of flint traverse it nearly horizontally at unequal distances from each other, varying from 3 to 7 feet. The upper part of the quarry, consisting of chalk marl and chalk much broken and very tender, stands wcll at 6 finches horizontal to 1 foot perpendicular.

The Saddlescombe gap is the next in order proceeding eastward; and in thls place, following the lowest ground in the valley, the chalk summit does not exceed 380 feet above high water mark. It was found, however, from levels taken through this gap, that a line entering the chalk range boldly at one of the highest points of the range, namely, at the Devil's Dyke, a little west of Saddlescombe, encountered less of difflculty and heavy work than a line through the gap. This result became evident on discovering that in either case a tonnel would be necessery, and that the ground beyond Sadalescombe gap is not so much depressed as two valleys or bottoms leading from the soath side of the Dyke. It was therefore decided by Mr. Gibbs, who surreyed the country in this direction, to adopt the Dyke line passing on to Brighton, to the enst of Hangleton, through Goldstone 1...iom. The summit of the chalk range at the Dyke is 640 feet above high water, and the summit at the railway was to be 141 feet, at a polnt about a mile beyond, or south of, the highest ground intersected by the line. The gault brick earth at this place extends as Gar south as the village of Folking, rising to a helght of 190 feet above high water mark, and the fire-stone resting on the gault is 216 feet above the same level.

The next pass in the chalk range, namely the Clayton, is of con-- dderable tmportance, as the line of Brighton railway sanctioned by Parliament interrects the South Downs at this place. The summit of Clayton Bill, under which the line passees, 18460 feet abore bigh
water mark, and the summit of the railway itself in the chalk district is 212 feet above the same level. The fire-stone is either very inconsiderable in depth or is entirely absent at Clayton, and the junction of the gault with the chalk takes place at a point opposite Clayton church, about 245 feet above high-water mark. A boring made in the parish of Piecombe, on the north side of the chalk summit, entered the chalk at two feet below the surface, and passed through solid chalk for 55 feet when it was discontinued. Also a loring on the south side and in the same parish, entered the chalk after passing through 9 feet of chalk wash, and was continued through 20 feet of chalk, the same stratification existing for a considernble depth below. In the chalk quarry at Clayton Hill, there is a considerable quantity of débris at the bottom, and the average slope of the face is s to 1 , although it presents surfaces varying from the perpendicular to a slope of 1 to 1 . The chalk cutting on the turn-pike-road over Clayton Hill is 45 feet deep, with slopes of 1 to 1 . A chalk pit close to the road, and opposite Pangdean farm, is from 35 to 40 feet deep, and the chalk here, although it does not stand well, preserves a steeper slope than the Clayton quarry already mentioned.

The chalk of Clayton and the neighbourhood is exceedingly dry and hard, but much shattered. The fissures seem to have rent the face of the chalk into a serics of long-shaped pyramids, with the apex uppermost, and would appear to have been caused by the same upheaving force which has so extensively operated on the whole chalk stratification of this country.

As connected with the subject of the South Down chalk range, I may briefly notice the pass of the proposed south-eastern Brighton Railway. This line was intended to enter the chalk range at a point called Mount Harry, and to proceed by Falmer to Brighton, with a summit of 192 feet above high water. Not having seen this part of the range, I am unable to say anything from personal observation as to the nature of the chalk. It appears, however, from the evidence of the witnesses called in support of the line, to be not unlike that of Clayton.

Having now exhausted my stock of information relative to the South Downs, I purpose to make a few remarks on the chalk of Kent, which may be said to comprise the south-eastern arm of the London chalk formation. An extensive chalk cliff is exposed along the coast from Folkstone away to Dover and the south Foreland, in the course of which are many interesting and well-known points. The celebrated Shakspere's cliff, from which a very extensive fall has lately taken place, was a very bold projection with a face nearly vertical to a height of about 60 feet above the beach. While beyond this height, the slope was nearly $\frac{1}{z}$ to 1 . The flints are almost cntirely wanting in the chalk of Shakspere's cliff, the upper mass of the cliff appearing to be composed of hand nodules of chalk, imbedded in a matrix of finer and whiter chalk, which serves to cement them together, thus forming a very close and compact substance. In the upper part of this chalk there is little or no stratification visible, there being no partinga, as in the grey chalk. The lower stratum of the cliff consists of grey rock chalk. Where fissures appear on the face of the cliff, they are almost invarisbly in the pyramidal form, already mentioned in describing the chalk of Clayton.

It is well known that the South Eastern Railway passes along the edge of the cliffs, from Folkstone to Dover, by means of galleries and archways; a mode of execution which seems to be unrivalled for cheapness and facility of execution. The works on this part of the line hsve been so well described in some periodicals of the day, that it will be unnecessary for me to do more than allude to them.

Numerous excavations in the chall may be secn around Dover, a few of which it may be interesting to notice. A little above Archcliff Fort there are 5 caves dug into the chalk, the roofs and sides of which appear to stand well without steining, except that the roofs have slighty scaled away up to the first course of flints. Thesc eaves are about 18 feet high by 20 feet wide. An open cutting in this place, about 45 feet in depth, stands nearly vertical and presents numerous layers or bands of flint running parallel to cach other about 4 feet apart. Under the castle cliffs on the east side of the town is a well, sunk by a builder, where it was necessary to stein the sides, as the chalk was too faulty to stand without this protection; and I believe I am right in saying that the chalk is nowhere standing in any of the military works around the town, without a facing of brickwork or of turf strongly picketed. Some very large falls of chalk, probably not less than a 100,000 tons, have at various times come down on the enst side of Dover.

The South Foreland is a very remarkable face of chalk, which appears at a distance to be nearly vertical, but on approaching more closely is found to slope about 1 to 1 . The height is about 350 fiet,
and a considerable quantity of debris has fallen to the base of the cliff.

In the neighbourhood of Chatham are several chalk excavations, but none so extensive as those at Dover. East of the town on the road to Maidstone, a cutting of about 30 feet in depth stands nearly vertical. In the fortifications of Chatham, most of the chalk, as at Dover, is faced with brickwork. One excavation, however, forming a gorge from the river to the crest of the works, has been cut for some distance without facing, with a slope of $\frac{1}{2}$ to 1 , in depth about 40 fect; another part of this gorge is faced with brick, the same slope being preserved.
The principal canal with which I am acquainted passing to any extent in the chalk formation, is the Thames and Medway, which is formed from the village of Higham, to its termination at the Med. way, a distance of 2 f miles, by means of a tunnel almost entirely through chalk. In the open passing place on this canal, an excellent example is seen of a chalk cutting, executed with a steep slope. A good deal of peeling off has taken place here, and as this assertion has been disputed, I beg to state a fact corroborating its accuracy. A small piece of brickwork, perhaps about 10 feet square, has been built on one part of the face, and when I visited the place on two occasions about two years ago, the brickwork projected at least 6 inches from the face of the cutting, although when first built it had no doubt been flush with this face. Hence a very clear proof was obtained that the chalk here had scaled off at least to the width of 6 inches. 1 may add, that l have been informed by a gentleman who has seen the place within the last four months that the brickwork had then fallen down, and that the chalk had very visibly wasted since our first examination two years ago. Extensive chalk-cuttings are exposed at each end of the tunnel, namely, at the Friendsbury entrance, where the cutting is nearly upright, and at Higham, where the cutting is also nearly vertical, but more detritus is seen at the base here than at Frindsbury. All these cuttings are in the upper chalk, in which plates of lint occur at short intervals.

The famous quarries of Northfleel and Greenhithe are well known; in the former of these 1 witnessed the only instance that ever came under my observation, of chalk standing perfectly upright without any appearance of scaling on the face, or of detritus at the base. This, however, may certainly be seen on each side of a short road leading from the London road into the Northfleet quarry, which stretches down to the river. The depth is 30 feet, and the sides are quite upright, with a greenish timeworn appearance. One place in the quarry is 90 feet in depth; the chalk has scaled and formed débris at the base. This chalk has few fissures, and contains many flints in the upper part, the lower being very hard and fine. The average depth of the Northfleet quarry is about 70 feet, standing nearly upright, and upon the whole with little debris at the base, considering its great depth.
The Easter quarry at Greenhithe is 87 feet deep, nearly upright, with rather more debris than at Northfleet. In some places round the sides of this quarry, where ancient fissures have been filled in with gravel, considerable falls have been brought down, probably by the well-known action of frost behind the mass.
The Western quarry has a face of 80 feet, standing upright. but much debris occasionally falls. It is difficult in these quarries to estimate the annual wasting of chalk by scaling or peeling off, because in many cases it is frequently removed, and it becomes quite uncertain whether the observer is witnessing the accumulation of only a few weeks or that of as many months. The top of this quarry at Greenhithe is covered with a bed of loamy gravel, which has filled up occasional cylindrical wells in the chall of small bore to the depth sometimes of 40 feet.
The nature of the decomposition which operates so extensively on many kinds of chalk, has been the subject of great variety of opinion, and, ns bearing on this question, I take the liberty of pausing here to draw an important inference from the observations above described on the chalk of this district. Excavations partly composed of the upper chalk with flints, and, towards their base, of the lower or gray chalk, will best illustrate the position I am about to advance, namely, that the decomposition almost entirely takes place in the lower chalk, and not in the upper chalk, with flints. It will be remembered that the only instance I have described of an upright cutting, without detritus at the base, was at Northfleet, where the depth was only 30 feet, while at other spots close by, where the depth was 80 or 90 feel; considerable quantities of debris have fallen down all along the face. From almost every instance 1 have been able to observe, I think it clear that the upper chalk with Pints, where not much shaken, really will stand upright without scaling. At the same time, it is no less certain that, below a particular depth, the chalk undergoes a very apparent and extensive decor position, and, in many cases, presents a base visibly hollowed out.

It may be difficult to fix, in every chalk excavation, the neath which the decomposition is so evident; but, in the N \mathcal{S} quarries, the line appears well defined by a curious and rene regular plate of flint, which extends all round the faces quarry, and which is considered identical with a similar pl a layer, seen at both ends of the Thames and Medway Canal T^{3} and in the open cutting for the passing place.

It is hardly in accordance with hitherto received opinions on the subject of chalk cuttings, to say that these will stand better in their. upper than their lower beds, and yet the result of every observation made on the chalk of Kent, leads positively to the conclusion that the superior beds of chalk are less subject to decomposition than the lower. Instances in proof of this may be seen at Dover, parties carly on the easter side of the town ; at Chatham, in the military works; at Rochester, and the other entrance of the Thames and Medway Tunnel; and at the quarries of Northfleet and Greenhithe.

In considering the nature of chalk decomposition, it is necessary to distinguish this from the falling of chalk which is shattered by vertical fissures. In the latter case, large masses fall down, when loosened by high winds, or slightly burst by frost; but the regular decay of solid chalk arises from the peeling off or scaling which takes place on the face. This is almost invariably observed below the flints, and is evident when very white spots are seen on the face: from these spots large flakes or cakes of chalk have fallen down to the base, and although these are inconsiderable in thickness, sometimes not more than an inch, yet the frequency with which they fall renders this a source of very extensive decay.

Having mentioned the various railways intersecting the chalk in other directions, as well as those in the south of England, I must now explain that, with the former, my acquaintance is very limited; and 1 consider it more respectful at once to confess my inability to say anything useful of them, than to attempt any review from such imperfect means as those in my power. A few remarks, however, on the chalk-cuttings of the London and Birmingham Railway, the only other line of which 1 can speak from personal observation, may not be entirely uninteresting.
The Chalk of Wat ford Tunnel is very son and white, with nomerows layers of flint, and much saturated with water, in which respect it differs from all the former kinds of chalk I have described -there being all remarkably dry, at least as deep as they have hitherto been explored. At the northern end of Watford Tunnel is the same soft, white chalk with flints. The slope from the base is $\frac{1}{3}$ to 1 , until within 15 feet of the surface, when the slope is increased to If to 1 .
The cutting near Cow Roost consists also of very white chalk, much saturated, and the slopes are $1 \frac{1}{4}$ to 1 , in 25 feet cutting. Further on the line, in a cutting near the road from Trig, the lower gray chalk occurs in moderately sized blocks. The cutting at the north end of the short Tring tunnel, consists of chalk, chalk marl, and a little gravel. The slope, which is $\frac{3}{4}$ to 1 in 35 feet cutting. stands well, and the chalk appears drier than in some of the cut ling* nearer London.
The saturation of the chalk on this line is occasioned by the albi. tide of the gaunt brick earth, which lies up very high in the neighbourhood of Ivinghoe, and dams back the water, which cannot eecape from the chalk at a lower level than the top of the gauls The Birmingham Railway, it is well known, passes through the chalk in the same valley as the Grand Junction Canal.

Having already submitted an opinion relative to the position of the chalk which is most calculated to stand with an upright face, I would, however, in this respect, make a great distinction between the chalk of different places. The inferior beds of chalk are mach more shaken in some districts than in others, and even in compostion the gray chalk comprises several varieties, as will readily be seen on comparing the chalk of Shakespere's Cliff, at Dover, with the chalk (of corresponding depth in the group) at Merstham, and elsewhere. When the lower chalk is much shattered, the face is only prevented from giving way by the system of mutual dovetailing. occasioned by the pyramidal form of the fractured blocks. The angles of one block abut upon the angles of another, and, provided the base be firm, the whole will stand for some time. But it. will be evident that this support must fail when the angles become wore down, as they constantly do become, by the process of real decompositimon. Large falls may now be expected, and I believe that these are the circumstances under which the lower chalk, when much shaken, invariably gives way.

It seems very reasonable, therefore, that the system of facing the chalk with a thin wall of brick, or of any kind of building or ruble stone, should afford protection against this danger. At present 1 believe there are no examples of chalk-cutting with the sides upright and faced in this way, but it will be highly useful, at some future

[^10]

[^11][^12]period, to know the result of some trials of this kind, which will certainly be made on the chalk of Merstham and other places. With respect to the lower chalk which is not slattered, there can be no doubt that the form of decay here presented, and which consists of the scaling off on the face, would be prevented by the facing already alluded to.
In concluding this paper, I trust it will not be considered that I am departing from the object I commenced with, in submitting the accompanying design (fig. 1), for a bridge across a chalk-culting, in which is shown the method of facing the sides of the excavation, and forming a succession of retreating benches as proposed for one of the Brighton lines of railway.

I would submit, that the arch of this bridge may be turned without centreing, and the bridge entirely built, before the ground below is excavated. The foundations must of course be first cut out, and the abutments carried up to springing height; the ground must then be cut, levelled, and made smooth to the required curvature determined on for the arch, and deal battens laid down as on an ordinary centre. On these the arch may be turned; and it is evident that much expense would be avoided, both in the saving of centres and seaffolding, and in the superior facilities of carrying up the whole building on solid ground.
London, March, 1839.

SAMUEL HUGHES.

PUBLIC COMPETITION.

As public competitions for architectural designs are now becoming more noticed than they have hitherto been, and the public appears to have awoke from the slumber so long quietly enjoyed, 1 send you some observations on the manner usually resorted to by the committees, who bave the management of these subjects. First, we will premise chat in some town, no matter where, a few individuals, frequently a solicitor or proprietor of land, (for almost all great projects originate in the first instance from interested motives in the projectors,) conceive the idea of erecting a magnificent building, a Town-hall, a Theatre, an Exchange, a Church or other edifice. Over a glass of wine, of in this Teetotal age perhaps a cup of tea, the first formation of the project is concocted; each individual present canvasses his friends, to form a committee, and not the least inportant, to elect certain officers for the management of the establishment; this done, a spirit of disinteresednes immediately pervades the whole assembly, and it is unanimously resolved that after certain funds are collected, the committee all adrertise for plans for the intended building. So far it is well eneugh, aud no blame can be attached to any of the members as far as this commendable self-interest goes; up to this time no deep science, except that of arithmetic, is called into operation-but here terminates generally the power to do justly, even upon the principle of self in. terest. Well, a large sum is proposed to be laid out, the time is stipulated for sending in the designs, and, as a bait to the unwary, premiums are offered for some few, very few, of the best productions-that is the best productions, in the eyes of the committee : this appears fair enougla so far. But when we ask, who the committee are composed of, we obtain such an answer as I received from Liverpool when I put that query to the committee for St. George's Hall; a few words from that leter will serve as a general precedent to committees in answer to too inquisitive architects ;-but before I give this extract I will just state the manner of proceeding of the St . George's Hall committee; at the same time let me be distinctly understood, that I do not mean in the least to imply that that committee mean to act unjustly, or that they are not qualified for their office, I merely take it as an example of the donbtrulappearance they voluntarily throw over their own proceedings, arising from the want of openness and candour in not publishing the names of the committee, so that architects may have an opportunity of forming an opinion how far-not from their situation in life or respectability alone, but from their education and information-such iodividuals are duly qualified to set in judgment on an art which requires the closest application and deepest study for years on the part of its professors.
The 6rst intimation which I had of the proposed erection of St. George's Hall was a plan (with printed resolutions and instructions to arclritects) from a committee, which was sent to me by post, but without any name to it, except that of the printer. The printed plan and instructions are very well as far as they go, except as to the time specified for sending in the designs, which is so very limited that, unless competitors neglect a certain business for an uncertain one, the drawings cannot be prepared with that attention which a bailding of this extent demands. Immediately after the receipt of the printed instructions, I wrote to the Chairman of the coramitree-for I did not then, nor do I now know his name-to requent be would give me further information on the subject. In this
letter I referred lim to the report of the Royal Institute of British Architects, and quoted the queries therein named, together with some others I thought necessary. The queries are as follows :-

1. By whom are the designs to be examined and selected P
2. Have any designs been laid before the partics previously to the competition being proposed ?
3. Have the parties any architcct, or porson professing to be an architect, in their employ ${ }^{9}$
4. Will any weans be adopted to ascertain that the designs can be executed for the sums estimated ?
5. Will the parties undertake to lay aside all designs, which cannot be executed for the sum estimated?
6. Is it the intention of the parties at ouce to exclude from the competition all designs not in strict conformity with their instructions in every respect?
7. Will the architect whose design is selected be cmployed to execute the work, provided his character and standing in the profession is such as to render him unexceptionable?

To which letter I received the following reply:-
Liverpool, 14th March, 1839.
Sir,_Our answers to the queries of your letter are an follow:-

1. By the committee; a body of gentlemen of the first respectability in Liverpool.
2 No.
2. See ninth paragraph of the printed particular.
3. See ditto ditto.
4. It is.
5. Most probably.
6. Firat part-No. Sccond part-Yes.
7. Two premiums- 260 guineas and 150 guineas. (Soe advertisemont in London papers.)
8. Good; no unusual expenditure.

I am, Sir, your very obedient servant,

$$
\left.\begin{array}{l}
\text { E. G. Deaney } \\
\text { Thos. Haryey, }
\end{array}\right\} \text { Sec. }
$$

E. B. Lamb, Esq., Architect, 25, Henrietta-street, Bruns wick-square, London.

It is evident enough how very onsatisfactory the first answer is. Respectability is certainly an important part of the qualifications of a committee-man, but that it implies intuitive knowledge in architecture I think may be doubted. It would be a novel mode of proceeding if a lawyer were applied to to sit in judgment in a surgical case, and it would be equally novel for a surgeon to usurp the powdered wig and gown of an advocate; yet in neither case is it necessary to have a nnowledge of the principles of tasto as well as practice. Yet in architecture a committee is formed of respectable persons, without any previous acquaintance-the subject to sit in judgment upon probably 80 or 100 different designs, comprisiog perhaps nearly 1,400 drawinge. If they are not in the first instance bewildered by the confusion of mubjects before them, and at once get out of their difficulty by applying to a well-known architect for a design, instances of Which have more than once occurred, they perhape form their opinions from a showy design, without taking into consideration the correctuess or incorrectness of the architecture, the practicability of its execution, the convenience of accommodation, or the likelihood of its being erected for the sum specified.

I will now only call your attention to the 7 th query, and answer. The query is sufficiently explicit to expect an unqualified reply, yet we have one, considering the want of candour apparent in the committee, of a very suspicious nature. I do not for a moment doubt the respectability of the committee; but they appear determined that no influence of any kind shall bias them, not even that of an inquiry i they are acquainted, as amateurs, with architecture.

The remaining answors relate merely to unimportant questions. I may just state that the advertisements did not appear in the papers until some days after I had received the printed instructions; at leant I did not see them.

After a lapse of some time I found that other business prevented me from time to time giving that consideration to the subject, which its importance required, and apon calculating the time it would take to prepare the necessary drawings to my own satisfaction, and without great inconvenience and loss to myself, I determined to Frite again to the committee for an extension of time, and also to recommend a pablic exhibltion of the designs previonsly to any decision being formed by the committee; a copy of this letter is subjoined :-

Oht April, 1859.
Gentlemen,-I beg to thank you for your reply to my letter of inquiries relative to the 8 . Gearge's Hall, Liverpool, and 1 truat you will accept any apology for again tronbling you; but I am now about to ank a greater frour, and one that, if granted, will be a boon to the profeation, Who are about entering this competition-mamoly, for an extenaion of the
for sending in the designs. And when I point out to you this necessity for doing so, together with the benefit which must be the result to the committee, I hope it will not be considered an idle request.

From the printed particulars furnished to architects by the committee, it is evident that the designs cannot be completed with fewer than from twelve to fifteen drawings, nearly all of which will require to be drawn on double elophant paper ($3 \mathrm{f} .4 \times 2.2$), since the requisite subjects will probably be as follows:-Ground plan, one pair plan, two pair plan, at least three or four elevations, three or four sections, and one or iwo perspective views. This is the smallest number of drawings which will be necessary, in order fully to explain each design. Now the actual time for the mere labour of making such a series would bo at least from thirty to forty days; while to prepare an estimate and description would occupy at least five or six day moreso that from five to six whole days would be required for this purpose alone. The most important part of the task, which I have not get mentioned, is that of preparing the design itself, preparatory to making fair transcripts of the several parts of it, the time requisite for which it is utterly impossible to state, since it must depend entirely upon the study beatowed by each individual in maturing his first ideas. In some cases, therefore, this preparatory labour may be very considerable-in others, exceedingly little : almost the very first ideas that happen to present themselves being adopted and proceeded apon at once, however stale and common-place they may be in themselves. Consequently, if inadequate time be allowed for duly considering the subject, little more perhap than could, without inconvenience, be spared for merely making out fair copies of the original sketches, many architects will, on that account alone, be deterred from entering into the competition, feeling that unless they should happen to succeed entirely to their own satisfaction in the very first linatance, they would have no time for reconsidering or correcting any of their sketches-probably be compelled to let pass many imperfections they would aftervards detect. It is hardly to be supposed that any member of the profestion, who has any praotice at all, can devote the whole of his time to works where the chances are a hundred to one againat his auccess; therefore, if the committee require designs from men of experience as well as from the juniors, they will at once see the necessity of an extension of time.

I am aware that a single application of this nature will have but little Weight; but from the conversations I have had with several members of the profession, I am induced to think that the majority, if not all, would feel benefited by being allowed more time for preparing their detigns. Yet if none applied, there would be but little hope of obtaining this boon. I peed hardly state, that the committee wenld also be gainers in the like proportion; as a work of such magnitade requires the greateat deliberation, not only on the part of the architect who produces the denign, but aleo on that of the judges who hare to determine upon its meritu.

I therefore beg to anggent, and I do wo with the greatest deference, that immediately upon the receipt of all the drawing by the committee, they should be thrown open to the public for exhibition, for at least one month previously to any decision being formed by the committee. This is a request (and I put it mont respectfully) the profession hare tome right to expect would be acceded to, as they could then look with the greatest confidence to the ultimate decision of the committee, and it would be an evidence to the public of their disinterested motives; it would be also an honourable precedent for all future competitions in the kingdom: and, by the confidence which it would be gure to establish, be the means of calling togetber a greater number of the profession than any public competition hitherto known. What has lately taken place with regard to the Neleco Monument, is an example that ought not to be thrown away; and indoed the eyen of the public are now beginning to be so opened by it, thet, eooner or later, I am convinced, not only a public exhibition of all the desig口as, but one previous to any premiums being adjudged or selection made, will be eatablished as a matter of course in all architectural competitions of any importance. The opportunity now prosents itself to you of letting the town of Liverpool be the firit to originate so exceedingly salutary a system, -one fraught with numerous benefits to ell parties concerned, but to none more so than those whose interest it may be presumed it is to obtain a design which shall have stood the test of rach public ordeal, and obtained the greater number of suffrages from persons of experience and taste, and uninfluenced by other bias then the dewise of obtaining such a structure as shall reflect credit on their townemen. Amons the minor advantages which would in this case attend soch exhibition, would be, that it would attrict numerous members of the profestion, both frone the metropolis and from other parts of the kingdom.

May I beg the favour of your laying this letter before the committee as early at possible, and truating they will give some consideration to the obsorvations which it contains, and whiting their decision,

1 am , Gentlemen, tc.

Mears, Deane and Harvoy.
 I again wrote the following :-

GENTLentan,-A short time beck I mote to you respecting the public cos petition for the erection of St. George's Hall, Livarpool, and not having received any reply to that letter, I am again obliged to trouble you with a requent that you will be kind anough to atate whether the committee have deemed it of sufficient importance to tete into consideration the subjects therein contatred. I shall fecl obliged by yeur reply within mext week, of I tin ibout pablishing some obsorvations of public competitions, and wish to neme this wongat others in the course of those observations. If feel that it is necentery to epologise for giving you so much trouble, but on a subject of 50 such fiterctit to the pros
fession, and to the public at large, I am sure you will readily gramt ana excuse.

Mesars. Deane and Harvey.
And, after waiting without any reply, received the following :-
Liverpool, May 4, 1859.
Sir,-In reply to yours of the 3d, we beg to state that we answered yours of the 9 th of March on the l4th of the game month, and have not reccived any communication from you since, excepting your letter of yeaterday.

If you will refer to our letter to you, dated 14th March, we think you will find that wo there answered all your inquiries; but if you wish aty citer information which it is in our power to give, we shall be meat lappy to dent it you.

We remain, Sir, your very obedient servant, $\left.\begin{array}{l}\text { E. G. Drane, } \\ \text { Thos. Hasvix, }\end{array}\right\}$ Gee.
E. B. Lamb, Eeq., Henrietth-street, Brunswick-tquare.

I insert this letter as a liok in the chain, and to show the remarkable circumstance of mine net reaching its destination. The litale hopes I had entertained of having my request acceded to, were not fled ; but as I still fe!t interested in the subject, I determined to write again, and send a copy of my letter of the 9th April. The letter ac. companying that, is as follows :-

$$
\text { 7im May, } 1890
$$

Gentlemen,-I received your letter of the 4th inst., and am greaty marprised to find that you have not received mine of the loth of April. As this appears to be caused by the neglect of the postinan, or other person concermed in the delivery of letters, I purpose making inquiries at the General PetOffice on the subject, particularly as the letter hai not been retnmed to mothe course nisully adopted when letters have not been delivered as directed. I send you a copy of the letter,

Mevars. Deane and Harrey.

This letter produced the following reply :-
Liverpool, 8th Mey, 18en.
Sra,-In reply to your letter of yesterday, we beg to inform you then, poin further search, we find your letter of the 9th of April wes duly receivel, en laid before the committee, who came to a resolution, after much dellberition, that it was inexpedient to prant any extension of time. The other nalject mentioned in your linter (the public exhibition of plans) is a matter ith the fature conalderation of the committee.

We beg that you will accept oar apology for the mintentional sepiect af Which we were guilty in not answaring your letter of the 9ih Apri, asal whe for the equally uaintentional error which we committed in station ehret it ha
 ject from Mr. Donaldeon, the Secretery to the Royal Iacitate of Britist Andbtects, and they were both laid before the committee without dolay. Their determination wes communicated by us to Mr. Donaldeon, and me were under the impression that it had been communiated to you also; but it ment we wers in error.
We trust you have had no further trouble about it ; and remath, Sir, rempetfally, your most obedient servants,
$\left.\begin{array}{c}\text { Evw. G. Drase } \\ \text { Tros. HaEver, }\end{array}\right\}$ Eee

E. B. Lamb, Eaq., 25, Henrietta-street, Brunarich-squite.

It is certainly a singular coincidence that a letter which could scareely be forgetten on an occasion of this nature, should happen to be sombin placed as to prevent its being answered, but I beg most distiactiy to state that I perfectly agree with the writers, that the neglect is unintentional ; at the same time, I may with justice add, that this sort of meglect is not an unfrequent occurrence with committees and thele ofees Other instances might be named where plans have been laid aside and entirely forgotten by the committee.

I have now laid before you the usual kind of correspondence which takes place between architects and committees, and I think, apon the slightest consideration, it will appear who are the most benefited parties. I do not mean to impugn the Liverpool committoe, 1 Eerely take them as a sumple of the apparent openness and disinterestedaed of such bodies. Can persons so constituted reasonably expect ardis tects to enter into a competition, when they withhold that evidene of their fair intention, which ought to appear, by not publishing ther names to their papers, so that architects should be as able to form an opinion of their being fully qualified for their duties, as it should be evideut to them that architects are qualified for theirs. In the presoat state of competition committees, it is of amall importance whocher the architect wastes his time in bestowing deep study on his detim, or merely commits to paper the most commonplace ideas; for the Fite knowledge of the subject usually shown by the judges, is insuriaient to diacriminate between genius and mediocrity. If any one will wie the trouble to inquire, lie will find this opinion fully bome ont wh out depreciating the talents of the commistee. An instive of thin natare occurred some time ago in the parimit of Followis a swo churches Fere to be built, and were duly advertied in the an
way for competitions; mottoes, not names, were to appear, and every appearance of fairucss was shown by the committee. At that time I happened to be transacting business with one of the committee, a clergyman of perfectly unimpeachable character, and in the course of one of our business meetings, I asked him who the commitlee for the erecting the churches were; he mentioned several names of the highest respectability in the parish, but when I asked him by what qualification they acted, he admitted that not one of them was sequainted with the subject ; and the result of their deliberations is the production of the two new churclies, one near King's Cross, called Gothie, and the other near the North-road, called Grecian. I adait that the limited funds would not allow of much display ; but although a man may wear a shabby coas, it would be in better taste to put it on the right way. This is ouly a trifling one, among innumerable instances of this nature.

1 will now turn from this subject to another of more importance, but with less promise, nargely, the Royal Exchange. A cony of the adsertisement of the Joint Gresham Committee I seo is placed in your last number, with some observations, to which I beg to add some others.

It will be needless to comment upon the shabby commencement of this committee, by requiring a fee for the necessary instructions, ss every architect who enters this competition must lay out a sum of money that one pound would be but a trifle to complain of. I pass orer the resolutions, till 1 come to No. 10, which awarils three premiums ;-300l. for the best design, $200 l$. for the second, and $100 l$. for the third. Then comes a siy kick at the competitors. "The succerssful competitor to whom the first premium is awarded, shall not be considered as having necessarily a claim to be entrusted with the execution of the work ; bat if not so employed, and his desipns are carried into execution, a further sum of 5001 . shall be paid to him, the committee retaining possession of all the drawings for which the premiums have been given." So if they, in their mature judgment, fail in discorcring a single design with merit enough for execution, they consign the three successful designs to some successful operator, to be compennded according to receipt-at least, this is the inference any impartial person would put upon this clause At the end of the 13 th elanse comes a list of rooms with their dimensions, but what these rooms (41 in number) are for, the architects are to guess; three, I Lave understood, are for three companies, but what companies we are not informed; and as the other rooms are without names, they mav De fited up as baras or drawing-rooms, at the discretion of the architects, for the Gresham Committee appear to have very little dlscretion upon the anbject. Who are the Joint Gresham Committee? Echo anowers "Who ?" At the head of a public charity or city feast, men do not appear to be ashamed of their names; because, in the latter inatance at least, they are fully qualified to discuss the merits of the subjecss before them. But where architects only are to be dished up, and where the mind is to form a judgment of a liberal profession, they shrink from publlcity. Can it be that they are aware of their own inablity? Can any man in his senses be induced to join a committee, and rote for what he is totally unacquainted with P Who are the Joint Greoham Committee P I ask again. If they are acquainted with the cubject, surely they ought to be the first to show that confldence can be placed in their judgment; for who but those engaged in the atady, though only as a recreation, can have the least idea of the intricacy and dificulties of forming a just decision? If men of this standing were sotne of the judges, and the profession were aware of it, immediate condedence wonld be placed in them; for what honest man would decide against his own character?

I make no comment on the last paragraph of the instructions-it is sufficient in itself to awaken suspicion in the breast of the least sceptical.

What is to be done in this case? asks almost evory architect. Agitate, agitate, agitate, say the reformers of a aystem notorionaly bed-to bad, indeed, that the committees themselves would be glad to get out of the dilemma. But how ? Fint, you acknowledge yourmelven incompetent, being unacquainted with architecture.
"Bat we know no amatears to help us." Then apply to known professional men who are not compotitors, and who have no more fotereat in the matter than the fees which you give them for an opinion, a repert, fo fect, in writing. But this report shonld not be entered into votil a public exhibition of all the designs had taken place, and suffedeat time allowed for the public to form an opinion; and if, during that exhibitlon, a time was set apart for the judges to frame their report end have it publlahed, the exhibition stlll being open, the competisers would have an opportunity of refating the opinions of the jadgen, if nectuary; the problic would be called to the subject, and would get botter initiated into the art; the profession would be great
gainers, but the result would be most in favour of the public. Every other profession is jadged by a professor, or at least by one acquainted with the subject : few men bay pictures without the advice of a connoisseur ; few, indeed, go to law without a lawyer; some, but very few , take medicine without a doctor's opinion; but as to architectural knowledge, it is innate with evcry one, and thousands upon thousands are squandered away, more to the satisfaction of the builder than the employer.

Another thing I would strongly urge, and for which a competent committee would see the necessity, is, that ample time should be allowed for preparing the designs. We might almost suppose that architects, like vutfiters, kept a stock of designs on band, ready for any emergency, if wo may judge by the time in which they are ex pected to be done. Some good regulations have lately crept into the instructions given to architects; for instance, the scale has been determined, the style of arehitecturo in some instances, the manner of finishing, and the number of perspective views have been limited. These are good regulations, but of little avail if the judges are unacquainted with the subject. There are a few things in addition to full instructions required to constitute a fair competition satisfactory to all parties.

1. Competent judges.

2. Ample time for preparing the design.
3. An cxhibition, previonsly to any examination, by the judges
4. A published report, with time for refulation, if necessary.

These it is within the power of every committee to grant, and they cannot be considered unreasonable for architects to demand; and when it is considered that every architect devotes great time and atudy to the subject, and has spent the greatest and best portion of his lifo In acquiring the knowledge be posseasea, if he feels a little irritated by the way in which his labours are sometimes treated, it may more frem quently be laid to injustice (unintentional perhaps) than disappointment.

It is granted that no measure of efficient reform in the present system of competition-a system which leaves open the door to all kind of unfaimess and intrigue, can be devised that will not at first be attended with some difficulty, and require some energy; yet that is no reason wherefore no remedy should be attempted to be applied; on the contrary, the strongest reason for our setting about doing it at once, instead of procrattinating, and thereby suffering the evil to become more and more inveterate. In fact, if the opportunity which now presents itself for bringing about such very necessary reform be suffered to pass by when so much has been sald upon the subject, and after some little beginning towards it has been made, as far as regards the public exbibition of the designs for the Houses of Parliament and the Nelson Monument (though not in that stage of the proceedings where such pablicity would have been most serviceable), the chance of any reform at all will become hopeless, and matters will be allowed to fall back fnto their oid course; for it is not very likely that either in the present or the next generation, will the profession be called upon to compete for a work of similar magnitude and importance to that of the Royal Exchange.

It is hoped, therefore, that the Gresham Committee will pay some attention to the remonstrances which have already been made by individuals, and that the profession may receive satisfactory pledges that the strictest impartiality shall be accompanied by the most deliberate judgement. Of course a public pre-eximition should be granted as a sine qua non; since that withheld, the main security for the rest is taken away ; while that granted, it will almost of itself insure impartiality and mature consideration. Another and not the least advantage would be, that while an additional stimulus to exertion would be afforded to the competitors many would be deterred from entering into the lists, well aware that whatever chance there might be for them, where secrecy in the proceedings gives a vantage ground to personal interest and intrigue, their pretensions would not endure the scruting of a public gaze.

That competition in architecture is beneficial to the public at large, and certainly to the profession, there can be little doubt; and, when conducted upon just principles, it is the only means of setting aside monopoly and stimulating the rising members of the profession to exertion; indeed, this opinion is so general, that I feel the greater surprise that Mr. Bartholomew, in his recently published "Hints," could assert one of a contrary nature, unsupported as it is by any argument by which I can coincide with him. But I have already trespassed too much upon your columns, and shall therefore now dismise the subject; and am, Sir,

Your mont obediently,
25, Henrietta-atreet, Bratuswick-square,
E. B. LAMB. 10th Reay, 1859.

ON SCULPTURE AND ARCHITECTURE.

He would confer a large benefit on art, who, in a philosophical spirit, should betake himself to the detecting of its great principles; and, shaking from his mind the load of professional clogs, pry freely and boldly inte the beautiful treausure of nature, to draw thence the secret of her workmanship for the guidance of her imitators; and if the book that recorded his labours should do little itself towards its object, yet it might give birth to another, or a series of labours and books which should effect a thorough investigation, ending in the satisfactory ascertaining and fixing of the universal and inevitable in art. If lis labours should not produce, and his book publish, a code, yet so might a foundation be laid for the erecting of a code; and if not even that, yet it might stir up some sleeping plilosopher or philosophers to do the work he has failed to do,-at least, to make a solid basement on which (now or at any time) the perfect building could be raised, story by story, to its completest form. The importance of a system, immediately or gradually, perfected; an undisputed, indisputable code of laws, universally applicable-to which the artist might go for guidance, and the critic for authority, and the importance of even a single caput in the code-should make the smallest attempt welcome, and entitle it to tender usage. But attempts are more to be desired than hoped for; the labourer's reward is of fame only, whose wreaths are not golden wreaths, and who coquettishly distributes them such as they are.

In a lower degree, still, attempts towards the detection of some one or two principles, in limited portions of art, claim a diminished consideration. They may be of advantage; trutlis (of less value, indeed, because limited in application, yet of some value) may be, though not perhape discovered, at least promulgated ; and, at the worst, if the attempts be full of error-yet if of sufficient importance to excite atten-tion-they lead to their own refutation, and to the clearing away of just so much rubbish that might, perhaps, at some time or other impede the worknian. And in the course of the investigation trains of thought may be suggested, pursuing which (for of a spark comes the fire) the artist may escape out of the labyrinth of tangled technicalities and perplexity of indifferent details which now smother many a large genius in infancy, that, but for them, had betaken itself to the great schoolmaster in art, Nature, and had educated and unfolded itself to the strength of a full man. It is impossible to avoid acknowledging that neither in the works of modern artists nor the opinions of modern critics generally, is there any evidence that much thought has been.expended on their labours, or that any considerable knowledge has been acquired by either of the great foundations of their craft. They are practical wailings over the absence of the plijosophical director, and even no acquaintance can be discovered in them with 'these generalities, which belong to their own particular province.

Thus mich, for warding off the strokes of censure from the following comparison of the two arts, scnlpture and architecture, as they are concerned in the embodying of the beautiful. It must be observed that the useful is set aside as not concerned with the work (the Nelson memorial) which suggests these remarks; and that by beauty is always intended the abstract, most exalted, and purest: it is not used in that unlimited manner by which, in common speech, it represents every quality, from deformity upwards.

Beauty, then, in art cannot exist, independently of imitation. The object of imitation is Nature-lst, in order animate; 2nd, ipanimate : considering art as merely imitative ; the most excellent imitation of the lighest class constitutes the most perfect work. Thus the perfect imitation of a man is a superior work to the perfect imitation of a tree.

Sculpture imitates the first and most excellent class, and is therefore superior to that which imitates the second-viz., inanimate nature ; but where is this last to be found? Has any artist copied a tree, or a mountain (unless the pyramids be feeble copies), or the sea (unless the molten sea of Solomon, which we may imagine was no very wonderful work)? Imitation, then, world seem to be confined to sculpture; and if beauty cannot exist independent of imitation, beauty must be allowed to be confined to sculpture. Architecture, then, is not an imitative art, but ranks lower ; and, adhering to the first concession, beauty is wanting to architecture. And so long as the beautiful is regarded as the end of art, architecture is a much inferier art to sculpture. Buildings are chiefly for habitation, either of gods or men ; they are temples or houses. The Druidical gods inbabited-that is, their temples were sometimes-trees; and could man roost on branches, as fowl do, his wrought house might be the imitation of a tree, if real trees should fail, or be inconvenient. Then architecture would be lifted up into the ranks of the imitative arts, and would be inferior to sculpture only as its model would be of a lower class. As it is, man's house is a protection from weather and assault; and these are the prior objects in its construction. The best adapted form to secure these objects being determined, it remains to bring into the work as much beauty as can be
admitted, without prejudice to the objects Here, then, the ardistet flies to nature for a model ; and in proportion to the amount of perfect imitation brought into his work, would be the amount of beauty. But again nature fails him ; as he finds no model for his whole work, to neither can he for its parts. Unlese we allow that columes are imina tions of human form, and certain parts of Gothic architecture imitations of groves of trees-which, the resemblance being so slight, it would be hard to do. Not allowing these, and setting aside those ornements, bor rowed from sculpture, which are inartificial additions to the arehinetun design, do not assist, even feignedly, in the carrying out of the design, and which, therefore, do not belong properly to architecture, ther is, neither in the whole work of the architect, nor in its parts, imitatian and therefore the beautiful does not at all enter into it, either as a whole or in detail; and the workman would seem to have nothing for it but to fall back upon utility and perfect his work to that end. Something however, may be attempted beyond; a compromise may be madebetwee utility and beauty-beauty conceding a great deal, and utility aliule. A certain sort of imitation there may be, not of actual models, but of ibe principles discoverable in them. The ingredients and sources of beaty in nature's models may be searehed for, and if any can be found that aic independent of adaptation, these may be breught into architecture, and the artist may endeavour to develop them in his work. Thus the proportions of lieight to breadth, found in the most perfect models fumibhed by nature to the imitative arts, might be, and most probably wete. applied by the earlier architects to those parts of their mork otict admitted of it. Thus they may have applied to the Doric column the general proportions found in men, animals, or tree -trunks remarkeble for strength, as that order is intended to express strength. The thin. ness of the doric may have been founded on the slighter form of woman, that order expressing grace ; sublimity is connected with size, ctielf height ; breadth adds more to strength. With these faint conceptions and imperfectly settled principles the architect goes to his work, withoul a model, and therefore without a test-the uncertain workman of bis own uncertain speculations. Hence the variety of opinions amon the best instructed and most capable artists, the changing nature of the standard; viz., the succeeding orders.

So much for sculpture and architecture; art being regarded as merely imitative. But there is yet something beyond, which raises ant to 2 higher rank than imitation alone ever could ; that is, to the creative; to the proper regions of poetry : for true poetry, whether it hes its epression in language or form, or whatsoever, is the conceiving, and making of a work superior to its model, and is not the creating of a work after no model. Imitation is the basis, and is never in the most exalted works of poetry dispensed with. Genius is of an higher odden, as it carries out its model nearer to a perfect ideal excellence. Tbus, in men, may be detected the initiative of moral perfection : the imithtion that expresses this, is an inferior work of art-poetry will eoocive and express moral qualities of an higher order than those that arr found in any model; and will be more exalted as it climbs higher towards their perfection. Sculpture and architecture deal with form, and form is either the subject or the means; it is either final or medil, When final-when form is regarded for itself alone-the quection arises, Can there be any thing beyond imitation? Can formbson bout like those to which the sense has been accustomed, yet gieding a superior satisfaction to the sense? If the sense be thus cappoble, "I see not why new forms without model ahoald not also matisfit, and then architecture would stand on the same level with sculpture. The examination of this question would lead to others; such as, weether there be in the organs of man an inherent adaptivenem to beanty, of only an acquired? whether beauty is self-existent or depandent? add so lorth : to which, perhaps, there never eould be certain matifinitorn answers. It will be more safe to assume that form canoot be creuted nor amended, but imitated, when it is regarded as an end; but when a a means, when it is the expression of faculties, as the instinctive ad the reasoning, then art uses it, and, using it, thereby esablen itself to advance beyond imitation, and becomes creative; for all fecolkies art imperfect, in the best models. These can be conceived the perfection of the facultien-and it is possible to express, by form, that perfection. which, yet not being expressed in any known form, the artist cmoox express by imitating, but may by creating. Here then sculptrte surpasses itself and architecture. Granting to the latter every bing that, up to this point it has gone hand in handfwith sculpture, that there is in it an equal capacity to satisfy the sense; yet, at least, now, is halts and drops behind. Sculpture is at work with the highest poesible subjects; form is no longer presented to the eye, but the soul to the soul ; and now also it becomes important as an instrameut in the hand of the state, with which the state may work powerfully ; for the whole mass of sympathies, good and bad, are withim its influence. Mratal and moral excellence or depravity are ever-present modela or buecons for good, or for ill.

The conclosien to which we have come then, is-1'lat sculpture makes is highest effort when it strives to express moral or mental perfection ; and then is in the highest regions of poetry: that therefrom it falls gradually, and through many tages, down to mere imitation; and thence still continues to fall from excellent to the most worthless objects. That probably in its lowest, certainly in its highest, exertion, it is superior to arebitectnre; and both as a poetical and political servant much more worthy.

But utility backs architecture. Now utility is imperial, and mont first be consulted : however, there is a limit toher territory; stepping beyond which, she becomes an aggrcssor, and should be strenuously driven back. In no matter whatsoever connected with art, should utility be allowed to interfere, if she have no just claim to concern herself with it. She should never be permitted to appronch beauty, for she is the matural enemy of beauty, and luas such spite against her, as that, whenever she can get near enough she scratches, and pinches, and bruises her, till she is bext to death; and if thenceforth beauty live at all, she is so distorted and deformed as that one can scarcely recognise her. A limb here gone, and a feature there, or the back entirely broken. When architecture, therefore, who is the servant of utility, can make good Her claim to meddle, there is no help for it, but to let her meddle, and to eurse her for a busy-body; but if she can support no claim, she should be carefully put out of the way.

The application of these renarks to the Nelson memorial is easy. The first thing to be desired, is pewect imitation ; after that, excellence of model; and if the poetical step can be taken beyond, so much the better. Then follows the queation - What claim can architecture put in to meddle? Can it be useful in any way? It will deform the work much : can it do any great service in compensation? The only one that muggests itself, is this - that it will protect the delicate material, the only material fit for sculpture to make its highest attempts upon, from the hard usage of our climate. If that service be allowed as necessary, architecture may be permitted to render it ; but then in the least ofticious, and most unpretending manner. A plain, though as Cir-proportioned as possible, temple may cover the marble piece of sculpture; such as shall not draw attention from, but rather lead it to, the figure or group within, and as may harmonise with its meaning. But if the accepting of this service at the hands of architecture be reluctant, how shall ifs interference be endured, when it is in no way useful; a building anowering no useful purpose, is a sort of deformity without deformity's excupe Aod can such be a fit work for a testimonial to Nehon? And if not whole building, how infinitely less a part ?a column for instance. What can be more absurd, if there be any truch in what has been herein before said, than the selecting of a fragment. Ones, well in its place, unmeaning and absurd out of it ; which is chaped to fit to its pince, and is therein perhaps ornamental, but is unhapely anywhere else ; which moreover, either really or feignedly, answers a purpose in its place, none out of its place. A column apart from its pediment is like a leg apart from its body; and is as ridiculous glanding alone as a leg would appear, which should run about by iscalf.

As an excuse for appending the column to a building, the pediment is thrown out; which overthanging seems to require support. For the purpose of support it is well, and the proportions of the column nay be perfect, in the different orders, as it is possible for them to be; but they have been fired with a reference to the building the column is attached to, the pediment it supports, and perhaps to the grouping of several. But is it not absurd to take it away from its pediment, and set it up solitary, naked, its proportions undeveloped by any attendant thing : an jmitation of nothing, therefore not beautiful in itsuelf; connected with nothing, therefore contributing nothing to the ornmeant ofanything ;-properly a support, yet bearing nothing, except, in some instances, a piece of sculpture - that is, the imitation of man's Corm ; an imitation addreasing itsalf to the eye, yet perched far beyond the eje's reach, where a chimney-pot would almost serve as well. As an apparent remedy for the inappropriatenest of a single column, some have carved bas-reliefs, winding their weary way, gradually up to it cop, if in contemplation of that advance of science, which should furnimh man with wings, and enable him to flutter in air and whirl about the sulpture for examining it. Till that shall happen, all the bet-reliefs are effectually thrown away, that are placed beyond the first mov or two. Wbo but a crow can see them? Why not just chip the stone, in tho way the etreet parement is chipped? That would answer quite as well mebas-reliefs, and the spectator would not be vexed with the eever-to-be-gratified desire of seeing what all the carving is about up in the air. There bas been one step further in absurdity-che casting of the coltumn and reliess in bronze, making that, which in stone is obscure enonsh, ten time more obscure; as in that wretched thing in the Place Veriome, Why, whon form (sculptured form) is at any distance from the eye, it lones distinction ($i, 6$. in the case of bas-reliefs) ; the
forms are confounded with the back-ground; therefore the figures in the metopes of the Parthenon were distinguished by painting tho back ground blue : and the Athenians in that, showed that they knew what they were about. They never placed the forms they had sculptured out of sight, or even so placed them that they should be in the least indistinct. The worat instructed among them would have cracked his sides with laughter to have seen the Duke of York perched up in the clouds. Had the Duke heen a bird, his position there would not have been ridiculous, but only useless-useless hecause we should desire to examine him, his slape, feathers, and so forth; but up there, tail, claws, beak, would have been all alike, and no one would be able to say, if he was looking at a bird or a tortoise. Perhaps the artist was enamoured of the Duke's title of Highness, and would in lis work symbolise it ; or that he desired to panegyrise the Duke, and signify the mounting of his soul to Heaven : so that, with the contrary purpose, with a wish to satirise and condemn, he would have set his sculpture at the bottom of a hole as deep as the present column is high, whereby the descent of the soul should be designed.

The column, and the piece of sculpture together, as a work, is ridi-culous-it is contended. The column, as the priocipal (laving the sculpture as a mere appendage), is equally ridiculous; and its selection betrays ignorance of the great purposes of art. The sculpture, as the principal, were well ; the column, as an appendage to it, ornamental or useful, still more ridiculous than when a principal. And the sculpture being raised by it far beyond the reach of examination, the whole werk is both beneatl and beyond observation.
W.

ON THE PUBLIC BUILDINGS OF THE ANCIENTS.

By J. Flemina Tait.

The use of immense blocks of stone for the formation of public buildings, temples, and monuments, has from the times of remote antiquity been ever considered as an honourable testimonial of the porseverance and labour of those who erected them, and as a proof that they not only built for the purposes of present use, and ornament, but also for the benefit and instruction of posterity. Had the Egyptians, the Greeks, or the Romans even, constructed their great public works with blocks of stone of no larger size than those which we are in the habit of employing for ours, it would inevitably have followed, that in the many irruptions of barbarian nations, which desolated those countries in their decline, and whose principal object, next to the all-predominant one of plunder, was to destroy and efface to the utermost of their power every work of art, and evidence that a people wiser and more celebrated than themselves had existed, those splendid remains, which defed their utmost efforts, and are still the glory of their respective places, and the admiration of all who behold them, would luave been swept away from the face of the earth and their very names have perished with their existence-and the traveller and scholar of the present day would have found as much classic pleasure in wandering over the steppes of Tartary, or the vast milds of Siberia, as be would in visiting the spots where Athens, Thebes, and Palmyra stood-besides a host of other names equally celebrated in history, and have gazed upon the place where the Eternal City stood, with no greater degree of intareat than be now does upon the site of Babylon,

And yet that vast mis-shapen heap was onee the mightiest and proudeat city the world ever saw, and the boast of all antiquity. Her walls, which were three days' journey in circumference, and whereon six chariots could drive abreast! So colossal are her temples and palaces stated to have been by the ancient historians, that they are considered by many as utterly unworthy of belief; and thus likewise would the accounts of the great temples of Carnac and Laxor liave been received, did they not remain to this day in an almost perfect state, to attest their own magnificent and gigantic proportions. These edifices are coeval with Babylon; so are the Pyramids of Cairo and the walls of Balbec; on the summit of the former of which are stones eighteen feet square, and in the latter of sixty feet in length; upon which, as the wild and simple Arab pauses in his rapid career to look on these enormous masses, he exclaims with wonder, that he beholds the works of the giants of old times!

And why have these buildings survived a city whose structures excelled theirs? Becsuse she, like a selfish spendthrift, thought only of present show, and constructed ber edifices of materials which would not stand the wrecks of time and barbarians wrath-while they, built of materials which needed not the aid of cement, which scomed even fire itself; they built for posterity-and it has done them justice. The efiorts of the Baracens to deatroy one of the Pyramids were tremendous, and incessant, until their engineers were forced to give up the attempt as impracticable, and retire in disgrace from the naworthy attempt to mar what they could not make.

The Greeks, who stand unrivalled for grace atd beauty of deaign, did not let this important principle of the dutability of their structures escape them, as may be seen by the size of the stones used in all their public buildings, and particularly at the Acropolis and at Poestum, although they fall far short of those used by their predecessors the Egyptians; while the Romans, who followed up the principle, but (unlike their uaual custom) in a lesser degree, are till very far our superiors ; and we find by examining the remains which these nations aud others have left us, that according as the component stones are large or amall so are the bulldings in a greater or a lesser state of preservation.

The Romans, however, showed the high estimation in which they held the principle, by the transportation to their own capital, of some of the gigantic Egyptian Obelisks and Sphynxes; a work of itself of great labour, and almost equalling that of the original erections.

But the transporting and using of immense masses is not confined solely to the ancients, for we find that most of the modern European nations lave to boast of at least one proof of their endeavours in this respect. The small Italian states are, perhaps, the most fertile in these ; in many instances, however, they have trenched a little on the property of their forefathers. The statue of the Apostles, on St. Peter's, are, it is well known, eighteen feet high. The Russians have the famous rock for the equestrian statae of the Czar, Peter the Great, brought there with enormous labour by command of the Emprese Catherine, and which was very injudiciously curtailed of its dimensions after its removal by the sculptor, much to her annoyance. The French have been improving in this respect lately, and have also transported one of the celebrated obelisks, presented to them by the Pacha, and which at present adorns the Place de la Concorde, at Paris. That which is said to have been given to us at the same time, lies neglected. Even the little Corsican town of Ajaccio can now boast of one of its own erection, whose weight exceeds $1,200,000$ lbs., or 535 tons, in honour of Napoleon, who was born there.

But we! In two thousand years the question may be iterated. *The Greeks we know, and the Egyptians we know-but who are ye? Where are your monuments i" It will avail our descendants but little to point at the unhown stones on Salisbury Plain, and cry, "thene are our fathers' works!" Let us redeem our character. Some great national buildings and monuments are now about to be commenced, and it will be strange if, with the very superior mechanical adrantages we possess in the powers of steam and facilities of transportation, we do not at least rival, or approach, some of the great works which other nationg hate to point as the labour of themselves or their anoestors. The principal expense of conveying blocks of stone from the north of Eagland to the eapital would be that of removing them from the quarry to the nearest railway station. Why, for initance, might not the pedestal for the equestrian statue of the Duke of Wellington in the city be composed of one block, and brought in this way?

There are three other great works about to be commesced, and it is earnestly to be hoped that the nature, size, and durability of the matorial to be used in their construction will not be unworthy of buildinget to decorate the capital city of so great an empire as this. Of the evil of not paying proper attention to this, sufficient ovidence may be had by witnessing the great and expensive repairs which have been called for of late years at Oxford, on their colleges, where, in many instances, they had been almost on the verge of ruins; and this may be mainly attributable to the smallness of the stones used in their construction, inasmuch as they leave the weather to act on so many interstices, and thereby incteasing the decomposition in a tenfold degree. Few are hardy cnough to Imagine that the monument at London-bridge will last half the time the Trajan column has-and get it is the work of perhaps a greater architect-but must perish for want of this important point not having been attended to. And thus it is with all our build-ings-they are for the present orwament, and the future is left unheeded. Almost the only attempt at durability appears to be that nondescript affair which has been erected on the Calton-hill, at Edinburgh, and which is called the National Monument.

Before leaving the subject I may remark as an extraordinary circumstance, that in no came do the Egyptian delineations represent their monuments or the erection of them;-we have them in war, in triumph, at femte, at their trades, at their agricultural pursuita, and at their burial processions, but no where in this branch; thereby leaving us quite uninformed as to the manner in which a people, apparently with so few mechunical powers, have yet been able to surpais all who Luve suoceoded them.

ARCHITECTURE, ROYAL ACADEMY.

The contents of the architectural room this year certainly does not indicate much enterprise with respect to new buildings, nor much diligence on the part of the profession; so far from it, that, taking the exhibition as a sort of thermometer, activity and energy scarcely rise to lukewarm. The absence of many who have been in the habit of exhibiting, may in some degree be accounted for by the competition for the Nelson monument, and the approaching one for the Royal Exchange; yet, although that circumstance may be so explained, we are still at a loss to understand wherefore so large a proportion of the drawings that have been sent should be so very mediocre in quality-some so disreputable to our architectural taste, supposing that the annual exhibitions afford any standard by which to judge it-as they certainly ought to do. When we look at some of the things here hung up, we cannot but feel curious to ascertain, were it possible, what degree of demerit, we might say of actual vileness, is requisite in order to exclude a design. On no account ought there to be such facility of admission; for although it may look, at the first glance, very much likeextreme liberality and good nature, it argues not only indifference but almost contempt for architecture, on the part of the Academy. It seems (provided it can but keep up the averagerespectability in the department of painting, and secure one or two stars among the pictures,) the Academy care not one straw how bad the architectural part of their exhibition may be. It would be infinitely more generous in them, were the R.A.s to exclude architectural drawings altogether. It does not, however, e xactly follow that the architects are much to be pitied, seeing that they tamely suffer matters to take such course, without doing anything to support the credit of their own body. Is it to be supposed that people can be blind to the "damning fact," that, so far from the exhibitions having displayed any advancement in architectural taste, since the profession has acquired for itself a certain position and authority by the establishment of the Royal Institute, it retrogrades rapidy, If we are to judge by what we are allowed to behold at the Academy. It is possible that its exhibitions may be no criterion at all; yet, unless some other be afforded them, the public can hardly help taking them to be such. Why, we ask, do not the profeasion bodily set their shoulders to the wheel at once, and extricate themselves from "the slough of despond," in which they are now sticking, on the north side of Trafalgar-square? They may be assured that the painters will not oppose their withdrawing from their premises, and eatablishing an annual exhibition of their own; Which, it is scarcely necessary to observe, ought to be very differently managed. Instead of glaringly, not to say preposterously, coloured drawings-frequently, too, of subjects quite insignificant or worse that insignificant in polnt of design-we might then hope to behold ex. hibitions in which every branch of architectural design would be brought forward in such manner as would tend to promote it. If architects cannot see all this, they are greatly to be pitied; but if seeing it they do not care to make any exertion to vindicate themselves in the eyes of the public, we may spare our pity, for it would be only thrown away upon them.

Theseare confoundedly splenetic remarks !-Very true; we therefore regret that circumstances should justify them. At the same time, the great inferiority of the present exhibition of architecture as a whole, does not at all affect the merit of those drawings which form an exception. It is possible, too, that several which we thould have placed among these latter, have escaped our notice; becanse, as every one well knows, a great many are so hung, that they can. not be perceived at all, unless diligently sought out for by the catalogue, and when found out may scarcely be discernible. In stat, if worth looking at at all, architectural drawings require to be eubmitted to close inspection, for without that, little more than the general forms and character can be understood; and if good deaigna are put where they cannot be seen without a ladder or pair of steps to get up to them, so much the worse, for there are plenty which eas be seen that might possibly be fancied to be interesting had we not seen them at all. And it may be observed, that there is a difference between merely hanging up and exhibiting, although, in the woebulary of the Royal Academy, they have precisely the same meaning.
But commencons; and we will therefore turn at once to No. 1253, "The Staircase of Goldsmiths' Hall," P. Hardrick, an ably. executed drawing, and architectural subject of considerable nerth, yet rather indifferently hung, being too low, though not a manil drawing, to be viewer properly. This is one of the very few tnterfors exhibited this year, and on any other occasion would probably bave been the first both as a picture and a design, although now reduced to a secondary rank by Owen Jones' "View of the Aloone at the upper end of the Hall of the Two Sisters in the Alhambra" Well
has scarcely ever achieved anything more elaborate and gorgeous than the interior of the edifice of which we are here presented with a specimen. Yet, gorgeous as are the elements of this style of decoration, it is 00 far from being deficient in harmony that even its multiple variety resolves itself into a unity of expression. Prodigious must have been the labour of such performance -ficarcely less prodigious must be the enthusiasm which prompted its author to engage in it. Still, though thus far disposed to award him unqualified commendation for his exertions, we must remark that we should have been better pleased with his work upon the whole, had the general effect been less hard. Besides which, the merit of the drawing as a work of art, is greatly impaired by gold itself being made use of instead of the effect of gilding being produced by colour. Hence, although there can be no mistake as to what is intended for gilding, the brilliancy and sparkle of it are quite lost, the metallic lustre showing itself only as the eye happens to catch the surface in a particular direction. Actual gilding is allowable enough in mere patterns of detail, because there it cannot possibly be expressed by colour alone; for instance, such a subject as No. 1131 (the "North side of the Gilt Room Holland House," by J. C. Michardson), which is a mere elevation; but when applied to what pretend to be pictures, it becomes quite contradictory to artist-like treatment. That all the effect of gilding is attainable cven in water-colour drawings, would be safficiently proved by Zanth's interior of the Chapel Royal at Palermo, the Cathedral of Mopreale, \&c., exhibited last year at the institute; and which, though possessing greater breadth of effect, were still more highly finished than this drawing by Mr. Jones.

There are one or two other interiors, yet so utterly insignificant and devoid of merit as drawings, as to be rather injurious than not to the exhibition, since the titles of them in the catalogue serve only to excite expectations that are miserably disappointed by the things themselves. Wretched as is the taste shown in the "Library at Strawberry Hill," which forms the subject of No. 1156, still an artist might have conferred on it some pictorial value; instead of which its want of beauty is here rendered positive ugliness. Again, when we look at No. 1193, "Interno della Basilica di S. Pietro," we are almost bewildered, and ask ourselves how it is possible that such trumpery and paltriness, such utter insignificance as are there manifested, can be received as a representation of the Roman Basilica, which with all its gross vices and defects, is at least magnificent. This drawing has, moreover, not the slightest pretension to novelty of subject, the only thing that could have excused its utter want of merit in all other respects. Such excuse, however, does exist for No. 1211, "Perspertive of the Interior of the Church of the Madeleine at Paris, from actual measurement;" by C. J. Pierce. We cannot contradict this drawing's being made from actual measurement; but we may be allowed to question the utility of actual measurement, if it is to give us such perspective as here makes the skylight of the central dome in a plane inclined to that of the picture P Either measurement or perspective, perhaps both, are notoriously at fault herc. In other respects, too, the drawing evidently does not do justice to the subject ; therefore the most that can be said in its favour, is that it serves to convey some idea of the design and style of decoration of the building itself, which is not without richness in its gencral charsoter.

Other interiors there are none; not a single original demign of the kind-for that from Goldsmiths' Hall hardly answers to such character, being a view of an executed design, not an ides that remains to be embedied. How it happens that there are invariably no exceedingly few sabjects of this class, either designs or views, we are to far from being able to explain that we cannot even conjecture for when we consider the vast scope they afford, the variety and novelty of which they admit, the abotinence manifested with regard to them becomes only all the more unaccountable. We may, indeed, guese at one or two reasons-one of which is that they require something more than that kind of putting. parts together by which an eleyation may be concoeted out of architectural points. Some may perhape think that. if subjects of this clase are so rare, it is because there are very few opportonities for interior display, either on a superior scale, or demanding superior quality. It may be 80 but then how are we to account for the exceeding strange, out-oftheray, and impracticable designs, of which there are not a few in almost every exhibition-senate houses, palaces, masuoleums, and cther things of that sott; and which are bexidea seldom better than aschitectural bombeet-the most comreon-place ideas wrapped upit extravigant pretension?

No. 1170, "Elevation of the principal Front of a design for a College," by W. Nheld, is an affair of the sort; and No. 1205, termed (we do not understand why), "A horizontal Section of a design fot a Moseuxa," is mother; masewn with the dome of St. Peul'

and richness manifested in designs of this class, becomes quite preposterous when compared with the parsimony which marks those intended for actual execution Hardly can they be said to have any vilue even as mere studies, because they evidently set at defiance all idea of practicability; whereas the object of studies ought to be to show how charater and effect may be infused into the simplest elements. The jaxtaposition of the drawings, No. 1169 and 1170 , is no doubt entirely accidental, but it serves to convince us of the prodigious difference between the romance and the reality of architecture for while Mr. Nield's is one mase of carving and soulpture, Mr. Railton's "Residence now erecting at Riponlfor the Bishop of the Diocese," is so very homely and unpretending a building, that unless informed by the catalogue, no one would suspect it to be intended for an episcopal palace. Yet, though its extreme plainnese might be exacted by rigorous economy, it was not economy that prevented the architect from imparting to it more nobleness and more character-it excluded neither variety of outline nor piquancy of expression; whereas there is nothing whatever either in the conception or treatment that indicates any ability on the part of the architect. On the contrary, even as a mere house-one that might have served well enough in the days of Gothic Wyattism, it lookn as if merely set down in a field.

Angels and ministers of grace defend us! Oh Royal Academy! Oh poor architecture! to what pass must you both become, when we are permitted to behold such an enormity as No. 1179. "The Bhip, Torbay Tavern," (situate at the corner of the new street, and the Greenwich Pier, as erected from the design of Mr. Thomas Finden, by G. Mayhew! Besides Mr. G. Mayhew, no one would have set down to make the likeness of such a design.

After that drawing it is absolutely refreshing to look at No. 1813 "Eagle Tavern, City-road," by P. S. Paunet , which independently of such comparison, is really not without considerable merit ; in fact in much better taste than many things, on the side of which the superiority ought to lie; but if we mistake not, there are one or two minor differences between this drawing and the building itself. Well, at length we are come to a turning, and have lighted upon something we are disposed to commend. We ounnot beatow any compliment on No. 1089 , "Design the Entrance Front to the St. Ethelburga Society Charity Schools," by W. Grellier, but willingly admit that he has shown tome ability in No. 1091, "The North Wing of the Tilers' and Bricklayers' Company's Almhouses, Ball's Pond," which as here represented, although very plain and hamble as to style, posseases much propriety of character, and picturesqueness of effect; at the same time we question whether the building itself will produce anything like the effect given to it in this richly coloured drawing ; it being not at all unlikely that what is here rendered attructive, may in reality have a poor eppearance in the building itself. Nos. 1106 and 7, "The Weat of London and West minater Cemetry, Earl's Court," by B. Beud, is more striking at the first view than it is satisfactory when it comes to be inspected. The general errangement, and plan, which bear some similarity to an ancient hippodrome, are well calculated for architectural effeci, but the style itself, and the desion of the elevation, are poor. We may here notice Allom's model of a design for the same purpose in the Italian style, consisting of three chapels placed upon a terrace, and connected by open arcades, enclosing three sides of a court, at the inner anglea of which, lare towers rising above the other buildings. The whole is well combined, and forms a rich architectural group, the picturesqueness of which is considerably enhanced by the porticoes of the two lesser chapels being turned towards the court, so as to face each other, and show themselves in flank, while the larger one of the central chapel is seen in front. This design we should conceive, would be more economic than the one which it seems has been adopted; because although the buildings themselves are more rich, they do not extend over 80 much space. We perceive by the catalogue there is a third design for the same purpose, No. 1134, by H. Case ; but having overlooked it can say nothing at present as to its merita. Another soubject of the same kind, and very similar in style, though different in composition, is No, 1261, "Intended Chapels at the Rochester and Chatham General Cemetery," H. E. Kendall. This has a lofty Italian tower in the centre, with an arcade extending on either hand from it to one of the chapels. No. 1186, "Peasmorsh Sussex, now erecting for Dr. Buckland," W. S. Donthorn, is one of the best designs of its class in the room. The next No. 1187 "Design for the facade of a Chapel in the atyle practised by the seholara of Giotto, in Upper Italy; intended to illustrate the polychromatic, decoration of the end of the 14th century:" W. Dyoe, is carefully executed, and owing to the singularity of its subject, a rather striking drawing, but being merely an elevation without background, it doet not enable us to judge of the actual efect attending anch modn of decoration

No. 1210, "Design for a public building at Rugby," T. L. Donaldson, is clever both as a drawing, and as a specimen of the style adopted, namely the Tudor. No. 1250, "The office of the Monmonthshire Merlin, now erecting at Newport, Monmouthshire," E. B. Lamb, is a design of more than ordinary merit-a very happy and tasteful application of the better Italian style; and although sober in point of decoration, piquant and rich in effect, the style being treated with great ability and feeling. It is indeed very much superior to any thing of the kind, or we may say to any thing on the same scale in the metropolis. Nearly the same may be said of No. 1122, "Design for a Chapel proposed |to be erected at Buxton," by the same architect, which although very different in style, the façade consisting of a Grecian Ionic portico, is stamped by considerable originality, and by a freedom and spirit both in the general ideas and details, which our builders of porticoes would do well to endeavour to emulate, instead of hashing up the prints of Stuart's Athens till we absolutely nauseate them. Instead of the usual string of columns before a wall, we have here depth of portico and inner columns, which occasion a variety in the perspective appearance of the most delightful kind. This and the other design are two of the redeeming points in the exhibition; nor is it the least of their merit that they prove how much may be accomplished within a very moderate compass.

Donaldson, Lamb, Fowler, and Kendall, are the only members of the Institute, we believe, who have contributed towards the present exhibition. The Professor of Architecture himself has not sent a single drawing. Of the other two archilect-academicians, Sir R. Smirke takes care to keep safe out of the way of criticism by never sending any thing, and had Sir J. Wyatville this year followed his example, neither he nor any one else would have been very great losers, for his three drawings of parts of Windsor Castle, do not excite any great expectations with regard to the publication, for which we are informed they are intended. By Gandy there is not even a single drawing, though he has almost invariably exhibited one or more every season until now. We hope that 1840 will, if it should not prove more prolific than poor 1839 has done, for in regard to number there are enough or more than enough of things hung upon the walls-produce more that is of higher quality. We hope to see the same proportion of good und bad, only quite reversed, the bad bearing the same ratio to the good, that the good now does to the bad; and with this wish for its better success, we take our leave of the exhibition.

THE ROYAL EXCHANGE.

Sir,-As there is no reasen to suppose that the dispute between the Government and the Gresham Committee arose from a desire in either party to secure the patronage for another job, it is fair to conclude that both parties were desirous that the New Royal Exchange should be built in a style worthy of the object, particularly as the Gresham Committee are merely trustees, and the public are to be taxed to the amount of $£ 150,000$ for the approaches.

It seems that the committee of the House of Commons either omitted to make their intentions clear, or the Act of Parliament was not quite so intelligible as an Act of Parliament ought to be. But there is an end to the dispute, and the Gresham Committee lave invited architects who wish to compete for the design to pay them one pound for their instructions. The sum is paltry, and no reasonable excuse can be made for the exaction. It luas been the practice with auctioneers, when about to sell property which has excited public curiosity, to sell their catalogues, as a tax on the curiosity of those who had no intention of purchasing. But no such restriction could be required in this case, because they might have required the name and address of the parties applying for the instructions; and it would be but an act of justice to return the pound to the unsuccessful competitors. As 1 have borne my share in competitions, and do not mean to compete again, I trust I shall be excused for inviting those who may, to take the proper precautions, before it is too late, to secure them a fair and competent tribunal. Conditions were sold by the Government, and broke, which I have proved in my letter to Lord Duncannon ; designs for the Post-office lrave been selected for premiums, and afterwards rejected, and another design adopted, bearing a strong rescmblance to one of the deagns to which no premium was awarded, which I have made known in my letter to Lond Melbourne; and the transactions relative to the Nebon Teatimonial have placed three talented artists in the disagreeable position of receiving premiums out of a subscription for designs which have been pronounced useless.

Of what use, then, would the most explicit instructions be, or the meet pecemptory conditions as to modes of drawing-points of perspective and unfformity of scale, if they should be disregarded by the judgee To prevent this evil, I would respectully suggest that the com
petitors appoint by ballot one judge, the Gresham Committee another. and the city of London a third. The designs should all be exlibited to public view ; the three judges should afterwards select three design, to be referred to a person appointed by the Crown, whose opiniva should be final.

A nore public exhibition would not protect the competitors agsinst favouritism and partiality. As it is possible that the public press might be misled by the opinions of those to whom their architectural department may be confided, of whose names we should be ignorant, and conse quently incapable of knowing the degree of credit to which their opinions are entitled.

Dr. Johnson, in exposing the Blackfriars Bridge job, which Lad, under the pretence of a preference to an elliptic arch, been made the means of introducing a favourite, makes the following observations :-
"Those who are acquainted with the mathematical principles of architecture are not many, and yet fewer are they who will upon any single occasion endure any laborious stretch of thought, or harras their minds with unaccustomed investigations. - - If 估 opposition to the arguments, and in defiance at once of right reason and general authority, a design should at last be closen, what will the world believe than that some other motive than reason influenced the determination. * - He that in the list of the committee closen reads many of the most illustrious names of this great city, will lhope that the greater number will have more reverence for the opinion of poterity than to disgrace themselves and the metropolis of the kingdom in came pliance with any man, who aspires to dictate, perhaps without any claim to such superiority, either by greatness of birth, dignity of em. ployment, extent of knowledge, or largeness of fortune. In questions of general concern there is no law of government or rule of deceocy that forbids open examination and public discussion."

This was Johnson's opinion, drawn from facts; may not the Grosham Committee fall into the error which he exposed?

THOMAS HOPPER,

40, Connaught Terrace.

PUBLIC STATUES IN THE METROPOLIS.

Nothing perhaps can be a greater omament to a city, or a higher proof of the glory of a country, than to see in its streets testimonials of the great men who have immortalised their own genius and ohed s lustre on their native land. Like benevolence, the performance of this noble duty brings its own pleasure along with it, and we can never regret the expense of what is an object of beauty in our eyes and a source of gratification to our minds. The weak may feel a consolation for their inactivity when they see that Sparta has 60 many better men than they, and those of exalted genius, although they want not this excitement, may see that they will not fail in their reward. The placing of these memorials in localities with which the living heroes have been connected gives a greater interent to the work, and invests the scene with a visible classicality. No place than London has been more negligent of this, and there are none which has possessed more men known to fame, more timehallowed sites, or more native genius.
Just to give an idea of what might be done in this way, 1 will imagine the grand line of road from London to Westminster Bridgs, the via sacra of London, laid out in this way. On approching the foot of London Bridge, the foreigner, entering London by that grand entrance, should be reminded that he stood on sacred ground. Nees the Dover-rosd should be a group of Beaumont and Fletcher, mith their arms interlaced, and an inscription "To the Twims of Plits. bethan Dramatic Literature, which flourished near this site. Frascis Beaumont, born -, died 1615 , and buried in Westminster Abbey, and John Fletcher, born in London, 1576, died 1625, and baried in St. Saviour's." Passing near the site of the Globe and Bankside Thestres, and of St. Saviours, where Gower, Massinger, and Fletcher is interred, the spectator would be on the spot where (acconding to trodition) the bard held horses, a statue of Shakspere near the screne of his greatest triumphs, with the inscription "To William Shakts pere, the Prince of Dramatic Poets, born at Stratford-on-A won, diad 1616.". On crossing the bridge, at the junction of Gracecharch-dret with King William-street (although it should have been where the proposed statue of the Duke of Wenlington is to stand), near Lombardstreet, the place of his birth, Pope, with the inscription, "To Aler. ander Pope, the Prince of Translators; born in London, 1688 , and died there, 1744,' At St. Martin's-le-Grand, near Bread-etreet, the place of his birth, and leading to Bartholomew-clone end Cripplegite, where much of his life was passed, Milton: ${ }^{\text {"To }}$ To John Mokon, the Prince of the Modern Epic Poets; born 1608, in London, and died therte 1674, and buried in St. Giles, Cripplegate." At the Ludquatebill end of St. Paul's, "To Sir Christopher Wren ; he formd Ledonim

his glory and his tomb; born 1632, died 1723." At the bottom of Lud-gate-hill, "To John Dryden; he gave Virgil a new country; born at Aldwincle, 1631, died 1700, and buried in Westminster Abbey." At Chatham-place, "To Edmund Spenser, Prince of the English Pastoral Poets ; born 1553, in London, and died there, 1593, buried in Westminster Abbey." At Holborn-hill, on the other side, "To Abraham Cowley, the chief of the Metaphysical Poets; born in 1618, in London, and died 1667, buried in Westminster Abbey." At St. Clement's Church, Strand, near the Temple, of which he was member, "To Geoffrey Chaucer, Father of the Poets and Friend of Pctrarch; born 1323 , in London, and died there, 1400 , buried in Westminster Abbey." On the other side of St. Clement's, "To John Locke, Prince of Meutal Philosophers ; born at Wrington, 1632 , died 1704. 'Know thyself.'" at St. Mary-le-Strand, near which he was born, "To Francis Bacon, Prince of the Modern Philosophers; he found the sciences infants, and made them men ; born in 1561, in London, he dicl and was buried at St. Albans, 1626." At West Strand, with Chandos-street, leading to Corent Gurden, where he was bom," To Thomas Augustine Arme; he taught the English muse to sing; born in London, 1710, died 1778. ${ }^{\text {n }}$ In Trafalgar-place, looking towards Leicester-square, where he lived, " To William Hogarth, Painter of Morals and Man ; born in London 1698, and died at Chiswick, 1762." also in Trafalgar-place, looking towards his residence in St. Martin's-strect, "To Isaac Newton; he spanned the heavens and weighed the earth; born at Woolstrop, 1642, died 1726, and buried in Westminster Abbey." At Westminster-bridge, in the neighbourhood where he was born, " 0 rare Ben Johnson; born in Westminster, 1574, and buried in the Abbey, 1637." On the other side of the bridge, "To Thomas Banks; he maintained the glory of English Art in Russia; born at Lambeth, 1738, died 1805."
These are not solitary examples, but numbers more might be adduced. In the City-road, at the end of Fore-street, near his birthplace and his tomb, "To Daniel De Foe, known in all climes as the Author of Robinson Crusoe; born in Cripplegate, and buried there in St. Giles' Church." At the ends of the Hammersmith and Batterseabridges, the natives of the southern suburbs, "To Henry St. John, Viscount Bolingbroke, unfortunate as he was talented; borm and died nt Battersea." "To Edward Gibbon, who in illustrating the glory of Rome ensured his own; born at Putney." Near Gracechurch-street the scene of many events of his life, "To William Penn, the Founder of Pennsylvania and Teacher of Benevolence to the Human Race; born in London." On the Hackney Road, "To John Howard, the Friend of the Captive ; born at Hackney, died at Chertson in Russia." Also to Hampden, the great patriot; Camden, the antiquary; Byros, the poet ; natives of London.

Appropriate localities might be found for all the great men, and to some, memorials already exist, Pitt, Fox, Canning, Nelson, and Wellington. Among those to be commemorated, it may be sufficient to mention, Cabot, who gave to us North America, and thus secured the perpetual glory of the English race; Drake, the circumnavigator and founder of our naval power; Blake, one of our greatest seamen; Cook, who gave us a new world and another empire in Australia; Marlborough, our greatest general and the ablest of his day; Clive, the founder of our power in India; Halley, the great discoverer of comets; Roger Bacon, the greatest philosopher of the middle ages ; Bradley, who discovered the rotation of the earth's axis and the aberration of light; Harvey, the discoverer of the circulation of the blood; Hunter, the best of our anatomists; Jenner, who stayed the arm of death; Ray, the greatest naturalist of his day ; Napier, the author of logarithms; Dalton, who numbered atoms, and gave invisible objects laws; Davy, who united electricity to chemistry; Young, who proved that light moved as water; Savery, who made steam the slave of man; Brindley, who made roads upon the waters; Hargreaves, who taught senseless powers to weave garments for the human race; Smeaton, the author of the Eddystone; Watt, Who gave arms to the steam engine ; Trevithick, the master of the steam engine, who taught it to fly upon the roads, resist the current of the waters, and drain the bowels of the Andean muuntains; Reynolds, the prince of English artists; Flaxman, who gave our sculpture a European reputation. To these might be added some of our writers who possess an European reputation: Addison and Steele, the twin easayists; Young, the writer of the Night Thoughts; Sterne, the sentimentalist; Fielding, the prince of novelists; Smollett, the noveliat; Johnson, the custodiem of our language; Goldsmith, the mont harmonious of our writers; Hume, the first of our historians; Garrick, the prince of our actors; and two distinguished Irishmen, Burke and Sheridan; but out of compliment to the many eminent foreigners who have dwelt among us, we might commemovate Erasmus, the reatorer of letters ; Holbien, who died here; Rubens and Vandyke, who have left with us many of the finest of their works; Handel, who united his own glory with ours; Voltaire, who here first brought
his Henriade to light; Franklin, the man who snatched lightning from heaven and the sceptre from tyrants; and Herschel, who for us extended the bounds of the planetary gystem.

That executing such a design would prove highly ornamental to the metropolis it is quite unnecessary to demonstrate; and it is equally evident that it would tend to the promotion of the arts and the diffusion of taste. Considerable variety might be introduced into the form of the monuments, as Gothic crosses, Greek votive temples, fountains, and the employment of bas-reliefs and accessory emblems. The expense of fifty such statues might very easily be defrayed for 100,0002 ., and it is unnecessary to say that larger sums have been lavished on jobs pernicious in their reanlts, and futile as to their expected benefits. Were such a grant made, considerable sums might be raised by public subscription, and the Corporation of London and public companies would make donations, the theatres might give benefits for the dramatic heroes, and the concerts for the musicians; and we are sure that the object is such as not to be of mere local importance, but to have a claim on the revenue of the empire. The government likewise, by making the grant in annual portions, would prevent it from making any great figure in the budgets of timorous Chancellors of the Exchequer, while its execution would give an impulse to art, and stamp at once a character on the Victorian era.
A. R.

PAMBOUR ON THE STEAM ENGINE.

Sir,-As you have often, at different times, noticed M. Pambour's works on the steam engine, allow me to direct your attention to his table referred to is page 92 , vol. 2 , of your journal. In most cases therein the practical results differ very widely from the theoretical. Now may not this be explained partly by taking into account the gradient immediately before the place of trial, or, in other words, the accelerating or retarding force with which it enters it ? For instance, in the case of the Fury, August 4, 1834, (page 229 of Pambour.) it drew 50 tons at 24 miles per hour. Now the theory gives 29 mites; but immediately before the trial plane comes a desccnding one of . This is omitted in the table.
In example, page 228, the Fury drew 244 tons at six miles per heur. By the theory it could not have moved the load. May this result be attributed to the accelerating force of the plane it had just left, or altogether to the incorrectness of the theory?

1 am Sir,
A constant reader,
London, April 12, 1839.

IMPROVEMENT OF THE RIVER DEE AND PORT AND HARBOUR OF CHESTER.

We have read with some attention Sir John Rennie's interesting report upon the river Dee, and did our space allow should examine it at some length. After minutely entering into the views detailed both for and against the improvement of the river by dredging, Sir Jobn recommends the construction of a ship canal, with docks, from Chester to Heswell. At this latter place he proposes to make an entrance harbour in fifteen feet at low water epring tides, being five miles shorter than the present course of the river, and enabling veasels drawing twenty feet water to come up to Chester at neap tides. His estimate for this plan is $£ 560,000$, a sum, considering the magnitude of the undertaking, extremely moderate. There is never less, it must be remembered, than twelve feet at low water spring tides over the bar of the Dee, while the Mersey is not only very defective, but difficult of access ; Chester, also, is sixteen miles nearer to London than Liverpool, and would only require an extension of about twelve miles to Preston Brook to open the communication with Manchester and the inland towns; while it would be backed by the extensive mineral and manufacturing districts of Wales and Cheshire. Considerable discussion has been maintained in the Chester papers, whether the canal plan should be odopted, or whetber it is preferable that the river should be improved; but when it is stated that in order to obtain the same depth by the river as by the canal, that from sistern to eighteen feet must be dredged out at Chester, and an average of ten feet for a distance of fifteen miles below in the open tideway, that the prosent river-bottom is composed of loose sand, which would run in as fast as taken out, having a fall of only seven inches per mile, we confess that we should bave considerable doubts as to the propriety of pursuing such a questionable course. We have heard the Clyde quoted as a successfol example, but if, as is stated, above $\mathbb{E} 800,000$ bat been expended there in obtaining twelve feet water, for a distapee of treive miles, that it has required above half a century to effect this.
and that the bed of the Clyde was better adapted for such an operation, it does not appear to us to strengthen the arguments in favour of dredging the Dee, in cemparison with the more certain and less expennive plan of the canal.

The subject of dredging the old channel of a river, or substituting a cenal, is replete with intereat, and demands the greatest shill and discrimination of the engineers; we shall take an early opportunity of again referring to the report and papera connected with the contro. versy between the parties.

POLYCHROMY OF THE ANCIENT GREEK8.

Traces may be found on the marbles of Campide and of the British Museum. The Parthenon, the Propylein, the Thescium, the Erechtheium, and Pinacotheca, have all remains of paint 2,000 years old. Many writers in the German periodicals have treated on this subject, but somewhat in a vague and cursory manner. The Institute of British Architects has given some detailed collections of notes and illustrations. A French architect of eminence has published some elaborate restorations of polychromy. Col. Leake has these words (in his "Athens," p. 399), to the exact truth of which every accurate observer can bear witness: "All the sculptures of the Thescium, with those of the metopes and those of the friczes of the restibules, preserve the remains of colours with which they were painted. Vestiges of bronze and gold-coloured arms, of a blue sky, of bluc, green, and red drapery, are still very apparent. A painted foliage and meander is seen in the interior cornice of the peristyle, and a painted star in the lacunaria." To this I may add, a bright red, blue, and yellow pattern, in the newly cleared part of the Pinacotheca, the egg shape moulding on fragments of comices lying bencath the Propyleia, the same near the Erechtheiam, a yellow coloured pattern in parallel lines in the roof of the Caryatid portico of the same, besides an d la Grecque pattern and star in fragments of the same building, and evident traces in the upper part of flutings and the capitals; the outlines of these and most other patterns are scratched on the marble with some sharp tool. In the Museum of the Acropolis are fragments supposed to belong to the Hecatompedon, which retain very bright colours, red and blue, particularly some triglyphs; a head of which the hair appears to have been gilt. Some of these fragments, retaining bright colours, are now in London; and the colours themselves, from analysis, appear to have been mixed with honey and wax. In short, the buildings of the age of Pericles were painted. Whether the ctistom wha derived from Egypt or not, it would be absurd to say that the Grecks showed exquisite akill in architecture, and a barbarous taste in painting. Those who cry out most loudly, forget that time has now re-painted the Parthenon, \&c. for them, with a great variety of the richest browns and grey tints, otherwise it could not have been seen when the sun shone on the fresh cut marble. This is illustrated by the poor effect of the columss of the re-erected Temple of Victory, which are white from haring been buried for two or three centuries in the earth. The secret of taste seems to have been, that the backgrounds, and plafonds, and the triglyphs (as representing the stone cut through), were painted deep blue, to assimilate with the sky they represented, and which appeared above them; that the flutings of columns and other large members were coloured with neutral tints, while the minute ornaments were marked by the brightest reds, yollown, greens, and blues,-highly contrasted indeed, but each so small in breadth, that they produced no gaudy effect at the height to which they were elovated, being chietly on cornices, friezes, capitals, \&e. When the eye was directed to any one spot of the building, the contrasted hues produced a high rellef and variety; but when it was removed, so as to take in a view of a large part of the structure, the colours by no means destroyed its unity, since they then became mingled like the vanishing rainbow. Such an effect any one may see from approaching or withdrawing from a card coloured with prismatic colours.. Yon Klenze has given a pretty, but not entirely happy illustration of this in his circular templo at Munich. An interesting discovery in polychromy has just been made in a statue in alto-relievo, discovered between the south-eastern promontory of Mount Hymettus and Snnium ; it is six feet high, and gonerally (except in one arm) of good proportions. The subject is a warrior, armed with helm, breastplate, greaves, and spear, standing erect, in profle. The beard and countenance remind one much of the Egina nnarbles, but the style is suferior; beneath the breastplate a leather jerkin seems to have been worn, and the fustinella descends below this half way down the thighs, like a highlander's tartun. The background has been colourcd vermillion; the tints on the flesh are nearly gone, but the claborate patterns on the armour are clearly visible; among thesc are bordera in a varicty of forms in bright colours, besides stars, and some other gigures not casily deciphered. Bluc, red, and yollow, are the rocurring colours; and the whole effect is exccedingly good, and indeed imposing, for the countenance (the beard being trimmed and pointed) is earmest and intelligent. Tho pedestal beara the words apyav Apuatodeous, a sculptor, who, it appesis, was one of the founders of the achool of Sicyon, long before the rise of that of Athens. Herc, then, is a painted statue still in existence, as decidedly painted as was that of Shakepere in Stratford Church; it was the production of a famous school, the taste of which seems to have been fullowed by Phidias himself, in the groat cryselcphantine statue of the goddess in the Parthenon, since this Latter had coloured garmonta, for the golden peplos descended to the feet. If Phidias then condemned not Ariatocles, whal may we dare to aay in thim derepernte me of art?

While I am writing, some beautiful reliefs have been discorered near the temple of Victory similar to the two admirable specimens aready fund there; a series of winged Victories scem to have formed a protuged decoration, of a unique kind, round the front of the base, for thor could not have belonged to the temple itself. Mr. Fittachi has aloo discoverd some vases on the spot where the work of the sculptor of Sicyon was found; and could this active officer be supplied with means, no doult many rics remains would reward his labours, but the government can only ylow him a vory amall annual sum for the excavations of the Acropolis, and, unior tunately, a jealous and ill-judged law has the effect of atopping all emtet. prise on the part of foreigners.-Athenaum.

ST. BRIDE'S, FLEET-STREET.

(From the Churches of Londom. By G. Godwnx, Jun., F.S.A.)
The present edifice was not constructed until 1600. Sir Christophes Wren was the architect; Mr. William Dickenson the superintending raf. veyor. The cost waa $£ 11,430$. The ateeple was not commessed mit some time afterwards; for, according to an entry in the parian books, the first stone was laid October 4th, 1701. It was completed in 1703.
The steeple, as left by Wron, was 234 feet in height from the groume, is consequence of which great elevation, and from the want of proper precan. tions, it was twice seriously injured by lightning. On the first of thet occurrences, namely in June 1764, so much damage was done, that it was found requisite to take down 85 feet of the spire. The mewl rane, the cramps with which the masonry was secured, and the ctita iron work employed in the constraction, led the electric fluid down th: steeple, in the absence of any continued or better conductor; and as at cach point where the connection was broken off, a violent diarruption ackxsarily eusued, the stone-work was rent in all parts, and projected from its situation. One stone, weighing nearly 80 pounds, was thrown oven be ex: end of the church, and fell on the roof of a house in Bride Lase, wide another was forced from the botiom of the apire through the roof of the church into the north gallery. Mr. afterwards Sir William Staines, mi employed to repair the damage; and in doing so he lowered the spir. eight feet, either by direction of the parish authorities, or on his not responsibility, without, as it would appear, any sufficient reason for tha mutilation. The whole cost of the injury caused by the lightring at this time, was estimated at $£ 3000$. On the recurrence of this areden, which took place in 1803, the damage was much less considerable.

St. Bride's steeple is, unquestionably, a most successful and bendifilu design, as well as a fne specimen of Wren's akill in construction. Bech of the four octagon stories pierced with openings, and which compose the lower part of the spire, is beautifully proportioned, and together, in led mutual relations, they are most harnonious. The parts are simpla, dimat severc; the effect of the whole agrecable and good. Every succodian writer who has described this church, has lauded the steeple withost reserve, pronouncing it second in beauty only to that of Bow church, Wrer's masterpiece in this class of design. On the first consideration of in an examiner may not be disposed implicitly to assent to this opiniun, feeting that the merc repetition of the same forms, although in the end prodactive of good effect, ns it does not call for the exercise of much inventive ports, is not entitled to the highest degree of admiration; and that as this otepple displays less variety than many others by the same master, it has less ciaim to praise. Further consideration, we think, may lead to a different opinion in this case. To pile story upon story without good result, is not dificatit and requires little genius. To do so and produce the effoet here attianed. is quite the reverse, and noeds the soundest judgment, and much waste; and we are disposed therefore to believe, that St. Bride's steeple maf be confidently appealed to by Wren's admirers, as one of the best of hia na. merous works. In height it approaches nearer to the exquisite ppires which belong to, and characterize the pointed style of arehitecture, than any other example, as it does to, in lightness of effect, and in gracefulnes. It is still very far from possessing the saine degree of beauty which belons to some of those matcliess productions of human ekill; but then, on the other hand, it has a charm in common with other spires designed by Wree, peculiarly its own; namely, as a record of a difficulty overcome. A qirr does not belong to Italian architecture, it may in fact be regarded ws violation of a great principle of the style, which is horisonality; and" therefore required no ordinary effiort of genius so to introduce and fachise it, as to render it homogeneous with a building so desigued. This effirt Wren successfully made, and it has been jusily said to be neariy cqua in degree to what would be necessary to invent an entircly new specieul building.

The iwo lower stories of the spire are Tuscan, the third is Ionic, and tit fourth Composite. At the angles of the parapet crowning the tower, trent which the stecple rises, vases are introduced, as they are also at the bere 4 , the obelisk which terminates the spire, by which means all harsh trasitins of form are avoided, and the outline of the whole, from the tower to lac fa ur, is rendered pyramidal.

The upper story of the towor, with its circular-keaded pedimente, presents the somewhat singular feature of an attached Corinthian colunn al each angle, which in this case is not altogether productive of pood diet. The entasis of the column being strongly marked, gives to the onlines ' crippled appetrance, inducing at first sight the idea, that the superincombent weight has caused the walls to bulge at the centre of the roter.

The exterior of the east end of the building is neat, and the drumpa of the grent vindow aro boldy denigued.

Caledonian canal.

(Copy of Mr. Walker's Report, continued from page 177.)

Detailed Estimate reforred to in Report.

Beginning at the West end-
Five or six permanent guide buoys, with anchors, are required between Fort William and the entrance at Corpach, for which say
Far Corpach Entrance Lock, which is in good repair generally, but allow for stoppage of small leaks and some pointing
A great part of the masonry of the two Corpach Locks is bad, and in bad repair ; this requires to be taken down and rebuilt, which, with other worke, will amount to
The reach between Corpach and Bannarie, one mile and a quarter long, requires only the repairing and gravelling of the road, which Coums part of the general head of roads taken afterwards
The eight Bannavie Locks require repairs of the masonry, gaten, ecc., amounting to
Strengthening banks at a few places abore Bannavic, on south side, amounts to
In the five culverts before referred to in Bannavic Reach, pointing and partial repairs with puddling are required, say
For the Strom offlet Sluices in this reach, stopping leakage, pointing, \&o. take
A weir in Moy Bum is wanted to stop the gravel before entering Canal; thia, and removing present accumulation of mud brought down the burn and lodged in the Canal, will amount to
Gairiochy Regulating lock, in masonry, platforms, sluices, \&c., requines an outlay of
A dem above Gairlochy Lock to shut off water of Loch Lochy while the lock, \&c. are under repair, will be
Por deepening the channel from the lock into Loch Lochy, and warping buoy near the entrance, gay
Deepening the entrance to Laggon Lock, enst end of Loch Lochy and forming causeways to facilitate the approach of vessels, is
The two Lagoin Locks between Loch Lochy and the summit, or Loch Oich Level, are in good repair.
To give 17 feet depth for navigation, the Canal between the Laggon Locks and Looh Oich must be excavated, by dredging through the doep cutting; this amounts to
A track-path to be formud upon the slope of the deep cutting at Lagron, the present baniks being high and very inconvenient, amounts to
For planting apoil banke along Laggon, cutting with larches or fire, allow.
Looh Oich; for shallow portions to be decpened by dredging, emounta to
Guide-pouts in Loch Oich, $\dot{\text { ex }}$., and deepening the cut between Loah Oich and Aberchalder Lock will coast
Facing with stones the slopes of the Canal banks in the wertern district, not yet stoned, and gravelling and repairing trackpache, are
The works proposed for increasing the quantity of water in the Lork Oich, or summit, for the supply of the Canal in dry scasons
A new course for Aberchaldor Burn, to prevent gravel running into and impeding the navigation, is
A berchalder Lock; repairs of masonry, lock-gates and machinery, extimated at
Dam above lock, to support the waters of Loch Oich, is
Aberchalder to Kytra, reach of two miles and a quarter, deepening Canal to 17 feet (the top level here to be as originally proposed), amounts to
Kytra Lock, for repairs of masonry, lock-gates and machinery, say
Deeping for somo dlatance below Kytra Lock, and removing sand from north slope, is
Rench between Kytra and Fort Augustus Locks, two miles and a half, new off-set sluices to empty Canal when required, similar to che stone sluices, will cost
The puddle linings required in this reach, to stop present leakage through the banks, are
stoning slopes and gravelling track-path from Loch Oich to Fort Augustus, \&c,
Fort Augustus Locks, taking down and rebuilding masonry, repairs of gates, machinery, \&c., extra of 6,900l. already taken under firat division, and buoy at entrance into Loch Ness, amount to .
Wideang entrance, by rounding off angle from Loch Ness at Bona Ferry, asy
Forming track-paths across swash-ways in Loch Dochfour, is
Widening entrance at lower end of Loch Dochfour, is .
A weste weir at the oullat of Loch Dochfour, which discharges the waters of Loch Ness
Por guide-posta in Loch Doclfour, say
Dochifour Burn, forming a new courme to prevent gravel from being carried into and impeding the navigation
Doch-rarrock Regulating Look is in good repair.
Heach from Doch-garrock to Muirtown, Bve milee oxcavating eoil, replacing with puddle, part of the line being 80 very leaky as to require the constant feed of ten atuicea at the Doch-garrock
Lock, each sluice six ruperfloial feet, with an averago hend of one foot, to supply the waste through the banks, come to

11,000 wall 270
Torvean Hill, removing gravel and supporting slope with rough
Torvean Hill, removing gravel and supporting slope with rough
Offlet aluice for emptying the reech when required, same as for reach above Fori Augustus 2,000
Strengthening south bank of Oanal above Muirtown Locke: 150
Muirtown Locks generally in good order; for pointing und ro- pairlng gates, \&c. say 200
The bridge over the Laggon Locke being stronger, with little trade, than the bridge upon the turnpike road at Muirtown, say for changing the situation of the two bridges 100
For lengthening wharf wall at Muirtown for trade of Inverneas and surrounding country, asy 1,500
Graveling track-paths and stoning slopes of eastern district ofCanal, amount to
6,200
Sundry repairs of lock-gates, machinery, foot-bridges, \&c. in oast district (inclusive of Fort Auguatus). 150
The Clachnaharry Locks at eagt end of Canal are both in good repair, although the entrance lock has sunk down 18 inches fromtime of finishing.
Jetty at Clachnaharry Sea Lock, for repairing it, and threo new
dolphin pilus, allow 300
Four buoys between Kessock Ferry and Entrance Lock 200 50
Twenty-five milestones.
upon banks 100Small lighthouges, one at each entrance, one at each end of LochLochy and one at each end of Loch Ness, say six300
Add 10 per cent. for contingencies
£88,810
8,880
£97,690

In addition to the above, some machinery and utensils will be requsite for the execution of the works and for the proper establishment of the Canal, which are estimated as under:
A new steam-dredger
Four mud barges with falso bottoms 1,200
Three common barges
600
Ten housen for lock and bridge keepers
600
A diving-bcll and vessel, \&c.
A diving helmet100

A crane at the Corpash Basin
A crane at Muirtown Wharf
A small crane and shed, warehouse and steam-boat wharf above Muirtown Locks
Add sundry smaller utensils, \&c.

CRINAN CANAL.

It was not, as I have already stated, until my return from the survey, that I received any inatructions respecting the Crinan Canal. My atten tion to it was therefore more general than otherwise it would have been; but, considering it was a feeder to the Caledonian Canal, and having Mr. Gibb along with me, having remained for a night at Ardrienhaig, and passed the morning of the 4 th in the examination of the works at that place, and at the east ond of the canal generally, and having, through the accident already referred to, been delayed the whole of the day upon the line, I noticed the general state of the works, and made some inquiries. Mr. Gibb has also since kindly supplied me with details and information, which his long and intimate acquaintance with the subject enabled him to do, and I have been furnished by Mr. Smith with a copy of the reports on the Caledonian Canal, which contain the particulars of all the expenditure and proceedings since the Crinan Canal came under the management of the Caledonian Canal commisaioners, and also a statement from Mr. Gibb, relating to the repairs and works done since the Crinan Canal was opened. Lord Breadalbane, Mr. Caldwell a shareholder, and Mr. James Thomson, have alro waited upon me, and given me their opinions.

The object of the Crinan Canal is, as you are no doubt aware, by a cut of nine miles in length from Loch Fine, or rather Loch Gilp, to Loch Crinan, which communicates with Loch Eil, to save the more exposed passage round the Mull, of Cantire, and a circuit of seventy miles, a aaving which is still important, though rendered less so by the introduction of steam.
The first aot for making the Crinan Canal, was passed in the 33 Geo. III., and I am informed that the sums raised by subecription amounted to about $\mathbf{£ 1 0 0 , 0 0 0 \text { ; this being insufflcient to complete the work and execute certain }}$ repaim, $£ 25,000$ was adranced by the barons of the exchequer of Bcotland from the forfeited estates fund, and $£ 30,000$ by the lords of the treasury to effect the above objects. Both these sums were to be repaid, with interest, from the canal revenues. The canal was then opened, but the works were imperfect, added to which, a breach in one of the embankmente obliged the navigation to be stopped, and a further advance of $£ 19,400$ was authorised to be made in 1817, by the barons of the exohequer, to the commisioners of the Caledonian Canal, under whooe management the canal wad then placed, and ntill remains

The repairs above referred to were executed by Mr. Gibb, under Mr. Telford, in 1817, and from that time the canal remaincd open, the current repairs being done by the company's workmen until 18.35 , when some of the gates were renewed, other important repairs done, and an addition of five feet made to the depth of the reservoir, by Messers. Gibb and Son as contractors, the amount of which. was about $£ 2,800$. In 1836 also a landing-place or pier, convenient for the passengers by steam-packets, and for the herring fishery, was built by the same contractors at Ardrisshaig.

There are upon the canal eight locks ascending from Loch Gilp or Ardrisslaig, at the west end, and seven locks descending to Crinan at the east end; these locks are 96 feet long by 24 feet wide, and 12 fect deep, except the two at Crinan end, which are 108 feet long by 27 feet wide; the canal is therefore fitted for merchant vessels of 200 tons burthen, and the steamers phich ply between Glasgow and Inverness are made inconveniently narrow to pass through it. To avoid this, a larger steamer started last year, which makes the passage round the Mull of Cantire, occupying from six to eight hours additional time, although the loss is probably more than compensated by the greater width of the vessel in the other part of the joumey, independently of the general convenience and security against stoppages upon the Crinan Canal, which are not unfrequent, and upon which there is at present no passage during the night.
'ILe importance of the Crinan Canal to the Caledonian Canal is greatest in reference to the trade of the Clyde; and, for the reason I liave stated, its importance for steam communication is much less than for sailing vessels, unless the locks and canal were cnlarged to the size of the Caledonian Canal, or, which has been proposed and would probably be a better plan, by cutting down the summit by which eight locks would be saved. The expense of either would be very great, and certainly in my opinion much beyond what it would be prudent to undertake under present circunstances, and until the superiority of the Canal to the mor circuitous route is more fully established.

Without, however, contemplating such an outlay, much good might be done, and at a comparatively small expense, to add to the efficient working and managing of the canal.

The breakwater which shelters the entrance at Ardrisshaig should be carried out (Mr. Gibb and Mr. Thomson, senior, thought \& () feet would be sufficient) to cover a projecting rock, which is partly dry at low water, and is dangerous for vessels approaching, particularly at night, with rough weather, and more so since the beacon which marked it was carried away, and had not been replaced. Upon this proposed extension the entrance light might be conveniently placed, the present light, from having been allowed to get out of repair, being now a very imperfect guide. From the importance to life and property, lights and beacons when once established should never be neglected.

East Entrance.-The entrance to the canal at the east end requires to be deepened at least five feet, to allow vessels to enter the lock, the sill of which is laid eight feet under low water. The expense of this, compared with the advantage, would be but small. Mr. James Thomson informs me that a good deal has been done towards the remoral of this shoal, which was at one time seven feet and a half, but is now only four feet above the sill. If completely removed, the steamers could enter at all times of tide, which would be a most important improvement, particularly at night; the accomnodation at Ardrisshaig does not seem the best, and as there is nothing interesting in the line of the canal, to get through it in place of being obliged to search for nights' lodgings would generally be preferred by passengers, even those on pleasure. At present there is no night passage for any vessel, whether with goods or passengers, through the canal.

Locks.-The masonry of the locks, from the castern entrance to Caimbean, a distance of four miles, appeared good, and the canal of proportionate width.

From Cairnbean to the summit, and thence to the Crinan Lock, No. 14, the lock walls are built of the whinstone found in the district, and are generally rough. The quoins, copings and aprons are of better stone. Some repairs in the gates are required, only part of these having been renewed in 1817; and I was informed that some of the lower platforms are defective from the puddle having wasted.

The shortness of the summit is an original defect in the canal, which would be effectually remedied by cutting down and taking out a lock at each end of the summit, by which considerable time and future expense of repair would be saved; but even this would, I fear, be attended with too large an outlay to be undertaken at present.

- Between Dimandry Lower Tower and Belanoch Bay, and thence to the Upper Crinan Lock, part of the canal is through rock, and is in places so narrow, that two vessels cannot pass. This is inconvenient, and the wear and tear to steam-packets, which require some speed for steering, is stated to be considerable, through their coming in contact with the sharp, rocky sides. The expense of making the canal the full width through this rock would be considerable, but the worst parts might be remedied.

Crinan End.-It was night before I reached the Crinan end. Mr. Gibb informed me that the sea lock here is good freestone, but that the lower or sea gates are attacked by the worm, and are at present very defective. This should have immediate attention; 10 sheath them with copper below low water would probably be the best preventive, and in the end the cheapest, as they are stated to want frequent repairs from the above cause.

At the Crinan as at the Ardrisshaig end, there is a bank between the entrance lock and the lake, which is considerably higher than the lock sill; it was described to me as of clay and mud, and that the length was amall; murely this ought to be removed.

The revenue of this canal during the last year is stated in a letter from Mr. Thomaon, the engineer and superintendent, to have been 1,9031., the excxpenditure $1,67 \mathrm{ll}$., leaving a surplus of 2321 .; as respects balance, this is a favourable statement compared with former years, in which, an an areragr, the expenditure and receipts were nearly equal. The trade during the lart fifteen years has increased, but not above 200 L , or 300%. on an syerage of several years, so that in a financial view the Crinan and Caledonian Canal are much upon a par.

Mr. Thomson's attention was so much taken up by the repair of the damaged gate, and of a leak in the bank, that I had but little opportunity of conversation with him; but it appeared to me that the machinery of the locks and bridges was not aufficiently attended to, and that more attention to cleaning, oiling and preserving, was wanted generally; this might arise from a desire to save every expense, but it is surely bad economy, and perhaps the same desire extending to the commissioners, prevents their having an out-door auperintendent or clerk who can affurd to give his undivided attention to the state and interests of the canal. Upon a work of this magnitude, and now depending for its succesg upon despatch, fuch a person would appear to me indispensable, even if 1 had not had the opportunity (though certainly short) of witnessing it. i should likewise recomunend regular returns to be made, not only of the number and description of vessels that pass the canal, but of the time taken from their approaching the entrance to entering the lake at the other end, and if any delay, the cause of it; also of all accidents, and the cause of them.

The accounts of receipts and disbursements appear to hare been returned more regularly within the last three years. If there is any regular audit of accounts, I have not been informed of it; altogether the Crinan Canal does appear to have been treated as if it were a favourite concern.

Although regularity and despatch will do great things, I have a worve opinion of the Crinan Canal, taken by itself, than of the Caledonien Canal, as an ultimate measure; but, if kept in an efficient state, it mast be beneficial as a public navigation, and an important arm of the Caledominn Canal.
As I did not expect to be called upon for any opinion respecting it, this meagre account must be excused, and I have no documents to enable me to estimate the expense of the works which I have recommended.

The idea of a railway by the side of the canal has been suggested; by this (even if worked by horses) passengers might be conveyed in an hous with greater certainty than they now are in four. A steamer of proper dimensions for passengers would work from Glasgow, \&c., to Ardrimahaig, and from Crinan to Inverness. For cheap passengers and heavy goods, the present steam-boats going less frequently than at present would sufice. That this would increase the despatch and character, and therefore the extent of communication, cannot be doubted; but the incrente mout be great to warrant such an establishment of steam-packets, which would of course be a private concern. I do not think the cost of laying a naikay upon the banks would be heary. My opinion on the whole is, that the necessary repairs to the Orinan Canal, the deepening of the entrasces, and other things I have recommended, should be done forthwith, and a vigitat superintendence established; but I do not see my way in this so clearty as to advise more to be done at present.

BIRMINGHAM RAILWAY SIGNALS.

Every station is furnished with an alarum, to give notice of the approch of each train, and to summon the whole of the men to their appointed places. These alarums are mo constructed, that woight is wound np after they have performed their office which prepares them to perform it again. On seeing the forthcoming train has reacbed the proper spot, the policeman stalioned at them pulls a trigger, and the weight begins to descend, ringing a loud gong shaped bell by means of internal machinery. Bells ase ciso hang mo as, in a few seconds, to collect together the whole of the men belonging to the station for any required purpose.
The police are placed along the line at distances varying from one to thret miles, according as local circumstances rendered it necessary. Eech man has his beat and dutios defned, and is provided with two signal liags, one of which is red and the other white: the white flag is held out when no obstruction exists; and, on the contrary, the red flag indicutes that there is danger, and that the train must not pass the signal till it is ascertainal that the cause of danger is removed.
Each policeman, also, is furnished with a revolving signal lanop, to be ned after dark; which shows, at the will of the holder, a white light when the line Is clear; a green one when It is necessary to use caution, and the cpeed of the train be diminished; and a red hight, to intimate the neceanity of im mediately stopping.-Roscoe's London and Birmingham Raihway.

The Luxor Glelisk.-The racen of the pelestal of the obeliak in the Plece de th Concorde, which look wwards the Chamber of Doputien aud the Church of the Modelene, are to be engraved with represeutations of the apparatus used in taking it down at Luxor, and in raising it where it now stands. The desigus are culten trom a work publiched by M. Lebar, the engineer, who bronght the monument from KiJpt and erected it. The other two faces are to bear the following inscriptions:-" Iado vicus Philippus I., Francorum Rex, ut antiquigaimum artis Egyptiece opua, idesoque recentis glorim ad Nilnm armin parte iunigne monumentum, Fraciee ab ipia fieppen donatom, posteritati prorognret, obeliseum die XXV Ang, a MDCCCXXXII Yobis Hecatompylin avectum naviq, ad id. constructa, intre mensen XIII in Ganlume perductum, erigandum curavit d. XXV Octob. a. MDCCCXXXVI, anno regul soptimo."
cor en Fracee, a tett dreané aur ce piedescal par M. Lebaa, intónieur, aus aypinodit memesin dinn peuple immonse, lo XXV Oclobre, MDCCCXXXYI."

OPENING OF THE EXHIBITION OF THE PRODUCTIONS OF INDUSTRY AND THE ARTS AT PARIS.

The exhibition of productions of industry was opened on Wednesday, the lat ult, to the public.
The buildings constructed in the Champs Elysees have ε front of 185 metrea in length and 82 metres in dapth; the façade is composed of a gallery parallel with the grand avenues of the Champs Elysfes. Five noms detach themselves perpendicularly from this pallery; these are contigroas, and separated from the others by courts. The rooms and galleries are 10 metres high, and covered with zinc. Notwithstanding the extent of these buildings, they were far from being sufficient for the numerous productions which were admitted.

The number of exhibitors is incessantly increasing. In 1834 it amounted to one-third more than in 1827-namely, 2,437. The present number is 3,348, and will probably increase in the course of a few days. In 1827, 20 departments sent nothing to the exhibition; in 1834 this negative num. ber was reducod to 11; and in 1839, to 6. Those six departments are those of the Lower Alps, Cantal, Cher, Gers, Lot, end Lozere. The deparment which reckons the greatest numbers of exhibitors is that of the Seine; out of 3,348 exposers, 2,047 belong to that one, or nearly twothirds of the whole. That is a large number indeed, even admitting that encouragement should be shown to those manufactures based upon the application of the fine arts. The following departments fumish the greatest nomber of exhibitors after that of the Seine :-The Seine Inferieure, 96 ; the Rhone, 73; the Gard, 58 ; the Nord, 56 ; the Upper Rhine, 55 ; the Loire, 43, \&c.
Among the small quantity of tiseues which we were able to see, we must mention some rich silks, worked with gold, from Lyons. Some satins and woolln damesk, some fine muslins of Tarare and St. Quentin, lace of Mirecour, and blondes from Caen. The exhibition of Mulhausen sent some prints and mousselines de laines as remarknble for their taste as for the brilliancy of the colours. Muslin is a fashionable stuff, and should ocenpy a distinguisted place in the exhibition. The shawl mannfecturers Dencincriee, Gavesen, \&c., have also sent their contributions.

Amongst the other objects, the most striking are the bronve statues of Creenel, the gilt bronzes of Thomire and Deniere, which are placed in frant of each other, the plated goods of Balaine and Veyrat, the lustres and coloured crystals of St. Louis and Baccarat, and the colossal glasses of St. Gobin and St. Guirin. There were numerous excellent specimens of porcelain, particularty thowe copied from the English, with flowers in relief.

The department of the Alier exhibited some models which rival those of Paris. The Parisian jewellery had some splendid specimens, among which was a panel of silver cloth, by a new proceeding, for which M. Moreau Christophle has taken out a patent. There are as yet only a few trilliand-tables, which are not all in very good taste, but one deserves mention; it is made of ebony inlaid with coloured wood. Musical instruments were abundant; Beveral organs were placed at the bottom of the room.

Comfortable, and even luxurious arts, zeem to prevail ovor what M. C Dapin styles domestic arts. Magnificent carpets of the Pompadour school showed the flexibility of the manufactories of Aubusson, but we should prefer to see the common carpets descend to so low a price as to render them more general in France. The walls were ornamented with stained paper, the predominating patterns of which consisted of panels or arabesques, with vases of flowers or Gothic medallions in the centre.

The blinds suspended at different windows showed the progress of this brench of manufacture. The glass manufactory of Choisy exposed some bonquets of glass and paintings of the same materials, which appeared to ns perfect as regards the brillinucy of the colours.- Le Commerce.

The articles of Parisian manufacture occupy a conspicuous place in the exhibition. They consist principally of omamental objects, upholstery, farniture, mirrors, stained paper-hangings, carpets, \&c. Among the latter Fe noticed in particular those embroidered with the needle, which passed almont unperceived at the exposition of 1834 , but have since that period made a truly astoniahing progreas. Eight or ten Parisian houses exposed their work this year, the most remarkable of which for their good taste and expeution are those proceeding from the establishment of Charles Hautrive and Sisters, of No. 24 , Rue du Caire, who have exposed an arm-chair entirely embroidered us petit point, and two magnificent screens. One of these, embroidered en chenilla, on silk canvass, exhibits a choice of the most beautiful flower, which rival nature in freshness and colouring. The second of these screens contains an exact copy of an exquisite painting, much edraired at one of the last expositions of the Louvre, and, from the finish of the execution of the tapestry, it would be difficult to decide which, the embroiderer or painter, displayed most talent. It is done in imitation of thr last works of the Gobelins. The picture is enclosed in a rich and elegnant frame, and, as a piece of ommment, it would not be misplaced in the very first satons of London or Paris.-Times.

Lop of the Globe.-In a converastion with Dr. Lardaer, stating how much we were indebted to the discoveries in geology, demonstrating the antiguity of the earth, the replied, that we need not resort to geology to prove tho fact; fur, as it regards the ereation of the hearenly bodien, it could be proved that the fixed atars are at such en inamene distance, that, notwithstanding light moven at the rats of a hundred thomand miles per aecond, it would take three hundred thousand years for a ray of it to trarel through apace ere it reached the earth; so that the tars we now see mum hare been croated more than throe bundred chousand years ago.-From a secw work, "Plcasant Recolictions w a Diletlantr, by William Gardiner."

LIGHTING OF THE HOUSE OF COMMONS.

The experiments of the Bude lights for lighting the House of Commons were repented last night, chiefly with the view of ascertaining the effect of the new plan upon the reporters' gallery. As far as that part of the house was concerned, we can say the trisl was slogether successful. Though the apparatus for conveying the light to that as well as to other parts of the house is not yet complete, yet enough of its operation was seen to show that when complete its superiority over the wax lights will be past all question. We were not present at the first trial of the Bude light, but we understand that on that occasion the complaint was general that the glare thrown into the body of the bouse was greally offensipe to the eye, while the seats under the gallery were in comparative obscurity. This was explained last night by the fact that the order to light up the house on the new plan came before the preparations were in a sufficiently forward state. Be that as it may, the grounds of objection have been wholly removed. The light is now made to descend from the roof through ground glass plates, over which the apparatus is so contrived that the light can with ease be varied from the colour of a pale moonlight to a bright sunlight, or be mellowed down into a rich autumnal glow; still giving sufficient light, without any unpleasnnt glare, to every part of the house. The glase through which the light is sent down is fitted air-tight into the bottom of the chandelier, to that no heat can be generated by it in the house, save the slight radiation from the aurface of the chandelier itself, but compared with the heat and the consumption of atmospheric air by the combustion (or rather the very imperfect combustion) of 240 wax candles, the beat and almospherie combustion of the new plan are not (as far as the body of the house is concerned) as 1 to 100 . Whatever beat may be generated by the new process will be carried off through the roof, and never affect the body of the bouse. To those of our readers who may not be acquainted with the nature of what is called the "Bude" light, it will suffice to say that in Mr. Gurney's plan it consists in a number of burners (in each chandelier) supplied with wick and oil, nomewhat like the Argand lamp, with the improvement that in this there is only one circle or cylinder, while in the common A rgand lamp there are two. Lighted in this state, the lamp would send off a very large and offeunive masa of unconsumed carbon; but to prevent this, a stream of oxygen gas is made to pass tbrough the centre of eacls burner, by which the total oombustion of the carbon of the oil and wick takes place, and the light is cansequently raised to a benutifully brilliant flame, the intensity of which may be inoreased according to the volume of the stream of oxygen passed through it, and, as we have already said, the light may be mellowed as taste, fancy, or oonvenience may suggeat. From what we saw last night we think the very clever plan of Mr. Gurney a vest improvernent on the present system, and, at Joe Hume would say, "it is a great deal cheaper."-Times, May 24.

LONDON AND BIRMINGHAM RAILWAY.

We have selected the following extracts from Roscoe and Lecount's interesting description of this Railway, which we have before more than once favourably noticed :-

CONTRACTS, EXTENT, COST, sec.

Contract.	$\begin{aligned} & \hline 5 \\ & \hline \mathbf{5} \\ & 0 \\ & 5 \\ & \hline \end{aligned}$	Contractor.	Contract Price.	Revised Estimate
	Mitey		\pm	\pm
Euston Extension	1	W. and L. Cubitt	76,860	91,528
Primrose Hill	- 53	The Company	119,987	280,014
Harrow.	-91	Joseph Nowell and Sons	110,227	144,574
Wafforl	- 5	Copeland and Harding	117,000	138,219
King's Langley	- 21	W. and L. Cubitt	38,900	57,386
Berkhampstead	- 4.	W. and L. Cubitt	64,660	65,002
Aldbury .	- 21	W. and L. Cubltt	16,694	25,134
Tring . .	- 3	Assignees of Townshend	104,496	144,657
Loighton Buzzard.	- 71	James Nowell	38,000	43,162
Stoke Hammond .	- 37	E. W. Morris	39,303	42,345
Bletchly	- 38	John Burge	54,300	61,071
Wolverton	- 5	The Company	67,730	107,765
Wolverton Viaduct	- $\frac{1}{1}$	James Norell	25,226	28,964
Castlothorpe.	- 42	Craren and Sons	49,735	71,874
Blisworth	- 5	The Company	112,950	144,301
Bugbrook	- 5	John Chapman	53,400	65,013
Stome Hill	- 12	Johu Chapman	23,050	31,536
Weedon	- 11	W. and J. Simmons	26,150	31,442
Brockhall	- 3	J. and G. Thomion	34,150	50.583
Long Buclby	- 38	J. and G. Thornton	42,587	48,256
Kilsby .	- 18	The Compeny	98,982	201,030
Rugby	- 50	The Company	59,283 20,330	93,384
Long Lawford	- 37	W. and J. Simmons	20,330 40,000	$25,893$
Brandon	- $4 \frac{1}{16}$	The Company	40,000 7,079	50,090 8,621
Avon Viaduct	1.16 -73	S. Hemming Co. \& W. \& J. Simmons	7,979 101,700	8,621 150,496
Coventry	4	Co. \& W. \& J. Simmons Daniel Pritchard	101,700 0,248	62,738
Yardley	- $7 \frac{1}{2}$	Joseph Thomton	68,032	78,131
Saltley	$\cdot 1 \frac{1}{8}$	James Diggle	32,878	38,707
Res Viaduct.	$\therefore \mathrm{C}$	James Nowell	13,644	15,505

THE KILSBY TUNNEL.

The Kilaby Tunnel is ebout 2,423 yarde long, and was intended at first to be formed elghteen inches thick in the brickwork; but it wras found necensary to increase this, in most cases, to twenty-eeven inches. The whole has been built in either Roman or metallic cement.

The works were commenced in June, 1835, by the contractors; but such serious difficulties were met with, at an early stage of the proceedings, that they gave up the contract in March, 1836, and nearly the whole work has been performed by the company. I'revious to the commencement of the works, trial-shafts were sunk in several parts of the line of the tunnel, in ordar that the nature of the ground through which it would have to pass might be ascertained; and it was found to be generally lias shale, with a few bads of rock-in some places dry, in others containing a considersble quan. tity of water.*
In sinking the accond working-shaf, it was found that a bed of and and gravel, containing a great quantity of water, lay over part of the tunnel; and this was such a perfect quicksand, that it was impossible to sink through it in the ordinary way. By repeated borings, in varions directions near this part of the tunnel, the sand was discovered to be very extensive, and to be in shape like a fat-bnttomed basin, cropping out on one tide of the hill. The trial shafls had accidentally been aunk on each aide of this basin, so that it had entirely escaped notice until the sinking of the working shan.
Mr. Stephenson was led to suppose that the water might be puraped out, and that under the water thus drained the tannel might be formed with comparative fucility; this proved to be the case. Engines for pumping were erecred, and shafts sunk a little distance out of the line of the tunnel. The pamping was continued nearly nine months before the sand was sufficiendy dry to admit of tunnelling, and during a considerable portion of that time the water pumped out was 2,000 gallons per minute. The quicksand extended over about 450 yands of the length of the tunnel, and its bottom dipped to ubout six feet below the arch.

In May, 1836, one of the large ventilating sharts was commenced, and completed in about twelve months. This shaf is sixty feet in diameter, and 132 feet deep; tho walle are perpendicular and throe feot thick throughout, the bricks being laid iu Roman cement. The second ventilating shaft is not so deep by thirty feet. These immense shafts were all built from the top downwards, by excavating for small portions of the wall at a time, from six to twelve feet in length and ten feet deep.
In Novomber, 1836, a large quantity of water burst auddenly into the tunuel, in a part where thene were no pumps; it rose very rapidly, and in order to prevent the ground being loosened by it at the far end, where it was excavated, a rather novel mode of building the brickwork was resorted to. This was by forming a lange raft, and on this the men and their materials were floated into the tannel, and with considerable difficulty and danger performed their task.

All the difficulties were at last conquered, and the tunnel finished in October, 1838 ; but, of course, the expenses were increased to a very great extent. The directors felt it to be their duty not to restrict the proper outlay of capital, when setistiod it would secure the convenience of the public, the stability of the works, and the efficient management of the traffic; and they felt persuaded that a perseverance in tbis course, to the completion of the undertaking, would be found most economical in the end, and best calculated to ensure the permanency of that successful result which is now happily placed beyoud the reach of doubt. The contract for making the Kilsby Tunnel was 99,0001 ., and it has cost more than 300,0001 ., or uprards of 1300 . per yard.
To give some idea of the magnitude of this work:-Thore were thirty millions of bricks aned in it, which, at ten hours for a working day, if a man counted fifty in a minute, would take one thousand days to get through them all. There were above a million of bricks employed in the deepest ventilating shaf, and its weight is 4,034 tons. The weight of the whole tannel is 118,620 tons; or it would freight four hundred ordinary merchant ships, of about three bundred tons each; and if these bricks were laid end to end, they would reach 4,260 miles. The quantity of soil taken from the tunnel was 177,452 cubic yards.

The great ventilating shafts are perfect masterpieces of brickwork, and are found fully to answer the purpose for which they were intended, leaving the tunnel entirely free from any offensive rapour immediately aner the transit of each train, and their magnitude can only be eatimated by standing in the tunnel and looking upwarde.

The passage through this mighty work of engineering skill and ingennity leaves on the mind, even of those unacquainted with the ordinary difficulties of such an undertaking, a vivid impression of the rare talents of those who designed the work, and superintended its execution. These talents, however, will be more especially appreciated by those who are aware of the many and unforeseen obstacles which arose during its progress. To Mr. Charles Lean, the ascistant engineer under whose direction it was completed, great credit is due for his skill and unremitting exertions, and for the great care he beatowed upon the men in the arduous and dangerons duties in which they were conrtantly engeged.

The history of the great railway between London and Birmingham is now

[^13]finished. A wonderfal work it is to look apon, whether it be contereplated in its magnitude and difficultien, its science and capital, or its utility eod resulth. It stands as much the monument of this age as any of thr greal works of antiquity that have been the subjects of the world's history. There is, however, this difference in its favour, that while they have been raised in the cruel exercise of despotic power, and have mainly subserved the prorposp of personal vanity, thds has been accomplished by the profitable employment of the redundant capital of a single district, to meet the wants of a vestly. improved people, and is the triumphant invention of science, trainel adi disciplined under severe study, and gathering accelerated atrength fron the successful experiments of cach suoceeding year. The flexible power of team was, indeed, known to the philosophers of former times; but they naed this knowledge only for the fantastic parposes of caprice and manament. Anthemius, in the age of Justinian, employed his acqueintance with this principle to annoy a troublesome neighbour, and by imitating an earthquabr figghtened Zeno out of his honse; and, at an efter-period, Pope Silyeber invented an organ, which was eat in motion and worked by it. It is the glory of the present era, that science and utility go hand in band to adrance the improvement and happiness of the nation.

Every age of the world has furnished its own pecaliar inventions, and theme have generally been well adapted to the wants that mggeated them, and to the condition in which society was at that time placed. It in a subject mosp than commonly intereating to contemplate genius toiling amidat mo many difficulties, and by patient perseverance overcoming all perplexity and opposition. It ls, perhapz, still more interesting to observe it ander the triak of its first experiments, amidst the donbts, unbelief, and sometimes jeers, of the multitude, self-possessed in the truth of its principle, yet tremolously fearfal while lying at the mercy of the thousand contingencies that might thwart ir destroy its hopes and expectations. Such was the case with Telford, on the final crection of the famons hanging bridge over the Menai Straits. It y and that his heart sunk as every successive bolt was struck, till overcome whil ibw agony of his feelinga, he retired to his cottage hard by, and swaited on bh knees the result. The shouts of the admiring popaleop, when the wonierfol fabrio setuled into its place ecross the turbulent waters, and bis own almost inarticulate thanksgiving in his secret chamber, arose together in the trimmph of that honr.
When poor Henry Bell, after years of thought, laboar, and experimeoth Arst pushed his steam vessel on the Clyde, it was done amidet the acofs and evil nurmises of those who assembled to witness the scenc. The toventor died in poverty; but an obelisk that rears itself on the banks of that foe river, near Dunglass, attests the tardy, and to him almost aseless, gratitndp of his countrymen. Falton embarked on the Hudson with the same coos. temptuous greetings and prognostications, from the rery people tho assembled in thousands to hail the arrival of the Great Weetern and strins steamers, across the rast Atlantic, to their own shores. He lived to see, and in some degree to share, the complete saccess of his genius and mechanical skill. How deeply we aro indebted to these children of science who canted forward their discoveries,-in the benefits of which we so largely participete, almost broken-hearted, amidst the ohilling indifference or the withering contempt of a selfish world !
The work of which we have been treating has involved nearly, if not alto. gether, a capital of six millions of money in its completion. This enormont amount will require three hundred thousand pound per annam, merely to pey its interest, at five per cent., bevides a very considerable sum in addition, to defray the wear and tear, and other expenses of its yearly operations; and yet with all this immense outlay, it is certain, from the hoat of traveliets is Fill allure into a state of locomotion from pleasure or profit, and the varioas lines that will eventually flow into it, that it wll be one of the mon pm. ductive railwaya in the kingdom. We cannot, indeed, clearly forevee the end of such an invention, of which thls is one of the greatest experiments, or the condition of society it may altimately produce; but wre ere warmented th believing that this onward state of improvement, by facilitating and enlarging the sphere of social commanication, will tend greatly to increase the amonent of social happiness; and in its combining and astimilating infloences over the great human family, will assist in bringing abont the benerolent purposet of Him, " who hath mede of one blood all nations of men for to dwell on all tbe face of the eerth."

EXCAVATIONS ON THE LONDON AND BIRMINGEAM RAIIWAY BETWEEN SHELDON BROOK AND YARDLEY.

A novel and ingenions method of excavaing was first tried, \dagger under the skilful direction of the assistant engineer, Mr. R. B. Dockray, a genthemen who now holds the appointment of resident engineer for one half the line, having before superintended the division from Birmingham to Rferpion, which is execated in such a superior manner as fully to jastify the light opinion formed in every quarter of his engineering abilities. To estimato the plan properly, it rill be necessary to detcribe the old system of operations:On commencing the work a deep trench or gullet wes cat, ten or twetre fert deep, and as many wide, at a suitable inclination for removing the exomated materials. When this gullet was carried quite throagh the hill, the ade were cut away to the edge of the slopes by "falling"-that is, by undermionity at the botlom and driving wedges from the top and a few feet from the faop.

[^14]which brought down the earth in large masses; it was then reduced into manaller pieces, and carried away in waggons. In this way the whole of the apper part of tin excavation was removed, to the depth of the gnllet, by which tme a siviler gullet wen brought up from the commencemont of the work, which howered the excaration twolve feet more; and no on, until the whole Wes remoreal; and each of these steps is called a "lift."
The new process is the result of necessity, the parent of many useful inrentionar. This excavation was the key to the whole contract, and had to be pashed on with the atmost despatch; and as wages wero high and the men intrectable, it occurred to the contractor that a plough might be effectually used. The material was a hard, dry marl; and after a few trials, and by increasing the strength and altering the form of the plough, the plan was crowned with a cuccess far beyoud what was originally contemplated; for in was found that, in addition to dispensing with a number of men, employed it andermining, wedging, and breaking ap, it reduced the material to such small pleces. that the labour of several men, who used to break it up at the foot of ibe embenkmont, was saved; and many excarations are now entirely worked with the plongh.

PROCDFDINGS OF BCIFNTIFIO SOOLFTLES

INSTITUTION OF CIVIL ENGINEERS.
 April 28, 1839. President in the Chair.

The following were balloted for and elected:-T. J. Maude, W. Pearce, S. B. Worthington, as Graduates; J. C. Prior, Lieut. R. C. Mrody, R. E.. $2 s$ Aspocistes.

On Stacm Boilers and Staam Engines. By Josiar Parars, M. Lrat. C. E.*
In a preceding communication + the author had treated of the amount of evaparation in different kinds of boilers in common use; in the present, he treats of their peculiar and relative merits as evaporative vessels; the laws which regalate the amount of evaporation for assigned heated surfaces; and the practical rules whereby the performance of boilers may be tested. The water eveporated and fuel consumed, had been tabulated in the previous commusication; the author now gives the dimensions of the several boilersthe aras of the grater-the area of heat abeorbing surfaces, and the rates of combustion and evaporation. The connexion of the boiler with the engine as regards the proportion of boiler to engine power, is reserved for consideration in a mbsequent communication; the attention is now confined to the influence of the proportions of the parts on the performance of boilers for a given weight of coal. Evaporation may be considered as the measure of the meful effect obtalned from any weight of fuel, or, together with the daty dome by an engine, the meanure of the useful effect of a given weight of water, in the sbape of ateam. The author insiats on the importance of ascercaining with soooracy the weight of the water, which in the shape of ateam has pased through the cylinder of an engine. The weight of water, or quanity of atem, requisite for producing a given effect or duty, was the subject of coatinual research by 8 meaton; and the basis of Watt's discoveries.

The aathor being led to make observations on evaporation twenty years ago, 8000 percelved that the completenese and rate of combustion, the proportion of the grates to the combustion effected upon them and to the whole het-abeorbing surface, were important elements in evaporative economy. Thene elements, in the author's own experiments at Warwick, where slow combuation was pushed to nearly its furthest limits-in those of Smeaton at Long Benton-of Kennie and Whtt at the Albion Milie-of M. de Pambour wo the Locomotive Engine, in which Intensity of combustion and evaporative power are at their highest limitg-of Nicholas Wood on the Killing worth Engine-and of Mr. Henwood, and others, on the Cornish boiler-are the data for the amalysis of the evaporative effects ; the true causes of which in the everal experimenth, the author now attempts to develop. I The authentic facts here recorded of the working of boilers and engines of establisbed credit and notoriety, will enable the employer of any boiler or engine to compare his practice with apecimens of acknowledged and wellattested merit.

The reanle derived from the above data are armanged in a tabular form, so at to exhibit at once the relatlon which any one property and the several parta of the boiler bear to any other, and to the effects produced, the amount and activity of the corabustion (to which the suthor assigns the term calorife forere), and the modifications it experiences by the structure and disposition of the several parts.
There are also certain quantities and relations which exert a peculiar infnence over the results, which, being rightly ascertained, are exponential or indicative of the practice of eacb particular boller; these Mr. Parkes $c^{-1 /}$ - the arponents of that boiler, and are as follow :-
The quantity of conl burnt under a boiler in a glven time, - the quantity burat on each square foot of grate per bour, - the quantity of water evaporated per square foot of heated surface,-and the number of pounds of water eriporated by a given quantity of coal. Besides this, the infinence of time, that bat the time of duration of any given portion of heat about a boiler, and oboat equal areas of surface, demands our most attentive comideration, and

- This paper was commenced February 20th, and was continued during fous meetinge befure hie zatter recess.
; The Trankoct hon been unible to obvain any simiar data for the Marine Boller,
is specially treated of at the close of the paper. It appears most distinctly, that the boilers tested as to their merit by their respective evaporative conomy, arrange thembelves in the inverse order of the rate of combustion -the Cornish boijer being greatly superior to all the others when tested in this manner, as well also as in respect if time is selected as the standard of comparison, whereby to mark the scale of descent from the highest point of excellence yet aftained in evaporative economy. For this purpose, then, the Cornish results are considered as unity.

The value of the exponents for the Comish, Wagon and Locomotive Boiler respectively, are collected together in the following table, will aerve to show at one glance the reapective values of the boilers on this comparison:-

Boiler.	lbs.	
Coraish.........	1.0	of Coal bumt unier ove boiler in 44.08 . seconds.
Wagon*........	1.0	of ditto ditio in 16.57 . ditto
Locomotive	10	of Coke ditto is 6.4. ditto.
Comish .	3.4.	of Coal burnt on each equare foot of grate per hour.
Wagon	107.	
Locomotire	$79 \cdot 3$.	of Coke dito
Comish'........	1.0.	of water evaporated by 1 square foot of heated surface per hour from 212.
Wagon	7.1	ditto dittn
Locomotive	12.0	ditto ditto
Cornish	11.8.	of Water evaporated by 1 lb . of coal from 2120.
Wisgon	8.8.	ditto ditto
Locomotive	7.3.	ditto 1 lb . of Coke, ditto
Locomollve	$5 \cdot 4$.	ditto 1 lb . of Coal, ditto.

The Cornisb boiler ponsesses some peculiar advantages, both as regarda structure and the practice of slow combination, since, by the former, great strength is attained, and, by the latter, time is given for the completc combination of air with the heated fuel, for the transmisaion of beat through the metal, and for the escape of the steam through the water. The plates of the Cornish boiler are usually $\frac{1}{2}$ an inch thick; whereas those of a low pressure boiler are usually 1-4th to 5 -16ths of an inch thick; thus a much larger extent of surface is necessary to transmit a given quantity of heat in a given time in the former than in the latter case. The Cornish engineers allow seven times as much surface as in the general wagon boiler practicc, for the evaporation of equal weights of water in equal times, and twelve times as much as in the locomotive; from which there in a gain of from 30 to 40 per cent. in the former, and of 64 with coke and 100 with coal in the latter case.
The Wagon boiler has great disadvantages of structure, being ill adapted to resist internal pressure, liable to collapse, and greatly affected by incrustation. According to the above table, which exhibits the mean of eight experiments, the combustion is $2 \frac{1}{2}$ times more rapid per boiler, and 3 times more rapid per square foot of grate per hour, and the rate of evaporation is 7 times greater than in the Comish. The loss of heat, the Cornish being unity, is 24.4 per cent.

The construction of the locomotive boiler is so very different from that of every other species of cvaporative vessel, that no strict analogy can be drawn betwixt it and any other. From the above practical results, it appears that the rale of combustion per boiler is nearly 7 times, and per square foot of grate per hour 23 times more rapid-that the rate of evaporation from equal surfaces 12 times more rapid than the Cornish boiler-the loss of heat, the Cornish being unity, 51 per cent.

The author discusses at length the varying circumstances connected with different boilers, and the correspouding influence on the above results, and particularly the system of management by which he was enabled with a Wagon boiler to approach the Cornish results. The table accompanying this papor will frequently caable the intelligent employer of a boiler to ascertain the best proportion of parts, and the best practice. For, having decided on the quantity of steam required, Le knows the quantity of fuel which will generate it if he adopts the measures of surface and proportions of parts, which have given relative effects; or he can ascertain whether his present practice be good or defective. Notwithstanding the great stride which has been made in the economy of fuel by the Cornish enginecrs, the sources of Waste are still great, and we may hope for great advances in craporativo economy, when combustion as a science and practical art has received the attention which it merits.

The effect of a different practice as regards rapidity of combustion and arrangement of parts, entirely disturbs the relation betwixt boilers of equal surfaces; the table shows an almost perfect identity in the total, the radiant, and the communicative areas, between the mean of eight experiments on the wagon and cleven on the locomotive boiler, and the locomotive builer would present between 3 and 4 times greater surface to absorb the heat generated on the grate than the wagon, if the rate of combustion were the same in both, but the rate of combustion is seven times more rapid in the locomotive, and consequently the locomotive does not offer one-half

- The resalk for the Wugon Boiker are the mpan for cight buiderg,
the surface of the wagon boiler for the absorption of the heat produced from equal weights of fuel in the same time. The result of this discordant practice is a loss by the locomotive of 1 -Srd of the heat which is realized in the Wagon boiler; that the rate of evaporation from equal surfaces is augmented by the locomotive by 65 per cent., so that the increase of evaporative power is attended by a sacrifice of 33 per cent. of fuel.

The locomotive possesses peculiar advantages in the thinness of the metal composing the tubes, and the subdivision of the heat, but these are more than neutralized by the exceedingly short period of duration of the heat, from any given quantity of fuel about the bniler. This most important subject of time is discussed in a series of propositions based on the fullowing principles:Tho structure of the boiler and its mode of setting occasion the heat to travel greater or less distances, and over very unequal extents of surface in equal times, and the value of time will be appreciated by referring it to the rate of combustion, to the distance passed over by the products of combustion before they quit the boiler, the time in which the heat traverses the boiler, and to the period of the duration of the heat about equal areas of surface. These remarknble elements give rise to eleven propositions, which are fully discussed and illustratod hy tabulated results. The peculiar action which takes place on the metal of the boilers is indicated by the phrase intensity of the calo, ific action, since there are involved many actions which are entirely independent of the temperature of the fire. The relations furnished by some of these propositions are facts as regards the relative action of the fires, and furnish appropriate measures of the effects of different systems of practice on tho durability of the boiler.

The preceding abstract baving been read, Mr. Parkes remarked there were $s 0$ many elemente to be taken into consideration-the evaporation was affected by so many circumstances-there were so many things left untold-that he hoped some of the many who were capable of experiments would give their assistance. Evcry day's work was an experimont which ought to be carefully registered. He had great difficulties on many points, particularly with respect to the locomotive boiler and the thinness of the heat-absorbing surface. It had been stated on a preceding evening that Dr. Ure had proved, if two vessels of equal size, the one of thin and the other thick metal, bc placed in a sand bath, there will be more water evaporated in a given time by the thicker than by the thinner vessel. This was very extraordinary, since he thought that 25 per cent. would be lost in the locomotive boiler if the tubes were of double the thickness. The effect of thickness of the material was evident in the experiments which every boy has made with the paper boilera over a candlc. The real cause of the destruction of boilers is the application of heat to thick surfaces. Another subject of peculiar importance is the temperature at which the beat leaves the boiler and enters the chimney. He had made experiments on this at Warwick, and proved that he could not boil the water in a vessel at the top of a chimney 60 feet high; the temperature never exceeded 180° Fahrt. It was argued that more of this heat could not be used, but the Cornish engineers had shown that to be an error, having surpassed his results.

Another subject is the constant loss of heat by radiation; he had attempted to ascertain this witb Mr. Wieksteed; the boilers at Old Ford wero covered with cinders, so that but little radiation would take plice but from the front or bed; still the quantity of heat which goes off is considerable, and one great source of waste. They bad observed with grent care the quantity of coal requisite to keep the boiler hot ; this would furnish some measure of the loss due to radiation.

Blocks for Railuaya

The attention of the meeting having been called to M. D'Harcourt's artificial granite for railways, blocks, and other purposes, Mr. Rastrick remarked that be had about a month ago laid domn blocks of the Scotch Asphalte, two feet square, on a portion of the Southampton Railway. The sleeper was put in while the block was formed. It was usual to bore holes and to fix the chairs by bolts; he had wished to ascertain how far the blocks would ataud the driving in of the bolts, without any boring ; they bore this without any apparent injury, and be thought these blocks, weighing about 34 cwt. would answer the purpose better than blocks of other materials.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

Report of the Council, presented at the Annual General Meeting, held the 6th of May, 1899.
At the expiration of another year of active exertion, and they trust of usefulness, the Council appear before their professional brethren to rander an account of the manner in which they have endeavoared to fulfil the many and important duties which have devolved upon them; aud to take a review of those occurrences connected with the Institute and the art, which have marked the past twelve months. They bape the aatisfaction of statiug, that the Institute has proceeded quietly but firmly in their course, drawing the attention of the members to new sources of information; arousing a spirit of investigation; extending the foreign correapondence; and drawing more closely the bonds of mutual intelligence and good-will with their foreign brethren on the continent. Thus, it is to be hoped, entitling themselves to fresh confidence in the public estimation.
Most satisfactory proofs have been received from distant parts of the useful tendency of these excrtions and of tbo propriety of these principles, which have guided the members in their proceedings. The architects in Dublin are now engaged in forming an Institute for the sister kingdom, and have applied to the Council for their advice and co-operation. Upon the suggeation of the Royal Institute of Fine Arts at Naples, the Neapolitan Goverament have cansed to be printed the rules and regulations of this Institute, as well as the
proceedings of the opening moeting in 1885, togetber with the sarties of queations isaued for tho guidance of correspondents. These questions bare also been printed in the annals of the American Institute of Now York, and tro editions have appeared in German, publighed at Hamburgh and in Vieasas -those connected with architecture in both hemispheres, will therefore be pursuing their inquiries apon the eame uniform system of invertigation is America an attempt was made to emulate the purposes of our cociety by bolding annual meetings of the architects, alternately in the leading cition of the United States. But the remote distances at which the architects live, and their comparatively small number, scastered over that immenge territory, presented difficulties, which, in spite of their enthusiasm for the cause, obliged them after two meetings to defer carrying ont their;object to a more favourable period.

The Council have observed, with considerable interest, that a society has been established at Oxford for promoting the study of Gothic architectare, 50 as to provide for the cultivation of correct architectural tante, particularly amoag the clergy, whose influence is naturally and justly 80 great in the selcotion of designs for erecting new churchea, or in the preservetion of old ones. The Council cannot but hope that the time is not far distant when general methi. tecture may form one of the courses in the University education, and be cos. sidered as necessary au attainment and accomplishment to the genulemas and scholar, as those brancbes of literature and abstract acience which now eceupy the hours of the studious in these geats of classic learning.

Amidat the political difficulties naturally incideat to an infant state emerging from the slavery of centuries, and with discordant principles of differer habits and distinct interests, it is gratifying to remart that an Arebeologinal Socioty has been established at Athens under the auspices of the Government. Their purpose is to promote excavations, to preserve the ancient edifoes from further degradation, and to pursue those freah onquiries, to which recent dicoveries of monuments, or renewed observations upon thowe already kpom, may give rise. That society has forwarded to this Institute a series of their Ephemeris, containing their investigations, copies of the inscriptions, and representations of sculptured fragments recently brought to light. It is sativise. tory to observe the accuracy with which these subjects are rendered, asd the sound spirit of criticiam and investigation with which these orudite remearches are pursued. Through the medium of the gecretary of the Inatitute a class of subseribers to that society has been commenced in England; and it is hoped that all who feel an interost in Greek antiquities, will promote by their tributions the investigation of subjects, which Englishmen bsve alreedy 20 materially advanced by their learned researchea, and rendered familiar by their accurate sod superb illustrations.
Shortly after the last annual meeting a proposition wis made by the Arcbi. tectural Society, to consider the expediency and practicability of a union of the two societies. Committees were mutually appointed, who agreed unani. mously upon a acheme for the incorporation of the two bodiea. Thin war approved at a general meeting of the lnstitute, but negatived by the ouber society-a reault much regretted by the Council, as they feel that the interena of the art and of the profession would bave been most effectually prospoted by amalgamating the whole body of the profession, and concentrating thoee exertions for the benefit of architecture, which are less effioient when divided. The Council instance with satisfaction a remarkable testimony borne to the soundness of these views taken by the Institute, in the fact, that in consequence of the rejection of the scheme by the Architectural Society, eighteon mermbern of that body withdrew, of whom thirteen bave been elected members of the Institute.

The foundation of a students' class formed part of this scheme, and although the proposition for the union proved ineffectual, jet this portion seersed of to valuable a natare, that the Institute resolved to carry it into operation, ad eight students have been already admitted.

Within the labt twelve months several impertant competitions for edifices of the highest consequence have been thrown open to the profesaion. The made generally adopted of conducting competitions, not segming to prodnoe the results to be desired, either by the public or the profession, a committee of members was appointed "to consider the practicability of adopting means to secure more satisfactory decisions." Those gentlemes, without entering apon the suhject of the policy of competitions in general, or the comparative mdvantages of open or select competitions, or the question whether the standard of the national architecture is likely to be raised or lowered by this modo of procuring designs for pablic buildingt, took a general view of the subject. stating some of the objections to which the manner in which they are earried into effect is lisble, and suggesting some remedies. This report was pristed. and has been extensively circulated.

The three subjects still open to the enterprise of the architect are, the Nelson Monument, the St. George's Hall at Liverpool, and the Royal Rs. change of London. In the first of thete a preliminary decirion bes been pronounced, and the council are gretified in recording, that the two prise awarded to architectural subjects huve been gained by fellows of thin Institate. Mr. Railton, and Mr. Fowler, the honorary secretery. The two ather subjects are still open. It is necessary, upon occraions of such magritade and importance, that adequate time should be allowed to the competitors, to deliberate upon subjects requiring so much experience and comsideration, both as to arrangement and decoration;-occupied as the architect is in his professional engagements, it is highly necessary that he should be allowed apple time for digesting the conception of monuments, which are to endure for ages, involving his reputation as an artist, and perhaps the character of the periods in which tbey are erected in point of taste.

The prise drawings for the present year, ammely, the reatoration of the

Baranial Casto of Sherif Hutton, in Yorksbirc, affords the opportunity of again bearing teatimony to the research and shill evidenced in the drawings aod description, to which the Sosue Medallion has been awarded. The general meeting felt that Mr. Samuel Sharp, the associnte, the author of this restoration and of the one which was suocessful laut year, had not only displayed great merit in this production, but had al3o deserred well of the Institute for the zeal with which he had agein offered bimself to the approbation of his profescional brethren. It was accordingly decided that his medalion should have a further distinction of a gold rim. In order, however, to avoid discouragiog in future the exertions of competitors, who might in such cases be deterred from undertaking the labour and expense of such subjecta, from the fear of being deprived of their rewrard by the superior merits of a candidato, whose already acknowledged talent might bar the hope of success, the Inatitute bave reserved the power of awarding the Soane Medallion to the second in merit, and of adjudging to the first such other reward as they may think fit and adequate.
The Comecil entertain tho bope that the fellows may bercafter deem it expedient to pobliah the best of the restorations, on which premiums have been bestowed. They consider that such a work would reflect credit upon the Iostitute, as containing a body of novel, useful, and interesting information. It woold also afford a atronger inducement for future competitors to make the sacrifige of their time and talents, in the bope of obtaining such a distinction.

Medala of merit have been adjudged to two essays upon the subject of an anelytical inveatigation of Greek and Romen architecture, as indicating consisiderable research and care.

The services of able men of science bave continuod to be rendered available, by means of Iectures, for the purpose of developing the general principles of the sciences connected with architecture, offering to the professor sources of information and instruction, and means of practicnl application to the purposes of construction. The adsptation of such sciences to the peculiar purposes of architecture bas not hitherto engaged the immediate altention of those occupied in the invostigation of these branches of knowledge. Although the manner in which the subjects have been treated bitherto in this room, has heen necessarily elementary and general, yet the Council fael convinced that much good has resulted, and that by a stoady perseveranco in the same course those sabjects will come to be studied by professors in cach department with more special reference of the sciences to construction. The prosent session will be marked by courses on geology and acoustics, and probably during tho sext, the attention of the members may be drawn to mechanics, optics, and the principlea of colour. Without a knowledge of the laws which control the hermonious decoration of buildings by colour, the architect may destroy the effect of the most graceful combinations of mass and form, and the grandest arrangement of lines. Colour is capsble of producing the most important effects upon the mind. It gives character to the hall, the stairease, and the cbamber-effectually calls the imagination into play-requires no previous seady to render its effects to be deeply felt by the uneducated and the refined mind. It acts upon the feelings by sensations, eithor sublime, cheerful, or gloomy. It is a principle by which the artists of all nations and of all periods Gavo sought to appeal to feelinga. Egypt, in all her sublimity; Attica, in al her parity nnd grace; Aris, in all her wild luxuriance; Europe, in the middle ages, and the architects of the "Revival," have derived powers of exprestion and emotion from this source, which was subsequently neglected, but which it is the interest of the architect of the present day to revive and render his own.

It in with great pleasure that the Council havo observed, that at length the conatractions connected with the new Houses of Parliament are commenced. This important work has given rise to an investigation of the utmost consequence to the profession. Upon the suggestion of Mr. Barry, the architect of the building, government has directed a commission to investigate the gaalities of stone in various parts of the kingdom; with the view to adopting that which should best ensure perpetuity to this grand national fabric. This commission, consisting of Messrs. Barry, Delabeche, Dr. Smith, and Mr. C. H. Smith, have viaited 105 quarries, and examined 175 edifices, and collected apecimens from rarious parts, which have been submitted to tests both mechanical and cbemical by Professors Wheatatone and Danicl. The publi. cation of the results of these valuable trials will be of incalculable importance to the public and to the profession, as the subject, pursuod in this complete manner, will render the profensor better acquainted with resources for baidhing stone, of which be may avail himself-improve property, by perbape briaging into use quarries hithorto neglected or unknown,- and may possibly ensure to our public edifices a quality of material better adapted to reain the changes of temperature of this variable climate, and to withstand the pecaliter atmospheric infloences of this metropolis. It may lead perhaps to the adoption of a atone more brillisat in hue than those at present in general ase, to as to shed somewhat of the glow of an Attic or a Roman tint tupon the architectural features of the public edifices of London. The equiry, thas pursued, fully confirms the important conncetion of chemistry and geology with architecture, and proven the importance and advantage of the courne adopted by the council of calling the attention of the members to thowe subjects by lectures.

Since tho last annual meeting gix new fellows have been elected, one Honorary Fellow, one Honorary Member, Mr. Wilkinson, distinguisbed by bis ralusble researches in Egypt, seven Honorary and Corresponding Members, 16 Associates-making 31 new members, and forming with those previonaly elected an aggregate of 152 contributing and 52 Honorary members, betides eight Studenha. The Institute and the art have lost a distinguishicd
estecmed artist at one of the ordinary mee ings, collected from various brief uotices of him published at the time in France. It is to be expected that a fuller account of his brilliant talents, his valuable productions, bis estimable personal character, and of his influcnce upon the Prench schooi, of which he was the leading master during a very long period, will be published and do justice to the reputation which be so justly sequired throughout Europe. The council are led to hope that Monsieur Vilain, his nephew and heir, will accede to the request, which has been made to him for one of the drawings of Monsieur Percicr. This application arose from the conviction of its being extremely important that the institute should, if possible, possess some autograph specinen of the talents of every distinguished architect, as they mas bereafter enablo thoce, who may write on the bistory of the arts or the biugraphy of architects, to refer to authentic recorde. The Institute owe to the liberality of their Fellow, Mr. Mylne, autographs of Piraneni, Robert Mylne, Bonomi, and Leewis. It is hoped that this collection may receive ample additions from those who may have similar documents in their possession, which derive value from forming part of a series, although when separate they are of comparatively little importance. To Mr. Mylnc the Institute is also indebted for a copy of the "Editio Princeps" of Vitruviu, a rare and valuable volume, and of peculiar importance in the library of an institution like this. The council, conceiving it desirnble that the Institute should possess a complete series of the cditions of our Latin classic, have purchased three other editions, and four more have been presented by other Fellows. The donations of drawings have been more than usually numerous and interesting, and consist principally of dclineations of buildings in foreign parts. Among these must be particularly noticed the valuable serics illustrating Indian buldings, forwarded to the President by the Rajah of Tanjore, which were prepared by order of his highness for the express purpose of being sent to the Institute. The council have to record with deep regret the loss whicb the Institute has experienced in the death of their liberal benefactor, Sir John Drummond Stewart, who within a few days of his dccease had transmitted further additions to the collection of drawings which he had already presented. The foreign membera have as asual been liberal in their contributions to the library, and Messrs. Albertolli, Hittorff, Blouet, Vandoyer, Roelandt, Laves, Suys, Serrure, and the Chevaliers Gasse and Bianchi bavc added many valuable volumes and drawings to the collection. Those foreign architects who bave visited this country have been cordially received by our members. Two striking instances have occurred of the influence which architecture has exercised upon the minds of gentlemen, distinguished by their rank and fortune, and who are engaged in works the fruits of their travels in foreign lands, and more especially connected with the art. Gally Knight, Esq., M.P., was already advantageously known for bis previous investigations in the architecture of Normandy. His work, now in the course of publication, entitled "Norman and Saracenic Remains," four numbers of which have already dppeared, and bave been presented by him to our library, is of great value, beauty, and research. It is impossible to omit noticing the exquisite illustrations of many striking edifiees, hitherto uaknown, contained in Mr. Vivian's work entitled "Views in Spain and Portugal.,"
It will be perceived by the balauce-sheet, that the considerable accession of new members has of course produced a corresponding increase to the income of the Insitute-by the contributions of four honorary fellows 100 guineas have becninvested in the consolidated aonuities-the travelling fund, originally founded by J. Newman, Fellow, has received a considerable addition by the donations of Messrs. Rbodes and Cbawner. It is proposed that the dividends and subscriptions for this fund should be allowed to accumulate, until the amount of stock should be sufficiently productive to enable the Institute to azsist effectually come meritorious student to pursue his studies on the classic soils of ancient art. It is to be hoped that the liberality of members by special subacription may effectually promote this object.

The council would ill discharge their duty, if they retired from office withont claiming for their successors a generous confiderce in their discretion and judgment; an unreserved relinace, which may encourage them in the difficult path of duty. Taught by their own experience and judging from their own impressions, they are convinced that without this confidence no men of independence and feeling-none, who rank bigh in the profession, and Who have no ultimate motive but a disinterested desire for the prosperity of the lnstitute, can be induced to undertake this responsible and arduous task.
They would also urgently call upon the members for their more active co-operation in furtherance of the exertions of futurc councils. With the council sbould rest merely the ministerial and exccutive functions of the Institute. The fellows and associates must consider it a more positive duty to furnish their officers with communications, which should give interest to the ordinary meetings, and eventually conatitute materials for the volumes of transactions. It was said of a distinguished philanthropist, that be could contract into the smallest dimensions or expand into the largest for benevolent purposea. So let no member consider any exertion too insignificant, or any effort too great, which may advance the interests of the Institute, the profession, and the art.
Gentlemen,-Have we not seen the gratifying and encouraging anticipation with whicb our first formation was hailed on all sides-the generous sympathies which our firat efforts excited-the likerality by which our narrowed means were increased into ample funds? Have we not witnessed the patronage of the nobility-the support of the profession-and the cordial concurrence of our invaluable foreign brethren in art? Has not success attended our firat ensay al publication? Have not competitors pressed forward for our prizes? Have we not by one sovereign been incorporated under a charter, and has not our Queen graciously honoured us by ber patronage 9 When we
reflect on this carecr of success, and the activity, perseverance, and disinterested efforts of successive councils, -when we see our President using every exertion and losing no opportunity for promoting the efficiency and prosperity of our society by his judicious counsels, by his animating example and by his munificent hospitality,-may we not with confidence call on our members to press forward and carry out the purposes, for which we are associated, in a manner commensurate with the expectations of the public, consistent with the cbaracter of the profession, and corresponding with the rank which the Institute holds among the scientific bodies of Europe?

COUNCIL, 1839-40.
Prebident.-Barl De Grey.
Vicr-Presidrnts.-Messrs. Basevi, Blore, and Burton.
Hon. Secrbtaries.-Messrs. Fowler and Poynter.
Ordinary Members.-Messrs. Bellamy, Cundy, Cbawner, Ferrcy, Mocalta, Salvin, and Shaw.
Ilon. Sec. op Foreian Corregpondence.-Mr. T. L. Donaidson.

ROYAL SOCIETY.

Arril ll.-The Marquis of Northampton, President, in the chair.
The following paper was read :-
On a new Equi-alomic compound of Bicyanide wilh Binoxide of Mercury, by James F. W. Johnston, Esq.- In this paper an account is given of the properties of a salt, obtained by agitating with red oxide of mercury a small portion of hydrocyanic acid, and which the author finds to be distinguished from the bycianide of mercury by its sparing solubility in cold water, by the strong alkaline reaction exhibited by its solntion (a property which indicates an excess of mercury), and by its susceptibility of detonation by heat, depending on this excess being in the statc of an oxide, and on the action of the orygen on a portion of the carbon of the cyanogen it contains, and the presence of which is shown by the disengagement of hydrocyanic acid gas when acted on by hydrosulphuric and hydrochloric acids. The analysis of this salt, given by the author, shows it to consist of

100.

The formula of which composition is as follows:-

$$
\mathrm{Hg} . \mathrm{Cy}_{\cdot 2}+\mathrm{Hg} . \mathrm{O}_{\cdot 2}
$$

Arril 18.-J. W. Lubbock, Esq., V.P., in the chair.
J. T. Graves, Esq., of the Inner Temple, and the Hev. S: R. Maitland, were clected fellows.

The following paper wsa read :-
On the Conatitution of the Resins; Part I., by J. F. W. Johnston, Esq. The object of the general investigation, of which the commencement is given in this paper, is to determine the relative composition of the various resins which occur in nature, and to trace the analogies thoy exhibit in their coustitution; and also to ascertain how far they may he regarded as being derived from one common principle, and whether they admit of being all represented by one or more general formula. The chemical investigation of the resin of mastic shows that this substance consists of two resins; the one soluble, and acid; the other insoluble, and having no acid properties. The formulx expressing the analysis of each of these are given by the nuthor. He also shows that a series of analyses may be obtained which do not indicate the true constitution of a resim. The soluble reain, when exposed to the prolonged action of a heat exceeding 300° Fahr., is partly converted into a resin coutaining three, and partly into one containing five equivalent parts of oxygen, the proportion of carbon remaining constant. The same resin combines with bases, so as to form four series of salts; which in the casc of oxide of lead, consist of equivalents of resin and of oxide in the proportions, respectively, of two to one; three to two; one to one; and one to two. This soluble resin, in combining with bases, does not part with any of its oxygen; but if any change takes place in its constitution, it consists in the hydrogen being replaced by an equivalent proportion of a metal; and formula are given representing the salts of lead on this theoretical riew. By boiling the resin in contact with ammonia and nitratc of silvor, or perhaps with nitrate of ammonia, it is converted into a resin which forms a bisalt with oxide of silver, in which therc is also an apparent replacement of hydrogen by silver. The resin next examined is that of dragon's blood; and the conclusions deduced from its analysis are the following :-first, that the lump dragon's blood is the natural and pure resin, while the strained and red varieties, being manufactured articlee, are more or less decomposed; secondly, that this resin retains aicohol and ether, as most oller resins do, with considerable tonacity; but that these solvents may be entirely expelled by a long-continued exporure to a temperature not higher than 200° Falur.; and lastly, the formula representing its chemical composition is given.

GEOLOGICAL SOCIETY.

April 10-Rev. Dr. Bucxland, President, in the chair.
A paper was read, On as much of the "Transition or Grauwacke Systcn" as is c.posed in the counties of Somersel, Devon, and Coinurall," by the Rev. D. Williams, F.G.S.
The author commenced by stating, that his views respecting the structure
of the country had been derived from independent observalions; byt that while he claimed originality for bimself, he did not in the remotest cense iopugn the originality of the views of other geologists who have examined the same districts. The sedimentary deporits older than the new red syman, and constitoting the whole of Cornwall, and the greater part of Devon, and the south-west of Somersetshire, are arranged by Mr. Williams, in the tramation class, and under the following formations, commencing with the youngect, 9. Floriferous slates and sandatone; 8, Coddon Hill grita; 7, Tribolite slates; 6, Wollacombe sandstone : 5, Morte slates ; 4, Trentisboe wates; 5 , Calcareous slates of Linton; 2, Foreland and Dunkerry sandstone; 1, Cas nington Park limestone. Of theme formations, only 9, 8, and 7, were deweribed in the paper, the other six not occurring in Cornwall or in Devonshire, except in the north-west corner of the county, and are reserved by the author for future consideration. The floriferous slates and sandetone (9), arraged in the true coal measures by Profestor Sedgwick and Mr. Murchicon, cn memoirs read before the British Association in 1836, and the Geotogial moiety in 1837, Mr. Williams considen to be a grauwacke formation, becanse he has traced passages into the subjacent deposit (8); and be employs the term" floriferous," to avoid the ambiguity which he conceives would ariae from using the word carbonaceous; and he objects to the expreation culmiferous, as anthracite constitutes but a very small part of the formation. The deposit occupies a large portion of Devonshire, and detached minor dietricts of Cornwall. The sundstones, he says, are quite distinct, but that the states are occasionally undistinguishable from those employed for rooing. The Moddon Hill grits (8) constitute, on the north, a narrow band from Fremington, near Barnstable, to Holcomb Rogus; and in the south a broader distriets flanking the floriferous sandstones, from Forrabury, by Launceston, to the granite of Dartmoor. The deposit passes gradually upwards into No. 9, and downwards into No. 7, the intermediate strata being termed by the anthor neutral beds. The grits which compose the greater part of the formation are perfectly distinct from any other in the distict, and afford most valumble assistance in tracing the range of the deposit: they contain also the wavellte, for which the north of Devonsbire has been long distinguiabed. In the middle of the series are lenticular masses of limestone, aseociated with beds of black shale-the former contaicing Goniantites and Posidonia, and the laster plants with flakes of anthracite. The trilobite slates (7) constitute, in the north of Devon, a band ranging from Braunton on the west, nearly to Mirverton on the east, and on the south, extensive districts around the granite of Dartmoor. He believes that the whole of the slate series of Cornwall belongs to them. In the north and south, they gradually pass upwards into the Coddon grits, and in the north downwards into the Wollacomb sandstove (6), the expression neulral being also applied to these paseage beds. In come parts, the slates abound with trilobites; and the limestones of Plymoeth, Newlon Bushell, and Torbay, which belong to the formation, in corals and shells.

The remainder of the scries, from 6 to 1 , will be described in a fature memoir.

April 24.-Rev. Dr. Bucxiand, President, in the chairm-Commonications were read:-

1. On the Climate of the Newer Pliocenc Period, by Mr. Sagtz, of Jordan Hill.

An examination of the sbell contained in the newest tertiary deporits en the shores of the Clyde, has convinced Mr. Smith, that the climate of this part of the globe, during their accumulation, was colder than it is at presemt. His attention was first called to the subject, by observing that the stells formed at Uddevalla, and described by Mr. Lyell in his memoir on the change of level in the Baltic, agreed with some of those most common in the raised ghelly beds of the Clyde; and his vicws respecting the northern aspect of the pecaliartor most abundant of the Scottish fossils have been confinmed by Mr. Gray, Mr. G. Sowerby, and M. Deshayes.
2. Remarks on some Fossil and recent Shells collected by Capt. Baytiold, R.N., in Canada, by Mr. Lyell.

Several eminent conchologists having observed that in the Engliah erag there are certain shell which indicate a somewhat colder dimate thas that which now prevails in our latitudes, and it having been supposed that a similar inference may be deduced, but with greater certainty, from shells foand ia the Newer Pliocene strata of Scotland and Ireland, Mr. Lyell has been iedeced to examine, with great care, a collection of shells sent to him by Capt. Beyfield, consisting partly of fossils procured from the most modern tertiary deposits bordering the Gulf of St. Lapreace, and partly of recent testamat from the Gulf itself. The shells were found principally at Beapport, abous two miles below Quebec, in a deposit similar to that now forming in the bed of the St. Lawrence; and the uppermost stratum, nearly 100 feet above the Eevel of the river, is almost exclusively composed of bivalres. Similar shells occur at a still bigher elevation, in the valley of the St. Charles, throe miles fione Beauport ; and at Port Neuf, forty miles above Quobec, at beights varing from 50 to 200 feet. Numerous boulders of primary rocks are imbedied in the strata at different levels, and appear as if they had been dropped there from drifted masses of ice, at widely distant intervals of thme. Though some of the shells are broken, yct many are perfect; and it is impossble to imerime that the clay, sand, and gravel, composing the mtrata, could have been foroed, together with the boulders and testacea, into their present position by a violent current, as the fragile Tercbratula psittacea is found with both values uuited, and its long, brittle, interior appendages catirc. The shellis beas a strong rasemblance to those foand in the neweat tortiary deposits at Brdevalla, in Sweden; and some of the most abundant at each locality are cee.
man to both. The Canada fossils, however, se far as they have hitherto been examined, do not agree as a whole, with the testacea now inhabiting the Gulf of St. Laprence : many of the apecies ranging, in a living state, from the Gulf to the border of the North Yolar Circle, or are now only known in high northern latitudes, as in the seas of Gicenland, Iceland, and Norway, or agree with shells found in the newer Pliocene of Scotland and Sweden. On the contrary, many of the shells moat conspicuous in the Gulf of St . Lawrence, beve not been found in a fossil state. As the climate of Canada is now excessive, it is natural that many northern and arctic shells should exist in the Gulf of Sit. Lampence, without any mixtnre of tropical forms; it is very probable, also, that in the period immediately antecedent to the present, the climate of Camada was even more excessive than it is now, and that the shells resembled still more closely that small assemblage existing in high northern latitudes. It is likewise ovident, from the manner in which the large fragmonts of rock are interspersed through the shelly strata near Quebec, that while theso doposits werc forming, blocks of ice were annaally transported as at present. Among the fossil shells near Qucbec, not one has yet been found which can be affirmed to be extinct. They relate, therefore, to an extremely modern feriod, and, though the climate may then have been more excessive than at present, a more equable one may have preceded, and the alterations may have been connected with the geographical changes which upheaved the shelly deposits of Canada 200 feet above their former level.
3. An Exatract of a Leller from Herr F. A. Romer to Dr. Fïton, dated Eildeskan, March 20.

The Wealden formation, including the Purbeck stoue, is very extensively daveloped in the North of Germany, and is overlaid by a great argillaceous deposit, containing marine ahells, similar both to the oolitic and the cretaceons systems. Of the fonsils found in the Wealden of England, almost every species occurs in Germany, inclading even tho minute Cypris cuberculata, C. granulosa, and C. Valdensia Last autumn, Herr Rocmer discovered the Wealdom, with its characteristic shells, near Bottinged, in the High Alps. He possesses also the Lepidotus Mantelli, of the English Wealden, from Saxony. The Purtland sand occurs in the North of Germany, but the Portland stonc and the Kimmeridge clay are so intimately connected by their fossils, that the intermediate sandy beds connot be considered as a separato doposit. The chalk with fints occurs possibly in the Harts. The grcen-sand series is extensively developed, the Flammenmergel of Hausmann being the upper green-sind of Englend, and the quader-sandstein the lower. Herr Roemer belioves that the gault also exista in Northorn Germany.
4. Classification of the Older Rocks of Devonshire and Cornwall, by Prof. Smowicx and Mr. Muschison.

In a former communication to the Socioly the authors explained tbeir general views respecting the older rock: of Devonshire and Cornwall, but having recently boen induced, on zoological evidence, not then ohtained, to make a change in the lower part of their clasification, they give in this paper their reasons for doing so. With respect, however, to the geological age of the culmiferous strate occupying the greator portion of Devanabire, they adhere to their firt opinion, and consider them the equivaleats of the true coal measures of other parts of England. In the grouping, succesuion and lithological characters of the great series of beds underlying the culmiferons strata, they likewise make no nleteration, and used, in reading the paper, the same section which they exbibited to the British Asecciation, at Bristol, in 1835, when they first explained the true position of the culm deposit. On their first examination of Devonshire aud Cornwall, they were induced to consider the great slaty and sandstone districts forming Exmoor asd the Quantocks on the north, and a large portion of southern Devon and the whole of Cornwall, as the lower part of the Silurian system and the upper part of the Cambriau, having been misled by the slaty character of the rocks, and its supposed proof of geological antiquity. A recent examination, however, of the fassils collected by the authors, or kindly sent to them for the purpose by the Rev. R. Hennah and the Rev. D. Williams, has proved that the strete inmodiately suljecent to the culm series (shown on a former occasion to contain true coal-measure plants), inclose fossils resembliug thoso in the lower carbonifarons strata of the north of England ; that the great nuass of intermediate beds are characterized by peculiar fossils; and that the lowest strata comtain some which partake of the same type, and others which belong to the apper Silurian formations. On these grounds, therefore, the authors have been induced to remove the slates and older sandstones of Devon and Cornwall from the position they first assigned to them, and to place them on the paraliel of the old red sandstone, the intermediate series of strata between the carboniferons and Bilurian syatems. Had, however, tbe whole of the evidence derived from organic remains been before the authors in 1836 , the geological age of the strate could not then have been determined, as the fossils of the Hlarian aystem, one of the terms of comparison, had not been fully ascertaised. In the gradasl passage of the strata from one group to another, and in the recurrence of the same groups north and south of the great culmiferous or carboniferous series of central Devon, there is the most decided stratigraphical evidence of the whole of the country belonging to one geological epoch. The marted difference between the slates of Devonshire and Cornwall, and the madatones of Herefordahire with the adjacent counties, hitherto considered types of the old red aystem, the authors showed can be no valid objection to the proposed clasifichation, as lithological characters have been long proved to be of likle or no importanco in connecting deposits, at even very limited distances. The absence of the true carboniferons limentone was also shown to be no argument against the arrangement of tbe autbors, as on the western extremity of Pembrokeshire, that formation is entirely wanting, and the culm or cosl-measures rest immediately on older rocks. Lastly, the usthors proposed, in consequence of the strate in Devonsbire yioldigg the beat
zoological type, to substitute the term Devonian syatem for old red, and they erpressed a hope that the determination of these fossils would assist in filling up the sequence of geological formations, and enable observers to discover, in other parts of the world, a series of deposits hitherto supposed almost peculiar to the British isles. The authors acknowledged the assistance they have received from Mr. James De Carle, Sowerby; and that Mr. Lonsdale fint suggested that the limestones of South Devon would prove to be of the age of the old red sandstone. The paper was illustrated by the large index map of the Ordnance Survey, coloured by the authors, and it exhibited the range of the several syatems through North and South Wales, the border counties of England-Devonshire and Cornwall.
5. A Notice on the general relation of the varions Bands of Slate, Lintstone, and Sandstone in South Devon, by Mr. R. A. C. Aubten.

Commoncing with the oldest deposits east of the Teign. there appear-1, Slator; 2, A band of black limestone containing corals and shells, and sometimes thin seams of anthracite-it ranges from Staple Hill through Bickington, Ashburton, Buckfastleigh, and Dean; 3, Fine-grained schistose shale and slates; 4, The limestones of Plymouth, Dunwell, Shilstone, Ugborough, North Huish, Little Hempston, \&c., -they are associated with scistose rocks; 5, A great arenaceous deposit, often coarse and reaembling old red sandstone: sometimes conglomeritic, when it resembles the new red; it ranges from Plymouth Sound and Bigbury Bay, across the central part of South Devon, by Modbury and Blackdown, cutting the Dart below Totness, and ranging thence througb Marldon, Cockington, and Bartou ; in some places it containg thin bands of limestone; 6, The limestones of Torbay. Mr. Austen says the carbonaceous rocks of central Devon form ne part of this serics, but reat upon it anconformsbly.

Lastly. A Notice, by Mr. Millor, of Cromarty, On the exact position in the old red sandstone, of the bed containing fossil fisher and expased in the cliffs of the Morcy Frith. It is overlaid by a yellov sandstonc and rests upon a deposit of a red sandstone, chocolato coloured conglomerate, and impure limestonc. The base of the whole is stated to be granatic greigs.

Mar 8.-The Rev, Dr. Buckland, President, in the chair. Three communications were read :-

1. On Casts or Inupressions of Vermiform Bodics on thin Flagstones, belonginy to the Curboniferous series near Haltwhistle, in Northumberland, by Mr. G. C. Atrinson. The bed of sandstone is about eighwen feet thick, and the surface of the layers of which it is composed, present, in almost every instance, tortuous impresions, or casts marked by a lougitudinal furrow, and occasional transverse closely set lines.
2. On the London and Plastic Claya of the Iske of Wight, by Mr. Bowerdank. The object of this communication was, to show that there is no zoological distinction between the two clays, the anthor having found that many of the same species of testacea range through the whole series of beds in White Cliff and Alum Bays.
3. On the relutive Ages of the Dertiary Deposits commonly called Crag, is Norfolk and Suffolk, by Mr. Lyell. Three points of great importauce relative to the Crag of Norfolk and Suffolk are discussed in this memoir. lst. The direct superposition of the red to the coralline crag, as pointed out by Mr. Charlesworth in 1835. 2udly. Whether mammalia are really imbedded in undisturbed marine strata of the crag of Norfolk. 3dly. Whether the proportion of recent shells, as compared to the extinct, is decidedly larger in the crag of Norfolk, so as to indicate a posteriority in age relatively to the Suffolk erag. With regard to the first point, Mr. Lycll states, that the red crag is clearly superimposed on the coralline at Ransholt, Tattingstone, and Sudburn, resting at the two foriner localities on denuded beds of the lower deposit. He ascertained, also, by the assistance of Mr. W. Colchester, that at Sutton, near Woodbridge, the red crag abuts agninst a verlical face or cliff of the coralline, and likewise overlics it. In this instance, the sand which composes the older bed, or coralline crag, had evidently acquired a certain consistency at the bottom of the sea before the red crag was deposited, for it has been perforated by numerous pholades, the tortuous holes of which descend six or eight feet below the top of the bed, and still contain the shells of the pholas, white the remainder of the cylindrical hollows has been filled with the sand of the superincumbent stratum. With regard to the second point, the occurrence of mammalia in undisturbed beds of marine crag in Norfolk, Mr. Lyell states, that he had ascertained, by an examiuation of this crag near Southwold and Norwich, that it is not purely marine, but contains cverywhere au intermixture of land, freshwater, and seashells, with bones of mammalia and fishes. In this deposit near Southwold, Captain Alcyander, who accompanied the author, found, some time since, the tooth of a horse, within a large specimen of Fusus striatus, and he informed Mr. Lyell that bones of mammalia are frequently associated in the same beds with those of fishes, marine shells, and crustacea. In the neighbourhood of Norwieh, this deposit forms patches of variable thickness, resting ou chalk aud covered by gravel. ft is well exposed at Bramerton, Whithingham, 'Thorpe, and Postwick, and presents beds of sand, loam, and gravel, containing a mixture of marine, terrestrial, and fluviatile testacea, ichthyolites, and bones of mammalia. The clalk on which it rests was shown, by the late Mr. Woodward, to unve been drilled by marine animals; and the Rev. Mr. Clewes, of Yamouth, presented Mr. Hell with a specimen of chalk contrining a Pholes crispotus in a perforntion several inches decp. 'That this portion of the crag was situwly aceumulated, is evident Irom Captain Alexander having found, at Bramerton, the tusk of an elephant, with many superle on its surface; aud, from this fact, Mr. Lycll infers that the buncs
of quadrupeds were really washed down into the sea or estuary of the Norfolk crag, and were not subsequently introduced into the deposit by diluvial action. The fresh-water shells are rare in the neighbourbood of Norwich in comparison with the marine, and the terrestrial species are still more scarce. Mr. J. B. Wigham, hovever, has nscertained that the freshwater testacea predominate in a bed at Thorpe. The same gentleman found at Postwick, in a stratum containing marine shells and fishes, n portion of the left side of nu upper jew of a Mastodon, containing the second true molar, and the indications in the socket of the first. This specimen Mr . Owen has been enabled to refer to the Mastodon longiratris, discovered at Eppelshein. In the same bed were found the teeth and jaw of a mouse, larger than the common fied species; also bones of birds, and of several species of fishes. The horns of stags, boncs and teeth of the horse, pig, elcphant, and other quadrupeds, have been likewise detected at Postwick, Thorpe, Bramerton, \&c.; and this aseociation of the Mastodon and horse near Nonwich, as well as in many other placea in Europe and in America, Mr. Owen considers to bc a subject of interest. The third point, respecting the relative antiquity of the Norfolk and Suffolk crag, was discussed at considerable length, and the author acknowledged the great assistance afforded him by Mr. Wighnm, who has nearly doubled the number of species obtained from the former deposit ncar Norwich; also the aid which he has received from Mr. Searles Wood, who submitted to Mr. Lyell's examina. tion the whole of his magnificent collection of crag shells; and from Mr. George Sowerby, to whose extensivc kuowledge of recent testacea the author stated that he is indebted for a rigid determination of the existing shells found in the crag. The number of well-defined species in the Norfolk crag is 112, out of which eighteen are land and fresh-water; compared with the Suffolk crag this number is small, but Mr. Lyell showed from the Fauna of the Baltic, that species are much less numerous in brackish then salt water, the latitude, climate, and other conditions being the same; he also showed thut, in analogous deposits in the valley of the Rhine, the amount of species is small. Of the ninety-four marine shells, seventy occur in the red crag, and therefore it might be inferred, that the two deposits are nearly of the same age; but in the Norfolk beds the recent species, both of fresh water and marine testacca, amount to between fifty and sixty per cent., and are nearly all British shells; whereas in the red crag, there are only thirty per cent., and in the coralline but twenty. This comparatively recent origin of the Norfolk deposit, had been previously inferred by Mr. Charlesworth, from the general character of the fossils. In the examination of the collections which led to the above results, the greatest care was taken to rcject those shells which might have been washed out of the red crag into the Norfolk beds, or those species which apparently did not live in the waters, which deposited this division of the crag. From the numerical proportion of recent testacoa, Mr. Lyell infers, that the coralline and red crag belong to his Miocene division of the tertiary series, and the Norfolk strata to his older Pliocene; he also showed, that the lacustrine beds at Grays, in Essex, aud many other places, constitute another link in the geological sequence of formations, as they contain ninety per cent. of recent testacea, and must consequently be referred to the newer Pliocene cpoch. Lastly, a comparison of the crag with the tertiary strata of the faluns of Touraiue, has convinced Mr. Lyell that M. Desmoyers was right in cousidering the Suffolk und Touraine deposits to be of the same age, although be formerly dissentod from that conclusion.

AMERICAN INSTITUTION OF CIVIL ENGINEERS.

We feel great pleasure in giving the following address to our Transatian. tic brethren, agreed to at preliminary meetings at Augusta in Georgia, at Boston, and at Pbiladelphia.

Public works are now so extended in our country, and the mass of experimental knowledge to be gained from those in use is so great and so peculiarly applicable to our circumstances, that it is even more valuable to the American engineer than what he can learn in Europe, where larger means bave permitted grea'er expenditures. In this country it is of paramount importance to obtain the greatest amount of useful effect at the malleat coat ; and of attempts to attain this end, the Union now contains a multitude of instructive examples. Some bave been eminently successful, and others less so; but of either kind, the student, or the more advanced engineer, too often seeks in vain for any satisfactory written or printed description, and is unable to obtain any thing more than vague, doubtful, and incorrect information. This evil can only be removed by the exertions of the engineers themselves.

They are now established as a distinct class, and bave long felt the want of such an association as that proposed, but it has hitherto been supposed that the proper time for its organization bad not yet artived.

The success that has attended the labours of the London Institution of Civil Engineers, its high standing and great usefuluess, prove that such societies may be of great public utiliiy, when properly conduoted, and are incentives to induce us to imitate so excellent an example. It is admitted, however, that a society in this country munt differ momewhat in its phan of operations from the British Inatitution, which can readily give utterance to its opiniona elicited after frequent and full discuasion, since a large portion of its members during the winter have their renidences within the limita of London. Here, however, owing to the vast extent of territory over which are acattered the members of our profession, the usefulaese of the society must (for the present at least) depend more upon the facts and experience of its membera, made known in written communications, than upon their opinioss orally expremed in public discussions.

The very fact that our improvements are so widely apread, that few, if ary members are able to give even the most important of them a personal examination, affords, perhaps, the strongest argument in favour of a society that shall, by a concert of action, bring the experience of the whole country withis the reach of each member.

The difficulty of meeting at any one point, caused by the time and experse required in trivelling from distant portions of so extensive a conntry as the United States, is a serious obstacle, but it bas been much diminisbed by the facilities afforded by the railroads alrendy in use, which are among the valuable results of the labours of our civil engineerf. Though our sociery may be keat favourably sitaated than the one in London for frequent and public discossios. we nevertheless anticipate many important advantages to be derived froma a personal intercourse and interchange of information annong its members, and fron the establishment of a permanent repository of the reauits of experience, obtained from the most authentic sources. The standing of the profecsios in our country is, fortunately, such, that its importance need not be dilated upon; it is, therefore, the more necessary that every thing in the power of the membere should be done to add to its reapectabitity and increase its usefutnem. We look forward to the formation of the society as a valuable means of advamcing these desirable ends.

We trust, also, that each may appreciate the importance of attending at the time and place appointed for forming the society, and will be wilting to makc some sacrificc for effecting that object; or if prevented from attent ing by uncontrollable circumstances, that he will express his views in writing upon the subject of a suitable constitution.

MEETINGS OF SCIENTIPIC SOCIETIES.

Institution of Civil Engineers, 25, Great George-areet, Westminater, erery Tuenday at 8, P. M.
Royal Inatitute of British Architects, 16, Grosvenor-street, Monday a 8 , P. M. June 10 and 24.

Architectural Society, Lincoln's Inn Fields.-Converzationt on Tuenday, June 4, at 8, P. M.

AMERICAN PATENTS ISSUED IN APRIL, 1838.

with rexarkb and exexplificatione by thr bditor of the jouakal of ter franilin institute.
For a Spring Lock for Coach and Railroad Car Doors; Peter Alvenson, New Haven, Connecticut, April 2.
Weare told by the patentee, that "the object of his invention is a spring lock easily managed, and of sufficient strength to secure the door firmb, and yet in sise and form so compact as not to injure the pillar of the deor. nor interfere with the run of the lights, and which may be opened and shut from within as well as from without." The lock is then described, but its construction, although not specially recondite, cannot be made clearly known without the drawings.
For a Rotary Steam Engine ; Oliver Wright and A. A. Wilder, Warsaw, Genesce county, New York, April 2.
This engine consists of a thin, reyolving wheel, or drum, to the periphery of which steam is conducted through hollow arms within the drunt, extending from its centre to its periphery, where it issucs tangentially; the improvement claimed is to "the application of springs and set screws to the apertures of rotary stenm engines; and also the placing a door to the case, so that the apertures may be closed or opened without taking the casc npart."
It is not to minor arrangements of this character that the rotary engine will owe its utility, should such a debt ever be contracted by it: they mas serve to render one rotary engine better than another; but to enable it to compete with the reciprocating engine requiren a radical change, a mode of construction which shall be absolutely new; possibly this may be ereatually discovered.

For an improvement in Wardrobe Bedsteads; Z. C. Pavor, Boston, Massachusetts, April 2.
For an improvement in the Maufacture of Gunpowwder; Richard J. L. Witty, Lowell, Massachusetts, April 2.

For an improved mode of forming raised Surfaces for Printing on Paper, Calico, \&c.; Godfrey Woone, city of London, April 2.
For an improved Machine for breaking Hemp and Flax; Alrin Kya, Crituenden, Grant county, Kentucky, April 2.
An endless chain of slats, or bars, is made to revolve round two rollers the bars, or slats, forming the bed of the break. Above this is a platform extending the length and breadth of the break, and having on its under sides projecting slats which are to pass in between thowe of the revoiviag apron, but so far apart as to span orer two of thom. This plafform is raised vertically by cams, and falls upon the hemp, which is pleoed apon the bed above described; the claim is to "the so placing of the elsts upan the breaker, at such distance apart as that they shall span orer two bass of endless chain, whilst the feeding is to the distance of one bar only; the slats thus striking alternately between each bar, as the endless chain is made to adyance."

It does not appear to us likely that this simple device will obviate the dificultics which have becn encountered, to a greater or less degrec, in all the numerous machines for breaking hemp, \&c., that have been contrived and patcnted; not one of which has fully answered the purpose dexigned.
For an improrment in the Plaiting Machine for covering Whips; Scy* mour Halliday, Westfield, Hampden county, Massachusetes, April 4.
For an improved Drat Box for Steam Engines; Andrew M. Eastwick, city of Philadelphia, April 5.
For a mode of forming a Spiral Flue for Steam Boilers; Benjamin J. Miler, city of New Yort, April 5 .
This fue is intended for cylindrical, low pressure boilers, and consists of a flat tube running spirally round from end to cod of the boiler, between the erterior case and an interior cylinder. The claim is to "the application of one or more spiral flues to steam boilers, as described."

For an improved Construction of Canal Boats, for conveying the Horses by which they are towed; John H. Long, Lewistown, Miflin county, Pennsylrania, April 5.

- The pature of this invention consists in partitioning of a space about the middle of the boat, on either side, and thus forming a stall, or crib, of suitable length and breadth to receive the horses; and extending from the deck of the cabin to the bottom of the boat, in which is suspended, from the upper deck, a piatform by blocks and tackles, for sustaining the horses, and for lowering them to the bottom of the boat when taken on board, and raised to the gunwale when they are to be removed.'
"What I claim as my in vention consists in the before-described construction of the stall, in combination with the suspended platform, in canal boats, for conveying the horses by which they are towed, so as to have one or more of them at rest whilst the othert are towing."

For an improvement in Repeating, or Many-chambered, Fire-arms; Henry and Charles Daniels, Chester, Middlesex county, Connecticut, April 5.
Ior an Improvernent in the mode of Printing certain Colours upon Calico or other Pabrics; Bennet Woodcroft, Great Britain, April 5.
After describing the mode of procedure idopted by the patentee, he says: "Now whereas I do not claim, as my invention, either the printing machine, or the particular construction or material of the dreas to be used by the said operatives. But whereas I do claim as my invention the enclosing calico or other fabric intended to be printed, along with the printing apparatus, whatever it may be, and the material to be printed upon them, in a chambef, case, or compartment, filled with an artificial atmosphere, deprived of, or devoid of free oxygen, such as atmospheric air deprived of its orygen, as berelobefore deactibed, or any other suitable artificial atmosphere, and there printing the said calico or other fabrics, with a solution of deaxydized indigo when required to produce a blue colour, or with a solution of deoxydized indigo and other auitable materials as are usually used in combination with indigo, when required to produce other colours, and subeequently exponing the aid calico and other fabrics, so printed as aforestid, to the action of the atmospheric air, in order to imbibe the necesary quantity of oxygen therefrom to produce and fix the colours required."
An atr-tight room is to be made of sheet-iron, and this is to be furnished with an atmosphere of nitrogen ; this is accomplished by means of a large airpump, which pumps the water ont of the room, pasees it through tubes into purifiers filled with a solution of sulphuret of lime, which deprives it of its orygen, when it passes again into the room through tubes leading from the parifters; and this operation is continued until no sensible quantity of oxygen remains in it. The entrance into the room is through a tank filled with water, which forms a water lute, by a partition dipping a little way below the surface of the fluid. This serves also to allow fresh air to be forced in by atmospheric presure, as the volume is decreased by the absorption of the oxygen. The workmen have dresses of India rubber cloth, similar to diving drescen, and air la supplied to them by bellows and tubes, as in diving apparatus.

For as improvement in the Safety Life Premerver ; John J. White, city of Philedetphia, state of Pennsylvania, April 7.
Thia life-preserver is to pacs round the body in the ordinary manner, but instend of boing one continued inflated bag, it is formed into n number of separate bags, connected, by mouth-pieces and valvea, with one common tube, by which they are all to be inflated. One of these bags is made so as to constitute a bellows, by means of which the whole may be filled. The chatms are to "the above method of forming isolated air chambers, rendered independent of each other by the interponition of valves, so that the loss of dir in ose will not affect the others, and yet capable of inflation from the same cource. Also the mode of inflation by the bellows, as a constituent part of the machine, whether applied to life-preservers or other manufactured articles requiring inflation."
For an improvement in the Scythe Snath; Samuel Puffer, Sunderland, Froklin county, Massachusetts, April 7.
The clatas are to "a revolving bush, or circular plate, for changing the angle of the teythe, for cutting various kinds of gracs, or grain, on various kinds of ground; also the detaching one end of tbe book of the nib from the other, to cause it to embrmoe the siath more firmly," \&c.

For a Machine for Shearing Cloth; Reubeu Daniels, Woodstock, Windsor coudty, Vermont, April 7.

For as Improvement in Carriage Springs ; William Sharp, Bardett, Tompktom conaty, New York, April 7.

For an Improvement in Coach Lainps; William Lawrence, Wallingford, New Haven county, Connecticut, April 7.

For a Mortising Machine; Francis and Thomas Burdick, city of Brooklyo, New York, April 7.

The general plan of this mortising machine is that of the larger number of similar instruments ; the particular difference is in the manner of working the aliden up and down, which carry the chisela. There are two slides, each of which carries a chisel, and these slides are carried up and down alternately by means of a pinion placed between racks on the inner edges of these slldes, which are guided between vertical cheeks. A pendulous lever, or handle, hangs from the shaft of the pinion, and by swinging this beckward and forward, the motion of the slides and chisels is oblained. A feed hand is also made to operate in notches on the sliding bed piece which supports the timber to be mortised. The claim is to "the double rack or slides, to which the chisels are atrached, worked by one pinion in the manner described." The granting of the patent is prima facie evidence that there is novelty in the thing claimed; we do not perceive, however, in what consists the superiority of this new arrangement of parts, over those of some former mortising machinea.

For a Mortising Machinc ; Ira M/Laughlin, Sunderland, Beanington county, Vermont, April 7.
The claim onder this patent is to "the method of securing the chisel, by which means it can be readily reversed; and the method of moving the ehisel backward and forward." The remark on the foregoing patont may, we think, apply generally to this.

For a Mechine for Paring, Coring, and Dividing Apples; Robert W. Mitchell, Martin's Mill, Richland county, Obio, April i3.

This, we believe, is the fourth patent obtained for the ame parpose; in that before us the apple is to bo placed on a fork at the end of a shaft, or mandrel, turned by a crank, whilst the paring knife, furnished with a guard, is held in the rigbt hand, and passed from end to end over the apple: thit is then pushed towards the shaft, which is furnished with knives that cut it into quarters; a centre tubular knife remoring the core.

For an improvement in Canal Lock-gates; Franklin Livington, Waterford, Saratoga county, New York, April 13.

The improvements claimed conaist in a particular mode of constructing, or forming, the bearings of the gudgeons of valve, or wicket gates; and the application of a screw, working horizontally, for opening and shotting such gates; the arrangements of which require, for their illustration, an ezamination of the drawings.

For an Apparatns for Extinguiahing Sparks in Locomotive Engines; Wm. T. James city of New York, April 18.

There are ceveral things in the construction of this apparatus analogous to some others intended for the same purpose. The moke pipe is aurrounded by a second pipe sloping outwards from it, and having a wide, of trumpet mooth, extending somewhat above that of the smoke pipe; the smoke and sparts from this latter are to eacape through lateral, curvilinear openings, by which it is intended to give to the sparks i rotatory motion between the two pipes, and allow them to fall, by their gravity, into the receptacle formed by the junction of the said pipes. There is a cover to the smote pipe in the form of an invorted cone, which is designed to co-operate with the other parts of the apparatus in producing the desired effect; likewise a fanch within the upper edge of the outer tube sloping downwards with the same view.

The claim is to "the combination of the outer tubo, the flanch, the conical cover, the openings and spiral fues, in their combination with a amoke pipe, or chimney."

We have not heard the result of the experiments with this apparatus, but are convinced that if it is so conatructed as to arrest the sparks, it will, like its predecessors, impede the dranght.

For Machine for Plating Dough, and Cutting Crackern, Cakes, exc; John M. Nefgle, New Haven, Connecticut, April 18.

For an Apparatus for obtaining a high degree of Velocity on Rail-roads; Jacob Nollner, city of Washington, April 18.

This is one of those strange conceits which sometimes insinuate themselves into the minds of intelligent men, although it would be dificult for a looker-on to find the avenue by which it could obtain an entrance; indeed, it might well be supposed that every avenue leeding into sech minds would be so well guarded by the watchful mentinel, good common cense, as efvetually to repel such interlopers. The plan proposed is neither practical or practicable, nor did the inventor himeelf really think it so, but determined to place it upon record, under an impreasion that it might suggent, or lead to, something naeinl; "so mote is be."

Let a nil-roed be made perfectly level and straight, and solid as the everlasting bills; let a car twenty miles long be placed on this, and be drawn by any adequate power; let another car, say of ten mithes in length, be placed on this first car, at its rear end, and lot this also have an adequate independent motive power applied to it. Now let the two can set of together at the rate of twenty miles an hour; the upper car will, in this case, travel over the ground at the rate of forty miles an howr, twenty being dwe to the motion of the lower car, and tweaty to its own motion. In the model at the patent office there are four or five such carn, or moveable rail-roada, atratnm auperstrectum. The following is the elnim:-
"What I claim is the placing of two or more moveable railways, platforms, or articles capable of progressive motion, one above the other, so that each may be drawa along by an independent power applied to it, and, like itself, rastained
upon the rail-road, platform, mounted rail-way, or other article upon which it is to move; and this I claim, whatever form or arrangement the same may be made to assume, whilst the principle of action is the same with that berein exemplified."

For an Improved Fire Engine Pump; Joseph Newman, city of Baltimore, April 14.

This is a device for converting the common street pump into a firc-engine, by adding a forcing apparatus at its top, furnished with an air vessel, and other appendages. When thus used, the ordiaary epout is to be stoppod, and a hose or branch applied to the forcing apparatus. The claim is to 4 the combination of the common pump prepared as described, with the cylinder, piston, valves, or air-chamber of the ordinary bydraulic or fire-engine, which combination produces a two-fold instrument, viz., a self-supplying fire-cngine, and a culinary, or common pump.'

There is no novelty in the foregoing idea. The late Mr. Dearborn, of Boston, proposed a similar thing more than forty years ago, of which engravings are to be found in our own and in foreign journals. The thing, bowever, cannot possibly answer a good purpose when appended to the ordinary pump, as the power requisite to raise the water from a woll, and to force it to the required height, cannot bo applied to such a pump, and if it could, hut few such pumps would bear it. Whatever of ingenuity there may be in such a combination, will not be accompanied by a corrcsponding degree of atility.

For a machinc for Mowing, and Cutting, Grass and Grain; David Lewis, Bern, Albany county, New York, April 14.

For a machine for Making Bricks; Samuel B. Brustar, Kensington, Philadelphia county, Pennsylvania, April 14.

In this machine, as in many others, the clay is to be tempered in a circular trough, by meaus of revolving wheels which roll over it. Outside of the tempering trough there is a moulding trough, within which the moulds are to be laid; and the clay transferred to this trough is to be pressed into the moulds by rollers passing over them. The whole machine is a structure of considerable complexity, not well described or represented in the firat instance, and not capable of being clearly presented in words. The claims are to a number of particular things referred to in the specification, and, if given, would not convey any definite idea. The machine may be a good onc; but as presented, it does not, to ud, wear a promising aspect.

For a machinc for Moulding and Pressing Bricks; Stephen Waterman and Charles Learned, Charleston, South Carolina, April 14.

In this machine the clay is mized in a vessel or chamber in the centre of the machine, in which a shaft revolves that is furnished with knives, in a man. ner well known fur preparing clay at potteries, and in brick making; by them it is forced into moulding boxes at the sides of the machine, under which tho moulds are to be placed on a suitable platform. The claim refers priacipally to the manner of forcing down the vertical pistons within the moulding boxes; this is done by pieces in the form of inclined planes, and carried round by the sweep attached to the centre shaft; which inclined plenes pact against friction rollers at the upper ends of the shafts of the pistons, and force them down; after which they act upon vertical shafts connected with levers chat raise the piatons, allowing the filled moulds to be removed, and eropty ones sabstituted for them.

Clamm.-" We claim the application of inclined planea to the forcing down the pistons for pressing brick, in the manner deacribed. We do not claim the mixing, or press boxes, or the oblique knives; these and other parts having been previously known and used; all that we claim as our invention being the inclined planes for forcing down the pistons and slides; the particular combi. nation of the two vertical slides, with their connecting parts for lifting the pistons and causing the moulda to traverso on the ways."

For an improved Watcr Whecl ; John R. Whecler, Sencea Falls, Seneca county, New York, April 14.

The water is the made to strike upon the buckets of this whecl by passing Lhrough issues in 2 circular rim surrounding the wheel. Particular dipections are given respecting the curved form of the buckets, but there is not aifyshing in tbis whoel to distinguish it from others that have been previously used, excepting these peculiaritics of form which do not seem calculated to alter the action in any appreciable degree.

For an improvement in the Skeam Engine; William L. Lightall, oity of Albany, New York, April 14.

The object in view in this engine is eo to arrange the levers and other working parts, as that the cylinders may be placed horizontally at the bottom of the vessol. This mode of arrangement is described and represented with much clearness and distinctness, and the inventor, after describing it, observes that, "It will appear that the cylinder may, in all cases, be laid horizontally on the keelson, or zeelsons, placing it and all the other achinery so low that its weight, instead of its being as it now is, n necesary and unavoidable incum. brance, will act in a great measure as judiciously stowed ballast. That in ressels of wer, or armed ateamers, all the essential and vital parts of the machinery will bo completely protected from en enemy's fire, and that the acting engineer can perform his duty not only with safety, but with that self-possession which persconal seeurity could alone insure." The claims refer to the parti. cular description of the respective parts as arranged, but would not, alone, afford any diotinct information respecting them.

For an improved mode of Working the Pistons of Pumps; David Whittior, Belfast, Waldo county, Maine, April 14.
"The nature of my invention consiats in the application of inclined planes inserted upon the outer circumfarence of a wheel, or cylinder, (which is made
to revolve like the capstan of a vescel,) to the spear, or piston rod of a pa ito as to force it up and down."

In the drawing, force pumps aro represented as placed noar the peripbery of a low, vertical cylinder, or drum, on the deck of a veseel, there being levers, or handspikes, to carry the cylinder round. Projecting inclined ledges come in contact with friction rollers on the piston rods of the pumps, and altornately raise and depress them. The claim is to this mode of working pumpe, and we believe that the patentec might have enjoyed the exclusive right thereto vith. out having had it secured to him by law.

For an improvement in Many Chambered Cylinder Fire Arms; Theodore F. Story, Northampton, Hampden county, Massachusetts, April 21.

For improvements in the Machine for making Axes; Demmon C. Sroee, Naponock village, Uster county, New York; assigned to Joseph Wrighe, of Poughkeopsie, New Yort, April 21.

For a Saw Mill without Saw Gates; John C. Yates, Columbia, Marry county, Tennessee, April 21.

For an improvemont in the Steam Engine; Seth Graham, Rozbary, Nor folk county, Massachusetts, April 21.

For an improved process of Dyeing Wool; Felix Fossard, city of Philadelphid, April 21.

For an improvement in the Art of Dyeing; Patrick Magennis, Paterson, Passaic county, New Jersey, April 21.

For an improved Drill Machine for Sowing or Planting Grain; George A. Hoyt, city of Albany, New York, April 21.

For an improvement in the Working of Bellows by Steam ; Martin Bell, Antis, Huntingdon county, Pennsylvania, April 24.

For an improvement in Rail-road Carn, Carriages, or Trucks, \&ec.; Jooeph Harrison, Jr., city of Philadelphia, April 24.
The main object of this improvement is to obtain a more equal bearing apos the rails of the wheels of rail-road carriages than has been hitherto athiged. The opposite ends of a spring are to bear upon two aliding boxea, in two plummer blocks, which boxes receive the ends of the two axles of the easringe wheels. The spring is of the usual construction, but mounted so as to vibrase on its centre, allowing the two wheels on each side to adapt thomselves to the inequalities of the road, without altcring the relationship of the action of the spring. Several variations in the mode of arrangement for carrying oat the same principle, are described and represented by the patentee.
" In truck frames which turn on a centre, for the purpose of adapting the wheels to the curvature of a road, the patentee has, in order to render the system of the equalization of the pressure of the wheels upon the rails perfect, so constructed the frames of such trucks as that their sides shall not necesserily continue in the same plane, but be allowed to vibrate vertically to such extens as may bo requisite to enable them to adapt themselves, and the wheels which they sustain, to any horizontal inequality in the rails upon which they are to run, as this cannot be effected by the limited action of springs."

In this latter arrangement the wooden aides of the truck frame are compected by transverse and diagonal bers of iron, which work on pins, allowing of the requisite vertical motion in the sides, whilst they are breced perfoculy $e 0$ as to prevent their racking laterally. The claime are as follows:-
"What I claim as my invention in the within dascribed modes of constructing cars, carriages, or trucks, to run upon rail-roads, is the constructing of the springs and their appendages, so that sajd springs may vibrate upon their oep tres, for the purpose, and substantially in the manner, sot forth. I also chinn the carrying out of the came principle, by meana of a vibrating beang, or any analogous contrivance, connected and arranged so as to produce the sarme effect. I also claim the use of a track frame which may oe employed wish cars and locomotive carriages of all kinds, to run upon milroads whem trweks are required; said truck frame being constructed in such a way as that two parallel sides thereof may be allowed to play, in the manner and for the parpose eet forth, whether the same be put together in the method beroin ande known, or in any other by which the samo end is attained, on the same priaciple."

For improvements in Many Chambered Cylinder Pire Arms ; Refus Nichols and Edward Childs, Conway, Franklin county, Massachusetts, April 24.

For a Horizontal Straw Cutter; R. A. B. Beach, Franklin, Williamsoe county, Tennessee, April 24.

For an improved Gato for Flumes of Mils: William Buckmipter, Fir mingham, Middlesox county, Maseachuette, April 25.

For a Domestic Spinner, for Spinning Wool, \&c.; Hiram F. Whocket Springville, Susquehanna county, Pennsylvania, April 25.

For a Machinc for Pressing Bricka; Gaylord V. Harder, Batavia, Gemeater county, New York, April 25.

A horsc is to turn a vertical shaft, by means of a lever, or sweep, anctin. in its revolution is to operate four or more pistons which press upon tbery, previously tempered, and placed in the moulds for that porpose. The ${ }^{\text {en }}$ scription and drawing do not clearly cxhibit the structure, and the claink merely to "the mode of prcssing and discharging bricks, as described."

For an improved Mode of applying the Syphon for the uniform Drawing Oil and otber Liquids; Jamos Gray, Fredcrickyburg, Bpottsylvania Conit Virginia, April $2 \sqrt{6}$

For improvements in the Many-chambered cylinder Fire Arms; Mighill Nuttidg, Portland, Maine, April 25.

Fore Horse Powor for propelling machinery ; James Secor, city of New York, April 28.

For an improvement in Water wheels ; John Mumma, West Alexandria, Preble county, Ohio, April 28.
The tariation in this wheel from some others is not of a character to render particular description necessary; the claim is to "the combination of one, iwo, or more, tub wheels, with the wheel placed next the schute, and the mode of regulating the outlet of water, as described.'

For a machinc for Mortising and Tenoning Timber; Henry Barnes, Munspm. Geauga county, Ohio, April 28.

The subjoined claims, although they do not lead to a knowledge of the particular structure of the parts, serve to show that the improvements are in wrere matters of arrangement, leaving the rest of the structure the same with that of otber mortising machines.

- I claim the construction of the carriages with the reste, bar clamps, and clamp bolts, as described. The arrangement of the lever and wedge for throwing the pinion out of gear, with the racks, as described. The method of counecting the pulley with the piston sbaft by the spring, for allowing the puliey to turn on the shant as the cutling tool enters the wood."
For an improvement in the Saw Mill; James Secor, city of New York, April 28.
The claims are to a mode of feeding the carringe, and to a connecting lever for giving motion to the saw gate. The arrangements in this mill are such as to reader it portable, and to adapt it to its being driven by horse, or other power, applicable to such mills. The saw frame is to be worked up and down by means of a lever beam, operated by a crank on the fy wheel, and there is, as the claim indicales, some novelty in the mode of feeding.

For improvements in the Machinery for making Brooms, Brushes, Mops, sc.; John M. Spooner, Belchertown, Hampshire county, Massachusctts April 28.

For a Churn ; Joshua G. Pike, Lisbon, St. Lawrence county, New York, April 28.
For an improved mode of forming Kihs for making Charcoal; Michnel Carroll, Tellico Plains, Monroe county, Tennessee, April 28.
For a Hinge for Doors, denominated the helical spring joint hinge; D. A. Hoyt, and P. W. Bulkley, Danbury, Fairfield county, Connecticnt, April 28.

This hinge is to operate as a door spring, and for this purpose it is so constructed that instead of the middle knuckles of the hinge, a belical spring surrounds the joint pin, the two ends being so altached as to cause the hinge to close by the elastic force of the spring. Two portions of the hinge may, if desired, be so provlded with helical aprings; these may be made of brass wire, nud they have a very neat appearance. The claim is to "the colling of a spring around the joint pin of door, or other binges, in the manner set forth, such tension being given to said springa as shall cause them to close a doce or other hinged article to which they may be applied; said hinge being coostructed sabstantially in the manner set forth."

MISCDLLANEA.

The Union Plafe-Glasa Companyis Works.-On Thurwiay, the 16th ultimo, the direotore of tho Union Mate.Glase Company gave a generel invitation to abareholders so taspeet the company's works, at Pocket Nook, near St. Helonis, and, secordingly, about elinty gontlomen wout from this town by the 10 oclock train, and were re ceired by Mr. Leoy, cheirman of the boerd of directors, by other gentleman of the directory, and by Mr. Wel, maunger of the works, by wholl hey were conducted roand the various deptarments of the works, witnesaing almost every process in the art of of munufacturing phate ghass, from the nuking and purification of the alkali, and the prepration of the sand, to the last processes of polishing the glass, and sivering it for the purposes of looking-glessen, \&c. The works are very extensive anl opaciona, covering an area of uine statue acren, surrounded by high wella, with a thandsorne substantini entrance gate of stone, at the principal entrance to the works ow the 8\% Helenis Railway. The situstion could not have been bettor selected - betiver the facilities of supply of matarials, or of trasit of the mannfactured ariate be considered, or the position of tha workn be regrarded in reference to the two Lage and opulent towne of Mancheoter and Liverpool, with the great arpart trade of thes port, and the contrality of the farks in the midet of so many railways, which for their carriages require a lasge supply of plate glass; indood, in all reapects, there are few finer sites in the kingdom. Within a quarter of a mile of St. Helen's, and atill oearer to coal-pits; the railday running close by the works on their castern side; the Sankey navigation dowing clowe past the weatern side; and an abundant xrpply of watar obtained from a subterranean river or stream, supposed to tako its riveto nerthwand, and locally known by the name of "Roaring Meg;" all these etrentegen are raredy found in such complote combiustion. The wator is raised from -Hoartig Meg" by a mall stearcengine, of eight or tea horses' power, and convaged in pipes of eightineh and six.iach bore, to the diferent parts of the works.Mantmerer Guardian.
Briuh Aesociation.-The Moclal Commitlee, appointed to mperintend tho exhibiBe of modele at the meeting of the British Asewcintion for the Advancement of Mece, to be held in this town on the 26th of August next, are deairous of receiving cinaon of manufacture sand works of art by the 15th of that month, in order that menay be properly arrangexl and classified-Birminghan Adverlizer.
fhe Dowlais Iron Comprny have just laid the foundation stomes of two new fur3; and intord commonciug two others very ohorty.-Cuobrian.

Conjiagration of the Chetenham Theatre.-On Friday morning the 3rd ultimo, the Cheltouham theatro was totully destroyed by fire, togeuner with two or three amall houscs adjoining it. The theatre was built in 1805, by Mr. J. Watson, a coadjutor of John Kctable and Mrs. Siddons, both of whom in the carly part of their career had appearal on the Cheltenham boaris. The house was preparing for the appearauce of Mr. nnd Mrs. Yates, and Mrs. Wood, at the time of the accident. The property, which is insured for 2,000l. in the Phomix Fire-offico, was of the ralue of about $\delta, 0001$. It wis the hands of trustoes for the benefit of the proprietor's creditors. To such a degite has the taste for theatricals fallen off since Lord Segrave and his brothers were in the habit of acting, that it is doabted if another theatre will be bailt at Cheletnhand

Photogenic Drawings.-Mr. Robert Mallet has communicated to the Royal lrish Acalemy a notice of the discovery of the property of the light emitted by incanllescent coke to blacken phologenic paper; and proposad it as a subelitute for soler light, or that from the oxy-hydrogen blowpipe with lime. One of use mant imporimnt applicatious of the photogenic process, as yot suggested, is its alaptation to the self registering of long-continuod instrumental observations. Unless, however, an artifcial light, of a simplo and inexpensive claracter, can be found to supply the place of solas light at uiglat, the utility of this application will be much limited. Few ar tificial lights emit enough of the chemical rays to act nith certainty on the prepared paper; while those winich are known to act well, as the oxy-hydrogen line light, are expensive, and difficult to manage. A considerable time since, the enthor discovered that the light emitted by incandescent coke, at the "Twyer" (or aparture by which the blast is selmitted) of a cupola or furnacs for wolting cast iron, contained the ohe micul rays in abandance; and on lately trying the effect of this light on tho prepared paper, he found it was inteuscly blackened in about forty-five seconds. In the single oxperiment made, the heat, which was considerable, was not separatol from tho light; but the author purposed to make further experiments, iu which this precaution will be attended to. There is no difficulty to be apprehended in contriving an apparates to burn a small quantity of coke at a high temperature. A diagram of an apparatus for this purpoe was shown.

Rodla's Patenl Method of Consuming Smoke.-Amongst the numerous patenta Which have lately been obtained for plans for cousuming sunoke, there are none which can vie in simplifty with that invented by a Mr. Hodila : and its efficiency, as for as it has been tried, has boen unequivocally attented by the enginear and othera who have supcrintended the operation of the plan at Truman, Humbury and Co.'s brewery. The method adopted is to partition of a prortion of the back of a furnace with fire-brick, so that when the coal has been coked in the fore part, it is thrust into the hinder division, and the smoke from the froshly supplicd conl being compelled to pase over the incandescont coked fuel, is consumod. The principal merit of this invention is in ita simplicity, consiating merely of a few firobricks, which may be invention is in ita simplicity, consiatigg merely of a furnace without expenive alteration. We shall hereatter publish a full dascription and engraving of the plan.-Mechanica' Maparine.
Pontypool Iron Trade.-On Tuesday, the 14th ultimo, was started for the first time, the new forge erectel at Pontnewynedd (hear Ulis town), by the Pentwyn and Golynos Iron Company. The powerfil engine, with all its complication of machinery, trains of rolly and hammers, were set in motion in the presence of a large assamblage of spectalors, who cheered heartily as the first bar was rolled out ; and went off in it mannar that reflectel the highest credit on the engino manufacturers who erected a (Messrs. Otway and Winnington, of Stafforishire) and much to the satisfaction aud pleasnre of those propriewrs who were present on the occasion. This large work belng so near to the town, promises greatadrantages to the tradeamen of I'ontypool. Momimouthehire Merlin.

Sir James Andersonis Slean Carriages.-The indefitigable exertions and untirlng onergy of this scientific gendeman, hare at leugth been crowned with complete success. Tho tirst of those carriages, built for the Eingliah Steam Coech Compmay, has been digpatched to London via Dublin. Previous to its starting, it underwant repeatol axperimental trials of its power and capabilities. Too much praise canuot be emarded to Sir Janes Anderson for his perseverance, despite of every obstacle, unirersally belioved by his friends that "he was hoping against all hope." The ultimate satisfactory accomplishmont of his object must, independently of the great pecuniary gains which will certainly result from it, prove a rich roward for all his labours and disappointroents, and ought to hold out oncoursgement to our scientific conntrymen, not to be deterred by the most appareatly stupendows difficalies, which, as in this caso, may be overcome by zeal and industry.-Cork Slamdarl.
The Atmospheric Railroad.-A secoud series of experimenta, with models, upon a modelled railroal, of Clegg's atmospheric principle of propalling carriages by neans cxhausting a lube laid down the line of road to be traversed, of the air contained iu it, and creating a ractum, was made on Tresslay forenoon at the iron works of Mesars., Samuda, Sonthwark. The tube leing exlansted by mcans of an air pump, the models, the leading one haring a piston which forced open the valve of tho tube, procoeled as a rate of extreme velocity along the line, a distance of thirty or forty yards, the ascent being ons coot in thirty. The soodels were lieavily laden, each carrying a couple of persons, and upwands of 16 cwt . of ballast bolng disposed over the whole. There were present several members of Parliament, and rallway directors, enginecrs, de. The machinery performed to perfection, and meve general satistinction. The advautages that this systom proposes, both for the public and the railroad propriators, are very obvious-cheapness, security, spoed, and no danger of explonion; it is, in fact, free from those disadvantages which the present system-n operatiou abounds in. -Daily Papers

LAW PROOERDINGS.

CLARIDGE'S PATENT ASPHALTE

VICE-CHANCELOR'A COURT, WEDNESAY, MAY 8 .

Claridge v. Iowis Latrade.
Mr. Wigram, Mr, Richards, and Mr. Chichester, moved to dissolve an injunction obtained upon notice on the 13th of February, whereby tbe defendant was reatraiued from forming a mastic cement or composition by means of beat, of asphalte or asphaltic rock from Val de Travers, or any other natural composition consisting principally of lime and bitumen, with a small portion of aqueous or other matter, by whatever narce such compound might be called or known, with bitumen, or mineral, or other pitch, and from laying down in Oxford-street or elsewhere any blocks formed of aroh mastic, ewoent, or composition, and granite or cher wore, or with any
misture of grit and sand, and from cameuting such blocks, or from selling or putting in practice the plaintiffs invention. The plaintiff was the patentee of the well-k nown invention employed in paving some parts of the metropolis, which he described in his specification to consist of a natural compound extracted in mastes from mines at Pyrmont, near Seyssel, in the department of l'Ain, and other parts in the Jura Mountains, which contained, in addition to a small portion of aqueous matter, about 90 parts of carbonate of $\$$ poe, and 10 of bitumen, and which was reduced by means of heat to a thetic cement or composition, and united with bitumen or mineral, or other pitch. This, combined with sand or gravel, formed a substance applicsble to paving and road making, and was an invention the plaintiff claimed under his patent granted in November, 1837. The defendant had obtaitued a similar natural compound or asphalte from Val de Travers, and had produced a mastic composition resembliug the plaintiff's, using only tar instead of pitch, which he also applied to the purposes of making roads and parement. A portion of it had been laid down with the other experimental pavement in Oxfordstreet, but, as it was merely intended for experiment, had been compounded with pitch, and not with tar. It wat now contended the defendant's invention was no infringement of the plaintiff's patent, tar being a snbatance that contained many component parts, of which the pltch or bitumen used by the plaintiff was only the residuum. It was aliso shown from several scientific and philosophical dictionaries that asphaltum had been used in various parts of the globe for making walls and pavements many years before the plaintiff obtained his patent, and that therefore the invention inad nota sufficient claim to norelty to support it. The defendant also alleged that before the bill was filed Mr. Claridge had asaigned lis patent to a company who were not made partios to the auit. On these grouads it was contended the injunction ought to be dissoived.

Mr. K. Bruee, Mr. Jacob, and Mra Ellis supported the injudction. The only question was whether the tar admitted by the defendant to have been used by him in forming the composition was not in effect precisely the same as the bitumen which constituted the only disputed ingredient of the patent. Whether the asphalte came from Seyasel or from Val de Travers, its proparties were the same, and both were embraced by the specifications: so that it only remained to be shown from an affidavit the defendants had not thought proper to read, and which had received no answer, that the tar in fact become in the process of heating converted inco pitch, and ihat every portion of the defendan's compcsition was identical with that included in the plaintiff's patent. The learned counsel then read the affidavit of Mr. Woolrich, a professor of chemiatry at Birmingham, which stated that tar consisted of volatile and aqueous matter and plich, and that in order to combine tar with asphalte to make a mastic cement, heat must necessarily be used, which caused an evaporation of the volatile properties, and that the only portion of the tar which entered into the combination was asphalte and the pitoh which the tar contained.

The Vice-Cbancellor said it was the simplest caw in the world. It came to no more than this, that the plaintiff took out a patent for a combination by heat of asphalte with bitumen or mineral, or other pitch, so as to produce a composition applicable to the purpose of paving and so on; and then it was said the defendant had not infringed the patent because he bad used a combination, by means of heat, of asphalte with tar. The defendant admitted that a portion of the pavement laid down in Oxford-street was made with asphalte and pitch, but that occurred before the discussion arose. Then the question was, whether it was an infringement of the patent to substitute tar for pitch. If the effeet of combioing maphalte with tar by means of heat was to leave tho tar in astate of combination in respect to itself, in its own original state, and possossed of all lis qualities, so that the composition should contain asphalte as such, and tar ta such, there might have been no infringement of the patent; but if the neoesary process of attempting to combine them by means of beat was, that those circumstances and thinga which constituted the distinction between tar and pitch were caken away, and the residue of the tar only formed a combination of asplialte and pitch, he thought, for the purpose of considering whether there had been an infringement of the pateot, tar and pitch must be considered the sarne. So that he was of opinion, upon the evidence before him, the defendant ought not to be at liberty to go on thus violating the patent, and the injunction must be continued, the plaintiff bringing forthwith such action as he should be advised to try the ralidity of the patent, and whether what the defendant had done amounted to an infringement.

easterk cotntigs mailttay.

The $Q_{\text {ween }}$ v. the Dinectors of the Eastern Counties Railway Company. -In the Court of Queen; Bonch, May 6, 1889 , before Mr. Justice Williams.-Tbe AttorneyGenoral said that he was inetructed to make an application to the conrt the ereceess of which would, he hoped, prodnce the most salatary consequences to the public in respect of the compeny against which he applied, es well as all others of a similar description. The object of the application was to compel the defendentin to perform the whole of the contract which they had entered into with the public, and to pre. vent them from picking out some particular parts of is and execnting only thowe parts, as boing the only parta hikely to be beneficial to themeolves. It apparred that the company had been eatablished in 1836, by the 8th and 7th William IV., chap. 106, and that the act of Parlimment was for laying down a railway from Loudon to Norwich ant Yarmouth, through Colchester, Ipawich, and several other intermediate towns. The undertaking, upon the suppmition that it woth be carricd on through. out the whole of the line describel in the sct, had met with great enconragement and support from the landownera of Norfolk and Suffolk, and upon the same ground the landowners of Eseex mede no objeotion to its pmaing through their properties. It pow appeared, bowerer, that the derectort wanted only to make the road erom Lopdoy
to Colchester, aud wo further. If an application for that part of the origiual line hal been inade to Parliament in the first instance, it never could have woceeded. Bnt the company having proposed to make a road from Loudon to lirmouth, nov intended to stop at Colchester, which, as the learned counsel cunteuded wan mami. intended to stop at Colchester, which, as of Norfolk and Suffolk, and with the geocen fest breach of faith with the landowners of Norfolk and Sufolk, and nith the gractal
body of the shareholders. The manner in which the conpany proposed to elierl their object whe by placing themselves in such a situation that they could tot by hr continue the line beyond Colcheater. It appeared that some deriations from the original line between that point and the more northera parts were prorided fof hr anothor act procared by the compeny, une lat and 2ad Victoria, c. 81, in the 2nder. another act procured it the company, unat unleas such deviations should be bid out befure the 27th of Jnly, 1889 , it should not be lawful fer the compary to prooxd with that part of the line at all. The company therefore, by merely omiting to by out the line of the deviation, would place themselves in the position which trei desired, and wonld have no power in law to proceed beyond Cutchester. They hid been called npon several times by parties interested in the andertating to mank on been called npon savera times by partiea interesta in the anderning to artar
the deviation, but had refused to do so, for reasons which were suficimetly obtion from the stataments which be (the Attomay-Genpral) had addresved to the court. The learned gentlemen then referred to the case of "The King againat the serrun Wyo Railway Company,' 2 B , and A, in which the defendants were commanded hy this court to make a rond for the public accommodation. A railway was mot ipr. vate way, but a common highway, and any other person as well as the company may trarel npon it with his own eugines, upon obnerving the necessary requintions in the case referred to, it lad been adnitted by the court that the defendusts wre liably to an indictment for not laying down the railroad; but, as such a proceodiay bor. ever it may afford the monns of punishing the defendants, could not proenre ar nccommodation to the public, the court granted a mandamus commanding the cors. pany to do what was desired. The circumstancen of the present case mere arexts the same. The company had, by their act of Parliament, entered into a contrad with the public, who could not have the adrantage which the legislature inteodes they should derive from the proposed undertaking, unless it were corpleted aln gether. It was quite clear that the company could uot legelly stop at the mal gether. It was quile, as the road would, by that meant, become a public nuisance. They rer. therefore, bound to proceed, stage by stage, until they arrived at the turnion appointed by the act. The affidavit was from a great number of luadorven in tr neighbourhood of that part of the line which ran from Colcheater to Yarnorth i distance of abont 70 mifes. The other deponents were shareholdura in be camen and all swore that they, as well as the public, would be very serionaly projubited unless the company should be compelled to complete their line sceurding with original plan. In these circumstances, his application was for a rule calliny ppe the defondauts to show cause why a mandasuz should not ispue, commanding thrt to proceed to point out the deviations referred to, so that the whole of that wry might be performed before the 27 ul day of next July.

Mr. Justice Williams inquired why, in a case of so much novelty and inprortance, the Attorney-General had not applicd to the fill court?

The Attorney-Geueral answered, that in the state of business in that conrth tetion not been able to obtaiu au opportuvity to make the application thers.
Mr. Justice Williams observel, that the case was certainly one of great inpotion aud granted the rule.

HARBOURS ON THE SOUTH-EASTERN CUAST.

We are glad to see that Government are awakening to this important subject, and that there is a prospect of something being doue. We only hope that it is not a job. We give below an extract from the debate on the 2ad ultimo, in the House of Commons:-

harbouks on the bouth-Eastern coast.

May:
Mr. E. Ruce moved, pursuant to the notice be had given, for an addres to inquire into the state of the harbours on the soukh-eastern coast. The quesiva was one which had met the approbation of all the diatinguished nsual ofem in and out of that house with whom he had conversed. It was the mart z cessary that our south-eastern harbours should be placed in a ft and aft ats for the reception of vessels, as we were about to have e greally tocuse intercourse with the continent. A line of raitroad from Londor to Dover int received the sanction of the legislature, and was now in a state of considente forwardness; and a line of railroad from Calais and Boulogne to Parib bed received the sanction of the Frenck Chambers. When these were compleed it was natural to expect a rast increase of intercourse between Londos ad Paris, and other parts of tho continent. Under these circommespees, the coe. dition of the south-eastern harbours was a matter of considerable inportwor. He did not risk by his motion to pledge the Government to any oulhy d money ; all be wanted at present was, an examination of the condition of then barbours by scientific men. He had brought forward this metion as the ryit sentative of a port whare the necessity of such improvement wha grealy k,

Mr. S. Rrce stated that he did not wish to throw any difficuley in the mity the honourable member's proponition. It was highly important that wo Government and Parliament should have the best information that alitim science could give on this subject; but bo wished it to be distivctly uadertas to what extent he was willing to go, because, if undue expectations west en. cited reapecting this inquiry, and if it were thought that Goverameat meld expend large sums of money in obtaining information reapecting thene ter. bours, the result would be to paralyse all private and local efforty for deatig the object in contemplation. In consenting, therefore, to this inquirr, y wished it to be clearly understood that it was only to far that he woold go, wh no further. The first was to consider the present state of the herboren, wh the next would be to consider the best mode of improving them; the lettrit however, would depend upon local questions; and the greatext good thes coilt be done was to give the persons locally cennected with them the bert informtion that conid be obtained.

PARLIAWESTARY PROCEDDNNGS.

Hoose of Commons.-Lint of Putitions for Private Hills, aud progress therein.

	Petition presented	Bill read first time.	bill read serond thac.	$\begin{gathered} \text { Bill read } \\ \text { third } \\ \text { thane. } \end{gathered}$	Royal Assent.
Aberbrothwick Harbour	Feb. 6.	Feb		pril 15	
Aberdeen Harbour	Feb. 8.	Mar. 15.	April 15.		
Rellochnoy Railway	Feb. 12.	Mar. 14	April 8.	May	
Baruley Waterworks	Feb. 21.	-			
Bawh Cemptery.	Feb. 22.				
Belfac Waterworks	Fcb. 22.				
Birmingham Canal	Feb. 20.	8.	A		
Birmingham to Gloncenter Railway	Peb. 21.	Mar. 15.	April 8.		
Bishop Auckland st WearialaRiws.	Feb. 22.	Mar. 18.	April 16.	-	
Blackhonth Cemetery . ${ }^{\text {a }}$	Feb. 22.	Mar. 18.	二		
Brallord (lork) Waterworks	Feb. 21.	Mar. 18.		-	
Rrighton Gias ${ }_{\text {Mrighon Cometery }}$	Feb. 21.	Mar. 18.	-	-	
Brighton Comotery BritoladGloucentorshireRailwar	Feb, 21.	Mar. 8.	Mar. 18		
Britol andGloucentorshireRailway Britinh Musoum Buildinga .	Feb. 22.	Mar. 7.	Mur. 18 Anril 12.	May ${ }^{\text {May }} 2$.	
Britiah Musoum Buildingn Brompton New Road	Feb. 22.	Mar. 18.	April 12.	ay 2.	
Cheltmbars Watarworks	Feb. 22.	Mar. 12.	Mar. 22.		
Commercial (Lomion aud Blackrall) Railway	Feb. 14.	Mar. 8.	Mar. 21.	-	
Dean Forest Railway .	Fub. 10.				
Ueptiord Mer	Peb. 22.	Mar. 18.	-		
Deptiord l'rer Junction Railway	Yeb. 22.	Mar. 20.	-	-	
Doptord Steam Ship Docks.	Feli. 22.				
Edinhurgh, Leith, and Newliaven	Felt. 10.	Mar. 11.	Mar. 27.		
Framenth Harbonr	Feb. 12.		April 8.		
Fruerburgh Harbour	Fib. 20.		April 8	April 10.	
Gremal ciemetery	Frb. 20.	Mar. 11.	Mar. 21.	-	
Girarewed Gian	Feb. 21.	Mar. 18.	Mar	Mar	
Grat North of Eingland Railway	Fab. 18.	Mar. 13.	Mar. 23.	May 3.	
(irmat Weutern Railmay	Feb. 1t.	Mar. 4.	Mar. 13.	May 1.	
Cirat Concral Irish Railway.	Ma				
Canal	Fel. 20.	Mar. 13.	-	-	
Heme Gian	Fel. 22.	-	--		
Liverpool Docks	Feli. 21.	-			
Lirepool Buthdings	Fet				
Lireppol and Manchestar lixtension Reilway	Ftb. 14.	Fel. 28.	Mar. 12.	May 13.	
Joman and Birmingham Railway	Feh. 8.	Feb. 22.	Mar. ${ }^{\text {a }}$		-
Iucion Bridge Approaches, dc. -	Feb. 19.	April 11.	April 26		
Inodon and Croydon Railway	Feb.	Mar. 18.	April 8.	May	
Loodon Comelery .	Febs, 14.	Mar. 18.		May	
Loodon and Graenwich Railway.	Peb. 21.	Mar. 18.	April 8	May	
landon and Southampton (Gnildford Braneb) Reilway	Fet. 22.	-	-	-	
London and Sonthampton (Fortsmouth Branch) Railwar. .	Feb. 6.	Feb. 25.	Mar. 7.	May 3.	
Varchenterst BirminghamRailway	Yeb. 18.	Mar. 18.	A pril 28.	-	-
Menchester and Birmingham Exwnion(Stone \& Rugby) Ralmay	Peb. 11.	May 1.	May 14.	-	
Masehenter and Leedis Railwoy.	Feb. 18.	Mar. 8.	Mar. 19.	-	
Narylebone Gan e Coke Company	Fel. 22.	Mar. 18.	-	-	
Monklaod \& Kirkinulloch Railway	Peb. 12.	Mar. 14.	April 8.	May 3.	
Nectopolis (St. Pancram) Cemetery	Feb. 21.	Mar. 16	Mar 11		
Veratk Gas - -	Feb. 1	Feb. 28.	Mar. 11.	April 18.	
Yowewtlorpon.Tyne and North Retalds (Kxteadion) Rellway	Fab. 18.	Mar. 18.			
Nerthern e Eestorn(No. 1) Rallway	Fob. 22.	Mar. 18.			
Niorthars \& Eentern(No.2) Reilway	Fob. 22.	Mar. 27.	April 16.		
North Midiand Railway	Fel. 11.	Mar. 4.	Mar. 14.	May 1.	-
Sipth Union Reilmay	Feb. 22.	-	-		
Noutinginam Inclosure and Canal	Feb. 10.	Mar. 18.		-	
	Feb. 11.	-	April 12.	May	
Perth Herbour and Navigation	Pob. 14.	-	-	May 2.	-
Portishead Pler	Pob. 22				-
Preatua Gax	Feb. 6.	Feb. 20.	Mer. 6.	Mar. 19.	-
Praton and Wyre Radimay.	Feb. 6.	Peb. 20.	Mar. 4.	Mar. 15.	-
Praton and Fyre Railway, Harbota, and Dock	Fob. 21.	Mar. 18.	April 12.		
Redera (Nio. 1) Harbour	Fob. 19.			-	
Padear (No. 8) Harbour	Fob. 22.	Mar. 27.	-	-	
Rimimarth Revervoirs.	Pols 21.	Mar. 6.	Mar. 20.		
Paphale Water workn	Yab. 7.	Pob. 21.	Mar. 6.	May 6.	
Bucheaters Cemetery	Yeb. 22.	Mar. 18.			
Stumitl Ford Bridge aud Runal	Feb. 21.	Mar. 18.			
Mamandan Railfay	Fab. 12.	Mar. 18.	Mar. 27.		
Sonth Emitern Railway	Fob. 11.	-	Mar. 26.	May 16.	
Pouth Fattern (Deriation) Railway	Fob. 22.	May 6.	-	-	
Trigamorth Pridge	Fel. 21.		Mas 7	-	
True Dook ${ }^{\text {che }}$	Fob. 20.	Mar. 16.	May 7.	-	
Trap thenma Ferry	Fob. 21.	-	-	-	
Wrimell Junction Canal	Feb. 22.				
West Darham Reilway .	Feb. 21.	Mar. 18.	April 8.	ay 14.	
Wexminster Improvement . Wrobat and Coltoess Railmes	Feb. 21.	Mar. 14.		May 8.	
Wimbaw and Coltueas Railway Frrioy and Exvington and Birming	F+b. 12.	Mar. 14.	April 8.	May 3.	
mos Canal	Feb. 18.	-	-	-	

mynsernvernyoz?

Sleansert Srom the Clyte to New York:-A joint-stock company is now forming In Glasgow, for carring passengers and merchandise between the Clyde and Now York, by means of an iron oterm-abip of great power and capacity, to sall at the rate of at lenst sixteen willes an hour, thereby maling a pasage in about top daya, and enabiling thle veasel to make nuarly a montbly voyege to America. The capltal to br $£ 50,000$.-Glaugow Chronicle.
Iron Ships.- The Iromades, the first milling veseal comatrueted of irom, which has over crossed the Atlantic, bas jout returned to Liverpeol with a carge of cotton from Branil, after a phasage of forty days, though during the whole trip light winds prevalled. This hus completely entablished the practicablity of navigating the ocesu in ships of lron. The compasses, whose action it was predieted would inevitably be deranged, worked very correctly; and the supeflority of the maturial of whlch the veseel is bailt, is proved by the fact, that in the course of the whole voyage it was never once necementy to use the pumpu. In fict her hull is absoletely water-ight. The success of this expertiment is highly important, ocourring, as it doee at a time when timber is scaree and dear. So llitle has the Iromides suffered from exponare to wiad end weather, that her appeanance would Induce the belief that she had bat lately been launched. Her tonnage is 284 ; draf of water aft, 8 fl 7 in , and forward 8 fl . 3 in. - [Thie fe a very important notlee, and we commend it to the conslderation of our commerclal readera. In the adoption of Iron ships eeveral points aro to be conoldored. Economy and durablity, we suppose, are in thelr tavopr. Their milling quallies seem by this experlment to be at least equal to those of wooden ships ; but these depend lest upon the material of which a vetcel la built than upon her model. The thing that strikes as moet, however, is the extreme bnoyancy of the lron ship. Bhe la ald to be 264 tons-we pretume by the mew'mode of admessarement: If so, ahe earies probably 400 tona, and jet she draws onily about etght and a balf feet of water, or pertapa, with a heavier cargo, zine and a half foet or ten feet at the ntmost ! Now, the great drawheck upon tbe profit of the cossting trade, at least In thle part of England, is the impoeaibility of conitrueting a vessel that will carry a large curgo with a draft of water cultabhe to our tide-harbours. A reseel of one bundred tons will draw as much water as thls ship; and if the burden be carried op to 150 or 200 tons, the draft of water becomes a serfous impediment, and what is gained In trelght is lost in frequent and veratious delays, and in injuries suatifined from gronnding on bars and aandbanks. But a veasel of 100 tons canmot be aailed ln winter, and ought not to be salled at any dime, whith fewer than four man and a boy; making for four auch vessela twenty hands: while such a ship at the Irossides might be salled with twelve or foarteen hads at all seasons. Bot will an iron ahip take the groand with a heavy cargo? That seema to we the princjpal quection; and if it be found that che will-if it befound that a ship of larse burden can be to construeted as to be fit for all the purposes of the comation trade, and capable of enduring the severe trials to which the beat and strongeat shipa are exposed in it, and jet so buojant as so enter all the Welsh and Cornlah ports, at neap Hdor-If thls be ascertalned, we may expect In a month or two, to see half the amithe of Hasle and Neath turned Into shipballders.-En. Cormwall Gaselle.]
English and American Stramert. - The Hon. S. Cuthard han contracted to conrey the meils from Eugland to Halifax twice a.month, in steamern of not less than 900 . bore power; the tirst vesel to leave Iiverpool on the lat of May, 1840. The consrector to formand the mails to Boston in mall stommers, and to run it stemb-boat between lictou and Quebec. Contract for seven years at 55,0001 . sterling per manum.-Manchester Gwardian.
Steam-boa! Explosion.-A steam towing.vessel, the Vonus, met with an accident at Harre. While it was towing ont a brig into the roedstead one of the boilert blew up. A boy war meen to be thrown up into the air, along with broken planks, \&c., but his body has not since been found, and the stoker and engineer were both severely injured,-Galignani'a Messenger.

PROGRFSS OF BAIHWAYE.

Soulh Eastern Morir Railway.-Between Dover and Folkentone the works are progreasing rapidly, the tunnel for tunnels, for there are two parallel to onch other) through Shaknpere's cliff, has been for a length of time opened from end to and, and the enlergement of them han progroesed conaideribly, these tannels are ouch twelve foet wide and thirty feet high formed with a pointed arched roof; the pler or apace between the tumbels is ten loot in thicknes, and where the ahatis have been nunk from the surface, there is a leteral opening conneoting the two tumnels, theme openings leing formed of the same leaight an the tunnols, and its roof being similariy excavaicil forma a groined roof, which has a remarkably good effict, there are neven shafts and consequently seven of theme opening in the length of three quarters of a mile. The eastern face of the tunnel in formed by excavatiog the chalk to the depth of 110 feet which in now being finally trimmed down. At the western tace of the tunnal a mplendid piece of side cutting proments iteelf, upwarde of 150 feet high. Wentwand of this tunnel, the sea wall of concrete to proteet the railway embankment han been commenced; it is contracted for by Mr. Iambert, the eontractor, who oxecuted the concrete tes wall at Brighton; the wall at Dover will average 50 feet in baight and aboat three quartern of a mile in leagth: the rallway along this portion of the lina is to be formed partly of side croting trom the clif and partly of embenkmant which the concrete wall is inteaded to protect, groins will hereafter be carried out into the wee to collect the beach for the further wecarity of the workn. Between the wet wall and Folkestone two other canneln are to be conntructed, the whats of which are mank nearly to the required depth, and which, together with other preliminary works, are nearly completed; it is expeoted, therefore, that the excevation of these two tannele whll be proceeded with forthwith; preperations are also maling for the erection of an obtique brilgy of two archen orer the junction of the Dover and Cantertary roeds near Folkstone.
L.ondon and Birmingham Rallway.-On the 20th inntent, the speed of the mall trains on the London and Birminghem Railwey will be accolerated. The day mail will leave the Ruston-grove station at balf-patt 9 in the morning, and will arrive in

Birmingham in 5 hourn A stoppape of 8 minutea will be allowed at Tring. 10 minutes at Wolverton, 8 minutes at Weedon, and 9 minutes at Coventry; making a whal of 25 minutes occapied by the stoppages, and only 4 hours and 35 minutes in performing the journey of 110 miles θ furlongs. The day-mail train from Birming. ham will ercomplish the journey in the same time, allowing the same stoppagen at the different piaces above-mentioned. The nigat mail train will leave Eunton-grove atation at half-past 8 , and complete the diatance in δ hours and a half; the stoppages to be for the same periods and at the mame placea as thome named for the doy-mail trains,
North Midland Railucay.-The Yorkshire directors of this important public undertaking have, during the present week, been examining into the progress of the whole work in their county. They commenced at the Treeton contruct, near Derbyshire, aud walked nearly the whole distance to Woodlesford, a tract of about thirty-seven miles. The work in overy part of the line were found to be procceding mont sutis. factorily, so as to afford the best ground for expecting that the whole line will be completed by the time specified in the contract-namely, the close of the present year; and we hope that early in the apring of 1810 the trarelling and carrying the company antil very recently, that portion of the line between Woodleaford and Thraite Gate has not yet been commenced: these difficulties are, however, now removed, and the contracte for the few miles will be let during the present month, with a riew to the entire line up to Thwaite Gate being opened at the clone of the year. The railmay is in a still more adranced state in Derbyshire than in Yorkshire.

Clay Crass Tunnel.-It is expected that this Herculean department of the North Midland Railway will present a claar passage from one end of it to the other in July next. 1,600 yards are completed. The portion contracted for by Measra. Harding and Cropper is finished; and the excapation remaining to be completed oxtenda somewhere between two and three hundred yards.-Iaeds Intelligencer.

As the Derby ard Biminghan Ruihway is expected to be open in July, as soon as the North Midland is completed, there will be an unbroken railnay conveysance all the way from Leeds to London, except one mile at this end, which we hope will soon to supplied. No fower than 8,000 men are direetly emplnyed on the line, to say nothing of the very great number indirectly employed, as brickmakers, $\$ \mathrm{c}$. in order to completo this great undertaking.-Lerds Mrercury.-T The open cutting through the torn of Belper is expected to be completed in about four months. The bridges orer the meveral streets and lanes are commenced, as are also die retaining Falls, for which a vast quantity of stone is preyared. The bridge for the new turnpike rond, north of Belper, is completed, and will soon be ready for use. The passage nnder the bed of the Gromforl canal at Bull 13ridge, has been open snme time, and the works are procceling there with great activity. The lant of the foundations of the large bridgc over the Derwent, neur Amber Gate, was put in this week, considerable difliculty has been experieucal here, as the workmen have been many months, night antl day, at wark, asaisted by a powerful steamengine.-Derly heporter.

Glasgow and Ayrshire Railway.- We have stated, from time to time, the progress of the works ou this line of railway between Ayr and Kilwiuning; and we ere now gratified in being able to communicate that the operations thence towards Glargow sre aiso proceeding with great spirit, so that no doubt in entertained that the entire line will be open to the public by May, 1840 . But we believe it is still the inteution of the directors to open that part of the line between Ayr and Irvine some time during the present summer. There have been of late, at the ports of Ayr and Troon, numerous arrivals of cargoes of rails, from Newport in Walos, which are being ladd down permanently. The freights on theee we hear have fallen from 15 s . to 10 e . per ton. We understand that while the harbour dues exacted at Ayr for thewe rails are ouly at the rate of 4d. per ton, those at Troon are I84. The erections at the depots, both here and at Irvine, are procceding expelitiously - $A y$ r Adverliser.

Chaltenham and Great Western Union Railicay Company.-Extracts from the Report of the Directors, May 1, 1839. - Since the last general meeting contracts have been made for the formation of the line from the Barnwood-road th the Gloucester depot, and also for sinking tho permanent shafts in the Sapperton tunnel.

All these contracts have been antinfactorily let to reaponsible parties.
By the amended Act of lant session it wis provided, that all the land required for the railway, between the dopóts at Cheltenham and Gloucester, should be purchased and paid for on or before the 25th of March last; which cusctment has been fully carried into effect.
The contracts for the execution of this part of the line expire in March 1840 ; nnd from the progress made during the winter, and the very unfavourable senson duriug Which the works have hithertw been carried on, there can be no doultt of the ability of the contractors to completo their works within the prescribed period.
About 100,000 gands of earth have been excarnted during the past winter, and there remain about 400,000 to complete. The masoury nad brickwork are in an alvanced state. The ballastiug for the permanent way is also preparing; and your Directors have taken meanures for securing an ample and early supply of niteh of the other materials as requiro time to prepare, so that no delny may hereafter occur in completing this important part of the work.
Every proparation is making for procoeding with the conatruction of the depots at Cbeltonhan and Gloucester, in the arrangements of which yonr Directors propose to study every possiblo economy consistent π ith the accommodation of the public, on a purt of the line where so very large a trafic mant ultimately be provided for.
Of the 17 d miles from Cirencester to Swindon, the land on $18 \frac{1}{2}$ mites has been contracted for, and a large proportion has been taken possession of and paid for. The works on this portion, wlich had been let juut before your last meoting, have been comnenced at different points as rapidly as the lasd required could be procured, and are now proceeding satisfactorily, and your Eingineer has no roason to doubt that they will be completed by the periods fixed in the contracts, which oll expire in the latter end of 1810. These periods are calculated so an to allow of the whole distance from Swindon to Cirencester being opened simultaneously, or as nearly so as possible Fith the openiug of the line of the Great Weatom Iadlway from London to Srindou. Upon this district, as upon that betreen Chelteuham and Gloucester, although cominenced later, and consequently not proportionably aulvanced, it is satisfactory to bo able to state that as much has been done as the season and other circumstances cond allow of, and that the works are in that state which admits of the full adrentage being takeu of the more favourable period of the gear which we have now enterel apon. Five of the permanent shathe of the Sapperton tunnel are procoeding very satisfactorily. Three of them have already reached rather more than half the required depth, and the other two about one chird-no dificulties have been experiencel, and at present Lhere is every appearance of the materials through which the tuncel itself wiff bo ex
cnvated, being as favourable for this work an was originally anticipated. The mivit shaft will not be so deep as the others; some diliculty has vecured in procurirg the land, but there in now every prospect of this caune of delay being apoedily remenved and that all the shanf will be ready by the autumn of thin jear, so that the tonnat may he commenced as soon after as may be desired. The prequaratory stepa neepesary for setting out the works and determining the lands required in the Stroud Valle? have been put in harid and are nearly completed. The Directors have agreed wit the Birmingham and Gloucester Railway Conppany for the parchase of abont fox acter of land at Gloucester nesr 山e Cadla Markat for their depot at Glourecter. I Was prorided by the Act of lharliament that there should be one principal depit a. Cheltenlian for the joint use of the Companies, to be formed at the expense of tha Company, and a similar dejnt at Gloucaster to be formed at the axperse of the bis mingham and Gloucester Company ; but it has beon apprelianded that, uncler tb particular circumstauces, nuch confusion and inconvenience might reuslt in proctice from that arramement, and the Directors of the tro Companies hare therefore cam to an agreement to bave distinct depoth at both places, to be formed separately by each Company -an arrangement which will contribute greatly to the facility ani regularity of managamont in the traffic of both lines.

Glasgow, Paisley, and Greenock Railway.-On Saturday, the 11th ultimo, the Directors made their periodical visit to the roed. Aftor inapecting the new earrige at Glesgow, which are of the most elegant and comfortable description, they proceedard along the line to Greenock, examining every part of the works with mach attmbint Between Glasgow and Paisley the progress is rapid, and a great part of the permes nent roal is in courne of being laid. The drift-way throngh the A rliteton tramel in almost completed, and the tunnel is widenel out for a considerable part of ita hength In l'aisley the bridge and walls are very forward, and the large luridge over the Car has its centre ready for turning the arcli. Proceeding westward beyond Paisker. the walls and embankrnents are creeping up, and the railway is alresdy cartiod orfo the mose. The consolidation is becoming daily more apparent, and there is no dounke that an excellent bit of road will be the result of the prectutions sdopted. At Bieturpton all is busto and activity, and nowhere is there greater evidence of the late dexightetn weather. Letween West Ferry and Port Glasgow the work is cormparatively light and has made great progress since the last inspection.-Grecnack Advertiser.

Great Hestern Raikey.- The travelling on the line to Maidenhead has greacty increased with tho farourable change in the weather, and appears likely, as the snom mer comea on, greatly to exceed that in the corresponding period of last year. Incring tho week ending the 6 th inst. upwaris of 12,000 pasgengers were convejeal, and the recpipts, we believe, exceeded 2,000l. The Directors have conelnded contracts for some miles of the rond between Batli and the village of Hox, and the contracta latrty aulvertised will complete the entire line between Bristol and Iondon, with the rserp. tion of a smull portion near Math, and one or two bridges, for which tree plams ait soon be ready. We understand that, generally spesking, the works along the live are pushed formard with great energy, and though much remains to be durse before the bridges and tunnels iu this vicinity can be completed, there seems no donith that the line to Bath will be really for traffic in the conrse of the next nine monthe, Abwrt half a mile of the great tunnel at Box is now completed, and not the slightent diffienley exists in keeping the works free of water. Where the excavation in carried Urough the oolite, or freestone, the work proceals wilh a rapidity greater than that required by the contract; and as this may be considered the key to the whole line, we harexo doubt the Directors will take care that no tumecessary delay takes place in ita cam $p^{\text {letion.- Bristol Mercury }}$
Shefliehl and Rotherham Railicay.-A slendid locomotire engine from the mane factory of Messrs. Fenton, Murray, and Jackson, of Leeds, called tho Agifia, has arrived at the Sheffield station of the Sheffich and Rotherham Railway, and is now in active operation upon the line. We understand that some of its excellencies conrist in being provided with flanges on each side of the six wheels, thereby affurdiog adut tional sofety from being run off the rails, compared with those engines whose driving wheels are without that very material part. Another alvantage which it poswewn. is that if cither one or all the cxcentries wlich more the valves, were troken, dis arranged, or eveu lost off or taken away, it is still nuder the control and managremet of the empineer, who can safely conduct it along the railway nearly as well as if thoparts haul remained entire. -Sheffeld Mercury.

Eastern Caunties Railway.-The company lase commenced laying the fomentam and building their warohouses and offices, at the station aljoining the Red Lich, e: Ilford, for the purpose of recciving and warchousing fordn, and landing pasamgers Ther will be very extersive and convenient The buildings at the Shoredifch termiuns will shortly be commencel. The Northern and Hastern Railway, which is tu join tho Eastern at Stratford, will of conrse bear a part of the expense; the Bill ${ }^{6}$. so far amite them being in P'arlinment, and is expectul to pass without ajpomising The torminus will conmand the trabe and trafic from the north and west part of the metropolis, and of England, and is not more than half a mile from the crintere of thcity of London. At Ilford the permament rails are laid down nearly as far ns N r Curtig's brick-field, and the works are proceeding very rapidly. The railwar fon Mary-lo point as far as is comploted, to the enst of Ilford, is mid by connpetent juiger to be the best piece of railway in the kingrom. The state of the bridge ovicr the t:m pike road between Ifford and Clindwell, still contimmes in a very nonsarisfactarp cout dition, and nearly all the magistrates of the county have been and examined it duriur the last week, and insist on linving the walls of the bridge carried higher, in cier horses mhould take fright and jntop over them; and also walls on the sides of the ap proaches. The company appear to have got into a labyrinth reapecting this Iridet, which will require all their nisdom and talonts to extricato them from-EEC Standard. We understand that it is now fixed to open the line from Landon to the forl, the first week in Jume, and shortly after from Romford to Brentforl, a distast of 19 untles; there are alcut 7,000 persons employed on this groat undertatioy bexides several locomotive engines and horses-Suffolk Herithl.

Bristol and Ercter Raiticul.- The directors nre pledyel to open the line to Britgr water, before they proceed with the works to Taunton, in orler to make the ontiry as amall as prasible before an inconce can be secured; lut if a single line is Tambon can be constructrif for a few thonsunds more than a double our to Brily water, and if the additional incomo, when it is open to Tamonon, will he streis 20,0001 . a year, I think it is the duty of the directors to admit for the permest single line,-Briatol Giarette.-Ihe works on this line are proceeding with pee: apirit and effect as far is Bridgenater, t which towa the lino is exprecteil the be opponal from Bristol next spring. The works are also procecding steallly wentrard. axi tur doubt exists of the intention of the Boarl to carry the line on to its frad destiunite without making a tomporary halt at Tausion.

Bollon and Preston Railualy.-The Norkmen are proceeding rapidly with the works on this line of railway. The rails are now laid down as lis as the footpath lending up to Dhen Chureh. Purcher up the valbey, Isuly Bridge has been taken down, a temporary wooden bridge has been erected in its atead at a ahort distance, aod the workmen are now engaged at a magnificent stone bridps on the site of the former ode. The line from Bolton to l'reston will be one of the most picturosque in the north of England.-Preston Observer.
The Mumethester and Leets Railray.-The directors of the Manchester and Leeds Rail way, scompmanied by their ongineer, Mr. Gooch, inspected the works of the line letxeen Manchetter and Todmonlen, on Yriday, the 17 th ult., proceeding by the Standey engine, made by Robert Stephenson and Co., from Rochdale to the sammit tunnel; this part of the line being airealy complote, although the time contracted for has not yet expired.
Nerreastl and Carlinle Railicay.-The works of the Newcastle and Carlisle Railway, on the north side of theiriver Tyne, are rapidly progressing towards completion. - Nrmearle Jotrmal.

Enctivxrixat wosusga

Riser Coquet.-We are glad to find that some enterprising parties have obtained an det of Partinmeut, and are aboat to carry into effect considerable improvementa at the rooath of the Fiver Coquot, abont twenty miles northward of the River Tpne, for the parpose of ahipping coals and corn to the Iondon markats, and importing the rarious oller necessary commodities for which the extensive surrounding districts chand mach in meed. The works are deisgred by Sir John Rennie, and we hear that they are calculated to render the port as effective at the Tyue or the Wear. Thwe works necesatrily prove of considerable public benefit, combined as they are with the Coynet Ishand, which is situated about a mile from the shore and immeGiately fin front of tho River Coquet, forming sa it were a natural breakwater, with a xpeciocas well-protected Asylum Harbour within, capeble of receiving the largest class of versals at low whter. This valuable roedstead has, until lataly, beeu almost unhnown, or at least but little moule use of, but the Trinity Board, with that laudable merg which characterises their efforts, have taken the mattor up and are going to conslrapt a light house upon the Island, and the entrances to Uie roadstead will he properly beoyed ont, no that it will be easy of access night and day. We hope by these roprovements that the nunerous wrecks, atteuded with melaneholy loss of life, whicl bave so frequenuly takm plece heretofore on this langerous coast will be hencefarvard aroiden.
Humarabay Breakwater.-On Saturday, the 18th ultimo, Lord Eliot, M.P., Sir H. Virian, M.P., Sir C. Lemon, M.P., Mr. Pondarves, M.P., Major Vivian, M.P., and Mr. C.J.W. Ellis, had an interview with Lord Melbourne and the Chancellor \& the Bacheguer, on the presentation of a memorial to the Government for the contruction of a brealw ater and harbour of refuge in Mount's-bay.

5

New District Church al Sibford, near Banbury.-On Monday, the 6th ultimo, the ceremony of laging the first stone of a new church about to be crected at Sibford cout place.

Wext Bromurich.-The Earl of Dartmouth lans most liberally offered a piece of land sear Hill Top, in the parish of West Bromwich, for the site of a new church, and also the sum of 1,2001 . towards the erection of the edifice, and 3001 . to be ithrestad as efund for keeping it in repair. His lordahip's offer has been accepted, atwi a subecription thas been entered into to carry this desirable object, into effect.Wioleerhampton Chronicle.

Niew Cinitarian Chapel and Sunday Schools.-On the 1st ultimo the ceremony of layiug the first stone of a new Unitarian chapel and Sunday schools, about to be erected on Newhall Hill, took place. Estimated cost of die building, 3,0001. Mr. D. B. Hin, architect : Mr. R. Turner, builder.

Lord Dynevor is erecting at his mole cost a chapel of ease to the parish of Landilo Fawr. The ceremony of laying the first stune of the edifice was, within the last few dayn, performed by his lordship's eldeat daughter, the Hon. Fanny Rice-Heriford Jumpral.

The Salisbury Diocesan Church Building Association have appointed T. H. Wrats, Eeq., their architect

Staffordehire, On Sunday, March 24, the collegiate church of Wolverhampton *as opened for divine service. The intarior of this church has been repaired with cat framings, new oak screens, new galleries, new carved gallery fronts in oak, and the whole of the interior has been reatored to correspoud in character with the style of this beautiful old fabric, together with a new and splendid west entrance win. cow. The cont has been nearly 8,0001 , chiefly by volintary subscriptions, a grant of 360 L . by the Lichfield Diocesan Society, and 2501 . by grant from the Incorporated Society. A moat liberal collection of 3351 . 10 s . Was made at the opening, after the *ertanos presthed on the occession by the Vencrable Archdeacon Bather (Archdewcon of Selop). The reatoration has been donc ander the direction of Kobert Ebbels, Meq., Archithet, of Trysull, Wolverhampton, and under his direction the exterior is
w aboal to be ropaired and restored.
Stafordahire.-On the 14th ult. the new church at Tipton, near Dudley, was apened by liconse. (Tho consecration does not take place until August) This crareh is Gohic bailding, with a tower, crocketed pinnacles, \&c., and is built ontirely of brick, with tnoulded brick copingn, cornices, reveals, scc. The interior has 6 very fine afiect with the handsome moulled bracketed boams, on corbels, with picroed quartre-foil spandrila, and moulded binders, to forn compartments in ceiling. The latagth from the weat door to altar tablea, 106 feet 8 inchem; width in clear of body, 48 feat θ ivchee ; heipht to ceiling, 29 feet 6 inches: it contains $64 y$ sittings in prown, and 774 free reats, including childrenix;-total, 1,322 sittings; cost, about $\$.700 \mathrm{~L}$, including vaules umberneech. Her Majeaty s comminsioners granted 2,0006., the Ineorporated Society, 3601, and the Lichfield Diocesen Societr, 7501; the remainder was radred by subbeription. The church has been erected for her Majouty's Robait Bubalo, Peq, arobiteot.

Warneichatre- - now churel is going to be erected in the parish of the Holy Trinity, Coventry. Rubert Ebbels, Lisq., is appointed the architect.

Berhshire.-A new charch is gring to be erected in the parish of Ohd Windmor, Sunuing-till. Robert Ebbels, Esq. is appointed the architect.
Sir Charles Wolsely, Bart, is reported to be about to erect a Roman Catholic church at Colwich, near Rugeley.-Worcenter Journal.
Clydesiale Bank,-On Wednesday, 16th ultimo, the ceremony of laying the foundation stone of tho handsomo edifice, now erecting in Queen-street, 'Glasgow, took place. linder the stone was deposited a plath, on which were engraved the names of the directors, nanager, architect, and buiklers; and also a bottlo hermetically sealed, containing a copy of all the Glangow newspapers, coins of the prement reign, doed of co-partnery, one of each description of the notes issued lig. the Cly des. dale Bank, almacacs, \&e., \&c.-ENinburgh Chronicle.

FOREIGN INTRLLIGENCE.

The Font which is to serve for the christening of the Count de Paris has already been taken to the Cathelral church of Notre Dame; it is carved out of a solid block of stone, and is a very beautiful apecimen of the damboyant Gotlic, richly orma mented with a great number of litule figures, and the nost exquisite foliage in the monldings.-77e Nourelliste.
The Monument of Schiller, al Stuligard. -The inauguration took place on the 0 th ullimo, with great pomp. In the moming a procession of 5,000 persons entered the aquaro. The great officers of State, the members of the two Chamlers, Une Foreign Ministers, and olher high personages, were stationed in a gallery erected for the purpose, with Charles and Finest Selhiller, the sons of the poeh and M. de Gleichen, bis son-in-low, in front. A deputation from the sthool in which Scbiller received his edteation attended, and wiUt it somo of his ald schoolfellows, and even one of his tutors, Colonel Rosch, now 06 years of age. The statue was nuroverel amillst the enthusiastic aeclamations of ull tho spectators. The house in which Schilher lived when surgeon of a regiment was decorated with an appropriate inscription, and all the principal buildings of the town were alorised with flags.
The Tumb of the Enperora of Austria, and other nembers of the house of Hapsburgh, in the convent of the Capuchin Friars, at Vienna, is about to bo enlarged to such on extent, that it will receive their tlescendauts for 200 years to come.

French Harbours.-It appears from a statement drann ap by the Almninistration of Bridges and Iloails, that there are in Pranco no less than 400 harbours and landing places. According to the saroe locmment, a sum of $105,000,000$ francs would te required for the iniprovernent of the most important harbours alone, of which sum the Ministry has demanded of the Chamber an adrance of $41,000,000$ francs, to be divided among 18 of them, as follows:-Calais, 2,700,000f.; Boulogne-sur-Mer, 1,200,000f.; Dieppe, 2,500,000f. ; Havre, $6,000,000 f$; R Rouen. 1,500,000f.: Bremt, $300,000 f$; Redon, 4,000, No0f. ; Croisie, $1,400,000$.; Nantes, $1,000,000 t$; La Kochelle, $\mathbf{3 , 0 0 0 , 0 0 0 f \text { ; }}$ Rochefort, $000,000 f$; Chatean, in the Imland of Oleron, $\$ 00,000$ or, Yerdon, 2,800,000f; Cette, $7,1000,000 f$; Marsejlles, 8,000,000f: St. Nazaire, $600,000 f$; Ajaccio, in Corsica, 000,000f. ; Me.Itousse, in Corsica, $800,000 f$.
Mr. R. Stephenson, the able engineer of the Ionion aud Birmingham Railway, who len Lendon for Italy a few weeks ago, to superintend the preliminary araugements for the construction of the Florence and Leghorn railway, arrived in Florence on tho 22nd of April.-Raiheay Times.
We underatond from a corresponlent at Munich that the greater part of the railway between that town and Augblurg, thirteen leagues in length, will be finished in July, aud the remainder before the end of autumn. The diligences, waggons, and locomotire engines are already at Munich. The last hare all been male in Englaud, costing one with another, about 72,000f. n piece.-Railuray Times.
Brunstick, April 8. - The railway from Branswick to Wolfenbuttel is far more frequented than was expected. There are days on which the uumber of passengers is above 1,000. The undertuking has, therefore, fully succeeted, and duen great honour to the projector.

GEOLOGY.

Singular Foasil Production.-There is now in the possession of Mr. B. Froggatt, miner, of Mallock Bath, a fussil specimen of a most extraordinary form. The geueral conturr of the stone, or rather stones (for there appear to te two) although inse parably united, is that of a battle axe or Indian tomahamk. The greatent peculiarity of the foanil is, that the part resembling the head of tho weapon, comprised apparently of a dark-colonred limestone, absolutely passes through a carity in the ghaft part (which is a lighteoloured magnesian limestone), and is mach larger on anch side the orifice than tho mperture itzelf. It would sean, from this circumatance, thet the licad was originally the root of some plant, and that during its growth it had accidentally inserted itself in the orifice of the stone, and afterrards bocance petrified. It was found near the old Ecton mine, about two foot from the surface.-Staffordshirc Advertiser.
Elephant.-Tho Jowmal de la Hautr Laire states, that some labourern at Epsley, near luy, who were extracting some blocks of hasalt from a field, met with an entire skeleton of a fossil elephant; which, howevar, they, broke to pieces in their careleas ness; and it is aupposed that it dates a period posterior to the last rolcanic formation France.
Pakontology. - The indefatigable M. Lartet of whote labours we have so often spoken, announces the discovory of two fossil Carnivora, ont of which appears to constitute a sub.genus, intermediate between the balger and the otter, aud the second approuching to the dog, differing but litto from that gigantic fossil which he han deacribed nider the name of Amphicyon. He in of opinion that the latter is the same animal as that of which sume remains were found at Epelahein, and which constituten the gencs Agnotherium of M. Karp. "There are," says M. Lartet, "a cousiderable number of fossil mammiferm fuund on the borders of the Rhine, which appear to me to be identical mith those which are daily brought to light at the foot of the Pyrennees. These affinities are the mare interesling, because the intermediate countries, Auvergne, for instance, possassed vary different tracea of animaleAlheraeum.
Incresting Discowry, An interesling discovery was lately made of namerouif ion il
remains of one of the larger pachacermatous (or thick-skinned) animals, most probsbly of an axtinct species of elephants. They were accidentally turned up by some Iabourers at work in a gravel pit, not far from the Grand Junotion Railway station at Coppenhall. As fir as our information extends they are apparently remains of one animal, and amangst the mont remarkable is a fine molar tooth, weighing more than soven pounds.-Cheater Courant.

ANTIQUITIES.

Dicorery of Roman Remaina al York. -The railroads are about the beat friends which antiquarians hare in this world. Since the commencement of the York and North Midland Railway, many valuable discospries have been made, and muny noble relics added to the museum of the Yorkshire Philosophical Society. Lately, the workmen of the railway discovered in the garden lataly in the possession of Mr. Blackhouse, some relics, and among them a Roman altar, of which the following is the inecription: Deee Fortroae Soulia Ivncina Q. Antonu Ianricit Ieg. Aro. To the Goddens Fortuve, Sosia Iuncina (laughter) of Guintus Antonius Isaurias of the Auguatan Legion.-Momouthshire Merlin.

Dicorery of an Aacient Chapel at Chester.- Some years ago Messra. Powell and Edwands, cutlers of thls city, discovered at the back of thelr promises some traces of Gothle archltecture, and to a certain extent they removed the rubling which had bltherto concealed the archwork. However, concelving it was merely a cellar which had in conrse of time got filled with rubblah, they did not proceed in elearing it untlin few weeks back. To their credit they have carried upwards of 100 loads of rubbiah out of the place, and now ls exposed to vlew to the lorers of antiquity a chapel apwarde of 15 yarde long, 153 broad, and 14 feet in belghe. The arches are gothic, beautifully grolned, reaing on pilasters, about half way down the wall, very mach resembling those at the entrance Into the clolsters of our cathedral neur Littic Abbey-square; the whole is in an admirable ckate of preservation. At the weat end are two niches, in which the baptismal or sprinkling founts (for holy water) have been kept, one of which was fonnd in the pubbich, and is now placed in the altuation it originally occupied; the other was hroken by the workmen. At the east end of the chapel are oteps which have led up to the altar; and on the south side of the chapel are a ilight of steps leading into a subterraneous paakge, now choked ay It is plain that this was apelently a plece of worahlp for the monks bolonging to the monantery of Gray Priara, which was sitnated near where the St. Bride's new church, oppoalte the Castle, now standa. Many conjectures have arlsen as to the date of the foundation of thls place of worship, but all is mare conjecture, as nothlng has been discovered which could lead to fixing the point of time. Antiquaries will enjoy a rich treat in anrveying thla rwlic of the ancient devotlonal acenes of our forefathers; and we have no doubt vast nambers will avall themselves of the kindneas and civility of Messts. Powell and Edwanda, and vlsit it. - Cheater Garelte
Quees Elizabeth's Slatur,-On Friday morning. 10 th alt, the recently discovered statue of Queen Elizabeth wat erecter in St. Dunstan's Church avenne. The pedestal in fixel over a Gothic porlico on the eastern side of the church, which has been erected for the purpose. Tnderneath in a block of black alone, on which is engresed the following inscription:-" This statue of Queen Elizabeun formerly stood on the rreat side of Ludgate, and wat presented by the city to Sir Francis Goxling, knight, aldennan of the ward, who causel it to be placed here."

NEW PATENTS.

LIST OF ENGLIBH PATENTS GRANTED BETWEEN THE 25TH APRIL AND THE 25TH MAY, 1839.

John Boyd, of Collego-streot, South, and Huah Fancis Renvie, of Glempall street, both In the town of Belhast, and county of Antrim, Flax-spinners, for "Certain Improvements upon the Spinning Frame uned for spinning Flax, Hemp, and Tow upon the wet principle."-April 30 ; 6 months to enrol the specification Uvereof.
Julian Skrink, of Cambridge, Esquire, for "Improvementa in Mannfacturing Forks and Spoons, Coins and Medals."-April 30; 6 months.
James Svitr, of Deanston Worka, in the pariah of Kilmardock, county of Perth, Cotion-spinner, for "Certain Improvements in the Machinery for Spinning and Twisting of Wool and other similar Flbrous Stibatanoes."-April 80 ; 0 montha.

John Rostron, of Fdenfield, in the county of Lancaster, Manafacturer, for "Certain Improvemeuta in the Construction of Looms for Weaving."-April 30; 6 monthn.
Jospph Hunt, of Daleton-terrace, Middlenex, Gentleman, for "Improvernents in the Manufacture of Bode and other valuable products from Cormonon Salt."—May 7 ; 6 months.

Darid Narloz, of Copley-mill, Hallex, in the county of York, Manafecturer, and John Crighton, Junlor, of Manchentor, Machino-maker, Cop "Cortain Improvementa in Machinery for weaving Single, Donble, and Triple Cloths by Hand or Power."-May 7; 6 montle.

Groror Exolamd, of Gloucestor-terruce, Vanxhall-bridge-roed, Engibeer, for "An Improved Scress Jack for Raining or Moving Heary Bodies, Loth vertically and late-rally."-May 7 ; A months.

Williay Davis, of Ieeds, Machine-maker, and Georoe Kinder, of Aldmanabury, Cloth-dromer, both in the county of York, for "Certain Inprorementa in Machinery for Dreasing and Cleansing Woollen Clotha."-May 7; 6 unonths.
Junepm Maydslay and Josinda Firid, of Lambeth, Fingineens, for "Improvements in the coustniction of Marine Sleam-enginen which are particnlarly applicable to Steam-agines of the largest clans." -7 th May ; 6 months.

Jamea Whitriaw, of Glaggow. Engineet, for "An Improved Rotary Machine to be worked by the presaura and reaction of a column of water, which Machine may be used as a Steam-engine; also an Improved Water Meter, and a Machine for Raising Water or other hiquid by its centrifigal force."一7th May: 6 months.

Edward Oliter Manay, of Swansea. Glamorgan, Civil Engineer, for "A Now

Method of Manufacturing Gas for the general purposes of Illumination."-8h May ; 6 montha.

Grgmais le Normand de LOaier, of the Tavistockhotel, Coventgenden, Merchant, for "Improvements in Machinery for Raising Waber."-8eh Mey : © months.

Richard Pronsea, of Blrminglam, Clvil Engineer, for "Certain Improvempents in Machinery for maloing Nails and Screws."-8ch May; 2 months
William Harpeg, of Cooper'mcourt, Cornhill, Patent Stove Manufacturer, and Thomar Walxer, of Birmingham, Mechinist, for "Improvementa in 8toven and Grates."-l0th Mny; 0 montha

George Stocker, of Birmingham, Bras-founder, for "Certain Improvements in Cocks or Apparatas for drawing off Liquilds."-13th May ; 6 monthn.
Moses Poole, of Lincoln's-inn, Gentleman, for "Improvements in redocing the friction of Axletrees and Axletree Boxen, and other such moring perts of machiuery."18th May: 6 months.

Jonn Heney Roderes, of Birningham, Merchant, for "Imprureureots in Clasps or Fastenings. priucipally applicable to certain articles of Drese." ISch May 8 months.
John Wifliakbon Whittaxer, of Bolton, Lancaster, Joiber, and Rowloxp Hall Heaton, of the same placo, Cotton-apinner, for "Certain Improvements in the means of connecling or uniting Strapa or Bands for driving Machinery, and other aimilar purposes, and in the $\mathbf{A}_{\text {pparatus }}$ for effocting the same."-20th Mey; 6 months.

John Grozor Bodmer, of Mauchenter, Enginear, for "Certain Improvements in Machinory, Toole, or Apparatus, for cutting, planing, turning, and rolling Mmels and other Sabstances." ${ }^{\text {n }} 20 \mathrm{Lh}$ May; 6 month.
John Walkzr, of Allen atreet, Sartey, Oven-builder, for "Cermin Improveramen in Cole Ovens."-22nd May ; 6 months.

Williay Jepperics, of Holmentreer, Milo-end, Metal Refiner, for " Certain In. provements its the proces of smelting or extracting Motal from Copper and other Ores."-22nd May; 6 months.

Thomas Hazper, of the Grange, noer Newnham, Gloncester, Merchane, for ' Certain Improvements in Railwayis or Tram Roads."-22nd May; 6 monthe.
Japes Vardy, of Wolverhamplon, Stafford, Gentleman, for "Improvenemte in rolling Iron."-22nd May; 6 months.
Nicholas Thougrton, of Leicenter-atreet, Regent-atreet, Geatheman, for "Inprovements in obtaining Copper from Orem"-22nd May; 0 months
Nicholas Trovorton, of Swanme, Glamorgan, for "Improvemeate in the Mapufactare of Zinc."-29nd May ; 6 months.
Lifutenant William Oldmixon, of Her Majeaty': Nary, for "Means of Saving Human Life in cases of diasters at sea, by certain arrangementa of Vemets, Decks or parts thereof, which he terms Safety Decke or Deck."-22nd May ; 6 monthe.
Henay Grippitha, of Acton-place, Camden-town, Artist, for "Improvemente is the Process of Producing Prints or Impremiona from Steel, Copper and othet Plates." $\mathbf{- 2 5 t h}$ Muy ; 6 months.
Martial Algustin Josppii de Hgarypon, of Leicenterntreet, St. Mertif in the Fields, Mining Eugineer, for an "Improved Machlne or Apparatus, for warting and bleaching Wool, Cotton, Silk, Linen, and other Fibrous Materials, either in : manufactured or unmanufactured state."-25th May; 6 montha.
Thomas Clare and Charles Clage of Wolverhampton, Ifonfoandere and Copartnert, for an "Invention for glezing and enamolling Cant Iron Hollow Warr, and other Metallic Substances."-2sth May ; 6 months.

Brinjamin Hick, of Bolton, in the county of Lancaster, Engineer, for "Certain Improvementa in Machinery or Apparating for driying Cotion, Woollen and other fsbrics, and othor Fibrous Subatances or Materials.'-25th May; 6 months

ERRATA.

In the Table of Public Balldings, page 187, the linet to the fourth cotatat of "Remarks," do not range fproperly-the llat oppontte "Adelph;" and ove four llnes below should each be a line lower.
Page 192 in the last lina of the Procedings of the "Ingtitation of the Cinl Englaeets," for 800 read $\mathbf{5 0 0 0}$

TO COERESPOMDENTIE.

The communication of M., an Railwhy Curven, will be insertel naxt month, \mathbf{Y} is be found upon examination essentially diferent frem what we heve alredy pallinhed.
B'n Paroily is not ailmimable.
We bave been obliged to poatpone our reviews antil next month in consequame of a prean of matter and arrears which we were desirons of olearing off.
The continuation of Mr. Curtis's Railway Improvementa will appear in our mat Jourual.

We shall foel obliged to our country correnpondenta if they will forward ma my account of worka in progress, or any newapaper cantaining articles connected witb the objects of our Journal.

Communications are requeated to be addressed "To the Editon of thet Citil Exgineqr and Architret's Journal." 57, King-streat, Wentminater; or to Mr
 former place.
** The first ralume may be had bound in cloth and lettared in gald, prine, 17 s

CURTIS'S PATENT RAILWAY IMPROVEMENTS.

ANIMAL LOCOMOTIVE, OR MACHINE FOR MULTIPLYING THE VELOCITY OF BEASTS OF BURDEN.
Fig. 1.-Pront view of the Machine.

PYg. 2.-Side view of the Machine.

Fig. 5.-Side view of the Third Modification.

Hg. 6.

Fig. 12

Fr. 8.

F. 9.

Fis. 11.

Fig. 7.

Fif. 10.

Fis. 13.
Fis. 14

Fig. 3.-Side view of the Second Modification.

Fig. 4.-Pian of the above.

CURTIS'S PATENT RAILWAY IMPROVEMENTS. (Continued from page 123.)

AXOUAL LOCOMOTIFE; OR, MACHINE FOR MULTIPLYING THE VELOCITY OF beASTS OF BUADEN.
The machinery or apparatus is described by the inventor upder three modifications, as shown in the annexed engravings. Figure 1 is 2 front view, and Figure 2 is a side view of a machine, in which an animal produces a motion in the machine by his weight, and the muscular force of his fore legs alone; this is effected thus: upon the shaft of the driving wheels B , cranks D , are formed in the same manner as for a locomotive, excepting that the cranks are opposite, and not at right angles to each other, as in a locomotive; to the cranks are attrabod the connecting links, GG, and to these are likewise comected the treadles EE; the horse, or other animal, H , then altermately depreses the treadles EE by his fore legs, and thus the wheels BB are turned round in the same way as in a steam-engine, or in a grinder's banow ; the effective force of the animal is increased by using the strap or band 1 , which passes over his back, thus enabling him to exert the mascular force of his fore legs, as in the act of lifting, or getting up; the powerful and broad belly-band, \mathbf{K}, is secured to the framing, and is placed to catch the animal, in the case of his falling on the treadles, and breaking them; the partition-board L is placed between the leges, to prevent the animal by any chance placing his foot upon the wrong treadle; A is the framing of the machine, C the passive wheels, F the joints upon which the treadles move, and are fixed to the erous-framing of the machine as shown; the same letters apply to both figures, and the description, so far as the parts are shown in each, applies likewise.
Another modification of this machine is shown in figures 3 and 4, in which the animal exerts the force due to his muscular power alone,
as in the act of drawing a load. Figure 3 is a side view, and figure 4 a plan of the machine; cranks DD, are formed upon the shaft of the driving-wheels BB , as in the last described machine, and connecting rods $G^{\prime} G^{\prime}$, are connected with the cranks as before; but the rods are now placed in a horizontal position, and are comected with the vertical links $G^{\prime} G^{\prime}$; to the lower ends of the vertical links $G^{\prime} G^{\prime}$, are attached the front ends of the treadle bars EE, and the after ends of the bars EE are attached to the vertical links MM ; thus the treadies are suspended by the vertical links G^{\prime} and \mathbf{M} : upon the bars EE boards are fixed, upon which the animal stands, and exerts his force, as in the act of walking and drawing. Another method to support the ends of the treadles will be to use friction-wheels instead of the hanging links MM, but I prefer the method drawn; a board may be placed to separate the legs of the amimal, as shown in L_{5} in figure Z_{4} the animal is yoked in a collar, and the drag-chains I, are fastened to the framing, so that the horse, as drawn, is in the same position as if placed in a cart; a platform P is placed forward for the animal to rest his fore legs upon, and a shutter or partition upon hinges $L_{\text {, }}$ so that the animal in the act of working shall always step upon the treadles; this partition shuts down when the animal is placed in the machire, or withdrawn from it ; the treadle bass EE pass under the platiorm $P_{\text {P }}$ as shown by the dotted lines, and pass to the hanging links G'G', as shown; the dark footmarks HBHE , in figure 4 denote the position of the feet of the animal upon the treadles, and platioms A is the framing; CC the passive wheels, and the raila throughout the plate are denoted by the dotted shading.

The next improved apparatus is shown in fegure 5 ; in this instance the horse is represented as in the act of drawing upon the common road, and is yoked, as in a cart, between the shafts or springs B; the shafts or springs B are raised or depressed by means of the screw F, and handle E; a cross piece G comects the two shafts or springs too
gether, and a nut is fixed into the cross piece, in which the screw F works; the toe of the screw works in the fixed cross piece K; and thus, by turning the screw, the rise or fall in the springs B is produced. A powerful girth passes round the animal as far forward as possible, and is fastened to the shafts, as shown, so that when the animal has started the machine by his weight and force, as in starting a load in a cart, the aprings or shafts are gradually screwed up, as the velocity of the animal increases, $s 0$ as to carry i certain proportion of the horse's or animal's weight, which becomes then transferred to the machine, and the horse will take longer steps, and longer springs or leaps, as in galloping, in the same way as a man upon a velocipede. Any other suitable method may be adopted to fix or sling the animal than that drawn either by a spring like a coach-spring, fixed to suitable framing, placed over the horse's back with any screw or lever-method to produce the object of relieving the horse of his weight as his velocity increases, which is the particular object of this combination. The machine may be made as drawn, or the horse or other animal may be placed in front of the carriage, which is the better method.

Figure 6 and 7 is a substitution for the crank-motion shown and described in figures $1,2,3$, and 4 , in which figures it is necessary that the animal should time the movement of his feet conformably with the position of the cranks, but substituting the ratchet-motion shown-it will be immaterial whether a long or short step is taken or both feet applied at once, the requisite movement of the driving wheels will be produced; the action is as follows: B is the shaft of the driving wheels, C a ratchet wheel fixed upon it, D the crank or sheave of the ratchet working loose upon the shaft, E the paul taking into the ratchets united by a pin in the usual way to the sheave or crank D, F is the tail of the sheave upon which the counterbalance A is fixed; the distance of the weight from the centre of the shaft B, is regulated by the weight of the comecting rod G, and the treadles connected with the fore end of the sheave, and this is kept in its place by the set screws; the weight of the counterbalance and its leverage must be such as to bring back the treadle the moment the animal has lifted his foot, when the sheave goes back and the paul falls into another ratchet, the animal again applies his feet and force to the treadle, and a new impulse is given to the wheels. Figure 6 is a section, and figure 7 a plan of this contrivance, figures 8,9 , and 10 , are three views of a compound variation of the above-described method to produce a rotary motion from a reciprocating one, by which a forward or backward motion may be produced by merely changing the pauls from the forward or backward ratchets ; the general construction of the ratchets and sheaves is the same as in the last-described figures, but here two ratchets and sheaves, one right hand and the other left hand, are placed side by side upon the shaft, and the connecting links GG upon opposite sides of the shaft B are connected with the same treadle, so that by throwing into gear with the ratchets either the left hand or right hand pauls, a forward or backward movement is produced upon the machine, the pauls are connected by the lever $l l$, and the jointed rods $m m$, so that by a simple movement of the lever k the one ratchet is withdrawn and the other thrown into gear, or when the lever k is vertical both pauls are disengaged.

The apparatus, as shown in the drawing, is adapted for the particular machine shown in figures 1 and 2 , where the action of the animal is a vertical action, to apply it for the modification shown in figures 8 and 4; when the action of the animal is horizontal, either the crank or sheave D must be made at right angles to the tail F, so as to allow the compterbalance weight A to act by its gravity, and the horizontal treadles must be connected at once with the crank or sheave D, or the crank or sheave D must be still vertical as above described, and the comecting rode G comected with the vertical links $G^{\prime} G^{\prime}$, as shown in figures 8 and 4 , the counteraction of the treadles may be produced by a spring or other suitable method; licewise a change from a forward to a backward motion, and vice versa, may be effected by making both ratchets and sheaves or cranks loose upon the shaft, and placing on each side clutches sliding upon the shaft in the usual way, and throwing the one or the other clutch into gear with the right or left hand ratchet and sheave or crank, as it may be desirable; the same letters refer to the same parts of the various figures, as each is respectively shows in the drawing. Figure 8 is a side view and section; figure 9 an end view; and figare 10 a plan of the same. Figures 11 and 12 is a modification by which an incressed or diminished leverage may be produced apon the crank or wheels when the machine is either at rest or in motion, so that a longer lever may be applied when moot force is required; vir. at starting the machine, and a reduced leverage and more rapid movement of the wheels when the carriage is in motion. The general form of the ratchets and counterbalance is the same as that before described; bat the crank end is made longer, so that the end of the comecting link G, which is fixed to the crank D in the former cases by a pin-joint, slides along the
crank, and approaches to or recedes from the centre of the shaft by means of the screw $I_{\text {, }}$ and sliding rut K , so that by turning the handje H , the nut K is brought by means of the screw I to the extreme end of the lever D, and the link G then occupies the position shown by the dotted line; then as the velocity increases, the nut is advanced by the same means towards the centre, the leverage is diminished, and consequently the velocity of the wheels is increased by the same movement of the animal's feet. Figure 12 is an end view of the lever $D_{\text {, }}$ link G, nut K, and screw I. Figure 13 is a modification of the same invention, the only variation being in the form of the lever D, and the sliding nut or apparatus K; here the lever is a solid lever, and the nut K a hollow socket, sliding along the lever; this is moved forwands or backwards by the handle H; the spring I is formed at its lower end into a bell-crank, and fixed to the stem of the handle by a pin-joint, which, when the spring is compressed and brought close to the handle, as it will be when a man grasps the handle and spring in his hand, lifte the latch in the lower end, which latch fits into the notches $n_{p} n_{p} n_{\text {, }}$ and the socket and comnecting-link may then be advanced or drawn beek along the lever; when the spring and handle is let go, the latch fall into the notch when the nut or socket K is held securely upon the lever, the variation is thus evidently produced as in the last figure, and the link G made to occupy any position with respect to the lerer as may be desired. Figure 14 is an end view of the sanue figurelever D -handle H -spring I-latch M .

PAPER READ BY W. TITE, ESQ., PRESIDENT OF TBE ARCHITECTURAL SOCIETY, AT THE LAST SOIREE OF THE SEASON 1889.

The Report just read will have communicated to you the general results of our labours during the present session; in the interval since November, when I had the honour of accepting the chair of this society, as president, I hope that the suggestions I ventured to make on that occasion have been followed out, and that something has been done in extending its usefulness, and in promoting and adrancing the studies of our younger members.* We do not propose to ourselves the mat. ing a display among the literary societies of Europe, nor the assuming a rank which neither our numbers nor our influence would justify us in seeking; but we would deaire to advance our art by extending information amongst its individual members, and by liberally inclading within our naturally limited circle all who have a claim upoa os by honourable character and scientific pursuits. Usefulness wan alwayn the aim and object of this society. Usefulness will, I hope, be its motto as long as I have the honour of presiding over it. With this impremsions on the present occasion, I am rather disposed to consider generally two or three topics of interest to architects, which have arisen during the past year, than to confine my remarks to one subject, or to give to any thing that I may bave to communicate the formal character of an essay.

The first subject I shall refer to, and the one of the greatest importance to architects at the present period, is that of the public competitions which have been lately proposed for several large buildinge, such as St. George's Hall at Liverpool, and the Royal Exchange of London. Opportunities such as these are of the greatest value, even mationally; for placed as England is in the scale of mations, the eyes of the world are upon us, and if we do not avail ourselves of these opportunities to remove the reproaches which have been cast (and ofem but too truly) upon our national taste, we shall be accused of having retrograded, when our manufacturers, our commerce, and all the other arts of life have advanced, and of being behind our continental neighbours in the science and in the practice of architecture.

Open competitions, such as have been proposed for the Bousea of Parliament and the Nelson Monument, and those now proposed for the Royal Exchange and the Hall at Liverpool, offer splendid opportunities, which iffairly offered to the profession, would, I doubt not, be generally and eagerly embraced. The course taken with the frat was on the whole satisfactory: the appointment of the commisoioners was a judicious measure, and the world seems generally agreed that the result, (the choice of Mr. Barry's design, and his appointment architect, have been fair as regards the competitors, and successfal in a national point of view. In the Nelson memorial the course has been manly and straightforward; and I think public opinion seems to support the committee in their determination that, though the deaigro chosen to receive the premium had considerable merit, yet it was wise and judicious to give another opportunity to architects and artists, becaute neither of them seemed to realize the wishes and expectations of the public upon the subject.

- At the lastelection of students at the Royal Acalemy, all the studros members of the soctety (five in pumber) who were candidates, wetr rlectad.

The Royal Exchange, however, is an object which in a national point of view may never occur again ; its purpose brings us in distinct competition with the other nations of Europe, but particularly with France; the situation is as striking as could well be chosen in London, the means are ample, and, with a fair opportunity, I cannot but believe that most of the architectural talent of England would have been enlisted in the competition. I am sorry, however, to say that in this matter the expectation of the public, with respect to public competition, will probably be disappointed. So far as I am able to judge, this feeling prevails throughout the profession generally, and from communications we have received from the Institute, they appear to have not only felt but acted as we have done. The course we have thought it right to take has been shortly this; a special committee was summoned on the 15th of April to consider the subject, at which the following resolutions were agreed to:-

At a special meeting of the Architectural Society beld on Monday evening the 15th April, 1839, for the porpose of considering the resolutions of the Greaham Committee, issued as instructions to architects furnishing designs for the new Rogal Exchange; it was

Renolved, -That this society beg respectfully to represent to the Gresham Committee the difficulty under which it appears to them that architects must labour in preparing designs for the new Royal Exchange, from the indistiuctness of the instructions contained in resolution No. 13.

That the arrangement of a well considered plan is of the greatest importance to the ralue of a design; and that it is not possible to neet the obrious necessities of the case, unless the objects proposed in the general cintribotion of the apartments be specified, together with the individual appication of each of those spartments.

That it is a matter of notoriety that, under the roof of the Old Exchange, secommodation was provided for the Lord Mayor's Court office, the Merchant Seaman's Asylom, Lloyd's Coffee Houne, and the Royal Exchange Fire Ofice; it is presumed, however, that one or other of these catablishments monat now be omitted, because three only are spoken of.

That it appears to this society that there could be no objection to the explanation now sought, similar information having been universally given in competitions for other luildings, without which, indeed, they cannot conceice that a detign of any value could be submitted.
That the block plan required in resolution No. 4, would be inconieniently large at the scale determined upon.
That a question has arisen as to the exact meaning of resolution No. 5 , in which the words "coloured drawings" occur, in conjunction with the "two perspective drawings" required to be made, this society haring been led to understand that all drawings, whether riews or otherwise, are to be tinted in Indien ink only.
And lasthy, That it appears exceedingly desirable for the uniformity of the arrangement of the fachdes, that the levels of the ground ahould be fornished. (Signed) Williak Tits, Prevident.
35, Limcoln't-inn Fields, 15th April, 1839.
These were sent by the secretary to the clerk of the Greslam Committee; on the 27 th April, following, this answer was received.

Mercere Hall, 25tA April, 1839.
Sum-I am directed by the Joint Greshan Committee to acknowledge the receipt of your letter of the 18 th instant, enclosing copy of the resolutions peseed at a meeting of the Architectural Society of the 15th, in reference to the printed instructions to architects who may wish to tend in dexigns for the new Royal Bxchange, and to state in reply, for the information of the Architectural Society, that the committee having sent out their instructions to architects, cannot now, without great inconvenience to all parties, alter what they bare done, except to say that the rooms required are for three distinct companies. I have the honour to be, Sir, your most obedient humble servent,

James Barnes,
Clerk of the Grestam Committer.

Willum Grilitex, Req.,

Hom. Seeretary, \&e. \&e. \&e.

The Institute of Architects, it appears, by a letter obligingly commumicated by that body, also addressed the committee on the same subject ; the answer to them was as follows:-

Mercer's Hall, 25th April, 1839.

Snn-I I am directed by the Joint Greaham Committee to acknowledge the reesipt of your letter of the 17 th instant, respecting the printed instructions to architects who may wish to send designs for the new Royal Exchange, and to state in reply, for the information of the Royad Institute of British Archirects, that the committee regret they cannot accede to their request for an extension of the time already determined upon.

That with respect to the queations whether the committee require a tower with a chime of bells? and whether there will be any objection to the principal entrance floor being rised upon a fight of stepa ? the committee leave those subjects entirely to the taste and judgment of the architects. And that she three series of rooms as described in the printed particulars are intended for three distinct companies.

The committee are perfectly ratisfed that the anonymous adrertisement
mentioned in your letter, had not the sanction of the Royal Institute of British Architects. I have the honour to be, Sir, your most obedient humble servant,
(Sigued) James Barner, Clerk of the Gresham Committee.
Thos. L. Donaldeon, Esq., Hon. See., I. B. A.
Now surely any thing more unsatisfactory than these answers, particularly the former, can scarcely be conceived; how easy would it have been to have issued explanations, as was done in the case of the Houses of Parliament, and a short advertisement would have announced them-but every thing is refused, and a competitor can only grope in the dark unless rssisted by private information unfairly obtained. The labour of such a design must be excessive, the drawings enormously and uselessly large at the prescribed scale, the premium almost paltry, and as it appears the successful competitor is not to be employed as architect, the whole affair may be considered in the words of Shakspeare, as an attempt "to keep the word of promise to the ear, but break it to the hope."

Leaving now this umsatisfactory topic, I pass on to notice one or two matters of interest which it appears to me desirable to mention. There are first, as a matter of great usefulness, the experiments of Mr . Hodgkinson and Mr. Fairbaim, in the seventh report of the British Association of Science, on the mechanical properties of cast-iron.

The results of these experiments are shortly given in the Appendix to Professor Moseley's lllustrations of Mechanics, and some of the most important to us are comprised in the following extracts:-

The experiments of Mr. Hodgkiuson and Mr. Fairbairn have been published, in the Seventh Report of the British Association of Science, since our chapter on the strength of materials went to press. Their great practical importance will sufficiently account for their imtroduction here, as an appendix to that chapter. They have reference-

1st. To the resistance of cast iron to rupture by extension.
2d. To the resistance of cast iron to ruptare by compression.
3.1. To the resistance of cast iron to rupture by transverse strain.

4th. To the destruction of the elastic properties of the material as the body advances to rupture.

5th. To the influence of time upon the couditions of rupture.
6th. To certain relations of the internal structure of metals to thetr conditions of rupture.

7th. To the relative propertics in all these reapects of hot and cold BLAST IRON.

The experiments of Mr. Hodgkinson on tramberme strain present lens of novelty and importance; they fully, however, confirm the views previously taken on this subject by him, and detailed in articles 66,68 , \&c. A series of them, directed to the verification of the comnonly assumed principle, "that the strengths of rectangular beams of the same width, to resist ruptnre by transverse strain, are as the squares of their depths," fully established that law.

With regand to the destruction of the elastic properties of the material, as it approaches to rupture, the experiments of Mr. Hodgcinson possess great intereat and importance.

It has been asserted by Mr. Tredgold, and commonly assamed, that this destruction of elastic power, or displecement beyond the elastic limit, does not manifest itself until the load exceeds one thind the breaking weight.

Mr. IIodgkinson found that, in some instances, this effect was produced, and manifested in a permauent set of the material, when the load did not exceed one sixteenth of the breaking weight. Thus, a bar one inch square, supported between props 41 feet apart, which broke when loaded with 496 th., showed a permanent defiection, or set, when loeded with 16 th. In other cases, permanent sets were giveu by loads of 7 fb , and 14 tb ., the loreaking weights being respectively 364 tb , and 1120 tb . These sets were therefore given by one-fifty-second and one-eighteth the breakint weights respectively. Thus, then, there would seem to be no such limits, in neppect to franeverse strais, as those known by the name of elatic limita; and it follows from these experiment that the principle of loading a bean within the elastic limit has no foundation in practice.

It was accertained by a very ingenious experiment, that a bar, suljected, under precisely the same circumstauces, to extension and compression by transverse strain gave, for equal loadx, equal deflections, in tbe two cases.

The most remarkable results on the subject of transverse strain were, however, those of Mr. Fairbairn, having reference to the influence of time upon the deflection produced by a given loed.

A bar one inch square, supported between props it feet apart, and loaded with 280 ths., being about thes its breaking weight, had its deftection accurately measured, from month to month, for fifteen months, and it was found that, thronghout that period, the deflection was compinually incerabing the whole increase in that period amounting to the fraction 043 of an inch. A bar of the same dimensions, similarly supported, and loaded with 336 the., being about fths of its breaking weight, inereased its defection aimilarly, and in the same period, by the fraction 077 of an inch. Another imimer bar, loaded with about tha the breaking weight, similarly increased its defoction by the 088th of an inch. The deffection of these bars still daily adrances under the same loads, and, a sufticient periad having elapsed, will no doubt
proceed to rupture. A fourth bar of the same size was loaded with 448 ths., being very nearly its breakiug load. It bore it for thirty-seven days, increasing its deflection during the fiust few days by the fraction 282 of an inch; thence retaining the same deflection until it broke.

The fact thus established, that a beam loaded beyond a certain linit coutinually yiekds to the load, but with an exceedingly slow progression, unless the load very nearly approach the breaking load, is one of vast practical importance; it opens an extirely new field of speculation and inquiry. The questions, what are the limity of loading (if any) beyond which this continual progresaion to rupture begins? What are the various ratea of progression correspouding to different loads leyond that limit? and what are the effects of temperature ou thesc circumstances? remain, as yet, almost unanswered.

A series of experiments was directel by Mr. Holgkinson to the verification of this law, usually assuued in respect to the transverse strength of rectangular beans, that, when their lengths and breadtas are the same, their strengths are as the squares of their depths.

Ilis experiments fully established this law. Thus he placed between props, 4 feet 6 inches apart, castings of Carrou iron No. 2 ., which were all 1 inch broad, and respectively 1,3 , and 5 inches decp; these broke respectively with weights of 452 bs., 3,843 ths., and 10,050 ths.; which are very nearly as the numbers $1,9,2 \bar{j}$; that is, as the squares of the depths."

In the original report at page 355, is the result of certain experi4 ments on Carron iron, and the two last in the table are of the greates value, as shewing the importance of those inquiries to an architect, and the necessity for his obtaining scientific knowledge upon this subject in order to a successful and economical application of materials. In these tables then it appears that a cast iron bar of the T form usually adapted, but with table upwards, thus, T, broke with 280 lbs., whilst another bar of the same size and, celeris paribus, but with the table downwards, thus, 1 , broke with a weight of 980 lbs .
Another subject, as it appears to me, of great interest, though not exactly in an architectural, but in an archeological point of view, is that of the researches lately made on the pyramids of Ghizeh, for Colonel Vyse, by Mr. Perring the engineer, and Mr. Andrews.

These wouders of the old world are situated near Cairo, N. W. of the site of the ancient Memphis; and the principal ones are three in mumber. The largest (supposed to have been built by Cheops or Suphis, 2100 years before Christ), has been the main object of these researches. They inform us that the principal part of the stone composing the pyramid has been taken from the rock on which it was built ; the blocks are roughly squared, but built in regular courses, varying from 4 feet 10 inches to 2 feet 2 inches in height, in which the breaking of the joints is carefully preserved wherever these courses are exposed to sight, as in the platform at the top of the building in the Queen's chamber; and in the passage leading thereto, and likewise in some other places at the exterior, circular holes are to be observed, about 8 inches in diameter and 4 deep, apparently intended to support the machinery mentioned by Herodotus to have been used for raising the stones from one course to another, and which seem to have been similar to the Polyspaston described by Vitruvius.

The stone for the revêtement, or casing of the exterior, and for the lining of the chambers and passages, is a compact limestone, known to geologists by the name of swinestone or stinkstone, from emitting, When struck, a fetid odour. It was brought from the Gebel Mokattam, on tle opposite or Arabian side of the valley of the Nile, and the ancient quarries seem to have been in the neighbourhood of the present village of Tourah. It is of a very compact formation, with but few fossil remains; the rocks on the Lybian side, where the pyramids are placed, are, on the contrary, of a loose and granulated texture, abounding in marine fossils, and consequently unfit for fine work, and liable to decay.
The blocks appear to have boen finally prepared on the level rock in front of the northern face of the pyramid, where several rows 4 or 5 feet asunder, of 3 or 4 circular holes, about 12 inches diameter, and 8 or 10 deep, bave been cut, apparently for the purpose of inserting shears, or for forming a scaffolding for turning or moving the blocks.

The stone cuttings and rubbish were thrown over the front of the rock in prodigious quantities, where they still remain.
The mortar used for the casing and lining of the passnges was composed entirely of lime, but in the body of the pyramid it was formed of ground red brick, gravel, Nile earth and crushed granite, or of calcareous stone and lime ; and in some parts, a grout of liquid mortar and desert sand and gravel only has been used.
The joints of the casing stones which were discovered at the base of the northern front, those in the king's and queen's chambers, and also in the passages, are so fine as to be scarcely perceptible.
There has been considerable discussion among the learned respecting the term in Herodotus translated by Larcher "arevetir et perfectionner:" if the latter word expresses the whole meaning, all difficulty ceases. Part of the revêtement of the central pyramid of the three to
the eastward of the great pyramid, which remains unfinished, shews the manner in which this was accomplished. The casing, composed of stones roughly cut to the required angle, was built in horizontal layers corresponding with the courses of the top, till the whole was reduced to one unifurm surface. (Beloe.) The ancients always left the face of their work to be finished off after the building was in other respects completed.

In preparing the base of the pyranid, proper care was taken to ensure the stability of the superstructure, by leveling the rock to a fat bed: and where advantage was taken of it, to form part of the body of the pyramid, it was stepped up in horizontal beds, according to the thickness of the layers of stone used in the building. The general result of these enquiries appears to be the discovery of several chambers immediatelv over the central or king's chamber, the pared platform and the remains of the ancient revertement still existing at the foot of the pyramid, and, contrary to general belief, the discovery of the fact that the main passage is so constructed as to allow of the sarcophagus having been carried in suboequently to the completion of the pyramid. The upper chambers thus discovered are called by Mr. Perring chambers of construction; they are four in number, of no great height, and appear to have been principally intended to diminisf the weight of the ceiling of the king's chamber; they have never been opened before, and on the walls and ceilings are the chalk marks of the workmen, and rude hieroglyphics coeval with their construction; one of these hieroglyphics in a cartouche appears to read as the mame of Suphis. The revêtement appears to have been beautifully wrought and the mortar so good that the stones have broken when violence has been used, whilst the joint has held soundly.

The third and last matter I would notice, is the very curious subject of painted architecture and sculpture. It is but few years since the polychromy of the ancient Greeks has forced itself on the attention of the admirers of classic remains; the dandy assateur puts the subject aside by a sign of horror at the idea of painting white marble, and the learned "find it not in their philosophy." Nevertheless, that Greek architecture and statuary were painted, rests on the simple fact that they remain 80 still.

Our own ancestors, it is well known, painted the interior of their buildings, as well as their statues, with great and brilliant effect ; and it is now clear that the Greeks did the same.

The account in a leading periodical seems to sum up our present information on the subject, and to give a sensible reason for this practice. [Given by us at page 220 of the last Journal.]

To this curious account may be added the still more curious circumstance that even the great pyramids themselves were painted. H. C. Agnew, Esq., who has published very lately a very curious work, makes the following statement in "a letter from Alezandria on the evidence of the practical application of the quadration of the circle in the configuration of the second pyramid at Gizeh." In examining the surface I have not been able to detect any coating like that produced by common paint, much less any distinct layer of plaster; but the stone seems to have been saturated with some fluid, as oil or varnisl, which has rendered the surface harder as far as it penetrated. Whole acres of this lubricated surface still remain upon the upper part, or casing, as it is called, of the second pyramid."

In speaking of the great pyramid, Pliny says, "est autem saromturali elaborata et lubricata." The present colour of this outer surface is of a brownish yellow, or yellowish brown. It has become darker by time and exposure, like the marble of many antique statues, \&c.
I have thus completed the reference to the subjects I have considered it desirable to notice; it has been very imperfectly done, but it may serve to attract your attention to some matters that ase useful and essential, and to give you an interest in others of the most curious character. We may not be called upon to build pyramids, nor would our climate permit us to indulge in the gay decorations of the architecture of the Athenians; but the care and thought, and science exbibited in the construction of the pyramids ought to be useful to us as examples, and the principles which guided the Greeks in their combinations of colour, if discovered, might lead us to results which would not only justify what appears to us to be a barbarism, but teach ws that in this, as in literature, architecture and sculpture, the Greeks may give lessons to the world.

A neas general chart of the banks of Newfoundland, formed by Captain Dayaud and the officers attached to his surveying expedition jó 1857. IE38 and 1839, in which numerous important errors of former chart a are rectufad has just been published by order of the Minister of the Maridffe...Perto perpe.

RUNNING GUAGE,

FOR MRASURING TEE WIDTE OF TEE RAILS OF A RAILWAY.

This apparatus is, as it were, a skeleton hand truck, consisting of a pair of small wheels and axles, and a handle to drive them.
The wheels A B are grooved after the manner of pulleys, so that they rest on a marrow or wide rail without shaking; they are fixed on the axles $C D$, and are therefore without shake; the axles tum in bearings; one of the axles D has a shoulder and pin at its end E, and a washer between the pin and the bearing allows the axle to revolve freely, and yet have no shake endwise. The other axle C moves freely on its bearings endwise; it has a long shoulder at its end, on which is fitted a brass tube F, and a pin and a washer keep it in its place; the tube has a projecting pin, which passes through a long hole in a piece of iron or brass G, fixed to the framework of the instrument ; the pin projects far enough to enter the short end of a light wooden lever or index H , the long end of which points to a graduated arc I. As the instrument is pushed along, the free axle C slips in and out as the wheel A follows the irregularity of the rail, and by the comnexion of the axle with the index, the index points out the width of the rail on the graduated arc.

Where a rapid examination of the rails is required, the guage may be hooked to the tender, and the man who watches the motion of the index, may throw on the road any distinctive material, such as oyster shells, broken green glass, red brick or tile, broken earth-ware, ctralk, or wooden cubes; so that the workmen will find the places marked which they are to repair.
A. C.

CURVES ON RALWAYS.

Sirn-In the last number of your jourmal, a correspondent ("Surveyor") has given a method of setting out circular arcs for railway purposes by means of ordinates measured from and at right angles to the tangent lines, and as from his commumication it does not appear clear that he recommends it from liss own personal experience in its application, it may not be unacceptable to you to be assured by one who has practised it with success, that the method is good and suitable for almost every variety of aurface, occasionally modifying it as any peculiar circumstances arise; it is best suited for setting out curfes upon the surface prior to any practical operations being commeseed, for in deep cuttings or on high embankments considerable dificulties present themselves to this method, and therefore recourse should be had to other means. One great recommendation to the method of ordinates is, that any error committed in one ordinate is extended no further, and such error may be instantly detected and corrected by the eye, by setting up (perpendicularly) a boring rod about 10 feet long at the extremity of each measured ordinate; when eight or ten of these rods are set up, the observer, upon looking along thern, will perceive any irregularity in the curve, even to one quarter of an inch.

I have long since computed a set of tables of ordinates to a variety
of radii, and about two years agto was preparing them, together with other methods of setting out curves, and also some useful tables in my possession, for publication, for which purpose I then had the necessary engravings made; business, however, has caused me to defer it from time to time, but I am now making such arrangements for that purpose that I hope shortly to be able to accomplish it.

$$
\begin{array}{lr}
\text { 2. West Square, } & \text { I am, Sir, } \\
\text { Jure } 15 t h, 1839 . & \text { Your obedient servant, } \\
\text { F.W.SIMMs, C.E. }
\end{array}
$$

WELL SINKING.

The accompanying drawing is a section of a well sunk at the foot of the reservoir in the Hampstead Road for the New River Company. It also exhibits the strata of the ground passed through. The following account is an abstract of a paper "On the supply of water from Artesian Wells," by R. W. Mylne, Esq., read before the Institution of Civil Engineers, April 30, 1839, fully describing the nature of the works.

Artesian wells, so called from their laving been originally adopted in the province of Artois, by the Romius called Artesium, are usually made by boring vertically through a deep stratum of clay into one of sand, which generally contains water. The water will rise to a considerable height, depending on the elevation of the point at which the sand stratum drops ouc from under the bed of clay. The London basin is peculiarly adapted for these wells, as on the large bowl of chalk is a thick lining of sand, supporting a deep bed of clay, known as the London blue clay. On boring into this sand, or into the chalk, the water rises to various heights, and it has been thought that an abumdant supply for the metropolis might thus be obtained. With the view of ascertaining what dependance can be placed on this source, the New River Company sunk a well, the details of which form the subject of this communication. Before entering on these the author mentions several instances of wells supplied from the sand springs in various parts of the metropolis, and other parts of the country. In most of these the supply has been $s 0$ affected by neighbouring wells, or the upper ground and buildings have been so endangered by the large cavities produced in consequence of the fine sand being pumped away, that the wells have been abandoned. Several remarkable instances of the effects of this subsidence are detailed in this communication. Experience thus appearing to shew that little dependance can be placed on the sand springs, it has been suggester to sink through into the chalk; but the supply from this source also is affected in a remarkable manner in various cases.

The author then proceeds to give the particulars of the sinking of the well in the Hampsteud Road. In March, 1896, an excavation, 80 feet in diameter, and 29 feet deep, was made: the sides were supported by wooden curbs with puddle at the back, so as to slint out the fand springs. At the bottom of the curbe, just in the blue clay, a castiron footing was added, and a brick shaft of 12 feet 6 inches diameter carried up to the surface of the ground. The exoaration was contimued for 59 feet through the clay, steined with 9 inch brickwork in cement, iron rings were placed at every 8 feet of the brickwork, and of a greater diameter than the shaft, and projecting into the clay a few inches so as to support the shaft in its progress; the brickwork was continued through 57 feet only, leaving 2 feet of clay for a foundation. The excavation was now reduced to 10 feet 9 inches, for the purpose of introducing cast-iron cylinders formed of six segments, 6 feet in length, united by bolts tlrough flanches on the inside, and leaving 9 feet 9 inches clear diameter. These being joined together were forced down by hand screws, as the sinking continned through the 2 feet of blue clay and through 10 feet of soft mottled clay, at the bottom of which water appeared.

The well was kept dry by an engine and two 8 inch pumps in two lifts, and the sinking continued for 8 feet, through a bed of fine brown sand. Cavities were now discovered behind the cylinders, which were forced out of the perpendicular by the unequal pressure, and became completed jambed. A second set of cylinders was now prepared, and the sinking continaed for 26 feet through the remainder of the dark brown sand, soft mottled clay, a thin layer of pebbles and black sand clowely embedded, and 4 feet 6 inches of dark brown sand. Cavities were again formed at the back, and the cylinders again became jambed.

A third set of cylinders was now prepared of 7 feet 4 inches diame. ter, and the sinking continced through 7 feet of dark brown sand, and 5 feet of dark quick sand, when they again became jambed. During the latter portion of the work great difficulty was experienced from the blowing of the sand often to the height of 6 feet; this oecusioned great cavities behind the cylinders and the brickwork; several segments of the former were broken at their vertical flanches, and the lower part of the latter was much cracked. A large cavity also was
formed at the back of the brick shaft about 60 feet from the surface. The setulement of the ground at the surface was so extensive that the pumping the works was discontinued until the plan suggested by Mr. Simpson, of continuing the sinking with the water in the well, was adopted.
For this purpose, in Aupust, 1836, a wrought iron cylinder of boiler plates, 62 feet long, and 5 feet 10 inches diameter, was lowered to the surface of the sand, which was hard under the pressure of the water, and removed by an instrument called a miser, and which holds about two bushels. The cylinder was forced down by hand screws on its upper edge, through the remainder of the quick sand stratum, through a bed of sand with flints and pebbles, and through a bed of chalk and flints, into the chalk to a depth of 12 inches. The water and sand being now shut out, the well was dried, and in March, 1837, the sinking continued in the usual manner to a total depth of 183 feet, the chalk being sufficiently indurated to require no lining. The water now increased considerably, and the chalk was excavated to an enlarged diameter below the bottom of the wrought-iron cylinder, for the purpose of forming a brick footing. On the top of this is a broad castiron ring, upon which rest cast-iron cylinders of a clear diameter of 4 feet 7 inches, which were introduced within the wrought-iron tube, for the purpose of strengthening and guarding against the admission of sand in case of its failure from corrosion.

In February, 1838, the works being complete, the pumps of 12 inch diameter were introduced in two lifts; and in August, 1838, when the springs were short, and in Marcl4, 1839, when the springs are at their best, an experiment of two weeks was made; the result of the former was 14,898 , and of the latter, 30,499 cabic feet per day of 24 hours. The total expense of the well was $12,412 l$. 148. 1 d .

The paper is accompanied by a copy of the report of James Simpson, Esq., in which the plan adopted for the completion of the works is recommended. Mr. simpson details the difficulties which had been met with, and particularly the extensive subsidence of earth caused by the removal of the sand. This fur exceeded the quantity due to the contents of the well at the lower sand stratum, and the subsidence proceeded most rapidly when the water was pumped out of the well. The experience of wells near the metropolis shews that the springs in the chalk are much more abundant than in the sand, but in order properly to avail ourselves of these there must be adits driven to unite the water from the fissures in the cavernous structure of the chalk. The report proceeds to speak of certain methods of securing the present works, aud of prosecuting them by either driving an iron pile curb or sinking iron cylinders cast in entire circles. The former camot be recommended, as a considerable further subsidence would be the consequence, and the shaking of the ram would endanger the works. The latter is performed with common boring rods and tools, the shells or buckets ure fitted with valves opening upwards, and the material is raised by them with the greatest ease. When the cylinders become set, or when they do not sink in proportion to the material removed, they are slightly jarred by a heavy sledge hammer. The advantage of keeping the water in equilibrium inside and outside the cylinders is very great, and the method has been found in many cases most efficacious.

The paper is accompanied by a section of the works and the strata, and by drawings of the various tools employed.

Mr. Brunel stated, that the succession of the strata here described was nearly the same as they had met with at the Tunnel.

Mr. Simpson remarked, that the greatest caution was requisite in drawing conclusions respecting the strata in one part of the metropolis from what was known of it in another part. At Lambeth, for instance, in the same shaft, there might be gravel on one side and sand on the other, and the London clay here is about 82 feet below Trinity high. water mark : near Chelsea College the London clay is met at the depth of 38 feet, after passing through sand and gravel, und a little fiuther on, in the King's Road, the clay is reached without passing through any sand, and in this locality the chalk is touched at 245 feet below Trinity high-water mark. It was a remarkable fact that they should Trinity high-wat chalk at so small a depth in the Tottenham Court Road well. The alterations in the strata are so great, that no one who has had any experience of wells will venture to infer from one place whut will occur at another. The engine employed at this well was a twenty horse, and worked at an expense of about 21.78 . per 24 honrs. This, however, is a very small part of the expense of supplying water to houses, as the water has to be raised to the houses, and the cost of pipes must be included. It was not very intelligible how water is to be raised from so many feet from below high-water mark, and supplied at the same cost is water taken from the Tbames at the level of high water.

SECTION OF THE WELL AT THE HAMPSTEAD R

Send.

Level of Water.
Coloured Clay.

Saml with Petbice.
Hard Sand.
Sand nith Finos.

Running Saad.

Solid Chalt n ith
Mints.

CANDIDU8'S NOTE-BOOK.
 FASCICULOS VI.

I muit have liberty
 Withal, as large a charter as the winds, To blow on whom 1 please.

I. Had Lord Kingaborough written "I'd be a butterfly" or some such piece of rawkiabsess, he might haye been as celebrutcd as Haynes Bayley, or other celebrity of the same calibre. But the author of the mexician Antiquities might have put the whole of his public, that is, all the public wiso know or care any thing ihout his seven stupendous folios, if mot into a nutuhell, into a moderate sized room. Truly the f.S. A , whthor of a recent Architectural Dietionary his been much wiser in his generation than was the nuble Viscount; for at all events be koows bow to manufacture ware for the markeh and to speculate upon the ignoranoe of the public.
II. Who Madame Flora de Tristan may be I knuw noh, nor am I sure that her "Letters à un Architecte Anfluis" are bonà fide letters really addressed to mny owe, or merely criticisms aud comments on the archirecture of London, put into an epistolary form, In all prubability the latter is the real fact, because it is not very likely thut the lidy would here undertaken to enlighten an English urchitect upon such a subject, more particularly as the general tendeacy of her remarks are by no means fattering to our national vanity, She is of opinion that since SL Paul's we bave produced nothing really noble in church architec. ture. All our modern buildings of that class are censured by her as being totully deficiens in cbaracter, maere auditories or lecture rooma, vithout any thing whutever to imprenis the mind or excite devotional feoling. Then aggain she tavntu us with the egregious alsurdity of the 'Acbilles' as it in called, in Hyde Parkngith the York colump, and the new palace, whioh latter sho justly enor, " pronounces to be in every respect neequin. "Toutes gigantosques," she says, "que soient ros entreprises de ponts, de chemins de litr, elles ne sont jamais que des speculations fajtes sur une échelle plus ou moins vaste pour satisfaire ì des beoina matériels. Parmi less edifices construits depuis la paix dome votre capitule, j'en cherche vaipoment un qui approche on splendeur do Greenwich, \&c." To be sure we are not obliged to pay any regard to the opinions of an impertinent Erench woman, nevertheless it is rather martifyiag to fund that guch injurious notion spread abroad, and that we cannot compal foreiguers to admire the buildinge upon which we compliment. ourselves Madame Flora is besides most horribly heterodox, for she pretende that all maodern arehitecture is nothing but copying, without the slightest atterapt at iaramtion, as if all possible modes of beapty had been long ago exhauoted. Poor creature! poor woman! does she then imagine that architecture is like millinery and bonnet-making? However, the comcort is we are not likely, for some time to came at least, to have arohitects in petticonten or else, -but the ides is too awful, After ell, to give her her doe, the woman has some noun, for in speaking of the hoyal Exichange that was, she sapis that statues of eelebrsted discoverem and inventors who have advanced our commerce, manufuctures, and our cormercial relations, would be far more appropriate in sueh a bailding than shope of king; and queens; and that the natural products of our colonies ought, as Car as they are capable of being so, to be introduced as symbolical orpaments. Notwithstanding the quarter it comes from, this is a very good hipt, which there is now an opportenity for our architects availing themaplres of, in their designs for the new structure.

UI. What does Bertholomaw mean by calling the new front of the Surgeona' College "a barbarous heap of ill-favoured sand," and saying that "it is a oreaking mase of fracture $?^{\prime \prime}$. The original design was Indrbarous enough, so mach oo that one might almost have imagined ite taste alluded pamingly to the company of barber surgeons. But as to any fractures the presens front exhibits, I fancy Bartholowew would find mone cracks in his own head. Pray heaven! he may not Le sit. Burtholomew'd by being flayed alive by his brother architects for the very scurvy remarks he hitu cast upon the whole profession; nor has he sorupled to affirm that "arohitecture sinks in quality, science, curious dnish and duration."
IV. St. George's, Hanover-square, which, by the bye, is mentioned in the newspapers very much oftener than by architectural critics, is censured by Pennant for reason which oo one, unlese previously informed, would be able ever to guess. According to him, it is wtoo Brobdignagian " Well, we have many other baildings that may be cencared us too Lilliputian, so that between the too stools we fairly come to the ground. Lilliput and Brobdignag remind me that a Freoch translation of Gulliver's Travels has just appeared, decorated with a profusion of wood engravinga, which are just now all the rage.

Thim, I suppose, will help to bring Swift's satire again into rogue, for it may be queationed whether it has had a score of readern in this coumtry during the present generation. Why does not somebody ses about illustrating Holberg ! Enough: if I go on upon this crotehat I shall noed ittustration myrelf.
V. Schlegel has, somewhat fantestically, it must be confonsed, compared architecture to frozen masie; and the anaiogy so far holds good, mesmuch as it may be predieated of mome of our buildings, that, if not very harmonions they are at any rate frosen, baving a most ebilling and even frost-bitten look. They are not merely was cood al cucumbert," bat actually as cold as icichea-may, one or two that might be maned, are positively exe-sickles-things that cut the eye confoendedy; and which I should like to see cot down.
VL. Rare news for architects!-Yea, let them prick up their ears at it, for according to Victor Considerant, the disciple of Fourier, the whole human rece is to be not only comfortably but magnisieently lodged in pulaces, each capable of affording accommodation to three or four hundred families. "The palace of Versailles, Mannieins, the Lourre and Tuileries, are mere baby-hosses in comparison with what such colossal edifices will be." Again we are told: "all those who are now obliged to dwell in miserable hovets and garrets, and steep on straw beds, will then occupy 800,000 palaces sarpassing all those of Rome and Paris!:!" Eight huadred thousand palaces! there is work for architects! plenty of scope for design! Even should there be some leetle mistake in the computation-a couple, or for the matter of that, three or four cyphers too many, still there would be a good many very capital jobs and of competitions likewise for a eentury to come. Pray heaven! it may not be a mistake altogether, that Victor Considerant in a more considerate person than to frumbug us with mere dreams, with the fumes of bis own imagination. But then if there be truth in the prophecy of the disciple, may there not also be as much, or even more in that of the master? And what did Fourier himself predict on his deathbed? truly nothing more nor less strange than that "in the course of two hundred years men will have taits thirty-two feet long' !! a pretty kind of entailed property that for a genteman to have to aarry about with him, dragging it at his heels wherever he goes. Perhapm it may be merely figurative, and the dying philosopher meant nothing more than that in the time specified by him, the whole human raoe will have become Dan O'Comnells. At all events, it is some comfort to reflect that none of us are likely to live till that tailed generation shall arise; therefore if none of the eight hundred thousand palaces are to be begun until then, the architects of the present day will not be greatly benefitted by the scheme. Besides which, it is possible that there is either some very odd jumble in Victor Considerant's ideas, or some juggling in his language, and his real meaning may be that society will in course of time be lodged entirely in prisons and union workhouses, which for the sake of eaphony, be is pleased to designate by the milder appellation of palaces.

APPLICATION AND INTENT OF THE VARIOUS STYLES OF ARCHITECTURE.

[We have made the following extracts from an article of considerable merit which appeared in the 27 th volume of the Quarterly Re. view. The remarks made by its author strike at primciples and not at details, and may perhaps be useful in calling the attontion of our readers to some important truths.]

When enaployed by its authors and inventors, the architecture of Attica and Ionia is faulteas. The separate members of the building have a definite relation to the whole. They are aggregated by affinity and commected by apposition. Each one is in its destined place; no one is extraneous or superfluous; all are characterized by fitness and propriety. Grecian architecture is a composition of columns, which are intended to assemble themselves only in the form of a Grecian temple. They seek to enter into no other combination. Beauty and elegance result from their union. The long unvaried horizontal line of the entablature rests in stable tranquility upon the even ranging oapitals below, and the conical shafts are repeated in unbroken symmetry. The edifice is perfect in itself. Therefore it admits of no change is its plan, of no addition to its elevation. It must stand in virgin maguificence, unmated and alone. The Grecian temple may be compared to a single crystal, and the laws by which it is constructed are analogous to the process of crystallization. Disturb the arrangement of the primitive molecules of the crystal, and they will set into a misshapen fraguent. Increase the number of these crystals, allow them to fix themelves upon each other, and their individual regularity will be lout in the amorphous mass. Thus, in the Grecian temple, the component parta have eettied themolves into a shape of perfect har-
mony, such as is required by their integral figure, but it is a stiape which carmot be varied in its outline, nor can it be changed in its proportions. Neither does it submit to be amexed to any other. Every atterapt which is made to blend the temple with any other design, produces a lame and discordant effect. We must reject the arch, the nobleat invention of architectural science. Porticos cannot be duplicated. Doric columns cannot be raised in stories. No windor can open into the cell. No wing can be added to the right or to the left which does not at once convince the observer that it has no real relationship to the centre which it obecures.

How could any other result be anticipated? The sacred architecture of Greece admits of no babitable interior. A cell of narrow dimensiona, lighted by an aperture in the roof, and intended to contain a single statue, is the ondy chamber which can be placed within the walls of the temple. We are not required to enter into the fane. It is a monument which we are to contemplate from without, and which appeass in its pride when considered as a portion of the surrounding landscape. The chaste columns and pure sculptures which are now mellowed by the land of time to a sad and sober grey, originally shone with ull the splendour of the east. Every moulding was distinguished by strongly contrasted colours ; and the smowy whiteness of the Parian marble was concealed beneath the glowing layers of gold, azure, and vernilion. In the opinion of the Grecian architect, his building was seldom more than the frame-work of his sculpture. He never intended it for social worship. A temple was a shrine upon which decorations were to be displayed. The altar flamed before the portico. The votary was to offer up his sacrifice in the hypethrum, looking around to the woods, the purpied hills, and the circling borizon.
From the seience of its mechanical execution, aided by the transcendent skill of the sculptor, the beauties of the design of the Grecian architect are doubly enhanced. As masons, the Greeks carried the art of building to the highest excellence. The Grecian architect possessed the means which his mind required. His elements were few. Scarcely any variety of structure was required from his art. He placed a larger number of columns around the more sumptuous edifice, and a smaller number around the more humble structure: he raised the temple and the tomb. His career was definite ; he waw the end of it. He was required to perfect, rather than to invent. Grecian architecture submits itself to the judgment, and the judgment is satisfied. A problem has been proposed to which a perfect solution has been given The Grecian architect perfurmed all that he had promised to himself; all that he wished to have, was given to him: and so soon did the Grecian style attain its wonderful perfection, that, from the earliest to the latest period, a few elegant improvements, scarcely to be discerned even by the practised eye - few tasteful variations, rather to be described by the learned than felt by the spectator-are the only tokens which denote the progress of Grecian art from infancy to maturity.

Such were not the labours of the Gothic Freemason; he stops frustrated, but not in disappointment. Neither the quarries of Pentelicus nor the chisel of Phidias could assist him. Rude materials and still ruder hands were all that he could command. His architecture must depend apon ita imate charaeter and significance. The cathedral is to be considered rather as a forethought than as a fanished specimen. It exhibits the effort that has been made to embody those abstract ideas of solemnity and grandeur which could not be fully realized or accomplished by human power. Still the effect has not failed; Gothic architecture appeals to the imagination, and fancy half supplies the deficiencies of the material scene. A Gothic building has al ways the charms of mystery, it always appears to be larger than its actual dimensions. The mouldings, the pillars, the arches, always create receding shadows; and to the mind, the idea of space arises from a succession of shadows, just as the conception of time results from the succession of ideas. In the earlier Gothic styles, the management of the gërial tints was studied with remarkable skill. The mouldings are all undercut, and the curves are almost invariably of the bigher order; and the limbs of the apertures are marked by carrying the mouldings above the level of the wall. A small fillet also often rums down the front of the lesser columns. By these artifices all the forms of the building are brought out, painled, as it were, in chiaro scuro; for the minute linear projections catch the light and heighten it, and the undercutting deepens and mellows the shade. In the more luxuriant stylea, however, this attention to the tints was neglected, and the mouldings occasioually became shallow and trivial. Daylight is courted by the Gothic architect. The lines and masses of the roofs, and buttreses, and transepts, the ascending pimnacles and towers, are marked and defined by the full blaze of noon, which falls upon them and contrasts itself with the freshness of the apertures, and the darknees of the walls which are behind the sumbine. Gothic arclitecture seetke to exclude the sipht of middle earth. Its genius delights in quadrangles,
cloisters, porches; in piles which expand and close round the apectator, leaving him nought to contemplate but themselves and the $2 k y$ and clouds.
The gothic style always fills the eye, and conveys the notion of come prehension and capacity. Habitation and converse, and congregational worship beneath its roof, are seen to be its intent. We are invited to enter into the cathedral. The portals expand, and in the loog perspective which appears between the pillars of the porch, and exde is the distant choir, the light darts downwards through the lotey aneen windows, each marked by its slanting beam of luminove keve, chequering the pillars and the pavement, and forming a trantaceme ghoom Gothic architecture is an organic whole, bearing withe is a living vegetating germ. Its parts and lines are linked and united, they spring and grow out of each other. Its esence is the curve, which, in the physical world, is the token of life or organized matter, jost as the straight line indicates death or inorgenized matter. It is a combination of arches whose circles may be infmitely folded, multiplied, and embraced. Hence the parts of a gothic boilding may be experedod indefinitely without destroying its unity. However multiplied and combined, they still retain their relative bearing; however repeated, they never encumber each other. All the arched openings, ghe tall mullioned windows, the receased doore, are essential parts; they do not pierce the walls of the structure, on the contrary, they bind them together. The spire may rise aloft, the large and masoy walls may lengthen along the soil, but still the building preserves its conmistency. Richness of decoration, colour and gold may increase the efifect of the gothic style, but the inventor chiefly relies upon his art and sciente. Gravitation, which could bring the stone to the ground, is the power which fixes it in the archivolt, and every pinnacle bears witnoss to the mastery which the arehitect has gained. Frequently the details we bad. Parts considered by themselves are often destitute of beanst, but they are always reievant, and all minor fauts are lost in the mesits of the entirety. The history of the style accounts for its propriety, it chiefest merit. Gothic architecture, whatever its primitive alenersts may bave been, was created in the northern parts of Europe; it was there adapted to the wants of a more inclement sky. Its structures were destined for the religious worship of the people ammongst whom it was matured. In a gothic church no idea can possibly arise, sase that of christianity and of the rites of christiamity. We cemot desecrate it even in thought. From its mode of construction no coavenience which we need, ever becomes a blemish, and its character asmimintes itself to every embiem or ornament which lts use requiren.
Many of our contemporaries, whose gerius no one can respect or prize more highly than we do, are desirouas of introducing the pore Grecian style for the purposes both of ecclesiastical and of cintil architecture. But even their talents carmot naturalize the architectere of ancient Greece in modern England. The Grecian temple will so submit to be transported into our atmosphere. No adaptation can be given which will reconcile it to utility. Plate-glass windows glaring through the intercolumniations, chimnies, and climpey-pote armenged above the pediment, are just as appropriate as English nouns od verbs in a Greek herameter. When the portfolio is opened and the drawing is shown, these incongruities escape observation in the peet lines and colouring of a geometrical elevation, which can be made to look just as the artist pleases.* But when the seaford is struck from the real building standing in the open air, then they strike vom mow forcibly; and we are compelled to acknowledge that its principles are too stubborn and unmanageable. View the Grecian temple as a dwell. ing and with relation to its inhabitants, and then every part and portion which contributes to comfort or convenience, is a grievores sia against architectural fitness; they are rejected by the very essence of the building into which they obtrude themselves. Is it conddered with regard to its destination, is the architect retiring into his tody to plan the justice-hall, or the palace, the eollege, or the church! Why then, every sign which tells the intention of the structure, which comnects it with the policy, the learning, or the religion of our age, becomes a monstrous and perpetual solecism. If the aid of the chised is called in for the purpose of decorating any pure Grecisn building, we are compelled to abandon every shape and form which bespent : modern origin. For instance, in the public buildings of all nations the architect feels, or ought to feel, the necessity of introducing the

[^15]distinguishing symbols of the people in whose land the pile was raised. From them the structure obtains its national character. Heraldic ormaments may therefore be considered, not as ormamenta, but as the significment stamp of our edifices; yet an artist would never venture to place the arched crown or barred helmet in the pediment, or to bring the lion and the unicorn in comjunction with the stately Doric portico.* Would a Roman architect have been afraid of the eagle? These observation may appear trilling, but if they are considered, it will be soon undentood how such scruples and difficuities estrange the architect from the inteileotual cultivation of his art, and reduce him to a mere mechanical draftsman.

The objections which present themselves against the pure Grecian style, do not operate with equal force againat that modification of the Roman order which was invented by the great Italian architects who forarished after the revival of the arts. This style has been called an adulterated style. It may be admitted that a new compound has been Iormed, but the alloy possesses a ductility which is denied to the purer metal. And we do not scruple to acknowiedge, that, if we were praccical architects, we would gladly err like Bramente and Palladio, and Michael Angelo. This style has been so judiciously matured and nacaralized as to acquire great propriety and a great degree of picturesque beauty. Perbapa it was perfected in England. Wren, the Arionto of architecture, brought it to the highest degree of excellence. It is a bad omen for the progress of architecture, that so many attempts abould now be made to depreciate the productions of this great man, the pride and honour of English art. The exterior of St. Paul's cathedral resolted from the earnest reflection and labour of a most comprebemive mind. From the pavement of the ares up to the crose-crowned globe, there is not a portion which can be removed without destroying the integrity of the composition. It was all present and visible to the miad's eye of the architect before a line was drawn upon the paper. It telis a complete story, neither weakened by after-thoughts nor disGgured by redundances. If snail-like we crawl about the aurface, we may grope and stumble upon some petty deformities, an unclassical rase or an inelegant acroll, but no one who has the heart to appreciate this master-piece can be patient when he heara such cavilling criticisma.

Wren had the conception of a painter. Architects often fail from the porerty and meagreness of the masses and returns. They compose their buildinge out of screens and facades. They seem to forget that a building is to be viewed from more than one point of view, and in verioss lights. One of the pleasures which we derive from the contemplation of architecture, arises from the manner in which the objecte unfolds and variem as we approach it, or recede from it, or walk around it. We study the play of the perspective and the changes of the shadowing. The spectator wishes to have a spectacle of which the merits are not to be made out at once. A bulding destitute of these powers of atimulus and provocation, is like a fair woman's councemance without intelligence or passion, a second look begeti indiffereace, a third, satiety. Wren fully understood the method of giving architectural expression. His lines and masses are always working upon each other. The small low door at the side of each belfry of St . Paul's marks the loftiness of the pile. By coupling the pillars of the doable portico he obtained further breadths of shadow as well as greater altitude than he could have done by adbering to the plan of the Grecian portico. And the pyramidical belfreys unite in a symmetrical group with the towering dome, based upon the colomade which circles and retreats below.

The claims of any particular style, and the merit of any building my be eatimated according to a very simple and intelligible principle. The real architect ought not to wort by line and rule; he should recollect that be is composing a work which ought to have a given intent. Whesever he determines to adopt any system which prevents him fram yielding to the meaning of hie structure, he ought to apprehend

- Is is lamentable to note the treatment which these respectable animals seevire from moders aculptore when they week to classicize them. They are uavally compelled to turn their rumpe against the shield which they ought to sapport, and that in the most awkward manner. Artists in general are complesely ignorant of the decencies of the science of heraddry. One blunder, -hich they perpetually commit, and which shocks the eyes and the judgment of the horald, is the practice of bundling up the royal bearings in a circle within the garter, instead of representing them on the shield. The prescriptive forma of heraldic animals should never be varied under the miataken ides thet they are improved by bringing them to a nearer resemblance to nature. They are not intended to represent natural animala, they are symbols hike the Egyptian hierogly phict. Brooke, the heraid, ance weat to the Tower for the parpoce of eeaing the lions. When the Forthy King-at-arms was introduced inco the promence chamber of the royal beasta, he swore that the warder was ch lating bim; be had trickad llowe any time thewe forty yeara, pastant, rampant, copehant, regardant, and he ought to know what a lian was. As a Gerrid, Brocte had a Igbt to be incredulous.
that he is in the wrong. Whenever he feels himself cramped by his pattern, he may be assured that the precedent, however good in itself, is bad for the purpose to which he makes it a slave. Lines of equal length, duly rhymed and well disposed in pages of equal dimensions, do not constitute a poem unless they have sense within them. Columns however prettily arranged, pedimenta though classical, architraves, friezes, stylobates, do not make an architectural mork unleas they are so disposed as to conform to the end and object of the edifice which they adorn. Should they not perform this duty, the builder is no architect. The fabric may be sumptuous, comfortable and convenient, bat as a production of the art it has no more merit than a barn-not even so much,-because the barn-door, and the thatched roof, and the weather-boarded sides, are all in keeping with the threshing floor within;-and this is not the case with such an ummeaning structure. It is the business of the architect to unite splendour when a display of wealth is desired, comfort and convenience in all cases, with that intelligence which alone entitles him to an artist's name. As the poet seeks that every phrase and word which he employs should be poetical and amalogous to the style and character of his poem, so should the architect try to keep every member and portion of his building concordant to its intent. It would be a grievous sin against good taste, that is to say against common sense, if in a Christian hymn we were to introduce the mythology of Ovid or Virgit. This will be readily acknowledged, and the fault could not be committed by any one of the present day. But is it less incongruous to adorn the walls of a Cbristian church with the scall of the slaughtered bull and the sacrificial patera? Architects are perpetually introducing classical emblems, as they call them ; but if they are employed as things without meaning, they are nonaense. And if we consider them as bearing a meaning. then their signification is so out of place that it becomes an absurdity,

An architect should recollect that he is not a pupil whose merits comist in repeating a lesson by rote, but a man who deserves no praise unless he makes an intelligent use of the lesson. If he would take the liberty of thinking for himself, he would certainly remedy such grons and palpable errors. It would not be difficult to preserve some degree of consistency even in a church built according to the Grecian or Roman orders. Instead of the lotus, or the honeysuckle, or the acanthus, there might be introduced the vive, the palm, the olive; which in a certain degree have the character of scriptural trees. Many of the emblems of Hope, Faith, and Redemption, found on the tombs of the early Cbristians, might be advantageously employed; and without the slightest approximation to the rank adomments of popery, the artist could adopt such a system of Christian iconology as should be neither ungraceful nor umappropriate.

Texts or inscription may be so managed as to become very ornamental and impreasive. But the letters should be large and deep, and cut in the hard stone, as a part of the original couception of the building, and not painted on, as a subsequent addition The architect should also avoid the moat vulgar error, so often committed in printed books, of adding chapter and verse at the end of the line. Whenever a quotation is addrensed to the imagination of the reader, we must assume that we are merely bringing to his recollection the words of an author whose works are already known to him. We should not appear to teach something new. The beauty of an illustrative quotation consists in its being apt, in its being familiar to our minds. It must seem to present itself without labour, not as if we had sought it out. The total want of inscriptions upon our modern buildings is a further proof of the vagueness of moderm architecture. It was not thus among the ancients. They built for the people, who saw their chronicles upon the marble. The lines were read by the fathers, the children, the grandchildren, and after the lapse of ages, the moss-grown characters add the most powerful charms to the majestic ruin. These means of giving interest to architecture are now always neglected. The Waterloo Bridge, unquestionably the fimest in the world, might for any thing which appears upon the granite, have been erected by a people ignorant of the art of writing. It does not even bear a date.

A church should never vary from the established plans adopted of old; nor should it be wanting in any one of the parts which we have been accustomed to see in sacred buildings. Durandus, ${ }^{\text {in }}$ in his de-
t The solemn dulness of the allegories of Durandus is almost amusing:-- Turres ecclesise, predicatores sunt et prelati ecclesise qui sunt munimen et defentio ejus. Unde sponsus ad sporisen in canticis amoris sic loyultur Collum tuum sicut turria Dartd edificata cum propugaaculis. Pinaculum turria, vitam vel mentem predati, que sd alta tendit, representat. Gallus super eccleaiam positus, prwdicatores designat. Gallus enim profundse noctis pervigil horas moo cantu dividit : dormientes excitat ; diem appropinquantem pracinit, sed prius seippum alaram verbere ad cantandum excitat. Hise atnsula my merto non careat.
 us aom loquatur ex spiation bominis eod Dei. Fenentra ecclenios vitreen, sunt
scription of a church, finds allegories throughout. The four walls are the four cardinal virtues. By the window the Seripturen are represented. The columans Ggure the Doctors the steeples are Preatates: and he ascends unto the weathercock, which he turn into a tale of mystery. It is not necessary to endue porches and steeples with this kind of reverence; but still it is not proper to imoorate by mutilating the building of its aecuatomed members. The imfuence of wisible objects over the mind cannot be resisted, and the absence of architectural costume, if we may to express ourselves, complotely deatroy the dignity of the building.
In the diaposition of the interior, modern architects vary from the proper ecclesiastical arrangementa; in a vary uajustifiable mamar. It is scarcely possible to create a more palpable blemish than that which is occasioned by placing the pulpit in the centre of the mave. In a dissenting meeting house, it may be proper to aseign this station to the preacher, but it is quite inconsistent with the intent of our liturgy, and should never be toterated. The situation of the reading-deak below the pulpit, like the deak of an auctioneer's clerk, is equally unappropriate. An organ and an organist over the altar must also be considered as an inexcusable violation of the decency of the bailding. By considering the plans of the earlier Chriatian churches, many useful hints may be obtained, particularly respecting the situations to be assigned to the ministers and che congregation. Much information on this subject is collected in the "Origines Ecclesiaatics" of Bingham, a writer who does equal honour to the English clergy and to the English nation, and whose learning is only to be equalled by his moderation and impartiality.

Ornaments may be soberly and discreetly introduced. When an altar-piece is admitted, it should never be mounted in a fine guith frame and considered as a picture. In every pablle building, and, perhaps, in most private babitations, printings or statues should nover bear the appearance of pieces of furniture. They should never look llke things which can be put up and taken down at pleasare. The effeet produced by such works of art is materially diminished if they seem to be strangers and brought in merely for show. They then are redundant epithets in the work, which it would be better to expunge. On the other hand, their value is greatly increased when they have the distinctive character of being required by the predetermined plans of the architect; and indeed they should never be treated otherwise than as ancillary to the architeeture. Eren the clock, which is usally produetive of so much unpicturesque deformity in our steeples, might, if the architect considered it, bear the appearanee of belongtig to him, instead of being supplied "as per order of vestry" by the manufacturer. In the Flemish churches, instead of the solld shintig black face and smart gilt numerals, the architects employ large rings or circles of bronze, between which the figures, cut out of plates of the same metal, are fixed. This open-worked metalle tricery agrees completely with the stone tracery, and does not obscure any part of the architecture. A Gigure of the sun, the measurer of tlme, in sometimes placed in the centre of the inner circle, which it supports by its rays, and when colouring was required, the architects used azure, the tint of the celesial sphere.
Most of our modern churches have a mean appearance in consequence of their want of elevation; they seidom range higher than the adjoining houses. As long as the cuatom of depositing the dead in raults shall continue to prevall, we may add to the grandeur of the building without increasing the expense. The body of the church might be made to stand upon an undercroft, the pavement whereof shouldnot be mote than one or two feet below the level of the adjoining ground. This crypt might be divided into sepulchral chapels, and the monies to be raised by the sale of the right of interment to families would go in ajd of the building funds. No church should be without a lofty steeple. The "heaven-directed spire" has a sacred dignity which should never be sacnficed exeept under the pressure of the most imperious necessitty.

There is considerable difficulty in combling a steeple with the orders of Grecian or Roman architecture. Wren mastered the difficulty, and produced combinations scarceiy inferior to the Gothic. The Grecian or Roman steeple appears worst and ugliest, when, as at $S t$ Martin's in the Fields, it is seen riding athwart a Corinthian portico, t

[^16]which it does not bear the slighteat affinity; -and best, when, acoonding to the favourite practice of Palladio, it stands by the side of the edifice an a campanile or bell tower. When so managed, it is grouped with the lines of the building into a plessing mame, without being beed upon a discordant feature. In Londen we have only one example of this arrangement. It is exhibited in a boilding which has been seoffed at and scomed, but which, in truth, is one of the mont pictureeque in the metropolis-the church of St . George, Bloommbury. Let ary urprojudiced observer view the front of this building, divesting himeelf of traditionary prejudise, and he will actenowledge the truth of thbs observation. We will not even censure the statue, whilh, placed oo the summit of the pyramid, appears to losk down like a tutelary esint.

All things fairly comidered, the Gothis atyle appean to be the mont reasomable order for an English churct. It is consecrated by ites seovciations, and the mout ordinary arehitect may easily learn to avoid an marked impropriety. It should be managed freely, and alebough we would not admit of any fantustic or capricious alterations of the cyle m exiating in the great master-piecea, with which this island abousds, atill the architent ghould not be tnhibited from such a discreet power of adaptation as the circummanoen of the case may require. Sach variations, however, will be very rarely needed, and then only is the disposition of the subordinate parts of the edifice. Our moodern wortmen are capable of executing the finest omaments of the Gothie styie. Mr. Geyfere's restorations of the front of Westninster Hall, and of Henry the Seventh's Chapel, might excite the envy of the moot caring freemason of the elder day. Aud the science which raised the Water-too-bridge would enable the architect to groin the loftiest quire. I such of our English Gothic baildings as were erected aftor the age of Edward I. the drawing of the sculptures is often rude and olomgy; bat it is a strange mistake to suppose that whem the architeet copies the Gothie style, it fe also neceseary to oopy the imperfections resuling from want of skill in a peculiar branch of art. He is ander ne obligethoms to reproduce uglineas. Let him take all forms which are beentifol, and reject all such as are mpleasing. In the Gothis of Frase the human figure is often treated with remarkable purity of desigo; and there is no reason whatever why the statue in a Gothic taberneile should not have as much elegance as if it were placed in a Romo niche. The contume of the middle ages may be treated with the u-most elegance. The monumental statues now erecting by Mr. Wexmacott, for Lord Grosvenor, point out the method in wifieh real chasecal taste-that is to say, the taste whioh seeks propriety-may be applied to the Gothic style. If a costume, not being that of real life, is to be borrowed for our heroic statues, the ancient English wate robes have at least as good claims as the Roman mantie, to which thes bear a near affinity: and the open crown of Edward the Confeasor, encircled by the mystic fleur-de-lis, of which the prototype appears on the monuments of the Pharaohs, would deck the brows of the monaroh with foll as much grace as the laurel wreaths of the Cesars With regard to the subordinate decorations, it may be remarked then patnted glass is usually executed upon an erroneons principte. When large plates are used, as by the artists of the Egiston school, they deutroy the effect which it is intended they should produce. Thit ait partakes as much of the nature of mosaic as of painting, and it perer succeeds except when, as in the exoellent productions of the sistieenth century, the figures are formed of pieces adapted to the outline, the lead being lost in the shadows.

A few words must be said respecting sculpture. We will on sculpture a cognate art, because it is really thseparable from arehitec ture. We may lament that in the present age, the profewors of the two arts are so completely divorced In practice. Ther were not disjoined in the good days of Italy, and we have surficient gendus in Bagland to tempt us to whsh for their re-undon. I blstorical and monsmental scupture a very questionable taste has been footered by an ill-directed stady of the remains of matiquily. Symbolical representations were employed by the anoienta, who always underntood theis work, with a thorough propriety of invention and of conception Symbolical figures form as definite a mode of comveying ideca sil she letters of the alphabet: when combined they form a word and impart a notion. But the symbols of the classical age are grounded upen a creed wholly foreign to us, and which has reacked us only in divjoinied fragments. The aphabet has gone out of use, and the language $i n$. dead language; and in its place we mock the ancients by subtititios allegorical reprementations, that is to say, by hewhy metaphors ia stone, vagne, strained, and bombartical, afording no satisfaction to the vulgar.

Artiats imagine that they ennoble their work by borrowing amient eostume and attributes; munt in the sutne way as a courry mhootmaster keepe up his dignty by making a apeoeh is Lattn to the yours

literary as graphical, of the Gothic era, there is a constant and ludicrous canfusion of costume, both plysical and moral. Joshua stalks in plate armour; the daughter of Herodias dances and tumbles on her head; the temple of Jerusalem is built with the beliry of a cathedral. No inconsistency was perceived. Guillaume de Lorris describes the church of St. Venus; Parson Cupid mounts the pulpit and preaches a sermon, and the choristers and canons chaunt authems and psalms. Absurdities like these, arose from ignorance and bad taste; they cannot be condemped too strongly. But let os be impartial, if we can. Ferhaps information and classical taste, as it is called in cormmon parlance, produce equivalent absurdities. Our artists often violate propriety with as much boldness as the much reviled Gothic artists. They digguise their contemporaries in the costume of Greece and Rome. Tbey people the aisles of the church with the lifeless mythology of Olympus An incessant war is thus waged against reason aud pro-priety-Do they not forget the great object of their art?-The object of art is to satisty the reason. Skill may be displayed in the carving of the statue; the limbs may be moulded with taultess accuracy; they may emulate Greeian symmetry: but more, much more than such quabicies, is wanting. Unless the sculptor labours to meet the ideas of those who tange at the opposite extremes of mental cultivation, he is not imbued with the true spirit of his art, he is a mere workman still. He mast satisfy those men who are hisis friends and companions, the lovers of his art, by the spirit of poetry which he infuses into the representation of nature. He must idealize the countenabce, the attitude, the garb, so as to breathe into the figure a spirit of gracefulness beyond the triteness of common life. Tliis is no easy tisk, and the stiutue nusst prove that the artist has overcome the dificulty without destroying the illusion whieh it is essentially necessary that the art should produce. If we may so express ourselves, be should sculpture in a style analogous to blank verse, avoiding the prose of conversation, and the rhyme of French tragedy. But having effected this end, he must, devertheless continue perfectly significart to the unimpassioned, uninstructed spectator, who asks for nothing but the representation of the common form; to him who is merely seeking for the memorial of the King, the Matron, the Commander, whose memory he loves, or whose fame he admires. Works of art are peculiarly addressed to such xpectitors. A public monument is a boak opened for the perusal of the multitude; unless it declares its meaning folly, plainly, and sensibly, the main ose is lost. This principle is so self-evident that it is almost umecessary to discuss it. And yet how many grand statues, groups and cenotaphs have been cast, chiseiled, modelled, and manufactured, in which this plain and Grrst intention is wholly lost!

We may here be allowed to relate a true story, which in itself, as well as in its consequences, affords a volume of instruction Some years ago a sculptor, whose genius may justly be a subject of national exaltation, happened to be present at Guildhall when Nelson's monument was first exposed to view. A child who stood before him, was exceodingly attentive from the moment when the canvass begun to fall before the marble. The boy looked anxiously at the statues as they appeared When they were completely unveiled, he could not pousibly cuncelve that the obscure medalion on the lap of Britannia cmataiued the likeness of the naval hero: so he cried out in a tone of mixed inquiry and of disappointment, whilst he pointed at Oceanus,"Father is that Lord Nelson?"-The sea gol, the most prominent figure of the group, naturally seemed to be the personage in whose honour it was erected; but how could the bearded nuked giant be the Bricish admiral? The Guilchall cenotaph is of miserable workmanship, bat the just censure conveged by the exclamation of the child, wis not lost upon Chauntrey, who was then at the beginning of the career in which he has since bounded forward. And his productions, which will hereafter form an wra in the history of English art, prove how successfully real genius can disoard conventional aids.

Moderate artists resort to graphic allegory for the same reason that poetical allegory has been favoured by peetasters. It is protected by the harmiless graces of mediocrity. Affording a convenient help to Woverty of invention, it inspires a decorons kind of traditionary respect. We are accustoned to it, and, without much inquiry, its use seems to be sanctioned by the example of a few great men who have employed such representations with saccess in particular instances, not redurible to general roles. Michaiel Angelo may be allowed to place Day and Wight on the sepulctre. War and Peace, as they are engrafted by Westmaent on the Wellington vase, add to the significancy of the trophy. Sin and Death are embodied by Milton. Yet precedents like these forthd initation, exxept by the equals of the mighty masters. We bave partly confersed this truth by alaudoning all heathen my thology ausl allegory in literature. Neither Mars nor Bellona are invoked in rhyme to aid the slaughter; and Hymen and his altar, and Cupid and his bow, are never seen in colours ascept upon the Valentine. Allegory bas been wholly repudiated by the poet and tue paipter, and
in proeess of time the sculptor will follow their example. But, unfortunately, in all branches of the fine arts, bad taste and pedantry retain an inveterate hold. Books which are not worth reading soon cease to be read; but works of art which are not worth seeing do not easily cease to be seen. Versifiers outlive their trash; whilst the productions born in the Grub-street of art, continue, in spite of their recognized worthlessness, to exercise some gentle influence over some docile imitator. As long as they continue to be a part of our common stock of visible objects, they pervert the taste of the artist as well as of the crowd. The eye easily acquires bad habits: bad examples haunt the imagination of the artist, and influence him when he thinks he is a free agent. Every glaring picture, or ranting statue, is sure to become the fruitful prototype of an hundred affiliated deformities.

We have hitherto spoken only of ecclesiastical buildings. Public monuments of another description must now be considered. At the conclusion of the war the legislature considered the propricty of erecting some memorial which might perpetuate the memory of the events of the mighty conflict. Various plans for naval and military monuments were desigued, but no one has yet been adopted, because the money voted by parliament has never been raised.

As similar causes in the physical world always produce similar effects, it may appear reasonable to suppose that the form of a beautiful specimen of arobitecture, which has afforded a very pleasurable seusation to the spectator, will always retain that power. An exact copy of a pleasing original, when repeated or created anew, may be anticipated to preduce the same degree of gratification as it did in its original place. However, when the architect acts upon these premises he is usually disappointed. There are cases, unquestionably, when satisfactory results will follow from such imitations; but a slight consideration of the vature of architecture will convince us that they are of rare occurrence, and that any close or servile inaitation of u supposed "perfect model" must usually prove a complete failurc.
Architecture produces its effect upon the mind quite as much as upon the eye. lts forms are understood by the intellect, not merely painted upon the retina. The pleasures which it excites arise from complicated sources; they spring from the thoughts which we bestow upon the object, and not merely from the contemplation of the form. This assertion may be easily exempliffed. A building which we knoro to be constructed of Canadil deals and cast iron pipes, daubed with "lithic paint" or "patent mastick," will never please us as much as if it were raised of freestone. The lines may have the same elegance, but we cannot disjoin the ideas of grandeur and of durability; and the notion of the instability and slightners of the flimsey editice derogates from its consequence. Besides which, when we look at a building, we are gratified by considering the labour and skill of its construction. We like to see the firm and regular courses of well-squared stone, the shaft compacted with the capital, the wedge stones balancing each other in the arch; but when the materials pretend to perform a part which does not belong to their nature, then we are offended by the deception, at least we receive but a very small proportion of the pleasure which their forms would have given if executed in the genuine substance. From the centre of the pit the actress looks as fine as the lady in the bozes; but we do not thenk that she is equally well dressed, because we are aware that instead of diamonds, gold, and silk, she is tricked out with glass, tinsel, and gauze, with things that assume to be that which they are not, with tromperit. Every deception in architecture becomes a blemish which the mind does not pardon. Windows, which exclude the light; doors which cannot be opened; twisted columns which could net stand beneath their superstructure; columns bearing sothing ; passages leading to nothing; are imperfections which are obvious to the most inatentive or uneducated observer. They are deformities, because they are of no use ; otherwise the idle imposts or columns, which please when properly applied, would bave as much inherent beauty-so far as beauty depeads upon form-in one situation as in another. Bat if we cease to derive satisfuction from the parts of a building on account of their false bearing to the whole, can we be better satisfied when the entire building, the "perfect model," is a falsebood? Every structure raised by the hand of man, derives its entire value from the feelings of the human heart- The hearth gives sanctity to the dwelling; the throne, to the palace; the altar to the temple. But if we crect dwellings, palaces, or temples, which never can be used by human kind, the walls will rise in cheerless and llesolate mockery. A perfect moden model of the most perfect Doric temple, if not applied to some purpose beyoud mere ornament, would excite no other feelings than those of labour in vain. No perpon of common sense ever was satisfied with a temple in a garden; we know it is built merely for a show, and as a show we undervalue and despise it.
It may be asked in what manner we are to comanemorate nationsl victories, Certainly not by what are called "moduments," wot by
pillars, arches, temples, having no assignable use, and built merely as "examples." All these are what are vulgarly called "follies," and deserve no more respect than the tower on Shooter's Hill. The ancients never raised monuments; they never "realized examples," they never built for display alone; and it was from its connection with actual life that every ancient work of art acqnired its vitality.

In copying any Grecian temple, however beautiful, and calling it a Christian church, we depart still more widely from the practice of the ancients. They never imagined that a restoration of a building which did not belong to them was productive of "perfect beauty." In fact, such an epithet, as applied to any building, must be erroneous. Architecture is not an imitation of nature. All the forms of architecture are conventional; it is therefore an art of which the objects do not admit of abstract perfection. Buildings are capable of as many varieties of perfection as of destination; each may be perfect in its kind, if it is perfectly suited to its end. But therefore it follows as a necessary consequence, that it is impossible to transfer its merit to an "example," erected for another purpose, amongst other people, and in another climate ; the more the imitation is "correct," the more is its application falsified by its original character.

Any system of encouragement for the arts which inculcates, that perfection is to be attained by compelling the urtist to "faithful imitations," is the bane of all talent. The ancient architects never "copied" or "restored" the structures of the stranger. They knew better. Let us attend to the lessons given by those who have attrined the highest station in the art. It was from the banks of the Nine that the gifted Greeks received their art and knowledge ; but they instantly surpassed the preceptors who tauglit them the basis of the art, to which their taste and talent, adapting it to their own purposes, gave a beauty, unknown before. Grecian gerius refused to reconstruct exact imitations of the majestic temples of Egypt in honour of the Hellenic deities. They did not place their gods in the adyts of Isis and Osiris.-The acanthus twined around the capital which had been shaded by the brunches of the date tree; new elegance was given to the spirals of the volute; beams of olive crossed the cell instead of the transverse blocks of massy granite. Relieved from the superincumbent weight, the entire frame of the structure sprang up more lightly. The columns diminished in diameter; the architrave ceased to retain a useless solidity; acroteria ranged upon the roof, unknown in the land where the rain of heaveudoes not falls The scnlptured pediments terminated the required covering and decked the front : and the heavy magnificence of Thebes was lost in the graceful splendour of the Athenian Parthenon.
Whether inherited from their Tuscan ancestors or discovered by their own science, the Romans possessed the art of turning the arcli. They had a full perception of the beauties of Grecian architecture then existing in unimpaired perfection. They justly appreciated its excellence, but they never built copies or "examples" of Grecian buildings. Fo:lowing the faith of Greece, they bore away the statues of her gods; bat they did not enshrine their Jupiter within the Doric columns of Athens; they did not enter the Forum beneath the Propylea, nor did they copy the Parthenon upon the proud Capitoline. The art which they had learnt, they put in practice with good sense and prudence. Possessed of a new power, of which their teachers were ignorant, they applied it with boldness. The huge dome of the Pantheon swelled behind the Corinthian portico; fretted vaults took their span over the triumphal train; arch rose nopo arch in the eternal amplitheatre; and though the relationship was not disowned, still every feature of Greciun architecture received a new character in imperial Rome.

Anidst the ruins of Rome the great Italian architects formed their taste. They studied the relics of ancient grandeur with all the diligence of enthusiasm; they measured the proportions, and drew the details, and modelied the members. But when their artists were employed by the piety or magnificence of the age, they never "restored" the "examples" by which they were surrounded, and which were the subjects of their habitual study-No! they turned them to a better nse. Crude imitation was disdained by this energetic and intelligent race. They felt aud understood the beauties of the ancient style; and causing the elements to enter into another combination, a new style was created; which, considered in relation to its intentiou and employment, possesses transcendent excellence. Retaining the same alfinity to the Roman style which the latter bears to the Grecian, it has all the merit of invention, and all the beauty of propriety; and the Pantheon, high in mid air, was expanded into a cathedral worthy of the supremacy assumed by the pontiff, who claimed to be the primate of the world.
It was thus that the greatest impulse was given to national genius in those countries where architecture became an inventive, intellectual art. The architects did not linger in contemplation of their predecessors; former geperations had advanced, and they proceeded. No
style or structure was held up as a perfect model, or propounded as a test. It was their desire to excel by the mixed exercise of jodg. ment and invention. Selecting from the skill of past ages the ideas best suited to the present, they felt that it was their caling to adapt their art to the wants and feelings of society. It was thus that their structures acquired the charm that we would vainly attempt to impart to cold and corpse-like restorations. Original design will never be fostered if artists are taught to defend themselves by precedents. Those who seek to distinguish themspives by the practice of this, be finest of the fine arts, should not lose the benefit derived from experience. The noble writer who is at once the warmest and moost leamed admirer of Grecian architecture, will best instruct them how to profit by the contemplation of its excellence. "These modes should be imitated not with the timid and servile hand of a coppist; but their beauties should be transferred to our soil, preserving ait the same time a due regard to the clanges of customs and mamers, to the difference of our climate, and to the condition of modem societs. In this case it would not be so much the details of the edifice itself, however perfect, which ought to engross the attention of the artiat, but he shou'd strive rather to possess himself of the spirit and gemins by which it was originally planned aud directed, and to acquire those just principles of taste which are capable of general application" The British architects of the present day are equally distinguisbed ty their genius and their industry; no climate, however remote, has escaped their researches; no toils or dangers are shumed when isformation and knowledge are to be obtained. The progress of all the mechanical arts has given unexampled means of execution; and the roused spirit of the country will soon furnish them with sufficient em. ployment. Thinking as the ancients would have done, they will mot copy antiquity, but they will emulate and share its lasting glory.

We might have terminated this article by making some remarks upon the churches and other buildings which are now constructing in our modern Babylon. It is hardly necessary to observe that ibe greater part of these edifices do not please us, and that we consider them as liable to censures and objections. But upon consideration we found that we could not dare to criticise. "Taste"-we dislike the word, but we can find no other-proceeds upon principles which are so uncertain that mere theorists like ourselves must not be allowed to trifle with the reputation of professional men, whose bread depends upon their exertions. We are therefore silent where a loose or basty observation of ours might inflict a lasting injury; and whatever affc. tion we may feel towards the "pointed style," we will neser alow our love for lancet arches to become the means of wounding the feed. ings of the architect who has the misfortune to be equally enamorred with entablatures.

When the fine arts really exert a profituble influence, they att by increasing those sources of reasonable pleasure by which the mind is neither degraded, nor enfeebled, nor depraved. That the love of the fine arts may be made to produce a most beneficial effect, camol be doubted; for there can be no greater source of good, both to the individual and to the species, than the multiplication of such gratifcations as are attainable without diminishing the happiness of our fellow. creatures. But when the fine arts are allowed in any manner to become the subjects of runcour or detraction then the honour which they possess is lost. The productions of Phidius or of Raphael be. come despicable if they tend to increase the causes of contention Unfortunately we are furnished with too many reasow for mutud hostility arising ont of important matters. Whether this mivfare might not be easily diminished it is not our business to inquire; bot at all events let us avoid imitating children-let us not quarrel and fight about our gaudes and toys.

EXCAVATIONS ON THE LONDON AND BIRMINGHAN RAILWAY.

Sir,-In the last number of your Jourmal I observed an extract from Roscoe's history of the London and Birmingham Railway, giving an account of a new method of working excarations, the invention of 4 . Joseph Thornton, one of the contractors, which is mentioned as harimg been first tried under my direction. I shall be ubliged by your stativg in your next number, that the engineer of the worls at that time Mr. Edward Dinn, and that when I succeeded him, I found the process in full operation, Your obedient servant,

Robert B. Docraht.
Birmingham, Jure 21, 1899.

BUNNETT AND CORPE'S PATENT CONCENTRIC STEAM ENGINE.

The following tables, deduced from accurate Experiments, made with a view of ascertaining the relative advantages of the application of power, by "Bumett and Corpe's" Patent Concentric Steam Engine, in comparison with the present Locomotive and other Engines, shows the amount of force necessary to move a crank (having a nine-inch throw) through one complete revolution:-

Fig. 1, ahows the position of the connecting-rod, as applied direct from the circular pistonrod in Bunnett and Corpe's Patent Concentrie Engive. a, b, are points between Which the end of connecting-rod reciprocates.
c, d, are poinis between which the piston reciprocates.
e, is the poutition of the end of connecting-rod, when the erant is at an angle of 45 degrees.
f, is the position of the piston.

Fig. 2, shows the porition of the connecting-rod, as applied from the present horizontal cy linders.
a, a, are guides through which the piston-rod is worked freely; forming its parallel motion.
b, represents the connecting-rod, when the crant is at an angle of 45 degreen.
c, end of connecting-rod attached to the piston-rod by a joint, working freely.

No. 1.-Prom A to B. In this Experiment, a 10 lbs. Weight was suspended at the end of the throw of the Crank, commencing at 5 degrees above its dead centre at \mathbf{A}, and continued to \mathbf{B}.				No. 2.-Prom B to C. In this Kisperiment, the Weight was passed over a Pulley, and attached to the throw of the Crank; the Pulley was shifted continually, so as to render the acting force uniform in the various positions of the Crank.				No. 3.-Prom C to D. In this Kxperiment, the Weight was also passed over a Pulley, which was mifted frequeatly, as in No. 2 Experiment.				No. 4.-From D to A. In this Experiment, the Weight was suspended from the throw, as in No. I Experiment.			
D_{e}	Concentric Engine	Horizontal Cylinder.	Difference	$\begin{gathered} \text { De- } \\ \text { grees } \end{gathered}$	Concentric Engine.	Horizontal Cylinder.	Diffrence.	$\begin{gathered} \text { De- } \\ \text { grees } \end{gathered}$	Concentric Engine.	Horizontal Cylizder.	ence.	$\begin{array}{\|c} \text { De-- } \\ \text { grees } \end{array}$	Concentric Engine.	Horizontal Cylinder.	Difference:
	lbs.	${ }_{16 m .}$	1 ll .		1bs.	1 lba	Jbs.		1bs.	lbs.	lbs.		lbe.	lba.	lbs. 1.5
10	43.	147.	77.	${ }_{100}^{95}$	10.62 9.62	${ }_{13.5}^{15.25}$	4.63	10	70.	160.	90.	95 100	3.	4.5	1.5
18	33.25	50.	17.75	105	9.12	14.5	5.37	15	21.25	39.	18.75	105	4.	6.25	2.25
20	25.25	39.5	14.25	110	8.5	14.75	6.25	20	18.	29.1	11.	110	4.75	7.5	2.75
35	21.5	30.25	8.75	115	8.	14.75	6.75	25	14.5	24.	9.5	115	5.5	9.12	3.62
20	18.5	25.75	7.25	120	7.	15.	8.	30	13.	20.75	7.75	120	6.37	11.	4.62
35	15.25	21.	5.75	125	6.25	15.12	8.87	35	11.5	18.75	7.25	125	6.62	12.75	6.12
40	14.5	18.	3.5	130	5.25	14.5	9.25	40	11.5	17.75	6.25	130	7.	15.	8.
45	12.5	15.75	3.25	135	4.75	13.25	8.5	45	11.	16.25	5.25	135	7.85	18.	10.75
50	11.25	13.5	2.25	140	3.5	13.5	10.	50	12.5	16.	3.5	140	8.	20.	12.
55	9.5	12.	2.5	145	2.87	14.	11.12	55	13.	14.75	1.75	145	8.75	24.	15.25
60	8.25	10.	1.75	150	3.	17.87	14.87	60	13.25	14.75	1.5	150	10.	28.75	18.75
65	6.5	8.75	2.25	155	4.5	24.75	20.25	65	13.	15.75	2.75	155	11.	35.25	24.25
70	4.75	7.5	2.75	160	6.25	32.	25.75	70	13.	14.5	1.5	160	14.	49.5	35.5
75	3.	5.87	2.87	165	8.	38.	30.	75	12.5	14.5	2.	165	19.	70.	
80	1.25	4.25	3.	170	13.25	58.	44.75	80	13.	14.	1.	170	28.75	105.	76.25
85	. 75	3.5	2.75	175	30.	114.	84.	85	12.75	13.75	1.	175	63.	160.	97.
80	. 25	1.87	1.62	180	dead	centre.		90	12.25	13.	. 75	180	dead	centr	
	298.25	490.5	192.25		140.5	442.75	302.25		318.	533.	215.		209.	380.12	371.12

	Concentric Engine.	Horizontal Cylinder.	Difference.
The gross amount of weights on the whole revolation of the Crank.,	1bs. 965.75	Ibs. 2046.37	1080.62

CURVES ON RAILWAYS.

Sir-Observing in your jourmal several papers on the subject of setting out curves, I beg to communieate to you a method differing in some sespects from any there described. It has been adopted with great success on ground of the most difficult nature, both on account of the irregularities of the surface, and the buildings and other obstacles to surveying operations with which it was encumbered.

1 am , your's respectfully,
May 8 8, 1899.
Fig. 1.

The method which has been usually adopted for setting out curves is as follows. (See Figufe 1.) Let AB be the straight line, a tangent to the curve, B its termination, and C, D, E, \&c., equidistant points in the curve of given radius BO, O being its centre; produce AB to c, ;añd drâw Ce at right angtes to Be ; produce AC to d, meking Gd= $\mathrm{CD}=\mathrm{BC}$, and join $d \mathrm{D}$. Join $\mathrm{OB}, \mathrm{OC}, \mathrm{OD}$. The angle $d \mathrm{CO}=$ the ? angles $B O C$ and CBO , (Exclid I. 32 , and the angle $O C D=\mathrm{CBO} \therefore$ the angle $d C D=$ the angle $B O C=$ the angle $C O D$, for $B C=C D$, by 'hyp. then, by similar triangles $\mathrm{OOD}, \mathrm{dCD} ; \mathrm{OC}: \mathrm{CD}:: \mathrm{CD} ; d \mathrm{D}=$ $\mathrm{CD}^{\mathrm{OC}}$. In order to obtain C the firtt point in the curve, calculate BC the sine and $c \mathrm{C}$, at right angles (by construction) to BC , the versed sine of the angle $B O C$. If the cloord $B C$ is small in comparison with the radius BO°; C c may be considered, at least for all practical purposes, $=$ half $d \mathrm{D}=\frac{C D^{2}}{C \theta^{-}}$, and $\mathrm{B}=\mathrm{BC}$. The above is a simple, and with proper care an accurate, metlid of ranging a curve where the grotud is cleat from obstructions; it has been usual to take BC=onte chain, but it is much better to take 2,3 or 4 chains where the nature of the ground will permit, as the errors atising from the difflculty of setting up ranging rods and meastring offsets with precision will be thereby mucll diminished.

Where the giound to be ranged over is much encumbered by trees, : fences, buildings, \&c., the above method is liable to objections, as it is neseseary that the chords $B C, C D, D E, \& C$., should be equal; for no I very simple formala can be obtained for the value of $d \mathrm{D}$ when $\mathrm{C} d$ or CD is not equal to BC. The following method is free from this defect, and is other respeots have found it answer the required pur; pose in a most retisfactory manner.

Produce the straight lime AB (Figure 2) to c any convenient distance, for instanee, $2,2 \frac{1}{2}, 3,4,8 c$, vhains, and making BC the aije of the : angle BOC to radius BO , calculate $\mathrm{C} c$ the versed sine. This gives ; the first point C in the curve. Set off $\mathrm{B} b^{\prime}=\mathrm{C}$, in a direction as nearly as can be guessed at right angles to $b^{\prime} \mathrm{C}$, then $b^{\prime} \mathrm{C}$ will be a tangent to the curve at C; produce $\delta^{\circ} C$ to d_{1} any convenient distance as before, and making $\mathrm{C} d$ the sine, ealculate $d \mathrm{D}$ the versed sine, which gives another point $\bar{D} ;{ }^{\prime \prime}$ set on $C \bar{\prime}=d \mathrm{D}$ at right angles, or as nearly as may be to $c^{\prime} D$, and $c^{\prime} \mathrm{D}$ will be a tangent to the curve at D , and so on. Of course the length of the tangents $\mathrm{B} c, c^{\prime} \mathrm{D}, d^{\top} \mathrm{E}, \& \mathrm{c}$., will be made the same until some peculidrity in the nature of the ground renders it necessant $\%$ alter them, and after the obstruction has been passed it will be practice I have found two chains the most advaptugeous length for curves varying from 50 to 100 chaits in radius; for curves of larger radius and on fayowrable ground, ptobably 4 chains would be betters

The principle of the above method is, that the curve is ranged by means of comtinual tangents; it wonld occupy too much space to deseribe in detail the various methods of making the necessary calcolations, and factlitating oprerations in the field work, ns well the mode of finding the intermediate points, when 4 is requited io put in a stake at the end of every entin, or huif ctaili i theee and muny othor points will readily suggest themselves to any person at all conversans with mathematical subjects.

Fig. 2.

This method affords advantages in terminating or changing be radius of the curve at any required place, or reversing the curre coommonly called making an S curve) much greater than any plan l lare hitherto seen described.

With regard to reverse or S curves, I consider it of great im. portance to insert a straight line at their junction, on account of the necessity of elevating the outer tail of a curve above the inner ana This may be easily effected by interposing a slort piece of strigbt line, and wherever it is possible to do so, it sloould by no meass be neglected.

THE MARQUIS OF TWEEDDALE'S DRAIN TILE MACHIE

This machine will make 10,000 drain-tiles a-day, one man and tro boys to attend it, and 20,000 of flat tiles for the drain-tile to lie uppo; but if the tiles are broad for roofing, it will make 12,000 a-day. These draining tites are 15 inches long, so that three trachines would make in one season (of thirty weeks) as many tiles as would lay a drain from London to York. Now a man and two assistants will only make 1000 drain-tiles in a day, and these only one foot long, which is $L 000$ feed per day. While the machine with the same number of persons will make 12,500 feet per day; so that if the drain be laid at the distane of twenty-five feet, it will make in one day sufficieat tiles for in acres The advantages are-1at, the tile is much stronger from being come. pressed, and less pervious to watgr-it is not only compressed, but is is smoothed over, whicth gives it a surfice as thoogh it were graseb They are capable of being made from a much stifer clay than usah and in nine cases out of ten the clay may be used directly on being dug, If passed through the cnitieess, being much drter. Chy unft tot britks and tiles by the common method is avaitable by the machiners: The expense of draining will be paid in three years, bot not aufrequently in one.-Farmers Magasine.

HOWTIIER ARCADE.

In an article by our correspondent Ralph Relivivns on the Lowther Avesk, wre find that be lim inadvertently fallen into an error in attriboting the designe to a Mr. Turner. We reccived a contradiction of this frow 1 gentiontut of that name in March last, but as we were desirous of ascertaining whether we had attributed this to the wrong person, we were induced to delay be contradiction; we have now much pleasure in announcing that Mr . Withertue Young is the architect. A letter fron lim uufortunately miscarried, ss the reason that a longer delay has occurred than we should have wished in dous justice to a gentleman who so higbly merits the esteem of the profession. We beg to sesure Mr. Yoting of orr sincere regret that any misunderstanding thould hivpe oceurred, and of otur hish on all occasions to do justict io himeelf and the protenion

MOMENTUM OF FALLING BODIES.

Sta,—As the following remarks on the momentum of falling bodies are 1 believe of importance, and connected with the communications of C. E. C. and B. on the subject, you will oblige me by giving them a place in your joumal.
The questions for consideration are, the effect of a moving power on the resistance offered to a pile while driving, and the comparative effects of a weight acting simply as such on a pile, and when striking it with velocity. These effects are best measured by the depths penetrated under the same circumstances.
It is demionstrated by writers on dynamics, Duat the effect of a moring power in overcoming an uniform resistance is as the square of the velocity, and Smenton in his "Experimental examination of the quantity and proportion of mechanic power," bas shown "that the quantities of mechanlc power to be expended are as the squares of the velocties to be generated, and vice versa. If, therefore, the resistance to be overcome was uniform, the force of a ram or monkey woud be as the equare of the velocity into the weight, or as $0^{9} b$. But the reaistance offored by a pile when driving, is made up of the reaisterice to pemetration and the feelstance of friotion; the first of which, in homogenoum sobotanceay it peafly uniform, and the second increases as the plie is driven, and in a ratio nearly to the depth penetrated. Pat a $=$ the velooity that would be destroyed in one second by the resistance to penetration, $x=$ the depth penetrated, and $m x=$ the relocity that would be destroyed in one second by the friction at the depth si we then bave (Slmpson's Fluxions, art. 218, vol. 1) ($a+m a$) drinedas and by integrating and solving the resalting quadratic, wo
 and therefore the resistance under the assumed circumstances will be as this quantity In which a and m are known quantities, to be determined by experiment from the substance penetrated and the nature of the pile. If we suppone a to be very small compared with max, as would be the case with a rough pile in a bog when it had penetrated to some depth, we.get $\alpha=\sqrt{ } \frac{{ }^{\prime}}{m}$ or, the effect of a stroke is proportional to the velocity when the resistance increases as the depth.
Without emfering farther into the ature of the resistances to be overconte in pile-ditving, it appears that the forge of the stroke will be as the roldolity when the resistance inoreases as the depth; as the squire of the velotity when the resintance is uniform; and as some other function of the velogity when the resistance does not follow theas invind It aso appeare from the equation $x=\sqrt{\frac{g^{2}}{m}+\frac{a^{4}}{m^{2}}}-\frac{a}{m}$ that the effect increases in a greater ratio than the velocity, but as in all practical cases, the velocity of the ram will be greater than that the superstructure can ever be supposed to have, the advantage will be in arour of practice, and therefore practically we may suppose the force to be as the velocity. The nature and mass of the pile will lave cousiderable influence on the force of the stroke. If the pile is of straight-grained ffr, It will be driven farther by the stroke than one of beeth or oak, and if shod and capped with iron, the effect will be considerably increased from a greater degree of elasticity, as the effect would be decreased if shod and capped with cork or any other yielding substance. Also, if bo represents the quantity of motion in the ram, and p the mass of the pile, $\frac{b v}{b+p}$ will be the joint velocity after the stroke, Hithlif; as I have before remarked, being less than r, will make the effect less.

Wifh respect to the effects of a body in the state of rest upon a pile, and when striking it, 1 am of opinion that in most cases there is a disparity in the forces, for as the weight produces no effect, how are we to compare them? A weight is compared to a weight by its own standand ; and a moving force to a moving force by a different standard; but when we commence comparing both, we find the consideration attended with no small difficulty. In the spring balance used by B, (Journal, roi. in, no. 16, p. 18, a weight on the spring keeps it steadily oa point that the same reiglt, moving with a velocity of foot persecond, would attain when its motion was destroyed; but in the cise of a weight pressing on a pile, if it is not such as to cause penctration, I do not see how it can be compared with a moving forco that does, and if it does penetrite, the forces are best measured by the depth; but after a few strukes of a raonkey, or after the first, the effect of the reight resting on the pile becomee nothing.
The ebject in bridge building is to give frmmess to the superstreetare by wrengthering the foundatione. For this purpose it will

one or two feet per second, and to compare this foree with the entire force used in driving the piles. Example:-Suppose an abutment measuring $30 \times 20 \times 10$, each foot weighing $1 \frac{1}{2}$ cwt., supported on 150 piles, each pile being driven with a monkey weighing 6 cwt., falling from a height of 16 feet. Here the force of the piles $=32 \times 150 \times 6=$ 28,500 . The weight of the abutment $=80 \times 20 \times 10 \times 1 \frac{1}{2}=9000 \mathrm{cwt}$. $\frac{28,800}{9,000}=3 \frac{1}{5}$, which shews the foundations are able to bear the force of the abutment moving with a velocity of more than three feet per second. The equation $m=b+e b r$, given by jour correspondent B, appears to me not to hold good for falling bodies, and certainly casmot apply to the example taken from "Hutton's Course," for, evidently b is tot similar to obe, and therefore the equation $b+8 b v$ cannot obtain. The fact of the matter is this, that in falling bodies, after the force obe is cxpended, b then acts by its weight, and very little consideration will siew that both cannot be added together. The ingenious method invented by Sir Christopher Wren for determining the effects of rollision by suspending the bodies with threads of equal lengtha, show the truth of Hatton's formule $\frac{\mathrm{B} v}{\mathrm{~B}+b}$ and $\frac{\mathrm{B} v+b v}{\mathrm{~B}+b}$, and the experiments. of Stmeaton for finding the meohenical power leat after the stroke; prove the same thing.

The experiments made by \mathbf{B} prove the effects of a moving power on his spring balance to be $\frac{3 b 0}{2}$ nearly, but until the case is shewn to be analogons to pile-driving, it would be incorrect to use the result. Galileo and Mersemus found the squares of the weights started from the ground in a balance to be as the heights fallen; and Gravesande, in his Natural Philosophy, by altering the apparatus, found results as the square of the velocity; therefore, in applying experiments of this kind, it is quite necessary that the resistance in botls cases be equal and similar:
B changes the equation $m=6+\frac{3 b 0}{2}$ tito $m=b+\frac{3 b}{2} \sqrt{328}$; it should be $m=b+\frac{\overline{3 b} \sqrt{2} \sqrt{648_{1}}}{\text { for }} \mathbf{b =} \sqrt{64 a}$. The results, therefore, of the examples he has given should be $200+\frac{600}{2} \sqrt{64 \times 25}=12,200$, not 8,685 , and $100,000+\frac{300,000}{2} \sqrt{64 \times 01}=220,000$, not 184,000. By discarding the factor b, the results would be 12,000 and 120,000 , which are nearez the truth.

> Limerick 241h MGay; 2839.
I an, air,

Your's obediently, Jonn Nevile.

"ASPECTS AND PROSPECTS."

Sin-ulinterd of the epithet "judieions," I think that of "ingenious" might very well bere been applied to Reptor's remarks given in your Tebruary number; siace they certainty are of that ingeniously perplexing kiwd whien tend to make people faney objections and lieonveniences where none were before thought of. 1 at least am so far from agreeing with him that aspect to of more importance than almost any thing else, that I consider it to be a matter of comparatively little or no moment. In fact every aspect has something to recommend it, and also something that may be alleged against it as a defect:

According to Repton's theory, "maspect due worth is apt to be gtoomy, beciruse no sumshine ever cheers a room so placed." Now as regands the ezterior, such an aspect is certainly not at ath to be recommended for that of the principal anchltectural front, because it will mever catch the sut, except its pyening hits in summer time, consequently will mot show iteelf to the same udvantage as when set off by strong light and shade. Bnt so far from the rooms themselves being neeessarily gtoomy, they will in summer time be far more agreeable that those mote exposed to the sun. A room fucing the north and looking out opon a pleasure ground or landscape tighted up hy a Grikiunt aint, enjoys a noost cheering and amimated picture, so placed, be it observed, in to be viewred with the greatest effect. Whether such room be in itself glooray or not, will depend upon the arrhitedt, opon its design, fitting up, and furriture. It may be of more than ordiuarily cheerfol charadten, white mother faring the sotth, shall be quite the reverse. I mm of opinion therefore that Repton either has not sufficiemely explained himself, or eloe does not himself understand what dopatitute gloodinow in the appentine of a momo

He objects to an aspect due east, "because there the sun only shines (he means shines only) when we are a-bed;" which, however, depends upon the time people choose to rise, whether before ten o'clock in the forenoon, or after. A no better due west aspect is admired by him, for that we are assured "is intolerable from the excess of sun dazziling the eye during the greater part of the day." Rooms so situated, must of course be habitable only in the depth of winter or in cloudy weather. It seldom happens that the sun is complained of is being an exceedingly unwelcome guest; but whenever he is so, we can very easily prevent his intrusion into our rooms, by means of blinds and muslin curtains, which, if intended for any purpose at all, are inttended to shut him out. The objection alleged against an aspect full west is deserving of consideration, because it would follow that in front so turned the windows ought to be fewer, that is, the piers much wider between them then if the aspect were east or north, a circumstance I believe wholly disregarded by architects, certainly not attended to in street building.
The very worst aspect of all, we are assured, is a south-west, because more exposed than any other to driving rains. In corroboration of this we are told of a heavy storm of wind and rain which pelted against the windows at Organ Hall, while from those on the other side of the house, the view appeared perfectly clear. This driving of rain against the windows, Mr. R. considers highly disagreeable; yet if. most other persons agree with him in such dislike, my own taste must be singularly perverse or capricious, for I know of nothing that conveys so intense an idea of indoor comfort and security, than the rattling of wind and rain against the glass which defies their attacks. It is one of those enjoyments for which a Sybarite might be allowed to sigh.

I will not pursue Repton's remarks any further, except to say that after all they amount to very little if any thing, to nothing more than that, of the four aspects of a house having rooms facing all of them, three will be bad, unless the south-east, instead of due south, be chosen for one of them, in which case however, one of the aspects must be the very worst, namely, the so much reprobated south-west. I should therefore say that the safest and best rule is, whenever there is any particular prospect afforded by the situation, to be determined chiefly by that, and to take care that it shall be commanded by the principal sitting rooms, let the aspect thus given to them be what it may; should that not be the most advantageous, there would still be other aspects for other rooms, where prospect might be dispensed with.

ON BLASTING ROCKS.
Str,——Having seen in your Journal of May last two very interesting accounts of blasting rocks by the aid of galvanism, on plans lately introduced by Colonel Pasley and Mr. Roberts, grounded on the principle of bringing to an intense red heat a fine iron, steel, or platinum wire, as originally proposed by Dr. Hare, of Philadelphia, I am tempted to trouble you with a few remarks on the advantages stated by Mr. Roberts to be derived by leaving a column of atmospheric air above and below the charge of powder, as also the increase of power which is obtained by doing away with the necessity of a vent bole.

If then, in accordance with Mr. Robin's experiments, we suppose that the flame of gumpowder has a temperatute not exceeding that of iron heated to its most extreme degree of red heart, it will expand the air which it penetrates, in the ratio to its former bulk of 4 to 1, or induce an increase of pressure of nearly 601 bs on the square inch; this on the hypothesis of this rate of temperature must be a maximum for the coolness of the surface on which it acts, as also the inferior temperature of the air must reduce that of the flame somewhat below that of the above standard. Mr. Robins likewise determines that his experiments for the force of gunpowder when inclosed on all sides, as exerting a pressure of $14,750 \mathrm{lbs}$. on the square inch. If we suppose that this is expanded in the ratio of 3 to 1 , by leaving a volume of air, equal to the cubic content of the powder, above and below the charge, also that the square surface acted on is increased in the same ratio, we will have in accordance with the law of the elasticity, being inversely as the volume, a pressure of $4,917 \mathrm{lbs}$ on the square inch, one-third less than if the powder had been inclosed on all sides, but acting over three times the surface, and hence, as deduced from the statical law of virtual velocities producing the same virtual effect; to which, then, if we add the increase of 60 ibs., by the expansion of the air, we procure an addition of power of 1-82nd part of that which we had if no air at all had been employed. From this it may be deduced that the larger the proportion of air, the greater will be the addition of power, but this, I am of opinion, will be in a great degree coumterbalanced by the greater extent of cooling surface, and consequent smaller degree of elarticity of the atmospherio column. With rogard to the loss of
power by vent holes, it is obvious that it will be proportional to the quantity of fluid which escapes by such apertures, and this will be equal to the velocity of the fluid multiplied by the area of the aperture. In order to determine this velocity, the best method is, perhaps to find the height of a homogeneous column, of the same fluid capabie of producing the same pressure as that to which the fluid is subjectech, for then the fluid would rush into a vacuum with the velocity a hearg body would acquire by falling through the height of the homogeneons column. If, however, the fluid rushes into atmospheric air, instead of a vacuum, the velocity will be that which a heary body will acquire, falling through the difference between the heights of homogeneos columns of the fluids of greatest elastic force equivalent to the presures

Thus, if as Mr. Rolins states, the elasticity of fired gunpordes is equal to a pressure of 14,750 on the square inch, and the heighte of 2 column of the same fluid capable of producing this pressure is is putting h^{\prime} equal to the height of a column of the same flaid capabit of exerting a pressure the same as that of atmospheric air, viz. 1 ISt nearly on the square inch, the velocity per second, through the vent bore into air will be determined by the formula $v=8 \sqrt{h-h}$. These heights may be procured as follows:-Gunpowder has very muct the same density as water, and is supposed to occupy a volume of 1,00 less than its generated gas, when this latter exerts a premore of 14,750lbs. on the square inch. Now, the height of a column of wher at 60° temperature, capable of producing a pressure of llb , wa the square inch, is $2 \cdot 31$ feet, but the gas of gunpowder having one thousend times the volume of its generating matter, and consequently equaly more voluminous than water, must, in order to produce the rame pressure, have a height of $2.31 \times 1,000$, or 2,310 feet to prodoce $14,750 \mathrm{lbs}$. on the square inch, the requisite height will be $2310 x$ 14,750 , or $34,072,500$ feet $=h$; to exert 151bs. on the gquare inch the height will be 34,650 feet $=h^{\prime}$. Hence from the formula $\theta=8$ $\sqrt{b-h^{\prime}}=8 \sqrt{34,072,500-34,650}=$ in round numbers to 46,900 feet per second. Now, if we suppose the vent hole to be 1.16 h of an inch square, its area will be $\frac{1}{256}$ of a square inch, or $\frac{1}{86,864^{\text {of }} \text { a }}$ square foot, hence the quantity of the fluid escaping per secoad wil be $46,700 \frac{1}{36,864}$ or $1 \$$ cubic feet nearly. Thus then we see the great loss of power which vent holes cause, unless the action of the por. der is inconceivably rapid, and account for the whole force at tiva escaping by these apertures, when the power is over matched by the resistance, a fact which frequently happens. It is to the entire obriation of this loss, as well as the more rapid ignition of the charge that I am disposed to allow the increase of power, and consequeas sarivg of gunpowder which will be caused by the use of the galvanie bettery in all mining and blasting operations, which advantages, coupled with the perfect immunity from all danger which the apparatus casses, ath, I believe, sufficient to bring it into speedy and universal use.

The addition of power by using a column of air is so small as hardty to be taken into account, and there is no case in which I can conceire it to be with any great advantage employed.

Very faithfully yours,
June 21, 1839.

BRITIBH MUBEUM.

(From the Times.)

IN the temporary building attached to the fifh room of the Britich Nyman, which contains the casts from the motopes of the Temple of Jupiter Selimus in Sicily, and of which an account was given in this paper some time esech, one was omitted; viz., the fifth, the execution and derign of which are equal, if not superior, to the others. It represents a combat between a werios od an Amazon or a divipity not known. The whrior is represented in a menting posture, yielding to superior force; the body, whioh is bent, is antindy covered with the leathern smour called "spolas." Two grands to npromet metal are adapted to protect the shoalders, and a belt of peculiar shap crosses over the lef shoulder-guard, and passes down the right thigh. Straps, called " mitra," are joined to the "spolas" at the waint, and addr. neath is seen the tunic drawn tight by the position of the leg; the ecablert of the sword is suspended by the thong, "telomon," crossing the brean. Tw large round shield is placed bebind the warrior for a relief to the forme, and part of the belmet is seen. The female figure hes the stiff tunic ard pppres in parallel folds, the earliest representation of drapery; she resembies in mad degree Minerfa, whose exploits are culptured on part of the metopet. Within the same apartment, placed under giass cases, in proportioas of half an inch to foot, are four models of what are voigariy called Trwoidy stones. As the monuments of which these tre the exeot represmantions I_{H} by antiquariea supposed to be among the most aneient romesins of hasen

ceptable to the general visitor of the Museum, ms there is none to be found in the pablished synopsis.

These structures are in general found at the tops of hills, or if on the plein at the higheat part, probably becanse they should be visible at a diatance; stonee placed upright, and standiag at regular distances, are nometimes placed sround them. The cromlech (the name by which they have been for ages known) consists of one large stone placed on three supporters; this is done probably because it is easier to place a superincumbent weight on three than on four or fire, because in the latter case all the supporters of the weight must be brought to bear equally on all, and this is not requisite when there are but three; accordingly, the covering atones are never found horizontal, the weight subsiding where the lowest support is found. These monuments are also frequently called quoits, from the upper stone resembling the anoient discus. What nation or religion they belonged to it is difficult to say; they are met with in Sweden, Denmark, Norwuy, France, and the islands of the Sfediterranesn, but more especially in the Celtic kingdoms of the North of Europe. If tbey can be attributed to the Druidical priests, they must have been among the earliest of their works, as the simplicity both of the plan and form declare them to have bean the work of men far less advanced in knowledre of architecture than the founders of the gigantic structures of Stonehenge. The Irish historians say, that Jegoinas, King of Ireland, the author of idolatry in that country, died in the year of the world 3034, in the plain of Magh Stetdch'd, while sacrificing there to "Crom Creaich." It is not lirely that they could have been used as altars, for sacrifice, as it is difficult to get utop of them, and more dificult to make fire large enough to bnon a victim without seorching the officiating priest; Crum Quoit Cromlech is so shaped that no one could etand on it to tend the fire or oversee the victim. As, therefore, they are not likely to have been demigned for altars, they ware probrbly erected for seppalchral monaments, as the sureophagus of the Greeks, and the altar-tombs of the present day, are bate morejregular cromlech. In general thoy are situated in the neighbourhood of barrows, and some of them, hy the way in which the stones are placed, closing in the sides, are oolled " Kiat-va-en," and would serve, as was the first and common usage of mankind, to defend the borly therein deposited from exposure to the weather or the ettacks of beasts of prey. Rowlend derives the name from the Hebrew "Consm Crusich," a devoted or consecrated stone. Alocording to Wormins they were sometimes called "arre" or altars. He suppowes they were first altars and afterwards tombs; and there is an account of one in Denmark, in which King Harold was interred. The great similarity which prevails in the manner of their erection, soems to prove that the use to which they were devoted must bare been the same both in Britain and in Denmark. In Wales they are known by the name of "Calne Arthin," Arthus's Quoits; and by some antiquaries, the name is apposed to be derived from the Annorio " crum," crooked, or having a top stone.

Chun quoit, or cromlech, one of the models in thin room, stands about 50) jards to the south-west of Chun Castle, in the purish of Movah, Cornwall; the covering atone is 12: feet long, and 11 wide ; it is supported on three stones pitched on an edge, which, with the fourth one, form a pratty regalar kist-en-vaen; the top of the quoit is convex, and the monament is surrounded with a low barrow, or heap of funeral stones. Layon Quoit, another of which the perfect reprosentation is here shown, is near Penzance; the ares described by the supporters of this is 70 feet, but it does not atarpl, as is generally the case, east and west, but north and south, as does also a similar monament in Denmark, mentioned as the tomb of Heraldus by Wormius; to this of Layon there is no list-va-en, nor any ares marked out by side stones; the quort which is more than 47 feet in girth, is 19 logg , and its thickness in the middle of the eastern edge is 16 inches, and at each end not yuite so much, but at the western edge it is two feet; the chief supporters do not stand et right angels, with the front line, as in the others, having been forced from its position by the weight of the superincumbent quoit; ita beight is such that a man on horseback can stand under it. Some years since it was dag under to the depth of eight feet, and a cavity was found in the original earth in the shape of a grave, which had been riffed of its contents; it stands on a healy not mere than two feet higher than the soil. At the south end are many apright stones, among which human bones, and those of horses and deer hare been found, and a rod made of clay baked red; those stomes might have been the Kible, the sacred place of asembly for eacrificing to the manes of the dead.

The means by which these immense masses have been placed on the supporing stones it is difficult to conjecture; a people, the perfection of whose architecture is shown in such rude structures as those, cannot be supposed to have been acquainted with mechanical power sufficient to have effected it; the plan which Mr. Rowland, in his Moma Antiqua, conjectures to have been made use of to place the transverse stoues at Stonehenge was probably the way in which it was done. The powers of the lever and the plane being sorme of the first things understood by mankind, it is easy to conceive that they Fere made use of to erect these prodigious monuments; where a amall mound was found it was shaped into an inclined plane, or a small agger or mount of solid earth was found, fatted and levelled at the top, up the sloping sides of which the stone intended to be placed as the covering of the cromlech was moved by the help of levers and rollers, and when adjusted on the opright-stones previously erected, the earth of the mount or artificial agger being cut away, the fabric was complete. It must have been by this means that the rocking stones poised so nicely that the smallest touch puts them in motion, which are found in Cornwall and in Anglesen, were in all probability adjueted. The other two models in this room are one of a cromiech at Duffrin, in South Wales, and one which hat a very perfect and double kist-va-en is Angleare, mex Plas Newydd.

In the courtyard of the Museum is an object which excites much attention from the visitors, and of which no further account is to be obtained than that it was presented by the late Lord Egremont. It is an ancient ressel or canoe, which was discovered near Petworth, in Sussex, at the village of North Stoke, on the left bank of the river Aran, three miles from Arundel, near South Downs, in a meadow where the river takes a turn towards a creek that runs into it. This vessel was found ambedded in the mud; one part was completaly buried, the other part was visible about two feet under Water; from time immemorial it was considered as part of the stump of an old trea, and allowed to remain there; it was used as a support for one end of a flat wooden hridge, connecting two meadows, such as are commonly employed in those situations; thus situsted it afforded no impediment to the flow of water which passed in front; about 20 years ago a farmer who rented the land cut away part of it to give an easier flow to the water, and a bridge having been built higher up, it was thought proper to remove this piece of old tree, as it was supposed to be : the labourers employed finding it much larger than they had rechoned on, attached eleven horses to it, by an iron obain, and with great difficulty drew it to land. Its real form and character were then discoverable, viz., one half of the atem of a, large oal cut into the shape of a boat. The toughness of its substance is shown; that, although but $4 \frac{1}{3}$ inches in thickness at the bottom of the vessel, when its etem, to which the chain was fixed, was drawn up the sloping bank, and elented four foet, while the opposite end was in the water, with its load of mud, it was drawn entire to the flat surface.The length of this ressel is 35 feet 4 inches; the depth 1 foot 10 inches; the width in the middle is 4 feet 6 inches; the thickness in the bottom, 41 inches; the sides 5 inches to $1 \frac{1}{5}$; of the stem, 1 foot 8 inches; of themtern, \& feet ψ inches. There are three bars laft at the bottom, at different diatances, which eerved to strengthen the whole, and gave a firm footing to those who worked it; there is no appearance of its heving had a rudder, but there is a notch which might have been for an oar to guide it. The extreme simplicity of its construction indicates its having been the product of an early and rode condition of man; it is undoubtedly of much greater antiquity than the vessel found some few years ago in the bed of the Rother, as it has the appearance of having been hollowed out hy fira. The anciant forest of Anderida, within whose precincts it was discovered, was famed for the luxuriant growth of its onks. From a combination of circumstances, it may safely be regarded as a relic of the aboriginal Britons, wrought before, or soon after, the arrival of the Romans. We are told by Cæsar and Tacitus that the ressels with which the ancient inhabitants of our island passed into Gaul were formed of wicker, and covered with skins, or fabricated by a single tree hollowed out by fire. This vessel probably lay on the bank of the creek ready for use, and being swamped by a sudden food of the river, might have been accidentally lost to view, for it was found turned in the direction such a flow of water would have given it: remaining thus unseen for months, it might have been forgotten by the owner, and nothing but accident would have revived the knowPedge of it. Several vessels resembling this have been found in morasses in Scotland-one at Loch Kernos in 1736, seven feet long, with a seat at one ond and a paddle in it; another at Kilblain, eight feet three inches long; and in 1720, several of the seme lind were dug up in the marshes of the Medway ; and one so well preserved as to be used an a boat some time nfterWards ; at Moreton Late, in Linncashire, eight wore found, each made of a single tree, and shaped like the American canoes, but this we have described by far exceeds all the others in its dimensions. Although with regard to its antiquity, there are perhaps no certain means of judging, yet its blackened condition and fibrous texture, resembling that of wood found buried in bogs, prove that it must have for many years been immersed in water.

Upon the walls of the room which contain these antiquities there are three paintings which have been lately pleced-views of Stonehenge, and the cromlech at Duffuin, South Wales. They are exceedingly well executed, and give, as far as pictures can, a true reprewentation of that gigantic Druidical, pile, but to those who may not have an opportunity of eseing the originals, nothing brings to the mind so clear a notuon of their real appearance, and what they are, as the models we have described.

The Elgin marbles, broken and scattered as they appear, render to the pablic in general but a faint idea of the beauty and magnificence of the fabric of which they formed a part, and consequendy they are stared on with wondering admiration, that such vast sums have been expended, and such spoliation should have been made, for what appears as only so many defaced and broken stones. To the antiquary and the artist and the connoisseur they are invaluable; but it may be doubted if the taste of the public has been much improved by their inspection. If a model of the Parthenon, upon such a scale as that in the University library at Oxford, or larger, were plaoed in the saloon, the beauty and magnificence of that celebrated temple would atrike the most unlearned; the shattered fragments and headless statues would no longer be objects of false enthusiasm or ignorant contempt, and the eye having the exact representation of the original before it, the imagination, by speedily restoring the whole of tbe now mutilated parts, would fully ap. preciste their value.

AVERY'S ROTATORY S'TEAM-ENGINE.

Tus wonderful simplicity of this engine led us to feel an interest in itfrom the first ; and those made upon its plan, with varions improvernents, by Mr. Ruthren of this city, beve been noticed more than once in our columns. Our last notice was eboat a year ago. Mr. Rathen had one then working (and hat it still) in bis worthog, truaing nereral lathes, moring a tilt-bome
mer, and plaining machine, driving a grind-stone, \&c. On Saturday, 18th May, we had the pleasure of seuing one of those engines at work in this neighburbood, on the farm of Mr. Allan, at Pilton, and in a manner fully calculated to test its powers.

The engine is one of six-horse power, according to the usual method of computation. The radius of the revolving arm is two feet; the length of the two arms, of course, four feet; and they make fully 3000 revolutions ia a ninute. The cast iron-box in which they revolve is fire feet in diameter, and about six inches wide externally; and this box, with the two revolving arins within it, actually constitutes the whole machine, except the boiler and the pump which eupplies the boiler with water. The engine has neither beam, piston, parallel-motion, apparatus, crank, nor valve. It could be pat with ease into a parlour book-case ! The boiler is a cylinder two feed in diameter and ten feet long. There are two small cylinders of twelve inches diameter connected with it, filled with water, but no steam is formed in them. Their use is to economise fuel. They may be considered as enlarged portions of the pipe which conveys water to the boiler, passed through the lower und horizoncal part of the flue, that the waste heat of the fire may be profitably employed in warming the water before it gets into the boiler. A polished iron cylinder, 9 inches long and 5 in diameter, is attached to the axis of the revolving arms; and a broed leather belt passing from it to a wheel, 4 feet in diameter, conveys the motion to the thrashing-mill. The motion of the arms, which constivutes the moving power, is produced by the re-action of steam, rushing from two apertures, about a quarter of an inch wide, in the opposite sides of the arms, and at their outer extremities. The engine is worked with a pressure of four or five atmospheres. Its price, including boiler and pump, wifh the belt and wheal for communicating motion to the thrash-ing-mill, is about $£ 120$. We are thus particular, because many will have forgot, and some will not have seen, the details we formerly gave.
We saw the fire lighted, the motion commence, and the operation of tbrashing and winnowing proceed for a considerable time. The engine has been two months in Mr. Allan's possession. He has been using it every week, and bas already thrasked upwards of 200 bolls of grain with it. It has given him complete satisfection; sod the following is his sccount of ita performanee :-
" Mr. Ruthven's engine tbrashes from eight to ten bolls (four to five qra.) of grain per hour, with a consumption of leas than a hundred-weight of coala, It is , besides, easily kept and managed, and there is a great saving of grease In addition to the thrashing-mill, it drives two seta of extra fannern, a humbling-machine, and two sets of elevators."

Mr. Allan informed us that it required five bornes to work the same thraah-ing-machine, before he procured Mr. Ruthven's engine; and neither the extro fanners, elevalors, nor bumbling-maohine, were then attached to it With this addition, he reckons that the engine (of six computed horse-power) dose the work of seven or eight borses. Witb the apparatus in its present state, le is able, not only to ihrash, but to winnow, clean, and send off to market, fifty bolls of grain in six hours, with a great saving in manual labour. We may add, for tue information of personajat a distance, that Mr. Allun is one of the most extensive and intelligent farmers in the county. -duridged from the Scotsman, May 99.

CORNISII HIGH:PRESSURE, EXPANSIVE, CONDENSING STEAM-ENGINE AT CARLISLE.

On Saturday, the 25th May, the engive manufactured in Cormwall by Messrs. Harrey and Co., of Fuyle, from the specifications and plans of that eminent Comish enginecr, Wilism West, for the Carliste Canal Company, commenced working. The directors haxing assembled at twelve, in a few minutes after, the engine was started hy Mr. Halson, the chairman, and Mr. West, who had arrived from Cortwali for that purpose. The volume of water sent forth excited untversal surprise amongst the nomerons gentifemen and artizans whom coriosity trad drawn to the spot, and was gratifying in the highest degrec to the directors and proprietors of the company.
The engine (named the "Eden") is set up for the purpose of supplying the Carliste Canal with rater from the river Eden. The leight the water has to he lifted is about fifty-sis feet ; the steam cylinder is sixty inches diameter; that of the pump forty-five (the largest of the kind in the kingdom); length of stroke ten feet. In less than two minutes, the huzras of those assembled annomuced the water was lifted to the pump-head, whence it was poured forth in a solid, continuous, and rapid strean, at the rate of 6,624 gallons per minute; consequently, working at twelve strokes, the quautity delivered in twelve lrours into the canal is $4,769,280$ imperial gallons of water-equal to $76: 288$ cabic feet-at an expense of fuel under 58 .

The canal from Carisic to the Solway Frith is ahout twelve miles in length. There are six locks, cach about sixty-scen feet long, twentr-two feet wide, and eight feet tic inches deep; and when required, such is the power of this simple, yet effective machine, that the quantity of water contained in each lock can be replaced in less than ten minuteb-i. e., as quick nearly as a vessel can be passod through.. In the course of a month, whom Harrey and West's new patesit valves shall be substituted for thoee now in use, the work will he done betser, and with considerably less friction, and the heavg biow, and consequent vibrailion ocmungou to all puruping-engines will (it in mid) to estircly overcomer-Alrided frow it Gerlition pepern

AMERICAN LOCOMOTIVE ENGINES.

It will be recollected that a contract had been entered into between the Btrmingham and Gloncester Railway Company and Mr. Norris, of Priladelphia, U.S., for the supply of locomotive for the Gloucester Railway. The contract was conditionally made, on the first engine manufactored by Mr. Y. performing certain work agreed upon. As much intereat has been felt in this country with reference to the contract, and as some doubts were entertained as to the correctness of the represcntations made respecting these enginet, we have pleasure in giving the following particulars as to the engine sent over to this country by Mr. Norris, and the work it bas actually performed on the Grand Junction Railway, in conformity with the agrcement to thich we have alluded. "The England" weighs about eight tons, without water or fuel; she is built much lower and smaller than the engines commonly in use here, and has six wheels, the driving pair being four feet in diameter. Thie cylinders are ten and a half inclies in diameter, and are eaclosed in copper cases to prevent radiation-stroke eighteen inches. The machinery is of the simplest construction, and consists of a much smaller number of parts than we have been accustomed to see. The cylinders are placed on the outside of the framework, which allows the adrantage of a straight axle; and the general appearance of the engine more nearly resembles that of the oid "Rocket" engine than of any other with wiich we are acquainted. The engine is got up in a most superior style, and is finishad, even to the minutest particular, in a very beautiful and workmanlike manner; every part hating been executed with perfect accuracy, by means of self-acting machinery. ds a proof, indeed, of the mathematical correctness of the work, we may meation that the steam-tight joints are formed simply by the briuging into conist of metallio surfaces; the workmanship of which is so true, as entirely to supxr. sede the necessity of packing of any kind. The boiler is similar to those used in engines manufactured in this conutry, but it containe only seventyeright tubes, instead of from 100 to 140, the number commoniy μ 多ed in thase on our railways; and the consumption of foel, compared with the wort perfermed, is, we understand, very smalh. The tank undertaken to be performed by "The England" was to run from Birminghem to Warrington, fourteen journeys eacth way, carrying 100 tons in the grosa, and performing the diatanct, eighty miles, at the rate of twenty miles per bour, which the engise has abcomplished cossiderably within the specified time of four houms ; the averue time having been about 3 hours 50 min., or the actual running time, wibhout steppages, from 3 h .9 min . to 3 h .19 min . On one occasion, it in stuted that the engine brought into Birmingham the enormous load of 126 toms, drawing it op the indined planes without any assistance; and on no occesiot has it friled to perforn the required duty, nor haseven the least deraggement of any part of the machinery taken place. It should also be mentioned, that the various parts were never put togecher nutil its arrival in this comblr, when they were first fitted at Lirerpool, the day previons to making a tip; nor has a tool been applied to the engine since bhe was first set op the understand the cenditioual order to Mr. Norris for ten engines, of timith capatbility, has been confirmed.—Midland Counties Herald.

REVIEWS.

The Suburban Gardener and Villa Companion; comprising the choiv of a Suburban or.Villa Residence, \&c. \&c. By J. C. Loudon, F.L.S. H. S., \&cc. Itastrated by numerous engravings. 8vo. Londor, Longman, Orme, \& Co., 1898.
By no means does its title-we do not mean the title-page, but the mere name-do justice to this work, it being so partial ns to exrlutle the idea of there being any thing, except, perhaps, quite incidentully, connected with architecture; whereas the last mentioned sulject forms no inconsiderable portion of the volume. Indeed we bardly know of any single work which contains so much relative to domedic architecture, taking the term in its widest sense, comprehending every thing that relates to private residemces, fittings-up and fornitare not excluded, besides a vast variety of other matters, respecting which books by architects themselves do not afford any instruction or information whatever. So far from being made up out of other books, the volume-and it extends to 750 closely printed octavo pages-contains a great deal of matter that lias hardly ever been touched upon before, notwithstanding that it is in itself liggly important; besides which, it is comanuicated in a very agreeable style, familiar and intelligenh, without the slightest tinge of peduntry on the one hand, and equally free from all twaddie on the other. It may very fairly be described as a book for the many, at least for all who are in easy circtanstascet, and who can afford to study the comforts and the luxuries of home in the truc English meaning of the term. To descant upon the moral influence of home, would be here rather out of its place, yet we mas be allowed just to remark ϵn passan/, that those who laire a taste, or cultivate one, for order and elegance in the objects whirlh surround them, are, celeris paribus, if not actually more moral and intellectual, mpre in the way of becoming so than those who attach no importance to what does not aford any cirect gratifioation cither to somentity or to panity,

To proceed, however, to give some specimens of the work-for hardly could we attempt any analysis, except by copying the list of contents, which alone would occupy a great deal of room-we will quote the following, if only on account of the ingenious and plearing suggestion at its commencement :-
For houses that have a gerret, a cort of green-bosse may be numblinbed there, by forming glam windown in the roof An enthusimat amateur might, indsed, have the poof of his house entirely of glese, and tria vines or creepers under it; which might be planted in the ground, and thair stems brought up gesiass the outaide wall, and covered with a woodan caus. In ouch rocif the panes of glese mhonld not be more than 24 in . or 3 in. wide, ap phete ghent woadd be ased, in onder to provent breaknge from bail The most fitiving minarben remidences for hating greeo-houmes are such an are aither quite detached, or in pairs ; which last-mentioned houses, in the neighbourhood of London, are called double detached houses. In cases of this kind, whether the houses are of the fourth rate or the first rate, they may always have a plant-house of same kind atteched to thein. One of the most ordinary modes of connectiong a green-house with a small house is by placing it against the gable end; it being anderstood that this gable end fronts the south, the month-enst, or the sonth-west: thongh, even if it frouks the direet west or direct enst, such a green-house will answer for many kinds of greem-house plamits; and for all kinds whatever, with an extra-allowance of fire heat during winter. Por double cottaget or housee, where the gable ends frans the south-east and north-west, a green-house may be placed againat each; bat where the one gable fronts the south and the other the north, then the one green-house should be placed on the east side of the house, and the other on the west side. In single houses, the green-house may be placed in - great variety of wayb, and may be of many forms, as will be seen hereatter, acconding to the arrangement of the ground plan, and the atyle of elevation, of the hoose. In whatever manner a green-honse, or phant-house of any description, is attached to a house, means ought always to be provided for warming, ventilating, end watering the phant-hoose, altogoiber independantly of the drehling-bousa; for fow thinge are roore diegreceble and matholesoure to haman beiagh, as well as injurious to furniture and the walls of tho room, than the clowe danip eflurie from the earth, weter, and phanta of a constrvatory. Por this mateon, the plasats grown in conservatorion inuge diatcly atteched to drawing -ooms should be anch as are netiven of very dry chimates, (for example, the Cape of Good Hoper, Australin, kc.) and, conpt quently, require very little water; and the gerdener abould contrive to give his waterings either late in the evenings, or very early in the mornings, when there is no chance of the conservatory being in use by the fanily. Previously to the hour when it is expected the family will wall in the conservatory, it ought to be tharoughly ventilated, so as to carry off the damp; and the surfuce of the ground ought never to be kept very moist, in order to prodace as little evaporation from it as possible.

We do not exuctly agree with the predilection expremsed by Mr. Loedon for the square or cube as the best form for a house. Allowing it may deserve all that is said in its favour, it does not axactly follo: that it ought invariably to be adopted to the exclusion of every other, particularly where other considerations ought to be attended to, besides thoee of mere economy. Far more do we approve of what is said op the subject of views:-

Variety in the views obtained from the house, and from the itferent walke conducted through the grounds, is one of the grand desiderata in every piace laid out in the modem style, whether its extent may be large or aman. With respect to the riewiffom the house, the first thing to be attended to is, tho disposition of the rooms, so that their windows may look in different drec. tions. Unless this has been studied by the architect, it will be tmpossible, even in the finest situation, to produce much variety in the viewn. \$uppose a house placed on a slope, commanding on extensive prospect; if all the rooms looked towards that prospect, all of them would have good riem, but these riews would not be varied; whereas if, from one side of the house, the windows of one room (say the drawing-room) looked ont on a level Aowergarden; and if, on another side, those of the dining-room looked up the slope; while, on a third side, those of the library, or breakfatt-room, commanded the distant prospect ; there would be three distinct characters of view. Now, in very spual places (say of a quarter of an acre, or even less, in extent), this varied disposition of the rooms, or, rather, of the manner of lighting them, ought never to be lost sight of; because, altogether independently of distance, or of any object beyond the boundary fence, the vieva way be rendered of different characters by the different kinds of trees and ahrube planted, by their different disposition, by a difference of form in the ground, and by a difference in the architectural ornaments, or by the absence of architectural ornamanta altogether. Even a diference in the Corm and alze of the window, or the absence or presence of a balcong or verands, will allogether alter the character of the scenery. Wherever, therefore, a house atands inolated, and bas a clear space of a few yards on each side of it, it may alwayi have at least four diftereat characters of view, independonsly of the effect produced by balconies, verandas, or other changen in the windows or fareground. Hence, aleo, in limitad plots of ground, whatever in thedr ahape, grester variety of view will be produced by placing the house nearar one end, or nearer one ride, than in the centre. In the fatter came, it is im. potuable to get depth of view from any wide, and thum a great nourse of benaty
in loat. A deep vin includen a greater number of objects, and, conaequently, schmits of a greater variotf of effect of light and ahada; it increasas onf idale of extent, and, by concoaling more from the eye than can be lone in tan figed view, if gives a greater exercise to the imarination. Add to this, that, in a mall plece, depth of view is sot expected; and, consoquentily, When it doen ocear, its offect is the more otriking, by tho surprise 部occasions, at well as by fite contrant with the other viows, vhich must mecesarily bo very limited
We could wish to continue this extract by quoting alno the doscription and remarks introduced in illustration of it, but unless we could likewise give the plan of the house and garden, the rest would not be verry well understood. We must, however, hasten to conchude our article, which perhaps we cannot better do than by extracting the following general observations:-

It has often ofrock us with suppriee, that the propictem of the fineat maldences in England, noblemen and gentlemen of high education and reffaed sute in other things, posesting collections of the finest pletrice, and whome eyer must conaeqoantly be familiar with all thet is noble and beautifal in landscape, should yet commit the laying out of thelr groundin to thetr genden. ers; or, at all events, permit them to make alterations and additions in whatever relates to fower-beds, fowering shrubs, and rockwori; forgetting that the life of the gardener has been devoted to the atudy of the calture of phanta, and not to that of the composition of forms, and their effect in landseape scenery. Hence it is that many of the most beautiful places in England are at this momeut disfigured by fower-beds, either placed where there ought to be none, or put down of such shapes, and in such a manner, ss neither to form a whole among themselves, nor with the other objects near thens. Hlow rarely do we tud pieces of rockwork, or rocky cascades, in England, which a man who had profited by the atudy of pictures could take pleasure in looking at ? It in clear to us, that the pomessors of pictures in general derive very little benefit from them, an regard the improvement of their taste in landecape. How few landed proprietors can, Jike the late Sir Uvodale Price, and the present William Wells, Esqq, of Redleaf, transfuse the spirit of the finest landscape into the artifcial scenery which they create in their grounds? Many country gentlemen are in the halit of heving artirta at their housea, to take partrata, views, \&c.; and these being in many ingtancen, the guests of the family for weeks together, we often wonder how it happens that they do not point out the grosser errors of want of connerion and unity of exprestion, with which they must so frequently be shocked in pasing through sowerobeds and pleature-groundo; but we suppose that gentlemen do not think of asking the opinion of a landscape-painter on any point connocted with gardening; forgetting that the composition of forms is the
 lans come of stady and obsarition, 40 that ha can detoct what in right gr wrones at a cindo glamen Thare ats come proprictars who have studied the gabjact themelven, or Tho fartungtaly knowing thair ovn ignorace of it, have had the wisdora to coasult aych artiats as Gilpin, Neafield, \&c.; and we only with that thoes who do without much s:d could see their places as they are seen by men of real tante.

We are aware that what we have said ourselven and what wo have quoted, goes a very little way indeed towards affording much idea of a volume consisting of between 700 and 800 closely printed pages, and illustrated with from 800 to 400 woodeuts; but we can recommend it in gaperal terms as one exceedingly intereating and useful to those who have either auburban or country residences; and also to those who are concermed either in architecture or in gardening.

FOREIGN MONTHLY REVIEW.

The second number of thls new periodical contains an article entitled "Modern French Architectural Decoration," at the head of which is placed Thiollet and Roux's "Noureau Recueil de Menudeerie et Decorations Intericures." Perhaps the best way of recommending this paper to the attention of our readers will be to pive some extracts from it, by way of mample.

Granting that ti may, in some reppeots, be a suberdinste part of their practice, wre muth be allowed to amert that decoration is a very important one of thedr art, and that the atody of it, internal as well as axtermal, ought to enter into every architect's education. Many may, perhaps, be of opinion, thet it Is one of thoee things whioh may very property be deforred, until liter the usual elementary cource of trilning hai been gone through; we, nevertholess, are dipposed to hold that it is the anfor coorne to cultivate a reined trate as early an poasble, leat, in the intertro, a bad tacte, mover atcorwardy, perhepe, to be ercilicatad, should spring ap of tte own eocord. For weat of duly eultrating an acquaintance with intarior decoration, in all the manifold and complex ramifications, it celdom happane that, if eecidentelly called tupon to turnish iden fop any thing of the lind, our archltecta have any better recoarce than what they ind in evore anclogon extarior partw. Undenbtedly It is not every one who, in the course of hil protepionel aroptoyment, mey have occanion to exerolia Mis talent this wey; but ovore then it would not be

tion; and certainly the subject we are speaking of comes far more within the province of an architect, than mome of the studies so fantastically insiated upon by Vitruvius as indisperasable to the education of one.

How far a knowledge of it may be useful or not munt, in a great degree, depend upon the peculiar walk in his profesaion, which an architect takes up; a man whose practice lies chiefly in building bridges, or prisons and poorhouses, can, of course, shift very well without it; while it is, on the contrary, of almost paramount importance to those who are called upon to erect or alter residences for the opulent and luxurious ; at all events, if they, instead of applying to it themselves, choose to commit that department of design to decorators and others of that class, it is very unreasomable, on the part of the profession, to affect to hold a contemptuous opinion of auch persons and their taste, when they might rescue their art from the baleful influence of such taste, by taking that department of it, as far as design is concerned, into their own hands. There is room, however, for mapecting that few of their own body would do very much better, for the simple reason that such branch of denign forms no part either of their profesoional edncation or their after-atucies : of colours, as applicable to their art, on which so mach depends in this comparatively trifing branch of it, if $n 0$ they choose to consider it, they know scarcely any thing.

In these remarks there is but too much truth; and among those which we afterwards meet with there is also much that merits to be considered.

How much depends upon colour alone is obvious enough from the fact, that the same design will appear altogether different, according as it happens to be differently coloured. Nevertheless, the choice of colours, and the arrangement of them, are generally left to the chapter of accidents. The architect's eye is not trained to colouring, as connected with embellishment; on the contrary, his attention is exclusively confined to models that afford scarcely any thing that is immediately applicable to interior embellishment, unless it be in a few particular cases. His books furnish him with no idess on the subject ; since what they offer, connected with it, rarely amounts to more than an occasional section, exhibiting only one wall of each apartment, while even that little is exhibited without colour, and without any of those accessorien which there must be in the rooms themselves. As mere sections, we do not blame drawings of that class ; all that we mean to observe is, that their deficiencies onght to be supplied by others. Yet even works, which are professedly intended to be studies of decoration, generally leave us quite in the dark as to one very material point, for very seldom, indeed, does it happen that they are illmminated; in regard to colour, therefore, they afford no information.

We must not be too liberal of our extracts, for were we to copy from it as much as we could wish, we might as well transfer the whole article entire to our own pages, which would be being more liberal towards our readers, than just towards the publisher of the Foreign Monthly. We must therefore pass over some other descriptions of, and remarks on, several of the modern Parisian shops, and confine ourselves to what is said of the mode in which the interior of many of them are decorated.

If less striking on the score of mere novelty, the apecimens of interior decoration in shops are more successful : in fact, they exhibit more of taste than of decided novelty, except at regards the actual application, all partaking, more or less, of the style of painting in vogue at Pompeii. Milletot's, the confectioner's shop, plates 49 and 50 , is an exceedingly pleasing example of this mode of embellishment ; tasteful in design and rich in effect, although the colours employed are little more than browns and greys upon a white ground. Plate 66, a linendraper's shop, No. 29, Place de la Bourse, is, although very different from the preceding, another agreeable subject. The Cafe Gaulois, Rue Poinsonnière, is a more ambitious display of the Pompeian style; but, as that plate is uncoloured, it is impossible to form any idea of that upon which the effect mainly depends. For purposes where mere general effect is required, this mode of decoration may very eligibly be adopted; but it is not very favourable to other species of art, because it exclades framed pictures, with which it would very ill agree, even were apaces for their reception provided for before-hand in the design; while it ia hardly to be wished that subject pictures should be made to combine with it, by being similarly painted on the walls themselves, becaune it is our opinion that, were such practice to be brought into vogue, it would tend to deteriorate art by giving currency to a fimsy, meretricious style-a specious, ahewy mannerism and nothing more. We are now taking into view the consequences, supposing it were to become the fashion rong thone who occupy not family mansions but rented houses, to encourage such pictorial embellishment on the walls of their rooms. As such paintisga could not be removed, and could ecarcely have value as available property, it is hardly to be supposed that real talent would ever be employed in producing them. Bexides, asuperior collection of picture may be formed by degrees; but, in this case, an entire seriea would have to be paid for at once, and, if not of first-rate quality, of auch quality, at leant, as to atand the teat of critical examination as works of art, and would be no better, perhapm mome degrees worte, than the tame surface decorated with simply ormamental fgures; if merely for the reanon that it would have more pretension, yet be unable to support it.

Of purely decorative painting, applied to the walls and ceilings of rooms,
examples are here furnished from a ball and billiard-room, execoted, at Puri, for Baron Rothschild, in 1820, by Picot and Gowe. The ceiling of the second-mentioned apartment, in the style of the baths of Titur, is rich, yet chaste and harmonious, and many of the other parta, taken by themselva, show much taste, yet how far the tont-ensemble may be satiffactory, can only be guessed at ; even allowing it to be so, it is questionable whether it is ose that can sufely be recommended for general purposes. It is certainly one that calls for much previous consideration and foreaight as to its revula. It in one that may be carried too far, and which is liable to great abuce, onlea it te put under the check of correct artiatical judgment and feeling. Still we could wish to see it encouraged to a certain degree in this coumtry, were it only because our architecta would then, almost of neceasity, be led to bestor more attention than they at present do on what they ought to anderatend; and, if properly taken up, it would tend greatly to widen the scope alforded to denign.

Theory, Practice, and Architecture of Bridges. The Theory by Jayas Hann of King's College, and the Practical and Architectural Tratisea by Wilman Hosicing, F.S.A., \&c. Part 1, 2, 3. Londor, Jom Weale, 1899.
The three parts before us are devoted to a miscellaneous collection of well engraved plates of several bridges of importance, which have been erected in this country; in addition to what we have before soticed, there are eight plates of the Hutcheson Bridge at Glasgon, which exhibit not only the construction, but also the progress of the work, the setting of the centres, building the foundations, and the implements employed. There are several good examples of Iron Bridgen, constructed by the Butterley Company, and various hridges of stooe and timber.

In the letter-press we have a translation of Gauthey's Treatise oo Bridges; but notwithstanding that this treatise has been held in bigh repute by many scientific men, we camot for our part concede to it such a prominent position. We consider the formule to be genenits complicated, and not at all calculated to benafit the practical bridge builder. The translator has fallen into a few errors in the translation; the word pile has been introduced in several places for the word pin, and there are some others which the scrutinizing eye of the profesion will discover.
The two papers on the theory of Bridges, by Profesor Ham and on the theory of the arch, by Professor Moseley, are well mitten and of deep research; it would have been better if the two papers had been blended and intrusted to one author, for they in some measure interfere with each other, and are likely to confuse be student ; notwithstanding, they are well deserving of an attentive perssal, and we shall give an extract from the paper by Professor Moseley, to enable our readers to form an opinion of the work for themselres.

* * As the simplest case of a section of variable inclination, let itu plane be supposed always to pass through the same horizontal aris. This casc ifculudes that of the circular arch under its most general form, and to this cax m! further researchea have been limited.
I have supposed certain forces to be applied to one extremity of a stractine thus intersected, and resting by its other extremity upon an immoveable buec As for instance a semi-arch, fig. 2, resting by its extremity B upon its bout. ments, and supported by a given force P, applied to the key - tone $A D$, indeted of the pressure of an opporite semi-arch. On this hypothetis the equation to the line of resistance may be completely determined in respect to an arth of equal voussoirs subjected to any variety of loading. With a view to thin general determination I have first supposed the loading to be collected ora a single point X of the semi-arch; and on this hypotheais I bave fomend the equation to the line of pressure in terms, of the inclination of the joint $A D$ of the key-atone (that in, of the line CD) to the vertical, the angle ACB of the segraent of the arch, the common depth AD of voussoirs the point of application, and the magnitude of the force P and the weight X . This detar: mination evideutly includes the cases of the loaded Gothic and sefromen arches; and were the magnitude and point of application of the forct P ? known, it would constitute a complete determination-of the equilibrism of the structure.
But unfortunately, in the sctual cate of the arch, this presure upon the key is an unknown thing. We neither know its point of application mar it mount.
It is the pressure of the opposite semi-arch, or rather it is the resultant of an infinity of pressures exerted by the opposite semi-arch upon an induity α points, by which that sami-arch is in contact with the face AD of the ter; and the amount of this resultant, and whether it pass through the middle d the key-atone or its extremities, are necesary, but, up to this period of the investigation, wninown elements of the theory. Some other primetpie of we. chanical action manifestly enters into the conditions of the equalizatum, and clalms a place at this period of the discuaion.

That other principle is this, that of all the pressures which ean be teppied to the key, different in their points of application and ammunt, but ill corsintent with the equilibrium of the semi-urch, that which H motand smadr
by the pressure of the opposite semi-erch is the leate. This condition of miaimam pressure at the key supplies mathematically all that is required for the complete determination of that pressure, and perfects the theory.
The damonstration of it is easy. The pressure which an opposite semiarch would prodace upon the side AC of the key-stone, fig. 2 , is equal to the tendency of that semi-arch to revolve forwards upon the inferior edges of one or more of its voussoirs. Now this tendency to motion is evidently equal to the least force which would support this opposite semi-arch; supposing the sembarches, therefore, to be equal in every respect, and equally loaded, it is equal to the least force which would support the semi-arch ABDC.

Ph. 1.

Suppose the mass ABDC, fig. 1, to be acted upon by any number of force among which is the force Q being the resultant of certain resistances, supphed by different point in a surface BD, common to the intersected mass and to an immoveable obstacle BE.

Now it is clear that ander these circumatancea we may vary the force P, both as to ite amount, direction, and point of application, without disturbing the equilibrtum, provided only the form and direction of the line of resintance comtinue to satiafy the conditions imponed by the eqnilibrium of the syotem.

Theae have been shown to be the following,-that it no where cut the surfice of the mass, except at P, and within the apace $B D$, and that it no whare cot any section MN of the mass, or the common curface BD of the mase and obatacle, at an angle with the perpendicular to that aurface, greater then the limiting angle of resistance.

Thus, varying the force P, we may destroy the equilibrium, either, first, by canaing the line of resistance to take a direction without the limits prescribed by the reaistance of any section MN through which it passes, that is, without the cone of resistance at the point where it intersects that surface; or, secondly, by causing the point Q to fall wilhowt the surface $B D$, in which case wo reniofcace can be opposed to the resultant force acting in that point; or, thirdly, the point Q lying within the surface $B D$, we may destroy the equationium by causing the line of resistance to cut the surface of the masa somewhere between that point and P.

Las ws suppose the limits of the variation of P within which the firat two conditions are satiofied, to be known ; and varying it, within those limits, let me conaider what may be its loast and greatest values no as to antiafy the third condition.

Let P act at s given point in $A C$ and in a given direction. It is evident that by diminishing it under these circumstances, the line of resistance will be made continually to amume more nearly that direction which it would heve, if P were entirely removed.

Provided then, that if P were thus removed, the line of resintance would cat the aurface, that is, provided the force P be necesasy to the equilibrium; it follows that by diminishing it, we may vary the direction and eurvature of the line of revistance untll we at length make it towch eome point or other in the surfice of the mas.
And thin is the limit; for if the diminution be carried further, it will ent the aurfice, and the equilibrium will be destroyed. It appears then that undor the circumstancen suppoeed, when P, soting at a given point and in a given direction, is the leant poasible, the line of resintance touches the interior minfice or intrudoe of the mase.

In the mane manner it way be shown, that when it is the greatest poseible, she live of prescure touches the exterior surfece or extrados of the mas.
I have here supposed the direction and point of application of P in $A C$ to be given; but by varying this direction and point of application, the contact of the line of reastance with the intrados of the arch may be made to take place in an infinite variety of different points, and each such variety supplies a mev value of P. Among these, therefore, it remains to seek the abwolute madimam and minimum values of that force.
In respect to the direction of the force P , or its inclination to AC , it is at orce apparent that the least value of that force is obtained, whatever be its peite of application, when it is perpendicular to AC.
There remein then two conditions to which P is to be subjected, and which bevolve its condition of a minimum. The frot is, that ite amount ahall be sech an will give to the line of resistances point of contect with the intrados. The ound, that ita point of application in the key-atone AC ahall be auch as te give it the leart value which it can receive, subject to the firt condition.

I have determined the valne of \mathbf{P} subject to these conditions in a peper
read before the Cambridge Philooophical Society in May 1837, and published in the 6th volume of their Transections. The equations involving thet value admit of a complete colution, and determine it for every form and dimension of the broken or Gothic aroh, and the coraplete negment, and for every circumatance of it loading.

The condition however that the resultant preacure upon the key-stone is subject in respect to the poaition of ita point of application on the key-atone to the condition of a minimum, is dependent upon hypothetical qualities of the masonry. It sapposes an unyialding material for the archentones, and a mathematical adjuntment of their surfaces. These have no existence in practice. On the striking of the centres the arch invariably sinks at the crown, its vommoirt there alightly opening at their lower edgea, and preasing upon one another exclusively by their upper edgen. Practically the line of resistance then, in an arch of macmented stones, tomether the extrador at the crown; so that only the first of the two conditions of the minimum stated above actually contais: that mamely, which gives to the line of reaistance a contact with the intrados of the arch. This condition being asmmed, all consideration of the yielding quality of the material of the arch and its abutments is elfminated. It will thus be discuseed in what remains of this paper.

Fig. 2.

To simplify the analytical discusaion of the quention, 1 have hitherto asmumed the load upon the semi-arch to be placed over a single point of it X, fig. 2. I now imagine it to be distributed in any way over the extrados, but symmetrically in respect to the two opposite semi-arches. The centre of gravity of this load on each semi-arch being determined, it is evident that the horisontal thrust P on the key-atone of the arch will be the same if the whole losd upon it be imagined to be collected in these two centres of gravity. I determine then the horizontal thrust P on this hypothesis of a concentrated loading: this determination being made, the data necessary to the analytical discussion of the queation are complete, all the forces acting upon a mass ASTD of the arch and its loading intercepted between the crown and any inclined position CT of the radius are given, and the equation to the true line of resistance under any given circumstances of loading is determinable in terms of the radius vector CR and the angle ACS. The equation determining the value of P is unfortunately one of a high order, involving circular functions of complicated forms; and the solution of it otherwise than by approximation is perhaps to be deapaired of. The small value of the ratio of the depth $A D$ of the voussoirs, in the majority of practical cases, to the radius CA of the arch in terms of which ratio the value of \mathbf{P} is expressed, suggests a developement of the value of P in a series of terms ascending by powers of this ratio. To effect this developement I have called to my aid the theorem of lagrange, uling two terme only of that theorem, and not therefore extending the approximation beyond the first power of the ratio. It might perhaps be expediapt in some cases to extend it to the second; beyond this limit no practical enquiry need however be carried.

The line of resistance being fully determined, the point Q, fig. 1 , where the resultant pressure of the whole semi-arch intervects, the supporting surface BD of the abutmeat becomes known, and aleo the direction of this resultant presaure. Now all the circumstances which determine the equitibrium of on
abutment, subject at a given point to a given insistent presure, I have before dincussed, and I have determined its line of resistance under these circurustances: that line of resiatance evidently auites with that of the arch at this point-this line of premare is therefore completaly known, and the conilitions of the equilibrium of the piers or other abutmenter of the arch, and of the arch ituelf, are determined. * *

The theory of the equilibrium of the groin and that of the done are precisely analogous to the theory of the arch.

In the former a mass springs from amall abutment, apreading itself out symmotrically with regand to a vertical plano passing through the centre of its abutment. The groin is in fact nothing more than an arch, whose vousmoin vary as well in breadth on in depth. The centres of gravity of the different elementary roussoirs of this mans lis all in its plane of symmetry. Its line of resistance is therefore in that phane, and its theory is eunbreced in that which has been already hid down.
Rour grains commonly spring frosn one alut ment; esch oppoeite pair being addorsed, and each adjacest pair uniting their margins. They thus lend ore amother mutual support, partake in the propertien of a dome, and form a contianed covering.

The groiued arch is of all arches the most stable; and could materials be found of sufficient strength to form its alutments and the parts about its springing, I am inclived to think that it might be safely built of any required degree of flatness, and that spaces of cnormous dimensions might readily be covered by it.

It is remarkable that modem builders, whilst they have erected the conmon arch on a scale of magnitude nearly approaching perhaps the limits to which it can be safely carried, have been remarkably timid in the use of the groin.

In part 3 is the commencement of a paper on the Construction of Bridges, by Mr. Hughes, of a more practical nature, and it is evidently written by one who is completely master of the subject. This paper commences by describing the various methods of forming foundations for bridges, piers, \&cc.; but we shall defer making any extracts or further comments, until after the appearance of another part.

Upon the whole the work is undoubtedly the cheapest publication of the day, when we consider its valuable contents; but it would have t een far better had the work been published in such a form as to avoid bhe necessity of folding the plates; probably this might have enhanced the cost of the work, notwithstanding, it is our opinion that the work would have glven greater satisfaction to the profession even at an increased price. We undertand that it is the intention of Mr. Weale to publish another edition so as to avoid this inconvenience; if so, we feel assured that the work will meet with that support which it so richly deserves.

Studies and Examples of the Modern School of English Architecture. The Traveller's Club. By Charles Barry, Archilect; Illuslrated woilh Drawings by Mr. Hewill, and Engraved by Mr. J. H. Le Keux. Accompanied by an Essay on the present state of Architectural Study, and the Revival of the Italian Style. By W. H. Leeds. London: Weale. 1839.
Enolish Architrcture has been treated by many pseudo-critic ${ }^{8}$ with a contempt which a due consideration of its works would have prevented from being applied to it. This neglect has arisen, perhaps, more from the apathy of its profeasors in asserting their own rank, than from any inferiority of theirs in the production of works of merit. Abroad, every caft, cassino, town-pump, and policestation is fully registered, and recaiven due honour; but here "Landscape Annuals," or similar ad oaptandum publicationa, are too often the records of our most ingenious monuments.

We need not feel astonished at the reproach of being a nation of shopkeepers, when it seems to be our natonal habit to obecure what even ourselves recognise as the highest source of glory. Domesticity we may pride ourselves apon-it may be a virtue to seek no enjoyment beyond our own fire-sides-but why, in the name of common sense, are we to keep our churches as closely confined at home as our daughters, or hedge in our palaces with the same care as our fruit trees. A spirit of hoarding seems to have possessed us, and content with possessing treasures, we have felt no wish to communicate them to our neighbours, or to allow them a participation, which is an increase instead of a diminution of our own honour. Where are our finest buildings P Not in the mast frequented streets, or suspicious atrangers might run away with them; not exposed to the public gaze, or they might become as dishonoured as a prostitute; but in some dirty unknown nook there is concealed a monument, which forrign nations would make pilgrimages to viait. The same feeling seems to prevent us from publishing them, as if to give a detailed architectural drawing would be as dangerous a communication to our enemies, as the secret of a new rocket or the plan of a fortification.

Let us rouse ourselves from this lethargy; let not inferior nation usurp our glory; but let ue foree Paris and her comonopotizto to admit us to the same circle of honour. We have already done muct towards bringing out the old buildings, but as much and moretemains to be done, and that at once. The opening of the Mona. ment, St. Bride's, and St. Martin's, are worthy act, and would be cstecmed excrions of a healthy disposition, did not otber acts point out the lingering of the old leaven. What could be more disgusting than sacrificing St. Paul's to a toy shop, hiding St Paul's School in a corner, and demolishing St. Saviour's? while the half. penny farthing policy in not pulling down the corner of Lombard. street, will leave the Royal Exohange as a monument of our atupidity to all posterity. Why is not $S t$. Paul's in some degree clened; St. Michael's, Comhill, thrown open; and St. Giles's, the tomb of Milton, new fronted?

It is not that we do not possess architectural riches, but that we neglect them, and allow others to arrogate over us a saperionty which our own feelings of dignity should induce us to repel. Did we take as much pains as our neighbours in talking of what we have, many of their idle boasts would be repressed, and instead of being treated as a nation of barbarians, we should threaten their supremacy.

If we look either to the past or the present, we see nothing abroad which is to prevent us from claiming a high position in the scale of architectural merit. Our great works in the perpendicular style can compete with the flamboyant, the Moorish, or any other continental medieval style; and in the worke of Wrea we have some counterpoise for the later periods. France, like ourselves, has been going through a course of the cast.oti styles of Europe, and, amid little that is great, ate hav learned from us what is purs. In Inly the medievoll styles have been defacod, the simple supplanied by the corrupt, and urchitecture degenerated from Franciedi Giorgio and Haldassare Peruzai has been consigned to the meretricionderigno od Palladio and his anccemors; the Lome of Milan has been diafigred and St_{t}. Peter's atands a childleas giant. Spain, deverted by the energy of the Goths, and the refined tante of the Moors, refies for its modern fame upon buildings which have all the tawdry amo. gance of the Castilian, and all his want of soul, which, where they exhibit nature, seek it in the beggar or the monk. Germany, as great in her clainus as in the sprawling extent of her edisces, w wide-spreading as Berlin, and as empty, mistakes nakednew for simplicity, and adaptation for originality. She does in architectare what she does in other branches of the art-seeks the simple in the rude, and looks for elegance in uncouthness. To dony the menits of our rivals wauld be absurd; but to be blind to fadtis so glaring, would indeed leave us without a motive for exertion.

Our deficiency arises from architecture being treated man eflort of the hand, and not of the mind, the prey of the dratsmana and the stone-mason, and its qualification a harber's-shop apprentioation instend of being considered as an elevated and inepired beaneh of art. To restove it, it must be treated like the other arth-it mat be cultivated not in details, but in principles; not by a private andies in the melke, but by a general, who inspects the mass. We hare made Greek architecture an affair of columns and friezer-we have forgotten its adaptation to climate, and we bave stripped it of it ornaments and its colours-and need we be astonished if we hares skeleton instead of a living being, or that we have starred a mj which we have disclimated and unclad? The principles of Godic composition stare us in the face, and we cannot see them, thile ve waste, in the research of detail, the power of creating that very de. tail. Architecture must be made popalar and artigtical-it marr have a band of admizers as oultivated as its professors, and we muly then hope, that originality may be encouraged, instead of compils. tion bearing sway. of old, it whe considered a matter of pride to call in to the assistanee of the architect the most diatinguished pro fessors of other arts; and to Michael Angelo, Aaphael, asd Ruberat we owe many ingenious works. The principles of art are genent but their application special, for it is the same law of proportion which determines the grouping and massing of a brilding as ofs picture; the same law which regulates the light and shade; the sabe laws of contour; and it is the appreciation of these general las which makes the artist, and not a mere knowledge of the haoding. The versification of Mickle, Hode, Broome, or Rowe, equalled per. haps that of Pope or Dryden; yet, although all are translatorn the latter only have fame as poets. The grouping of the Ladocan ar of Canova's tomb of the Pope, in St. Petera, is guided by the refy aame rules which mark out the majestio frout of York Mister, of the minor fagude of King's College Chapel. The aame objedion to breaking up a picture into isolated figtores refer with eqpal fort
to the distribution of the membera of a palsee, or the defilio fi
clut-housc. If, too, Greek architecture be carried out here as at Munich, or the Moorish or early Italian styles be introduced, the architect must study with the painter the same principles of combination, and possess the genius of colour as well as form. The public are the parties to be pleased, they are those who command, and those who appland, and unless they be instructed, the architect must be contented with the invidious honours of a clique, or find his best meant efforts received with the contempt of ignorance. It lies upon the architect to give this impulse-it is from him that must come the instruction, and then we may see the same progress in his branch as in the other styles of art. It is by the activity of the painters that the public have become qualified judges of their productions-tha. art has advanced, and pictorial exhibitions are crowded, while the architectural room is left to the solitary cavillings of the profession, and the contemptible productions of unapplauded exertion. Public competitions will do much, and they are thic more necessary, as even the judges, according to the observation of Mr. Leeds, must see the works exhibited, before they are able to compare them and select. The architects must, however, shake off their lethargy, read "Stuart's Athens" leas, think more, write and speak more, and, above all, act with greater energy and more effect. No time is more propitious than the present-the public is alive to art; they have claimed it as their inheritance, and sources of instruction now exist, which, to the previous generation, were unknown. The parest models of Greece have been disclosed, their polychromy illustrated, the Gothic and Moorish styles described, the Renaissance is in rogue, and a number of works have rendered the Italian atyles accessible to us in all their beauties.
Much of the mischief has doubtless arisen from the absurd restrictions imposed by the professors of the art, from their want of a liberal construction of their studies, and by their confining the artist within bounds, which to the ancients were unknown. Nothing is worse than this cramping down to conventional rules, which gives, like a University education, the prize not to genius, but to memory. To animate the stadent, and direct his future progress, proper works should exist, not of ancient or modern edifices merely, but of our own productions, so that foreigners might learn that we could rival them, and Englishmen that we had not been neglectful of our daty. The proper body to have executed this task would have been the Institute of British Architects, but they want either the confidence or the means to give this plan effect. To Mr. Weale, therefore, are the English public indebted for attempting to form a work worthy of the subject ; and to his public spirit will they owe what has too long been left neglected. That the attempt is hazardous, experience has too oten proved; and we therefore call upon the profession, as they are capable of appreciating such a work, to set the example to the public in its support.
To Mr. Leeds has been confided the task of guperintending this work, and we know no man who, in the merit of his previous works, the soundness and liberality of his judgment, or extent of learning and information, is better qualified for condncting such an arduous *ork. In the last edition of "The Public Buildings of London," Mr. Leeds has earned his qualification; and equally in translations from foreign languages, and in commentaries on other worke, he has proved himself, without pretension, to be one of the best architectural critics of the day. Did his success depend on his ability, or on the spirited exertions of Mr. Weale, we should not hesitate to pronounce it as certain, but it is on the profession that we must again call to show that they merit the efforts which are made on their behalf.

Before we read Mr. Leeds' Essay, we thought that a better choice might be made for the commencement of such a work ; but by him we have been convinced, that both from novelty and purity of styie, and individual mérit, no work could have been better selected to interest the public than the "Traveller"s Club." The author briefly enumerates the causes which now impede architecture, and then, after a sorvey of the Greek and Gothic styles, enters into an able disquisition on the various styles of Italian, and particularly as they refate to the subject now before ua; and it is but truth to say, that the "Traveller's Club" comes out of his hand with new beauties added, and all its perfections enhanced. From the works of an able and attractive writer like Mr. Leeds, it is diffeult to select any thing without an embarrassment of choice, but we have culled for our readers the following extract:-

To attein oven such degree of familiarity with the subject, - which is aftor all but very limited and anperfiaial in comparison with the drier practical Inowledge indirpenable to the profeational man,-to attain even this, will be thought no inconaiderable labour, - a tast little ebort of irksome. On the contrary, it it ene whieh woald be foand to be raplete with great latereet and umoseriment, provided, indeed, a parton has any caposity for it at all, sad woeld take it up setionally, a ho would any other purmit to which his tante
might incline him. The chief obstacle in the way of its being done is that no syatem of atudy accommodated to such purpone has hitherto been laid down ; so far from it that an hytteron-pnoterom is committed at the very outset; that in, aocording to vulgar phrase, the ourt is put before the horse, and the beginning madest the wrong end ; for instead of oommencing with generalities and procesding onwarde to specialitios and minutias, the later are brought forward before the student hat any clear notion whatever of the snbject in ita leading bearings ; whioh is not rery much unlike faniehing up a aingle fgure or object in a picture before any other part of it has bagun to be put in: a method suitable enough for a youth put into an architect's offioe, where he must learn his elements piece-meal, but as unfit for persons in general,as tedious and as repulaive an it would be to drudge through all the minutio of a grammar in studying a foreign language, before any inaight had been obtained into its general structure and oharacter.

It is true, the mass oren of the educated are at presemt totally ignornat of architecture; yot, berring the prejudice whioh deters people from making the attempt, there is nothing whioh would preveat thoee who bevestarn for studies from beooming as proficiont in all that ralates to the cactiotic part of architecture as the most ecoomplished arohiteot himaelf. Or if this now of the matter be denied, - if no diligence, no study, no enthusiam of feeling cen ever place tho amateur on the leval of the profeanional man with regard to taste, - the disastrous alternative is that it minters not how soon we absudon all idea of advancing architecture as a fine art, seeing that it would be all to no purpose, no advantage whatever-no accession of enjoyment remulting from it to the public.

Whatever views to the contrary mey be held by eome among the profescion, certain we are that no real friend, either to the profession or to the art, will edrocate the principle of myntifying that branoh of architeoture with which all ought, if poasible, to be conversant. No doabt shallow amstorers, superAoial dabblers, half-educated pretendert, ought to be exterminated; not, how. ever, by interdicting them from meddling with what they do not underntand, but by encouraging them to proceed, and not to rest content with stopping short at the threshold, where, as they are well aware, they are at leant one atep in adrance of the reat of the pablio, and therefore give themeelven aire accordingly.

It is not the least evil atteadant upon the present insalated condition of architectural study and knowledge, in consequence of their being confined almost exclusively to the profession, that architects themeelves do not take that enlightoned view of their art which they ought. As far, indeed, as the claiming for it almost paramount importanoe goen, they cannot be oharged with undervaluing it in the slighteat degree; bat that sort of overrating it in altogether a different matter from endeavouring to ennoble it, and from exerting themeelves to make it manifest the powern ascribed to it. In theirattention to the means, -laudable enough in itself, -professional men overlook, or if they do not overlook, apparently disregard, or are indifferent to the end, that is, to what ought to be the end proposed,-sdmitting that the work puts forth any pretensions on the score of art. They are urged ou by little or no stimulus from without their own pale; and it might sometimes be imagined that they presume rather too much on the ignorance of all the rest of the world.

Another disadrantageis, that for their judges they can look scarcely to any except their professional brethren, perhaps rirals, whoe praises will hardly ever be rary enthusiastio, and who will seldom be disposed to approve indi. vidually of what io either contrary to their own praction, or caloulated to render manifeat their own inferiority. Certain it is that the mont promiaing talent in a young ampirant is seldom cordially hailed, or in any way sasisted onwards by those around hin in the profession; neither does that of the more advanced architect raceive their applause until he has terminated or is about to terminate his career; his contemporaries punctiliously waiting till he shall first have asid lis valete. All this need excite no wonder: it would be more wonderful, every thing considered, were it otberwise. Still it would be better were there some counterpoise to it; which can be ohtained only by there being, out of the pale of the profession, a sufficiently numerous hody competent to jadge of merit and talent, and to diseriminate between those and the opposite qualities. Then, and hardly till then, will talent have generally a chance of developing itaelf and making its way, withont being dependent, as it now is, almost entircly apon those fortanate casualtien which enable it to surmount the obetacles that elee might have impeded its course for ever.

That the work is brought out with skill and taste, the name of Mr. Weale is a sufficient guarantee, and we can thus relieve ourselves from a task of eulogy, which we hope our readera will perform instead of ourselves. It is sufficient that Messrs. Hewitt and Le Keax have performed their task; and we leave to the profension to give it their good wishes as atrongly as we do curselves.

On Steam-Boikers and Steam-Engines. By Jontah Papyns, M. Inst. C. E. Part L., Vol. 3. Transactions of the Ireticution of Civil Engineers. London: Weale. 1839.
Ir has long been a denideratum, that nome person or persons, well qualified for the task, should undertake an invertigation of the different syatems of generating steam, and of the rarions circumutances by which ita produetion io mecelorated or retarded, with the view of ascortaining the form of eteam generator and treatment of fuol brar adapead to promote durwitiling in the formor, and ceonomy in
the latter. On the first appearance of the work under review, we entertained great hopes that it would supply this deficiency, but were much disappointed; for on perusing it carefully, we found it so full of theoretical errors and fallacious arguments, as to render it unfit to serve as a quide, either in the conatruction of boilert, or in the management of the fires under them, axcept in a general way, which is now little needed, as the principles advocated by Mr. Parkes are already extensively acknowledged and put in practice, eapecially by the Cornish engineers.

The au:hor proposes, in this paper, "to investigate and compare the peculiar properties of various kinds of steam-boilers, as exemplified in their practice; to show their points of agreement and disagreement; to exhibit their respective merits and demerits as evaperative vessels; to point out some general laws which may contribute to give greater uniformity to the results of evaporation from any assigned heated surface of boiler, and enable the employer of a boiler not only to ascertain if he is using his fuel economically or wastefully, but to apply a remedy, should he find hia practice imperfect."

In our opinion, the proposed end has not been attained in the work before us; nevertheless, the table of experiments, which we presume to be correct, cannot but be very instructive, and may, with the addition of other experiments, form a basis from which a more successful analyst may deduce the general laws which Mr. Parkes endeavoured to discover. We have now to show the grounds on which we base the opinion we have just expressed ; for which purpose we shall follow the reasoning contained in the paper as concisely as possible, and, therefore, confine ournelves principally to the leading points of the argument, supporting our remarks by quotations from the work itself.

Part I.
" On the qualines of atomm boilera, and on the influenoe exercised over evaporation, by their proportions end practionl management."

This part commences with a kind of introduction, in which the author enumerates the subjects treated in the sequel, and mentions, among others, the influence of time in producing the relative degrees of economy, which he reservea for a separate examination at the end of the paper, giving the following vague definition of time, as he intends it to be here underatood:-
" By time, I mean the relative periods of the duration of a given amount of beat about the boilers, and about equal areas of their aurface."

The rate of combustion, one of the elements of time, as defined by our author, is considered by him as one of the circumstances which have the greatest influence on the evaporative economy of a boiler; but, if we perfectly comprehend, as we believe we do, the meaning attached by the author to that expression, viz, the quantity of fuel burned under one boiler in a given time, this is not a matter of choice, but muat depend on the required rate of evaporation; and slow combustion, in the same sense, must be, not a cause, but a sign of economy effected by some other means. It should be distinctly understood that we have made use of the term slow combustion, in the cense in which we conceive it to be employed by the author, namely, as signifying a comparatively small quantity of fuel burned under one boiler in a given time: but we would rather have that expression convey the idea, that the quantity of fuel burned in a given time is small in proportion to the quastity contained in the furnace. The rapidity of combustion, in this sense, must obviously be regulated, in some measure, by the nature of the fuel; for the more bituminoua varioties of coal, if submitted to a comparatively moderate beat, suffer diatillation, and a great proportion passes unburned through the boiler in the form of smoke. In one instance, in Lancashire, Mr. Parkes tells us, the coal he attempted to burn, on his plan of thick fires, on extensive grates, with slow combustion, contained so much tar as to run in streams through the bars, and catch fire in the ash-pit. Thus the limit of slow combustion, properly so called, or rather, the most advantagsous rate of combustion, is determined by the nature of the fuel used.

At the head of the ohservations on each clase of boilers are placed certain quantities, considered by the author as forming the principal points of contrast and comparison between them. These are :-the time in which one pound of coal ia burned nnder one boiler; the weight of coal barned on each square foot of grate per hour ; the weight of water evaporated by one equare foot of heated surface per hour from 212°; and the weight of water evaporated by 1 lb of conl from 212. Theme quantitiea are called by the author exponents, as he considers them to be "indicative or exponential of the quality of the boiler, and of the effects of the practice upon it." Mr. Parkes is probably not aware that these terms are already appropriatod in mathematice to a very different signification.

The first of tiese circumstances can evidently have no influence on
the economy of a boiler; for, supposing two boilers to be equally economical, the weight of coal burned under each in a given time is necessarily proportional to the quantity of water evaporated in that time.

The second circumstance affects the results in two ways.- Firnty, 2 larger grate is generally accompanied by a larger surface to recire the radiated heat, which moderatea the action of the latter on the our. face, and thus adde to its durability.-Socondly, the thickness of the atratum of fuel, and the weight burned in a given time, being be same, the combustion must proceed more alowly in that furnace which has a larger area of grate, and therefore, contains a greater quanity of fuel at one time. The economy effected by this meana may be explained thus :-
It is a matter of every-day experience in common life that, below a certain limit, the more atmospheric air is admitted in a given timo to a given quantity of fuel in a state of incandescence, the mare rapidly the latter will be consumed; there is also, no donbt, that the air which has passed through the fuel into the flue of a boiler, of the ordinary construction, contains still a large proportion of uncombined oxygen, some part of which might still be employed in effectivg the combustion of an additional quantity of fuel, if properly applied. Suppose, for example, a square foot of grate covered with a atratum of coal 6 inches in thickness, and supplied with such a quandity of atmospheric air, that 51 lbs of coal shall be burned in an hour; it is clear, that if a gecond stratum of coal of the same thickness as the first be added, it will in a short time be heated to incardescence, and as all the air which has passed through the lower stratum comen is contact with the upper one, 2 portion of the latter will bura by courbining with some of the free oxygen remaining in it, and than greater quantity of fuel will be burned per hour on the square foot of grate, when the stratum is 12 inches, than when it is only 6 inchas thick, the supply of air being the same. To reduce the consumption of coal, in the second case to the same as in the firat, it will therefore be neceseary to diminish the supply of air, the consequence of vich will be that a smaller quantity of heated air will pass up the chimney; and since the principal loes of effect is to be attributed to the abotric. tion of heat by the air which pastes up the chimney, the guin, or rather saving of heat effected by means of thick fires will be propor. tional to the diminution of draught, the air being supposed to amire at the foot of the chimney, at the same temperature, under all cireurrstances, which is probably the case, when the heated or eraporting surface is the same.
The experiments made by Mr. Parkes on the summit of the chimenef, and mentioned by him in a former paper (Trans. Inst C. E., VoL Il, page 167), are in accordance with these views as far as we are more acquainted with the particulars; but, unfortunately, ve are neither informed of the temperature of the air in the chimney, nor of the volume of air passing through the furnace, nor of the temperatare of the flues, these points having probably not been ascertained. Wi only know that the air arrived at the top of the chimney on the oid plan at auch a temperature, that the water in an open copper venel exposed to the current was constantly in ebullition, while on the pet plan its temperature rarely exceeded 180°. Whatover the uttul difference of temperature of the hot air may have been, it munt be referred to two distinct causes : first, to the difference in the rite of combustion, less air being required to burn the mane qaantity of coal; so that if all other circumstances had been the same, and the air had therafore arrived at the foot of the chimney at the same temb perature as on the old plan, nevertheless, the quantity of heated air impinging against the vessel of water being diminished, the ame effect could not be produced upon the water, as when a greater quan tity of hot air impinged againat the vessel. Besides which, the ir ascending the chimney with lesi velocity, had more time to cool, and therefore, lost more of its temperature before arriving at the top of the chimney, where the vessel of water was placed. Secondly, to the addition of another boiler; for the ovaporating surface what than on much augmented as to abstract a much grenter amount of heat from the air during its paosage over it, which therefore arrived as the fot of the chimncy with a lower temperature. In the latt mentiond work, page 169, Mr. Parkes states that he found that 75lbs of coke, produced from 1001 bs of coal, evaporated as mueh water as 100160 of the ealf-anme conl. This observation, if corroct, corroboratesour iem explained above; for the combuation of the gases contained is the coal could not have taken place without evolving come beat, the whole of which must consequently have been employed in rining the temperature of an extra quantity of air over and above that whic whas necensary to burn the gasee distilled from the cosal.
The third circumstance is certainly an important cause, and the fourth is the evidence and meanure of the evaporative economy.
The observations on the three kinds of boilor, the Corninh, the

Waggon and the locomotive, tend to show that they rank, according to their respective merita, in the order in which they stand, the Cornish being greatly muperior to the two others.
With reapect to the actual economy of the Cornish boiler, we cannot bat concur in Mr. Parkea' opinion, though we should explain it differently. Instesd of saying that the slow rate of combuation "involves she necessily of employing a very extensive surface, or proportion of boilor to evaporation," we should say, that a more extensive evapo. rating surface absorbs more caloric from the gases and vapours before they arrive at the chimney, and thus admits of a slower rate of combuation. We are not informed of the thickness of coal on the grate in any of the experiments referred to; but if we suppose it to have been the came in all, the rate of combustion will be inversely as the area of the grate, and directly as the quantity of fuel burned per hour; or directly as the quantity burned per hour on each square foot of grate. But if the thickness of the layer of coal is not the same, the rate of combuation is directly 28 the quantity of coal burned per hour on each square foot of grate, and inversely as the thickness of the stratum of coal on the grate. Mr. Parkes states in the note at the foot of page 22, that he found thickness of fuel far more economical than an excessive extent of grate surface, thus pointing out the economical effect of a circumstance, which he has nevortheless not included in what he calls the exponents.

In that part of his paper in which he treata of the waggon boiler, the author professes, on his own behalf and that of the profession generally, abooluto ignorance of the rate at which heat is transmissible through metal of varying thickness, as well as the rate at which it is absorbable by water at different temperatures (see page 13). If this admission is well founded, it is much to be regreited that 80 important a part of the investigation should have been omitted in his experiments, and that he should not have delayed the publication of his paper until he could have resolved the difficulty. We are inclined to think that be will find, should he be disposed to pursue the inquiry, that the rate at which heat is transmissible is very nearly directly as the difference betweon the temperatares of the gasen in the flue, and of the water in the boiler, and inversely as the thickness of the plate. Un. fortunately Mr. Parkes has left us entirely in the dark as to the temperature of the gases in the flues, so that we cannot with any degree of certainty institate a comparison of the evaporative resulte with regard to that circumatnace; but if we suppose the mean temperature in the fluen to be 800°, while that of the water is in the one case 300°, and in the other only 220°, the thickness of the plate in the former case being double that in the latter, we shall find the transmission of heat through equal areas of plate to be in the ratio $\frac{500}{8}$ to 580 , or as 85 is to 58 ; or, the tranamiasion would be equal if the surfaces were as 58 to 25. Now it appears that the Cornish engineers allow 7 times ae much surface as the general waggon boiler practice for the vaporization of cqual weights of water in equal times, or in the proportion of 175 to 25 , which is 3 times as much as would be necessary, under the conditions assumed above, to evaporate the same quantity of water. The mean difference of temperature should therefore be redaced to ono-third, or 467°. The consequence must be, that the heated air will reach the chimney, with an excess of temperature over that of the water in the boiler less by at least two-thirds than in the waggon boiler; and, the same quantity of heated air having thus a greakr effect, less fuel will be burned to produce only the same effect, at we have already explained. It mast be remembered that the evaporation will not be increased in the ratio of the heated surface when an equal quantity of coal is burned, the increasing evaporation diminishing the tomperature of the hot air, for which reason the plate with which it comes afterwards in contact will not be heated to so high a temperature, and will therefore not evaporate so mach water as an equal ares of the other parts of the plate, whose temperature is more elerated.

Compared to the Warwick boiler, the Cornish has only 275 times as moch heated surface as would evaporate the same quantity of water, the temperature of the plate being the asme $;$ and if we take into consideration that its temperatare in the Cornish must have been on an averase much lower than in the Warwick, in consequence of the greater axtent of surface in proportion to the fuel burned, the eaving will sot appear so dimproportioned to the increased area as Mr . Parkes seems to think by the following expression in page 13 : "W0 must not conclude that it requires 7 times as great a surface exposed to heat under like circumstances, to realice an additional product of only 22 per cent. from fuel." It should aleo be remembered that the suriace is here considered with reference to the fuel conoumed instesd of the water evaporated, which would have been the fairest comparien. But we certainly cannot, under any circumatancen, expect the saving
of fuel to be proportional, or nearly so, to the increased surface for transmitting the heat.

We cannot agree with the author, that the gain of 41% per cent. in the effect of fuel is " miserably small, compared with the strides made in the economy of steam," nor is it at all necessary to conclude, from this inconsiderable economy, "that our methods of generating hest snd steam, and of constructing evaporative vessels, have attained the utmost perfection which the atrict laws of nature and the limited ingenuity of man forhid us from passing."

We now come to the most important part of the paper, where the author discuses the various circumstances which affect the results obtained in the different boilers, and compares them numerically. It is intituled
"An inveatigation of the :elative time during which the producta of combustion, from equal weights of fuel, continue in operation on equal areas of the warface of the boilers; with an eatimate of the quantity and intenaity of heat applied to them."
We shall discoss the several propositions of this investigation seriatim, and endeavour to show whether they are based on sound principles or not. The chapter commences with the following words:-
"The structure of the parts, and the mode of setting a boiler, occinion the bent applied to it to travel greater or less distancen, and to pabe over very unequal extents of surface, in equal or unequal" times. The distances travelled I ahall consider as determined by the length of the circuit which the heat is compelled to traverae from the grate till it quits the boiler. The time in which it performa the cirouit is the period of the duration of a particle of heat about the boiler, and is the first quention to be considered.
"Tha rate of combastion, or the time in which a pound of fuel is burned, seems to me to be the beat practical measure of the velocity of the products of that combuation about a boiler. The mind readily apprehends, that if a pound of coal be consumed under one boiler, in half the time that it is consumed under enotber, the velocity of the current must be twice as rapid in the one case as in the other; but if the relocity be exprossed in feet per minute, or milen par hour, no information is conveyed of an apprecisble or practical natare ; nor does that exprestion reach the source or origin of the current, riz , the rate of combuation."
We must protest against this mode of estimating the velocity of the products of combustion, as affording no measure whatever of that velocity in boilers of various dimensions, or in which different systems of firing are followed. Suppose, for example, two boilers, with grates in the ratio of $1: 2$, the section of the flue, in the same ratio, but its length the same in both, and let all the arrangementa be such that the same quantity of air shall pass through, and the same weight of fuel be burned on one square foot of grate in each; then, according to the above rule, the velocity of the current of the products of combustion should be as $1: 2$, while, in reality, it would evidently be equal in both boilers. As another illustration, let equal weights of fuel be burned in the same time, under two boilers, similar in every respect; but let the atratum of fuel be twice as thick on one grate as on the other; we have already shown that, with the same draught, more fuel would be burned in a given time on the former than on the latter, and that therefore the draught must be checked by means of the damper, in order to confine the consumption to an equality with the other; it is then clear that in this case the velocity of the current in the boiler where the thick fire is used must be considerably less than in the other. But by the above rule it would be found to be equal in both; therefore, the rate of combustion, or time in which a pound of fuel is burnt, cannot be adopted as the measure even of the relative "velocity of the products of combuation about a boiler."
The anthor considers the value of time, at an element influencing evaporative results, to be referable to, 一
" 1st. To the rate of combuation.
" Ind. To the distance passed over by the products of combuation before they quit the boilar.
" 3 rd. To the time in which the heat traverses the boilern.
" 4 th. To the period of the duration of the beat about equal arens of aurface.
"It is neceserry to ntate that the rate of combustion now spoken of, is not the rate rectoned on the aquare foot of grate, but the conaumption of fuel in an unit of time under one boiler of each clasa.'

We have already proved that this rate of combustion has not the remotent relation to evaporative economy.
"Proposition). The velocitios of the current of hented matter through each boiler, will be to one nother directly as the ratea of combation, an invernely as the time in which equal weighte of fuel are burned."

This propositition, being in auhstance the same as what preceden, calls for no further notice.

[^17]"Proposition 2. The distances passed over by the heat before it quite the boiler, are to each other directly as the circuits of the boilers: thum the
" Locomotive is to the Cornish as 7 to $15 \dot{5} 00$, or 1 to $29 \cdot 142, \& \mathrm{c}$.
" Proposition 3. The tines in which the surface of the several boilers is traversed by the heat, will bo to each other, as the products of the ratios of the velocities of the current, or rates of combustion, multiplied into the ratios of the lengths or circuits travelled : thus the
"Locomotive is to the Cornish as $6: 35 \times 2 z \cdot 1+2=1.1 \cdot 3.3$ to $1, \& \mathrm{c}$."
Before commenting on this proposition, it is necessary to correct two errors in it which render it rather difficult to understand. It should be expressed thus:-The times in which the surface of the several hoilers is traversed by the heat, will be to each other inversely as the velocities of the current, and directly as the lengths or circuits travelled: thus the
Locomotive is to the Cornish as $\frac{1}{6 \cdot 835}:{ }_{1}^{22 \cdot 142}$, or I : $151 \cdot 34,8 \mathrm{cc}$.
Having brought the proposition and its example to what Mr. Parkes intended to convey, we have only to refer to what has already been said on the subject of the velocity of the current, to prove that the numbers thus found in nowise represent the difference in the periods occupied by "the passage of a parlicle of heat from the grate, till it quits the boilers," as Mr. Parkes expresses himself.

The next question which he considers is, "the relative time occu. pied by the heat from equal weights of fuel in giving out its caloric $t 0$ equal portions of surface :" and he solves it in Propositions 4 and 5 , by means of the velocity of the current, incorrectly found by Proposition 1, which therefore vitiates the solution of the present question. Thus, then, the numbers found by this method cannot "be properly termed the relative periods of caloric action, arising out of the structure and practice of each class of boiler." But since the truth of the results is attempted to be confirmed by another process, it is necessary to cxaminc wixat that process is, and whether it can be admitted as a demonstration or not. The proof runs thus:-
"It is the same thing to burn, as in the Cornisb boiler, one pound of coal ${ }^{l}$ in 44.08 seconds, and apply the beat to 961.66 square feet of boiler, as to burn 44081 bs in oue second of time, and apply the heat to 44.08 times as great a surface. We should thus find that 42389 squnre feet would be thearea corresponding with that increased rate of combustiva for tha Cornish boiler. In like manner, 21.57 square feet would be the equivaleat surface for a rato of combustion in the locomotive increased by 6.45 tinos. The quoticnt of $42389 \div 21.77$ is 19.64 as above."

Before we can discuss the strictness of this proof, it is necessary to correct an error (probably in the printing), which will be obvious to every reader, on considering a moment. Instead of 44.0 slbs , it should be 1 lb in one second of time.

The number 19.64 had been previously found by multiplying 6.835 by 2.874 ; but the former of these was found by dividing 44.08 by 6.45 , and the latter by dividing $961 \cdot 66$ by $334 \cdot 56$; thus :-

$$
\frac{44.08}{6.45} \times \frac{961.66}{334.56}=19.64
$$

In the proof it was found by multiplying $961 \cdot 66$ by $44 \cdot 08$, and dividing the product by that of 334.56 by 6.45 ; thus:-

$$
\frac{961.66 \times 44.03}{334.56 \times 6.45}=19.64
$$

These two equations, being identical, cannot serve to corrohorate each other, but would necessarily furnish the same result, however absurd the grounds froin which they were deduced.

We have now come to the conclusion of the investigation of the influence of time on the cconomy of heat, from which it appears that the word time may as well be eliminated, as neither the alsolute nor relative periods of the "duration of the heal about the boilers," nor "about equal areas of the entire surface," las been ascertained, the only point arrived at being the ratio of the evaporating surface to the fued burned, which may be taken at onec from Table I., column 21.

The remairing part of the paper is taken up with an investigation of the relative quantity, and the relative intensity of heat given off to those portions of the boilers which are exposed to the direct action, or radiating caluric of the fire, as having an especial bearing on the durability of the boilers.

Propositions 6,7 , and 8 are used to ascertain the relative quantities of heat supplied (by radiation) to equal areas of those portions of the various boilers which are exposed to radiating heat. In the latter there is an error similar to those already mentioned, which does not, however, affect the numbers, as it only exists in the statement of the proposition, and is not followed in the application.

By the following paragraph, which we quote from page 41, it would seenn that Mr. Parkes has quite original ideas of heat, since be makes a distinction between the quantity of heat radiated upon a given area
of surface in a given time and its intensity, as if the latter were not determined by, and proportional to the former.
" The quantity of heat supplied to any boilor would not affect the material of which it is composed any the more, whether that quantity or colune were preater or less, prorided its temperature or intensity remained the same. This intensity varics preatly in the differeat bithos. We have seen that on the lorimotive 0.835 tiines more heat is femerated in equal periods than on the Coraish Grate ; but the grate of tho locunctive has only 7 feet area, whilst that of the Cornish has $23 \cdot 6 \cdot \mathrm{C}$ fect; and we hnow that near'y 7 times asmuch fuel cenanot be burned in equal cinies offa grate less by two-thirds than another grate, without the accoleruted coubbustion being accoupnoied by a very considerbble olerotion of temperature in the products of co:uhuation. Tbe intemity of tiat combustion mast, therefore, bo foent, bofore its intensity of action on the surfacesex:njed to it can be ascertainnc."

Here the quantity of fuel burned has been improperly compared with the area of the grate, instead of the area of the surface exposed to the radiated lisat; for, the greater the surface which receives a given quantity of radiated heat, the less is the intensity of the action of the latter on the surface. For this reason proposition 10 will be of no value, and proposition 11 false as a general thcorem, though possi. bly true in some fow particular instances ; namely, where the areas of the grated are eq:al. These two propositions require the same corrections as mos: of the others. The last sloould be:

Prop. 11. The relative intensity of caloritic action on the surfaces expost to radiated heat, will be directly as the ratios of the intensity of combustion on the several mrates, and inverscly as the ratios of the are..s of those surfaces. Buth these propositions are supported by similar proofs to that of prop. 5, quoted above, which lave therefore no value.

From the 11 th we learn that the author considered the heat as radiating, not from the whole surface of the fire, but from some portion of it, of egual area in all boilers, which we cannot possibly admit

In conclusion we observe, that it is only the theoretical portion of Mr. l'arkes' paper to which we olject, not calling in question the authenticity of the facts therein stated; and we repeat, that we approve highly of large evaporating surfaces, and a slow rate of combus. tion, the mode of firing being suitcd to the variety of fuel used. But we firmly belicre, that if any one should deviate from the proporions and practice experimentul on, and determine those which would suit his purpose by Mr. Parkcs' rules, he would find himself very much mistaken on submitting his boiler to the test of experience.

The Encyclopedia of Ornament. By H. 8haw, F.S.A. Imp. 410. Parts I to 13.
Conformabty with the title it bears, this publication is intended to furnish specimen: and decorative detail in various architectural styles, and will thes fore le far nore comprehensive, and contain s greater variety of suth; than any English work of a similar kind, which we are acquanted with. Indecd we hardly know of sny similar collection that has been published in this country; the best subjects of this class being to be met with only in plates of details in larger architectural works; while what arc professed by Books of Ornaments have been, for the most part, productions of a very inferior grade-bad as patterns, and altogether worthless as studies. We will not, however, term these plates unrivalled, simply because those in Mr'. Shaw's "Specianens of Ancient Furniture," and othet publications, would renicr such cpithet incorrect, except as applied to his works collectively, and not to this individual one singly. So far the authon's name is a sufficient guarantee for the superior execution of the plates; nor dwes this "Encyclopredia" need much recommendation from us to those who are acquainted with the same artist's former publications. Neither is it necessary to insist, at much length, on the extreme im:ortance of chamcteristic and well. finished, it not paricularly rich, detail in every style of architecture. It would he idle to inquire whether it be of greater importance than the larger masses and features of a building, it being enough to spy that it is equally indispensathe. Mere embellishment, or correctass and beatuiy in subordinate parts, will not excuse defects in the gentral design, any more than beauty of fanish or careful execution of the aceessorics in a picture will atone for bad drawing or bad compo. sition in a picture; bat then, on the other hand, whatever be its merits as to general contline and proportions, a building will alaays cause more or less dieappointument, unless the Lrue spirit of the styis adopted be atteaded to, and kept up in ill the component parts. It will do weh enoush to look at by noculight, or through a mist, but nothing more. Stost desimble is it, therefore, that the student should train himself by times to detail, by acquiring faniliarity with varieties of it, not only in different style, but in oue and the same style.

It is in consequence of the neglect of this apparently very subordi. nate, not to say trilling, branch of design, that there is so much poverty-or, if not absolute poserty, common-place mannerism, and obvious want of study with regard to finish, in the majority of our buildings. The greater the stock of ideas any one has laid in by accumulating studies, from which he may learn the diversities of any une or more siyles, all the greater will his resours es be; and instead of merely following certain copies or patterns, he will be able to imitate his models frecly, selecting their beatics and rejecting their blemishes, adapting and recombining as the particnlar purpose may best suggest. Amung the subjects lere represonted, some consist of strictly architectural details, such as capitali, ct, ibels, \&c., but the greatcr number are entirely fieces of ormament from vaions mild. ing'; carvings in s:one or wool, eoriched panels of doors, or similar compartments on walls, stined glass, painted tilee, inlaid metal work, drapery and hangings, jewellery and goldsmiths' work, and c.ven patterns of lace-work; which last-mentioned, being composed of geometrical figures and devices, will, with more or less alteration, be tound exccedingly applicable to floors, whether ndapted for pavements or carpets. The same may be observed with respect to some of the patterns of stained glags ; and even the sjecimen of drapery from a pieture by Cima da Conegliano, which, with very little, if any alteration, will be found to supply both patterns and colours for earpeting, paper-hangings, floor-eloths, and similar purposes of decorntion; while those for buhl and inlaid work may be derived from the plate of ornaments by IIans Ifolbein. IIardly can too high praise be bestowed on this work of Mr. Shaw's, which ought to find numerous purchasers, as it recommends itsclf not only for the library of the antiquary and the studio of the artist, but likewise for the table of the drawing-room and the boudoir.

Report on the Improvement of the Riter Dee, and Port and Harbou ${ }^{T}$ of Chester. By Sir Join Revvie, Chester. Evans: 1837. Reply to Mr. John Scott Russell's Letter. By Mercator. Cliester: 1839 .
In our last we gave a general outline of the plan proposed by Sir John Rennic, for the improsement of the Dee; and although we consider it susceptible of sose alterations, we feel bound to declare its unequivocal superiority o:cr the dredging phan sugsested by Mr. Russell. On the relative ne rits of these two propositions, a long oper-war hat; been going on at Chester; and the two pamphlets, the bitles of which are at the hea of this article, form but a small portion of the mass of prpers devote to the subject.

One prominent feature strises the most unobservant spectator of the perition of Chester, and 1 ti is the large area now occupied by the Iddal waters of the lee. 'Tuat this area is the cause of the miscinief, and that its proportion are too large, it needs bat a small portion of the faculties of renso ing and comparison to assure us; and it does strike us as extraordi ary, that both Sir John Rennie and Mr. Russell should entertain su i erroncous views as to its necessity. Sir John, instead of recommu ading the reluction of has waste, on the contrary, says, that "is the perorbition of the sectionat arcia of all channels depends ou the quality of the water $l^{\text {as sing }}$ throngh them, it may reasonally be inferced that the elanncls beow Fliat and Park-
 bou of the large quantity of ticil water by the enisankment of tovo acres above-mentioned from the estuary, and over which the tide used formerly to flow, although the new channcl between Flint and Chester may be said to have been improved." Now the cause of this deficiency of depth does not arise so much from the previous embinkment, as it dues froin the embankment not having Geen carried out.

Mr. Russell, however, who has exhibited so much research on tidal action, mistakes the position still more wrongly; fur, with all his knowledge of the operations of the sea, he actually proposes dredging. The plain explanation of dredging is this, that, like pasing off an accumulated and annual debt, you must first get rid of All the arrears, and then maintain such a furce as will counteract the annual operation. The same cause which produced the silt is ever in activity, and noless a constant force be maintained to resist its jatasions, it necessarily follows that it will again accumulate. It is very true that this can be done, and so can tunnels be run through quicksands, or a breaknater be erected from lover to Calais. Every ining is practicable when the means exist ; but it is certainly a serious question, whether a merely pallintive measure should be adopted, or whether the difficulty should not be at once removed. Temporising on Mr. Russell's plan is out of the question, as for all useful purIotes it is a practical impossibility. The dredging on the Clyde,
his strongest case, has occupied eighty-three years, and cost fir 00,000 . The position of the Dee, however, is totally diferent; and even admitting that the works be executed in a much shorter time, it must still be rememhered that there is an accumulation of interest, so as practically to increase the cost; and that every year that Chester waits, she is insuring the superiority of her rivals over her. Two mensures only remain, one of which is to alter the course of the river, and the other is to make an independent channel. The former of these two is the cheaper, and the more profitable, from the quantity of land recovered; but it is an operation little understood, and which involves an expenditure of time-the most valuable consideration to the inhabitants of Chester. Under these circumstances, one only method remains-that of Sir John Rennie to form a shipcamal, the expenses of which can be calculated, and the period of its formation ascertained, and which will have the additional advantage of leaving the river free, as the scene of future operations. If, is suggested in the "Chester Courant." a railway be placed on the banks for towing vessels, Chester will have advantages such as are possessed by no port on the coast, and enjoy at once the benefits of an inland position, and a ready aceess to the sea. We should further recommend, that in catse of a junction with the liver Dee Company, that the plan of recovering the estuary from the sea should be kept in sight, and on the completion of the canal, looked on as a means of reimbursing the expenses.

Sir John thus describes the River Dee Company's operations :-
At length the plan was brought to a considerable degree of utility, and a fine canal formed and gaardad by vast banks, in which the river is confined for the space of ten miles, along which ships of 350 tons burthen may be safely brought up to the quays.

The last work of any importance was the extension of the Rubble Em. hankment from near Connah's Quay to about half a mile lower down, which took place about fifteen years ago. Since then, I understand, little has bern done, except placing a few jotties hore and there betreen Chestor and Flint, in order to confine the current and increase the scour. The Dee Company, I believe, originally agreed or rather engaged to maintain 16 feaz always at high water of ordinary spring tides, at Wilcox Point, Chester. It appears, bowever, that they have not been able to maintain above 14 feet or 14 feet 6 inches. The total quantity of land embanked from the estuary in upwards of 4000 acres (besides a large tract of unenclosed salt grass), which is now under tillege, and is very valuable.

The effect of the works above mentioned, has, I am informed, been to increase the depth of water between Flint and Chestor, and to enable harger vessele to come to Chester than previously. From thence, however, downwards towards the Point of Ayr, it does not appear that any particular innprovement has taken place; on the contrary, the great flats off Bagillt and Parkgate have naterially increased, and the low-water channels at these places have suffered in proportion, particularly at the latter place; for where there used to be 18 feet at low water, there is now an extensive shoal, extending almont across the estuary at low wuter, so that it is unfit for vesisels or boats of the smallest class, whertas formerly it used to be one of the principal stations for the packets between Enthiand and Irehad. One of the chinf canses of this was, no doubt, the Jivursion of the channel from its natural course on the Cheshire to the flat shore. Had the channel beon continued thore, and proper means been takon, the depth at Parkgate would have been increased rather than have diminisbed. It is quite clear, however, that astar us the river is concerned, the measure was not quite so completeas it might have been; for not unly is the course larewend wearly five miles, but inur most inconvenient angles or bencis are pruduced, which added materially to the friction and consequent impediment of the scour of the waters, both tidal and fresh. But, ivasmuch as the main iet of the flood tide coming from the Irish Channel naturally sets on the Chesliro shore, and on the ebb takos the amme channel, although in an orposite !direction, and under prespat circumstances each of them must bend back again almost at right angles bofore it can enter or leave the new chanuel, which is on the opposite or Welsh shore: thus, a further most serious obstruction to the tidal and fresb waters is created.

From the above description of the river it is evident that the navigation is in a very defective state, and, with the exception of a very sbort period at tho hefrit of spring tides, vessels drawing above six or seven teet of water cannot reach Chester.

But as the tide only rises from three to four feet during nesps as far is Chester, and there is only four fect at low water in the channel, the nivigat tion is not practicable for vissels draving above seven feet; aud, with the exception of four or five vessels of 250 tons burthen, belonging to the chese company, who have a stemn-boat to tow them up and down the river during spring tides, all the trade of Chester is Cransported in smoll crafts of about 70 tons burthen, so that in fact it has dwindled away to comparatively of little imporiance.

As to dredging, it is only applicable in confined positions, where it is of imperative injortance to preserve a certain depth of whter against the inroads of the sea, and where a large expense can be afforded for such an object. But as to applying it as a means of engineering construction, we might just as well sop up the sea, of
carry out the Dutch plan of draining works below the level of the sea by scoops. If the revenues derived from the improvement sbould fail to be commensurate to the expense, which, however, we do not fear, at least the canal will remain in something like a working state; but in a few years the dredging must disappear, and "leave not a wreck behind." On the one side is a great expenditure of time, and a protracted and uncertain operation; and on the other, a certain result at an established and certain cost, with incomparably less waste of capital or time. In the time that Mr. Russell is dredging out the Dee, a leash of Liverpools may arise; and the manufactures have already passed far from Chester on their pilgrimage to the north, where they are invited by the cheapness of water and of labour.

Gothic Ornaments dravon and lithographed. By J. Tromas, Sculptor and Carver. London: Williams, 1839. lst Number.
The execution of this work is exceedingly promising, but its matter is not selected with equal taste. A finial in plate 3 is very good, as also a corbcl in the eighth plate, and generally the designs from the perpendicular style, are better chosen than those from the earlier styles. The specimens are generally selected from cathedrals in the West Midiand district; and will prove an accession to the works on architectural detail.

The Ascot Grand Stand. Designed by W. Mollingaz, Architect.
This is a drawing of the grand stand recently erected at Ascot, and is necessarily removed from the sphere of our criticism. We think the architect is, however, entitled to praise in fulfilling a public duty in the publication of his work, too often neglected in buildings of greater pretension.
Design for the Exchange Buildings propased to be erected at Manchester By Thomas Tayloa, Architect.
This design exhibits a basement on which is raised a story of the Corinthian order, surmounted by a peristyle and dome. The principal front is broken into a portico and two wings. The portico is octastyle, the outer columns being double, and the wings consisting each of four columns placed double. The other fronts consist of a hexastyle portico and wings, on the same principle as the main front. There is a frieze, aculptured pediment, and statues on the porticos. The double columns seem to be arranged so as to be free from the objections generally entertained against that disposition. The proportions and massing of the building are good, and produce a picturesque effect.

The London, Southampton, and Portomouth Railway Guide. Wyld, 1839.
Mr. Wyld is, as usual, first in the field, and has produced a guide at once comprehensive and cheap. It includes all the necessary information, numerous maps and wood-cuts, illustrative of the progress of a railway.

The Lecturer.

We are much pleased with the appearance of this publication, which is what it purports to be, cheap and useful. In the monthly part, for the small sum of sixpence, we have above thirty wood-cuts, and seven lectures by popular men on practical science.

Hand-book for Travellers along the London and Birminghum Railvay. London: R. Groombridge.
This little work is an abridgment of Roscoe and Lecount's History of the Railway, which we have frequently noticed, and from which we have made several extracts. The traveller will, by a perusal of this guide during his ffight along the line, be amused with the description of the various workis as they pass by him.
The Chevalier de Pambour's new work on the theory of the steam-engine will be noticed in our next number.
Mr. Buck's work on Oblique or Skew Arches, is just published.

INSTITUTION OP CIVIL ENGNEERS.

the peesident's converbatione.

On Saturdey evening, the let ult., Mr. Waller, President of the Inatitution of Civil Engineers, held a conversatione at his bouse, No. 23, Great George Street, which was crowded with individuals eminent in their profession. Throughoat the apartments there were several novel inventions or ingenious illustrations, some beautiful models of works in progress on the grand scale. The rooms were chiefly illuminated by the brilliant lamps recently invented by Parker, and which, from their combined power and economy, promise to supersede all others for the combuation of oil. They supply the world with desiderata hitherto deemed unattinable, vix., the means of procuring from the by Salter in paper) was much admired. Much attention wan excited by a
most cheap and common oils a clear and intense light, hitherto only obtrised from the beat ! Some of those in use at Mr. Walker's leat night were filled with the best aperm oil, and some with the ordinary whale oil, yet sobody could tell by the light from which it proceeded. Several bemutifal plasen ad modela of the laboars of the distinguished president on rikwor, bridfon, piers, and other public works, were visible. A model of the bridge which be is now building over the river Ouse for the Hull and Selby Ruilway (modelod series of drawings, upon a large scale, representing Armold's marise charosameter, and several working models upon an equally large scale, explanturert of the details of the work and the action of the different parts. Mr. Arnoldit laboura, and the success with which they have been attended, are so grenvy? known and acknowledged, that any particular notice of them is coneceesur! Another valuable work of art, in the same important department of medie nism, was produced by Mr. Vulliamy. A reguiator movement, with Grham's dead-beat escapement, executed as described in Nos. 28 and 31 of the Jownd of Science. The advantage of this constraction consist in the whole of the work connected with the escapement being executed by torning instad of flling, and thus insuring greater precision and sectaracy. There were aso at. bibited some ingenious contrivances and models by Mr. Cowper ; ase in pro ticular we noticed for its simplicity, it being an apparatos to moathin if ive lines of a railway are in guage, in another part of the journal we ber give a drawing of it. We must leave undescribed the ingenious mechanical inetions of Bramah and others, and devote a few words to the fine arts, mith specimens of which the tables were covered. The most interesting wit folio volume of the original drawings of Webber, who accompanied Cuthin Cook in his voyage round the world, which has lately been purchesed ty the President, and now displayed, we may say for the first time, to the admintioa of the public. The picturesque fidelity of these sketches (the prisipl pat of which were taken in Otaheite) cannot be sufficiently admired owen Jones's rough views in Egypt, and his splendid restorations and illustrition of the Alhambra formed an instructive contrast, each faithfully securate to the character of the scene, yet apparently the production of pencile the mort did. ferent. The latter volume is, perhaps, the most gorgeous specimen of ill minated printing in existence, and bears the impress of year of patient ro. search and devotion to art, as well as of unique talent in achiering mad I work. It certainly raises our ideas of the Saracenic style of architectort in magnificence of decoration as well as elegance of proportion, and it combination of graceful forms with brillian and harmonious colours. Atrome vase, the work of B. Cellini (the property of Mr. Deville), was justhy sdmined for its exquisite workmanship and the delicacy of ita relief. A uries of academy figures from the life, in oil, by Mr. John Woods, were attrectire, ed the sketches of J. B. Pyne were also highly praised. Nine faithful portrith of the late Charles Matthews, in the mont fanciful characters of his "Cuxis Annual," for which he sat to Mr. R. R. Scanlan previous to his trip to dere. rica, were recognised with pleasure by his old admirers. Some clecthe of Cornish miners, "taken under ground," by the same artist, presented fativs of a very carious character.
The honours of the house and supper-table were done in person bo the president, assisted by the secretaries, Messrs. Webster and Manby, und erer! body seemed to feel highly gratifed by the judicious combination of woil and scientific armangements ; and the select, yet abundant materinh for its. lectual, as well as hospitable entertainment provided by the president for bis guents.

Among the numerous distinguished individuals present we recognised-
Sir John Herschel, the Earl of Shafteabury, Sir H. Parnell, Sir Johe Br. row, Sir Thomas Dyke Acland, M.P., Colonel Pox, Mr. Mandley, M.P. Lard Blaney, Mr. Emerson Tennant, M.P., Mr. Bramston, Mr. Dunber, Xr. Pos Talbot, Mr. Pollock, Professor Barlow, Mr. Ewart, M.P., Captain Brandeth, Sir Stavely Clark, Mr. Milne, Mr. Chawner, Mr. Burney, Sir Charla Phte. Gen. Sir Duncan Macdougall, Mr. Angerstein, M.P., Mr. Mylne, Mr. Hardwick, Mr. Philpots, Dr. Ure, Professor Wallace, Mr. Adolphus, Mtr. Jotn Wood, Mr. Jerdan, Mr. Blexie, Mr. Ifenderson Macdougall, Mr. Amejet, Mofessor Challis, Colonel Wells, Mr. C. Fowler, Professor Willis, Coloned Puie, Sir William Symons, Dr. Todd, Colonel Churchill, Mr. Barry, Mr. Poroter, Mr. T. Wyatt, Mr. Charles Wood, Mr. Harris, Count Lubinsk, Mr. \mathbb{V}. Cotton, Mr. Tooke, Mr Arnold, several Prussian noblemen, with Mr. Heblar. the Consul-General, Sir D. Wilkie, Mr. F. Hodgson, M.P., Profesor Whel stone, Professor Kierman, Mr. Wrangham, Mr. Joy, Captain Locke, Sir Cluter Price, Mr. Baxendale, Dr. Bowring, Mr. Scanlen, Mr. Wood, Mr. Stose, Mr. Brickwood, the Presidenta and Councils of the principal scientific acition the Council, and about three hundred memberi of the Institution of Cril Engineers.

ROYAL INSTITUTB OF BRITISH ARCHITECTS.

Mar 27.-Eddard Blore, V.P., in the Chuir.
Samuel Ware, Esq., was elected an Honorary Fellow ; Richard yorimer. of Dublin, was elected Fellow; William Cleribew and Addington Atio were elected Associstes.
Among the donations announced was a copy of the first part of a root os the Pyramids of Gizeh, presented by Colonel Howard Vye; also a copf of the second part of the Architektonisches Album, presented by the Archiestural Association of Berlin.

A commanication from Mesars. Smith, of Darnick, war read on a finur is
the Falsbope Bridge. Mr. Ricbardson delivered his fourth lecture on Geology-subject, the chalk formation.

June 10.-Gromge Basevi, Jun., V.P., in the Chair.
Varions donations of books and casts were laid upon the table. A paper by Mr. Donaldson was read on the church of Notre Dame da Fort, at Clermoat Auvergne.

Mr. Richardson delivered his fith Geological lecture, the subject being on the Wealden formation.

June 24.-David Mocatta, Fellow, in the Chair.
A letter was resd from Mr. Donaldson, acknowledging his election as fellow for life, without further contribution; also a letter from the Chevalier Gasse, of Naplea, Honorary and Corresponding Member.

Amongat the donations laid upon the table was a copy of the fifth part of the "Iluatrations to the Normans in Sicily," presented by H. Gally Knight, Bsq-, M.P.

A peper whs read by the Rev. Richard Burgess on the Form and Parts of Ancient Christian Temples, commonly calted Basilicas.

Mr. Bicherdson delivered his sixth and concluding lecture on Geology.

ARCHITECTURAL SOCIBTY.

Report of the Committee, read of the Annual General Meeting held the 4 th of Juse, 1839, at the Society's Room, No. 35, Lincoln's Inn Fields.
Gesturmen, -In making this their annual report, the committee have the pleasure of eppearing before the society under circumstances which they renture to think fully justify them in congratulating the members on the very satiafactory condition of the society generally. During the past year many important subjects have been brought under consideration. In the earty part of it, a proposition was made for the junction of this society with the Institute of British Architects. The proposition itself originated with this society, which is the hest evidence of their inclination to make a common cause for common objects. The negotiation, however, the committee regret to say, failed, in consequence of its being ascertained that the Institure had bound themselves by bye-lawis of so exclusive a nature, rendered imperative by the charter, that, in the opinion of counsel, they could not be reluxed; these bye-laws prevented this society from securing any control over the disposition of the funds and property which they were called upon to give ap, and were otherwise objectionable. Upon a full and careful consideration of the whole matter, this society therefore negatived the propositions; they are not aware, however, that they have been losers by this determination, for though some of their members left them and joined the Institute, the number is not so great as has been stated, and the secestion bas been more than filled up by the accession of other members, amongst whom they are happy to reckon some of the most respectable senior members of the profession. This discussion, however, they are happy to state, has been most useful in ita results, because the Institute bas been thereby led to create a class of student membera in connexion with their society. This class they had previously entirely overlooked, though it is obvious that one of the best and most certain means of raising the profession of architecture to its fair place amongst the fine arts of this country, is by encouraging and educating the junior members.

The next subject to which they think it necessary to refer, is one of entire congratulation in the acceptance of the office of president by Mr. Tite: to this geatleman the committee feel bound to tender their beat thanks for the derotion of a considerable portion of his valuable time, for a liberal donation, and for the present of some valuable and costly books.

The committee hare also to state that the donations to the society have been on the increase during the present session; not merely has the library and mosemom been extended, but the funds of the society have also been much bencfitted, and the committee are happy to state, that although they have this seasion had to meet many extra heary expences, the funds are at the present time in a very satisfactory state. It is not necessary to introduce a balance sheet of the accounts in the present report, but any of the members who may wish to inquire more particularly into this subject, may receive any informstion they require on application to the treasurer, Mr. George Mair.

The introduction of lectures at the evening meetings forms a new feature in the proceedings of the society, and the committee feel that it is a measure which has met with the approbation of the members generally; with this conviction the committee have it in contemplation to make similar arrangemeats for the ensuing season, and by so doing they hope greatly to extend the advantages the society previously offered.

The prize for this year have been adjudged by the society as follows: viz.
To Mr. George Adam Burn, of George Place, Hammersmith, student nember, for the best essay on the Ionic order.

To Mr. George B. Williams, Penny Fields, Poplar, for the beat measured drawing of St. Mark's Chapel, South Audley Street.

The only remaining subject that the committee think it necessary to advert 10. is with reference to the student members, and they have to regret that they have not availed themselves of all the advantages this society offert. In consequance of this circamstance they have been obliged to withhold two of the prizes usually given; viz. that for original deagn, and that given by the treasurer for aketching from subjects proposed at each meeting.

One of the main objects for which the Architectural Socicty was founded, was for the purpose of affording facilities of study, as well for its student members, as for mutual intercourse anong themselves; and in giving the students those facilities, the society has endeavoured to offer every inducement in its power, not merely to excite study, but to create emulation, and to call forth latent talent amongst ita junior members.

The committee feel it their duty to call attention to these circumstances, knowing of themselvcs the benefits that are to be derived from a proper participation in the opportunities of study thus offered.

It now only remains for the committee to express the thanks of the society to the visitora who have honoured them with their company at their several meetings, and also to the gentlemen connected with the press, to whom they feel indebted for the kind manner in which they have been pleased to notice their proceedings.

In conclusion, gentlemen, the committee trust that the ensuing session may be as generally successful as the past, and that they may be able to procure, with increased satisfaction to themselves, increased motives for your attendance at their meetings.

They beg to assure you it will be their study to carry out the objects for which the society was formed, and they hope in so doing not only to deserve, but to receive, your approbation and support.

Whliay Tite,
President.

ROYAL SOCIETY.

April 25.-The Marquis of Northampton, President, in the chair. Robert Rigg, Esq., and Professor Sylvester, of University College, were e.ected Fellow.

The following papers were read :-
"On the motion of the Blood," by J. Carson, M.D. After referring to his paper contained in the Philosophical Transactions for 1820 , relative to the influence of the elasticity of the lungs as a power contributing to the effectual expansion of the heart, and promoting the motion of the blood in the veing, the author states that his object in this paper is to explain more fully the mode in which these effects are produced, and to corroborate by additional facts and observations the arguments adduced in its support. He endeavours, from a review of the circumstances under which the veins are placed, to show the inconclusively of the objections which have been urged by various physiologinta against his and the late Sir David Barry's theory of suction: namely, that the sides of a pliant vessel, when a force of suction is applied, will collapae and arreat the further transmiscion of fluid through that channel. The considerations which he deems adequate to give efficacy to the power of suction in the veins of a living animal are, first, the position of the veins by which, though pliant vessels, they acquire in some degree the properties of rigid tubes ; secondly, the immersion of the venous blood in a medium of a specific gravity at least equal to its own ; third, the constant introduction of recrementitious matter into the venous system at its capillary extremities, by Which the volume of venous blood is increased, and ita motion urged onwards, to the heart in distended vessels; and lastly, the gravity of the fluid itself, creating an outward pressure at all parts of the reins below the higheat level of the venous system. The author illustrates his positions by the different quantities of blood which are found to flow from the divided vessels of an 0 x , according to the different modes in which the animal is slaughtered.

2. Account of Experiments on Iron-built Ships, inetituted for the purpooe

 of dincovering a Correction for the Deviation of the Compart produced by the Iron of the Ships, by G. Biddell, Bsq., A.M.In this paper the problem of the deviation of a ship's compans, arising from the influence of the iron in the ship, more particularly in iron-built thips, is fully investigated; and the principles on which the correction for this depends having been determined, practical methods for neutralising the deviating forces are deduced and illustrated by experimental application. The author states that, for the purpose of ascertaining the laws of the deviation of the compass in the iron-built steam-ship the Rainbow, four stations were selected in that vessel, abont four feet above the deck, and at these the deviations of the borizontal compasses were determined in the various positions of the ship's head. All these stations were in the vertical plane, passing through the ship's keel, three being in the atter part of the ship and one near the bow. Observations were also made for determining the horizontal intensity at each of these stations. The deviations of dipping needles at three of theee stations were also determined, when the plane of vibration coincided with that of the ship's keel, and also when at right angles to it. After deacribing the particular method of ohserving rendered necessary by the nature of the vessel and the circumstances of her position, the anthor gives the disturbance of the horizontal compass at the four stations deduced from the observations. The mont striking feature in these results, is the very great apparent change in the direction of the ship's head, as indicated by the compass ncareat the stern, corresponding to a small real change in one particular position, the former change being 97°, whereas the latter was only 23°, and the small amount of disturbance indicated by the compass near the bow. After giving the observations for the determination of the infuence of the ship on the horizontal intensity of a needle suspended at each of the stations, in four different positions of the ship's bead, and the disturbances of the dipping needle at three of
these stations, the author enters upon the theoretical investigation. The fundamental supposition of the theory of induced magnetism, on which Mr . Airy states his calcalation to rest, is, that, by the action of terrestrial magnetism, every particle of iron is converted into a magnet, whose direction is perallel to that of the dipping needle, and whose intensity is proportional to that of terrestrial magnetism, the upper end having the property of attracting the north end of the needle, and the lower end that of repelling it. The attractive and repulsive forces of a particle on the north end of the needle, in the directions of rect-angular axes towards north, towards east, and vertieally downwards, and of which the compass is taken as the origin, are firat determined on this supposition in terms of the co-ordinates; and thence the trae disturbing forces of the particle in these directions. The disturbing forces produced by the whole of the iron of the ship are the sums of the expressions for every particle. Expressing this summation by the letter S, and transforming the rectangular into polar co-ordinates, Mr. Airy gives to the expressions for the disturbing forces the simplifications which they admit of, on the supposition that the compass is in the vertical plane passing through the ship's keel, and that the iron is systemmetrically disposed on both sides of that plane. He thus deduces for the disturbining forces acting on the morth or marked end of the needle,
$-I \cos \delta M+I \cos \delta P \cos 2 A+I \sin \delta N \cos A$, toward the magnetic north;
$1 \cos \delta \mathrm{P} \sin 2 \mathrm{~A}+1 \sin 8 \mathrm{~N} \sin \mathrm{~A}$, towards magnetic east ;
$-I \sin 8 Q+I \cos 8 N \cos A$, serticaliy downwards :
Where I represents the intensity of terrestrial magnetism; δ the dip; A the azimuth of the ahip's head; and M, N, P, Q, constants depending solely on the construction of the ship, and not changing with any variations of terres. trial localition of magnetic dip or intensity.

From the conaideration of these expressions for the disturbing forees is deduced the following simple rule for the correction of a compas disturbed by the induced magnetism only of the iron in a ship.

1. Determine the position of Barlow's plate with regard to the compass, which will produce the same effect as the iron in the slip.
2. Fix Barlow's plate at the distance and depretsion determined by the lat experiment, but in the opposite acimuth.
3. Mount another mass of iron at the same level as the compass, but on the starboard or larboard side, and determine its position so that the compass points correctly when the ship's bead is N.E., S.E., S.W. or N.W.; then the compass will be correct in all poaitions of the ship's head and in all magnetic latitudes.
When the disturbing iron of the ship is at the ame level as the compas, the correction is stated to be much more simple, it being then only necesasy to introduce a single mass of iron at the starboard or larboard side, and at the tame level as the compass. It is farther remarked, that if one mans of iron is placed exactly oppowite another equal mass, both in aximuth and in elevation, it doubles its disturbing effect : if one mass be placed opposite the other in azimuth, but with elevation instesd of depremion, or vice verad, it destroys that term of the disturbance which depends on sin A, and doubles that which depends on sin. 2 A. And if one mass be placed at the same level at the compass, its effects may be destroyed by placing another mass at the tame level, in an azimuth differing 90° on either side. If a disturbence, from whatever cause arining, follow the law of $+\sin .2 \mathrm{~A}$, (changing sign in the succesaive quadrants, and positive when the ship's head is between N. and B.), it may be destroyed by placing a mass of iron on the starboard or larboard side at the same level as the compass; if it follow the law of + sin. 2 A , the mass of iron must be on the fore or aft side. From the consideration of the expreasion of the disturbing forces produced by the ship, it is farther inferred that both in the construction of the ship and in the fixing of correctors, no large mask of iron should be placed below the compass.

The expreasions for the disturbing forces towards north and east, being Eranaformed into forces towards the ship's head and towards the starboard side give

I con. $8(-M+P) \cos . A+I \sin .8 N$, for the former, and

$$
I \cos . \partial(M+P) \text {, for the latter. }
$$

The aubbor next proceeds to investigate the effects which result from the combination of indmeed magnetism with permanent magnetism. Calling \mathbf{H}, S, and V the new forces arising from the latter, and directed towards the ship's head, its starboard side, and vertically downwards, the whole disturbing force towards the ship's bead becomes

$$
\mathrm{H}+\mathrm{I} \cos .8(-\mathrm{M}+\mathrm{P}) \cos . \mathrm{A}+\mathrm{I} \sin .8 \mathrm{~N} \text {; }
$$

and the whole disturbing force towards the starboand side,
$S+I \cos . \delta(M+P) \sin . A$.
The masner in which the numerical values of these quantities may be found from experiment is then pointed out, and being determined from the observations on board the Rainbow, at Station I., a comparison is made between the obsarved disturbances of the needles, and those which would reault from the action of the ship as a permanent magnet. From this comparison it appears that almont the whole distarbance is accounted for by the permanent magnotiam, and that the residual part follows with sufficient approximation tho lav of ohanging signs at the successive quadrants. For the complete verification of the theory it remained only to effect an actual correction of the compast. The wes done by placing below the compass, in a position determiaed by the previously-acertained numerical valucs, a large bar magnet to neutritis the offection the permanent magnetiom of the ship, and a roll of
soft iron on one side of the compass to counteract the disturbance arivigy from induced magnetism. That this correction was effective appears from the very small amount of uncorrected disturbance then observed in the como. pass. The observations of the compasses at Stations II., LII., IV., are imilarly discussed : the disturbing force arising from the permanent magnetisso of the ship being in like manner determined, a comparison is instituted between the observed and compated diaturbance of the compass; and the results of this comparison, with the exception of the observations at Station IV., are found to be in perfect accordance with the theory. Attempts are made to correct the compasses at these stations in the sume manner an at Station I., but owing to the imperfection of the compeames they did mor ac. ceed so perfectly. The observation made with the dipping meedle are aect discussed, and the values of the comatante are deduced from thata. The general agreement of those determined from the observatioms when the geade vibrated in the direction of the ship's keel, with thase deduced trome the obvermetions when the needle vibrated transversely, is pointed out, and is caniderad an sdditional proof of the general oorrectnem of the thoory. Obmervitions on the disturbance of the compase in the irom-bailt aciliag-ship Ironsidatare next deacribed. These are similar to those in the Rimbow, but not so ertensive ; and they are discussed on the same priaciples. From this discostion it is considered that the theory is in perfeen cecordance with the facts obserred in the deviations and intensities observed. The correction of one compan was effected hy a tentative procest, which the author consider likely to be of the higheat value in the correction of the compasses of iron-ahipe in geac ral. The ship's head being placed exactly north, as ascertained by a abore compass, a magnet was placed upon the beam from which the compese was suspended, with the direction of its length exactly transverse to the edip's keel: it Whe moved upon the beam to verious distances till the cengme pointed correctly, and then it was fixed. Then the ship's heed was ploced equally east, and another magnet with its length parallal to the ehipt keel, was placed upos the amme beam, and moved to different distances till the compase pointed correctly, and then it whe fixed. The cornaetion for iandaced magnetiam was neglected, but there would have been no diffleulty fa adjuciog it by the same process, placing the vesel's head in aximuth 45° or 135° or 225° or 315°. In conclusion, Mr. Airy makes the following remarks:-The deviations of the compass at four stations in the Rainbow, and at two atations in the Ironsides, are caused by two moditicstions of magnetie power; the one being the independent magnetism of the ship, which retains, in all positions of the ship, the same magnitude and the same direction relstively to the ship; the other being the induced magnetism, of which the foree varies in magnitude and direction when the ship's position is changed. In the instances mentioned, the effect of the former force was found greatly to exceed that of the latter. It appears that experiments and obeervations similer to those applied in the above cases are sufficient to obtain with aecursey the constants on which at any one place the ship's action on the horivontal meedle depends, namely-

$$
\frac{H}{I \cos \varepsilon}+\tan \delta N, \frac{S}{1 \cos \delta}, M, \text { and } P
$$

and that by placing a magnet so that its action shall take place in a direction opposite to that which the investigations show to be the direction of the ship's independent magnetic action, and at such a distance that is effecti equal to that of the sbip's independent magnetism, and by counteracting the effect of the induced magnctism by means of the induced magnetism of another mass, according to rules which are given, the compass may be made to point exactly as if it were free from disturbancc. It appears also, that by an easy tentative method, the compass may now be corrected without the labour of any uumerical investigations or any experiments except those of merely making the trials. Although the uniformity of the induced magee . tism under similar circumstances is to be presumed, yet the invariability of the independent magnetism during the courae of many years is by no means certain. These statements suggest the following as rules thich it is dearable to observe in the present infancy of iron-ship building. It appeens deairable that-I. Every iron see-going ship should be examined by a competent per. son for the accurate determination of the four conatants above mentioned for each of the compasses of the ship, and a careful record of these determira. tions should be prescrved as a magoctic register of the ship. 2 . The amme person should be employed to examine the resael at different times, with the view of ascertaining whether either of the constants changes in the course of time. 3. In the case of vessels going to different magnctic batitudes, the same person should make arrangementa for the eramination of the compemes in other places with a view to the determination of the constant N. \& The same pcrson should examine and register the general construction of the ship. the position and circumstances of ber building, \&cc., with a view to ascertiaia how far the values of the magnetic constants depend on these circumatances, and in particular to ascertain their counexion writh the value of the prejodicial constant M. 5. The same person shoald see to the proper application of the corrections and the proper measures for preserving the permanomey of their magnetism. The most remarkable result in a scientific view from the experiments detailed is the present paper is, the great intensity of the per. manent magnetism of the malleable irom of which the ahip is compened

THB NELSON TBSTIMONIAL.

The committee appointed to superiatend and to carry out this object, assembled on Saturday, 22nd ultimo, at the Thatched-house Tavern, St. Jamea'bestreet. Amongat the members of that body who were present we observed the Duke of Wellington, the Marquis of Lansdowne, the Earl of Cadogan, the Earl of Minto, Viscount Melville, Lord Burghersh, Lord Bridpart, Lord Colborms, Lond Ingestrie, Lard C. Fiteroy, Sir G. Cockburn, Sir T. Cochrane, Sir G. Saymour, Sir W. Beatty, Sir J. Sham, Sir G. Murray, Sir J. Barrow, Sir W. Parker, Sir P. Layrie, Admiral Dighy, Colonel Pox, Lieu-cenant-General Sir J. Macdonald, Sir G. A. Weatphal, Captain Beaufort, Captain Bedcock, Mr. S. Rice, Mr. J. W. Croker, \&cc.

The Duke of Wellington wan appointed clairman of the day. His Grace baring taken his seat,-

The noble Cxainman said, as there appeared not to be any other business to transact, they would go at once to the ballot for the decision with regard to the shoice of design. He woald, however, take that opportunity of in. quiring what anount of subecriptions hed been received.

Sir C. Coozanos said that at present they amounted to about $£ 18,000$.
Mr. Ceoskr, on the motion "That the committee do now proceed to the baltot," zaid he could not help thinting that prior to the commeneement of that aet it would be moost deairable for the committea to come to some definite and distinct understandiag in regard to the question of whether they were to consider themselves to be bound to carry out every detail of the deaige which might that day be deternined on as being the best calculated to zeet the rows of the majority of the subseribers. (Hear, hear.) It might so happen that the detign chosen was one which was impracticable in its secomplishment, either in respect to its details or on sccount of the want of safficient fands. (Hear, hear.) He could not help thinking, therefore, that it would be better for the committee to pass a resotution hy which they would have the power, should such a course be deemed necessary, to make any alterations or variations in the details which might be considered requishe. With that riew, then, he begged to move, "That the rote of this day shend decide which design is adopted, subject, however, to such rariations in she detaib, and such inquiries, and conditions, and securities, as to the construction and cost, as to the committee (or any sub-committee appointed to consider of, or conduct the practical execution of the monument) may subsequently repaire."

Sir G. CockBons seconded the motion: which having been put, was carried unanimously.

It was asked whether the powers vested in the superintending committec were understood to go so far as to enable them to take off one of Nelson's arms? He had put the question, because the committee would recollect that in several of the deaigns the artists had drawn the hero with two arms, when, as everybody well knew, one of them had been shot off.
There was a general reply in the affirmative to this query.
Sir G. Cockburnn and Sir P. Laurie having been appointed to act as scrutineers, the ballot was commenced.

Shortly after the close of the ballot, at four o'clock, the scrutineers made the following official notification :-
"In obedience to the retolution of the comnittee, we, the undersigued, have examined the votes given for the model or design to be selected for the Nelsos memorial, and we declare that Mr. Reilton hat the majority of voter.
$\left.\begin{array}{l}\text { " G. COCKBURN, } \\ \text { " P. LAURNE, }\end{array}\right\}$ Scrutinecrs
"P. LAURIE,
"Thatched House Tavera, St. Jamies's Street, June 22."
Mr. W. Railton's devign was No. 65 os the list.

RAILWAY SOCIETY.

Tes frut General Meating of the Private Members of the Reilway Society* whe bold on Thursday the 201h ultimo, at their rooms, No. 25, Great Georgostract, for the purpoee of clectiag the mennbers of the council, and of submit ting to the consideration of the meeting the proposed rulee of the Society. drawa up by the Merabers of the Committee of Menagement and of the Honse Comamitue. Thowe gentleman who are deputed an the representativea of the different Railway Companieas aubearibing to the Society, were also roqueated to atterd the meeting, in order that their opinions roapeeting the conseruction of the formor rulae of the Society might meet with every cansidoration. Sevarat of these gentlemen were prenent, end rendered vory effiejent ecrvice in aceicting to frame thome regulations thich were after warde sanotioned by the members present.
Gearge Carr Clyn, Fsqu, having boen oalled to the chair, prooeeded to state, in a neat and concise speech, the objects of the Soaity, which are principally directed towards the protection of the common interenta and rightu of Reil way Proprietort, end the antablishment of a foose wherein may centre the uniked experience and talent of thone conneoted with theee national undertakings, whether as Directora or Engineara. Mr. Glyn conaluded by atating the purpose for which the private mambara and dejegites were that day secombled, and informed the meeting that he had great hopes of prevailing on one of the most infuential personages in the kingdom, and one most deeply interested in the prosperity of railwaya, to become the Preaident of the Council.
The Secretary then read a report of the proceedings of the committee of management minet the formation of the tociety, clearly ahowing that a careful Fatch bud been kopk upon all proceeding in Purlament at all likety to efect
railway interests, and stated that the Right Honourable the President of the Board of Trade bad recognised the society as the organ through whicb he should in future seek for any information required on the subject of Railways. The proceedings of the House Committee were afterwards laid before the meeting, together with a very satisfactory account of the expenditure and receipts of the society; after which theyproposed rules of the society were read and considered seriatim.
Much attention was bentowed upon this very important subject, and several alterations were made, before the final assent of the members present was given to the rules, the prinoipal feature in whioh is the election of the council from among the private members of the Society for the management of everything relating strictly to the private affirs of the Society-as the election of members, the house expanditure, \&c., and the formation of a committee, composel of the members of the council and the delegates from Railway Companies subscribing to the Society, for the purpose of watching orer and proteoting the interests of Railway Proprietors, of adopting such measuros for their benefit as may appear to them expedient, and of receiving and replying to all communications, whether scientific or otberwise, which may tend to pronote the advantages of Railwaylrommunication.
The private members afterwards nominated from their own body those gentlemen who were deemed most eligible as members of the council, and the meeting broke up, after having, on the proposition of Henry Bosanquet, Esq., Chairman of the Eastern Counties' Ratway, passed a vote of thanks to Mr. Glyn for the vory efficient manner in which he had bitherto filled the place of Chairman of the Committee of Manarement, and for the interest he had at all times manifeated for the welfare of the "Railway Society."

ON GEOLOGY, APPLIED TO ARCHITECTURE,

Being part of a Course of Sir Lectures, by G. F. Richardson, Esq., of the British Museum.
Lacture the Fourth. Delinered at the Royal Institute of British Architects, Monday, May 27th, 1839. Subjects: Ignoous Rocks; Volcanic ; Enrmeration of Building-Stones; Chorce of Stone.
On this occasion, the Lecturer proposed to show the composition of rocks, and their application to architectural purposes. England is particularly fuvoured in the number and varieties of rocks adapted to architecture, although not in all of those which are most valunble. This of course arises from the great variety of formations which are here compressed into the narrow boundaries of our island, ranging from the tertiary formations of Hampshire and the great Metropolis, up to the primary of Coramall, Wales, and the Nortb of England.

Proceeding upon the division of rocks into aqueous and igneous, we find that theigneous may be divided into two great bodies, the modern and the ancient, and these again each into three classes, all possessed by the modern, and whioh a-ealso in a greatdegree to be found in the ancient. The frat class of modern volcanic rocks is of nlight white, like fulapar, and is called trachite, from traobos, a Greek word, signifying rough. The second is of an iron or farruginous red, and is called basaltic. The chird class partakes of both these qualities, as greys!one. The ancient volcanic rocks aresome basaltic or trachitic, and are sometimes resinous or glassy. The productions of volcanoes are often called lavas, from a Swedish word signifying to run. Tufa is formed of ashes aggludinated together; piperino is supposed to be produced by the action of showers of rain upon ashes; and pumice appears to be trachite reduced to a fibrous atate. No experiments are of greater interest thas those imitating nature, for in them we acquire a certain standard to which to refar the results of our operations. Mr. Gregory Scott. of Edinburgh, has, as is well known, melted basalt, and produced different bodies, according to the degree of slowness with which it was allowed to cool. When cooled slowly, it became glassy; more slowly, earthy; and when most slowly of all, amorphous or glassy; moress. As the former rocks are called subarean, from their boing produced by volcanoes in the open air, so the trappean rocks are called subuqueous, because they bave been projeoted by volcanoes under water. (iranith has been produced by intense heat under pressure, and is not, as supplosed, coufined to the primary series, but is to be found of much later date. Darwin hasfound it piercing the tertiary strata, and it may even be believed that at the base of mountaing, and in the bowels of the earth, granite is teing formed even at the present period. Primary rocks are supposed to be formed of the samo elementary parts, but deriving their distinct character from the difif rent degrees of heat to which they have been subjected. Thus the schistose rocks hare been slightly warmed, gneiss baked, granite melted, and othors, like obsidian, reduced to glass. Obsidian, 1 may remark, derives its names from Obsidius, who was its discoverer. The class of schistose or slaty rocks, is supposed to be muddy or sedimentary matter, which has been altered by the operarion of the burning mosses underneath, so as to lose its origiual horizontal lines of etratification, and to aequire others. All rocke above the primnry, it will be observed, are deposited by water.
Proceeding to the separate enumeration of architectural rocke, th. first or foundation stone is granite. [The Lecturer here referred his audito:s to the map constructed by the veteran geologiat Webster, prefixed to Buckland's Geology, to Fhom also, not only the original plan, but most of the subsequent additions are owing, and he said, so great is the labour displayed in it, that the student who should commit onty that section to memory, Fould at any
rate learn one of the most important branchen of the scibnce, viz, physical geology.] Granite is the basis upon which the whole syatem of rocks seems to be founded, and where it retires from the humsn observation, it is atill supposed to bed under the other rocke. Granite has been originally a fused mass, and crystallised from a atate of fusion: it is composed of mica, felapar, and quarts, and is of a granular or grainy atructure, from which it derives its name, and these particles do not seem to be united by any intermediate substance. The proportions in which its integral parts unite is of every variety, as also its colour, which may be grey, red, yellow, green, or even brownish-black, which colours proceed from the mixture of schorl and hornblende. Granite is found in mountain ohsins, and generally presents ragged surfaces; sometimes, however, it is columnar or pillar-like, and in the Pyrenees it abounds in masses of piles on piles. It is to be found all over Europe. In England, in the North, in Cornwall, Devon, and Wales; in Scotland, in Caithness and in Aberdeen; and in Ireland, in the mountains of Armagh and Wicklow. In Germany it forms the Brocken and the Hartz, and it is the grand material in Switzerland and the Savoy. It is admirably adapted for all purposes of architecture, even for paving and for statuary. From its capsbility of receiving a fine polish, it was much used by the ancients, and most of the monolithic monumenta of Egypt, or thome formed of a single stone are made of this material, some of enormons dimensiona, particularly one st Thebes, and another at Rome, 100 feet high. In the church of the Casan, at St. Petersburgh, are fifty of these columne, each thirty feet high.

In the same city (St . Peternburgh) also in an enormous mass of granite, used for the pedestal of the eelebrated atatue of Peter the Great. Granite is exceedingly liable to decomposition, from its being a compound substance; and, therefore, liable to injury, from its particles coming in contact with anything dissimilar to their particular habits. So strongly is this tendency to decay mometimes, that I reoollect in the case of some granite sistues brought from Egypt to the British Museum, and laid in the court-yerd for a short time during the winter, that they became so affeoted by frost, as literally, in somecases, to split to pieces, and almost fall into powder.
Syenite derives its name from Syene, a city of Egypt, in the manner that meny other rocks do ; thus chalcedony, from Cbalcedon, tripoli, from Tripoli, in Asis Minor, and chalk, or creta, from the island of Crete. It is composed of felspar, hornblende, quartz, and mica, and resembles granite, but is of purer grsin, and containa hornblende. It is found in Scotland. in Aberdeen, and in the isle of Arran, and is valuable, because it does not suffer from moisture or from the atmosphere. It whs much used by the ancients, but not so much by the moderns. Some of the fineat epecimens are in the castle of Heidelberg, on the Rhine, supposed to have been brought from the ancient palace of Charlemagne.
Gneiss is composed of mica, quartz, and felspar. It cleaves and works more easily than granite, but is lisble to injury from the weather.
Basalt is of columnar form, generally of four or five sides, and is found abundantly in natural structures. Although of volcanic formation, it is remarkable that it is rare at Vesuvius, while it is in plenty at Etna. The Giants' Causewsy, in Ireland, is one of the finest specimens, containing thirty thousand pillars of this material. It is little used by the moderns, because it is the hardest and least practicable of the rocks. Winckelman, however, observes that the choioest of the ancient statues are of this material, as if the sculptors loved to effect their triumph on that which was insupersble to other hands.

Porphyry is so named from a Greek word explaining its purple colour. It is of great variety, and is a reneral name for rocks containing a mineml mixture. It was used abundantly by the ancients, and at Rome are many buildings decorated with pillars supposed to have been brought from Constantinople. Such are those in the Palace of the Conservatori on the Capitol, in tbe Giustiniani Palace, in the Basilica of the Lateran, and in the church of Santa Marin Maggiore.
Serpentine is also neglected by the moderna, but was used by the ancients for tombs, vases, and small objects.

Lava, peperino and puraice, are confined in their uses to volcanio districts, at Herculaneum and Pompeii, which are principally built of such material. Some of the early Etruscan tombs are composed of a cosarse trachite, which is supposed by some to point out the existence of an early state of society during the geological periods. Pumice is occasionally preferred, on acconnt of the lightness of its texture.

Having thus gone through the primary, we will now proceed to the secondary rocks, in which we find slate. The quality of a good alate is, that it should cleave easily, that the lamina should be straight, and unmixed with foreign anbstances, and the more finely laminated it is, the larger plates will be obtained. Slate for roofs should be dense and not porous, and it is hest judged, like other stones, by the sharpress of the sonnd. Porous slates are bad, because they swallow water. Sulpbur is a dangerous ingredient, and sometimes exists in particles sa minute, as to be imperceptible. irhis mineral when mixed with water, produces vitriolic scid, and so promotes decomposition. To detect its presence, heat the slate with wood embers, and if it exists it will give forth a sulphureous smell. Oxide of iron mired with slate has a sympathy for air and water, and so increasea the quantity of oxide or rust. Calcareous matter is equally injurious, and may be tested by observing whether it puffs up when exposed to muriatic ecid. Carbonaceous, or conly matter may be detected by burning. With regard to its colour, yellow or black spols indicate the presence of oxide, and black that of carbonaceous matter. The bent work on the qualitios of slaten in that of Dr_{s}. Watson, Bishop of Nlas-
daff, called "Chemical Essays," which has a whole chepter devoted to the subject.

Limestones are of varions qualitias; those are bent which are highly eryatalised, but they are littie used in modern times, on socount of the cont of making. These marbles, however, afford the beat materials for building. Those less crystalised are moet commonly used by architects.

While upon this subject it may be well to mention the manner in which stonen are arranged by the continental architects. Thoy divide them into two classes hard and soft, piorre dure and piarre tondre. Pierre dere is applied to those which can only be worked by witer and the plane-edged eaw; and pierre tendre to those which can be worked by the peg-toothed saw. The qualities which are required in atone by the French and Germas architects are, that it ahould be of a fine grain, and compact. Fow stonse, bowever, possess all the qualities required, and then it is thet the arohiteet must use his judgment in selecting the beat. Thinly laminsted (or leafed) limestone, like lears of leaves in book, poseenses different degrees of strength, according to its position. If placed eo | on edge, it has, of course, less resistance and strength than when placed thun - Dark gtones are generally the strongest ; those which suck up water are bed; but thow widh brilliant points and hard are good. A very good critarion is the sound of the stone when mtruck with a metal instrument, when a full mound is a proof of a good stone. Those mixed with sulphur are generally hard and good, bot require care in the selection. Heery stonas andenoting compectnees of strueture. Another serious question is the eril ariaing from en imperfect charactr of stone, from inattantion to which many of our finest buildings in Landen are injured. The Marquis of Northampton wall observing to me, that to seeh an extent doas this devatation prevail at Oxford, thas the number of colleges obliged to be refaced is extreordinary.

We sre not, bowever, theonly sufferert, our younger brethren in A merieamak. ing the mame complaint. A friend of mine, writing to me, eaya, " Our Capitol, one of the finest eenate-houses in the world, ecarce twenty yeare old, is 0000 m pletely spoiled, that we are obliged to keep it always freah painted, to preserve it oven from the wet. This mischiof doubtless arises from mistaten motives of economy, so that the builder is tied down by his contract to purchese an inforior atone. We should not however look to choapness but to quality, for that is always the cheapest which is the best."

Resuming our examination, we find next to slate old red andstone, w salled from its being coloured with iron and nearly appromehing graveacke. There are few of these stones good for building.

The Carbonate of Limestone is very hard, and from its weight is diffeale of transport. Its hardness arises from the many grains of quartz in it, and practical men say that it cuts the saw, instesd of the saw cutting the atoon. Craigleith stone is of this class, and it comes from a quarry of that neme, two miles from Edinburgh, where a great part of the New Town is bailt of it. Bramley fall stone also belongs to thia division, and it is used in the Terminus of the Birmingham Railway at Euston Square.

Passing over the cosi formations, we come to Magnesian Limostone, which unites rare qualities, being crystalline and hard, like the Carboniferous Limestone, and easy to be worked, like Oolite. From the magneais in it, it is a very unproductive soil, and is so injurions to vegetation, that the lichens and other small plants which disfigure stone will not grow on it. There is some of excellent quality in Robin Hood quarry, near Gloucenter, and there is reason to believe that this class of stone will come into more general use.
-The New Red Sandstone extends over the island from Ereter to Yort, and has many quarries, but it is not very appropriate for building purponen, although formerly much used. The old builders, however, it must be remesbered, took the atone neareat to hand, the bad roads being a great impedimeat to the removal of such a bulky material. Worcestar and Chester Catbedrels are built of this stone, and have worn so badly that even in the interior the faces of the statues are undistinguishable. These defects arise from being much impregnated with oxide of irou, and also with saline particles, which it derives from its neighbourhood to the Cheshire salt-beds. Tbe church of St. Andrew, at Liverpool, is quite black, the mointure imbibed by the alt catching the soot and dirt floating in the air.

The oolite formations are the great cource of bailding materials, and derive their name from the Greek, cos, an egg, their structure being that of mall eggs. The Germans call it bluntly roestone. Hosch Portland-stone, it ahould be observed, is liable to cracks and fiseures; Beth-mtone is soft, bat not ds. rable; Whitby sandatone is a good apecimen of oolite.
The Wealden formation affords Parbeck atone, formerly mach used, some of the pavements in the old streets of London being made of it. The Purbect marble was much used for ornamenting cathedraln. The Wealden candetore is very crumbling, but was ased in Knowle Castle, and the other cestles in Kent.

Chalk firestone is composed of marl and green anad, and is mach aend fes ovens. The cloisters of Weutminater Abbey are built of it. Chalk limestere is rarely used, and is not much to be seen, except in St. Alben's Abbey. The tertiary formations are not productive in England, while in France they supply sbandant materials, and are ortonsively employed at Paris.
The Lis formations I hare peesed over, but it is not durable on aecompt of its containing pyrites. It is, however, well adapted for cements, and bee lias lime isnow much used.

The French Government has decided on proposing to the Chamber of Deputies, to undertake the railroad from the capital to the Belgtan froutier.

IAN PROCEEDIEGB.

EXPLOSION ON BOARD THE ARCHIMBDES STEAM-BOAT.

An inquest was held on the lst ultimo at the Unicorn at Greenwich, before Mr. Carttar, the coroner for Kent, on the body of James M‘Millan, an engineer on board the Archimedes steam-vessel. The deceased was employed on thoard this vessel on Thursday, May 30, and it was just about to leave the East India Docks for an experimental trip, when the boiler burst, and so dreadfully scalded the deceased by the heated steam which eacaped, that he died in a few minutes after his arrival at the Dreadnought hospital-ship. From the cridence adduced, it appeared that the accident was to be attributed to an uudue pressure of steam, and to a faulty condition of the safety valves, which did not act properly. After examining a number of witnesses, the coroner adjourned the inquiry till Wednesday, the 5th ultimo, to give an opportunity for the attendance of scientific gentlemen, and to examine two other men who have been severely scalded, and who are now on board the Dreadnought.
At the adjourned inqueat Mr. Field, the engineer, attended and gave the following evidence :-
He stated that le renided at Lambeth, and wes an engineer. Was not connected with the company to which the Archimedes belonged, but had been requeated to make an inspection of the boiler of that vessel. He found the hoiler was of the ordinary low pressure kind, generilly used by steam-resell upon the river. Its power and strength of plate were quite sufficient. The boiler was rather large. The great objection to it was, that it was leas tiod together than smaller boilers would be, and therefore subject to be sooner danaged. If he had had to make a similar boiler, he should have pat more stays in it. The top of the boiler had been lifted by the preasure of the steam, the crown of it had been distorted, and by that means the safety-valve had been atopped from acting, and the spindle jammed, which prevented them from acting, to which cause he attributed the accident. He did not see any steam-ganges when be made the inspection; unless, therefore, the safetyvalves acted, the pressure of the steam could not be known. A good engineer might have known from the opening of the cocks, but every man could not. The top of the boiler had been lifted, but the chimney had not been moved from the place where it stood, in consequence of being atteched to the Aues. The engineers, in consequence of the jamming, were not able to know the strength of the steam, and that was the reason of the accident. When begmade the examination he tester the valves, and found one of them loaded to the extent of 51 , and the other to $6!$; that was rather higher than he should load them, but many would load them in that way. The preasure ought not to be increased, as it would be attended with danger to the safety of the boiler. There was nothing but the ordinary weight on the valvea at the time he saw them. The tightest of the valves could be got at from the deck, and the other from below. A preventive to this occurrence would have been stronger staying or less pressure, but that would not have presented it if the safety ralve had been jammed, which could not have taken place unleas the boiler had been thrown out of shape. The boiler, if it had been auficiently tied so as to prevent its altering its shape, would have been of sufficient strength to work up to 51 . The thickness of the plates whas quite rufficient. There were a great number of fires for so amall a boiler, but they did not increase the danger at all. He should not have chosen to work a steam-vessel from London to Portsmouth without a steam gauge. If there had been a steam gauge in the present instance, it would have indicated danger-that there was something more than the ordinary prearare : the difference from an extra weight of 44 lb . on one ralve would increase the pressure $1 \ddagger$ or 1 lib. upon the square inch. He would have been extremely timid in loading the boiler to that extent. He thought the boilers were not cufficiently strong to bear the pressure he found apon them. If the boiler had been well ticd and bound, however, it would have been of sufficient 3 rreogth.

After hearing the evidence of Mr. Rennie and some other witnemes, the jury returned a verdict of "Accidental Death," with a deodand of $£ 250$ on the boilers.

The Foreman said the jury did not attribute the secident so any wrong constraction of the boiler, ${ }^{*}$ and that, if it had not been improperly interfered with, the accident would not have occurred.

The Coroner concurred in the view of the jury. If the valves had not been improperly interfered with by some person or other, the unfortunate result might not have ensued.

THE LATE ACCIDENT ON THE EASTRRN COUNTIES RAILWAY.

An inqueat was held at Stratford, on Saturday, the 22d nultimo, before Mr. C. C. Lewis, the coroner for Essex, on the bodies of John Meadows, the engineer, and Chariea Leitch, the stoker to the engine which met with the accident mentioned in the daily papers. It appeared by the evidence that the accident took place about a quarter before five o'clock on Friday afternoon. The train had left Mile End, and was about half a-mile from Stratford, when, on taking a course near Stent's Mill Bridge, the engineer allowed the engine to acquire such an immense velocity, that it rocked violently from side to side for some distance, and at last run off the rails. Neither the passengers nor the guards were at all injured. The jury, having heard the evidence declared their opinion that the accident had been occasioned entirely by overspeed, and by the engine man having in this respect disobeyed the express
orders of the ongineer in chief and officara of the company; and a verdict of "Accidental Death" wna accordingly retarned. The engine man was a very steady and experienced person, but he had been previounly waraed against driving at such great apeed. Bither from too great conddence in his own power, or from some other cause, he did not at the time of the unfortunate accident either shut of the steam or reverte the engine, nor did it appear that the break had been applied. The engine is but little damaged, the boiler not heving burst as erroneously stated in the daily pajers. Nor had there been any subsidence whatever in the rails or the embankments, that portion of the embankments where the accident occurred having been made nany months, and it wat in the soundest possible condition. There were from thirty to forty passengers in the train, and their entire cxemption from injury is mainly attributable to the judicious plan of fastening the carriage doors, which prevented the passengers from attempting to jump out. The slight damage done to the rails was immediately repaired, and the trains continued to run in the regular succession as usual.
[From inquiries which we have made, we understand that the cause of the eccident was entirely owing to the centrifugal force consequent on the amaring speed at which the engine was going. It was at the commencement of a eurve on a declivity of 16 feet per mile, where the engine quitted the rails. The deaths of the unfortunate men was occasioned by their attempting to leap from the engine, one being crushed by the tender, and the other by the train of carriages.]-EDiron.

- If this were the opinion of the jury, we do not consider they were junti-
able in levying so large a deodand.- iniron. fiable in levying so large a deodand.-EDiron.

DIBOTETMANEA.

Discovery of Pahuable Marble.-- We understand that a large field of fossil marble has lately been discovered on the common belonging to the manor of Great Asby, in this county, the property of John Hill, Esq., of Bankfoot, some of the most beautiful which England las hitherto produced. Two specimens of this splendid marble have aptly been named by the owner, "Tortorseshell and chints marbles." The first has a French white ground, interspersed with blood-red spots, and bears a strong resemblance to turtoise-shell, that at a ahort distance it is difficult to discriminate between the two. The second presents a light brown ground marked with a curious representation of gold filigree work, mixed with a dusky green, bright purple, and red, and has the exact appearance of the rich chintz gowns worn a century ago. There are numerous other patterns in this limeatone range, extending over more than 3,000 acres, both curious and handsome. The great value of this marble consists not in variety of colours alone, but also in the finenese of its grain, which is equal to the Italian marble, and also in its great soundness; the shaken condition of variegated English marbles having in general rendered them of comparative little value. We hear that blocks of large dimensions are easily won, and when manufactured, take the most brilliant polish imaginable. We have no doubt this valuable marble, unique in its kind, will soon become a general favourite with the public, and be an important acquisition to the marble works of this country. We hear, also, with much pleasure, that a few specimens will be presented to the museum at Rendal.... Westmorelond Gaxette.

Mill Bay Marbour and Flnating Docks... We are informed that the promoters of the Exeter and Plymouth Railway intend making Mill Bay the terminus of their line, for which purpose it is admirably situated between Plymouth and Devonport. The loating dock will hold 200 sail, exclusive of the foreign peckets ; and the outer harbour, which will le formed by a breakwater, from the point of Mr. Gill'a quarry, will have from three to four fathoms of water at low tide, and will afford atundance of room for steamers to lay afloat, and go out of harbour at any time of tide. The great abundance of stone on the spot will render the cost of this work comparatively trifling, as the limestone excavated to form the outer harbour will go a great way in completing the breakwater.

Lawnch of the Lord Mayor's Barge.-On Tuesday, the 11th ultimo, the Lord Mayor and the Lady Mayoress went by water from Southwark Bridge, attended by the water-bailiff and others of the officers attached to the conservancy, to the premises of Mr. Serle, the city bargemaster, to witness the lannch of the state barge, which has been for some time, by order of the Court of Aldermen, undergoing repair and modern decoration. In the front of the house which is raised in the boat are four Corinthian columns, close to each of which is a very skilfully carved griffin. The gilding all round, and particularly at the head of the vessel, which is also finely carved, has been applied whih a most liberal hand, and the effect is grand in the extreme. It was admitted by those who had aeen the barge launched immediately after she was hullt, that her appearance yesterday was far more attractive.

The Lords of the Admiralty have sent a ship of war to the south-western corner of Asis Minor, for the purpose of transporting from thence to this country a large collection of most valuable ancient sculptures and bas-reliefs, which have been described by Mr, Fellowes in his account of Asia Minor, where many towns and cities, and a remarkable and nearly perfect ancient Where many towns and cities, and a remarkable hitherto quite unknown, have likewise been found.
Kensington.-At the beginning of the month a new Infant School-house, at Kensington, erected under the direction of Mr. G. Golwin, was opered to the children. It is designed in the Tudur style ot architecture, and is buile with red bricks and compo facings. The roof, a very light one, bas the peculiarity of a large lantern for ventilation, and wlich serves, at the same time, to assist the external appearance of the truilding. The length of the school room is 42 feet, and the width 22 feet. The cuyt is said to have been under $£ 300$. There is a committee-room attached.

PROCEEDITGA OF PARLIANEDTF.

House of Commons.-List of Petitions for Private Bills, and progress therein.

	$\left\lvert\, \begin{gathered} \text { Petition } \\ \text { prested. } \\ \text { sented } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { Bill readi } \\ \text { first } \\ \text { time. } \end{gathered}\right.$	$\begin{aligned} & \text { Bill read } \\ & \text { second } \\ & \text { tume. } \end{aligned}$	$\begin{gathered} \text { Bill read } \\ \text { third } \\ \text { time. } \end{gathered}$	Royal Assent
Aberbrolhwick Harbour	Feb.	Feb. 27.	Mar. 12.	Apr. 15.	
Aberleen Harsour	Feb. 8.	Mar. 15.	$\left\lvert\, \begin{array}{cc} 10 \mathrm{prc} \\ \text { Apr. } \\ \hline \end{array}\right.$		
Ballorhney Railway	Feb. 12.	Mar. 14.		May 3.	\cdots
Barnstey Waterworks	Feb. 21.				
Baih Cemetery	Fel. 22.				
Belfast Watervorks	Feb. 22.				
${ }_{\text {Blirmingham Cidnal }}^{\text {Birmingham \& Glos. Rlp }}$	Fel. 20. Feb. 21	Mar. 15.	Apr. 12.	Junc 13.	
Hp. Aluckinnd \& Weardale	Fel, 22.	Mar. 18.	Apr. 15.		
Blacklesih Cemetery	Pel. 22.	Mar. 18.			
Bradford (York) Waterworks	Feb. 21.				
Brighton Gas	Febl 21.	Mar. 18.		May 31.	
Brighton Cemetery ${ }^{\text {a }}$ (${ }^{\text {a }}$	Fed. 21.	Mar. 18.	May 28.		
Bristol \& Gloucestershire Ra. Briush Museum Buildings	Feb. 21. Feb. 22.	Mar. 7.	$\text { Apr. } 12 .$	Hay 3.	
Brompton New Road	Fel. 22.	Mar. 18.	Ayr. 30.		
Cheltenham Waterworks	Fel. 22.	Mar. 12.	Mar.22.		
Commercial (Lonton and Black wall) Railway .	Fel. 14.	Mar, 8.	Mar. 21.	June 20.	
Dean Porest Railway .	Fel. 19.				
Deptforl Pier	Feb. 22.	Mar. 18.	May 28.	June 21.	
Deptiforl Pier Junction	Fel. 22.	Mar. 20.	May 28.	..	
Deptford Steam Ship D	Feb. 22.				
haven Railway.	Feb. 19.	Mar. 11.	Mar. 27.	May 30.	
Eyemouth Harlour	Feb. 12.		Apr.	May 28.	
Fraserburgh Harbour	Feb. 20.		Apr. 8.	Apr. 16.	
Gencral Cometery	Feb. 20.	Mar. 11.	Mar. 21.	June 7.	
Gravesend Gas	Fob 21.	Mar. 18.	Mar. 25.		
Great North of Englanil Ra. Great Western Railway	Feb. 18 Feb. 14	Mar. 4.	$\begin{aligned} & \text { Mar. } 25 . \\ & \text { Mar. } 13 . \end{aligned}$	May 1.	June 14.
Great Central Irish Rail	Mar. 12.				
Hereforushire and tershire Canal.	Feb. 20.	Mar. 13.		-	June 4.
Heme Gas	Feb. 22.	..			
Liverpool Docks	Feb. 21.				
Liverpool Buildings	1.		May 28.		
L Liverpool and Manc Fxtenyion Railway		Feb. 28.	Mar		
London and Birmingham	Peb. 8.	Feb. 22	Mar. 6.	May 30.	Jume 14.
Iondon Bridgea pproaches, \&c.	Feb. 19.	Ari. 11.	Apr. 26.		
London \& Croyton Railway	Feb) 19.	Mar. 18.	Apr. 8.	May 3.	e
London Cemetery	Feb. 19.	Mar. 18.	Apr.	May 3	June 4.
London and Southampton (Guildford Branch) Rlwy.					
London and Southampton (Portamouth Branch) Ra.					
(Poster\& BirminhamRa.		Fel) 25.		,	.
Mancheyter and Birmingham	Feb. 18.	Mar. 18.			
Extensiou(Stone\&c Rugly	Fci) 11.	May. 1.	May 14.		
Manchester \& Leeds RIWay.	Feb. 18.	Mar. 8.	Mar. 10.	May 30.	
Marylebone Gas \& CokeComp.	Eel. 22.	Mar. 14.			
Monklank \& Kirkinilloch Ra.	Feb. 12.	Mar. 17.	An' 8.	May 3.	
Necrofolis(St.Panc.) Semetry	Feb. 21.	Mar. 15.	Mar. 11.		
Newarl Gas Nencastle-upon-Tyne \& N. Shields (Extension) Rlwy.	Feb. 14. Fel, 18.	Feb. 28.	Mar. 11.	Apr. 18.	
Northern \& Eastern(1) Rlwy.	Feb. 22.	Mar. 18.	Apr. 16.	June 4.	
Northern \& Eastern (2)Rlwy.	Fet, 22.	Mar. 27.	Apr. 16	Junc 4.	
North Midlaur Railway	Feb. 11.	Mar. 4.	Mar. 17.	May 1.	
North Union Railway	Feb 22.				
Nottinghaminclosure \& Canal	Fcb. 19.	Mar. 18.			
Over Darwen Gas	Feb. 21.	..	A 1 \%. 12.	Junc 3.	
Perth Harlour \& Navigation	Feb. 14.			May 2.	June 4.
Portishead Pier Preston	FCl. 22.				
${ }_{\text {Preston Gas }}$ Preston and Wyrc Railway	Feb. 6.	Feb. 20.	Mar. 6.	Mar. 19.	
Preston and Wyre Railway	Feb. 6.	b. 20.	Mar. 4.	Mar. 15.	.
Preston and Wyre Railway, Marbour, and Dock .	Feb. 21.	Mar. 18.	Apr. 12.		
Redcar (No. 1) Harbour	Feb. 19.				-
Redcar (No. 2) Harbour	Feb. 22.	Mar. 27.	Mar. 30.		
Rishworth Reservoirs.	Frb. 21.	Mar. 6.	Mar. 26.	May 30.	
Rochdzle Waterworks	Feb. 7.	Feb. 21.	Mar. 6.	May 6.	
Rochester Cemetery ${ }^{\text {a }}$,	Fel. 22.	Mar. 18.			
Sawmill Ford Bridge \& Road	Feb. 21.	Mar. 18.		Sune 10.	
Slamannan Railway ${ }^{\text {South Fastem Railway }}$	Feb. 12.	Mar. 18.	Mar. 27.	May 28.	
	Feb. 11.		Mar. 25.	May 15.	June 13.
	Fob. ${ }^{2}$	May 6.	May 30.	Jute 19.	
Teignmouth Brilge	Fch. 21 Feb. 22	Mar. 15.			\cdots
Type Stean Ferry	Feb. 21.				
Walsall Iunction Canal	Feb. 22.				
West Durham Railwry	Feb. 21.	Mar. 18.	Apr. 8.	May 14.	.
Westminster Improvement.	Fch. 21.				
Wyrley and Essington and	Feb, 12.	Mar. 14.	Apr. 8.	May 3.	\cdots
Birmingham Cagal	Feb, 18.	0.1	11	${ }^{\prime \prime}$	19

GTEAM NAVIGATTON

THE BRITISH QUEEN STEAM-SHIP.

Wr fully expected that we should have been able to have given our own report on this vassel, but as she had not arrived in the river Thames at the time of our going to press, we are prevented doing w; however, we give a very full account of her which appeared in the Paisley Advertiser, at the commencement of last month. Her dimen. sions do not differ from what we before reported in our Jouraal hast ysar:-
Tazs splendid and powerful vessel was built, as our readors are anare, hy Messrs. Curling and Young, London, for the British and American Stean Navigation Conipany. She was launched at Limehouse at the close of May 1838, and arrived at Port Giasgow wbout the 7 th of July in that gear, to git in her engines, made by Mr. Robert Napier, engineer, Glasgow. By the politeness of Mr. Johnstone, resident ongineer, we had an opportonity of giving this ocean queen a general overhaul on Monday last, and we shall nom subjoin a few particulars regarding her. Her engineering and other fitiogs are in a very forward state. On the day named her heavy machinery was all on board, with the exception of the main sbaft, which was expected down from Glasgow on Thursday. We gave a number of the dimensions of this vessel when she was launched, but fit mayy not be uninterestiog to reprat a few of them along with some other details.

	Feet.	lnch es.
Length from Ggure-head to taffruil	275	0
Length of apper deck.	245	0
Breedth within tge paddle-boxes.	40	${ }_{0}$
Breadth over all	61	0
Depth of hold.	47	0
Eatimated weight of engines, boiler, and	500	Tous
Twenty days' consumption of coals	60	do

She has two splendid engines aboard, of 250 borse power eacb, the frame work of which is in a massy Gothic styld, while the working parts, for streng th, beauty, and excellence of fiting, are admirable. Each engine stands on a aingle plate of metal, weighing 35 cwt . ; four pieces of the framework weigh each 16 tons; the cylinders weigh emch 12 tons; the diameter of the bore is 77 inches; diemeter of the axle in the bushes is $16 \frac{1}{3}$ inches, aud the stroke of the engine is 7 feet. She has in all four boilers, any number of Which can be used at one time withont the others. The diameter of the paddie wheels is Slift. 6in. The flost boards, which are 9 ft . 6 in . long, are y ranged in three distinct parts, presenting a resistance of three feet in bredth. According to her depth in the water, the revolations of ber paddle-whels will vary from fifteon to sixteen in a minute. She is mupplied with Hell's patent condensers, and thus the same water with which she fills her boilery to the Clyde will, with a litule aldition, serve until her arrival at Now York. She has iron tanks between the timbers in the hold capable of holding yu0 tond of water, all of which is accessible to the pumps, and can be theriby drawn out, and conveyed by pipes to the different bertho. But over and above this she has a patent still with her, and can convert salt water into fresh for her boilers, and for the use of her passengers as may le requirel. The main suloon is about jo feet long, and in the narrowest part betreen lie side berths is nearly 20 feet in braedic; a flood of light is thrown into it from above, and the floor is corered with oil cloth, above which is laid rich soft carpeting of a beautiful description, while the sides are ornameated with historical paiatings, executed on a peculiar kind of canvass, which givia bepu the appearauce of needlework in worsted. The ladies' saloon is aiso fited up with great taste, besuty and splendour, while the second cabin is acocely inferior in uccommodation, and but litile in beauty to the frst. The sula, furniture is furnished by Mr. Boyd, and the upholstery work by Mrs, Murray. both of Glasgow. Mr. Kerr, of Greenock, has the work of the second cathi: and all seenn to be rying trith each other in the production of excellent and beautiful workmanship. The berths are fitted up with erery attention to convonience. The lamps are of a patent kind, which oan aither be usel with oil or with wax candlos, nad move on an universal joint, which beeps the light orect, however much the vessel might pitch or roll. There are 104 beds fitted up aft, and 108 for $\begin{gathered}\text { ard, with room for sixty or seventy more if required. }\end{gathered}$ The steward's room is Gited up with almost every conceivable convenience, and affords a passage for conveying the dimuor from the gallery to the dining salow without incommoding or being seen by the crew or passengers. The delf ware, which appears of a very excellent kind, hes been made specially for the vessel. and is omamented with a steam-ship, surrounded by the designation of be conpany. The silver plate is superb. She will carry thirty-two hards immediately conneeted with the superinteadence and managemeas of the cagines, nnd her crew in whole, including officers, seamen, angiseras, couks, stew ard, \&c., will amount to 85 . In respect to stores and general fiting out she is adnuirubly found, and everytining is on the most improvad conurnucion. Her windlass, for example, is of Tyzick and Dobinson's patent ; ber atop. pers of Moffatt's putent, and so on of meny other patented arciclen. Hor chain cables are of $1 \dot{j}$ iron, und are of the same kind as are used for 74 guy ships. Her sauall bower, best bower, and sheet anchor weigh respec. tivaly 32 cwt . 2 grs . 18 lb ., 4 Hewt., and 47 cwt . 1gr. 21 lbs . No peins, Do time, no expense, have been apared in ubtaining perfection, ond takiag ber in in all, we may safiely sasy she is unequalled by any vessed atour. Among othar conveniancies for passengers we had almost fargotean one. On the deck there will be a neaterection, in which cold, warm, or sbower bathe mely
be obtained by the passengers. But the attention of the owners goes stil ${ }^{\text {l }}$ farther than this. Even the smokers are not forgotten. Near the baths there will be (shifiable to leeward, we hope) a cigar-room, where smokers may congregute, and offer up clouds of incense to each other, till they become as smoke-dried as red herrings. The cabins of the captain, chief mate, and surgeon, are on the after part of the quarter deck, and the roof forma a shelter to the steersman. Slie is steered with a double wheel, similar to those used by the London East Indiumen, or line-of-battle-ships. The petty officers descend to their cabia immediately before the windlass, and the seamen get down to their berths choke below the forecastle. The rigging of the ressel is low and and saug rather than tsunt; but her yards are pretty square, and, as she has atudding-sail booms fitted on them she will be able, when necessary, to display a good breadth of canvass to the breeze. She will have about 300 passengers on her first trip, berths for whom are already secured. The berths on her return passage from New York were all taken up two months ago. When starting from London she will have about 1000 tons of goods. She is coppered up to 17 feet, and is expected, when loaded, to draw 18 feet aft, and $17!$ feet forward. Notwithstanding the great capacity of this magnificent vessel, she does not look so large ns many would expect. Probablv the Lezuty of her mouid tends to detract a little from har apparent bulk. When down to the depth aforementioned, we do not think she will much exceed in appearance a first-class frigato. Start when she will, and go where she unar, she will, we think, carry with her abundaut proof of that high state of jerfection in the construction of nautical steam machinery to which the Clyde engineers have arrived.

Iron Smip.-The largest iron sailing ship in the world is now building in Mesars. J. Ronald and Co.'s yard, Footdee, Aberdeen. This stupendous vessel in of the following dimensions :-Iength of keel, 130 feet ; breaith of frame, 30 feet ; depth of hold, 20 feet; length over all, 137 feet; tons register, 537. Judging from her appearance, she is a beautiful model, and will carry an imtuense cargo on a small draught of water. She is intended for a company in Liverpool.-. Ilerdeen Ilerald.

PROGRERS OF RAILWAYS.

OPENING OF THE EASTERN COUNTIES RAILWAY.
This railway was opened on Tiesday, the 18 th ultimo. A large concourse of persons assembled at the temporary station, Deyonshire-sirect. Mile-end. in witness the departure of the first train on this line of railroad. The line commences at Shoreditch. on a viaduct about twenty-one feet above the level of the ground, up to which extensive and commodious carriage approaches will be made. At the commencement of the viatuet it is proposed to erect the London station, which will be of commensurate extent with the existing traffic. In it are several bridges, the arches of which are faced with stone, whit gives them a handsome and imposing character, especially the bridge orror Devonshire-street, the arch of which rises less, for the span, than we have observed on any other line of railway, the rise being less than onetenth of the span. The whole of the arching has been effectually protected from the effects of damp by a thick coating of asphaltum. The line then panses ovcr the Kegent's Canal by an iron bridge, the general appearance of a hich has been much admired ; two main ribs of iron of fifty-four feet span, partly on the bow suspension principle, are thrown over the canal, to which iransverse girders are fixed, supporting the roadway, on which are laid longitudinal sleepers of timber receiving the rails, an ornamental railing gives a finish to the whole. Passing successively over the river Lea, Grove Roan, Coborn Road, Fairfield Flace, and Old Ford Lune Bridges, besides numerous otber smaller archways, the rallway passes over the Stratford marshes within if few feet of one of the extensive reservoirs of the East London Waterworks, crossing the river Lea ly an arch of 70 ft . span, rising one-fourth only ; the arch is turned in 10 half trick rings ; the appearanee of this bridge (as we expressed in our review of Cresy's work on bridges in which drawings of it appear), is at once light and elegant, although sumfiently massire to prevent any ides of weakness. The embankment beyond the river Lea is 25 feet in height, in the formation of which considerable difficulty occurred osing to the very unstable niture of the ground on which it was raised, it being, in fact, a mass of spongy mpretable matter to a very considerable depth. Much assistance was derived in the execution of this part ot the work by the formation of a staging on romgh piles in alvance of the embankment, and on which the wagons were run ontl tipped with great rapidity; of course by this means the earth was depositrd over the subsoil to any required hejght, and the tendency of the trumin "to sper up" prevented On thi part of the line there are numerous Irilges over the various streams and rivers which the railway intersects, same of which are of considerable magnitude, such as the Stratford viaduct of five arches, each thirty-six feet sian. Kent's Mill Bridge, of four arches, and the Abluey River Bridge, all of which are over tidal curren a, besides numerous other sianall archways. The Siratford station is crected after the :y le of a plain Italian villa, fitted up with waiting-rooms, carriage-shedding, rngine-house, and repairing workshops for the engines. The depth of the cuting wheh immediatily follows this station varies from ten to twenty feet. The IIford atation, which is only now being erecter. is obviously incomplete. The tuntel or bridge at the crossing of the great Fissex road evinces great julgment. it is 130 feet long, with iron girders resting on the abutment walla, from thanges on their lower parts small arches in cement are turned, carrying the turripike road above; a little boyond this are some well excuted culverts tormed aith iron pipea 3 Eeet diameter. The portion of the railuay now open to the fuldic teronimtes at Barrack Lane, immediately adjacent to the toH:
of Romford ; the total distance is about ten miles and a-half, which the trains will accomplish in less than haif an hour. The whole of the gradients are favourable. It may not be generally known that this line is laid down to a 5 fict guage, which without greatly inereasing the weight of the engines. gives them great mechanical advantages which they have not failed to tura to accouut.

The engineer to the line is Mr. Braithwaite, to whom much praise is due for the generally efficient manner in which the works and engineering difficultics (not a few) have been excected.

The Dundee and Abroath Railway.-This railway is about fourteen miles in length, with a capital of $£ 100,000$. The greater part of the line is carried along the sea shore, through property presented by Lord Panmure to the company. This railway is remarkable for the limited works required in its construction, and they of scarcely any magnitude except at the end next Dundee, where there is a cutting about half a mile in length through different stata, composed of gravel, and, and rock. The greatent difficulty in this place is the disintegration of the rock, or rather its slipping down upan the line, in consequence of the obliquity of its bed. Numerous instances of this sort have occorred. The greatest depth of cutting is about twenty feet. The niaterials prodrced by this excaration are made use of to form an embankinent across the sea nert the Dundee terminus. This embankment is about three-quarters of a mile long, haring a slope of 1 to 1 next the sea, and 2 to 1 next the shore. The sea side is protected by a wall of rabble masonry, laid dry, carried up with a straight batter, and having a parapet upon the top. There will be altogether a quantity of about 800,000 cubic yards in this embankment, but much mote is requisite to secure it against the turbulence of the sea, and to protect the weakest parts from being washed away. During ite construction considerable difficulty has been experienced from the infuence which the sca has had over the retaining wall, not cimultaneously furnished with the embankment, but when these have been carried up together no damage has occurred. The terminus nert Dundee is carried along the north quay of the new dock, from whence it is the intention to lay rails round the other side of the quays. The other terminus is near the harbour of Abroath and light station. The rails weigh 481 bs . to the yard parallel, and are secured to cast iron chairs by a small wooden wedge. The chairs rest upon atone blocks, four cubic feet each in the cotting, but upon the embankment timber sleepers are employed. The greatest inclination is 1 in 1,000 . The rails are 5 feet six inches apart, with a space of six feet between the two lines. The locomotives weigh ten tons each, having 13 -inch cylinders, 16 -inch stroke, and upon six wheels, the driving wheels being six feet diameter. The cylinders are placed outside the firo-box, and the boilers are furnished with 105 brass tubes. The carriages are divided into lst and 2 d class, and are of pecoliar construction. The former are enclosed and in the centre, the others are open and are placed on each side, and hold together thirty-four passengers.
London and Croydon Railway.- On Saturday, the lat ultimo, this line was opened by the directors, together w th depuiations from the London aml Brighton and the Greenwich Railway Companies. At a little after one o'cluek the trains, two in number, started. The journey down was accomplished in twenty minutes. The station at New Cross is fitted up with cuery eonvenience for passengers, \&c.; at the back there is a most apacious eagine-house, of an octagonal shape, and is calculated to hold, exclusive of tenders, sixteen engines. The building is very lofty, an.l supported by massive stone pillars. The light is reflected not only from the side, lut from a cupola also. the ndvantages of which must be apparent to all who understand the nature of these works. After lesving this station there is an incilue nearly tho miles in extent, the gradients of which are about 1 in 100 feet. Ot the brid ${ }^{\circ} \mathrm{e}$; (which are peculiarly constructed), and of the cuttings aiso, we can but surak generally, and we must ald, favourably.
Brandling Junction Railway.-An cxperimental trip was perfarmed on the Brandling Junction Railway on Thursday, May 30, with three beautiful locomotive engines and waggons attached, bhich ran with a number of passengers from the Mank Wearmouth station to Boldon, where they took in water and then returned. The experiment was in ail respects most atisfactory; the railway stood the test to admiration, and the elugines performed their work as stondily and smoothly as if they had been used to it. The grand opening of this promising and useful undertaking will take place on the 18th, being the anuiversury of the glorious battle of Waterloo.-Newartle Journal.
Birmingham and Derby Jwnction Railway,-On Wednesday, the 29th May, the directors of the above railuay inspected the line between Derty and the junction with the Loudon and Birmingham Railway at Hampton-in-Arden, a distance of about thirty-eight nuiles. The proceeded from the bridge over the river Dove, a distauce of seventeen miles, towards Tamworth. with a train of passenger carriages, drawn by an enginc built by Messrs. Charles Tayleure and Co., of Warrington. The line is gencrally and on many portions remartably straight. The gradients are so extromely favourable that it may almost be said to be a level, and the motion, we are assured by a gentleman who accompaniod the directors, was (asy and smooth to a legree which they ha'l seldom experienced on any other railway. By the simplicity of construction and stability of the bridge over the Tame and Trent, at their junction near Alrewas, over uhich the train passed at speed, the directors were strongly impressed. It is near this point that the intended junction with the branch of the Manchester and Birminghan Extension Line is to be offected, by which the traffic from Lancashire to Derby, Nottingham, and the eastern parts of the kinglom, will eventually be brought along the line of this railway. Though some portions of the line were not in so complete a state as to render the further passage of the train adviasble, the greater portion of the parmanent vay whi laid, and in a few weeka the engines will be able to panaloug the whole dintmope. Conidoralle progress is making in the station secornmodations for the company's tratic at Derby and Burton-upon-Trent; the
building of the station at the junction with the London and Birmingham line at Hampton-in-Arden will soou be completed, and no doubt exiats that the line may be opened to the public, for the whole dis, ance from Derby to the junction with the London and Birmingham Railway, in the courne of the ensuing month.-Midland Comaties Herald.

Grand Junction Railway. The rates for the carriage of merchandise on this railway were reduced on the lat inst. The principal reductions are on goods which were formerly charged 1 s . 6d. and 1 s .3 d . per cwt. : the former charge having been reduced to 1 s .3 d . and the latter to 1 s . 11 d. per cwt . The company are now carrying throughout between Liverponl, Manchester, and London.

Mancheater and Lepds Railoway-An experimental trip on this line of railway was made on Friday, 3lst May, by the directors and a party of their friends, consisting altogether of about sixty gentlemen, who proceeded in a train from the atation in Manchester to the entrance of the summit tunnel, about three quarters of a mile beyond Littleborough, a distance of sirteen miles from Manchester. The directors promised, in one of their earlier reports, that this portion of the line would le completed in May, 1839 ; and, nutwith. standing many unexpected difficulties in the progress of the works, they were enabled in some measure to redeem their pledge by the above trip, made on the last day of the month, although the extent of line travelled over will not be ready for the conveyance of passengers before the beginning of July. The rails on the line are about 60 lbs . to the yarl. They are laid to surh a ridth, that, in the event of the extension lines uniting, the Leeds and Liverpool and Manchester Railways, at the Hunt's Bank Station, the same engines, carriages, or waggons may proceed forward; there will be a space of six feet between the double line of rails. There are to be three classes of carriages, which will be distinguished by numbers instead of names. Both the first and second class camiages have a wooden stage along each side the whole length of the carriage, which, besides conducing to the convenience of ladies and infirm passengers, will facilitate the collecting of tickets, and is likely also to act as an additional s rity against accidents arising from persons coming in contact with the steps of a starting train. It is calculated that the expence of travelling in the third class carriages, which are open and unprovided with seats, will not exceed one penny per mile. There are several heary works on the line between Manchester and Littleborough, amongat which we may mention those at Mills Hill, as an cxample of the difficulties which had to be overcome in the construction of this portion of the line. At this point the railway is carried upon its loftiest embankment, and acroas the river Irk, by a double culvert, at a height (the rails above the anrface of the water) of 65 feet. Though the length of this embenkment is probably not more than a quarter of a mile, it is about the highest railway embankment in England,. being an average of 40 feet, with a maximum height of 74 feet; yet 80 carefully has it been made, that we are assured it has not sunk five inches since it was completed. It consists of 319,202 cubic yards of earth, of which not less than 40,000 cubic yards were shifted in one mouth. We believe it exhibits an example of the moving in a given time, just double the quantity of earth in cubic yards, which, in parliamentary evidence, had before been deemed barely possible. Shortly after one oclock the train reached the cntrance of the summit tunnel, the present extent of the line, where the company had an opportunity of examining the stupendous works which are here being carried on, and with a.hich they expressed themselves highly gratified. After remaining nearly two hours, the party returned to Xanchester, where they arrived soon after five o'clock, much pleased with the day's excursion.-Abridged from the Manchester Guardian.

The York and North Midland Railway.-On Wednesday, the 29th ultimo, a portion of this important national and commercial undertaking was opened, from the terminus at this city to the junction with the leeds and Selby Railway, near South Milford, which forms an uninterrupted railway communication between York and Leeds, and York and Selby, and the several intermeliate places. The whole line is intended to be completed by the time the North Midland, the Leeds and Manchester, and the Great North of England Railways (of which it will form the connecting link) can be opened. The Fairburn and Altofts contracts, which comprise the lienviest works on the whole line, are let to be completed in the spring of 1840; and the directors state, " there is no doubt. from the well-known talents and experience of the contractors (Mesars Craven and Sons, and Mr. Stephenson), that they will carry on the works with all possible energy and skiff, and complete their respective undertakings in the time stipulated by the contracts." Many of our readers will be aware that a tunnel has been formed into the city through the walls and ramparts. It appears that the directors of the York and North Midland Railway first determined to have their station for passengers outside the walls. It appearing, however, 10 them, as well as to the directors of the Great North of England Railway, very desirable that the two companies should have a joint passengers' atation, which was considered to be impracticable, except within the walls, a negotiation was entered into between the parties, and satisfactorily concluded. The station will be in the garden lately occupied by Mesars. T. and J. Backhouse. By means of this raifary, and the others now in progress, a direct communication will be opened next ye r from Newcastle to London; and from a highly infuential meeting lately held in the former town, it is probatle that very speedily the line will be carried through to Edinburgh-thus forming a complete chsin of rallway communication from the metropolis of England to the metropolis of Scolland. On Munday, the rails being laid throughout to the junction with the Leeds and Selby Rallway, an experimental trip was talen on the afternoon of that dey, when the "York and Leeds" steamer took down a train of carriages in fine atyle. The Lord Mayor, Sir John Simpeon, Akderman Meek, and eeveral other of the directors, were of the arty in the first-clasp carriages; a mecond and two third-clas carriages were filled with reapectable persong who happened to be on the line when the train started. The opening took place yesterday, for which the preparations were on the most liberal scale. A large party of ladies and gentlemen were invited to breakfast in the Guildhall, at pariy of ladies and gentiemen were invited to breakfast in the Guildhall, at
eleven oclock, and at half-past twelve a proceasion was formed to the atation,
preceded by a band of music. The train started at one o'clock, and proceedec to the junction, and on its returm, the procession re-formed, and wallidi, at. tended by the music, to the Guildhall. At four o'clock a grand dinnet was served up at the Guildhall. The city presented an animated appeornce throughout the whole day, a great number of visitors from the eoundr having arrived to nitness this interesting scene. Not the slightest accident occurred on the trip.-York Courant.

Opening of the Aylesbury Railuay.-On Monday, June 10, the torn of Aylet. bury was a scene of bustle and vivacity acarcely to be credited. Before si o'clock in the morning musicians accompanied by persons bearing flags. ob which suitable devices were inacribed, paraded the streets. affer which tbey proceeded in procession with the directors and their friends to the statica a little after seven oclock a train started for the terminus at the junction brtween Aylesbury and the London and Birmingham line. The company having expressed themselves highly pleased with the arrangements made by the d: rectors for the convenience of passengers, \&ic., returned to Aylesbury. Esperimental trips were made during the entire day, and persons residing in the town and its immediate neighbourhood were conveyed gratultousiy up ask down the line. The railroad itself is about seven miles and a-half in lenpil. and with the exception of the curves at either terminus it is perfecty straight. At half-past four o'clock the deputation from the loridon and Birmingham Railway Company arrived, and proceedel doun the tine in cuaspany with the Aylesbury directors. The usual formal business hariag been gone through, the company adjourned to dinner at the White Han lno.
London and Southampton Railway.- A distance of twenty miles adducmal of this railway was on Monday, the l'2th ultimo, opened to the prablic. ne twelve miles from Southampion to Winchester at the one exd. and eixh: miles from the Winchfield and Hartley-row station to Basingstoke at the othrr. A party of the directors and their friends left the terminus at Nine dins. Vauxhall, at half past eleven, and arrived at the Winchfield station at about five minutes to one, where a great crood of the country people araited the: coming, and greeted them with several rounds of hearty cheers. After ${ }^{2}$ short delay the train proceeded over the new ground to Basingstoke. while upon every height, and at every place where a view could be obtained. grouss of anxious and sdmiring spectators were stationed to watch and applavd thr progress of the engine and its bulky train upon its maiden excurnion. The distance was corapleted in about twenty minutes. The station at Besingstuks is very prettily situated upon a long line of embankment, and commands on the left a file view of that ancient town, with its venerable gothe clumb peering up in modest grandeur from amid surrounding houses; and, on the right, of the picturesque ruins of the Holy Giost Chapel, built in the reige of Henry VIII, The town itself presented the appearance of a holidsy. Dhe party, including many ladies, spent an hour very agreeatly in lookng abots: them. At about half-past two the train started on its return to Winchotic. accomplishing the distance without the slightest accident or annojance io mar the pleasures of the day. An elegant dejeuner a la fourchettr was fit. vided at a cottage in the immediate vicinity of the station, to which alout sixty ladies and gentlemen sat down. At seven o'clock the party hoke up and the train finally reached Vauxhall at ten minutes past eight. The ral. way, as we have already mentioned, was also opened from Soultamplico to Winchester at the same time, lcaving only eightecn miles, viz., the dssaric from Winchester to Basingstoke, to complete the whole undertaking. Thet remaining cighteen miles are performed by coaches in about two hours. so that pessengers from London to Southampton can complete the whut journey within five hours.-Times.

Gosport Junction Railway, - Already the surveyors of the Goupon Junctian Railroad, have commenced marking off the ground required for the undet. taking, from Bishop's Stoke to the terminus at Spring Gardens, near Gospro: preparatory to giving notice for tenders to be sent in by the lat July, for the performance of the works which will be required; thus evidencing, that the company as they have promised, intend in right earnest to commente and finish the above line in less than two years.-Hampahire Telegraph.

Great Western Railway.-The company are making rapid adraners in tha purchase of land in the neighbourhood of Chippenham. and will shurly lisit bompleted their line in that direction. The whole of the purchases in th: vicinity are likely to be completed without the intervention of juries, the cuc. pany offering an ample compensation for injuries by severance. \&e-Bat Chronicle. It is now arranged that the opening of the line as far as Twyto. shall take place in the first week in July, near which place a tempurary sis tion-house is in progress; the number of passengers is on the increase ai $\boldsymbol{p}^{\mathrm{rr}}$ tion-house is in progress; the number of passengers
seat, both to and from the metropolis.-Bristol Mirror.

Glasgow, Paisley, Kilmarnock, and Ayr Railuay,--The directors bave dete: mined to open the southern end of this line, from Ayr to lrvine, in the moth of July next, the permanent way being already laid for the kteater part of th: distance, and the progress of the work on the remaining portion loping sudas: to ensure its completion within little more than a month from the present time. Messrs. Stark and Fulton, of Glasgow have two locomotive ergas ready to deliver on the rails in the course of June, and two more are ui prigress of completion by Mr. Edward Bury, of Liverpool. We unders:and the first-class passenger carriages for the present traffic are fursistion from an experienced maker at Lancaster, and may be shortly expertid at Troon, and for the future supply a pattern carriage has teen fumsthaly? first-rate London maker, and now stands at Messra. Buchanan and sin: coach-wort in Union Street, to which all persons who intend to cumpeti "n the work will be required to adhere. The progress of the works on the dif ferent contracts along the whole line is highly satisfaetory, and no dould t, entertained of the rainwey being in full operation by Midsummer. 1840. The circumatances of this great undertaking being completed in so sbort a thr from the commencement of the works last summer, and being finishad for the eatimated capital, is highly creditable to the engineer; for we believe there 13 not an example of the kind in any railway hitherto made. The Tradien contract, being the last portion of the whole, Which terminates the lipe at ti,
Broomielaw, at Glasgow, has been also let, and from the nature of the wnil
to be done, there is no doubt of its being finished during the present summerWe understand Mr. Lyon (who has built the large stone bridge over the river Cart, at Paisley, in such a creditable manner) is the successiul competitor for this lot. We believe the directors have it in contemplation to commemorate the opening by a grand entertainment to be given at Ayr, to which all the leauty and fashion of the West of Scotland will be invited. The beauty of the scenery in that part of Ayrshire, and the present appearances of a favourable reason will, we trust, contribute, with the excellent arrangements of the authorities connected with the railway, to make this ceremonial a truly magnificent example of national taste and enterprise. "Well begun," it has been well said, "is half ended," and this has been verified in the present instance ; for, from the first commencement, wheu the foundation stones of the two magnificent bridges over the Garnock and Irvine rivera were laid with masonic honours, on the Queen's coronation day last summer, up to the present moment, not a single circumstance of any importance has occurred to delay the works; and the shareholders may soon enjoy the agreeable sight which their patriotic exertions have so speedily combined to produce, in the completion of this great undertaking.-Glaugow Courier.
London and Brighton Raihoay.-The differences between the London and Brighton Railway Company and the owner of some property at Southwick, Which had caused a temporary suspension of the works on the Shoreham branch of the railway have been settled satisfactorily; and on Monday, the 3 d ultimo, the Brighton locornotive engine recommenced its labours in removing the excarated earth from the cutting westward of the tunnel under Leshmar's mill. Steady progress is made in the last-mentioned work, which, jodging from the quantity of chalk brought up the shaft, and deposited on the ground sbove the tunnel, must be approaching to completion. The cuttings on each side of the New England Road are proceeding with rapidity, the greatest number of hands being employed that the space will admit. A bridge to connect the upper and lower portions of the rond leading from Wick to the Ofd Sboreham road has been commenced; and a similar bridge to oart the New England Road over thic railway is in course of construction. Lower down the hill, towards the Dairy, the foundations of the viaduct are already completed, as are also those of the concrete walls, which will terminate the embankments abuting on the viaduct.-Brighton Gazette.
North Midland Railway.-We understand that the Swinton contract on the North Midland Railway is nearly completed, and that a bridge has heenconxrueted over the river Dearne navigation near Rotherbam, which is considered a superior structure of architecture, as far as elegant workmanship and ubstantiality of building are concerned, and reflects the greatest credit upon Mesars. John Wilks and Cn., the contractors. The whole of the line is in a state of forwardness, and will be completed by the end of October. - Yorkshire Garette.
Bohon and Preston Railway.-We understand that five or six miles of hi fine of railway are nearly completed at the Bolton end, and that a vast number of men are thereon employed, hands being unusually plentiful. In about three weeks the remaining portion to the meeting with the North Junction will be let. Surreyors and others have been passing over and measuring the line daily for several weeks past, particularly near chorley, where there will be seen some cutting and tunnelling.-Preston Observer.
Proston asd Longridge Railway.---The workmen engaged on this line of railvay are progressing actively with the work at the east end. They are curting within abont forty yards of the stone quarries of Tootle Height, and preparations are making for laying the line with gravel previoualy to placing the rails. As the weather continues so very favourable, the line will, in afl probebility, be opened towards the end of this summer. The viaduct near the commencement, and the bridge at the Alst n Fuur-lane-cmids, exhibit superior strje of design and beauty. combined with streagh and firmness, which proves to what perfection this kind of work is now brought.---Preston Observer.
Manchewart and Birwingham Railway.-.-Congleton Viaduct.-.-A few daye since, Mr. Buck, the head engineer to the Manchester and Birmingham Railwey Company, was engaged for some time in superintending the progress of the works at Congleton, and in directing the preparatory arrangement for the foundation of the piers of the great viaduct, sci. From what passed at the meeting in Mancheater last week, it appears, that the height of this glorious strueture in to be rednced twenty feet, which, with the addition of thirteen feet to the viaduct at Stockport, will so far alter the line as to effect a saving to the company of about $80,0001 . .$. Staffordthire Gazette.
Nevecarth and North Shiclde Railway....The Directors and a number of their friend, on Wednesday, May 22, made an experimental trip on a portion of the permanent line, with one of the splendid new engines, furnished from the manufactory of Mesars. Hawthorn of this town, called the Hotspur. The rails, which are laid on continuous bearings, were found perfectly substantial and satiafactory, and it was observed that the motion of the carriagea on the line was exceedingly smooth and agreeable. We have before stated that the 18th of June is fixed for the general opening; by which time several railway carriages from the manufactory of Mr. Atkinson, coach-builder, will be brcought into requisition in the conveyance of pasaengers, to whose safety and comport every attention will be paid by the servants of the Company. We have not space this weel for more than a mere statement of the dimensions of this wonderful structure. The large arches are each 116 feet span, and they consist of three ribs, each formed of deals springing from stone abutments, with timber fruming abore. The stone arches are 45 feet span each. The mumber of arches is nine, fire of wood and four of stone. The total kongth is 920 feet, and the beight up to the railway is 108 feet. The whole, as faiahed, has a light and exceedingly beautiful appearance.--Nowearth Jownal, May 25 .
Vorsollhes Reminay. - The first tral of the whole extent of railway by St Clood to Vermailles was made on Thursday week. A locomotive engine ran the whote distance from the station in Paris to the Rue St. Symphorien, at Verrailles. At all the points near Ville-d'Array, Sevres, Chaville, Viroflay, aed Momirocil, tho inhabitants enme eut in crowds to witness the spectacie.

Railways in France.-A trifling improvement took place in the French funds on Monday, but a vast fall tonk place in the shares of the company for constructing a railroad between Paris and Versailles by the left bank of the Seine, under the impression that the loan to that company proposed by goveinment would be refused by the Chambers. It was considered all but certain that the Chamber of Deputies would reject the proposed bill of Ministers to authorise a loan of $5,000,000$ f. to the company which had undertaken to construct a railroad from Paris to Versailles by the left bank of the Seine, an impression which on Tueslay produced another and serious fall in the shares of that company.

CHUROETFB, PUBLIC muthditas, ec.

Trontham Hall.-The stonemasons who have been so long employed in the improvements now making at the mansion of the Duke of Sutherland, under the directions of Mr, Barry, the architect for the new House of Commons, atruck a fortnight ago for an advance of wages, although receiving twentyfour shillings a-weck, and this, after having been kept on during the whole of the winter months at that rate of wages, the liberality of the noble duke not permitting the customary reductions to be made for short days at that season of the jear. The whole of the masonry is consequently at a stand, and no new hands are permitted by the trades' union to be taken on, unless at the new rate which the society has fired, viz., 26s. a-week. Most of the workmen, it is stated, are willing to work at the old rate of 24 s . a-weck, but dare not.-Shrewsbury Chronicle.

New Scotch Church at Liverpool.-The f undation stone of a new church and school, in connection with the Church of Scotland, wes laid at Woodside, on the opposite side of the Mersey to Liverpool, on Fridsy, May 31, by the Rev. Dr. Cooke, of Helfast.

St. Mary's, Islington.-The third of the new churches erected in this parish, by the voluntary contributions of the inhabitants, liberally aided by the Metropolis Churches Fund, was consecrated on Tuesday, 18th ultimo, by the Lord Bishop of London, in the presence of the Lord Mayor, a numerous assemblage of the neighbouring clergy, and a crowded congregation of the parishioners. The church is situated in the New North Road; the principal front, facing the east, is a pure and elegant apecimen of Gothic architecture; the arches of the windows and other details of the body of the church resemble those of Merton College, Oxford, a classic example of the 14th century, of the time of Henry IV.; upon it has been introduced a spire riaing 100 feet from the pavement, upon the model of St. Mary's Church, Orford, of the same century. The whole exhibits considerable taste and elegance, and reflects great credit upon the architects, Messrs. Inwood and Clifton. The church is capable of accommodating 1,100 persons, and the cost of the building will not exceed 3,5001.-Tines.

Wetherby New Church..-The first stone of a new church, to be butlt at Wetherby, in the West Riding of the county of York, was laid on the lst of April last by Quintin Rhodes, Esq., in the presence of a large assemblage. The church will be built in the Lancet style, and entirely of stone, and is intended to accommodate seven hundred and thirty persons, a large portion of the seats being free. The pew framing, pulpits, \&cc., is chiefly of wainscot. The body of the church is 75 feet by 44 within, besides which there is a chancel 25 feet by 12 deep. There is an ornamental porch at the south side, and a tower at the west end eleven feet and a-half square within and seventyfive feet high, exclusive of the pinnacles, which a e fifteen feet more. The east window consists of five narrow lights, with cylinders, \&cc., and occupies the entire width of the chancel. There is a weat gallery only. The vestries are placed at the east end, on each side the chancel. Over the south porch is : n ornamental marygold window. The cost of the church was eatimated 19 : n ornamental marygold window. The cost of the church was eanated are proceeding rapidly, and it is expected to be ready for consecration in the ensuing spring. The whole of the building is vaulted underneath for interments. The expense will be defrayed chiefly by voluntary subscriptions, with ments. assistance from the Church Building Society. It ia designed by and is building under the superintendence of Mears. J. B. and William Atkinson, architects, York.

Cathadral of Chartres.-.-The immenee framework of iron, which replaces that of wood, for the roof of the Cathedral, is completely finished and raised, and nothing remains to be done but to put on the copper sheathing. Workmen are employed in reatoring all the internal parts of the Cathedral that hare suffered injury; and some finely sculptured woodwork is to be placed before the statue of the Vierge Noire. This fgure is held in profound venerstion throughout that part of the country.

ghantid in england prox 30th may to 27 th junk, 1839.
Armiandia Gomdon, of Fludyer-atreet, Wentminster, engineer, for "an Improred Machine or Apparatus for employing Steam, or other elastic fluid, as a motive power."-Sealed May 30 ; 6 months allowed to specify.

Wizliam Ammetrong, of Hawes, near Ampthill, Bedford, farmer for "Im. provements in Harrows."-May $30 ; 6$ months.

William Paimen, of Sutton-street, Clerkenwell, manufacturer, for "Impeovementi is Lamps and in the Manufacture of Candles."-June 1; 6 montha.

Srinimar Geary, of Hamilton-place, King's-crose, architect, for "certain Improvements in Paviac or covering of Streets, Roads, and other ways."Jone 1; 6 monthe.

Jompern Johis Berming pe Blionsy, of the Commercial Hotel, Lei-cester-atreet, for "Improvements in Umbre'las and Parnsols"-June 3; 6 monthe.

John Bradpond Punnival, of Street Ashton Warwick, farmer, for "Improvements in Apparatus or Material to prevent persons sinking when in water."-June 4; 6 months.

Moses Poole, of Lincoln's-inn, Gent. for " Improvements in the Mannfacture of Soap by the application of materials not liitherto used for that purpose."-June 4; 6 months.

Wiliam Bates, of Leiceater, manufacturer, for "Inpprovements in the process of inishing Hosiery and other looped fabrics.-June 4; 6 months.

Cheistopher Wickles, of Guildford-street, Gent, and John Danfonty Grxenwood, of the Belvidere-sosd, manufucturer, both in Lambeth, for "Improvements in producing plain and ormmental articies and surfaces from Cements or Earths, separately or combined with other materials."Jnne 4; 6 months.

Joshua Procton Wrstarid, of Manchester, for an "Improvement or Improvements in the manufacture or construction of Stays or Corsets.June 4; 6 wonths.

Wilisin Prioz, of Rhoyd-street, in the borough of Lambeth, Gent. for certain "Improvements in the Carriages and Axlc-trees of Wheel-carriages. -June 6; 6 months.

Arthur Parser, of the Quadrant, Regent-street, artist, for "Improvements in obtaining Motive Power."-June 6; 6 months.

Harrison Grey Dyar, of Regent-street, Gent. and John Chisholm, of Pomeroy-street, Old Kent-road, manufacturing chemist, for "Improvements in obtaing sulphur from pyrites, or certain native sulphurets.-Junc 6; 6 months.

Baron Ifrnky dr Bonde, of Great Portland-street, Cavendish-square, for "Improvements in the means of rendering Magnetic Needles less prejudicially infuenced by Local Attraction, which improvements are applicable to other inagnetic objects for the same purpose."-Juue 8; 6 months.

Prancois Bovillion, of Princes-strect, Hanover-square, for "Improve. ments in the Manufacture of ornamental woven Fabrics."-June 8; 6 months.

Goldsworthy Gueniy, of Bude, in the county of Cornwall, Esq. and Pardizick Rixton, of Cockspur-street, Pall Mall, for "Improvements in the Apparatus for producing and distributing Light."-June 8; 6 months. - Cbanies Andrew Caldwble, of Audiey-square, Beq. for "Improvements in Purnaces and Apparatus for appplying heat of fuel.-June 8; 6 months.

- Moses Poolz, of Lincoln's-inn, Gent. for "Improvements in Printing Calicees and other Falbrics."-June 11; 6 montha.

Crarlas Chubb, of St. Pauls Churchyard, London, and Jebrmiar Chobs, of Red Lion-stseet, Clerkenwell, mechanist, for "Improvements in Apparatus and Machinery for presering Books, and other Papers, Documents, and articles from Fire."-June 11; 6 months.

Williay Hapes, of Old Barge House, Christ Church, sonp manufacturer, for "Improvements in the Manufacture of Soap, part of which Improvements are applicable to preparing Tallow for the Maufacture of Candles."June 12; six months.

Wilian Graunsell, of South Lincoln, machine-maker, for " Improvements in Apparatus for Drilling Corn, Grain, Pulse, and Manure."-June 12; 6 months.

Nicholas Hanvey, of Hayle, Cornwall, and Willian Wibt, of St. Blazey in the same county, mechenist, for an "Improved Valve for Machines for Raising Water and other Liquids."-June 12; 2 months. -. William Watson, of Temple-street, Dublin, Gent., for an "Improvement in the construction of Ships, and which improvement is also applicable to all kinds sf sea-going vessels, aud also certain improvements in the construction of boats and other vessels intended to be used on canals aud inland navigation."一June 12; 6 months.

William Newton, of Chancery-lane, Civil Enginecr, for an "Improved Medicinal Compound or Ferruginous preparation, to give tone and vigor to the human aystem, particulariy applicable in cuses of weak digestion, and in the diseases called 'chlorosin.' "-June 12; 6 months.

Josepf Sanders, of Burton-on-Trent, in the county of Stafford, Gent., for an "Improved Lock and Key."-June 12; 2 montlis.

- Edward Loos, of Air-street, Piccadilly, Chymist, for "Inprovements in Extracting the Saccharine Matters from Sugar-canes and other substances of a saccharine nature, which improvements are also applicable in extracting colouring matters from wood and other matters used in dycing."-17 June; 6 months.
Alryander Francis Camprizll, of Great Plumstead, Norfolk, Esq. and Charles White, of Norwich, Mechanic, for "Improvements in Ploughs, Harrows, Scarifers, Cultivatori, and Horse-hoes."-17th June; 6 months.
Richard Beard, of Egremont-place, New Road, Gent., for "Improvements in Printing Calicoes and other fabrics."-June 17th; 6 months.
Beyan T"Angon Bromwich, of Cliftou-on-Tone, Worcester, Gent., for " Improvements in Machinery, to be warked by the applieation of the expansive force of air or other elastic fuids to obtain motive power,"-17 June; 6 months.

Hzuare Zander, of North-street, Sloan-street, Gent., for " Improvements in Steam-engines, Steam-boilers, and Condensers."-Jane 17; 6 manths,

Henay Le Masaviriz, of St. Peter Port, Guernsey, Master Plumber, for " Improsements in Pumps."-June 17; 6 months,

Jons Lien Benyix, of Wigmore-street, Ironmonger, for "an Instru-
ment or Apparatus for correctly meertaining the namber of pancengers conveyed in omnibuses and other public carriages."-June 18; sis montha.
Jobn Wriart, of Part-place, Glaggow, for " Improvements th mixing as alloying iron with other metals, for the purpose of increasing its streagth, tenacity, or cohesion, which alloym among many other usea are perticularly applicable to the construction or manufacture of links for chains and ringh, aud certain machinery, for effecting such manufacture."-June 18; 6 months.

Ambeose Bowden Jorns, of Plymouth, Artist, for " Improvements in Colouring or Painting Walle and other surfaces, and preparing meterini used for that purpose."-June 19; 6 months.

Pitise Lomax, of Bolton-lo-Moors, Weaver. for "Certain Improvencata in Looms, for Weaving"一June 19; 6 months.

John Wertheimer, of West-street, Finsbury Circus, for "Certain Im. provenents in Preserving Animal and Vegetable Substances and Liquids."June, 20; 6 months.
Charles Wye Williame, of Liverpool, Gent., for "Certain Improtements in Boilers and Furnaces designed to economise Poel and Heat."-June 22; 6 months.
Henry Wilxingon, of Pall Mall, Gun Maker, for an "Improvement in Fire Arms."-June 22; 6 months.

Josepy Pona, of Union Cresent, New Kent Rond, Gent., for an "Improved process of Hardening Wood and Iron, and rendering Wood Repalait of Vermin, and proof against Dry Rot."-June 22; 6 montha.

Matthim Punshon, of Norfoll-street, Blackwill, Engineer, for an "Improved Steam-engine, certain parts of which improved steam-engine are applicable to steam-enginea on the ordinary coustruction."-June 28; 6 months.

Grorge Caldid, of Pen-court, Fenchurch-street, for "Certain Improvements in Stoves or Apperatus for Rowting, Baking, or Cooking, which be intends to denominate a Plantanum Ronster."-June 22; 6 monthe.

Frepericx Parkie, of New Gravel-lene, Shadwell, for, " fmprovement in Revivifing or Reburning Animal Charcoal."-June 22; 6 montha.

Wuton Georar Tugnre, of Parl Village, Regent's Part, and Hameny Minton, of Stoke-upon-Trent, Stafiord, for an "Improved Percelinin"June 22; 6 months.
Ldxe Hzrbzrt, of Birmingham, Civil Engineer, for "an Apparatus for producing and communicating Artificial Light."-22nd June ; dix month.

John Alexandis Philif de Val Marnio, of Margaret-street, Ceven. dish-square, for "Certain Improvements in the Manufacture of Gas, and in the Apparatus employed for consuming Gan for the purpose of prodering Light."-22 June; six months.
Enwarn Brown, of Whiterock, Glamorgan, Copper Smelter, for "a net principle to be applied in the Roasting and Refining of Copper, whereby the oxidation of the metal is reduced, and the amme is rendered more pare and ductile."-22nd June; six months.
Josbph Jgnninge, of Beasow Bridge, Cornwall, Assay Master, "Por a Process for obtaining Metal from Pyrites or Mudic."-22nd Juse ; 6 monthe. William Vicxira, of Fife Hill, Sheffeld-atreet, Manufacturer, "for as Improvement in the Manufacture of Cast-steel. ${ }^{n}$ - 25 th June ; 6 monthe.
John Arrowsmith, of Bilston, Stafford, Civil Engineer, "For Cortain Inprovements in Steam-engines." 25 th June; 6 months.
James Binghay, of Sheffeld, Manufacturer, and John Ayony Boden, of the same place, Manufacturer," For Certain Improved Compositions which are made to resembie Ivory, Boue, Horn, Mother-o-Pearl, and other Substances applicable to the Manufacture of IIandles of Knives, Porka, and Razors, Piano-forte Kcys, Snuff Boxes, and various other articlea."-26ab Jane ; 6 months.
Claudr Schroth, of Leiceater-square, Gent. "Por certain Improvements in the process, manner, or method of embosaing or producing raised Fgurea, Designs, or Patterns, on Leather, or such like materials, and in the manner or means used for effecting the same; also in the making or forming of certain tools or apparatus used therein." -26 th June ; 6 monthas.
Pirraz Auguetr Decote, of Saint Martin's Lane, "Por certain Impropements in the Art of Printing on Paper, Calicoes, silky, and other Pabrica," 20th June; 6 months.
Williak Newton, of Chancery Lene, Civil Engineer, "Por ceertaib Improvements in the Construction of Sun-diale designed to shew mean time. "27th June 6 months.

TO CORREBPOMDEBTIM.

G. J. F.'s communication on Rallway Curves is received, and probably will appear in the west Journal.

In assuce to our architectural correspondent at York, we have mench phomor in informing him that we shall commence with the next Journal a series of areht/etural engravings.
The paper on " Subaqueous Esplasions," will appear in our sert number. Wre feel obliged to our correspondent for his consmundeation, and shell at all timer in hagpy to hear from him.
Nelson Memortal.-In our nest journal we inlend to gtoe ald the primeded k orriptions of the designe and models whiteh were to be hed af tho romme ins Jumes's Street. fach candilates as did mot gtoe e prixted dacoviptim, ow perto. entarly requested to forward wa a brif aceownt of sintr dosigur or mabition on before the 10th instamt.

No. 22.-Vol. II.-Avaedt, 1839.

THE NELSON MONUMENT.
Teat the choice of Mr. Railton's design for execution has occasioned much discontent can be neither denied nor concealed, after it has been so generally expressed in different public journals; nor has such dissatisfaction been at all lessened by the circumstance that the committee appeared willing to retract their first judgment, their consenting to a second competition being, in fact, equivalent to an engagement on their part to pay greater deference to public opinion. As far as the committee are concemed, we think that they acted unguardedly in not distinctly stating, on the second occasion, that they wished for a column or something of that kind. This, it will perhaps be said, might easily have been inferred; still it would have been better had it been decidedly expressed, particularly as the adjudication of the two other premiums rendered it a matter of some doubt. At all events when they found themselves in precisely the same situation as at first-or rather in a different and more awkward one, being under the necessity of retracing their steps, and repeating the very choice which they appeared to have cancelled; they ought-if only on Mr. Railton's account, to lave vindicated that choice by alleging, in the most explicit manner, their reasons for it. If they lave not so, nor said anything to convince the public that the design finally determined upon was really more eligible than any other, the fault is theirs, and not Mr. Railton's.

With respect to ourselves, we do not feel that we are called upon here to say any thing in the way of criticism; and shall therefore confine ourseives to description. As far as precedents go, there are certainly more of them in fuvour of an insolated column as a monumental or triumphal record. The Parisians are now actually erecting a second monument of the kind, the Colonne de Juillet on the Place de Bastille. In our own metropolis we have already two, but the one now proposed to be erected will be of far richer claracter in itself, and will differ from them materially in the lower portion of the design; for in addition to the widely spreading basement or platform upon which the whole will be seated, the pedestal will be raised upon a graduated scale that will give it the appearance of greater security. Each side of the pedestal will be decorated with an historical bas-relief (probably to be executed in bronze), representing one of the four naval victories of St. Vincent, Copenhagen, Nile, and Trafalgar. The capital, which is after that of Mars Ultor at Rome, will be further decorated by a figure of Victory on each fuce of it. According to this second design, there will be neither abacus nor railing above the capital (in which respect as well as others it will differ from those of the Monument and York column), and we therefore suppose it is intended the upper mouldings should be hollowed behind so as to form a parapet to a gallery on its summit, as the shaft will contain a staircase leading to it. This second design is loftier than the first one by about six feet; and its principal dimensions are as follows :-

	Height.	Diameter.
Base	10	0
Pedestal.	39	206
Base of columu	9	0
Shaft	90	12
Capital	14	0
Cippus or pedestal of statue	14	0
Statue	17	0
	193	

To this we annex a comparntive list of some of the principal monuments of the kind, ancient and modern.

	Entire height.
Pompey's Pillar	. 90
Trajan's Pillar	115
Antonine Colums	123
Monument	202
York Column	1379
Napoleon Ditto (Paris)	132
July Ditto (Paris)	15610
Alexander Ditto (St. Petersburg)	1756
Melville Ditto (Edinburgh)	1527
Nelson Ditto (Dublin)	1343
-_Dito (Yarmouth)	140

Among the above there is only one instance of a Corinthian or foliaged capital, namely Pompey's Pillar, the shaft of which is a monolith or single stone. The shaft of the Alexander column is also a monolith of considerably greater dimensions, its diameter being $11 \frac{1}{t}$ feet English, and its height 84. This enormous mass of granite was transported from Finnland, where it had been worked out rough in the quarry.

For a description of the other designs as fumished by the authors themselves, see page 290 .

THE NELSON MEMORLAL.

Sir-Whether the result itself be satisfactory or not, as far as Mr. Railton's design is concerned, I conceive that the proceedings of the Committee were unsatisfactory in the highest degree; if merely on account of the very great, and I may say, indecent precipitation with which they at length settled the business, hurrying over in aboat a couple of hours a question that circumstances had rendered it incumbent on them to deliberate upon carefully, and to canvass in all its bearings. Instead of which, both deliberation and discussion were completely set aside, and the affair was determined by Ballot! By Ballot! it is so perfectly MONSTROUS, as to be scarcely credible. Not even a single expression of opinion either one way or the other appears to have been produced; but as if anxious to extricate themselves as speedily as possible from a very awkward situation in which they were not at all likely to cut the very best figure in the eves of the public, the Committee had recourse to a mode well calculated to screen themselves individually from reproach, and also to prevent futile and absurd arguments, by stifing argument altogether. It has also relieved them from the necessity of explaining to the public on what grounds they have after all awarded the preference to that very design which, greatly to the astonishment and dissatisfaction of almost every one else, had previously obtained the first premium; for they have so managed it that the only reply they or any others can now give is, that such was the result of the ballot. After what bad previously taken place, such a course argued excessive timidity and a consciousness of not being able to justify their selection to the world: if it does not actually convict them of shuffling and duplicity. But as matters have turned out, there certainly is some ground for suspecting that the second competition was little better than a mere feint or ruse-a show of liberality and compliance with populiur feeling, while they were predetermined to carry their point by resorting to the singular but highly convenient mode ultimately adopted. Sucb may have been the case, without supposing that every individual in the Committee either lent himself to, or was privy to such scheme. Possibly the suspicion may be altogether unjust, and totally groundleas, except as far as actual circumstances give it the colouring of strong probability. Undoubtedly such scheme would liave been a very strang: one-to call it by no harsher epithet, but then perhaps, it is still more strange that matters should have turned out as they trave done, and that no pains whatever should have been taken to guard agairst such very awkward construction or misconstruction as that here put upon the proceedings. Why should there be any room whatever for any such suspicion? Why, after such apparent concession and deference to public opinion as to rescind the first decision, allow a second competition to take place, and the whole to commence denose, was the very choice that had before occasioned so much discontent, confirmed and ratified, without the slightest attempt being made to show that Mr. Railton's column was-if not positively in itself, at least, all circumstances taken into account, more eligible than any other design. Can it be affirmed that the second exhibition at all tended to reconcile the public to the drawing which had been before generally scouted as being of the most common place character, and without the slightest aim at invention of any kind? Hardly! If it was for the very quality just alluded to, for its being neither more nor less than a mere copr. without fanciful addition of any kind, that that design was approved, is might have been so stated, as artists would, perhaps, have been guided accordingly in the second competition. Or if, after the first one, and the designs it produced, the Committee were of opinion that some tind of column would be preferable to any other sort of monument. such opinion might as well have been made known, and then a great many who came forward on the second occasion, would either not hare done so at all, or else would have adopted the idea of a column; had which been done, something more satisfactory and appropriate tho any of the actual designs of that class might have been produced.
I am of opinion, however, for one, that there were several desigos for columns superior to that by Mr. Railton; or admitting that the! were not so decidedly superior as to leave no room for doubt, ther ceitainly possessed such degree of merit as to render Mr. Railton's superiority doubtful in the extreme. Such being the case the moss sensible and fairest mode of proceeding would have been, to have made in the first instance a selection of about half a dozen of the best class, and (dismissing all the rest) to have compared them together closely, scrutinized them and canvassed their respective merits ut separate meetings, held at intervals for that purpose, and at which it would not have been amiss, had the Committee taken in evidence the opimons of one or two artists and competent judges, who, having no personal interest in the affair, nor any private bias in favour of any of the candidates, would have expressed their impartial judgment as to the respective merits of the designs. Had some such course been adopted the pretensions of those designs would have been duly canrassed and
sifted; and something like a verdict founded upon deliberate reasoning and examination would have been arrived at. Therefore had the ultimate result been precisely the same as at present, at all events some pledge would have been given to the public that every precautiou had been taken to secure the best design of its kind, and that its rivals had not been rejected until after the most scrupulous examination.
Instead of this, has there not been a most singular and suspiciouslooking precipitancy?-and after all what plea or excuse is there for it? It cannot be said that the urgency of the case was so great as to allow no time for the least delay: certainly not. A few weeks-a few months would have made no difference. The column will not be begun this year, that is pretty certain; that it will be set about next year, is not quite so certain ; for I fancy it is now exceedingly problematical whether it be ever erected at all. In all probability the whole affair will now br suffered to die awav quietly, especially as the funds in hand amount to barely half-if half the sum required. The Commistee have got out of the scrape adroitly, if not handsomely, nor will they be very anxious to revive any mention of their proceedings.

It must be owned that, as matters have turned out, competition has received in sad shuck on the present occasion. But are artists therefore to sit down despondingly, and say that it is now quite hopeless to look forward to any more satisfactory system of competition? No; rather Let them be more strenuous and urgent than ever in demanding such pledges beforehand as shall guarantee to them a fair and deliberate judgment. Let them insist upon there being an exhibition of all the iesigns before any premiums are awarded, or any kind of choice rade :-let them insist that the votes of the committee and the reaains for the choice ultimately made be formally given to the public. It will be said that some of these suggestions have already been made : true, but we find that they require to be dinned into the ears of the profersion again aud again. Let them be forced upon them until they are shamed out of their apathy. What are the Institute about all this while! If they do not exert themselves manfully in regard to so momentous a point as that of public competitions, what is there they will consider of sufficient importance to call for their co-operation as a body? It will be answered that they have already taken it into consideration, and pubished a report upon the subject. Let them then comsider it again and far more to the purpose, instead of now letting it go to sleep. But there are difficulties attending it : undoubtedly, and that is the very reason why it calls for all their energy, and for unwearied perseverance, until they shall have accomplished the so nuch needed reform.

Arges.

LORD WILLOUGHBY DE ERESBY'S PATENT MACHINERY FOR THE COMPRESSION OF PEAT.

Dernig a constant residence in the mountainous districts of Scotland and Wales, where the inhabitants depend chiefly upon peat for their fuel, Lord Willoughby had given much attention to the manner of preparing it for use. From observing the impossibility of rendering it available in a wet season (together with its comparatively small vidue, even in the most favourable, for domestic or manufacturing purposes, he was induced to enter upon a series of experiments for its compression by machinery. The first of these took place in the summer of 1834 . The machine consisted of a powerful screw press, Which is represented by Fig. 1. The chamber which contained the

Fig. I.

peat was three feet in diameter, and 14 inches deep. The interior was turned perfectly true, and had a moveable bottom, and piston fitted to it with the greatest accuracy. The piston was moved by a screw 4.5 inches in diameter; and the screw was turned by two levers of 10 feet radius. When put in motion by four men, it was capable of producing an effective pressure equal to 100 tons. The water contained in the peat was allowed to escape through small holes closely drilled in the bottom of the machine, and also round the cylindrical part of it forming the peat chamber. When finished, the machine was charged with about seven cubical feet of wet peat, and the piston descended upon it by turning the lever in the ordinary way. This forced the water through the apertures in great abundance; but long befo re the machine had attained its greatest power, the peat also began to exude; and although the holes were only three-sisteenths of an inch in diameter, but little of the original quantity would have remained in the machine, had the pressure been continued.

A second machine was constructed; and on a smaller scale than the first, in order to avoid expence. It was calculated to press but a single peat at a time. Fig. 3, is a front view of this machine, and fig. 4, a side view. The power is produced by racks and pinions in combinaion with two side-levers, as shown in the drawing. Instead of round holes in the peat chamber, for the escape of the water, it was formed of vertical bars of iron about half an inch wide, and fixed to strong cast-iron plates, one on each side of the machine, and so close together, that a piece of thin paper could scarcely be inserted between them. The peat however, when under high pressure, issued through the bars, as it had done through the small circular holes of the screw-press in the former experiment. It was therefore obviously necessary to employ some filtering substance to retain it, and at the same time permit the escape of the water. To effect this it was folded in linen cloth, before being placed in the peat chamber. In this manner its escape was completely prevented; but the process of compression became both expensive and slow.

A third machine was made upon the principle of the second; but the chamber for containing the peat was somewhat less, and the machine much more powerful. Figs. 5 and 6, represent this machine; it has the piston moved by a crank, in combination with levers, marked A, A, in the drawings. B, in figs. 4 and 5 , is a short lever for removing the compressed peat from the machines. In fig. 4, the bottom is withdrawn, and the peat taken out from below; and in fig. 6, the bottom is made to rise, and the peat is discharged at the top. This machine worked infinitely better than the one with racks and pinions. The peat, however, continued to be folded in cloth.
The original screw-press was subsequently tried on a principle very different from its original construction. Fig. 2, is an end view of fig. 1 , after this alteration. The perforated bottom was raised to the top

Fiz. 2.

of the cylinder, and there secured with a strong cast-iron frame fixed to it, to support a sliding drawer about two feet square, and 4 inches deep. The peat was placed in this drawer, which was made of iron planed perfectly true, and the piston of the press, which was formerly round, was cut into a square, and by the aid of a leather washer made accurately to fit the sliding drawer. The bottom of the drawer consisted of a layer of ordinary linen cloth, beneath which was a second of hair-cloth; it contained fifteen peats of ordinary size. The machine being ready for an experiment, the sliding drawer, which is represented in fig. 2, was moved into its piace, and there secured by two moveable bolts in front; this being done, four men turned the levers of the screw. No portion of the peat escaped; and the water it contained passed freely away through the filtering bottom. The success of this experiment left little to be desired, except some ready
that not a drop of water returned upon the compressed peat, or reentered the machine upon the pressure being removed. It was still evident that greater rapidity in compression was wanted than could be effected by sliding drawers, which required to be removed and replaced each time they were filled and emptied.

For this purpose Lord Willoughby proposed that his next machine should have two drawers, so connected, that when the one was removed the other would replace it, and the operation of the machine be uninterrupted. In order that they might be emptied with the utmost facility, after the peat had been compressed, they were hinged together, so as to admit of being readily reversed. For the machine, thus improved, a patent has been obtained by Lord Willoughby, extending to England only; but he wishes it to be understood that any individual is at liberty, upon a proper application, to avail himself of the invention gratuitously.
It may be useful to add a few general remarks to the foregoing description. In the selection of peat for compression, care must be taken to obtain a black peat, free from fibre. Peat of the proper description has very much the appearance of blackened butter, and is the only sort which will repay the expense of preparation. The peat should be dug of the usual size, namely 8 inches by 3 , and 3 deep, and of a uniform shape, which is easily effected by a spade of a peculiar construction. All attempts which have been made to compress peat in large masses of various dimensions have invariably failed. In every instance the water has been retained in the centre of the mass, and expelled only from its surfaces. Even had the result of these trials been different, the peat so prepared would be useless for general purposes until cut into small pieces. Before compression, the peats must be placed to dry for five or six days under sheds, in the same manner as bricks and tiles, and after compression must remain under cover until perfectly free from moisture, when they will be fit for use. At the recommendation of several friends, Lord Willoughby has attempted to dry them in various ways. by artificial heat, but without any satisfactory result. The peat, when properly compressed, is reduced about one-third in size, hard, and compact, and nearly black in colour; it varies slightly in density, sometimes floating, at others sinking in water. As to its uses, it will be found an excellent substitute for coal. It may be used in grates for domestic purposes, and has been tried successfully in calcining lime. In an experiment with the steam engine at St. John's foundry, Perth, where one of the machines already described was made, the peat was found to outlast an equal weight of coal, in the proportion of 16 per cent., the engine being worked at its ordinary rate. There is every reason to believe that it might be employed in the manufacture of gas, which it gives off in abundance, burning with a clear white light. It may also be prepared by charring, in the same manner as ordinary charcoal, by which its size is reduced about one-half. When charred in this way, the slowness and difficulty with which it burns renders it an extremely valuable fuel in many processes of the arts: this value is increased by its freedom from sulphur, and the comparatively small quantity of ashes which it leaves after burning. For the working of steel in particular, its freedom from sulphur makes it greatly superior to charcoal. It bas been upplied to this purpose by Messrs. Philp and Whicker, (late Savigny and Co.) St. James's-street, who have used it with remarkable success in forging razors and surgical instruments. The articles bear the stamp "forged mith peat," as well as the names of these gentlemen, by whom they are highly recommended. The charred peat has also been employed in the working of other metals, particularly in the soldering of thin brass, with a most encouraging result. In conclusion, it may be mentioned, that it is as serviceable in the kitclen as common charcoal, and occasions no unpleasant taste or smell.

With the view of carrying Lord Willoughby's principle into operation, on a scale of greater magnitude than could be effected by manual labour, he engaged Mr. James White, of Lambeth, to assist him in adapting steam-engine power to his machine. Mr. White, foreseeing some ditficulties in the application of any of the former modes of moving the piston, or the plate which compresses the peat, on a large scale, advised the use of hydrostatic pressure. The following is Mr. White's description of Lord Willoughby's machine, with the proposed adaptation of bydrostatic pressure and steam power.
"Fig. 7, is a general plan of this machine; and fig. 8, an elevation. In fig. $7, A$ is the steam engine boiler; B, steam engine; C, main shaft of engine; D, compressing pump; E, exhausting pump; F, hand gear for reversing the motion of the sliding frames which contain the peats; G, air vesset; and H, two cocks that open and shut alternately, the use of which will be explained hereafter. I and I, are pipes attaching the pumps, D and E, with the vessel J, from which four branch pipes, $\mathbf{K}, \mathbf{K}, \mathbf{K}, \mathrm{K}$, convey the water to the four cylindera, $L_{5} L_{3} I_{5} I_{5}$, and by
the high compresaure of the pump D, the pittons will be forced oua of them ; and the compresaing plate, to which they are all secured, bow. mode of getting clear of the water at the top, and preventing its re turn upon the compresed peat, or into the machine when the prowure was removed. To effect this, large conical holea in the pistoonert filled with pieces of beechwood, through the poren of which the water was expelled in an upward direction, and conveyed beyond the elpow of the drawer, through chamels contrived for that purpose in the pit ton. The lower anface of the piston wan covered with doth in the same mamer as the bottom of the sliding drawer. The readt ms ered upon the top of the peat with a power equal to 500 tome or more if necesuary.
"The peat is to be placed in a aliding frame \mathbf{M}, of which there are two to the machine; one of them being under compression, while the other is being filled. This frame M contains 90 square pieces of peal as represented in the drawing. They are shown compressed; for the rollers, upon which the frame M runs, have been withdrawh, and lef it supported by centres at the ends only. It is now to be turned orer upon these centres, and the compressed peats will be emptied int: railway carriage below, which is there to receive them, as shew in the elevation, fig. 8. The sliding frame is to be re-edjosted, and the handle \mathbf{N} to be pushed in, as represented at the other end of the m. chine; this having been done, the small rollers that are fired, nd centred to the parallel guides O, O, will be below it, and support it It may then be refilled with as much expedition as posible.
"We shall now proceed to deacribe the mode of raising the pistas and compressing plate, which have been forced down by the introduc tion of water into the cylinders L, L, L, L, by the compressing propp D.
"The cocks H, are now to be reversed, and the exhansting parip E, will withdraw the compressed water from the cylinders L, Lh LL L and return it to the supply well, seen on the right of the eleration on. 8. This will cause a vacuum above the pistona. Hitherto it bus on been pumping air to waste. At the same time the compreaingty D will continue storing up its power into the air vessed G, br back the withdrawn water, and be ready for a second operim we sappose the four pistons in the cylinders L, L, L, L, wo in y_{2} inches diameter, and the water thus withdrawn, and the atamin at liberty to act upon the under surface of the compressing plate, to which the pistons are attached, there would be sufficient power wo raise the whole mass, were it not for the adhesion which takea plase between the under side of the compressing plate, and the upper arface of the peat. A power equal to 20 tons is requisite to repernt them. To effect this object, the compressing plate has 8 regulaing screws, which come in contact with 8 steel bars when down. There are 4 on each side of the machine, marked P, P, P, P, in the elertion fig. 8. The elasticity of these bars is calculated to overcome the ere sistance of the atmospheric pressure, which causes the coberion te tween the compressing plate and the peat, and the exhansting prisip E , to return the pistons and compressing plate to their original pait. tion, on the admission of air through a valve in the compreming plate. The handle F, of the hand-gear, is now to be reversed, whict mill bring out the sliding frame, containing the peats that are onder covepression, and the other sliding frame M, already described, being ${ }^{t-}$ filled, will replace it. This having been done, the cocke H_{1} milt returned, and the highly compressed air, in the air vessel G, will fart the water, that has been pumped into it by the compressing pury D_{1} to the cylinders $L_{,} L_{,}, L_{,}, L_{4}$ as presumed to have been the cmin former instance. The second sliding frame M , being now out handle N , is to be withdrawn; the frame will then swing apoe centres, the railway carriage being in the position to receive the 60 N pressed peats, and the sliding frame will be emptied as before.
"The quantity of peats which may be thus compressed in ose dr, may be estimated at 27,000 , or 45 per minute, under a pressure of fil pounds on the square inch, with a high pressure steam engipe of sis. horse power. When a greater or less degree of compression is ruxtel, it can easily be effected by the weight W, on the lever of the sikt valve of the air vessel G; but it ought to be mentioned, that loding the valve beyond what the machine is calculated to bear, may came s fracture in some of its parts, or. an explosion of the air vesel."

Fig. 3.

Fig. 5.

Fig. 6.

DESIGN FOR RAISING SUNKEN VESSELS.

BY James white, C.E.

In the year 1832 I proposed a design for raising the Royal George, off Spithead, or other sunken vessels, a drawing and description of which was published in the Genlleman's Magazine for December, 1832; and submitted to the Board of Admiralty shortly afterwards. From the discouraging treatment which was experienced on presenting the invention to that Board, I might not have sought an opportunity to republish it; but observing, in the Reperlory of Patent Inceritions for last May, that a patent has recently been granted for the use of air vessels of the above description, for the purpose of raising sunken ships; I consider it a duty to myself, to establish the
priority of any claim to the invention, by recording it in a work more generally read by scientific men, than the magazine in which it first appeared.
"Since the melancholy loss of this ill-fated ship, many ingenious designs have doubtless been suggested, and various plans submitted to the Board of Admiralty, for the purpose of effecting her remoral. Whatever might have been the merits of such inventions, it is certain that very few trials have been marle, and those fow have entirels failed. The proposed plan, howeret. which brings all the powers of pneumatics and hydrostatics into operation. if acted upon, presents every probability of being successiul; and thus removing a dangerous obstruction from one of the most important raadsteads in the kingdom.

"The figures AB represent the elevations of two air-tight cylindrical vessels, eighty feet long and thirty feet in diameter, made of iron plate about one-eighth part of an inch thick, and strengthened by deep flanches inside. The ends are of a spherical form, as shown in the elevations. The projection from the section C, maried d, represents an air-chamber, shown in the elevations to extend the whole length of the cylinders. Dis. metrically oppositc the air chamber of each crlinder, there is an opening of an inch wide tite whole length of the cylinder, represented by she dark place in the section C at e. The little pros jections $b b$ in the elevations, denote the situations of valves or cocks, to allow the air, which the e:linders contain, to escape, as they fill at the opening e when sinking.
"The air-chambers d are calculated to equalize the difference of weight between the iron and the water displaced by the eylinders when they are fairly emerged with the chains a, aud grappling irons attached thereto. The cylinders will thereiore sink with the cylindrical part full of water, and the ehambers full of air. Wheu thr water is to be expelled from the cylinders, at will be afterwards explained, the pressure from the air-chambers on the water will be equal the whole length of the cylinders.
"To make a survey of the situation of the ship. and to ascertain the best method to be adoptes for securing the cylinders, would he essentially neccssary as a preliminary step. If the results of such inquiry were favourable, the work migit go on; but the whole of the operations under water I propose effecting on a new plan-a method whereby the depth does not materially affect the workmen. Had I not contemplated something of this sort, I might not have presumed ou the possibility of effecting a work of such unparalleled dif. ficulty.
"Supppose two such cylindrical air-tight ressels
as described (to be made at Portsmouth or the nearest station where they are to be used, and towed to Spithead roads) were lowered above the Royal George, and strongly sccured thereto by grappling irons, on the chains marked a, through lier guns ports, or otherwise, as might be devised. The depth to which the cyliuders should be lowered, in the first instance, must not be more, from the surface of the water, than the depth which the ship has sunk in the sand. By having the cylinders as near the surface of the water as possille, they will be cxposed to perpetual agitation, and this will loosen the ship in her bed.
The cylinders being secured, the flexible tubes c are connected with pumps worked by the engines of iwo steamb-boats, as shown in the drawing. A powerful injection of air is forced into the air-chambers of the cylinders, and the water which they contain expelled through the opening at the bottom. The dark place in the section C, at the top, shows the water partly expelled. When the entirc expulsion of the water lias been effected, the cylinders will obtain a buoyancy equal to the difference of the weight of the compressed air and the water displaced-a difference that will rather exceed than be under thice thousand tons.
" Although the Royal George may still for some time remain immovable, if the fastenings can be made sutficiently strong to bear the strain, such will be the immense power of the cylinders, when agitated by the incessant rolling of the waves, that the ship must cventually break up, or be loosened in her bed, and recovered entire-the supcrincumbent pressure, which is most to be dreaded, being thus effectually overcome.
"In the event of a portion of the ship rising from her bed entire, the cylinders will probably ascend to some height above the surface of the waves. The cylinders are then to be towed by steam-boats into shallower water, and the ship lowered on chains prepared for that purpose; after which the eylinders are to be secured to the chains, one on each side of the ship, as low
in the water and as close to her sides as possible. The water may then be expelled from the cylinders, as in the former instance; when it is presumed. with the cylinders so situated, the ship will be raised above water."

The following year after the above description was published, a working model of the invention was completed. It consisted of a small ship, with two copper air vessels about 18 inches long, and 6 inches in diameter. Each air vessel had a flexible tube communicating with an air chamber, into which air was compressed by an air pump, and the flexible tubes had regulating brass cocks on them, and the air chamber of the pump had an air coch.

The apparatus being complete, it was placed in a cistern full of water, the air vessels having been previously secured, one on each side of the ship, which was loiaded with about 30 lbs . of iron, as ballast. In this situation the ship was kept floating from the buoyant power of the air vessels. But the instant the air cock of the air chamber was opened, it began to sink; there being a hole in the bottom of the ship, the preponderating weight of the ballast caused the air vessels to fill, by apertures below, and expelled the air from them through the flexible tubes, and finally by the air cock, until the ship and air vesses went to the bottom of the cistern.

The air vessels being now full of water, and the flexible tubes also to the extent they were immerged, the object of the invention wis to restore them to a buoyant state, and thereby bring up the scasicen shij.

I have mentioned that regulating cocks were on the flexible tubes, which afterwards were found to be indispensible. When the air pump was put into operation, both of the regulating cocks were open. and the compressed air went only down one of the flexible tube,
displacing all the water from the air vessel to which it belonged; and then escaping, without displacing any water from the other air vessel. It was then necessary to shut the regulating cock of the buoyant air vessel, and expel the water from the other; but before much of it was displaced, the ship came up in a deranged state, having tumed over in the ascent. It then occurred to me that the liability of turning over in the ascent would be avoided, if the ship was first raised on her stern, and afterwards in a slanting direction. To effect this the air vessels were altered, in place of having the apertures, for the exit of the water, open the whole length of the air vessels, as described in the original plan, to which this description is an appendix, they were placed at the ends only, transversely on the under surface, and the flexible tubes for conveying the compressed air to them, were brought nearer the opposite ends on the top of the air vessels. With this new arrangement the apparatus was sunk as before, but instead of pumping the compressed air to the air vessels, as in the former instance, with both regulating cocks open; 6 strokes of the air pump were first applied to one of them, then as many to the other; the regulating cocks being open and shut for that purpose. When this quantity of compressed air had been forced into the air vessels, the liead of the ship began to move, and with every additional stroke of the air pump, it kept rising, until the whole ponderosity was overcome, and the slaip then came up head foremost. The prow only coming a little above water in the first instance, and then stopping, owing to a quantity of water still remaining in the lower ends of the air vessels; but on this being expelled from them, the ship and the air vessels righted themselves into a horizontal position as they came above water.

By the application of the above principle to raising sunken vessels, several important advantages are obtained. First, the air vessels being made of iron, are sufficiently durable to last for a great length of time. Secondly, from the nature of their construction, they may be towed by steam-boats from one point of the coast to another. Thirdly, the principle operating independently of the tides, the work of recovering the wreck may be proceeded with at all times, when the weather will admit of it. And fourthly, by the plan of gradually raising the head of the vessel first, the immense superincumbent pressure of the water is greatly avoided. It will readily be understood how much easier a plank of wood can be raised from an adhesive bed, when one end of it is raised by degrees, than would be the case if the same power were applied at once to overcome its whole weight and adhesion.

When the ship bas been raised upon her stern, it will still be necessary to overcome the remaining adhesion of this portion of the vessel, and to effect so much by the same buoyant power that raised the head, supposing it to be sufficient for that purpose, the velocity of the ascent would be so great, that there would be danger in disturbing the fastenings which secure the ship to the air vessels. It will therefore be necessary to fix an air vessel by the stem, and no deeper in the water than might be sufficient to clear the ship from all adhesion. When this has been effected, the further expulsion of the water from the former air vessels may be proceeded with, and it is presumed, the ship would be recovered as described with respect to the model.

Lambetk, July, 1839.
Jinges White.

mPROVEMENT OP THE OUTPALLS OF THE RIVERS OUZE,

 NENE, WELLAND, AND WITHAM.Sir John Rennie, who was for some time employed by a general meeting of parties interested in the drainage of the Rivers Ouze and Lynn, and Boston Decpa, has jast finished and presented his reports. We underatand that Sir John statea that an additional fall of nearly six feet may be gained in the how-water mark of the river Ouze, and that by uniting the Ouze, the Nene, the Weliand, and the Witham, and carrying them by one improved outfall iuto the centre of the great wash, not only will the drainage and narigation of the whole of that immense, fertile, and valuable district of land-draining by those rivers, called the Bedford Level, South Holland, and other districts, umounting to about a million of acres, be greatly improved, and consequently incremsed in value, but also there would, in all probability, in the course of a few yearn, be gained 150,000 acres of new and valuable land; this alone, taken at the value of $\mathbf{x} 40$ per acre, although a great deal of the land which has already been acquired from the sea in that neighbourhood is now worth considerably more, would amount to $\mathbf{£ 6 , 0 0 0 , 0 0 0 \text { , and when it is considered }}$ that the whole county of Rutland only contains 95,000 acres, and the Isle of Wight about 100,000 acres, the great magnitude and importance of the undertaking, which is eatimated at $£ 1,800,000$, may be readily conceived. Sir John Rennie's report has not yet been published, which we understand, however, will shortly be the case, when we shall not fail to recur to it again, and make such remarke as circumstances may require.

Rambles by philomusedus, No. 1.

THE VASE ROOM IN THE BRITISH MUSECM

THE arrangement of this valuable collection adjoining the Egyptian department, seems after several abortive attempts to have commenced in reality. The endeavour to arrange them according to form and colour is very meritorious, but the plan is far from systematic.

For a long time this collection was left in a state of barbarous confusion, and then it was arranged somewhat in the chimney ormament sty'e, by a fanciful grouping of tall vases alternating with those which were shorter. No attention seemed to have been paid to anything like a useful classification, and the whole disposition was so chaotic as to leave little hope of amendment.

The classification should be either antiquarian or artistical, and would resolve itself into the several modes of origin, age, forn, colour and design. The more useful method is certainly that which can be available to artists, and the disposition adopted seems to unite several of the features of what would have been distinct classification. The vases are arranged according to form, and the subdivisions of these according to colour, so that this double purpose is answered, and it happens in most cases that the same classes of design are also thrown together.

A case with one elliptical form is however interposed between those which are spherical, and no regular gradation is preserved in the general disposition of the several classes of forms. The proper course would be to commence with the cylindrical form, then proceed to the spherical, thence to the upright ellipse, the flat ellipse, the egg and the egg reversed. The various modifications of these again should be further distinguished according to the several parts of the vase. The essential parts of the vase are the neck or capital, the shaft, and the base, and the accessaries are the handles, \&c.

Many of these vases are exceedingly beautiful both in form and colour, and one series with black designs exquisitely rich. The designs are frequently interesting, and consist of allegorical representations, the exploits of Hercules, warlike exercises, domestic occupations, and caricatures. Some of the borses are drawn with a quaint freedom which is very striking, and the ease of the flying genii cannot sometimes be too much admired. The illustrations of domestic manners are very numerous, and include ladies reading, women drawing water at a fountuin, sacrifices, musical performances, \&c. A vase in the form of the head of a negro is an accurate representation of the existing members of that race, and an excellent proof of the preservation of the type, as also of the non-negroism of the Egyptians.

In the Egyptian department are many very elegant vases, and in the lower room is a tazza, which is well deserving of attention from the purity and severity of its outline. In the vestibule of the Elgin collection is a fine tazza recently presented by Lord Western, and in the Townley rooms are two or three well known marble vases.

Mr. CRACE'S STUDIO.

That a new era for the extension of the arts has commenced is apparent; its progress indeed strikes us at every step. One of the most interesting features of this march of taste is the studio recently fitted up by Mr. Crace, at his establishment in Wigmore-street. It is such a work as in Paris would excite the admiration of the professional press, and be hailed as an accession to the architectural riches of the age.

We enter a small shop of a plain and subdued character, with a few decorative patterns lying about, and then proceed through a passage into the studio. This consists of three compartments thrown into one suite, and is fitted up with all the richness of a nobleman's library. The first portion is in the style of James I. or later Elizabethan, the central in the Gothic, and the last in that of the Renaissance. The accessaries are equally in character; tables and chairs, imitative armour of carton de pierre, papier mache ornaments, and pattems for decoration being distributed about. The windows are filled with painted glass, and the whole has an air of tasteful richness, which would do as much honour to a nobleman to possess, as it does to the artist to have executed. Although it is only a collection of specimens, yet they are so united, and the character of the whole so well preserved, that they communicate the idea rather of a private apartment than a pattern room. With these attractions spread out before them, noblemen will be as little able to restrain their purse-strings, as their ladies are at the mercer's or the milliner's.

COLOSSUS OF SESOSTRIS.

During the period of their dominion in Egypt, the French erected a bridge across the Nile, uniting Old Cairo with the Isle of Rhoda Of that structure no other vestige now remains than a fragment of the first arch attached to the old stonework of the Nilometer. On the other bank of the river stands the city of Gizeh, about two leagues from the pyramids, and which formed the northern boundary of ancient Memphis, whose southerm limit and necropolis were what is now Sakara. The road along the course of the river leads to Bellrechein, beyond which village the former site of some large city is attested by the massive blocks of granite and fragments of columns that strew the plain. Pieces of shattered stone project every where through the sands that have already buried up the principal monuments of that immense city, and which ere long will completely obliterate all remaining traces of it. Between Bedrechein and the village of Mit Rahineh rise two long hills parallel to each other, which are probably formed by the remains of a vast enclosure of unburnt bricks, similar to those that have been found in many other ruins. These bricks, which are thirty three centemetres (about thirteen inches) long, by eighteen wide and ten deep, are for the most part stamped with a hieroglyphic cartouch. Within this enclosure is the magnificent colossus exhumated by Captain Caviglia, to whom the world is indebted for several other discoveries no less important.

This gigantic statue is one of the finest pieces of Egyptian art; it is of a very fine limestone, and although incrusted in parts, still retains that polish which is met with only in sculptures of the same epoch. Notwithstanding that the lower parts of the legs are broken of, the present length of the figure is not less than eleven and a-half metres, or thirty-nine feet nine inches, English, and is remarkable for its proportions, at once elegant and severe. The face, which has been preserved in its fall by the head-dress, is uninjured, and is of the most exquisite workmanship. It is that of Sesostris, so often represented in the pr ncipal temples of Egypt, who reigned, according to the chronological table of Abydos, 1565 years before the Christian era. It is, therefore, but on a much larger scale, a faithful resemblance of the Sesostris in the museum at Turin. Upon the arm, and on the front of the breast and the girdle, is a cartouch indicating his name.
M. Cavigia took the precaution of having the face of the statue turned downwards, in order to preserve it from the mutilations the Arabs are in the habit of inflicting upon all representations of the human figure. He has also caused it to be propped up by masonry at each end and in the middle.

According to all appearance this colossus, near which are massive foundations of limestone, was placed against one of the jambs of a large doorway, and had a companion figure against the other one.

At a short distance from the spot where it remains, is the small hut or cabin near some palm trees, which served Caviglia as his residence during the years he employed in investigating these ruins. It is now vccupied by an Arab, who acts as the keeper and cicerone of this monolithic statue. In a line with the latter, but at some distance from it, are some small columns of rose-coloured granite, in a very ruinous state.

To the north of the colossus was once a temple of white limestone, dedicated to Venus Athor, by Rhamses the Great, and without the enclosure on the east side of it, are the remains of another temple ornamented with coupled pilasters, also of rose granite, which was dedicated to Phta and Athor (Vulcan and Venus), the two great divinities of Memphis.

MOMENTUM OF FALLING BODIES.

Sir-It was in consequence of the difficulty which attends the comparison of the effects of pressure and moving force, that I entered upon the discussion in the 16th Number of the Journal, Vol. II. page 18 , not that I hoped to clear it away, but because the subject is highly interesting and useful, and I hoped to elicit information through the medium of your Journal. It was with great pleasure, therefore, that I saw the letter, page 255 in No. 22-and I hope that the discomion will now fall into abler hands than mine. I will, however, beg space in your next number to enable me to make a few observations on Mr . Neville's letter.-The words in italics will point out where I think be has misconceived my remarks on the subject.

1. The inference that I draw from the experiment detailed in Vol.II. page 18, is that a weight on the spring keeps it steadily to a poish, that one-kalf of the same weight falling with a velocity of 2 -3nd foot per second would have attained when its motion was destroyed-2 In comparing the effect of the falling weight on the pile with that of the weight it is to sustain, it is presupposed that that pressure woold cause the pile to penctrate; otherwise why drive the pile at all?-3. To suppose the incumbent weight to move with a velocity of ome two or more than three feet per second is to suppose what in not likely to take place; and to found a calculation upon such vague data conld not lead to any accuracy of result. In short, one might as well guese the result at once and save the trouble of all calculation-4. Mr. Neville says that "in falling bodies, after the force $\theta b v$ is expended, b then acts by its weight, and very litcle consideration will shew that they cannot be added together." But there is but one collision; the effects of the weight and the acquired momentum are simultaneows and of the same nature, whether b and $\theta b v$ are so or not. Indeed b and $\theta b v$ represent the effects of the forces, and it is not very easy to point out in what the difference in the nature of these forces consists : since, should the motion be infinitely slow, the effect would evidenty be the same as though the body remained at rest. 5. I believe that I may have been wrong in applying the formula $m=b+\frac{3}{2} b 0$ to the cases taken from "Hutton's Course," where the motions are not occasioned by gravity, but in all cases of falling bodies, I still think I am right in adding b to $\frac{3}{2} b v$. For if the true formula be $\frac{3}{2} b v$ nearly, and b be dis. carded; taking for example $b=10,000 \mathrm{lbs}$ and $v=\frac{1}{10,000}$ foot then the force $m=\frac{300,000}{2} \times \sqrt{64 \times \frac{1}{10,000}}=24,000 \mathrm{lbs}$; or in other words the consequence of its fall through that small space would be the los of three-fourths of the force it exerted when in absolute rest: but if the factor δ be not discarded and m be $=b+\frac{3}{2} b o=124,000 \mathrm{lbe}$

ON STEAM POWER.

Sis-Enclosed is the copy of a letter addressed to the President of the Institntion of Civil Engineers, which, should you consider worthy a place in your interesting and valuable Journal, I beg you will make use of it; my only object in sending it to you, is, that it might direct the attention of those who employ steam-power, to a more economical mode of obtaining that power, at the same time considering that it is the duty of those who have the opportunity of making experiments, to publish any result which would tend to husband one of the greatent resources of our national prosperity.

I mist however observe, in justice to myself, that the original letter was forwarded to the President, some days before I read, or was even aware, that the Institution had published the first part of their 3rd volume of Transactions, containing Mr. Josiah Parkes' paper on a similar subject, and which you criticised in your last number.

I am, Sir, your obedient servant,
F. Ham, Civil Engineer.

Rose Lame, Normich, 8ik July, 1839.

To the President of the Institution of Civil Enginuers.

Sir-I am induced to address the Institution in reply to Mr. G. H Palmer's paper, since it appears, from your having considered it of sufficient importance for insertion in the 2nd volume of your "Transactions," that the recorded duty of the Comish engines, is atill a matter of surprise, in fact, Mr. Palmer seems more inclined to doubt the aecuracy of the accounts, than that of his data.

That it is possible to raise $120,000,000 \mathrm{lbs}$. one foot high, with one brahel, or 94 lbs. of coal, I do not for a moment doubt; and moreover venture to say, that even that duty, enormous as it appears, as contrasted with the ordinary duty of a Boulton and Watt engine, is not the maximum the Cornish engines might be made to perform ; this assertion but ill accords with Mr. Palmer's calculations, which are correct, from the data he assumes, viz. that 7 lbs . of coal are required to convert 1 cubic foot of water at 40° into atmospheric steam, in the boiler of a Boulton and Watt engine, as at present constructed, but which is very wide of the mark, as regards the effect of the combostion of 7 lbs . of coal umder different circumstances, for instance, I have proved by several experiments made some years since, that 7 lbs. of coal will convert into atmospheric steam, at least three cubic feet of water at 40° under peculiar management, which simply consists in exporing a much more extended surface to its action than is usual, and in diminishing the rate of combution as an example, the same quantity of fuel maintained in combustion for 12 hours, will evaporate at least three times the quantity of water than it would if consumed in 2 hours, other circumstances being the same; this is an effect I have for some years daily produced in an ordinary steam boiler, and have not the slightest doubt, but that with more complete apparatus, and a still dower combustion, nearly double that amount might be obtained; here then is a solution to the problem, the Comish engines very seldom if ever work up to their speed, frequently to not more than a third, the fires are then damped up, slower combustion ensues, and hence the result, with the moat complete Boulton and Watt; on high pressure engines the case is different, rapid combustion is required, in the absence of an extensive boiler surface, to supply the requisite quantity of steam, and promoted to a most wasteful extent, by tremendous chimneys, fans, \&c. Intensity and consequently radiation are certainly increased by these means, bat peither iron nor copper conducts it in any thing iike the same ratio; in fact, I believe, that when the boiler is highty heated, the water is actually repelled from the surface of the platen, by an atmosphere of caloric, from its not being able to abeorb it with sufficient rapidity; I am moreover confident, that were slower combustion practised, fewer explosions, and a mere tithe of the present deatruction of boilens would result, independently of its effecting a comsiderable saving in fuel, which would most amply repay for the capital invested in extra boiler room.

Mr. Palmer's paper has certainly been beneficial in exciting inquiry, and has induced me, as I dare say it will others, to institute a set of experimenta, on the relative effect of fuel in evaporating, under different rates of combustion, and I therefore parpowe, as opportunities cceur, to inveatigate the matter in as philosophical a manner as my experience will enable me.
Ifmd aloo incerted in the same volume, a paper from Mr. Wicksteed, on the effective power of one of the Cormish engines, ascertaised by weighing and mensuring the quantity of water delivered from a depth of 895 foet. 1 should have been much better satisfied with that report, had the experiment been continued for a longer period than 2f bourn, as it in, it can only be regarded as an approzimation to the ren duty performed by an expenditure of a certaln quantity of coals; is the frat place, be does not state whether the boilers were feeding
or not at the time of the experiment, or that they contained precisely the same quantity of water and pressure of steam after, as before the experiment; secondly, the eye alone is but a very poor judge of the quantity of fuel contained in the furmaces at any period, and a few pounds consumed, either more or less than the assigned quantity would make a very sensible difference in the result; in fact, I would defy any one, in conducting a similar experiment, and judging from the eye alone, to say within 10 or 15 per cent. more or less, what quantity, not of coal alone, but of combustible matter, had been expended. I do not exactly understand what Mr. Wicksteed means, by saying, that "at the end of $2 \ddagger$ hours the fire was lowering and the speed of the engine decreasing;" does he mean by the " speed reducing," that the engine was a longer time in making the stroke, or, that a longer interval elapsed between each stroke? for if I mistake not, the interval between each stroke of most, if not all, the Cornish engines, is quite independent of the engine, and govemed by a water or air regulator, which is completely under the control of the engineer, consequently the interval between each stroke does not afford any, or the length of time in making the stroke sufficiently precise, notice of the 94 libs. of coal having been expended or otherwise. It appears that during the experiment the engine was not making quite five strokes per minute, had it been working at its maximum speed, he would have found his 103 millions of pounds actually raised one foot high reduced to about 50 , or perhaps even so low as 20 millions; considering the state of the boilers and flues, which he statès "had not been cleaned for cleven months," arising from an increased rate of combustion being required to maintain the density, and supply the increased rate of expenditure of the steam, otherwise how can the great discrepancy between Capt. Lean's reports of the maximum and average duty of the Cornish engines, and Mr. Wicksteed's experiments be accounted for, and if the latter gentleman expects the engine he is erecting at Old Ford, to raise 120 millions of pounds one foot high, with 94 libs. of coal, at its proper speed, without considerably increasing the boiler surface, so as to admit of slom combustion, he will be most grievously disappointed.

These remarks are made with the highest respect for Mr. Wicksteed, and as our joint object is to elicit truth, I trust they will be received in good part, and serve as an introduction to my better acquaintance with him, and allow me to say that an experimenter caunot be too precise in stating the particulars of the precautions he adopts to ensure accuracy, for they not only serve as a record of his ability, which may do lim honour, but render the report itself the more valuable, inasmuch as science advances, truth or error can be more easily deduced from it.

I am, Sir, your's very respectfully,
Fredericx Ham.
Rose Lane, Norvick, May 2, 1839.

SUBAQUEOUS EXPLOSIONS.

We are very giad to see that Mr. Bethell's interesting paper on blasting rooks, 8ec. under water by the aid of galvanism, read before the Institution of Civil Engineers, accompanied by experiments, and first reported in our Journal in May last year, (p . 198, Vol. I.) is likely to lead to the greatest practical use and benefit. Colonel Pasley, we are happy to find, has entered upon this investigution, and his well known perseverance and accuracy in experiments will, we trust, lead to the general adoption of voltaic electricity for the purpose of subaqueous and subterraneons explosions. On this subject a very intereating paper, entering minutely into details, appeared in the last June number of the United Service Journal, from which we give the following extract:-
"We shall now proceed to state, as far as has come to our knowledge, what has been done in this country respecting the application of voltaic electricity to practical purposes-that is, If supported by detailed and well-authenticatod evidence as to when and where, without regarding the mere assertions of any individual, in jespect to his having blown of the decks of sunken vessels by the vollaic battery, such as to the best of our recollection we have read in a scientific journal of reputation; but in which neither the names of those wrecks, nor the time or place of any of his operations, were specified; and therefore our noticing them could give no positive knowledge or satisfactory information. It is well known that small charges of gunpowder have often been fired by this means in lecture-rooms, or in scientific institutions, in this country, both in air and in a bucket of water; and nothing is easier than to do so in a room, where failure can scarcely take place without extreme neglect, as no accidents are to be apprehended from the elements. But to secure a charge of gunpowder that is to be fired by roltaic electricity, at a great depth of water and in a rapid
tide-way, is no easy task, as Colonel Pasley afterwards foum on undertaking this operation. When he first received the order to attenrpt $t 0$ demolish the brig William, in the Thames, he was of opinion that voltaic electricity would afford the best means of effecting thrat object; but at that time he was not provided with a proper battery, and though he might have procured one in time, yet he preferred inferior methode, which he and his corps thorouglily understood, to an untried though more promising method, which he did not think that they weuld be able to rednce to any ceftamty, without a vast number of experiments and a considerable loss of time ; because those distinguished cheraists and electriclans, both in this and in other countries, who have receatly brought the important science of electro-magnetiom to such perfection, having nothing to draw their attention particulariy either to subterraneous or sabaqueous explosions, had never investigated the best mode of applying the voltaic battery to large explosions, under difientt circumstances. As soon, therefore, as Colonel Pasley, by application to the Master-General and Board of Ordnance, had received a voltaic battery of ten large cyfinders, \&cc., made by Mr. Newman, of Regentstreet, on Professor Daniells improved principte, he commeneed a series of experiments for reducing the application of voltaic electricity to the purposes of military mining, as well as of great subequeous explosions, to a system, in which he was assisted by Captain Sandkam and Mr. Howe, under whom Serjeant-Major Jones, and as many noncommissioned officers and privates as were found necessary, were continuatly employed for more than four months. And it is a remarkalle fact, that, though neither Colonel Pasley himself, nor any officer or man under his command, had ever used such a battery before, yet, In consequence of the very clear directions received from Mr. Paraday and Professor Daniell, they succeeded, on the very first trial of their battery, in firing small charges, both in air and in a backet of water, in the manner usual in a lecture-room. But when they took those precautions, which appeared absolately necessary to insure the success of similar explosions at the bottom of the Medway, at the distance of 500 feet, which they considered sufficient for the safety of the operators, in firing the largest possible charge or charges in deep water, so many failures took place, that at one time ultimate success appeared a matter of doubt : for it often happened that the arrangements which never failed in air or under ground failed in water; and those which succeeded in a pond near their barracks failed in the Medway. At last, after trying more than a hundred different experiments, they succeeded in reducing the operation of igniting gunpowder by the voltaic battery, both under ground and under water, to as much certainty as their former mode of firing mines in dry soil. They did not adopt any of Dr. Hare's arrangements, because it did not appear that he had ever used them under water.
"To record their various experiments, which commenced on the PArd of November, 1838, would be tedious and useless: suffice it to say, that they first succeeded in firtng an experimental charge of 11 ib . of powder only, at the bottom of the Medway, at the distance of 500 feet, on the 7th of February, 1839; that they fired their first mine, at the same distance, with a charge of 80 lbs . of powder, which, having a very small line of least resistance, blew up a field-work in presence of Colonel Warre, the Commandait, and most of the officers of the garrison of Chatham, and numerous other spectators, on the 11th of Pebraary ; that they fired a charge of 45 lb . of powder at the bottom of the Medway on the 16th of March; and that they fired a charge of 40 lbs . of powder at the hottom of the Medway on the 28 r d of Maroh; by which they knocked to pieces a sham wreck. These two last explosions, each of which was also at the distance of 500 feet, took place in the presence of numerous spectators, chieffy oficers of the garrison, whom Colomel Pasley invited to attend, not only from being of opinion that the voltaic battery may become extenaively useful for military parposes, bot also from a desire to fax the time when each peouliar process was first publicly carried into effect. In referenoe to this point, it was rather mortifying to hita, that after he thought every thing was right, the first mine which he invited the ofloers of the garrison of Chatham to attend entirely failed, owing to a rery small and delicate plece of platimm wire, which is always placed inside of each charge, laving been broken by some acciderrt, so that the voltaic circuit was incomplete. This failure, which never occurred before nor since, in any of his numerous experiments, led to the precantion of always teating each charge, by ascertuining, with two or, at the most, three crlinders or cells of the voltaio battery, whether the campexion between the two copper conducting wires and the plathum wire withln the chatge is perfect, which is known by the battery decomposing water, a process requiring much less power than is necessary for I giting gunpowder, and which is done ln a small glass tube to contali the water, propared and used as directed in article 901 of Faradayts Chemical Manapulation, (page 468.) If no desompanition take phace,
which is, of course, known by the wires not producing any effect when brought near to each other within the waterp but without actuad contact, as directed by the author, the platinum wire in the change paua necessarily be broken, apd the case containing the powder mepi therefore be opensd again, to make the connexian good; but if air-bubblen, forming and ascending in the water, should show that decompoaition is takigg place, the connexion of the conducting wizes and of the piece of platinum wire must be perfect. There is amother roason for got bringing the wires in the proof tube into contenct, not sfated bo Mr. Faraday, who was writing without reference to the presepep of 祭:ponder in any part of the circuit, namely, that such coptect might ignite the charge, if the battery were strong epough; ip grider ta avoid all risk of wbich two cells sbould always be tried firat this number bever having been known to ignite gunpowder in ang of the expeni. ments now alluded to; and if two should not act upon the watef tet three be tried with caution, which number, though it may ignite gunpowder near to the battery, that is through a very short circuit, will not ignite it when the proof tube for decomposing water forms altp a part of the circuit, because the action on the piece of platinum wire, which pasces through a cork coated with wax at the battotn of the tube ${ }_{2}$ diminishes the force of the voltaie electricity upon the quther piece of platinum wire within the charge. In testing their experimental clarges, therefore, by the decomposition of rater, great caution was always used by the engineers at Chatham, after the acciden above alluded to, which caused them to have recoure to this expediers This failure taking place on Safurday afternoon, the 9th of February caused the experiment to be put of till the Konday following, thi IH of February, when the mine tras fred successfully as pefore mentipoed the charge being placed under the field work that was to be blown up and the conducting wires being led from thence, entirely under grouph in a trench cut for the purpose ahout a foot deep to the bitiery, at the above-mentioned distance of 500 feet.
"It is rather curious, that the first intepded explosion at the bottom of the Medway, to which Colonel Pasley invited the garrison, should also have failed, which was caused by qn unforeseen cifcumstancenOue of the officers under his command, who had fitted up the charge and made all the arrangenents for the experiment, baving boen upezpectedly required to attend an inquiry, by an order from the InspectorGeneral of Eortifications in London, and having forgotten to mengia to another officer, who was therefore suddenly appointed to eqecute it, one of the precrutione necaseary, and which had been provided lor mamely, to seoure the conducting wires leading inta the charge againg any strain tending to meparate them from the canister containiva if Erom the anission of this precaution, the head of the canictar wrat pulled open by the afraip alluded to in a strong tide, and all the pop. der apailed.
"Several officers residing in or near the wetropalin, mone of चpan Were Members of Parlinmert, as woll as eeveral map of sclance, sad members of the intitution of civil engineara, haviag expreaged theis deaire to be present at the great explotion, by which it was prapeor to blow up a hham wrerk, Colomel Pasley appointed Saturdey of hat past two o'clock, at which bour he knew that they might arrimp without inconvenience, and retum to Londonafter the exporimenty if gpeepayt The plan of operation, of which he ctreulated programpanh, apanacid that the whole proceeding necessary should be dowe in prenemep of the spectntors. His firt exporiment, announged for the ajh of Mareth, which would have been exceonted at high watar, paving failed, he spo pointed Saturday next, the 16th of Maxolh for repeating if, op which oceation the ebb of a apring tide fomed nith co mpch violenot at the hour appointed for combeneacing that the charge, when let down to the bottom of the river to grapple with the mupporad wreat, could mat be brought in ocntact with it; and though the sultaic battery sucoeeded in producing the desived explosion, the menct cemained upinipred On this account, thevefone, Coland Palley appoistad a rapotition of the same experiment on the Saturday next following, which baing completaly sucoesoful shall now be demoribed.

4 The battery used way on Proferaco Dapiell's impmored copetruatige an before stated, which from its adrodrahle property, is whinh it marpasses all former raltaio batteries, of roteining ite power updimimiohed for several hours, he hay mamed the complant battery. The copper cylinders, or cells, were of the largest size that hat beci med, mimato. 21 isches high by 81 inches in diameter, with zing rodes fon, of proportienal dimensions. Cadonel Fasley had ordered ithot in Ethed up with porcelain cyliaders ingide to contain the zine rode, in preferrace to membranes; fut on trial he found that the futsoar wrese contimaly breaking in epite of cevery precaution, and therefore ha enfapied the latter, whioh are os gulleta, and which only com as ranyy pamen wo the

both attached to the ame 2 -ineh rope, being previonsty covered whth tape and conted with waterproof composition, and the rope itsetf being previoudy maturated with boiking tar, after whrich they were all bound round together with broad tape, coated with the same waterproof composition, and merved roupd with hemp yarns. Thus the whole had the appeapance of a single rope, oval in section, capable of being collert ap, which was done upon a drum of 4 feet in diameter. This precaution was fourd absofutely necessary to prevent kinks in the wres, and the wreangement of satarating the rope with tar was also found nenesary, to preverat its contructions and expansions between wet and dry from breaking the joints of the copper wire. At the far end, where the wires were to be introduced finto the charge, they were separated for a few feet in length into a fork. The case containing the powder was a th cylinder made for the purpose, and jnst capabte of bolding the proposed elarge of 40 lbs.; but to prevent the loss of the whole charge in case ef accidents, a small canister capable of containing about itb, was introdaced into one end of this cylinder, with a perfectly sound and strong metallic partition between the two. This small canister was called the priming-box, and two short copper wires, called the priming wires, were led into it, the ends of which were conmected inside by a piece of phatinuto wire about an inch long. These wires mast onty be in comtact with wood, tape, or canvass, and therefore the priming-box had a wooden lid, through which these wires passed, but the rest of it was usually made of tin. In immediate contact with the platinum wire, mealed powder was used, but the rest of the powder in the priming-box was common large-grained powder. Colonel Pasley rejected on trial twa sorts of fulmingting or deftigrating powder, that had been used, one by Mr. Wm. Snow Harris, of Devonporh, and the other by Dr. Hare, of Philadelphix, because he found no superiority in either of these over mealed powder. He also rejected iron wire on trial, because the platirum wire fired guopowder with three cells of Daniell's battery, whereas the iron wire required four to pfect the same object. To secure the entrance of the copper wires into the priming-box, by a water-proof composition, elastic enough neither to be cracked nor deranged by thooe strains or pressures, which cannot be entirely got rid of under difficult circumstinces, and at the sane time to prevent pull upon the copper wires from without treaking the very delicate platinum wire fired to their ende inside, Were objects, the attaipment of whioh gave infinite trouble. The expedients usually recommended, of corks coated with sealing-wax for the copper wires to pass through into the charge, and India-rubber tubes, or varnish, to insulate the remaining length of each copper condneting + wire, were rejected; the furmer as being flt only for a lectureroom, and the latter as being too expersive: instead of which pitch, notened by bees-wax and tatlow, was ised at the suggestion of Ser-jeant-Major Jones, who had tried a great number of experiments for ascertaining the best sort of water-proof compositions for bags of gunpowder in 1832, when Biekford's fuses were first used by the corps at Chathans, and who also, at the same period, diseovered the means of imitating those fuses in an eficient manner.
"Suoh being the preparations, the sham wreck, which was a small rough fir-vessel, 5 feet long, 31 feet wide, and 81 feet deep, was sumk at low water, opposite to Chatham gun-wharf, on the 23 rd of March, the day approisted for this final experiment, having a ring and lines attached to it, which were supposed to have been fixed by a diver, the ends of which were kept \ln a six-oared cutter, having on board the voltaic battery, the coil of conducting wires on their drum, and the charge of powder, which was attached to them by fixing their extreme ends to the prinaing-wires before described, and covering the joints with tape and water-proof composition. As soon as the supposed wrect was sunk, the charge was lowered and hauled into its place in perfect contact with one side of the wreok, by meanm of those linea, and the end of the downhaul was then made fast in the boat to the condueting-rope and wires, so much of the latter having been veered out and sunk, as was necessary to allow the charge to reach the bottom. All this having been dune at slack-water, and consequently without any obstruction from the current, the boat was moored nearly ower the spot, and remuined there for several hours, until the period appointed for the enplocion, whee the flood-tide was running strong, and the depth of water over the charge about 80 feet. At the hour eppointed, a great mumber of apectators being assembled on the whoof opposita, the cutter warped upon her oables agatnot the tide, matil the full astent of 500 feet of the conducting wires was veered out, after which Captain Sandhama, the exeoutive officer in the boat, made the sigpal by bugle that ald was ready, one of the conducting wiren was bow eomected with one pote of the battery, on which Colceel Basley, otho was umongst the speptators the wharf, gave the onder cheo by gound of bagle to fire; and as soon the the last note of this sound tas hoand, the berond conductiang wire wws brought in
contract with the second pole of the battery, and immediate explosion took place. A brisk shock was inctantaneously felt and a dull somad heard on the wharf; in a few seconds after which a smadl colum of water was thrown up, foflowed immediately by all the fragments of the sham wreck, which, being separated by the explosion, flosted up to the surface. On the same oceasion, some smah charges were also fired at the bottom of the Medway, one of which having been kept ten days in a bucket of water, before it was sent down to the river, proved the efficiency of the Berjeant-Major's composition. The successful result of this experiment, not so interesting to the spectators, was felt to be of equal importance with the former, and had been looked forward to with still greater arsiety.
"On the 6th of April, Colonel Pasley blew two large hard sandstones to pieces at the bottom of the Medway, one by one charge, the other by two successive explosions, each charge consisting of 4 tb, of powder. The holes were 8 inches in diameter, and the charges were contained, one in a tin cylinder of a diameter to fit the bote, the two others in cyfindrical canvass bugs of the same size. Over each charge was placed a wooden cone, and the upper part of each hote was tamped by small broken stones, on Mr. Howe's principle before described. One stone being of a compact form was split into five preces by the explosion; the other being much thimer, and consequently having little resistance either above or below the hole, the first charge only biew out the bottom of the hote befow and the tamping above. This stone was therefore got out of the water, and the second charge put imto the centre of the hole, haring its own wooden cone over it, whilst one of the two cones previonsly used, which had fioated up to the surface, was introduced under it, and then the hole was tamped both above and below this second charge, which, on the stone being again lowered to the bottom of the river, was fred by the voltaic battery, and the stone was thereby broken into three pieces. In this experiment all the preparations were made on the wharf-wall of the Gun Wharf, from whence the stones, when loaded, were let down to the bottom of the pier near it from a crape, and the slings used in this operation were not disengaged before either of the explosions, which emabled the men employed to get ap the second stone, after the explosion of the first charge lodged in it, which had not broken the slings. These blasts were fired from the wharf, where the voltaic battery was placed, with conducting wires 60 feet long in two of the experiments, and 100 feet long in the third, which being of common bell-wire, only about one-sixteenth of an inch in diameter, required no less than eight cells of Daniell's constant voltaic battery to produce ignition, although the same number of cells will fire powder under water at five times that distance with the larger wires before deacribed. These experiments in blasting rock under water were tried in reference to the important object of removing obstructions in rivers or in harbours, by blasting with the voltaic battery, in which case the holes in the rock would require to be previously prepared, and the charges introduced into them, by means of the diving-bell. Numerous experiments were also tried for firing several charges simultaneously by the voltaic bettery, but the results were not satisfactory, as the engineers at Chatham were never able to fire more than two or threp charges simultaneously at any respectable distance; but they have not seen reason as yet to ascribe their disappointment to the fault of the bato tery, bot to the circumstance, that having no more than 500 feet of the large conducting wires, they were obliged, in all their attempts at simultaneous explosions, to make use of the small common bell-wires, which they found by direct comparison not to be capable of conducting the same intensity of voltaic electricity to more than about onefifth of the distince to which it could be conveyed by the larger wires of about three times their diameter. Accordingly, the officers present at these experiments think that it would be perfectly impracticable to fire a clarge of gunpowder under water by a voltaic battery composed of six of Daniell's large cells only, at the distance of $\mathbf{3 0 0}$ or 400 yards by using coinmon copper bell wires as the conducting wires, according to an opinion given in a paper published in the "Civil Engmeer and Architect's Journal," for the month of May, 1838. From their own experience, they consider that gumpowder could not be fired at the last-named distance, by such conducting wires, with any battery compesed of fewer than 90 of Professor Daniell's largest cells, which would probably be a more powerful voltaic battery than has ever yet been used by man.
"On the 17th of April, Colonel Pasley repeated one of Mr. Wm. Snow Harris's experimenta before alluded to, by causing the wires from his voltaic battery to pass through two barrels full of gunpowder, and two small charges of 5 ibe each, the latter being provided with small platinum wires for explosion, whilst the copper wires passed straight through the former in their bright state, but the boles, which lad pretiously been bored in opposite staves of the barrel, for admitting those
wires, were secured by waterproof composition. The conducting wire from one pole of the battery passed first through a powder-barrel on dry ground ; secondly, through one of those small charges sunk in the pond near Brompton Barracks; thirdly, through the other powderbarrel on dry ground; and, fourthly, through the other small charge, which was also sunk in the same pond; after which it was led back to the other pole of the battery, the whole circuit being 1130 feet, but the distance from the battery to the most distant barrel of powder being, of course, rather less than laalf the above. On the signal being given to fire, each end of the conducting wire was brought in contact with a pole of the battery, so as to complete a circuit passing through all those four masses of powder; but only one of the small charges was fircd, instead of both, as was intended, which the officers present at this experiment ascribed to the mee of small bell-wires, as there was not a sufficiency of the larger sort of wire to complete the whole circuit without them. After this explosion, some merriment was occasioned by one of the powder-barrels being dragged into the pond by accident; but being got out and opened immediately, the powder was found uninjured, thanks to the waterproof composition. The remaining charge was then connected with the other powder-barrel, and the circuit which passed through both was completed, upon which an immediate explosion of the second small charge took place. A great number of military and other spectators were assembled to witness these explosions, each of which threw up the water to a much greater height than any of the larger experimental charges had done in the deep water of the Medway. The circumstance of the powder in the barrels being uninjured in these two experiments, though the voltaic electricity passed through both of them in the firss, and through one of them in the second-for if it had not done so, the circuit could not have been perfect, and no explosion would have taken place-affords by a parallel experiment a confirmation of Mr. Snow Harris's proceedings at Plymouth in 1823, to repeat which was all that Colonel Pasley had in view at the time. He was on this occasion, as before, disappointed in his simultaneous explosions, but he considers it of no use to try any more experiments on this subject, till he shall be provided with a greater quantity of large wire; and even for the common purposes of blasting rock, either on shore or under water, with a length of conducting wire not exceeding 80 or 100 feet, he would never use copper wires of smaller diameter than one-eighth of an inch. It is to be remarked, that in using the voltaic battery for practical purposes, the principle conducting wires may serve for several hundred successive explosions, because in all those experiments the priming wires which led into the charge were always short pieces, afterwards conuected with the former, and these priming wires, or a part of them only, were destroyed, whilst the principal conducting wires were not injured. Though the experiments at Chatham confirm the opinion of the scientific inventor of this improved voltaic battery, that the same number of cells possess greater power in a ligg than in a low temperature, yet one great advantage of voltaic over common electricity for practical purposes, is the superior hardiness, if one may use the expression, of the former. Whilst the common electrical machine can do nothing, excepting in warm dry air, the voltaic battery may be said to brave the elements, all Colonel Pusley's experiments having taken place in the open air, and several of them when the battery was exposed to violent rains, and, on one occasion, to a severe snow-storm. In these experiments, it being necessary to carry the battery about, which was done by a couple of bearers like those of a sedan-chair, and to convey it on the river in boats, sometimes subject to motion, the comecting screws, as originally fitted, proved liable to derangement in those movements, which led Mr. Howe, with his usual ingenuity, to suggest an improvement on the mechanical fitments of the battery, which renders the parts much more easily connected for action, but which, requiring a part of those fitments to be made of a sort of brass instead of copper, Colonel Pasley would not adopt, until he had made a reference to, and obtained an opinion from, Professor Daniell, that this mixed metal, which was made of fifteen parts by weight of copper and one of zinc, would not be objectionable; and on trial, having had a second battery of ten cylinders, also of the same dimensions as the first, constructed at Chatham by the artificers of the corps under his command, and fitted up in this manner, it was found quite equal in power to the first, which he received from London.
"As every engineer officer who is acquainted with the common mode of firing military mines by a piece of portire or slow match, connected with a powder-hose, leading to one or more chargea, knows that some delay, usually of at least one minute, always occurs between the lighting of the portfire and the explosion; and, further, that it is quite out of the question to expect several mines to go off simultaneously by this system, for no two equal leugths of portire, or equal lengths of pow-der-hose, were ever known to bura exactly alike,-it is evident that
the voltaic battery, which communicates igaition to one or rome changes instantaneously, offers the only possible means of fring de. fensive mines at the moment of time when they are required; that is, when the enemy's troops, in advancing to the assaplt of works thas protected, are seen to be upon the very spot of ground under the surface of which those mines have been prepared. At that critical moment, the tap of one piece of copper wire upon another opens the earth under their feet, and launches them into the air; and though mines are perhaps more terrible in imagination, timn destractive in reality, yet the instantaneous action of the voltaic battery, which gives no warning and brooks no delay, may, on such an occasion, be the means of repelling an attack, against which the same number of mines, fired by the common mode, might prove unavailing; because an enemy's column, marching to the assault, might either have passed beyond, or not yet have reached, the position of such maines at the period of explosion. For large subaqueous explosions, to be directed against wrecks sunk in deep water, and in a rapid tideway, the muperiority of the voltaic battery over all former expedients is no less striking; so much so, that Colonel Pasley has always declared, since his late successful experiments with it, that if he had been poesessed of such a battery, and known how to use it, last summer in the Thames, a gueat deal of trouble, time, and expense would have been saved."

NELSON MEMORIAL.

We have beeninduced at the request of several architects and artists to publish the descriptions of the various models and designs extribited at the St. James's Bazaar, there being no document in which they are collectively described. We havenot been able to obtain the whole of them, but if those architects or artists whose descriptions we have omitted, will furnish us with them, they shall appear in the next jourmal.

Modsl No. 2, Thomas Hopper.-The custom of mankind has been to devate those characters who have distinguished themselves, by inverting them with power and titles, and to transmit those names to posterity who have been pre-eminently exalted, by erecting temples to their memory.-Such was the practice of the great nations, whose exarnple other nations have endervoured to imitate. The Jews had a divine command to ereet a temple for the Ark of the Covenant, and Christima nations have dedicated churcties to honour the memory of men of eminent piety. Even Trajen's piller way pert of a temple.

Believing that the ligheat honour which can be beatowed in commemorntion of great actions by a nation, is the dedication of a temple to iommortalize the character of the hero: and as no difference of opinion exirta, as to the immense superiority of Lord Nelson, over the multitude of naval beroes whose names adorn the British history, he, alove all men, has deserved the noblest tribute that a nation can bestow.-Such being the conviction of wy mind, I have endeavoured to design a naval temple, commemorative of Nelson, and founded on the principles of ancient art. I have arlopted a circuker opea temple for many considerations, but above all, because I think it lest adapted to the site, and calcalated to improve the grouping of the ether invildings in Trafalgar-square.

The upper part of the temple and the steps only are cshibitel: the crypt and basso relievos want of time compelled me to omit, as well as the painting of the dompe.-The crypt I propose to surround the granite podestal which supports the statue, on which Nelson's motto should be insenbed : the coblurans of the crypt to have the names of the ships and the commanders delineatod on them, and the niches to contain the statues of the commandera who fell in the battles; and also paintings of Nelson's arious personal encounteraThe pedestale which divide the steps are intended to contain the entrances to the crypt, and the statues of the three secoads in commanal.- The dfvicinos on the frieze to contain, in sculpture, the history of a naval fight: the anchitrave within to contain a procession of naval triumph, and aito a lamentacion for the loss of the hero in the moment of victory. The dome to te peinted with three stars as an allegory. descriptive of the three great battles, in an of which Nelson hall triumphed. The centre to be lighted from the crown. in imitation of a star, with Nelson's Last glortous command, the light from whieh would descend full upon the statue. -The copitale of the columans ar cumposed of oak, thistle, and shamrock: and all the moklinge and archisec tural ormaments are taken from paris of naval architecture, as the ormmentu of the Eroctheium were taten from the nautilus. - The design is formed to ad mit of a great fountain to play on the anniversariea of Nelson's birth, and the three battles : and at night the whole building could be illuminater.
This is all that would be required in the dedication of the temple of Neleco. P. S. The Aag ships of the naval crown aro intendod to represtat the sery; the commanderi to represant the officers of the service; the milors who apr port Nelsen's atatue, to represent the foremont mean ; and the noval cows, which sormounts the building, is intended as the emblean of power med authority, and of the immortality of Neloon.
MoDEL, No. 3, T. Buther.-In the model which I offer to the comsideration of the committee, I have laboured to embody those points of character uppo which is founded the naval greatnesa of Rnglend, and which in my huant opinion, (in whatever way they may be expressed) ought net to be forgouten,
achicrements are among the most renowned of the only nation upon earth that has clamed and maintained the wide dominion of the seas.

The extreme elevation of the monument would be 84 feet, and, as materials, I propose granite and bronse, an being best arlapted to withstand the deteriorating effects of this climate. The statue of Nelson, and the graduated shaft upon which it is placed, together with the subordinate figures, and the rest of the pffective part of the monument in which the story is told, would consist of metal ; and the massive base I propose to construct of granite.

The projected height of the statue of Nelson is 19 feet, that of the figure of Hiritamia 20 foet, and that of the Sailor of the like dimensions. Britannia is represented as resting with her left hand on the anchor, her hope, glory, and strength, and with her right hand she pointan once to Nolson, and the first wond of his evar-memorable sigma, "Eogland expecta fevery man to do his duty," which appears inseribed ruund the column.

Behind Britannia and above her head waves triumphantly the British Flag, Crasped by the sailor, in the rear of the monument. This figure of a seaman stripped for action, represents the unshrinking front and unquailing heart, with which England has ever met her enemies. The top of the culumn is enriched by a chaplet of laurel, and on the pannels of the base are inseribed Neloon's ihree grand victories,-Nile-Copenhagen-Trafalgar. The four liuns would be of granite, the same material as the base, and the whole encircled by a chain cable supported by globes of granite.
The entimate of the monument is calculated according to the proposed aum, 30,000 .
In this design, it has been as much as possible my wish to avoid remote allegorieal alluaion, by adhering to an alphabet of symbols, so familiar as to be legible to the plainest understanding, and to impart to the whole a naval and a British character. It has alao been my study to observe somewhat of ${ }_{a}$ pyramidal form, as best calculated to lead the eye upwards to the hero of the story.

Monkl. No. 62, Jawes Hakewill.-Before attempting to deaign a Neleon memorial adapted to the locality of Trafalgar-qquare, I have asked myaclf, and others upon whone judgment I placed reliance, the following questions, which, with the replies, I subjoin.

Must it mot be desirable that the National Gallery be as little masked as poouible P-Undoubtedly.

What form of monument would best ensure that object P-A column.
As there are several points of view from which the monument would be seen, what form will give, on so many angles, the best outline? - A column : its contour being always the same from whatever point it is viewed.

Is it correct in principle or feeling that the statue of a subject be placed tooking down upon royalty, as the statue of Nelson would be, if placed on the summit of the cohumn immediately over that of Charles the First R-Certaindy not

Would it not be better, then, to place the statue of the hero on the base of the column, following out the example of Sir Christopher Wren P-I think $\mathrm{su}_{\text {; }}$ for that altitule would allow the interesting contemplation of the features an person of the hero, and render a secondary stafue mnnecessary. The height would preserte it from accidental injury, and the projection of the cornice protect it from the weather.

Of what material would you recommend its construction?-Of stone; for of the tens of thousands of bronze statues which embellished ancient Greece and lisly, accipars alone has preserved to our time scarcely half a dozen. The statuee which adorved the summits of the columns of Antonine and Trajaco, probably now circulating among the popalace of Rome, under the degrading iorm of Roman baiocchi ; we know that that of Henry the Fourth from the Pont Neuf, transformed into pieces of two sous and stamped rith the embletis of revolutionary France, forms the common medium of traffic of the Parisian vulgar. No memorial intended to convey information to posiefity, ahould be formel of a valuable and convertible material;-and, with such examplea before him, who will be bold enough to ssy the Pitts and the Foxem, the WelHigtons and Nelsons, of our time, will arrest what seems 10 be the course of nature.

Epon this basis I have formed my design.

> "Si queris descriptionem, aspice."

Momal No. 7, and Drsians Noe 73 \& 74, John Goldicult, F. R. I. B. A.Addizon, in his work apon medals, produces one of Britannia seated on a winged gabe, bolding in her right hand a Roman standard, (s. P. a. n.) This medal whe struck in honour of Antoninus Pius, who extended the boundaries of the Roman province in Britain.

There is alco in Addicon's work a medal of Marcus Aurelius Antoninus, suocessor to A. Pius, representing Italia seated on a celestial globe; for it extibibita a aection of the zodiac, and is atudded with stars, probably struck in bonour of the Quadi, Parthians, \&ec.
ADegorienl figures standing on apheres, or holding a ball in the palm of the hand, are of the mont ancient date; perhaps the medal Eternitas struck by Ant. Pise, is one of the inest: it represents a matron holding in her right hand a globe surmounted by a bird having a radiating crest.
Prom the Romens having placed Britannia and Italia reposing on spheres, there in clamical authority for choosing such a basis for a statue of Nelson, the haro of an hundred battlea.

The sphere, which is posited so as to bring Bintain on its zenith, is 30 feet diameter; the wetatue of Nelson 13 feet high; the entire base 25 fect. From the base line to the crown of Nelson's head the whole is about 70 feet. This altitude will be in sccordance with the adjacent buildings, and especially the National Gallery, which mersures 50 feet from the base line to the apex of the pediment. The diameter of the monument across the bastions which somport the allegorical figures measures 40 feet.
An elevation mol at this pomones the actrantage of bringing the colonsal fugures fulty ing vien to the public eye, and every feature can be truced.

Morcover, upon a sphere the figure is thrown out in a manner not to le achieved were it placed upon a column, in which, from the contimity of the shaft, and the figure terminating that eontinuity, there is less of aftraction n and imposing grandeur than in a masvive globe, a geometrical figure charncteristic of stability and atrength; and therefore, in every respect, if we may be governed by the taste of the Antonini, indicative of victory and peace, and of the power of that country whose "flag for a thousand years has braved the battle and the breeze." From the National Gallery to the statue of King Charles, the ground slopes about 16 feet. It is proposed to lower this ground from the National Gallery, to such a level as woukd give perspective elevation to that luilding, the Church of St. Martin, and the College of Plysicians. This would be accomplished by a terrace on the south side of the road skiring the front of the National Gallery, and which would be carried partially along the cast and west flanks of the square southwards. The quadrangle thus levelled would confer perspective elevation also on the monument, and be better adapted to its adjuncts and accesmories. The lase on which the sphere rests is surmounted by allegorical figures. Fame, Ncptune, Victory, and Britannia, occupy the east, north, west, and south poiuts of the base; on the lower section of which tablets appear in these cardinal points inscribed with the words Nile, Copenhagen, Trafalgar, and " lingland expects every man to do his duty." Thus, beneath Fame, to the east, the Nile ; beneath Neptune, to the north, Copenhagen; under Victory, to the weat, Trafalgar ; and Britannia, after the medal or national coin, sits over the last words of the hero. Beneath these entablatures the masonry of the base indicates stability, and allows the cye to risc graclually, first to the allegorical figures, in the midst of which the sphere rests in its own simple grandeur, leaving the colossal figure of the hero disengaged and entire. A circular arca extends 60 feet from the basc, which, being paved and surrounded by a ballustrade, may serve the purpose of private promenade to view the monument, or be made a permanent sheet of water which the adjacent mains may supply. This water woukl be in character with the profession of Nelsun and of his country, giving besides to Trafalgar Square, a great degree of municipal comfort; for whether we vicw this water as sin ornament, or physical agent conferring salubrity on the atmosphere of a city, there can be but one opinion respecting its adaptation to the design it surrounds It is proposed to construct the sphere of polished granite or hronze, and the whole to be polighel to resist the effects of smoke and atmosphere; and that access be had to the interior of the monument, where a chamber and other depositories should be constructed, to contain the busts of illustrious persons distinguished by acts of valour, and where thousands who risit this great metropolis may be admitted to inspect the same,-drawn to the object by the display of a building of massive grandeur, unique in character, and interesting in effect.

Model No. 13, M. L. Walson-The design is an oblong pedestal snpport ing a statue of Nelson, and surrounded at the base by allegorical groups if figures. The first group represents a nymph rising from the ocean at the command of Neptune, with a wreath of Laurel, whilst Britannia directs the attention to the hero for whom it is destined. On either side are the victories of the Nile and Copenhagen. The fourth group is designed for the victory of Trafalgar, with peace and power. The whole subject is raised on a platform, on the four angles of which are placed the different oceans in which Nelson distinguished himself. Throughout the composition I have endeavoured to convey boldness, energy and grandeur, and to impress on the mind the stirring character of the British navy. My original sketch for this design, will be found among the water-colour drawings, unaltered since the first competition.
The architectural parts of the design are proposed to be execnted in granite, the sculpture in bronze. Height 120 feet; width 64 feet.
Modsl No. 17, Frederick Claudiue J. Parkinaom.-The height of the obeliak, with pedestal and subatructure to the surface of the ground, to be 145 feet. The extreme length of the monument, 120 feet. The height of Nelson to be 12 feet, and the other figures in proportion, as shem in the model. On one side of Nelson stands Britannia; on the other, Victory. In the semicircular recesces are deponited the arms of the subdned nations, in commemoration of the victories achieved; the captives being guarded by the British lion.-On the opposite front of the monument, is placed a carcophngus, with angels protecting the tomb of Nelson; above the sarcophagus are affixed the arms and mantle of the hero.-The sides represent the prows of ahipa, with various other nautical emblems.-The obeligk is surmounted by the shield of Britannia and the British ensigns.-Various other emblematical figures and trophies are shown in the model.

The sculpture executed in bronse, will amount to the sum of $16,000 \quad 0 \quad 0$
The monument, composed of the best granite, will cost $\quad 12,600 \quad 0 \quad 0$
28,600 $0 \quad 0$
Model No. 19, William Groves,-In the rudely embodied idea, bearing my name, I have endeavoured to place before the noblemen and gentlemen of the committee, a composition which should appear at once triumphal and monumental, and therefore presenting the character which an Englishman attributes to a secred edifice-while, from its simplicity of outline it should not clash with the surrounding buildings.
The monument is surmounted by a group representing Strength rearing, and Wiadom und Justice supporting the Admiral's Hag. Immediately beneadh at the angles are the four winds, Zephyms, Notus, Apeliotes and Boreas, with their respective attributes, publishing to the four quarlers of the globe, the glory of the hero, who stands on an elevated prdestal bencalh, in fromt. On his right is Britannia, who has just embossed the name of line favourite on her shicid, thus converting it into a figis for future war. On his left is
the wingless victory of the Athenian, which 1 have selected as the most applicable to the hero, whom she never quitted.-At the back in the centre, is commerce seated, her right h ind resting on a trident, her left on a sphere, (indicative of her influence over ses and land,) and her foot on a rudder. On one side of her is the genius of the Torrid Zone, and on the other the genius of the Temperate Zone, surrounded by the emblems of commerce, aud depositing the produce of their repective climes at her fect. On the pedestals at the sides, I propose putting the hero's arms, and above them inscribing the names of the officers, his companions in victory. In the front and tao side panels in the base, are reliefs commemorative of his great victorics. Coppn-hagen.-Nepture orlering the British Flag to be reared in triumph on the ocean. The Nile.-On the left the Nile; behime, the genius of Xlexandria advathcing with extended arms to welcome Britannia, who, accompanied by the lion, is standing on the brokent and prostrate eagle of France. Trafalgar. - A sarcophagus bearing the hero's name; the genius of death nloout to de posit thereon a wreath of laurels; a neeping warrior is scated at the base of the sarcophagus, and at the sides are the flags of France and Spain. Ih the back panel would be particulars of the erection of the nonument. On the four projecting portions of the base, four lions. The figures to be 15 feet laigh, and executed in bronze ; the building in granite, and the total height of the monument from the ground line to the top of the tlag staff to be 120 feet. The whole cost would be 30,0001 .

Model No. 21, Charles Fouler, Architect, and R. W. Sievier, Sculptor.The composition presented by the accompaning model is intended to combine architecture with sculpture; in order to obtain a more striking effect from their union, than either is calculated to produce separately: the one by ith form and mass being calculated to arrest the attention and make a gencral impression, which may be heightened and perfected by the more refined and interesting details of the other. With respect to the first it may be observed, as the result of cxisting instances, that a mere structure cannot properly convey the feeling, or produce the effect required in the erection of a monument to commemorate any celebrated character or event; whilst, on the other hand, a statue or group of sculpture is ineffective for want of mass, and distinctness of form and outline : the former is appreciatel only as a dia. tant object, and the latter on close inspectlon. The object therefore has been to combine the adrantages peculiar to cach art, so that the many who pass along may be struck with the general aspect of the monument ; and the few who may pause to examine its details, may find their first impressions carried forward and perfected by the beauty and siguificance of its historical illustrations.

With respect to the design now subnitted, the endeavour has heen to render it characteristic and appropriate; aroiding plagiarisin, but without affecting novelty. The rostrated angles of the pedestals and the accoupanying decorations determine its character as a naval trophy; whilst the basso relievo and other parts of the sculpture plainly tell of the hero and his achievements.

In regard to the structure it will be seen that the bascment ls distinguished by plainness and solidity ; and lt is proposed to be formed entirely of grauite in very bold masses. The conchant lions on the angular pedestals are to be of the same material, but of a different colour.

The colossal figures seated against the four fronts of the pedestal represent Britannia, Caledonia, Ilibemia, and Neptune; Britannla accompanied by couchant lions, and Neptune recllining on a sea-borsc, 23 feet in length; under which is the entrance to a winding staircase, by which parties can have access to the gallery.

The die of the pedestal contains on its south front an lnscription, briefly recording the fame and achievements of Nelson; and on the north front a few simple hintorical facts relating to him, and the erection of the monnment.

On one side is a medallion containing the head of Nelson; ln order that the lineaments of his countenance night be brought more distinctly within view, the statue being so much elevated: and on the other side are his armorial bearings.

The central compartment of the elevation has the dado or lower part inacribed with the names and dates of his four principal actions; and in the panel over each is a representation in besso relievo of some atriking incident in each battle:

First.-Cape St. Vincent. Wlien "on the quarter-deck of an enemy's first-rate he received the swords of the officers, giving them one by one to William Fcarney, one of his old Agamemnon's, who, with the utmost coolness, put them under his arm."

Second-At the Nile. "After his wound was dressed he was now left alone, when suddenly a cry was heard on the deck that the Orient was on fire. In the sonfusion he found his way up, unassisted and unnoticed; und, to the astonishment of every one. appearef on the yuarter-teck, where he immediately gave orders that boats should be sunt to the rellef of the enemy."
Third.-Copenhagen. "A wafer ras given to him; but he ordered a can: dle to be hronght from the cockpit, and scaled the letter with wax, affixing a larger sead than be ordinarily used. 'Ths,' said be, 'is no time to le burned winformal.'
Fourth.-Trafalgar. "llardy, who was a few steps from him, turning round, saw three men raising him up. - They have done for me at last, Hardy !' sinid he.-'I hope not !' ctied Hardy.- ' Yes,' he ruplied; 'my back. bone is stiot through."

The latter occupies the front, and displays at once the climax of hil achi vements, and the termination of his brilliant career.

The gallery above is supported on cannons, in lleu of the naal architecturad weroles, and the intervili in the sofive are emiched vith bomb mad grenome
instead of rosettes. The railing of the gallery is composed of decolttions and emblems having reference to the object of the monument, thois combining omsment with characteristic expression.

The opper compartment changes into the circular form, and is more fully charged with decoration illustrative of the honours which Nelson achiered. The four large wreaths encircling the pedestal contain respectively the haral and nitural crowns, the viscount's and ducal coronets; beneath which are suspended the decorations of the four orders conferred upon him by their respective sovereigns.

The frieze of this pedestal is entirely occupied by the beraldic motto, which is peculinrly expressive and appropriate. The ornaments surmonnting the cornice, which ere analogous to the Grecinn antefixe, are compoicd of eacallop shells; and the cupola is to be of copper gilt.

The statue of Nelson crowns the whole, and is to be executed in mrome, ahout 16 feet in height. The entire height of the monument, including the statuc, will be 128 feet from the arca of the square, being 19 feet more than the York column.

The structure, with all its decorations and accessories, to be completed in the mast perfect style for the sum of 25,0001 ; and ample security will be given for the due accomplishment of the undertaking for that amount.

Model No. 29, Patric Park.-Allegory, and particularly the old allozary of Neptune, Tritons, nymphs and sen-horses, can only be used in commemorating a man, whose virtues are uiknown, or problematicil. In a monument to a man like Nelson, such cannot be tolerated.-The character of mav, is stamped on his counteuance, and proved by his form.- On this just principle, which is the vitality of true sculpture, I have based this desigo. I livatrate, by form and expression, in single statues and groupm, the characteristics of Nelson, as thus:-his ardent youth-his hopeful contest in the Wext Indics-his daring manhood under Sir John Jervis-his heroie striagde as the Nile-his piety after that glorious victory-the applause of the worldhis resolved character at Copenhagen-lis death at Trafalgar-the sorrow of his country.-These characteristics claim our vericration, and scifptare hils with enthusiasm a character so congenial to her pmre and sublime gemeanThe obelisk is used as a sign post to attract attention to the sculpture.

The height is 95 fect; the statue of Nelsoh, is 16 feet; the illizerative statues are 11 fect; and the groups of the proporilon of 7 feet. All the sculpture to be executed in Rataccione marble; the obelisk, \&c. in frecstone: for 30,0001 .

Models No. 32 and 168, S. Manniag, Sculptor.-A column representiog the British state, founded on a rock; on one side of the lsase Nelson is receiving the trident from Neptune, accompanied by other sea divinhties; on the other, he is dying in the lap of victory. The columin is surmounted by a figure of peace.

Statue of Nelson 12 fect, monument 100 fect high. To be executed in bronze, marble, and granite, \&c. Probable estimate under 30.000 .

Model No. 37, William Pitts.-Grandeur and simplicity have beew the objects of attainment in this model. As a colossal statue he is rised overlooking the city which his judgment and ralour have preserved, and his immortal memory is a glory to its prosperity.
The statue of Nelson is proposed to be 30 feet, ihe pedestal and itepestorut 60 feet, the entire height of statue, perdestal, and stepw, 90 feet. The statur, lions, and subjects, in the panels, to be executed in bronze, the pedestal and steps in solid blocks of granite ; to be completed in the best styfe of art, for the sum of $30,000 \mathrm{l}$.

Model No. 38, J. G. Lomgh.-In the model I now have the honour of sutbmitting to your Inspection, my great aim has been to render it pentectly sitmple, and at the same time purcly Nelsonic; with this viet the fout suborimate figures I have kept four feet smaller than the statue of Nelson, and hare so interwoven them with the form of the pedestal, that is to say, adapted them to the curve of the pelestal, that the eye is carried to Nelson at once. I trust you will find that in this design architecture and senjptare are com. pletely blender; an effect which conld never be produted by a mumber of scattered figures; and in the monuments we have hdided down to os of the hest ages of the Egyptians and Greeks, we aniversilly find thil poiat has been strictly attended to.

I propose that the monument should stand 40 fect high, the pedeatal to the hass on which Nelson stinds being 24 fect, and Nelson 16 feet, whom I have represented in a boat cloak, holding a telescope, as emblematic of his conslaut vigilance. 1 have chosen the above-mentioned height as one at which the features of Nelson may be clearly recognized, and also as being pecoliarly adapted to the intended site. The four lower "gures are latended to be 12 feet in dength, ralsed bi feet from the ground; they are meant to represent sailors-and I lave atoptel the cosiume at the moment of action it being more sculptural. Ny inlea of a monument being to make it nanonal aind intelligible to all classes. I have stutiously avolided nllegory; I Live introducet such atributes as 1 thought would not Interfere with the grieral outline. The two sailors in front are holding flapts, aupposed to bave been taken in bettle: the pensive one to the right hokling shat of Trafulrat. and the one on the left that of the Nile. The basai relievi on the peilestal are intended to be cut in intagtio in the granite in the Egyptian manner, as my graat object has been to proluce a great whole and to preserve the stemeral outline. The whole to be built of granite, except the five gropes; Whath, with
 time; and with a view to its cluration I have carefully argind ail poltry

bwe br menplure. As it migarts the cust, I tave confined myself within the limits named by the commitlee.

Model No. 39, E. H. Baily, R. A.-An obelisk raised to the memory of Nelson by his grateful country. At the base, our great naval commander is represented supporting the imperial standard; on his left stands the genius of Britain, hailing with affection the hero of Trafalgar ; his atteadant, Victors, being seated on his right. At the back of the obelisk rests the NiteNeptame with the subordinate deities of the ocean, form a triumphal procession round the rock on which the monument is placed, therehy indicating that the victories of Nelson were extensive as the element on which he fought.

The be ght of the momment is intended to be 80 feet; the diameter of the steps the same extent, and the hright of Nelson to be 9 feet; the uther fipures in proportion as in the sketeh. To exeeute the whole monument in Havaceioni marble, (the same as the areh before Buckingham Palace is tuilt of,) 22,000 . If exeeuted in bronge, 30,0001 .

Model No. 40, E. H. Baily, R. A.-On four projecting parts of the base are four sem-horses, indicative of the element on which the bero's battle were fought. On three sides of the base are three colosesd emblematicad figures of the Atlantic, the Mediterramean, the Baltics and on the fourth, that of the gencus of Britain. Above these ferures are four projecting antigue prows, and still higher, four figures of victory linked hand-in-hand and facing the four quarters of the giobe. On the summit stands the statue of the immortal hero.

The cost of erecting this monument would be frome 25,0001 . to 30,0001 , according to the magnitude of the figures.

Model No. 41, Patric Park.-In thit design, 1 devote one groap of \& victorions hero, 20 feet high, in honour of Nelson's deeds. The statue is 30 feet high ; on one side of which, Manhood mourgs the death of Nelson; on the other, Honour is consoled by the glory and triumplas of Nelson. Exeented in Bavsecionc marble; pedestal, \&es, freentone; 30,000l.

Monkl No. 45, J. Harrisot, of Cheoter.-In designing a memorial to Neleon, I bave at the mmo time endeavoured to arrange a temple to the nary, nuttable in the style to the general architecture of Trafalgar-square; and from its mass, or elevation, not appearing to take from the importance of the Gailiery, or attempting to rival St. Martin's spire.

In the centre of the interior is erected a colossal statue of Nelsion, around which wre reeeptacles for the statues of future naval heroes as they arise. The 16 atatases mader the porticos wre of the admirals of Engiand, with the pamel above ach of them illed with basrelief, illustrating the princtpal featare of their profesional career. The sculptures in the tympanums of the pediments, ath in the compartroents of the bace of the obelisk, are intended to carry out a biography of Nelson. And (4 the funds permitied) to comphete the dewigh, the metopes in the frieze should be filed with sculpture, convering a history of the navy (after the mamer of the Parthenon): The whole sarmounted by the obelisk, bearing in letters of gold on its imperishable ades to the four winds, the fatnre watch-word to naval greatness. The forr eoloseal igures, at the angles of the middle terrace, are symbolical of the Nile, Copenhagen, and Trafalgar aubdued, and Thames triumphant. The erocolites and lions are to be fitted ap as fountalns, to play on the anniversaries of naval victories, haviag the name of the victory hung in the panel orer the four doermeys. The space under the terraces are intended as vaults for any useful purpose, to be approached by doorways in the breast walls at the lower aide of the square, which will admit of another fight of steps to make up for the dip of the ground.

The height to the apex of the obelisk is 100 fcet; and, consequently, about 20 feet higher than the centre dome of the National Gallery. The height of the pediments is about 17 feet lower than that of the gallery; and the extreme width, from outside of columns, is about 17 feet wider than the centre portico of the gallery. The building, with its relievi's and statues of the admirals, it is proposed should be executed in one of the approved freestoncs of the country; the statue of Nelson in marble, and the symbolical figures, with the crocodiles and lions, in iron. The coat of the whole will be 50,0001 . The model is worked to a-fourth of an inoh scale.

Model No, 46, Henry Case,-In composing such a monument, to be placed in Trafalgar-square, there are many difficulties to be surmonnted, in addition to that, of doing justice to the achievements of so great a man.
The large spece to be filled, denaunds considerable extent and importance, in the design itself, while the general effect equally requires, that this shall be obtained, with as little obstruction as may be possible, to the view of the surrounding buildings. These objects combined, seem more easy of attainment, by adopting, as the characteristic of the design, the graceful and towering, rather than the masive and severe, taking care that the solidity and repose, to indispensable to greatness, be not lont:

The character of the plece, (one of the gayest thorouglifares in London), also saggests a similar design. Art will be more effective when it avails itself of feelings already half formed, and strives to direct them to noble ends, than when it attempts to force them into other channcls:-and in the temple, on the mountain, or the sca-shore, a hero's monment, should induce reflection, and impress by solemnity, but in the more busy and crowded parts of a city, where a thousand burr past, for one who stops to think, it aloonid address iteell to emulation, at once, without the intervention of thougtit, possessing Dowever, that which shall satisfy the mind of the morc attentive beholder.
Agoing cribitherict the mentel charncter of the man, gaity cannot surely be
misplaced, in a "Memerial of the Achievements" of one whese life was a succession of victorics. If these ideas be correct, that design will he best adapted to the circumstances, which is most caleulated, to excite, at a glance, in the thoughtless idler, or hurrying man of business, the desire, by a life like Nelson's, active and honourable, to win honours like his, from a grateful country;-which by its sculptures and inscriptions, shall tell, to the observant, more striking features of his life and character;-which shall leave on the minds of all the impression of a monument appropriate to a naval hero, and worthy of a Nelson;-and shall combine with these qualities, the indispensable conditions, that it shall assist the effect, of the surrounding buildings, and he in its dimensions of sufficient importance to occupy the most magnificent site in the metropolis.

This is the ardvous task which has been attempted in the derign now submitted to the committee, and for the scomplishment of which a Corinthian column appeared to me to offer the greateat fecilities.

The column, with its pedestal, stands on a platform of an elevation of 14 feet 6 inches, at the angles of which are triumphal stele, 5 feet 6 inches in diameter, and rising 16 feet from the plationn : they suppurt the naval aod mural crawns, the ducal and viscounts' coronets, proposed to be in metal gikled.
7 his is placel on a terrace 140 feet square, 6 inches higher than the ground immediately opposite the centre porticu of the National Gallery. At cach angle of the terrace is a troply of sea-horses and flags, (proposed to be executed in bronzed metal, or black marble, on a cippus surrounded with Wreaths, inscribed with the dates of the numerous ninor engagements in whieh Nelson was concerged; the pedestal of the column being reserved tor the great actions. In each front are two lions, flanking a flight of steps 00 feet wide. The clppi are 12 feet 6 inches in diameter, apil the fions are 7 feet high, from the blooks on which they are pusced.
The pedestal of the column is rectangular on plan, its sides slightly inclined and panclled for the reception of relicyi ; over which are inscribed the names of the victories celebrated and Nelson's flag-ships: St. Vincent, Capnames ;-Nile, Vanguard;-Copenhagen, Elephant;-Trafalgar, Victory : theso and the other inscriptions, are shown in the perspectlve view.
The podium of the platform bears un one side,-""Kngland expocts every man to do his duty $i^{" p}$ on another,-"Westminster Abbey or Victory;"-on the thind,-"I have done my duty, I thank God for it;" ${ }^{\text {and }}$ the fourth is reserved for an historical inseription.

The column rises over four prows, issuing from a frieze, 3 feet in height, (emblematic of the sea,) and a plynth bearing the motto, "Palmam Qui Meruit Ferat." The base of the column is cabled. The capital was composed after a minute stuly of four of the most beautiful capitals Greek and Roman art has left us; I have endeavoured to collect their beauties and produce a whole more adapted to an isolated position than the ordinary Corinthian capital, and at the same time more easily exectited on a large scale.
Over the column four Tricons support a Tholus, on which atands the statue of the hero, 17 feet 6 inches in haight; in construction the support of the figure is independent of the Tritons. This part forms a lantern of olservajion, and from it the surrounding scencry may be viewed in every direction. The figure loses not stand on a point, but on a circle whose diameter is more than one-third the lietght of the st itue.
It is proposed that on the south, east, and rest of the monument, the site shouli be reduced to a level, three feet higher than the ground at its lowest part, io form an extended base to the whole monument. Thia would make the levels, which at first appearcd a disalvantage, a means of obluining a considerable effect: on the south there would be two steps, each I fout 6 incles in height, broken at proper distances with blocks for candelabra, and with a flight of steps in the centre ; on the north, a retaining and low parapet wall would place the National Gallery on a terrace; while on the cast pet wall would place of the monument from an arca 180 feet by 80 , a flight of steps 30 feet wirle, would give access to the upper level immedfately opposite to eacb of the wing porticoes of that building; producing unity and the idea of pure pose; and the repose on either side would helghten the effect of the monus ment. Thas is illustrated, and its effect shown in the general plan and pere spective view.
pective viell If it should be thought desirable, a gallerg, (a plan and section of whichis shown,) for the reception of paintings, models and sculpture, (with a roond for a keejer), may le obtained under the plat form of the column. The gallery would be 12 feet high, and 16 wide, and liaye a total ertent of 120 fect; larger dimensions might be obtained, but the keeping the platform within the smallest possible limits, seems of parimount importance, it would he lighted by skylights unseen from without. The enurance to the monument is also entirely screened from sight.

The entire cost of the munument, the masoury of granite, and of the best worknanslip, would be 30,0001 . It is proposed to introduce gilding in parts, as shown in the perspective view. In the drawing I have umitted the victories on the prows, as they appeared sumewhat to detract from simplicity in the design; they are however retained in the model.
The time and labour I have lestowed on this desibn, to obriate the oljections urged abainst a column as a momment, will I hope, offer sufficient apology for the length at which 1 have found it necessary to describe it.

Modse. No. 50, Sanuel Nirom.-In monnments, it appetrs to be extremely desirable that the individual in honour of whom it is erected should be conapisuounly pointed out; that his figure thould in fact be the monument, and
that all else should be marely accessory to that main object. The artist has therefore so composed this design, as that the eye shall almost involuntarily fix itself at once upon the statue; and he has endeavoured to represent the hero in that calm and dignifted attitude, which appears to be best fitted for a monumental structure.

To denote his country, a group of statues representing Britannia exultingly rising from the waves, supported by Freedom and Order, is placed in front; to mark the scenes of his triumples, the Atlantic with the Tagus and the Gulf of Bothnia, and the Mediterranean with the Nile and the Tiber, enrich either side; and, especially to point out that deep sense which he entertained, of having been raised lry Providence to scourge and to subdue the cnemies of his country and of social orlcr, the Fites are represented as weaving the tissued thread of his career. The plinth course is proposed to be decorated with bassi-relicvi of his achievements.

Model No. 51, Richard Kelsey and Sammel Nicon_-It appearing to be very desirable that the monument, and its accessories, should be made to appear a component part of the original design for the National Gallery; in the general arrangement of the whole area, this object is kept in riew, and it is proposed that the ground should be excavated to the point of lowest level, that the retaining wall on the north side should form one terrace line, and the centre be occupied by a wide ascent, or scala regis to the Natiopal Gallery.

It is snggented that the steps should be bounded on either side, by a ticr of colossal lions only, or of monuments to distinguished naval commanders, in which colossal lions should bear a prominent part; and it is anticipated that auch an avenue would not only, in itself, be magnificent, but lead the eye gradually forward to rest upon the portico of the Gallery, and bring it into the picture. It is proposed that in the centre of this avenue, an enlarged, but exact model of Pompey's Pillar at Alexandria, should be erected; that the statuc of Nelson should be placed in front of it, so as to be distinctly visible; that his achievements and those of his brother officers should be sculptured in basso relievo upon the sub-plinths which support the column; that the pillar should be surmounted either by a Victory or a Britannia; and that the whole should be made to form one majestic trophy, in that style of simple grandeur which best accords with the character of all great men.

It is conceived that not only do the simplicity of its composition, the gracefulness of its proportion, and the artist-like breadth of its foliage, render it peculiarly applicable for such a purposc ; but that the circumstances of his first great victory having been achicved almost at its very foot, of his title being indissolubly united with Egypt, of the familiar acquaintance which suariners of all European nations lave with it, and of the facility with which they might recognize and hail it as an old friend; appear to point it out as more appropriate for a memorial of "Nelson of the Nile," than any other example of ancient art, or any column composed by a modern architect could possibly be.

Designs Nos. 57 and 60, Waller L. B. Granville.-The triumphal column 1 propose as a memorial to Nelson is of the Corinthian order, after the ancient remains of the Temple of Jupiter Stator at Rome, which Palladio considered to be superior to any work he had ever seen, and anterior to the temple of Marm Ultor. It rises on a sub-basement to the height of 218 feet, including the statue.?

The enilire sbaft is of cast-iron, composed of 26 conrses of a proper thickness, and 111 ft .3 in . high. It rests on a square pedestal, the die of which is 23 feet wide and 19 feet high; and this again upon an octagonal sub-basement, 10 feet above the ground, covering an area of nearly 32,000 square feet. The base of the shaft and the capital are cast in brass. The former is 6 ft 9 m . lugh, the latter, 14 ft .9 in . From the top of the capital, a round pedestal 15 feet high, made of cast-irun, and ornamented with brass festoons, supports the statue of Britannia Tonans standing on a gluke, hurling the thunder-bolts as emblems of naval power with her right hand, and holding in her left band the sceptre of the sea. This figure, typical of the pre-eminence of Great Britam on the ocean, has been deenied a mure appropriate termination to a lofty column raised to the glory of the first naval commander that ever lived, than the statue of the hero himself, whose lineaments could not be perceived at such an elevation. It was consequently substituted for the latter. It will be 25 feet high, and it is proposed to make it of cast-iron gilt, or of yellow bronze, like some of the must recent monuments crected on the continent.

The perlestal of the column, 36 feet in height, is of masonry and solid stone, cased in by statuary marble; of the latter material are the four sides of the die, at the angles of which four colossal cariatids, in marble, stand to support the massive comice and omaments of the pedestal. They represent, by appropriate emblems, the figures of Spain and Denmark weeping over the defeat of their navies, and of the genius of Cape St. Vincent and of the Nile, as witnesses of the two great naval fights bearing those names. Resting on each angle of the comice of the pedestal is an ancient rostrum, to give character to this great nnval column, and rich lannging festoons link the four rostra together; all which omaments are to te of brass. On the south face of the die the hero limself, seated in the triumphal chair of state, holding the truncheon of command, and having just received from his country the imperishable laurch, occupies the centre. He is clad in classical costume, and by the well-known lincaments of his countenance, carefully preserved by the sculptor, and placed within reach of the eye, will remind the beloolder of the cherished object of this monument. On the broad plinth of the pedestal, however, and within a nreath supported by Victories, the name of Nelson is inscriberl. The east and west faccs of the die will represent, in alto relievo, the battles of the Nile and Copenhugen; ulile on that cif the north side, over the entrance door, the closing scene of Nelson's immortal career, will present its naked and impressive trifi to the multitude that daily passes in frunt of the National Giallery. The sub-basement, of an octagonal form, is emiched

With 24 projected blocks close to the ground, intended to berve as plinths, to receive, hereafter, the statues of those naval commanders who most distinguished themselves during the last protracted war; or short pedemials, with the colossal husts only of such commanders, might be substrtuted for the statues on the blocks in question. A space is left between each statue on the faces of the octagon, whereon to inscribe the name, and a short epitome of the decds of those cummanders. In its interior, this octagonal sub-basement oflers four spacious rooms 41 by 25 feet each, and 19 feet high (besides amalier apartments for the accommodation of keepers), which being well lighted frotm the top present an excellent opportunity for forming a naval library, and gallery of pictures. The shaft of cast-iron is 13 feet 6 inches in diameter close to its base, and under the astragal 11 feet 4 inches. A band 4 feat whle, beyinning at the base of the shaft, rises spirally to the height of 68 feet, developing a superficial length of 724 feet of cast-iron bas-relicfs, reqresenting the Fasti of Nelson, and those of the naval history of Great Britain connected with his career. The figures will be 3 feet high. The flutings of the shaft deacend from below the astragal to where the apiral terminates. A Eght geometrical staircase of wrought iron, 3 feet wide, runs all the way from ibe ground up to a door in the round pedestal which supports the statue. The door opens into the upper part of the capital. so arrangel as to form a gatlery for the visiter,-thus avoiding the usual unsightly appendage to imalated columns of a top railing which disfigures the abacus in most of those manuments. The staircase will consist of 365 steps of very light comstruction, and be lighted by loop-holes, or sowpirails, placed in different perts of the spiral band as well as among the flutings. The great entrance door, at the nurth side of the octagonal sub-basement, will be seven feet high by three feet and a lualf wide; and will afford immediate access to the stairease, through a spacious waiting-room.

To this description I have only to add that I have selected iron as the material for my column, because it is the emblem of strength-because it may be supposed to proceed from the iron cannon captured by the hero to whosa the column is erected-luecause it is not only the most abundent metal fonad in Great Britain, but also that in the working of which the English has outstripped every other nation-lastly, because the use of iron for so gigatic a structure, offers the character of originality, and the more importans quadty of economy. The Irussian and the French governments have fatt the trath of this, and while the former raises pyramids and obelisks in cant iron, the latter is now occmpied in erecting colossal founthins in the Place de la Conconde, with the figures made of cast iron.

Since my first proposition of a cast iron column, objections have been started against the employment of that material, on the grounds, firot, of ita being of an easily oxydizable nature; second, of its being likely to be atrect and damaged by lightning. The latter ground, 1 am happy to state, is considered by some of the first philosophers in this country, who have been coarniked on the subject, to be purely imaginary. On the contrary, we the iron stat from its apex will be continuous down to the ground, should the electricel fluid be at all attracted by the column, the fuid will be tranmitted, as in the case of the ordinary protecting rod on the top of houses, to the earth, and there dispersed in silence. As to the firut ground of objection, that of the easily oxydizable nature of iron, it is happily done away with by the nood recent discoveries of chemistry. Many are the processet now in use for protecting the surface of iron in the most effectual manner; and withoes eatering into the most scientific of these manjpulations, it may be stated that the preparation cmployed by the Prussians in all their pablic monaments of cast iron, has hitherto preserved them most completely.
recamtulation of the several meabubements of the mblson colems.

I: was proposed to crect the former column for the sum of $25,000 \mathrm{~N}$; but in consequence of the increased quantity of sculptured marble in the pedeatal. and the addition of the sub-basement in the present cohunn, the sum required will be 29,5001 .
comparative aititude of ten trieniblal colenne in berofe,
incluming the intended one to nelson.

	Feet. In.
1. Duke of York (London)	1236
2. Earl Grey's Column (Neweastle)	1340
3. Place Vendome (Paris)...	136
4. Alexander Column (St. Petersburg) .	1440
5. Trajan Column (Rome)	1450
6. Culunne de Juillet (Paris)	1486
7. Antonine Column (Rome)..............	150
8. Melville Culumn (Ealinburgh).........	1505
8. City Monument (London)	2020
10. Nelmon Memorial (London)	2178

Desion No. 64, Thomas Bellamy.-The erection of a memorial to the hero of Trafalgar being at length determined upon, the country will doubless ere long be crabled to look upon a monument worthy alike of Nelson and of the arts; and honourable to that national feeling which, after the lapec of 33 years, is now awakened to record imperishably his brilliant exploits.

The colvmas form from the time of Duillios (the first naval hero to whom the Romass decreed amonument), through those of Trajan and Antonine down to cor own dyy, hati generally been adopted whenever a monument has been required of colosal dimensions, and is consequently most favourably macciated in the public mind; but, notwithstanding this association, and the intrinsic beauty of the column when of good proportion, its fitness is questionable when applied as the isolated pedestal of a statue.

The proximity of Trafalgar-equare to the York column renders it highly important that any monument to be erected there, ahould be essentially distinctive in deaign from that monomont. That monotony may be avoided, and eamething new in art produced.

Mack has been said on the injurious effect which any object erected near the Nationl Gallery would heve upon that edifice, if the parta of which that object might be composed were to be larger than those of the Gallery itself, bat this could only apply if the parts of the Gallery possessed magnitude, or approximated to that quality, which in clearly not the casce. Its facade would in trath be benefitted by any monamental object that should present a marked coartrast to it in acale and character.

The tisaple form of the obelisk when magnitude is taken into eccount, renders it, pext to the pyrmid, perhaps the moat imposing of all forms; and it wouk be dificult to point out a situstion better suited for ita adoption than Trafalgar-equare, where contrast with axisting forms, masses and materials is most necessary.

The obelisk of the accompany ing deaign is 98 feet high, and 12 feet square at its base, being larger than that before the Lateran church at Rome. The author had copceived the idea of procuring it of one block from the granite yuarries of lifyter, but the funds announced as available for the memorial are too limited to allow of more than mention being made of the kilea. The memory of Nelson would perhaps not be unfitly recorded by a form which had its origin on the banks of that far-famed river, at the month of which he mon une of the brightest of his laurels. The tridents, ships, and victuries on the bases of the obelisk, and on the obelisk itself, are sunk below the surface of the granite, as are also the words-Nile,-Copenhagen,-Trafalgar,-and, the eignal to the fleet on the day of the last quoted battle, "Fingland expecta every man to do hia duty "" with which each face of the uppermont base of the obelisk is reapectively charged. This design might be crecuted for 28,000 .

Dasiom No. 67, George Foggo.-Round the mainmast of a man-of-wrer are piled trophias of Nelson's valour-mute ponderous cannon, silent musketry, Acc. In front the bero receives additional tokens of success-tbe swords and benners of humbled Prance and Spain; hut beneath, in the base of the monument, a bas-relief, in form of a ship's hull, represents the Conqueror of TraLalgar death-atruck-pansing to immortality. The word "Victory" ineribed ores the seene of triumph, and against that of death "Weatminater Abbey," remind of his vigorous-almost prophetic-eloquence and enthusiasm. At the mast-head (decorated with three crowns of sea-wreed) a British Tar proclaims the glorious vigtory. On either side is seen a figure in action, intended to represent some renowned companion of Nelson's prowess; and retiefs of the Nile and Copenhagen will complete the exterior.

The omaments consist entirely of objects obtainable at sea, and characteristic of our navy and its illustrious leader, who dared beyond the rules oi art. Oupects that savour of preparntion, and partake not of cathusjastic impulse, and likewise the mystic visious of antiguity, have been discarded for the more terrible features of modern warfare.

The interior of the basement will afford well-lighted space for fifteen or twenty bas-reliefs or piciures, commemorative of our navy's gallantry.

The beight proposed is about 160 feet, which from its prominent position, and the effect of pergective, will appear lofty among surrounding objects; the pridcipal figures about 12 feet. At that proportion the monument can be well erecuted in stone far more durable than Italian marble, under 25,0001 A real mat of a line-of-battle ship would be most suitable for the upper shaft, and bronse may with propriety be applied to various decorations.

Desion No. 68, Carl Tbttie.-The colosal statue of the hero (27 feet 9 inches), If placed on the apex of the column, which signifies Britain, and is supported by England, Scotland and Ireland, represented by the three counterforts, each carrying their respective genius (with appropriate emblems, the Roec. Thirtle and Shanrock) in inclined position, contemplating the great services of Lord Nelson. The divided composition is redeemed or broaght to unity below the batement by the three stepe or gradina. The pintform with the three second counterforts, supporting the lions as symbols of strength and power, comes next ; below these the stepa are spreading to an amaring circular extent, mecording to the inmensity of British connexion and infuence, as likewise the great firmness of the united kingloms. Underneath ote of the lions is the entrance to a circudar gallery, decornted with naval trophies, connected with the spiral staircase, which by 320 oteps brings the visitor on the balcong to enjoy a magnificent prospect. The whole hreight from the pavement to the top of the statue is 217 fect 3 inches. All the calptares of Scotch granite. Brected of granite and Portland atone, eatimate, 28,000l. ; and entirely of Aberdeen granite, 40,0001 .

Desion No. 72, Thomar Bellamy.-The design conaists of a platform 150 feet suare, charged at the angles with marine and naval emblems; the base uf the pedestal is seulptured with colossal modela of first rates and victories aon beare the following inscription ranging rumal its four faces:-
zO ADMIAAL HORATHO FIBOONT NELBON, DOER OF BRONTE,
This memorial is erocted by public aubecription,
A. D. Mncocirinx.

Thirty-fowr years afier his death, to comsmemorate his woparallaled achievementf.

The plinth bears the names of Nelson's three great victories. Nile-Copen-hagen-Trafalgar-and the memorable signal to the fleet, "Figland expects every man to do his duty. -The circular portions of the pedestal are aculptured with a dance of Tritons and dolphins, oaken bands, prows of ships, shells of the nautilus, and with the palm.-This design might be executed lor 27,000\%.

Design No. 89, Frederick Clamdius J. Parkinoom-A triumphal archway 100 feet square, encloning a circular temple formed of 12 Corinthian columns supporting a richly panelled dome; under the centre of which is placed the statue of Nelson, with various emblematical figures.
The height of the building to be 70 feet. The length of each front including the steps and landings, 140 feet.

The cost of the building would be 18,3004 . The statue and emblematical figures would not exceed the amount of 8,0001 .

Demons Nos. 90 and 91, Richard Keloey,-Agreeing with Mr. Nixou that, if a column be deemed an inappropriate memorial of Nelson, there is bat one other kind of monument which, under the circumstances of the proposed site and the mones to be expended upon it, can well be considered applicable to the purpose; the artint has, in both his sculptural designs, made the statue the most conspicuous feature. In one composition it has been hia ohject to plece before ponterity all the distinguishing charactaristics of the man and the hero; and to render it fitted to illustrate the poet's idee, "This story shall the good man teach his son."

It is proposed that each face of the basis shall significantly teach one great lesson. In this clevation, his mercy is chiedy shewn. The inscribed quotations of his own words, "May humanity, after victory, be the predominant characteristic of the British fleet," and "'The moment an enemy submits, from that moment I become his protector,' breathe that angelic feeling. The sculptured group of a beautiful female pleading for a fallen warrior reiterates the charge: and it is impressel more deeply by the baseo-relievo of the wounded Nelson rushing froma bed of anguish to save his drowning enemies.

On the remaining sides it is proposed, in like manner, to depict his courage, his perseverance, and his integrity.
In the other lesign, the proportions of the masonry are altered, and the groups at the foot of the centre block are intendel to point out the immediate results of his exerions; as, the protection of the East and West Indies, the saving of Fig! pt and the Turkish empire, the general assistance of Europe, the dissolution of the Northern Confederacy, the exaluation of the British empire, and the humiliation of our enemies.
The bassi-relievi in this front include the incidents of his death, his funeral, and the general regret; which is also further shown by the mourning figures in the centre.

The drawing of Pompey's pillar is merely intended to thow the effect of placing the statue of Neison on the summit. The substructare is also altered, and the revolutionary dragon writhing under its deadly wounds is intended to point out the attainment of the great object of his life.

In the three sculptural designs, the statue being considered as distinctly the chief feature, all else, however colossal it may be in itself, is kept sub. orlinate and unobunuive. It is anticipated that, from a distant point of view, the mere mass of each would be perfectly expresive of that strength and simplicity of claracter which marked the man; that, on a nearer approach, the groups and statues would detach themselves and attract attention; and that, upon closer inspection of bassi-relievi, composed in the quiet but expressive style of Grecian art, the interest woukl be fully kept up, and all the beautiful lessons of his life form a pictorial history, at once adapted to impress the uneducatel and to gratify the most refincd. The artists who submit them keg very respectfully in remark, that they are only sent in as sketches; they feel them to be capable of many and great improvements, and regret that time has not admitted of more than oue being modelled; but shoukf the leading jdea of the composition point out either of them as adajted for the monument in memorial of Nelson, it would give them the greatest pleasure so to improve it, as to be creditable to themselves and to their coun-try.-With respect to the scale upon which they should be erectel, that must much depend upon the money which will be really applicable to the [urpose, but they conceive that the statues should be about 3 feet in height.

Samuel Nixon proposes that as to his design the statue of Nelson should be in bronze, the masonry in granite, and the accessory sculpture in the best of our native stone.

Richard Kelecy proposes that no portion of his deagns ahould be in bronze, bat that the finest grained granite should be used in all the colostal work and the reliefs, lut thinks it may be necessary to adopt other material for the main groups of statues.

Richand Kelsey would wish the model of Pompey's pillar to be ten feet in diameter, and has no doubt of being able to give the shaft the appearance of being hewn out of one stone, and thus to obtain all that imposing effect which appertains to monolithal monumente.

Dasion No. 97, James Henry Nixom-This design is a monument of colosial dimensions calculated for duration, in which the form is simple, the material imperishable. The statue of Nelson in a calm and dignified aititude, is intended to be 30 feet in height ; and being placed on an elevated pedestal and besement, would prove a commanding object from Parlianuent-street, shewing the figure distinct from the surrounding buildings ; and not so high, but from it colosal size, the features would be plainly distinguishable when viewed from below: the total height of the monument to the top of the figere, would be 90 feet. On the basement in intended to be sculptured in bespelief, a representation of the mont remarkable actions; showing the

The templo is divided by ornamental phlasters foto four compariments : the one towards the south being left open, affords an ample view of the statue, which is placed on a pedestal in the midule of the builithng, and receives a direct light from the centre of the dome-for this purpose covered with stont glass; the other three compartments are closed up with bas-reliefs of his principal victories.-A faithful resemblance of the herote victor would thus be handed down unmpaired to posterity, enshrined withia those glorious achievements, whicf shed lustre on the annals of our country, and inmortalize his name.

The height of the monument is 80 feet, that of the statue 15 feet
The entire work can be executed in the most perfect and elaborate manner for the aum pecified, in the follosing materials.- the bose of grey granite, the temple of Anglesea marble, the statue and bas-reliefo of statuary marble, the lions of red granite, and the trophues of bronse.

Design No. 134, Thomas H. Lewis,-The desiga consista of an enriched octangular obelink 150 feet high, mumounted by a \&gure of Britannia, and having a statue of Nelson 12 feat high, on a pedestal about 30 feet from the ground. Bas-reliefs of his victoriea adorn the facea of the obelak, which rises from a double platform occupying the centre of the given epece,

Deseren No. 144, J. Taytor, fan.-A triumphal piller 172 feet high, murmounted with a statue of Nelson, 18 feet high, ascended by a spiral staircase inside, having a gellory on the top sunk out of the capital of the column, and s short ratling almost imperceptible.

On the front of the pedestal the hero is represented as falling, while deferding Britain, who is eeated on the column above; victory descends and sustains him in death, while he graspa to the last moment the standarl of h s country. A British vesmel is seen in the back-ground, aurl on that side the column a weeping willow is introcluced, referring to the universal feeling which deplored the loss of this grestest of all naval commanders.

The figures in the fore-ground are entire, the back-ground in bodd relief.
On the other three nides of the pedestal may be represented the three principal naval actions in which he was engaged.
N. B. It is submitted, that a sculptural group, commemorating Nelson, should represent his dying moments, as he explred in action, tad in the midat of the greatest of all his victorious naval engagements.

With a Wollington, and other heroes who have survived the conficta in which they were engaged, an animated statue alone is appropriate; not equally so with those who fell in action, which event it is considered should stand recorded as well as their bravery and prowess.

Drbign No. 148, G. B. Moore.-In denigning the memorial, ettention ought to be directed to the period at which it is proposed to erect it. In the excitement of victory, trophies are allowable; but after twenty-four years of peace, to revive the exultation of tritumh, would be unworthy the generonity of a great civilized Chrintian nation. The ancients never restored their trbphies, when destroyed by time or accident, oonimidering that old onmities ought not to be perpetuated. The present memorial shonld be rather a testimonial of gratitude, to one who died to obtain an honourable petce, that a record of national glory; and all allusions to victories should be introduced a illustrations of the actions of the hero, and not as triumphamt emblemm. Under this train of feeling, this design has been composed.

The subjects of the bassi relievi have been selected to illustrate the various virtues of Nelson.-No. 1, Duty : Nelson proceeding to his vessel during a sturm near the Gooduin Sands-2, Intrepidity: Cape St. Vincent : Nelson boarling the San Joseph,-3, Mercy : the Nife: Nelson saving the enemy from drowning-4, Plety: the Nile : Nelson and his saitors returning thanks to the Deity after the battle.-5, Justice : Nelson in the Senate claiming attention to the services of his compatriots.-6, Magaanimity : Copenhagen : Nelson rentlering justlce to the brave defence of the Danes.-7, Solicitude : Nelsor, on his arrival in England, visiting his wounded seamen.-8, Heroism : Trafalgar: the death of Nelson.

Above the hassi relicvi are medallions of George MI, George IV., and William IV., the sovereigns he was thonoured lyy; and Victoria 1., marking the reign in which the memorial is erected. At the angles are hions nad boys denoting courage comblned with gentleness. The statue of Nelson is in front of a pillar, supporting the heraldic banners of England, Scotland, Ireland, and Wales ; and terminated by an angel bearing the olive-branch of peace, emblematical of the end for which he struggled and fell; for if any men eould say with truth he fought for peace,-it was Nelson.

Desion No. 150, Thowar Mouk.-This design, presenting a union of architecture and scalpture, aufficiently announces its destination by its leading forme. The statue of Lord Nelson in ropresented on an enriehed pedestal; which, with the basement and its graduated foundstion, makes the total height of the monmment 65 feet. It greatest diameter is 140 feet.

Nelson, the principal object, is tntended to be ropresented at the momont of perceiving a decided advantage obtsined over the enemy. The sdmiral to attended by a captain, and near him is a bostowain, ready to communicate orders. Without diminishing the importance of the principal figure, this group would show the different grades of the navy, and form s just tribute to their succesuful co-operation.

The figure of Lord Nelson, 15 feet in height, might easily be discerned from the extremities of the large equare in which the manument in required to form the centre object. To place a lofty column in mach a situation is objectionable in point of taste, as its height would overpower the facade of tha building erceted as a National Gallery, in front of which the monument of Nelson $1 s$ intended to be placed. That building presenting a lengthened ele-

The pedestal bears, on ftes principal front, a bas-relief of King George III. receiving the Admiral as Viscount Nelson- Atie granted to the brive meaman, in 1801, for his wervices in the Batic; togethor whth the opproprate motto-" Palnam gui mervill ferat." On the reverse of the pedurtal is intended a bas-relief representation of the pablic funeral deereed to tioneon; the car bearing his body, epproaching 8t. Pand's ; and with the favaripaion of his last words-" England expects every man to do his duty."

Between these bes-reliefi, on one wide, 务 intendod to be pinoed the aran of Netson of Burnhamthorp, whth the crest of his femily; on the other side, the heraldie sugmentations, as Lond Viscount Neison, K.B., Drake of Bronte in Sicily, Knight of Saint Perdinand, \&c. \&c. \&c., badges of militery Howorr.

The basement of the pedestal is square, having npon its engles manise nival trophies of victory over the French, the Datch, the Speniards, and the Danes. To give breadth and quantity to the deaign, correspondent with the very targe spece for which the monument is required, the bumemeat it extended on its western and castern sides by an architectural clevation, turminated by rostral columms, each of which is aurmornted by a cinatical Asure of victory, making a height of 45 feet : the lower gart of the ahnth of those columns is environed by boarding-pikes used in the nivys The whole busement, divided into three compartments, is enriched with scelpture in bes-reHef, representing the consequences of the battles of the Nile, Copentiagen, and Trafalgar : dismantled ships of war, pilzen from the enemy, are shown on their way to British ports.

The moxtument is intended to be piaced within an enriched enclomure, elliptical on its ground pien, and 140 foet in length, rising to the beight of sbout θ seet. A part onily of this incloanes is shown in the architectaral ale. vation, an ft wis deemed nectesery to exhibit the greduated and broed foundtion of the basement, which coald not setually be seen th general view. The pedestals on the enclosure are surmounted by female figures, bearing alternately palm branches, naval crowns, laural wreaths, and the fanercal torth. The fronts of the pedestals to le charged with enblems of the sea, and the trophie between them to record separately the successive victories in which the gallant Nelson was engaged.

Inciading the ornamental decoration, the author of this design feels comFinced thet, under carreful management, the whole may be carried into execution (m Portland stone) with the means proposed, vie. $30,000 \mathrm{~L}$

Design No. 160, Thomas Bellatmy.-It is proposed by this destra to form 4 semi-ctrcular platform in the centre of Trafigar-square, elevated one step hbove the paring of the road next the Kational Gallery, and continued of the same level to the line of paving connecting the Btrand with Cockspur-street, along which line it acquires a height which is acended to by steps. This platform is enclosed by a metal railing, except at the steps and oppoite the National Gallery, which are reserved as approaches to the plations and monument.

The base of the monument is circulor, tio feet in diameter, having sis radial blocks sustaining colossal couchant and dormant lions, significant of the result to which the achievements of Nelson mainly contributed. The pedeatal which rises from this base is also eirculer, haviag three radjal mames eustaintng cotosest meated figures, personificutions of the Nide, Ceprathapen. and Trafalgar, his three great victories, wer whith are charweteristic trophies in bronze. The three interriexliate faces of the pedestal are ewch charged with an alto-relievo illustration of some striking incident in each of the said battles. The three minor perlestals bearing sea-horses sute chatged with the names of the most importent of Nelam's lesser victories. The cohnanar portion of the pedeatal is 12 feet in Giameter, and has a wide gallery sapporial by cortals decorated with Tritons, underneath which in relief is the fotio, "Palmam qui meruit ferat." The terminating portion of the pedectal is encircled by an arrangement of tridonis and festoons of linurel, and has a palmated capping. A naval crown reccives the statue of the hero 16 feet high. The whole lieight of the structure from the paving to the top of the etatur is 153 feet. The material of the sabmiructure is proposed to be of granite ; that of the superstructure free-stone, well selected as to durability and colour. The parts yroposed to be of bronze are distingulshed by its colour.

REPORT ON GTEAM VESSEL AOCDENTX.

Tus report is one of the mont laborious compilations which has yet been submitted to the public, and its authors have exhibited great research in the extent and objects of their inquiries. Government commisaions have frequently been complaised of as uncalled-for jobs: but the parties to this present affair seem to have exerted themselves to show, that theire was not a subject writh which you might go from Dan to Beersheba and find all barren. It appears to be a kind of encyclopedia, pointing out not only what ought to be done, but abo what ought not to be done, what has not been done, tud whit never will be done. We had thought, in fact, amd axprewsed ourselven to that effect at page 91 of our present volume, that this very ingutry whs totally uricalled for, and aithongh we have read this marrellows report with great attention, we cannot but remain of the same opinion still. In the absence of statistical data, wo might have oxpressed ourselves with some difidence, but with the doctments now before us We feel perfectly assured of the justice of the opinions we them entersthined
gallant conduct which ever marked the daring career of the illustrious hero. On the four projecting blocks of the hasement are represented emblenatical fgures of those virtaes which Nelson ia acknowledged to have possessed in ta friment Hegree,-Courdge and Mercy, Portitude and Justice. The whole of this deagn, carofolly executed in red and whit gramite, can be crocted for the sum proposed by the hdnourable committee.

Gesign No. 110, R. \&. Garey:-A partially enctosed colnmh, surmounted hy a statue, with a mausoleum interior; altogether forming s sculptural architective motumehtal plle, commemoratite of the hero. Height 170 feet.

Bencath the azure vault of natupe's vast architrative dome of collossean form, (visible to myrids of lesser breathing mortals, scattered around oer bilf and dale,) stanis the sculptured represchtative to unbom ates nf the person,-the most giotiots of the greatest mantime nation's naval hemes, Felson. The statue. with naval trophies, surmoumts a columt, arouad thich tifirl antagonist dolphins, emblematic of sea war.

Beneath a gallery are embowied a series of four allegoric bas-relievoes, hypothetical of the hero's attributes, enterpise, valour, tictory, and m mgrtality.

Finterprise, a youth of fery mien, with heart brooten with enthosiasm, mer-canopied ty the perik of stomy danger; he secs, thruagh the vista of breating thunder-clouds, marry gays encireling the hero's wreath of laurell'd glory; emulations incentive: with enger haste to win the prize he throws of The habiliments of inglorious inactivity, and, with heroism srmed, tashes to the immortal goal, in vain dithbeld dy the syrens, Luxury, Efteminacy, and Fear.

Falonr, inith destructive weapon, rathes to thie pinnacle of danger's roek. fohowed by his brave compeara with vidtory's pennon straming : there, with rateng herois, they engage with invasion's monster and its asurping legion, - Virattering sith destrucuun the foc to oblivious death and darkness.

Virtory.- The congucring victor, lion-skin halilimented sits on the throne of conquest, crowned with lacted by raliant glory and the sire renorn, in of hose historic tome the hero's actievement stands recorded : amid capturel pirges, that lay scattered at the bero's feet, the captive leaders of the foc topon bended knee, deliver to the conqueror their inglorious arms; whilst, with soaring ftight aloft, on wings of suiftness, Fame with trumpet blast to the world the victor's triumph proclaims.

Immurtality. - The hero's bist, \}aurel wreatled, rests on fame's pedestal in glory's althr, crishinned; lighted by the censor light of imperishable immortality ; thus, through the darkness of obwcarity, and through aH thene, his resplendeat fame is rendered manifest to man, woman, and infancy; who Naproach the attar with their cbuicest gifts as offerings, dedicative to the hero's memory; the man with implements laborial; the woman with sweet fruits; and infancy with lovely fowers and gentle innocence; whilst. witl united voice, Europe, Asia, Xfrica and America, acknowledge the hero's grealness.

Descending from the allegorically ldeal to the typically Yeal, is presented - second series of bas-relievocs, illuatrative of the memorable events that accurred daring the hero's victoriuus achievements; the battles of St. Vinceot, the Nile, Cupenhagen, anil Trafalyar.

Between the lower bas-relievors are placed persotiffections of Genlus, Pame, Victory, nd the Sea.
The structure at various parts is'grueed with nowal trophies and emblemstic devieds of the sea and war.
fuom four double flights of steps a circular collonade ís approached, in which are arches; thus, lurough their gates is viewed the interior, ia mausoleum.

Beneth fame"s mondmentry phe, as by a natlon's joint weciaim eniahrined, no perlestal the sculptured sea herolies in sefpulchrsl rest: though mantled in death's pall, he is wreathed with fame's murel gloty; laved in slie gorgebus golden rays of day's effulgent orb, or bathed in Lhe silvery gleam of the genthe, calm, sepulctural beams of the silent yueen of night.
Over the front arch is jiaced the Nelson heraldic arms.
Surnountiog perlestals (at the shumit of four semi-fights of steps) are piaced seulptural groutps of anal eharacters, engaged in the wariout occapations on board a British ship of war ; thus, atearing the abip, takiog the obrecratuon, weighing the anchor, and firing the gun.
Aromd the structure are phaced 8 Bnitsh lions on pedesfals.-The object of the erection of the gallertes is to alforl a near inspection of the sculptures. -The entrance to the galleries staircase is lyy a door in the side of one of the arcliways. -The monument to be encircled by an ornamental stone promenade : and the whole enclosed with an iron paissade and gas lampo of a naral dengr.

Design No. 117, James Thrupp.-Britannia's great naral hero, and the tpholder of her martime supremacy, reoeiving from his oorntry the laurel crown, and from the nations, whose fleets were snbidued by his genims had daring, tokens of their submission, is the ide intended to be expressed in this deaga.

A few words in explanation, and more particularly of the emblematical representations of Franca, Spain and Denmark, may not perhaps be deemed irmelevart.

The sulject seems to require that they should be represented as warriors. The act of lowering their banners has been chosen, as being the actual mode of expressing aumission adopted in naval warfare; and also because it neither inuplies arroganec on the one part, nor abjectness on tlie other; for it might be that of the brarest warrior when nuable longer to cointend against His roc.

Thic eaghe Fitinet has long itppropitited to herself as an exiblem, is may be teet on the monumental records of her own victorfea. Ancient woins have been file authority for that indieative of Spain ; band to Denmark has been

under a more youthall form than the others. The medallions of the respective reigning sovereigns on the shields mark the ert.
In pourtraying the hero it has been the aim to avoid any expression of ostentation ; for Nelson's illustrious deeds were ever accompanicel by a simple dignity of character. The principal hasso rclievo tells his fate: the colours of the hostile frets are struck-the hour-glash is broken-Nelson has fallerand the flag of his country enshrouds htm. The rays of a setting sun betoken that le termingted his career in glory. The other laasi rebevi ape to represent some of the noble irats of the hero's character ; such, for example, as that which he exhibited when wounded at the battle of the Nile.

While desirous to retain the propertions and the gencral Peatures of those examples in art in t have becn sanctioned by aces, the architect thas at-
tempted to engraft upon them the characteristics of a tinmphal pillar. The shaft is enrichod with laurel leaves, asd the names of the prineiped battles; and the captal is formed of fouz figures of victoriss, bearing wreatles entwined With Nelson's beraldic notto:-Palmam-Qui-Meruit-Jerat:-words which setm alike appropriate to the act of Britamma ard to the hero himself.
The letters it is proposed to cut through the stone:-thus formed, they will not readily be obliterated, nor affect the outline of the shaft, whilst they wtll gerve to light the staircase within.
The ibner side of the ebacus may be aunk suffiently tow to render a gal-lery-railing unnecessary as a protection.

Felson's last inimortal signal encircles the pedestal.
The whole height of the design, with the crowning figure, is 168 fect: and its cost, provided the figures of Nelson and Britannia onty are executed in bronse, will not exceed 30,0001 the present inequality of arface in the inteoded site it is proposed to adter by lowering the upper portios.

Design No. 128, An Arckitect of Midalesex.-A montiment to the bonorix of the greatest hero that ever adorned the annals of a maratime nation, wortiry of the genitas, Falour, and ambltion of him coantry, in inn todertaking very ditmedit to effect successfully. Nevertheless the mutbor fiatters himsolif that he has solved this important probiem in a fitting, clear, and distinct manner.

The author's frot point is to represent the history of the haro in a langtange at once teolmical, expressiva, and comprehensive, to all chasees of the nation. - Ilis second point is, to expreas this technical language in a clear and elegant style, anited to bistorical truth.-Ilis third point (which, until now, has been neglected by every one, is to build the monument to harmonize with the buildings which surround it, especially St. Martin's Chureh, and the National Gallery.-The author has endeavoured to effoct this object as completely as possible, and thinks the monument, when finished, will give the National Gallery a nuote clegart, imposing, and materially improved appeartance, as a public edifice.-This epico-technico poem is to te thus realized:
"After the victory of Trafalgar, sanctified by the hero's own blood, the spoils and troplies are broughtit on the Almiral's ship to the capital of the British empire, to be exposed to the admiration of the nation."
Trafalgar-square having been selected for such an exhibition, will be made to mpresent a port at the entrance of a canal in the retropolij, This part is protected by four moles. The two moles towards the south will be aurmountel! by two rostral towers, on which are represented the capture of the enemy's vessels : the other two moles towards the north, will be surmounted by trophics gained in his various battles.
The four princtpal victories of the hero, viz. St. Vincent, the Nfle, Copenhagen, and Traflagar, will be represented by four yreat bea-reliefs placed round the moles, and explained by inscription in hosaic asphatie on the pavement. Above the towers and trophies are placed four great globes, indicating the tropical parts of the world over which Fngland reigns, viz. Asia, Africa, America, and Australia; and over each globe is set the British crown. In the midst of the port is seen the ship Viotory, that has browght home the apoils and trophies gained by Nelson. In the centre of the deck, on a pedestal raiped upon a large die, is iplaced a coloeal atatue of Nolbon, in the dress of an Admiral, leaning on lis sword. On the four sides of the clie are placed an inscription and 3 bas-reliefs, via., topards the south, or grand entrance, is Inscribed a summary of the history of the hero, with the dedication. On the east side is a bas-relief descriptive of his nativity. On the north, his inauguration; and on the west, his apotheosis. Two lateral basins supply the port with water, The port is surrounded by a balusiade, and the four moles by a railing. The die is protected by four large, and aight small bar stonks, with chains hung in festoous. At each entrance are two pillars, on which are placed two lions. The pravement and deck will be inlaid with inseriptions and ornaments of Mosaic asphalte. In the interior of the ship are apariments for one or two portors, who will have the care of the keys of the towers, and whose duty fill bo to keep the monument perfectly clean, and ikewise to preserve it from wanton injury.

It is almost impossible to give an exact estimate of the expenses of a monument which may be constructed so d Herently with regard to the artists, and materials employed, and of which the cost of the statue and bas-reliefs may differso coniderably. Nevertheless, the author believes that it would wot exceed the sum of 30,0000 . The expense would be easily diminished by buidiiug the two towers lower and without rost, rendering the muth moles similar to the north, viz. surmounted by tropties only, and sacrificing the two lateral basins.
The suthor hopes that the committee will condescend to observe that his plan can tudergo sueh modifcations as they may deem ft, under any cireumstances. If the oriximal idoa is preserved, the author does not doubt but that it minit be made the most claseical and imortant monument of the age, and worlly of the national honour.
Dssion Ne. 182, Raphael Drandon.-I I have aidopted the form of a circaiar temple to comineworate the deeds of the illuatrions hero, is it at once offers a complete 'protection for'his mative, however bemutitily amecuted, and foren

In some of the printshop windows is to be found a very important engraving of the philosopher endeavouring to find out the wind in the kitchen bellows, an example from which Her Majesty's government appear to have derived a lesson on this occasion. Having been foiled in a previous attempt in 1831, they rediscovered, mirabile dictu, that accidents really did occur to steam vessels, when it struck their enlightened minds that a commission must be the very machine to find out the causes of the said phenomena, and accordingly appointed Captain Pringle, of the Royal Engineers, and Mr. Josiah Parkes, Civil Engineer, as fit and proper persons to conduct this momentous inquiry. The instructions to these gentlemen were to find out, 1st. the number and nature of the accidents which have happened in steamvessels within the last ten years, as far as they can be ascertained, and 2ndly, the practical means of preventing the recurrence of such accidents. They accordingly sent round a circular, calculated to enlist the prejudices of particular parties, and entrap them to commit themselves and neighbours. Of some they asked, "What accidents have occurred in boilers not of your construction?" of those who might think steam-vessel proprietors too chary in repairs, they inquired, "Are the engines and boilers of steamers in your opinion overhauled and repaired as frequently as is requisite to maintain them in a safe working state, both as regards the boilers and effective working powers of the engines? Not contented with this, they raked up all the old newspapers and penny-a-line paragraphs they could find, and applied to the Thames waterman for the favour of their sentiments on the subject.

The result of all this labour is a large blue book, which is printed at the public expense, and prefaced with a letter from the commissioners, stating what they had and had not done, and also the important fucts that "they had received, in answer to their queries, much information from gentlemen residing at places which their time did not admit of their visiting, and that they had also inspected vessels building, and machinery in progress of construction;" and this is but a sample of the miserable twaddle which was the natural result of such a preposterous job. The deaths of pigs, boats' oars being cut in two pieces, and similar valuable matter, are in fact the staple of the report. The commissioners, naturally feeling diffident of the possibility of manufacturing a report with such materials, extended, in their public zeal, the sphere of their labours, and not only reported accidents which occarred above twenty years ago, but in every part of the world, and of all classes and descriptions. We are unwilling to attribute motives further than the natural anxiety to earn a guinea, or it would certainly have appeared to us that this looks something like a crusade for the purpose of amoying an important interest, and concocting a government job. Their zeal, however, has overstepped their discretion, and they have themselves furnished the materials for refuting their own absurdities. Having with great labour mustered up 92 accidents, they thus classify them; wrecks 40, explosions 23 , fires from other causes 17, and collisions 12; and then proceed to dilate upon the several subdivisions of these various classes. The enumeration of the several causes of accidents establishes, indeed, nearly a separate cause for each individual accident.

The schedule of accidents in the Black Book, on which the superstructure of jobbery is to rest, has not been analysed by the commissioners, so that we must ourselves save them the trouble. This list begins in 1817, twelve years before the period defined for the inquiry, and extends down to the period of going to press, enumeriting more than one case of the same vessel, including all the varieties of accidents to which vessels of all kinds are exposed, and having about as much to do with the specific object of inquiry as the commissioners had to be employed at all. It includes cases in North America, the Mediterranean, Portugad, Germany, France, and Heaven knows where, and displays an extent and variety of research not equalled since Dr. Johnson's Essay on Broomsticks. The sources of information, of which even the commissioners themselves do not attempt to uphold the credit, are country papers, penny-a-liners, hearsay reports, anonymous accusations (p. 2) imaginary suggestions, and no testimony at all; (case of the Frolic, p. 4,) and would form but poor evidence in a court either of law or of conscience, the sole object being to make out as glaring and flagrant a case of mismanagement against the steam-boat interest, as the ingenuity of the operators could suggest. Where the horror could be touched up in the Greenacre murder style it has been attempted, and even animals pressed into the service to supply the deficiency. Of the 92 cases and no-cases detailed, above sixty are not even attempted to be attributed to machinery, and the whole amount attributable to sach causes, including flues getting heated, explooions without injury, \&c. only amounts to 26 , of which above one-third occurred before the period assigned for the commencement of the commissioners' labours, and making, in twenty-two jeary an average of little more thas one per ammu. With 800
vessels annually employed, the number of special accidents was seventeen in ten years, or about one-fifth per cent. per anmum. Of these cases only 15 were fatal to human life, or not one per cent. per ammm. The number of lives lost attributed to defective machinery amourts to 78 !1! or about 3.6 per year, which, reckoning only two millions of persons carried in a year, makes a loss of life of $1-655$ th, or $\mathbf{0 0 0 1 7 7}$ per cent, or not one in half a million. The number of pigs we leare to the commissioners to calculate. The causes of the parious accidents detailed, it is impossible for us to enumerate, but it is quite sufficient for us to say that most of them have nothing at all to do with the construction or economy of a steam-vessel; they include causes no longer in existence, (case of the Norwieh, p. 9,) fires from soldiers smoking on deck and inflaming straw, sailors getting drunk, carrying too heary a deck load of $\mathrm{pig}_{\mathrm{g}}, \mathrm{\& c}$. \&cc. Reference of the cases to their correct causes it is unnecessary to say is not afforded by the commissioners, although we might naturally have expected it, as most of them have nothing to do with steam at all. We find that above one-third of them occurred in the Irish sea, and a great many on the east coast of England, and they are more rationally to be attributed to the want of harbours of refuge upon those notoriously dangerons coasts. We certainly find, as the commissioners acknowledge, that more accidents occur with the Scotch and northern steamers, than with any others; but we do not see why, on that account, the whole empire is to be subjected to the stringent rule of empirical inspectors.

Schedule B is a list of accidents furnished by the Watermen's Company, and is so ridiculous as to cease to be mischievous. Of the thousands of craft navigating the Thames, they are only able to manufacture 59 accidents in three years and a half, or seventeen a year. These, as far as they can be understood from the nonsensical statements, appear not to arise from the steamers, but from the parties themselves, drunken watermen, Trinity Mews sailors, amateors and tailors' apprentices, and vessels unwieldy and overloaded. In ordes to show the injury to the watermen's craft, every species of vessel is crammed into the service, from steamers and colliers down to fishing smacks and ship's boats; cases are related as having occurred in the docks, and embellishments of every kind are introduced: " one of the boat's oars was cut in two pieces;" "a young man (the son of the owner of the smack, who is a widow), was drowned;" a long story about a Mr. Joseph Crannis, of Union Street, Southwark, and his wife Mary Anne, how they went to see his brother off to Hall; "the passengers were dreadfully alarmed;" "a seaman who had just arrived from the West Indies was drowned." The number of lives said to be lost from these causes is 43, or 12 per annum ; but in order that an idea may be formed of the means used by the commissioners to mamfacture accidents, we will just take the account of 1838. 24 accidents are put down, 8 of which are barges swamped, some with 84 toms of coals on board, several are by steamers working against the tide or in the ice, one is a case of a steam-vensel from Houl to London, about a passenger named Stamford going into the engive-room, getting entangled in the machinery, and being crushed to atoms; his remains were put into a small box and landed at the Custom House Wharf!!! The whole number of boats lost in that year was 8 , the number of people upset 19, and lives lost, 8.

As to the animus which influences the report, it might appear onnecessary still further to allude to it, but we cannot refrain from calling attention to the manner in which slanders are cast upon the gentiemen interested in promoting steam navigation

Mr. Gibson says, "The steam-packet owner looks only to the aphendone of the saloon and the velocity of the vessel; it is upon these alone that he depends for success, the safety of the passengers is aitogether lont sight of; to ensure speed, the fabric of the restel is made as light and fimsy as posable to hold together."

This needs no comment, and we abandon it to the indiguation of our readers.

That the commissioners have failed in making out a case, themselves and their employers seem to be tolerably persuaded, and were it not for the pertinacity with which this rotten plank has been clmeng to, we should have left it to its courted oblivion. We camot. how. ever, forget that this is not the first attempt of the kind, and that it is not likely to be the last, nor that, by pretending to strike at a singte interest, can they blind us to the fact, that they are attaching the whole industrial interests of the empire. That the measures recommended are as mischievous as the evidence on which they are attempted to be based is fallacious, is a natural result of the emplayment of persons who have proved themselves morally incompetent That the system is vexatious and inquisitorial it needs no argumeat to prove, and that it must be injurious and inefficient is equally certain What men can be found so little attached to their own ideas or so umprejudiced against thoee of others, as to be safely intrusted with the confrol of the enterprise and ganius of the palion f We bave ant
found it in the highest ranks, and shall we seek it in mediocrity? Stean pavigation itself slumbered for a century, the screw principle bas lingered until the present day, and both the motive power, and the means by which it is conveyed, are evidently in their infancy. Watt was prejudiced against high pressure, the Rev. Dionysius Lardser, L. . D_{\sim}, proved to the sages at the Bristol association that Atlantic stram navigation was impossible, iron steam-vessels have been considered incapable of being guided by the compass, and dangerous as electrical conductors, and in fine no improvement has been proposed which has not in all ranks met many opposers and few friends. By the report of accidents a conclusion might be drawn that cylindrical boilers are safer than rectangular, and open at once a cause of litigation with some of the first men in the engineering profession What, indeed, will Messrs. Maudslay \& Field sy to this dictum of these persons? In one part of England water corrodes the tops of the boilers, in others it destroys the bottoms, and in many places local circumstances must influence the form and material of construction. The commissioners, however, overleap all obetacles, strong in their own ignorance, they offer themselves as Coryphei to all the inventors of the nation, and call upon manufacturers to submit themselves to their Procrustean bed. What will a survey do once in six months? will it ensure a due supply of water, or make engineers more attentive? Why, to be effectual, the excisemen must visit before every voyage, and maintain a surveillance as constant as that of a custom-house officer. To collect facts which are not wanted, and to find none which support their own measures, seem to be the distinguishing characteristics of these commissioners, and we need not be astonighed that, without a single case of accident adduced, they should at once propose to arrogate to themseives the power of limiting the number of deck passengers to be conveyed, and exercising a still further interference with the commerce of the empire.
To bolster up their plans they refer to foreiga countries, and on the presumption that the ignorance of the public is as great as their own, they presume to rely upon such authorities for support. The case of the United States has about as much relation to the state of affairs in Engtand, as the number of assassinations in Lisbon or Rome have to do with the laws of crime here. Each country having about 800 vessels, the number of accidents in America have been about 230 in the space that 92 have occurred here, or $2 \$$ to 1 , and what basis of comparison that affords for the support of stringent measures, we think that our readers will best determine. Of the way in which the jobbers of different nations bolster up each other's views, there is not perhaps a stronger instance than in the report made to Congress, in which the example of Engliah interference is referred to as atrongly as the American anthority is relied upon here. Baron Dupin and other French statista will be able to aford the worthy commisaioners sufficient evidence as to the working of the French steam code. This has been in operation many years, und the result, according to the Baron is, that France is most miserably behind this country in the extent of its mercautile steam marine, notwithstanding the protecting E.Eis of safety valve laws, and regulations which even the English operators think annecessary. Holland stands in precisely the same position, and as to the King of Belgium with his one or two steamers, his antiquated code is about of as much authority as those of the two kings of Brentford.

It appears, from the statements of the commissioners, that the mercantile steam marine of England is about 800 in number, and it forms, we should think, an interest which, instead of being selected for annoyance, merits some support. It is pretty clear that there are few branches of trade, manufactures, or mines, which are less destructive whuman life, and we cannot therefore see the grounds for the selection of this. If any measure be adopted, let the whole shipping of the empire be subjected to it, and not one particular portion be singled out. The Admiralty courts arc full of the cases of collisions of other vesacis, the insufficiency of crews and stores is notorious, und the inutility of goverment inqpection is flagrant ; not a month passes without complainte againat the emigrant ships, and as to the conviot ships, their deplorable equipment is rendered a bye-word throughout Europe. Sailors get druak elsewhere as well as on board steamers, and other defects are quite as crying as anything that the commissioners can asert against the persons comected with steam-boats. If, indeed, this ridiculous farce be kept up, it will be followed, we suppose, by legislative measures, and we shall see" An Act for preventing Accidents to Pigs and Steam-vessels, for creating a Jobation, instituting Branch Ebenezers, and making Drwiken Skippers walk the Plank!"
With all their puffing of particular inventions, giving descriptions of this and copperplates of that, and with the enrolment of all the amateur gabbleng the commissioners are lamentably unsupported by parlies interested. Of the hundreds engaged in the proprietorship of steam-venster they cap only mustar the muppart of five onners and
every thing else is on the same lamentable scale of desertion. The ministers seem to be heartily ashamed of the whole affair, and have intimated their disinclination to do anything with it this session, and if those mainly interested do their duty, we have no doabt will be obliged to abandon the job. Another affair of this kind, the Irish railway abomination, we have had some hand in suppressing, and we call upon our readers to co-operate with us in dealing a death-blow against one equally pemicious.

For the benefit of our readers, we give a copious abstract of the report, in order that all who may be interested shall be prepared to defend themselves, in case there should be an attempt to smuggle a bill into the House of Commons at the commencement of next session.
The report first details the manner the commissioners proceeded to obey the instructions of Govemment for obtaining the necessary information to form their report; it then gives particular instances of accidents arising from wrecks, founderings, explosions, fires, and defective boilers, from which we select the following extracts :-
Explanions.-We find, on analysing the explosions contained in the list, that by far the greatest number have taken place in steamers belonging to ports, where the practice of engine-makers is to apply exposed and accestible valves. Explowions have been most namerous in the Clyde, or in Scotch built vessels, both river and sea-going. The "Corasir," "F Fngal," and "Antelope," are of the latter class ; the "Earl Grey," "Jamen Ewing," "James Gallocher," "Hercules," and "Dumbarton Cartle," of the former.
The next greatest number have occurred in the Humber and Tyne steamers, where the safety-valves are similarly constucted; being five instances in river-steamers, and the "Victoria's," a sea-going vessel, on two occasions; at Liverpool, two, among the river-steamers, which had exposed valves. We did not hear of, or discorer any Liverpool built and engineered mean-going vessel having exposed or accessible valves; nor does it appear that any accident of an explosive nature has happened to them; and we have not to record a single case of explosion of any Thames-built boiler, in passengerveasels of any kind, nor in any other, excepting in a small experimental one, mentioned by Messrs. J. Seaward \& Co. This freedom from explocion in the Thames is attributed by Mesars. Maudslay \& Field principally, to the practice of using inaccessible and supfleienthy large axfety-valves.

Safety-valves are often tampered with, and weighted by the working engineers, much beyond the premure originally assigned by the makera of the engines, in order to gain power and speed. Proof of this is given in the instance of the "James Gallocher;" and Mr. Yawcett, the eminent Engineer of Liverpool, states that "he has known valves-originally loaded at four pounds per mquarc inch-to have been afterwards altered by some blackomith, so 'as to give the eagine-man power to loed them an he pleased; and he believes them to have done so even to 20 pounds to the inch. The safety-valvee of the "Duke of Bridgwater" - Liverpool river-bout-were originally made inacceusible; they were altered so at to be fatcened down, like the "Earl Grey's," at the pleasure of the engine-man, and the boiler consequently exploded, killing two peroons, and seriounly injuring many more.
Water and Steam Gauget.-There is a very general deficiency both in river and sea-going steamern-particularly in North Britain-of glam watarguages, and steam-pressure gruges; instruments absolutely emential to the safety of boilers, and used in all well-appointed vemela. Captain Hain ob. serves that "the boilers of many vessels are without these simple instruments, and the engineers sund firemen, when doubtful of the accuracy of the cocks, try to ancertain the hoight of the water, by hitling the boiler with 3 stick or a hammer, \&c."
Effects of Erplasions.-Cylindric Boilers.-The boiler of the "Norwich" (cast-iron) wan broken into niany fragments by the explotion, and the veasel deatroyed; the end was blown out of the "Preedom's," and the reasel sunk; those of the "Vivid" and "Morning Star" burat inwards on the under part of the fire-tube, where both were worn very thin. The "Herald'n" opened on the top, also corroded very thin. The "Victoris's" twice ruptured inwards, on the under part of the fire-tube ; the iron apparently good, but the cylinder too large for the atrength of material and preanure upon it.

Effects of Erplasiom. - Reetangular Boilers.-Of these, the outer shells of the "Graham," "Earl Grey," "Union," and "Duke of Bridgwater," were more or leas ruptured, and projected forcing up the deeks, sce. The vessels were much shattered in several of the other exploasoan, which occasioned finsures in the boilers, aither above or below the water-leve; the greater number, so far an accartained, ocourring below the weter-level; in wome cases opening the olell, and bursting into the cabina; in othern, rapturing the flues, and doing miechief chiefly amongat the encine-mea and aremen, according to the respective atrength of the shelle of the boilare and fiven.
The "Earl Grey's" boiler had no stayt ; the "Union's," "Graham'n," "Magdalene's" and others, had stags, but deither their aumber nor arrangement can now be ascertained.

Safety Valves.-In two instences-the "Jamea Gallocher" and "Morning Star"-it is proved, that the stean was blowing off through the seretyralves at the time of the explosion, showing the valves to have had an insurficient area. In the cases of the "Graham," "Earl Grey," and othern, it is proved that the valves were either fastenell down, or too heavily loaded to rise at the pressure which burnt the loilers.

The dentructive effiots of an explosion ofter render it imponible to de-
termine, with waticiont tecuravy, eithet the area of the safety-valves, compared with the powar of the boller, or the presure at which the explosion took place. In the event of a coroner's inquest, these important facts are rarely inquibed into; it is no one's business to ascertain thoin; jurors understand nothing about the matter, and are mystified by contradictory stitements. In several of the cited cases, the spindlea of the valves had been bent, or otherwise set fast $;$ in that of the "Morning Star," though the valve rose, and allowed some of the steam to escape, we are informed by Mr. Greener, who examined the boiler minutely, and gave evidence on the inquest, "that it icas so rusted, if appeared not lo have acted for years." lts area was also very inadequate, having only about one square inch of aperture to four-horse power; the engineers of the Thames steamers usually give an area to tbeir safety-valves of one square inch for each horse power-a safe and excellent practice; but we found the dimensions of safety-valves $\mathbf{s o}$ restricted in the vessels of some ports, that only one-fifth of a square inch was allowed to each horse power, an area so insumicient, that though the valves might be well made, and act freely, the prossure of steam would continue to increase when the engine stopped, and attain an elasticity exceeding the resiatance of the boiler, though steam were continuglly escaping. An explosion is the necessary consequence.

Height of Water in the Boilers.-It is also difficult to obtain, after these accidents, credible information as to the aufficiency of water in the boilers, at the moment of explosion. It is probable-from the general absence of glass water-gauges, in the class of ateamers whose boilers have chiefly explodedthat testimony on this point is not to be relied upon. The "Union's" is a clear case of deticiency of water, combined with overheated tues, and an oscillatory movement of the vessel. A simple contrivance to assist in ascertainiug the true level of the water in a boiler, is described by Mr. Golightly.

Quality of the Metal of Boilers.-Some very intelligent remarks will be found in Mr. Greencr's replies to our queries, on the important subject of the quality of iron used for boilers; asubject which is far from occupjing the attention it merits either by boiler-makers, engineera, or steam-vcssel owners. A piece of the "Morning Star's" boiler, in our possession, taken from the ruptured part, shows it to have been corroded to two-tentles of an inch in thickness, its original strength having been half an inch, and the iron very bad. The fire-tube ruptured at a pressure of about 231bs. per square inch; its form was elliptic, threa feet, by two feet ix inches; the external shall, cylindric, 6 feet diameter.
Ftres,-The charring of timbers the wake, or proximity, of the boilers 4 is alluded to by the shipsuilders, and many other cortespondents, as a frequent cause of fire and miary to the vessel.

We here beg to draw particular attention to the excellent arrangements and practice adopted by the City of Dutbin Bteam Packet Company of Llverpool, and in well-appointed vessels of other companien, to obviate the evils arising from these fertile sources of danger to the vemel, and of expense to the owners. We refer to their use of iron beams and deck plates over the boilers, and abont the funnel; of the complete separation of thie boileis from each other, and from the sides of the ship; of llning the ship's sides with lead, covered again with inon, in the proximity of the boilers ; of protecting the boilers from spray, rain, and the contact of coals, by a shell of iron; and the practice of sweepling down all the remaining coat into the bunkers, or iron coal-boxem, on the terminetion of each voyage.
The suggentions also of Messrs. Mandsley and Field, and others, that pipes from the looilers ohould be so arranged as to convey steam into the coal receptacles, and other parts of the vessels, in the eveitt of fire, would give great additional security.

Colliciont--Collisions hetween steam-veasils, and between them and other craft, oceur so frequently in crowded waters, they are often so fatal to life, and to generally attended with litigation; and expense in repairing damage, that the want of a law to diminish the ovl, in the oubject of complaint ly nearly all orr correapondents. Collisions oveur both by dey and by night, at saa as well as in fivers: They commoniy arise from the absence of an univeral underetanding as to the " mule of the road" to be observed by veasela, in meating and pansing each other, and from the absence of an universal syatem of might-lighto or siguals،

The practice is at present regulated only by custom, or by the bye-laws af different perte, which custom, being various, Is productive of serious eollitions even on the high seas.

The gante cautea which produced the first cotlision remain still in full activity, and it is featful to contemplate the loss of muman life which the aboenoe of a law on these subjects may produce at any momeht.

There is yet anothet importent peint to be considered, at bearing on the means of proventing collivions.

A diftinguiflimy soumal should be provided on board ateam-vetsels, an an alarm, to notify their proximity to other veatels at night; on occasion, hut moro particularly dering fogs or thick weather, when lights can only bo seen on a very near approach. The want of nach regalation is alloded to by several of our correspondents, and a means is also suggested for accomplishing the ead. Sailing-reball wre generally provided with some intrument for mektas anose, to which resort is had when circurnotances require it ; vir. bells, horms, gonge, Ac. A stem-vessel carries with it an agent more power. ful than any of these contrivances, and one which could not fail in rotifying its approach, divtinctively from every class of vessel, and from a meeh greater distance than bells, \&c. ; a circumstance of no sllght consequence, when the

ust, atteched to lobomothe enginee, if applied to the botitr of a stemin-rtand, would completely fulfl the deafred end. All that is required ta anall pipe opening into the stemsohest, and brought ap on deat, with the whiste on the top of it, in a convenient position to be ued wher the commader ant orier it. By aimply turaing the handle of a cack, a prolonged yound is prodaced, or a succesgion of sounds, on opening and shutting the cost at abor intervals. The sound from the whistle of a locongative eagine has frequenth been heard more than two miles. We have made particular inquiries on to the degree of sound producible with low-pressture, compared with high-pres. sure steam, and learn that this whistle may be constructed so as to be egally as effective with the one as with the other.

boILyes AND ENGINES.

Boilers.-That boilers are very frequently continued in usa till they berame dangeroubly thin, and that they are frequently deficiant in safety mppuratos, is a fact not only avidenced by the Tabla of Explosions, and inatanee gives, but atteated by a large majority of out correspondents. We were ihom several in the yards of angina and boiler-makers, whieh (to use their out expreasion) " might be Fralked through;" indeed, the hand might be pabhed through some boilen which we examined, but recently taken out of stowsboats. Mr. Shaw states that "the boilers of the 'Pingal,' in 1835 , were so Feak that they had to be shored between the deck apd the tops of them, which expanded and contracted like a pair of bellows." Captain Bain writs that "hẹ has frequenṭly had occasion-sonuetimes under very trying circum. stances-to stop rents in boilers by temporary expedients; that he ha ith nessed it in other vessels, and has seen boilers worked till they were s thin as paper, \&c." Bome boilers, in actual use, are only kept tight by the deposit of mud, concretions of salt and send; \&o. between the floer; these obstructions to the plesige of heat are not rembved, as the metal of de bollers would give wiy, and they must then necessarily indergo repari, whet is dalayed till they will no lenger hold together, or till raptures occm, ud have produced mischief. The Appendis contaips, in the replies to ont su query, abundeat teatimany to negligence, and ill-judged ccompay of this nature.

The explosion of deteriorated boilers, is not the greateat dimater to be dreaded from steamers so ill provided; under tbe head of Wracks and Pounderings, the calamitous consequences of boilezs falling at meg,are. mill mon fearfully exemplified.

Nearly the whole of the passenger, and no inconsiderable portion of the merchandize, coasting traffic of the British lsles, is perried on by steam-resch the rapidly increasing number of which wifl presently be shown. It is impossible to determine, in the absence of official record, whether the sumber of accidents has increased in a greater ratio than that of the steamen; tht our schedule exhibits an annual increase of disasters, and showi that neat! the half of thein has oceutred within the last three years ; and that from the beginning of 1838 to the present timesia period of 18 months onty-no fewer than 88 sccidente hive mappened. They, comalet ef-.

In addition to the monnt of hutman life secrificed, 688 memels wit thrown overboard, or sealdel to deatl.

Seven of the ressela prere totaliy last, four of Fhich ant teteed to here had defective boilers, or engines; and others had to undergo cosdy repaish.

It rewulta from the opipions expressed by the engincering class of our norrespondenta, that great additional safety is obtained by emploriag meen boilers, distinct from each other, rather than one only, or two boilen ennected together; many dangers are adoided by this method. Independently of the ohyious sccurity arising from the means, this afforded, of shitting of a disabled boiler, and even of tepairing lt, whilst the motibn of the caghide is continued by the others, this arrangement possesses many othet adrantriga, and cannot be too strotigly recommented for general adoption. Mr. Shist gives a forcible illustration of the value of distinct boilgts, tin bir meeount of the salvation of the "Thames," after het perilous collition whith the "Sumo non."

Enginet.-The machitery by which a stam-raced it propelial appuph notwithotanding ite comparative complexity, to bo mairtioned, gmathith, in better condition than the boilers. The foundering of the "Yoan" is ifs is so insteace of a dimatter ptcasioned by tha breaking of the consectiaf mod: the mare common derangements art fractures of croseshendy beame, crath crank-ping, \&c, of which we both eaw and heard many examplay, bef the practice of using a pair of engines, pyrticularly in ren-going suaters, is : great guarantee against shipwreck, as, in the cvent of one cnrine baing dir abled, the other can saffily work the vessel. Duplicaten of the parta mad liable to fracture, should dways be found amongst the stores of a stianim.
Several wrecks heve been referred to by our correipondents whith mist have been avcrted, had the paddle-wheels been furnished with aisengaing apparatus, which th effecter too slowlt, and efumbity, Ify remotiog the loulsan operation; also, diffethlt of eceomplistrment in termpiltainit weidber. 月r.

The report gives amma particulars reganding the number of steamvenel employed in the mercantile ateam marine of the United Kingdurn $;$ in obtnining this iuformation, the commisioness stute that thay had coasiderable difficulty in obtaining the precise number, as the law does sot oblige those steamers to be pagistefed whioh phy ondy within the limits of a port:-

AYOUMT OF THE MERCANTILE STEAY-MARUNE.

Before preseating, in a substantive sluape, all the provisions we have to recommend for the protection of the pablic againat the evils which arise from
defapts shown to have existed, and to be still exinting, a reapecta the condition and mangement of numerous steam-veasela, it is axpedient to state the amount and importance of the actual mercaptile steam-marine of the British Empire. These data we shall procegd to dotermine as accurately as our means permit.
The following Table given, approximataly, the mumerical tonnage and powar of stem-vessels aflost: it will materially annist in forming a correct opinion of the deficiencies of the present, and of the great importance of an improved system qf registration and regulations.
 United Kinadom and its Deprendencies.

Zad of Yoar 1838.

	Number of Vessels per Customhouse Return. 1838.	Size of Vessels per Custom-house Return.	Registered Tonnage.	Tonnage of EngineRoom, \&c., not registered at the Customhouse.	Total computed 'Tomage.	Computed Amount of Horsepower.	Computed Power per Vessel.	Total computed Tonnage per Vessel.
	$\begin{array}{r} \text { No. } \\ 256 \\ 145 \\ 84 \\ 63 \\ 76 \\ 41 \\ 10 \\ 1 \\ 1 \end{array}$	Tons. below 50 50 to 100 100 to 150 150 to 200 200 to 300 300 to 400 400 to 600 679 1,053	Tons. 6,106 10,267 10,034 10,982 16,654 14,247 4,488 679 1,053	Tbns. 10,816 7,458 7,761 7,147 10,839 7,580 3,506 661 810	Tons. 16,922 17,725 17,795 18,129 27,493 21,827 7,994 1,340 1,855	$\begin{array}{r} \text { Horse- } \\ \text { power. } \\ 6,400 \\ 6,866 \\ 7,483 \\ 7,560 \\ 11,188 \\ 10,914 \\ 3,000 \\ 450 \\ 500 \end{array}$	Horsepower. $\begin{array}{r} 25 \\ 47 \\ 90 \\ 120 \\ 147 \\ 266 \\ 300 \\ 450 \\ 500 \end{array}$	Tons. $\begin{array}{r} 66 \\ 122 \\ 211 \\ 287 \\ 361 \\ 532 \\ 769 \\ 1,340 \\ 1,855 \end{array}$
No, of Vessels registered in 1838 - . - - - - Not registered	$* 677$ 83 \%	-	74,510 4,154	56,578 5,484	131,080 9,638	54,361 2,129	50	116
Total number in Great Britain and Ireland, 1838	760	\cdots	78,664	62,062	140,718	56,490	-	-
Isles of Guernsey, Jersey and Man, 1837 - British Plantations, 1837	+6 +44	1	$\begin{array}{r} 832 \\ 8,411 \end{array}$	$\begin{array}{r} 618 \\ 7,253 \end{array}$	1,450 15,664	$\begin{array}{r} 600 \\ 6,160 \end{array}$	100 140	$\begin{aligned} & 241 \\ & 356 \end{aligned}$
Grand Total - . . . -	810	-	87,907	69,933	157,840	63,250	\square	15

* The Custqm-house Return eaumerates 678 steam-vessels; but the tonnage of one-burnt-is omitted.

The total number of British and Frish steam-vensels, Inctuding those regivLered in Guernsey, Jersey, and Man, amounts to 766; of these 484 may be considered at iter steamers, and small coasters; and 282 as large coasters, and sea-going ships.
The licreaie th 1837 over 1856, was 78 ; and that of 1838 over 1887, 59 registered vessels.
The report given several extracts from the opinions of correapon: deote roore fully detailed in the appendix:-
Prom manuficturers of engines and boilers, civil enginecris and others versed in these nubjects, we have received uumerous communications, to some of which refetence has already been made in our review of rarions accidents. It is diflicult to classify the opinions of these gentlemen. One of two only of them thiuk that any aystem of inspection would be intolerable, or practically unelase ; wame meribe all accidents ta the shear cerelessuess of thane in eharge, and detail special instances; most cofer ta the wapt of frequepaj in the rthpxirs of boilers, and to the danger resulting from owuers or agents working ihem too long; nearly an testify to the frequent incapacity of eugine-men, and aovetal to the necesstty of examining them as to their knowledge and moonl condact, and allowing them to act only under license; some suggeot that it would be aufficient, or of advantage, to employ a competent pereoil to inveedigute the danses of an sceident after it has oceurred. The subject, in a whale, is olaborately and adentifleally treated by several of this chass of correapondenta, particularly by Memars. Mandolay and Meld, N. Harvey, J. O. Enys, 8. 8. Ruseell, J. Otdhifra, E. Gilbert, John Seawerd and Co. and others. Theoe commaniontiona will be perused with intereat, emanatiag as they do from a body of prectical men engaged in the adpancoment of engineering zelemee, a large propartion of whom suggest the employment of surveyors both of ball aind machinery, as Hkely to obviate or diminish the occarrence of cecldenta Memars. Mardslay and Field conclude their observations as follown :-
" As occopional imppection, condneted by authorimed prid well-quaitifed persesm, on Uberal privelpies, so as not to be linquisitorial, or impede improvementr woald have the efrete if keeping top the attention of compeniea and owners, as well as of engipeers, to the comideration of idety in the oosi-
structing, maniging, and working of steamers ; a subject which, from want of consideration, ignormee, or caphdity, is often overlooked or disregarded.

Many deviderata to perfeet the equipment and aalling quallies of steamers are pointed out by these gentlemen, partictilarly a convenient and mpid means of disengaging the paddle-wheels from the engines, which, when permanently sttached to them, offer so great an obstruction to the progress of a ship, as to render saila comparatively useless. It has been ascertained that when paddle-wheels are đisengaged, utcamers under sail have been able to cope in speed, and in facility of manceuveting, with other ships.
The importance of fitting the condenser with a pipe to draw water from the bilge, in the erent of a ierious leakage, or shippitg a sea, \&c., is strongly advised, as a powerful means of preventing a common cause of wreck and foundering. Engines require greater supply of water to condense the steam at each stroke, than could be removed by all the puape which it is convenient to attach to them; the condenser, therefore, is the most rapid evacuator of water, in case of need. This simple apprratus is now flxed in the best engineered ateamers, and cannot be too strongly recommended as au appliance to all.

Hearier and more effictent ground tacking, a lectier equipment of sails, a larger number and better quality o thoats (particularly of life-boats, life-preserving apparatus, signal mockets, \&e.) are alluded to by these and many other correspondents as desirable in steathers. An ingenions plan for the stowage of boats forming the cover of padille-boxes has lately been invented by Captain George Smfth, R. N., with the riew of enabling a vessel to carry a larger number of boats without inconvenience.
The necessity of a complete and universally oleyed corle of night-signals ${ }^{4}$ and of one fixed "role of the rond," forms also a special sulject of their temarks.

Our faquiries have comituced us that great pahlic adrantage would result from the doption of a system of reginfry, periolical survey, and licenve of steam-vessels. A national registration wothld be the statistical record of an details of construction both of hull amd machinery; the sulsequent and periodical surveys would ascertain the actual condHion of every vessel at stated perioda ; and access to these documents would furnish accurate knowledge, of

the Government have occarion to hire or to purchase ateam-vessels for naval, military or other purposes, these records would enable their officers to melect vessels, whose strength, efficiency, capacity, power, \&c., would be known ; together with all the minor, yet important details necessary to determine the fitness of a vessel for any special service. These records, and their accessibility would atimulate the owners of steam-veasels to construct, and fasten them on the most approved models; to supply them with the beat machinery ; and to maintain them in the most efficient stete of repair and sea-worthiness.
That the science on which Navigation by Steam depends for its economy, safety, its present success, and future alvancement, would be promoted by these measures, cannot, we think, admit of a doubt. Pcrsons commercially interested in this branch of our national power and prosperity, whether ships builders, engineers, owners or commanders, ardently desire and seek for results, and correct information, which at present are procured with difficulty, or are still oftener, unattainable. When it is considered that a large and increasing capital is expended on the hull, machinery and equipments of a single ocean-going, or large coasting steam-ship (a transatlantic steamer, costing above $50,000 l$.) ; that every deviation from already adopted dimensions, proportions of parts and power, or methods of constructing the hull and machinery, is an experiment in which not only mercantile success, but the security of life and property to a vast amount are involved, we think the value of a national, and accessible record of facts, cannot be too highly appreciated.

The importance of keeping a steam-log, on bound ocean-going stexm-shipe eapecially, is alluded to by several of our nautical, and other correapondenth, who also euggest that the contemplated Registration aystean shonid inclade : recond of such loga.

We have rescon to believe that the deporit of these useful documenta world not be objected to by steam-ship companies ; the log of the "Great Weaters" has been printed, and the owners of the "Liverpool" have adopted the ame excellent means of registering all engineering facts and occurrences during the transatlantic voyages of that vessel.

The following Table has been supplied by Mr. Shaw, with additiona by Messrs. Curling and Young, and Mesmr. Maudslay and Field, and we believe it to be nearly correct. It contains some of the dimensions of the hall and machinery of the five largest steam-ships yet huilt or building, which principally influence their steaming and other requisite qualitica. With an exact knowledge of these dimensions, and power, combined with a knowledge of the effect produced, which the logs would supply, the ship-builder and engineer would proceed on surer data; and proprietora could count, with greater certainty, on a new vessel answering its intended porpose. To the degree in which all these parties have been occationally disappointed ia their expectations, and how costly have been the alterations randered necessary by mistakes, every large steam-vessel company could bear ample testimony.

The practicability of executing two of the three principal measures recommended, viz. registration, and periodical surveys, is proved on a large scale by similar operations, conducted under the direction of the Committee of Lluyd's Register of British and Foreign Shipping.

The effects of the system pursued by this eminent establishment, on the security to property and life, on board sailing-vessels, have been highly ad. vantageous to mercantile interests, and to the safety of ships. It appears, however, that as regards steam-vessels, the praiseworthy efforts of the committee are powerless and inoperative. It is stated by various correspondents, ship-builders, steam-vessel owners, and also by the intelligent surveyors of Lloyd's, that the mass of the proprietary of steamery do not register tbeir vessels; or, do so, chiefly with the view of advertising a new vessel in the widely circulating volume annually published by that body. It appears, also, that of the steamers registered, many discontinue those periodical surveyi required by the rules of the socicty, as necessary to determine their character in the list. That such is the fact, is shown by the fcircular issued to owners of steam-vessels by the committee, dated 6th December, 1838, and by the blanks in the surveys of steam-vessels registered in Lloyd's books, a list of which is communicated by Charlen Graham, Req., Secretary. The numerous derangements to which stemm-vessels are liable are, clearly, far beyond the reach of a commercial body, unasiated with the authority of the law, and not possessing that mechanical knowledge, which can alone enable it to decide on the merits of a mechanical question submitted to them. Self-interean demands of the owner of sailing-vesscla that he should register in Lloyd's booke, and conform to their rules. The same principle actuates the steam-vessel owner to register a new vessel, but when that vessel is no longer worthy of a character, and when the owner knows he can no logger obtein a good reputation for his vessel at Lloyd's, he discontinues his surveys; which is precisely the time when a compulsory surrey is required for the safety of the public.

Human life cannot be secared by under-writers, and passengers form the principal source of revenue to steam-vessel owncrs--to the greater proportion, the only source. Lloyd's Register holds out no inducement to this class to adopt its regulations; it appeara, aleo, that on steam-vessel cargoes, in general, there is no difficulty in effecting insurance at lower raten than by sailingFencels ; and the large steam-veasel companien are very commonly their own
under-writert, insuring only the value of the vesual, and, mometimen, that of the engines.

A trustworthy survey, and report on the state of the boilers, and machinery of steam-vestels, upon which so important an act as the granting a certificate, affirming them to be "in good order, and afe working condition," should be made,-not by the makers of the engines, or by fellow engineers, or by perties who have repaired, or who may be called upon to repair them,-but by competent persons independent of all interest in their construction, and of all connection with steam-vessel owners. Nor do rival engigeers like to sarvey, and report upon each other's work. Obwervations on this subject, and much to the point, will be found in various letters in the Appendix, partienlerty by Mr. Williams, Mr. North; and full information on the system of Lloydis Registry, as regards steam-vessels, will be found in Mr. Graham's commanicer tions.

The report concludes by giving an outline of Proposed Leginlative Regulatione, which we give in full:-
outling of proposed lzgiblative pegulationg.
Having thus noticed those hends of the subject which appeared to requirt particular consideration, we now proceed to aubmit the outline of haineative regulations, which we recommend for adoption.

1. That a Board be appointed, in connection with and mader the pracidabs of the board of trade, whose business it shall be to register, and efanity all vessels navigated by ateam, built, or building; the register to record deanied specifcations of hull, and machinery-periodical surveys to be mede upoa them-and particulars of all disasters and accidente, which happen to, ar may be occasioned by steam-veasela.

That the Board be authorized to appoint local or dintrict surveyors, so inspect and report upon the condition of steamers ; that, on emeh report beiay satiafactory, the Board shall grant licenses to the owners of stean-vewals to ply; that, if unsatisfactory, they shall withhold such license, os fur as relase to the conveyance of pastengers. Penalty for plying withoat lincense.

That the Board be empowered to investigate, personally, or otherwios of nature and causea of accidente ; to examine witnemea on oath; and cull fer the production of papers.

That the Boarl be required to make an anumal report to Parliament of its proceedings ; of the state and progress of the mercantile stcam marine ; and of the disasters which may have been sustained.

That the records be public, on the payment of a reasonable fee.
That the Board be empowered to frame and issue general instructions for the guidance of the local or district surveyors; also to publish an abstract of the law and regulationa, with authority to require such abstract to he phaced in a conspicuous part of the vessel; under penalties ou neglect.
2. That the surveyors of lull and machinery be paid for their surveys by the owners of the vessels, according to a fixed scale, as is the practice for Lloyd's Register; that they shall forward their reports to the Board, which, in the exent of the owner or owners objecting to the repairs required, in order to entitle the vessel to a passenger license, shall (if the objection regard the hull) alll in one or two of the principal ship-builders of the port or distriet, unconnected with the work of such repairs, to survey the vessel, in conjunction with the official surveyor, and report specially thercon.

Should the decision of the Board be objected to, on the report of the surveyor (if the objection regard the machinery), it shall call in the aid of one or more engineers to survey and report in conjunction with such official surveyor.

Special surveys to be paid for by the bwner or owners of the vessel, according to a fixed scale.

The first survey of the hnll of a new vessel, to be made during its constraction; and a specification of it transmitted to the Board, as is now done by the surveyors of Lloyd's to the committee.

A survey of the hull to be made during each of the first two years, and a survey every six months subsequently. All steamers to be docked, beached, or laid on the gridiron (as circumstances permit, and surveyed, after sustaiuing an injury by taking the ground, or otherwise, under penalty.

The first survey of the boilers, engines, and machinery to be made whilst they are being fixod in the vessel, and the requisite details of them to be reported to the Board.

Boilers, engines, and machinery to be survcyed every six months after the first year; and all serious accidents to be reported.

The surveyors to report on the fitness of a vessel, whether as a sea-going, or river-steamer.
3. License to express whether it be granted for cargo only; for towingvessels; for the conveyance of passengers; or for these purposes combined; also, whether the vessel be intended to ply as a river, or sea-going steamer.

License to ply with passengers to be granted, or withheld, as aforesaid; a duplicate of which, or certificate to the same effect, signed by the Board, to be exhibited in the cabin or other conspicuous part of the vessel. All public actvertisements of steamers to state whether licensed to carry passengers or not.

An annual charge for each license to be made on all stearn-vessels, varying according to a scale of size and capacity; such clarge to be iu no casc less then 16 ., nor exceeding $5 l$.
4. That the surveyor shall ascertain that the safety-valves be sufficient to pan all the ateam which the boilers can generate in their ordinary state of work, at the pressure determined by the weight on the valves; the maximum of which pressure shall be fixed by the maker of the engines, or boilers, and the valves be loaded nccordingly.
5. That, after an assigned period, no pasenger license be granted to any veased having safety-valves whose spindles or levers are exposed on deck, or capable of being loaded externally, unless satiafactorily protected. Penalty on engineers, misters, or others, for loading valves beyond the weight ascertained by the surveyor, and regulated as above.
6. That, in all new nteamers; and, after an assigned period, in all steamers, mow acat, glas water-gages, and mercurial pressure-gauges shall be required to be fitted to the boilers, to entitle the vessels to a license to ply with pasengeth.

No perfect mechanical subutitute can be found for care, in the management of the steam-engine at ses, or on land; nor do we think that the use of the fusible disca enforced by the French lavs, would be productive of additional security; nor, indeed, that any complexity of apparatus, attached to boilers, would contribute to the attainment of that object.

Apparatus, however, for indicating the level of water, and pressure of steam in boflers, is emential to their affe and economical management, and is of far greater import to the boilers of merine, than of land engines; aocidents to the former, or failure in their supply of steam, being attended with peculiar dangers and disasters at sea, from which land boilers are exempt. Yet, it is a fact, accomated for, perhapa, by the circumatance of steam-vessels being owned and managed, generally, by persons unacquainted with the nature of the steam-engine, that these simple instruments are much more rarely to be conand atteched to marine, than to land boilers, which latter are usually under the direction of parties of mechanical education or knowledge.
7. That, in the event of the surveyor having information that any boiler be deteriorsted in strength, or unsafe at its working pressure, in the interval of his periodical surveys, he shall be empowered by the Board, on his representation, to examine it; and in the event of the boiler proving faulty, the Board shall suspeud the passenger license, until satisfied of the safety of such boiler.
8. That no stem-vessel be permitted to ply which is not furnished with a brinnacle and compasa, in good order.
9. That, after an asaigned period, no sea-going ateam-vessel, which carries conls on the topa, or about the sides of the boilers, shall be entitled to a pas-
senger license; miless the boilers be protected by a shell of metal, or other sufficient security.
10. All river steamers to carry one effective boat-coasting and channel stcamers two, or three boats, accordiug to their size-and ocean steam-ships, four boats-as a minimum.

The surveyors to ascertain that these boats be kept in serviceable condition, and ready for use on emergency.
11. All stcamers to be prorided with sufficient hoses to convey water to any part of the vessel, with a scrviceable outfit of water-buckets; and a moveable fire-engine to be carricd in all coasting, channel and ocean-going steamers.

The proposed system of registration should include a classification of stcamers; and as the character, to which each vessel would be entitled in its class, would depend on its general state of efficiency, we are disposed to think that many other important requisites for attaining the utmost practicable degree of security, would gradually be adopted by owners without compulsion; such as water-tight bulkheads in new vessels; powerful extinguishing pumps, worked by the engines; connection of the condensers with the bilge-water; disengaging apparatus for the paddle-wheels; heavier and more effective ground-tackling, \&c. The publication of accidents, and of their causes, would also warn steam-vessel owners, commanders, and engineers, and iustruct them how to guard against disasters.

In framing these recommendations, our object has been to suggest practical menns for further securing puhlic safety, without inflicting vexatious rules on steam-vessel owners; we believe that their adoption would tend materially to promote, and, in no respect, to cripple the progress of Navigation by Stcam. We are conflrmed in these views by finding them so much in accordance with the majority of opinions expressed in the Appendix, and they correspond with sevcral of the regulations enacted by foreign states. They are, however, much less atringent in their nature than those proposed by many of our correspondents; and we consider them much less onerous, and more suitable to the peculiar character of the British steam-marine, than the laws of other countries. An abstract of these laws is annexed, and the whole are given in the Appendix.

There is one sdditional measure strongly advocated, but we feel great doubts of its practicability $;$ viz. that of compelling the engineers employed on board stean-vessels to undergo preparatory examination, and to find surety for their good behaviour. There is no existing Board at the different ports competent to determine the fitness of this class of men for their occupations; and we think it would be difficult for any local surveyor to decide on individual qualifications. Important as we think it is to raise the grade of engine-men-who have, in fact, in their hands, the lives of all on board, -we are of opinion their means of doing injury to life or property would be so much abridged by the foregoing regulations, that it would suffice to impose a penalty upon them, for any wilful abandonment of duty, gross negligence, or drunkenness.

We, also, feel considerable hesitation in offering any suggestions as to limiting the number of passengers in stearn-vessels, a measure which lias been strongly urged upon our attention. Cabin passengers take care of themselves, and will not go on bourd, unless there be adequate accommodation; not so, however, deck passengers ; from the increased number of whom alone, danger is to be apprehended.

Legislation, with respect to the number of passengers, must have reference to the tonnage, either by builder's measurement, or by register; but the stability of the vessel in carrying a load of passengers on deck, or in carrying a due proportion of sails, is materially affected by the weight and condition of the cargo under leck. Our difficulty on this subject is, therefore, innch increased by the circumstance that a vessel carrying cargo, under deck, is, for that very reason, better qualified to take a deck-load of passengers with safcty, than vessels, although exclusively appropriated to passengers; in consequence of the greater stability which vessels acquire, in a sea-way, by reason of the weight of cargo carried below.
That the obligation to carry some powerful ateam-whistlc, bell, or gong, be part of the proposed law, as regards stcam-vessels; also that their rate through the water be defined, during fog, and thick weather, in crowded waters, whether plying by day or night.

THOMAS TREDGOLD.

To architects, engineers, and persons concerned in any department of building, the name of Tredgold must not only be familiar, but likewise respected and valued; and it is presumed not less so by many individuals in the higher walks of life. To all such it must be a matter of painful interest to be inforned, that the family of such a highly-gifted man and martyr to science, consisting of an aged mother, two daughters in extremely delicate health, and a son of about thirteen years of age, are in very dependent circumstances. His friends have long cherished the hope that before this time-for it is now ten years since his death-otheir situation might have attracted the favourable notice of government; but as this has not been the case, Mr. Habershon, one of his early friends and his biographer, with John Donkin. Esy, his joint executar, have commenced a subscription in furtherance of this laudable object.

RALPH REDIVIVUS.

No. XVII.

OUR HOUSE IN LINCOLN'S INN FIELDS.
According to an article in the "Conversations Lexicon der Gegenwart," which professes to afford some information as to the present state of architecture in England, "Sir John Sorme's buildings generally disphy superior taste, but are not always well-disposed in plan"! So far from which being the case, the very reverse to it is the truth, for while his plans were generally excellent, and displayed considerable invention, the taste manifested in his designs was apt to be very unequal, seldom good throughout, and occasionally most barogue, mean withal, and unmeaning. This front of his own, or we may now call it, of Our Own huuse in Lincoln's Inn Fields, although not his very worst production, is oue which none will envy him the reputation of, siace it manifests far more of whimsicality than of originality. Even supposing for a moment that nothing can be alleged against the taste shown in any of the separate parts, it is decidedly faulty and defective as a whole, not because it is in a style perfectly sui generis, but because it is a crude jumble, anounting to no style at all. The house itself, which shows itself plainly enough, is one thing, while the fanciful addition or excrescence by which it has been attempted to dinguise it, though only partially, is something altogether different. The former is as plain and homely as either of the houses adjoining it; what has heen struck up against it is, on the contrary, not only exceedingly fantastic, but not a little mean-looking into the bargain; which meanness of claracter, it should be observed, is altogether different from humeliness, it being neither inore nor less than that which almost invariably attends paltry pretension and trumpery affectation.
Besides being remarkably poor and insipid in itself, this odd appendinge to the front of the house is decidedly contrary to all just architectural principle, inasmuch as though really of stooe, it has the opprarance of being constricted merely of boards, the thicknoss of the stone-work being only a few inches, a species of delusion as disagreeable in itself, as it is at variance with that usually practised; for if nost of our buildings are, according to some very veracious critics, mere "lath and plaster," they have, at all events, the merit of looking substantial, whereas in this case stone has been emploged to form a flimsy-looking fabric, whose front is scarcely thicker than a wall of stont planks, which appearance is in some ilegree increased rather than diminished, by the archiss of what was otiginally an open virandi, having been filled in with windows, since this adscititious structure has been thereby rendered the external front of the house, and the window sashes hardly recede at all within its surface. The upper story of it, on the other haml, which remains as before, looks as it :llways did, like a child's fabric of cards-thin slabs of stone set np on edge, but how beld together it is impossible to gress. That there is any want of real security or sufficient solidity is not to be supposed, but there most certainly is a great want of the expression of the latter, if not altogether of the former; at the same time that there is nothing whatever of that lightness and slenderness combined with delicate richness, which produce such a clarm in some styles of architecturefor instinnee, in many Gothic and Oriental examples, where tenuity in parts of the construction is made to conduce to beauty and to ornament. Here the architecture professes to the eye to aim at the usual character of solidity, there being no indication of a different principle having been adopted and suitably carried out. The unfortunate consequence is, that this capricious essay is not at all satisfactory according to ang one principal of art.

Another very fatal oversight appears to have been committell, which is, that the elevation appears to have been considered morely with respect to its appearance upon paper, detached from everything else, without the s?ightest attention to the actual situation, for owing to its being rendered very conspicuous by being made to project beyond the line of the other houses, this building looks little better than a narrow upright slip, and far more insignificant than it would do if it did not ilrust itself more forward than its neighbours. Unless it conld have been made to coslure examiuation better, it would have been more prudent not to allow it to court observation after the mamer it does. Since it lias bren enclosed by the apertures being glazed, this viramala, if so it may be called, gives the whole honse the appearance of projecting very uwkwardly beyond any of the othrrs, for the effect produced by it is altogether different from that atteming any similar advancing part of a larger architectural mass.

No donbt as far as the house itself is concemed, this anomalous excrescence in front of it is considernbly in its favour, innsmuch as it gires not only greater extent, but variety and novelty of character to the rooms which are enlarged by the space thus added to thom. Bnt then it is no more than reasonable to expect that this should be accomplished with greater attention to extemal appearance, so as rather
to enhance it , than detruct at all from it. It is comparatively easy to obtain either internal convenience or extermal beauty separately; the problem is to combine them in such manner that what contributes to the one shall also contribute to the other, and by way of referring to a somewhat analogous instance, though only a single one, it will be suff. cient to mention the Bay and Oriel in Gothic architecture, as beautiful and characteristic features externally as they are within.

Had it been the production of a mere botcher and brungler, such a front as this in Lincoln's Inn Fields would have excited no pastionier surprise, whatever other mental emotion it might have occaeicosed Very different, however, loes the case become when we conadre that it was designed by the late Professor of Architecture, who, wher deservedly or not, has been complimented almost unsparingly for his ability and talents. Nor can it be alleged as a mitigating excone for his deplorable failure in this instance, that he was at all thwarted or checked in his ideas, and obliged to comply with the preposterous whins of a stupid, obstinate employer, quite contrary to his own better judgment and taste. Here he was under no control, but was at liberty to ubandon himself freely to the imspiration of his own poetical fancy, and to realise one of those visions of architectural grace and beauty by which he was wont to imagine himelf to he visited. Wha has been the result ? Nothing better than a poor fimay meagre boxlooking erection, very little, if at all suparior in its puay tanta, to many of our London gin palaces. How far Sir John was satisfed with it himself, I camot undertake to say, bat if he was satisfied with it at all, he mast have been satisfied very easity indeed.

Notwithstunding that he was checked by no accuples as to 1 movating very freely, Soane after all accomplished nothing approncting to a style, or even laying the foundations of one. He acquired a manner of his own, and nothing more. Instead of gradually adrancing in the path he ventured into, he seems to have quite bewildered htmself, to have kept groping about and fumbling at novelty, withour being able to seize hold of originatity. What his principles were, his architectural principles I mean, it is inaposible to decide. In fact, be seems to lave had no positive ones, but to have shifted and reered about just according to the whim of the moment.

With respect to taste, the whole of his own house convicts him of having been exceedingly unequal, and addicted to the trivial and the trifing. There are many exceeding clever and pleasing ideas throwa out in many parts of the interior, but hardly any ope of them has beea properly worked up. There are many ingenious contrivances exemplified in it, which as lessons and hints are valuable enough, yet beyord that may almost be pronounced failures. The whole is little better than a number of odds and ends of the kind jumbled togetheran architectural $c \in n t o$ of rags and patches, of little shreds and bits to serve as a sort of professional pattern card. So far, therefore, from treating it at all unjustly by so styling it, it is only by considering it merely as such that we reconcile ourselves to it, and overlook its incongruitiea us a whole. In the little court between the house and the museum at the rear of it, just enongh has been dune to show what might lave been accomplished within that confined space, and bow pleasing a bit of scenio arehitecture might have been produced, were it at all more than a mere beginming. At preaent it produces nearly the same impression is a pictore would do that should be fracoed and hung up, though marry parts of its canvas should not have been tovebed at all by the pencil. The maseum itself is no better; it ban no pretensions whatever to architectural design or effect, even in its plan, being an irregular, crowded, huddled-up, cut-up, mere make-thift of a place, where the casts, \&c., are stowed away without half so much aim at arrangement as may be seen in the "show-rooms" of many trulesmen. The only room (excepting the small parlour next the court) that is at hll salisfuctory, properly studied, and consistently finished, is the picture cabinet, which is certainhisa delightful lifie architeotural bijou, a model for a small room of the kipd, especially for one similarly situated.

Though it is no particular defect in the house itself that it is moses ill-adiapted for a museum open to the public, since it was not built wor afterwards altered for any suoh purpose, it is not on that account the less alsurd that it should have been so appropriated, unless it had been freely devoted to public use, and rendered accessible every day and all day long, withont other restriction than what would be indisperembly necessary to protect it from injury. In that case about a humdred-fold the present number of persons might have visited it in the comrse of a year, all of whom would doubtless have brought away with them nothing but their admiration. As it is now managed, however, the whoie afliair is a piece of veritabla humbug-ape that tells people plainly enough what sort of meaning sir Joln attached tu the word "domation."

CANDIDUS'S NOTE-BOOK. FASCICULUS VII.

I must have liberty
Nithal. as large a charter as the winds. To blow on whom I please.

I. I was informed the other day that I had been severely reproached by one whase name was told to me, for expressing a very mean opinion of Nash's abjilities as an architect, whenever I bave mentioned him. In so doing I ans so far from being at all singular, that I ouly seem to adopt the general opinion entertained of him, ind therefore should have been very glad to have discovered, if powible, merits which the rest of the world had either carelessly overlooked, or beep two abtuse to discover. My reprover is pleased to affirm that he possessed very superior talent; yet that bare assertion without something like proof to support it, may very well be set aside as amounting tu cothing, or rather as a proof in itself that it would not be at all discreet to attempt to confirm the praise by pointing to any one of his works as a testimony in his favour. It is possible that he may have succeeded better in some of the things he did, but in those by which he is most known,-or at any rate with which I am acquainted, be exhibited, if not always the very worse tastem most insufferably mediocre one,-vulgar commonplace stuff, and most deplorable insipidity. Look at the building which forms the east side of Carlon Place; look at the Regent's Park terraces, which Bartholomew terms " mortar shimmings by the mile": they are stamped by littleness and feelleness, which in some of the designs are rendered most flagitiously offensive by the course and vulgar tawdriness with which the fronts are bealizzened out. Uglier thingz there may be, but exeepting our modern gin palaces, nothing so flagrantly merelricious in character. Whenever I look at the slattemly finery with which they are tricked out, I feel that I am standing in the presence of the "Hariotry of art." Yet to Nash it was that George the Fourth intrusted the task of erecting a palace; which, notwithstanding the sums so extravagantly squandered away upon it, is little less than actoally disgraceful to the character of art in this country. Independent of mere size, the building in St. James' Part fas nothing whatever to recommend it. It is not at all distinguished by greatness of manner,-quite the contrary, for these is not a single portion of it that is nut stamped by littleness and insignificauce. What a singular, and to ourselves, deplorable contrast doe it present to the new palace of the Duke of Brunswick by Ottmer, engravings of which have reached this country. Though not free from fauts, the Brunswick palace has at least a grand and-imposing air. It looks like the residence of a suvereign, which is much more than our own does. As a palace for the sovereign of Little Britain the one in St. इames' Park would be reasonably handsone and stylisha smart piece of architecture enough; but for that of Great Britain it is not so well. However there may be excuse for Nash, poor man: Jolm Bull is both very poor and very stingy ; whereas, it may be presumed the Brunswickers have' plenty of mopreses, and can afford to buidd palaces that look like palaces after they are built.
II. Greatly will Bartholomew,-who must not be confounded with St. Bartholomew the Great, exult at a damper having been thrown upon competition by the result of that for the Nelson monument. Poor competition, a most woful tigure do you now cut! Well may you hang your head;-better would it be were you to go and haug yourself. As for the profession, they will very quietly go to sleep upon the matter. No wonder that committees laugh at them to their very faces, when they show that they may be kicked at and beaten with impunity, like spaniels. Never were there such pluckless creatures as they show themselves to be, when, without making the slightest protest against such treatment, they allow themselves to be bamboozled in the most buugling, barefaced manner. The Royal Exchange competition is already openly spoken of by many as being little better than an arrant hoax. The plans of the committce are it secins all settled, before a single plan luas been sent in by those invited to compete for the building. Butler must have been thinking of architects when he permed his hack neyed distlich,

Surely the pleasure is as great
 In being cheated as to cheat.

IIL. Baron Von Klenze has just got a severe thrashing: I do not mean that he has literally been beaten black and blue, but has been so cut up that he is likely to look very blank and blue for some time to come. Has be then, it will be ask ed, been attacked by some impudent shallow-pated joumalist! No: his theory and opinions have been deliberately ridiculed as false and extravagant by Professor Wiegmann of Duaseldurff, who is himself an architect. The Professor's tone is not particulasly courteons, nor does lie omit the opportunity of giving
the Baron a hard hit wherever he call Among other things he ridicules his affected language, and the solemn olscurity in which he wraps up his meanings or no-meanings in such manner that it requires an Odipus to unriddle them. "Architecture," says the Baron, "in the ethie (?) meaning of the term, is the art of shaping and putting together natural materials in order to accommodate them to the purposes and wants of society, so that the method of applying them according to the laws of strength, durability, and consistency, may secure the greatest possible firmness and lastingness with the least possible cost of labour and material!" Commenting upon which very oracular definition, the Professor,-no doubt very rudely-remarks that if such be the case, a boot-jack is npon a par with a work of architecture, and that a tailor or shoemaker can fulfil all the conditions laid down by the Ritter, just as well as Ritter Von Klenze himself, or any other architect.-Klenze, it is well known, is the Don Quixote of Grecian architecture, and not a little Quixotic in his notions of it. According to him it is the only positive architecture; the meaning of which expression I must conifess, I positively do not understand. There is, in my opinion, infinitely more good sense and valuable truth in the following remark by Wiegmann himself: "As studious disciples of ancient art the most important lesson we can derive from it is, to endeavour to work out for ourselves a style that shall be to us what their own wis to the Greeks. It is only by being so understood and so applied that the beautiful art of classical antiquity can exercise a worthy and beneficial influence on our times; which it cannot do so long as it slall continue to be a lifeless model, for slavish-and he might have added, indolent-'imitation.'"
IV. It is possible, nay very probable, or I may as well say, once for all, very certain, that nobody in this country is acquainted with the writings of Gogol, notwithstanding that he is one of the living literary celebrities of St. Petershurg. Beyond that, and that he lass the reputation of being one of the cleverest authors of his day, I myself know very little more of him than any one else; having only a few hours ago opened his two volumes entitled "Arabeaki," when my attention was instantly arrested by an article headed "On Architecture." That was sufficient to deternine me where to commence an acquaintance with Gogol; yet I must confess that it was not withont very great misgivings that I did so; for it was not at all likely, I thought, that I should meet with any thing particularly new, or rather, not particularly stale, on such a sulject, in such a quarter. To my astonishment, however, I have found that it does contain much original thinking on the subject, much sound criticism, and many ingenious and clever remarks. I shall confine myself, however, at least for the present, to that passage where he expresses his discontent at the utter want of originality manifested in all modern works of architecture. In every other claws of ornamental productions, he observes, invention is permitted to have free scope, the consequence of which is that forms and combinations, as tasteful as they are novel, are obtained, which but for such liberty would never have been thought of. It is thus that the artisan, the mere mechanic frequently surpasses his models, although they may be very good in themselves, and seem to require no further improvement: but the architect-the artist as he is pleased to style himself, durst not, for the very life of him, attempt any thing of the kind. Such prlvilege is denied to him. Innovation! heterodoxy ! heresy! All fis comrades would at once be up in arms against lim who should attempt to alter, not the proportions of an order, but any of its lecorative details, however true he night keep to its general character. I am afraid Gogol himself will be considered outrigeously heterolox. What business has he to have an opinion at all upon the matter? Nobody ought to presume to understand architecture, but architects themselves; and then things would go on smoothly and quictly. It is all very well for other people to bave just brains enougl! to admire and wonder, and nothing more.

New Prosectile.-Very early on Thursday morning, the till ultimo, an experiment was made at Kingston with a new and formidalle projectile, meant to supersede, not only cannon, but also the much more questionahly vaunted hollow-shell, now a favourite in the French and Russian navies. The whole apparatus did not excced twelve or thirteen pounds *eight, and was enclosed in a very small compass. The projectife was launched by hand, from a distance, at a pleasure-boat. It proceeded noisclessly till it reached the aim, and the effect was then terrific. Catching the vessel'a-milships, the force of the explosion fairly raised it above the stream and broke every single plank into splinters and small fragnents, so that no idea of the vessel's form or use wan left for the spectator. The splinters were carried in every direction, and umny thrown into the neighhouring fields. The explosive power was only about two pounds, but cxcceded the destructive energy of at least forty times that weight of gunpowder, as now used, in any shape. The percussion was tremenlons and shook the houses for a considerable distance. It was attributed at Kingston to the explosion of a powder mill at IIounglow, and caused great excitement.-Times.
bURSTALL'S PATENT PNEUMATIC CARRIAGE SPRING RAILWAY BUFFER, AND ELASTIC DRAG.

The principal feature of this invention (as shown in the diagrams) consists in applying the elastic properties of the air for the springs and buffers of railway carriages, and is best performed by inclosing in a metal cylinder an air-tight vessel constructed of caoutchouc or caoutchouc and silk or cotton, such as the well known preparation of Mr. Mackintosh, or of some of the auimal tissues, or any other flexible substance which cam be made air-tight.

Fig. 1 in the plan shows a double cylinder, its pistons, buffers, \&c., the cylinder being in section,) to indicate the situation of the air vessels.

Fig. 2, 3, 4, and 5 are plans and sections of part of a locomotive steam carriage frame, with four of the springs; the buffer, cylinder, and part of the frame, being in section as in fig. 1.

Fig. 6 is a plan of an elastic drag, and an improved method of connecting a train of carriages together.

The same letters of reference are used in the like parts in all the plans.
In fig. 1, AA are those parts of a cylinder (which is constructed with a partition in the centre to make it into two) in which the air vessels are to be placed; $L L$ are two pistons for compressing the air vessels; CC the piston rods on which the cross heads B B are to be securely fixed; the outer ends of the piston rods CC being extended to the full length of the carriage for the purpose of fixing the buffers EE; the bars across the buffers with the holes PPPP are for the purpose of fixing drag chains to connect one carriage to the next in the train; the cylinder (as only one will generally be required) must be bolted by the four lugs D D D D to the centre of the carriage; the two cross heads B B are connected together by the side rods N N to cause the two pistons to act together, or as one is compressed against the one air vessel, the other will be relaxed according as the carriage is moved forward or backward, and as the buffers are fixed to the ends of the piston rods, the concussion will be received througla them on the corresponding air vessel.
In fig. 2 and $5, F \mathrm{~F}$, is part of the side frame of a railway steam carriage; fig. 5 being the plan, and fig. 2 the elevation, with part in section; HHHH are four cylinders, and may be seven to ten inches long, and five to seven inches diameter, two being shown in section and two in elevation; together they form a powerful carriage spring on the same principle as the above described buffer, with air vessels, pistons, and piston rods: the cylinders may be made of cast iron, cast in one piece, and must be bolted upon the top of the carriage frame; K is the axle of the carriage, with its brass bearing guided by the iron frame in the usual way, on this brass a strong iron bar I1 is tixed, and on which the four piston rods of the springs stand so that the com-
pression of the air vessels in the cylinders A A may produce the re quired elastic action.

In fig. 3 and 4, G G, is the end framing of a steam carriage, fig. 3 being a section of that, and a buffer to be placed at the end of the carriage, while fig. 4 is a plan; this buffer is constructed and acts on the principle before described, and is for the protection of the carriage, when either pushing a train before the steam carriage or when one carriage is propelled against another.

Fig. 6 is a plan of an elastic drag, on the same principle and construction as fig. 1, except, instead of the two buffers the elongated piston rods are provided with a socket joint and key to connect the train together, as at M 3 and 4, and two horizontal joints as at M 1 and 2; these joints being for the purpose of allowing the train of carriages, however long, to conform without stress or strain to any curve of the railway. By this plan the whole train will be locked together by what will be, in effect, a complete bar from end to end; while each carriage being only acted on through the medium of the elastic air vessels, will be freely at liberty to take its natural place on the railway bars, and any oscillatory motion which any individual carriage may receive, will end with itself, instead of as at present being propagated backwards and forwards from one end of the train to the other, while any suddea shock will be received on the air vessels the same as if provided with buffers.

As in this method of supporting carriages and forming railway buffers, advantage is taken of two of the most elastic substances in nature, it principally remains to show there are no practical difficulties in the way; this will be clear from the fact, that the air vessel is so completely supported by the cylinder, that a vessel made by expanding with a syringe one of the common caoutchouc bottles, sold by the stationers, weighing only one ounce, and enlarged till it was less than 1-40th of an inch thick, bore, without symptoms of failure, z gross weight of upwards of 300 pounds, equal to 50 pounds to the inch; which was likewise the case when a sheep's bladder of less than one quarter that weight was put into the cylinder.

In constructing the single buffer, as in fig. 3 and 4 , it is recommended that they be made 7 or 8 inches diameter, or containing 50 to 60 circular inches section; this, if pressed by concussion to balf its length, will give a resistance of about 700 pounds; if iuto $1-4$ th 2,000 pounds : or if into $1-8$ th, 5 to 6,000 pounds; but so long as the cylinder is strong enough, it can never be brought home.

In the elastic drag, fig. 6 , cylinders of five inches diameter will be fully sufficient, as the utmost draught of each carriage may not exceed 100 pounds; and as each carriage will have its own independent spring, this will give a power of compression of four pounds ondy to each circular inch; while in case of any sudden stopping, as the air vessel may bear 100 pounds to the incli, a resistance of about $\mathbf{2 , 0 0 0}$ pounds may be received without any prejudice to the spring.

WILLIAMS' PATENT WROUGHT IRON BOILER.

A A the flow pipes. B man-hole. C C apertures of threr inch spoare pipe, nine inch long with cocks D D. fixed on to the front with a move nble flange, to clear out the dirt, \&c., from the inside. F the fire-place F the outside of the boiler forming the side flues, where the fire pases round. G the top of the boiler. H the return-pipe.

The annexed engraving is a perspective view of a very compact and economic boiler; every advantage has been taken for economirimg the heat, as well as taking every precaution for cleaning oul the in-
terior, for want of which most boiler; on a small scale fail, in consequence of the sediment and impurities of the water forming a crust upon the internal surface, preventing the caloric passing speedily from the fuel through the metal to the water, and causing also the boiler to be quickly burned out. The boiler is made of wrought-iron, and is furnished with a man-hole at the top for the purpose of cleansing the interior, and there are also two apertures in front communicating with the bottom for the same purpose; these two apertures are closed with iron plates, fixed to flanges with nuts and screws and which are easily removed when required. The fuel is placed in the centre of the boiler, and the flame is made to divide at the back and pass round both sides, and again unite in front and pass over the top, to the chimney, by this means no part of the boiler is exposed to the cold atmosphere, but all is subject to the direct action of the fire. Instead of dividing the upper and side flues by a brick partition, as is usually the case in setting boilers, they are divided by a flange of the boiler Glled with water, by this construction no part of the boiler contains more than 34 inches in thickness of water, consequently the circulation through the hot water pipes is very rapid.

Some of these boilers were fixed last winter for the purpose of heating conservatories, and gave perfect satisfaction; a model of the boiler may be seen at the office of this Journal.

THE WELLINGTON MEMORIAL.

Sir-In the authenticated account of the proceedings at a meeting of the General Committee on the Wellington Military Memorial, some assertions were made that are calculated to create a prejudice which might not have been intended, and as Dr. Johnson observed, in questions of general concerm, there is no law of government or rule of decency that forbids open examination and public discussion. The subscribers, who in the list of the committee read so many illustrious names, had a security that nothing would be done in opposition to the argument, and in defiance of right reason, yet it appears by the statement of Lord Hill, that two or three days after the meeting of the general committee he expressed an opinion against their proceedings, but he was told that it was too late, and a few days afterwards a written statement was made by several influencial members of the committee, not against the choice of the artist, but that due care had not been taken to obtain the best design; now as it seems by Mr. Croker's letter to Mr. Rice, "that he in common with others, entertained an opinion that some undue favour was intended for Mr. Wyatt, it was reasonable to suppose that the committee would have courted investigation instead of clinging to form for protection from discnssion; and as a feneral meeting of the subscribers could not have impeded the work, it might have been useful as a proof that the committee had, in common with the subscribers, no object of private patronage in getting up the second memorial, but were actuated solely by an anxious and carnest desire to express their love and admiration of the immortal Wellington, by erecting the best military memorial that art could produce, and to obtain that object public opinion was in favour of competition; but in opposition to that fecling the Right Honourable J. Wilson Croker thought it requisite to taunt Lord Colborne with the failure of the Nelson competition, and said that it would have cured any body of the principle of competition. "That not one person of note offered, one single R.A., and one only, not one artist, sculptor, designer, or painter, whose names any one of us had heard before; and the result was that after all that competition, we selected a mere architectural designer, which we could equally well have done before the competition began, in short, that as producing any thing good or valuable in the wray of art, I take upon myself to say that it was an utter failure." As the models and designs are exhibiting for the benefit of a charitable institution, to provide a home for the destitute sailor, this assertion was illtimed, and it was drawing largely upon the credulity of the members of the committee, to try to make them suppose that they had never heard the names of Bailey, R. A., Wilkins, R.A., Smirke, Campbell, Pistrucci, Beknis, Donaldson, Shaw, Fowler, Haydon, Britton, Salwin, Lough, Westmacott, Carew, Robinson, and many others who were competitors; Peurhyn Castle, the Conservatory at Carlton House, Dunkeld Margam, the Atlas Fire-office, and many o ther buildings have given some notoriety even to my humble name; but the models have been seen by many persons capable of appreciating works of art, whose opinions offer a triamphant refutation of Mr. Croker's aspersions. Marochettin, whose name has obtained such high distinction for his matchless equestrian statue, that it must have met the eyes or ears of Mr. Croker, withdrew his model after be had compared it with the works of the British artists, who have been so unjustly and unnecessarily repudiated and calumniated by Mr. Croker; although it might puzzle him to produce any work of art superior to

Bailey's. Competitions carried out properly are the only channel to bring talented young men forward who have no patrons; but if according to Mr. Croker's doctrine, the name only is to be looked at, it is better to continue the parliamentary practice of a strong party struggle. The manly independent speeches of the Duke of Richmond, Lords Hill and Colborne, must gain honour and respect from all persons who feel any interest in the success of the arts, and their judicious conduct in avoiding a division camot be too highly commended; in a matter of such importance there ought to be no bickering or division, and it was evident from the first that the ruling party were resolved to carry their object with a high hand (cote-in-cote). Mr. Croker statell that when he entered the committee, he found that a string of resolutions had been passed, ending with the appointment of Mr. Wyatt as the artist, but upon his objecting, the appointment was postponed, and that he afterwards agreed that Mr. Wyatt should be employed, provided the equestrian statue was placed on King George the 4th gateway arch to the Green Park; and lie produced a drawing made by his direction to shew the proportion, and said that he understood from the architect that the arch was strong enough to support the weight of the statue, but it seems he was mistaken, as it now appears it will require to be strengthened and filled up, to be as firm as a single stone. Now as the use of the arch was made the condition of Mr. Croker's - adhesion, the govermment of course thought it requisite to defer to public opinion, and they took the proper course to arrive at it, viz., by placing a model of the equestrian statue according to Mr. Croker's scale upon the arch, (the shouts of laughter and the derision with which it was treated was conclusive), and yet the committee persist, nor would they have called a meeting in all probability if Lord Melbourne had not had that respect for public opinion when properly expressed, that is becoming his exalted station, and required a proof that the majority of the subscribers were satisfied that with the large sum already paid in, and the sum that may be expected to be subscribed, nothing better could be produced in art than the completion of a gateway. The citizens of London may erect their equestrian statue on the top of the Mansion House, to show that their respect was greater for the warrior than for the minister; for if their statue is intended as a memorial of the illustrious Dele's services as minister, nothing can be more absurd than an equestrian statue, is it ought to be erected in his official robes, which are not certainly calculated for horseback. It is unfortunate that botli in the Nelson and Wellington memorial such an utter disregard has been shown to public opinion. In the former, artists were invited to deliver designs and models, a sub-committee was appointed, seven of whom it is said met and resolved, it appears by Mr. Croker's account, to appoint a new architectural designer, which they could, as he says, have done just as well without any competition; the designs were afterwards exhibited and the general opinion was so strong against the selection of the column, that the general committee thought it right to pay the premiums, and allow the artists to alter their designs, and they or any other artists to send new designs, it was supposed for the purpose of obtaining the opinion of the public to guide the committee in their choice; yet by a mistaken restriction, but a small number of persons obtained a sight of the designs, the competitors felt the incouvenience so strongly, and were so desirous that the greatest possible publicity should be given to the designs, that they petitioned the committee to suspend their final adjudication until the design had been seen, and they offered to pay the cost of the room; their request was treated with silent contempt; a ballot-box was opened at the Thatched House Tavern, no discussion took place as to the merits of the designs, a resolution was passed that the sub-committee might alter the details of the chosen design, and as it was natural to suppose it would, the farce ended in there being more votes in favour of the column than of any one of the others; and it is possible the question was decided by a minority of the members of the committee. Mr. Croker, from his talents, acquirements and confidence, is of so much weight that it is to be regretted that he is not more careful in his assertions, witness his declaration in support of his opinion that he believed that in monarchial countries there is no instince of an esquestrian statue erected to a subject; when, in his way to Harley-street, if he passed through Cavendish-square, he must liave seen the equestrian statue erected to the Duke of Cumbertand, who was a subject to King George the 2nd. It is a melanclioly consideration to reflect on, that two such ghorious opportunities for the exercise of the highest qualities of the arts may be thrown awuy, merely because modern statesuen and warriors are not the best judges of art, and are too proud to consult those who are. The report stites that the sum subscribed is $\mathbf{2 9}, \mathbf{5} 201$., and the sum paid is about 17,920 . I thought that to subscribe was to pay, surely there are none who have not paid, but we ought to know if there be any names on paper alone.

Connaught Terrace.
Thomas Homer.

WOODEN PAVEMENT.

Sin-Observing a number of blocks of wood lying in the Oid Bailey, evidently prepared for forming a wooden pavement for the carriage way opposite the Session House, and noticing the blocks to vary greatly in dimensions, I measured several of them, and found some only eight inches and a half long, while others were nine inches and three eighths. They generally approximate to the figure of regular hexagonal prisms; some of them, however, are a little comical, but the diameters vary so much that it will be impracticable to fit them together without leaving interstices between them so great as to remer the outer parts of the blocks liable to be chipped off by the feet of the horses, and the wheels of the carriages passing over them.

The surfaces too of the ends of the blocks, each of which ought to be cut off exictly at right angles to the axis of the prism, form, in many cases, oblique angles with that axis, and oonsequently when the blocks are placed with the grain upright, one side will be higher than the other, and thus the pavement will necessarily lave an uneven surface, and much of the ralue of the wooden pavement be loot.

Having attentively watched, for about four years, from 1887 to 1831 the effect of much travelling over a piece of wooden block pavement, well executed in the principal gateway of Viema, and observed that it appeared to wear away mueh less than any other kind of pavement. I requently on my return to England in 1831 mentioned to our engineers the superiority of a roadway thas formed, and took every opportmity to recommend the universal adoption of this excellent material.

But the goodness and durability of such a road will depend on the workmanship; the blocks ought all to be cut exactly to one gauge, and laid down ou an even bed; I should consider a difference of a tenth of an inch in either length or breadth sufficient to digrace any engineer who would permit such blocks to be laid down contiguously. How great then must be my disgost at observing near au inch difference in the lengths, and more than an'inch in the breadths of those blocks about to be used in the Old Bailey.

Being thorougtly satisfied that neither comfort nor durability can possithy fesult from such excessively bad workmanship, and apprehensive that the numerous benefits and great ecunomy of wooden parements will for a length of tine be lost to the community, if such a wretched specimen be allowed to imflucnee public opirion, I deem it my duty to warn all those concerned against a proceeding which can only produce disappointment and public injury.

> I am, Sir, your obedient servant,
> John Isaac Hankins,

Civil Engincer, and Patent Agent.
Quality Court, Chancery Lanc.
July 24, 1839.

RUNNING GAUGE.

Sir-In your last number you affixed the initials A. C. to the description of my Ruming Gauge for a Railway; as I should not tike to appear a plagiarist on A. C, or A. C. to appear a plagiarist on me, will you be kind enough to stite that the initials ought to be E. C.

It is natural for the wen who lay down the rails to lay them too wide rather than too narrow; it is fur this reason, that the carriages aill run on rails that are a little too wide, but will not run on rails that are too marrow. In the latter case the inconvenience falls on the workmen, who are obliged to take up the rails and relay them, hut in the former case the incomenience is felt by the prassengers in the side motion of the carriages; but the ruming guage atfords a ready means of examining them,-Bramah and Fox are manufacturing these ginges.

Iour's sincerely,
Edward Cowrer.

Painten Glass Window.-A very splemdid painted glass window, designed to be placed in one of the new churches in Cambridgeshire, is now licing exlibited at the rooms of Mr. Denew, No. 30, Charles Strect, Berkeley Square. It is painted by Messre. Hloadlet and Oldfield, who are well known in this l,ranch of art, under the direction of Messrs. Hancock, Rixon, and Hunt. The crayon drawings for the designs are by Mr. Wood, and the architectnral portion of the window is by Mcssrs. Juckler. The niudow contains three compartments, besides the canopies. The centre compartment is a copy from Spagnoletti's celebrated picture, "The Deacout from the Cross." The compartment to the left hand of the spectator is from the altar piece by Morales, in the chapel of Magdalene Callege, Oxford, a pieture of extraordinary merit, and known to most persons from the repeated engrating of the original. The right ham compartment is a copy of the altar-piece by Raphael Mengs, in the chapel of Ill Souls, Oxford, which is also well known. These pictures, with some allowances for the conpression of the nide com-
partments, are very faithful copies in all respects of the originals. These me beautifully coloured; there is very extraorlinary vividucen and brilliancy both in the flesh tints and in the draperies; the blues ase pecaliarly fine. The canopies are taken from origiuals in Pairford Charch, Gloucestershire. The falling of the manna, the flowing rock, the commandmenta, and tbe coven tongues, are from the represcntation in King's College, Cambridge. The crowns of immortality, and other devices, are original. These pqiniliga are reflective of much credit on all persons connected in producing them. The artists have increased their already estahlished reputation, and wuch prase is dne to Messrs Hancock. for their liberal direction of the talent they have emo. ployed. They are painted on large pieces of crown glass, not plate glas, crown giass lieing considered to imbibe colour better than plate glass, and to be more hrilliant in effect of tone. The pieces are kept together hy inclal bauds, grooved like the fromes of a casement window. It has enved so little trouble to put these picces together, and will not be the werk of lem than several weeks to meparate them previous to their being sent to their uff. mate destination, and to pot them again together. In a werd, this in a very notble window.-Tipers.

Discoigry in the Arts.-Oue of the mast important decoveries in the one applicable to the repriating of books, or reproduction of engrevinga, M. Dupont, a very industrious printer, was seeking the mcant of aring the expense of stercotyping. With the assistance of a particular juk he was already enablerl to avoid the preservation of the cliches, which requirc many materils, and much place and noncy, by the means of the preservation of a mere printed sheet, which lithography afterwards reproduced whenever it was wanted; lut doubting whether the ink used upon that sheet would retain is the coursc of time the same properties, he consutted his brother, a very intel. ligent lithographer, and the latter found what neither ventured to expect. This new process is applicable not only to fresh printed sheets, bat likenise to the oldest engravinge, to the oldest books, and, what is of far more inke. rest, to Greek, Chinose, and Hebrew hooks. It consiste in two operations. Over the page or engravizge of which you want a copy you tay a perticilo composition it is jlaced upon the lithographic stone and premed, and the stone reproduces, with scrupulous precision, the original engraving or book. This impression could not, however, serve sach as it is. It is ituelf ooresw with the sane prcparation, and it may then print thousands of copies If the ordinary process of every sort of lithograply. Five minutes suffere far both operations. The original engraving may be restored to the portion which has supplied it, for it has not been injured; the book, thus wholly reprinted, may undergo another binding, and then honourably resume ith phare in your lilrary. This new process adnits of a reduction of seventy-itie pee cent. upon the expense of printing; and as for engraving, that which on copper would cost one hundred francs, will now cost but twenty frmes! What consequetice will not this discovery yield. It threateas the grolite arts, rengraving and printing, with a complete revolution. A man d be grestent talent in the art lays ciaim to prionity in this diecevery, as is elras the case-When suocess luss been obtained claimants come in. The wispin of the central jory and patent laws mast docide the quemtion. Is the pap time MM. Duponts are manufacturing, which is always areat poist on Monday the King, Qusen, Madame Adclaide, and Princess Clementine Minal again the exposition, and examined the lythotypographic produce of the brothers. His Majesty olserving an engraved head of Albert Durer, of 152, which was wanting in his collection of the Palais Royalc, ordered a copp of it, and congratulated M.M. Duponts upon a discovery whereby there woold he no longer any scarce eugravings or books.- Paris Periodical for δ wow.

Clote Making witiout Spinning or Veaving. - Among the many estraordinary and truly wonderful inventions of the present times is a muchive for the making of broad and narrow woollen cloths without apinning of weaving; and from our acquaintance with the staple manufacture of thi district, after an inspection of patterns of this cloth, we shordd say there is every probability of this fabric superseding the usual mode of makigg dod by spinning and weaving. The nrachines are patented in this end every abo manufacturing nation. The inventor is an American, and appears to have a certain prospect of realising an ample fortune by the sale of lis patcot right We understaud patterns of this cloth, as well as drawings of the machivers, have been shewn to many of our principal merchants and manufocturos none of whom have exprossed a doubt but that the manchinery appan capable of making low cloths which require a good subatance. Should is succeed to anything like the expectations of the patentees, its abridgreat d labour, as well manaal as by machivery, will be very great. We find that means are already taken to introduce this machinery apong our continentui rivals; a company of cleven gentlemeu in London have deposited five thousand pounds with the patentees, who have ordered a machine for theo. when finished they are to try it onc month, and if at the end of that month they think it will succeed, they are to pay twenty thousand pounds fot thr patent right in the kingdom of Belgiunn, and it will, of comrse, be numa there. Wic arc therefore bound in duty to our conntry aml her manofatining interests to adopt such facilitios as will prevent us falling into a $j^{\text {wintion }}$ below our rivals in other countries. We are informed the necessan mumbs. uery for the production of this patent woollen fested cloth will the tried ber in a weck or two, under the superintendence of the inventor, by s deth merchant who has an exclusive license, but is about to associate with bin twenty other respectable business men, for the purpoee of thering the espewes of giving the inyention a fair trial. It is calculated one set of machinen., not costing more than six hundred pounds, fill be cepaluly of yroduing
gix bundred yerts of woolien cloth, thirty-six inches in width, per day of twelve hours.-Lseds Mercwry.

Teatimonial to Robert Stephenson, Esq.-The subscribers to the testimonial to be presented to Robert Stcpheuson, Esq., civil engiueer, having determined that it shall consist of a handsome dinner service of plate, with a candelalorum, or other centre-piece, of appropriate and characteristic design, a commiltee of taste was appointed to select the design, representing every class of the subscribers, viz., Sir John Guest, M.P., and Mr. Crawshay, the iron trade : Mr. Bramah and Mr. Maulsley, the engine manufacturers; Mr. W. Freeman, Mr. Bagley, and Mr. White, the stone and cement trade; Mr. Dowsan and Mr. Holland, the timber trade; Mr. David M•Intosh and Mr. Thomas Jackson, the operative railway contractors. The comnittee met on Tucsiay at Rider's hotel, Salishury Square, and, from several designs subinitted for their consideration, all possessing more or less of merit, they unanimously decided in favour of the one furnished by Mr. Benjamin Smith, of Duke Street, Lincoln's Inn Fields. It consists of a superl candelalirum, with a triangular base, surmounted by thrce figures, one at each angle, descriptive of Wisdorn exbibiting to Genius and Philosophy the application of stcam to the purposes of locomotion. At the corresponding points of the base are three groups of hoys; one is occupied with the origin of the steam-engiue, another with the ordinary stationary engine, and the third holding up a shield hearing upen it the perfeet locomotive engine, shown in perspective, travelling upon a railway, and modelled after Mr. Stephenson's latest improvenents. To this object Minerva is directing the attention of the group, as the trimmpli of science and the mechanical arts in the application of this mighty power. One of the compartments of the perdestal will lee appropriated to the inscription, another to Mr. Stephenson's arms, richly embossed, and the third to 2 bas relief deecriptive of the progress of a railway in its several stages of construction. The stem is composed of three vine branches, gracefully intertwined as they ascend, carrying nine brauches for lights, and surmounted by a basket composed of the leares and fruit of the rine. The branches have moveable tops, for the occesfonal substitution of cut glass for fruit or fowers, when lights are not required. The height will be about twenty-eight or thirty inches, the weight between seven huudred and eight hundred ounces, and cost 5501 . About 300l. remains to be applied to the dinner service, the detalls of which have not yet been decided upon. It is understood that the testimonial will be pre sented at a public dinner, to which Mr. Stephenson will be invited, about the first week in October.-Raiheay Times.

The Nelson Memorial.-On Monday, the 8tb ult., the members of the Nelson memorial assembled at the Thatched House Tavern, St. James's Street. Mr. Mailion, the architect, was also in atteudance. The following is a correct liat of the noblemen and gentlenen appointed to form the sulbcommittee to superintesd the crection of the nonument:-The Duke of Welliugton, the Duke of Nortbumberlaul, the Marquis of Lensdowne, Lond Collorne, Mr. S. Hice, Mr. Herries, Mr. Croker, Sir It. Ingtis, Sir J. Barrow, Mr. Wood, the Duke of Buccleugh, and Sir G. Cockburnr. On the following morning the sub-committee were occupied in consulting Mr. Pailon on his design, which the general committee had determined should be adopted.

Nofice or Alaba Gong.-A rery ingenious instrument has been invemted by Cuptain George Smith, R.N., intended to give waming of the approech and to anmounce the course a steamer is sailing on in a fog. It consite of a gong, on which a hammer is made to atrike, every ten seconds a certain number of blows, by a rery simple machinery, acconding to the courte the vessel is sailing on. Por example, if she be salling north, the gong is struck once; if east, twice; if south, thrice; and if west, four times every ten seconds. By this sysiematic method, the position, course and proximity of a steamer will be clearly announced to any other veasel. In, rivern Captain Smith proposes the vessel to emit single mounds every ten ceconds, which would be sufficient to give warning.

Brvizwrs.

Experimental Esays on the Principles of Construction in Archer, Piers Budlresser, tc., by William Bland, Esq., with woud-euts. Loudon Weale, 1839.
These essays originally appeared in the Architectural Magazine., and are now republished in a collected form. The experiments exLhibit much ingenuity, but the means of correcting them and ensuring their applicalility has not been given.

The distinction between the properties of Roman and Gothic arches to well marked, and shwiws the princlples which led to the development of Gothie architecture. The latter part of the work is devoted to an examination of several churches and chapter-houses, principally in the suuth of England, and contains much matter worthy of perisal.

The work is got up in a portable and convenient form, with many illustratious, and may be advantageously referred to as throwing much mew light on the theory of this important subject.
A Practical and Theorelical Essay on Oblique Bridger, by Georae Watson Bucs, M.I.C.E. London, John Weale.
This work has been long looked for by the profeaings but the author
very properly deferred its publication, "in consequence," he observes 4 of fimding that his knowladge of the subject was daily increased by the experience afforded in the construction of a variety of bridges." This delay has given Mr. Buck a better opportunity of laying before the profession complete instructions on this important branch of engineering. During his engagement on the London and Birmingham railway, and his subsequent occupation on the Manchester and Birminglam railway, he had charge of several bridges of this deseription contided to his care. These being of brick, stone and iron, have ollered bim excellent opportumitics to see low far his theoretical calculations were verified by practice, of which he was so far satisfied as to feel confidence in publishing his experience for the benefit of his brother engineers ; he has reduced the subject to formula as simple as it would allow, and from the instructions and drawings given, an engineer of common practice will be able to construct an oblique or skew arch without any difficulty.

A Practical Treatise on Railoays, by Lieut. Peter Lecount, R. N., F.R.A.S., C. E. Edinburgh, Adam and Clarley Black.

This treatise originally appeared in the seventls edition of the Encyclopredia Britunnica, and is now published in a distinct volume, with very considerable additions, Lieut. Lecount is well known as being one of the resident engineers of the Lomion and Birningham railway, and from his comection with that work during its progress from the commencement to the conclusion, is peculiarly fitted for such a task. He lias collected a vast mass of valuable information, both practical and theoretical, rendering the volume well deserving of the attention of the engineering student.

We lave not time to enter more fully into this treatise, but will take an eurly opportunity of again referring to it.

Hosmer's Tables. London, Joln Weale.

We are by no means favourable to the use of tables for simply finding superfieial or cubical quantities, as we feel convinced rrom our own experience, that they are to be found equally as quick by mental operation, if the mind be kept in constant and wholesume practice. To those, however, who are not of the same opinion, we rerommemd these tables as deserving of their attention. The author has given two tables, one for the land surveyor, and the other for the engneer or surveyor, they are each concentrated in a circle 10 inches diameter, and composed of a series of circles and an index. By the first table any quantity of land may be found in acres, roods and perches, and by the other table any superficial quantities in feet or yards.

The Principle and Practice of Letelling, By Epwand Jones, Architect and Civil Engineer. London: Williams, 1839.
This work is a useful compilation, but by being too conclensed is rendered difficult to the learner. It is open also to the objections which we had occasion to make in noticing another work on this subject on a previous occasion.

LITERARY NOTICES.

We have bcen favoured with the Introductory Lecture for 1839 , of $\mathbf{M r}$. Baltard, Professor of the Theory of Architecture in the Royal Acadenty of Fine Arts at l’aris. The professor is a vehement ciassic, and inveighs sorely against the Oothic and the present rage for the medieval atyles. He sliews rery strong symptoms of the old regime, and his lecture, if not a sermon, weins dirceted to very litile boys. It is quite Preuch, and little morc. The professor sjes some licence to the Italian, but makes a just distinction between its best specirnens and its decline. Ilis observations on the progress of architecture in Prance since the Gothic era, afford, however, some just aud interesting criticisms on the modern luildings of Paris.

Among the additions to the professional press may rank the new periodical which is on the point of appearing in Paris, under the title of Revue Generale de YArchitecture et des Travanx Publics (Gencral leview of Architecture and Public Works). It is to appear monthly with engravings and lithographs, and reckons among its promisel contributors Chevalier Lcon Delamorde, Labrouste, Lemoyne, Albert lenvir, Polonceau, Raoul Rochette, Texicr, and many other Freuch and English architects, cugincers, and antiquarians. The chicf editor is M. Cesar Daly.

TIIE DESIGN ACT, CAP. XVII. 2 VICTORLA.
An abstract or an Act to secure to Proprietore of Designs for articles of manufacture the copyright of ouch Desigus fur a limited tim:. I 1 th Juse 1839.

1. Enacte, that every proprietor of a new and original design made for any
he following purposes, aud not published before the lat day of July, 1831,
shall have the sole right to use the same for any such parpose during the term of twelve calendar months, to be computed from the time of the samc being registered according to this Act; and the following are the purposes referred to :

First.-For the palters or priut, to be either worked into or worked on, or printed on or painted on, any article of manufacture, being a tissuc or textile fabric, except lace, ond also except linens, cottons, calicoes, muslins, and any other article within the meaning of the Acts mentioned in the Schedule hereto annexed.

Second.-For the modelling, or the casting, or the embosement, or the chasing, or the engraving, or for any other kind of intpression or ormament, on any article of manufacture, not being a tissue or textile fabric:

Third.-For the shaye or configuration of any article of manyfacture, except lace, and also except linens, cottons, calicoes, muslins, and any other arti-. cle within the meaning of the acts mentioned in the schedule hereto annexed:

Provided alwaya, that every proprictor of a new and original design made for the modelling, or the casting, or the embossment, or the chasing, or the engraving, or for any other kind of impression or oramment on any article of manufacture, being of any metal or mixed metals, shall have the sole right to use the same during the term of three years, to be computed from the time of the same being registered according to this act; but no person shall be entitled to the benefit of this act unless the design liave before publication ween registered according to this act, and unless such person he registered according to this act as the proprietor of the design, and unless after publication of the design every article of manufacture published by him, on which such design is used, have thereon the name of the first registered proprietor, and the number of the design in the register, and the date of the registration thereof: and the author of every such new and original design shall be considered the proprietor, unless he have excented the work on behalf of another person for a valuable consideration, in which case such person shall be considered the proprictor, and shall be entitled to be registered in the place of the author; and every person purchasing for a valuable consideration a new and original design, or the exclusive or the partial right to use the same for any or more of the above-mentioned purposes, in relation to any one or more articles of mauufacture, shall be considered as the proprietor of the design for all or any one or more of such purposes, as the case luappens to be.
2. Euacts, every person purchasing a new and original design may enter his title in the register hereby provided; and any writing purporting to be a transfer of such design, and signed by the proprietor thereof, shall operate as an cffectual transfer; and the registrar shall, on request, and the production of such writing, insert the name of the new proprietor in the register; and the following way be the form of such transfer, and of such request to the registrar:

Form of Trander and Authority to register.

I A. B., author [or proprietor] of design number
having
transferred my riglt thereto [or if such trangfer be partial] so far as regards the making of
[describe the articles of manufacture
with respect to which the right is trampferred] to B. C. of
hereby authorize you to insert his name on the register of designs accordingly.

Form of Request to reyister.

'I B. C., the person mentioned in the above transfer, do request you to ' register my name and property in the said design, according to the terms of such transfer.'
111. During the existence of such exclusive or partial right no person shall cither do or cause to be done any of the following acts in regard to a registered design, without the licence or consent in writing of the registered proprietor thereof; (that is to say,)

No person shall use for the purposes aforesaid, or any of them, or print or work or copy, asch regiatered design, or any original part thereqf, on any article of mamufacture, for sale:
No person shall publish, or sell or expose to sale or barter, or in any other manner diapose of for profit, any article whereon swch registered devign or any original pari therenf has boen used, kwowing that the proprietor of such design has not given his comsent to the we thereof upon such article:
No person shall adopt any such registered design on any article of manufacture for sale, either wholly or partially, by making any addition to any original part thereof, or ly making any oubtraction from any original part thereof:
And if any person commit any such act he slall for cvery offence forfeit a sum not less than five pounds and not exceeding thirfy pounds, to the proprietor of the design in respect of which such offence bas been committed.
IV. Enacts that the party iujured by any such act, may recover such penalty, which is done by summoning the offender before two justices of the peace in England or Scotland, and if convicted, the penalty to be recovered by detress and sale of the goods of the offender.*

In Ircland, such penalty to le rccovered either by action in a superior court of law at Dublin, or by civil bill in the Civil Bill Court of the county or place where the offence was committed :

[^18]No sction or other proceeding for any offence under this act shall be brought after the expiration of six calendar months from the commisaion of the offence; and in such action or other proceeding overy plaintiff or prosecutor shall recover his full costs of suit, or of such other proceeding.
V. Enacts that the lords of the committee of privy conncil for the consideration of all matters of trade and plantations may appoint a person to be a registrar of designs for articles of manufacture, and if they lords of the said committce see fit, a deputy registrar, clerks, and other necensary officers and servants; who shall hold their offices during the pleasure of the lords of the said committec; and the Commissioners of the Treasury to fix the salary or remuneration of such registrar, depaty registrar, clerks, officers, and serrants; and to make rules for regulating the execution of the duties of the office of the said registrar; and such registrar shall have a seal of office.
VI. Enacts that the said registrar shall not register any design unless be be furnished with three copies or drawings of such design, accompanied with the name and place of abode of the proprietor thereof; and the registrar shall register all such copics from time to time successively as thet are reccived by him for that purpose, and on every such copy le shall affix a number corresponding to such succession, and he shall retain two copies, one of which he shall file in his office, and the other he shall hold at the disposition of the lords of the said committee, and the remaining copy he shall return to the person by whom the same has been forwarded to him; and in order to give ready access to the copies of designs so registered, be shall keep a classified index of such copies of designs.
VII. Enacts that upon any original design so registered, and upon every copy thercof received for the purpose of being registered, or for the purpose of such registration being certified thercon, the registrar shall certify under his band that the design has been so registered, the date of such registration, and the name of the registered proprietor; and such certificate made on every such original design, or on such copy thereof, and purporting to be signed by the registrar or deputy registrar, and purporting to have the sea of office of such registrar affixed thereto, shall, in the absence of evidence to the contrary, be sufficient proof, as follows :

Of the desium, and of the name of the proprietor therein menfioned,
having been duly registered; and
Of the commencement of the period of registry; and
Of the person named therein as proprietor being the proprietor ; and
Of the originality of the design, and
Of the provisions of this act, and of any rule worder which the certifinte appears to be made, having been complied soith :
And any such writing purporting to be such certificate shall (in the absence of evidence to the contrary, be received in evidence without proof of the handwriting of the signature thereto, or of the seal of office affixed thereto, or of the person signing the same being the registrar or deputy registra.
VIII. Enacts that the Commissioners of the Treasury shall fix the fees to be paid to the registrar.

1X. Enacts that if the registrar or any person employed under bin demand or receive any gratuity or reward, except salary or remoneration mothorized, he shall forfeit for every offence fifty pounds to any person soing for the same, in the Court of Exchequer, and he shall also be lisble to be either suspended or dismissed from his office, and rendered incapable of loolding any situation in the said office, as the Lords of the Treasury see fit.
X. Enacts that all letters and packets trammitted by post, either too or from the office of registrar of designs, relating solely to the business of anch office, shall be exempt from postage.

SCHEDULE.

DATE OF ACTS TITLE.
27 Geo. 3. c. 38.. An act for the encouragement of the arts of desigring (1787.) and printing lineus, cottons, calicoes, and muslins, by vesting the properties thereof in the designers, printers, and proprietors for a limited time.
20 Geo. 3. c. 10 .. An act for continuing an act for the encouragement of (1789.) the arts of designing and printing linens, cottons, calicoes, and muslins, by vesting the properties thereof in the designers, printers, and proprietors for a limited time.
34 Geo. 3. c. 23. . Au act for amending and making perpetual an act for (1794.) the encouragement of the arts of designing and printing linens, cottons, calicoes, and muslins, by vesting the properties thereof in the designers, printers, and proprietors for a limited time.
2 Vict Any act passed during the present session of parliament.
(1839.) "for extending the copyright of designs for catico nint ing to designs for printing other woven fabrics."

The Art Union of Lomion.-A gencral mecting of the members of this sorie's was held at Mr. Rainy's gallery, Regent-strent, on Tuesday, the 4th uhtim: the llight Hon. Lord Prudhoe in the chair. In the alssuce of the homorary secretary, Mr Goodwin, jun., F.R.S.. nat the third report of the enmmictee from which it appeared that the number of subscrivers has this year ine reared from 568 to 1,058 . The total amount of subscriptions received is $£ 1293$. The eommittee then proceeded to distribute the several prizes, varyiog in amount from $£ 10$ to $£ 150$; aul Juhn Ivatt Briscoe, Fisn., M.1.; 1. T. Here, Fisy., M.P.; B. Bond Cabliell, Hisy., F.R S.; W. Jones, Esi., and others, baying addressed the chair, the meeting was dissolved.

FROCEDDIMGB OF BOKEMTIFIO BOCXETIES.

INSTITUTION OF CIVIL ENGINEERS.
April 30. The Prbsident in the Chair.
E. Cottam was elected a Graduate, J. Dodds and E. Cressy were elected Associates.
A paper was read "On the Supply of Hater from Artesian Weils in the Lomend Berin, with an account of the sinking of the Well at the Reservoir of the New River Company in the llampstead Road," by R. W. Mrine, which was given in the last Journal.
In March, 1835, an excavation, twenty feet in diameter, and twenty-three feet deep, was made ; the sides were supported by wooden curls, with puddle at the beck, so as to shut out the land-springs. Λ brick shaft was then carried ap to the surface of the ground, and the excaration was continued for finy-nine feet through clay. The brick shaft was supported at every eight feet by rings of greater exterior diameter than the shaft, so as to project a few inches into the clay. Three sets of iron cylinders, each of less liameter than the preceding, werc introduced, as the unequal settlement of the ground rendered it impossible to sink the preceding set any farther. © By means of these, the well was suak to the total depth of one hundred and eighty-three feet. The cavities formed at the back of the cylinders by the pumping out of the sand, caused such extensive settlements, that the works were stopped, notil the plan of continuing the sinking with the water in the well was adopted. To this communication was appended a report from Mr. Simpson, in which he details the difficulties which had been met with, and particularly the extensive subsidence of earth caused by the removal of the sand. This far exceeded the quantity due to the contents of the well at the lower sand atratum, and the subsidence proceeded most rapidly when the water was pumped out of the well. The experience of wells near the metropolis shews that the springs in the chalk are much more abundant than in the sand, but in order properly to avail ourselves of these, there must be adits driven to anite the water from the fissures in the cavernous structure of the chalk. The report proceeds to speak of certain methods of securing the present works, and of prosecuting them, by either driving an iron pile curb, or sinking iron cylinders cast in entire circles. The former cannot be recommended, as a considerable further subsidence would be the conscquence, and the shaking of the ram would endanger the works. The latter is performed with conmon boring rods and tools, the shells or bnckets are fitted with valves opening upwards, and the material is raised by them with the greatest ease. When the cylinders become set, or when they do not sink in proportion to the material removed, they are slightly jarred by a heary sledge hammer. The advantages of keeping the water in equilibrium inside and outside the cylinders is very great, and the method has been in many cases most successful. The paper was accompanied by a section of the works and the strata, and by drawings of the various tools employed.

May 7. The President in the Clair.
J S. Ruseell was elected a Graduate, and H. C. Bingham an Asoociate.
"The Sewage of the City of Westminnter described and delineated," by J. B. Jones.

In the earlier statutes and writings on this subject the word acwage, or sewerage, is identical with drainage, as appears particularly from the act of Henry the Bighth, which is the general Sewage Act by wisich the Commissioners of Sewers are now guided, being for the most part applicable to fen land drainage. The metropolis and adjacent districts, comprehended within a distance of ten miles from the Post Office, are divided into seven distinct and independent truats, whereof five are administered by local acts, the other two by the general Sewage Act first alluded to. The sewers falling into the Thames within two miles of London, are, by the 3 rd of James the First, pleced under the Commissioners of Sewers, and the 47 th of George the Thirt defines and declares the powers given by the act of James. This statute, passed in 1807, was not acted on to any extent till 1813, the interval being employed by the commissioners in requisite arrangements. The principles of drinege, or conducting the superfluous waters to their proper outlets, are few and simple; but in the drainage of a town, the masses of buildings of all ages and all kinds of various levels, the concentrated mass of filth and the numerous conflicting interests, conspire to make the establishment of an efficient system of sewage one of the mont difficult, as it is one of the most important, ohjects to which the skill of man cen be directed. One great dificulty has arisen from the commissioners not being invested wiih powers enabling them to originate new lines of sewers, but being confined to improving those that exist, and controlling the construction of new ones. A large portion of Westminater is below the level of high water, and the drainage of buildings being optional on the part of the bnilder, there consequently exist insulared houses and dintricts of loathsome filth for want of sufficient compulsory powers on the part of the commissioners. The obvious remedy for these evils is, to give powers to the Commissioners of Sewers within their districts to compel every pernon to drain his property in an effective manner under their approval, and to form such new main lines as circumstances may render neceasary, and to impose general rates for their maintenance. A large plan or map whe exhibited of the city of Westminater, compileal from original surveys in the possestion of the Commissioners of Sewers, and laid down to a seale of one inch to two hundred feet ; the boundaries of the city and of the screral parishes, of the main lines of sewers, and of the collateral sewers, were marked rith different coloured lines; also a Book of Sectiony, cousiating
of more than one bundred sheets of tables and drawings, showing the districts drained by the main sewers, plans and sections on an cnlarged scale of all the main sewers, with the elevations of their several outlets or falls into the Thames.

Professor Wallace exhibited a pentograph of a novel construction, by which drawings may be copied or reduced and etched with great facility. Mr. Macneill bore testimony to the adrantages of this construction orer cvery other which he had seen, and stated that he had been enabled to finish a plan in three hours and a-half, which could not have been done by au ordinary pentograph in less than twetve hours.

May 14. The President in the Chair.
The Right IIon. the Earl of Orkney, and E. Lomax, were elected Associates : and W. Tooke, as an llonorary Member.
"A Dex ription of the Coffre Dam rownd the thirteen and fourteen feet piers of Westminster Bridge," by Licut. F. Pollock.

It was the intention of Labclye, the builder of Westminster Bridge, that none of the foundations of the picrs should be at a less depth than five fect below the surface of the bed of the river, but the effect of the removal of old London Bridge, and of the increase of the average difference between high and low-water, had in 1836 lowered the leed near the pier, on the castern side to within cighteen inches of the platform, being three feet lower than in 1829 ! and but for the works done under Mr. Telford's direction by Mr . Swinburne, and those which are now going on under the directiou of Mr. Walker and Mr. Burges, the piers would have soon become undermined. Labelye is supposed to have been deterred from attempting to lay the foundations by a coffre dam, from the difficulty of keeping it dry and of reaching the bottom; this is, however, now shown to be a groundless alarm, as onc has been constructed which is so tight that two men can keep it perfectly dry. The coffre dam, the construction of which forms the subject of this communication, is formed round the thirteen and fourteen feet piers at the west end of the bridge, for the purpose of sccuring the foundations and repairing the damaged arch stoncs. Previous to the commencement of the work fender piles were driven ten feet into the bed of the river, and arc five or six feet higher than Trinity high-water mark; a trench was then dredged in the intended line of the coffre dam to the level of the highest caisson; the first guage pile was driven on the 14th of July, and the first sheeting pile on the 24 th , and the water stopped out, or the coffre dam completed, in the short space of seven months. The author details the dinuensions of the timbers and the construction of the various parts of the dam, as represented in the lrawing accompanying the communication. There are about 40,000 cubic feet of timber in the dam. The mean depth of the mud in the dam, thic water being let out, was from four to five feet; underneath the mud, at about three or four feet above the caisson, is a stratum of red gravel of an arcrage depth of fificen feet, and below this is clay. The weight of the piers has bent down the caisson (as shewn in a drawing), but the timbers are still sound and good. The pressure against the dam, at an average high tide, is 1.775 tons.

The President remarked that there was frequently considerable ambiguity in the use of the term rise of the tide, and misconception as to the effeet of the renoval of old London Bridge upon the rise and fall of the tides. The water falls lower by three or four fect, that is, by the height of the sill which was removed, but the difference of level of high-water is very small, not more than a few inches. Theold London Bridge caused a sort of weir, varying from eight to cighteen inches, as the water ran up, but depending in a great measure on the quantity of upland water which was coming down, and sometimes there was scarce any difference of level on the two sides of the bridge.

The following premiums have been awarded by the council of the Institution of Civil Engineers during the present session :-

A Telford Medal in silver and 20 guineas to John Edward Joncs, for his paper and drawings on the sewage of Westminster. A Tclford Medal in silver to Charles IIood, for his paper on warming and ventilating buildings. A Telford Medal in silver to Charles Wye Williams, for his paper on the propertics and applidation of turf and turf coke. A Telford Medal in silver to Edward Woods, for his paper on the forms of locomotive engines. Λ Telford nectal in bronze and books suitably bound and inscribed, to the valine of three guincas, to Lieutenant Frederick Pollock, Bengal Engineerst for his description and drawings on the coffre dan at Westminster Bridge. A Telford Medal in bronze and looks suitable bound and inscribed, to the value of three guineas, to 1R. W. Mylne, for his communication on the well sunk by the New River Company, at their reservoir if the IIampsteal Road. A Tel. ford Medal in brouze, and books suitably bound and inscribed, to the value of three guineas, to John Buldry Redman, for his description and drawings of Bow Bridge.
The following are the subjects announced for Telford premiums for the ensuing year:-

1. The nature and properties of steam, especially with reference to the quantity of water in a given bulk of steam in free communication with water at different temperatures, as deduced from actual experiment. 2. An account and drawings of the original construction and prescnt state of the Plymouth Breakwater. 3. The ratio, from actual experiment, of the velocity, load, and power, of locomotive engines on railwars: lst. Upon levels; 2nd. Upon inelined planes. 4. Dravings and description of the outfall of the King's Scholar's Pond Sewer, and of other principal outfalls of the Westmin.
ster sewage; also, the inclination, dinensions, and forms of the sewers, and the olserved velocitics of water in them. 5. Drawings and descriptions of the sewage under the commission for Regent street, especially of the outfall at Scotland Yard. 6. Drawings and description of the best machine for describing the profile of a road, and also for measuring the traction of different Bads. 7. The alterations and improvements in Blackfriars Bridge. 8. The explosion of steam boilers-especially a record of facts connected with any explosions which have taken place; also, a description, drawings, and details of the boiler, both before and after the explosion. 9. Drawings, sections, and descriptions of iron steam vessels. 10. The comparative advantages of iron and wood as eroployed in the construction of steam vessels. 11. The advantages and disadvantages of the hot and cold blast in the manufacture of iron, with statements of the quality and quantity of materials employed, and produce thereof. 12. The causes of and means of preventing the changes in texture and composition which cast iron occusionally undergoes when in continued contact with sea water. 13. The properties and chemical constitution of the various kinds of coal. 14. A memoir of Sir Hugh Middleton, with an account of his works. 15. A memoir of Arthur Woolf, with an account of his works. 16. An account of the various methorls lately employed for preserving timber from dry rot and other sources of. decay. 17. On the best guage for the width of railways, with the result of the experience furnished by existing railways.

It is not the wish of the council to confine the Telford premiums to communications on the above subjects; other communications of distinguished merit and yeculiarly deserving some mark of distinction, will le retcarded.

ROYAL INSTITUTE OP BRITISI ARCIITBCTS.
Momday, July 8. Decimes Buston, V.P., in the Chair.
The Rev. Richand Burgess, B.D., author of various works on the Antiquities of Rome, was elected an Honorary Member; Mr. J. H. Browne, of Camden Road Villas, was elected an Ascociate.

A paper was ratd descriptive of a bridge of wood erected over the river Aln, in Alnwick Park, Northumberiand, by Mr. William Bernfather, socompanied by a model, and communicated by his Grace the Duke of Northumberland, Honorary Fellow. Robert Addarns, Esq, delivered the first of a serics of three lectures on Acoustics-sulject, on the divergence and propagation of sound, reflexion of sound, opinions as to the forms of rooms for 1 honic and aconatic purposes..

July 22. Earl de Grey, President, in the Chair.
Mr. John Green, of Newcastle-upon-Tyne, was elected a Fellow.
Various donations were laid upon the table, amongst which the following were announced :-The Duke of Scrradifalco, "Del iluomo di Monreale, \&c." presented by the author; Mous. Thiollet, various works published by him in P'aris; Dr. Moller, Honorary and Corresponding Member, "Memorials of German Architecture," by the donor.

A letter was read from Mr. Harcourt, descriptive of his artificial granite. Nso a letter from the Cav. Canina, Honorary and Corresponding Menber.
Mr. Clerichew, M.A., Associate, was announced as the authar of a series of Mr. Richardson's lectures on Geology, and entitled to the prize offered for the same, consisting of "Phillips's Lectures on Geology," 2 vols. The prive was presented to Mr. Clerichew by his lordship the President.

Mr. Addams delivered his concluding lecture on Acoustics-sulject, on the cause of reverberation, aud the means to be used to lessen or prevent it; interference of sound waves; effects of recesses, doorways, \&c.; wainscotted apartments, wood panels for ceilings, drapery, and other adjunctive ornaments, when and where allowable.

This evcning concluded the session.
The nuecting of this cvening was one of the best attended of the season, and certainly the most interesting. Bcing the last meeting, it was selected as an appropriate occasion to express to the late Honorary Secretary, Thomas Leverton Donaldson, Esq., the feelings of gratitude which the members of the institute cotertained for the indefatigable and ably-directed exertions of that gentleman during five years. A candelabrim, subscribed for by the nuembers individually, was chosen as the best testimonial of the personal fealings of the subscribers, and its presentation in a public manner invested it at once with all the eclat of mark of public appirobation and private esteciu.
Earl de Grey, the President, attested his interest in the proceedings of the cvening by his atteudance, and addrcssed Mr. Donaldson in an eloquent specech, which we regret to be unable to repor- He reminded the members present that the Institute, which although only of reccnt date has assumed a high rank both at home and abroad, which was supported by the talents of the highest meminers of the profession here, and recognised as an equal by the most distinguished foreign acadenies. lis lordship then presented the testimonial annidst the enthusiastic applause of the nembers and visitors.

Mr. Donaldson, with deep emotion, acknowledged the present in an appropriate speech, which was respondcd to by the warm greetings of the audience.

The testimonial was mauffactured by Mr. Beajamin Smith, of Duke Street, Lincoln's Inn Fields. It consisis of a superb candelabrum in frosted silver, standiug on a triangular basc, with feet enriched with the boneysuckle ornament; tifo of the coppartment of the pedental contain the ams of the
institute nnd Mr. Donaldsoa, the other compertment castains the following appropriate inscription :-

INSCRIPTION.
From his professional Brethren,
Members of the
Royal Institute of British Architects, to
Thomas leverton Donaldeon, on his retirement from the office of Honorary Secretary;

- a tribute of personal esteem,
aad an acknowkedgracnt
of his efficient and constant services towards establishing the Institute and
in promoting its welfare.
July, mocccexxix.
On the tos of the base is an omament representing the farulous oright of the Corinthian capital, from which rises a stem surmounted with a richly cot glass dish for flowers or fruit, and branching from the top of the stem are also four richly entwined foliage brackets, each carrying a light or a cat glass dish, so that the testimouial may be ueed either as a condeIabrum epergne.

MANCHESTER ADCHITECTURAL SOCIETY.

firet convergatione of the season.
The firat converatione of this cocicty, during the present season, yras held on Wedneaday evening, the 3d ult., in their rooms, Cooper Street, the wath of which were hung, on this eccecion, with a number of oil-paintings, water. colour drawings, engravings, Suc., not only exhibiting architectaral deagns and fine edifices, but also landscapes, marise views, suc. On the teble was a chaice cohlection of books and graviags.

The chair mas taken by Andrew Hall, Eeq., procident of the socioty, when, after expresaing a hope to see these conversationi still more pumerously stended in the longer evemings of the coming autumn and winter, atated the since the last season several improvements had been effected in the cociety. A musemm had been determined ou, which was to consist chicfly of specimese of building materials, auch es verious kinds of stome and wood, bricics of diffenent forms, qualities, and make, sections of inon beams, \&cc, andi indoed any this interctaing as a material entering into the construction of buitding, th well is cats of ornamental architectare. Iie trusted that each member woode do his best to obtain contributions, and in evary way to improve the adventages offered to students by thin society. After the members had billoted for and unanimously elected Mr. Robert M'All, san of the late Dr. M'All, as a member, two or three subjects were discussed as having an indirect bearing on the inpportance and utility of the profemion goeertilf. It apperred that the tocity had chrongh its secretary, Mr. J. W. Kance, subsegted to the building conumittee for the St. George's Hall, Liverpool, the dearableness of a problic exhibition of the competing detigns for that ectifice, previoudy to the amouncing of their reward. To the letter conveying the reatetion of the rociety, wo reply had been received. It tya aloo ctated that the reseon asigned by the 8t. George's Hall committee for mot extending the tim for formishing designs, in compliance with the request of refous architecte, win, that it was ecceasary to heve the drewings before them, and te decide on the ont to be adopted within two months, so as to cotnmemes the woils withort delay. After some conversation, the secretary was requented egais to write to the secretaries of the St. George's Hall committee, requentirs an menrer to his former ietter.

The Presideat next drow the attention of the society to the lete atrenge coeduct of the Gresham committct, in reference to the printed inatructions to trchitects, insued by them, as to plans for the new Royad Bxemareg of London. It sppeared that the committee bad merely given the dimesiono of the various rooms, withont having at all indicated the purposes for which they were required; though surely the object aad use of as apartmona ond to have something to do with the design for it interior, it embeltithemer and atyle of fruish. It what ant supposed that this had been an accidnated omistion, and the Royal Inmetute of Hritish Architecte and the London Architeetural Society eccordingly appied for this information, and the repty wea 20 the effect, that the Greshan committee, haviag sent out their instructioes to architects, could not alter what had been done, except to sey that the rooets were required for three distinct companies. To the application of the Biniot Institute, they also reppied that they conld not grant an extention of the time for furtishing phans. After semp discumsion, it wim nesolved, with one or two tisentiente, "That this moeting feele bound to protest againat bach coedrat an thet recemtly exhibited by the Gresham commitwee for the erection of the Royal Exchange, in refercace to the inquiry made of thens by the Royal lostitute of British Nrchitects, and the London Arctitectural Socicty, wiemding at once to degrede the profession, to deteriorate the public taste, and to isjure the utility and object of the edifice in question. "Thants ware voted to the editor of the Civil Buginetr and Arobifectr' Jownal for having lat a pian of the Royal Bxchange, and the comnnittee's instractions (for Which the comvitter eharged 1 1. to arehitects) for froe ingpeetion in hit oftce and thes

price of permistion to compete for plans for the exection of a public edifice. The conncil recemmended to the mociety (for cenaideration and adoption at ite pext meeking) the establishment of a class of younger memberi, to be called associstes, at a lower rate of admission-to bave the use of the liftrary and cants and the musearn, but to be inoligible to the eouncil, and to have no vote.-Abridgal from the Memobester Guardian.

british association for the advancement of scibnce.

This ascociation has issucal the usuad circular for the minth meeting at Birmingham, and fixed for the week commencing on Monday, the 26th of Angust, nn the evening of which day the Rev. Vernon Halcourt, the president clect will take the chair. It is requested that members who may have reports, original memoirs, apparatus, models, or other communications to lay before the association, will forwand the same before the 10 th of August, and state their general nature and probebte extent, in letters, addressed to the Assistant General Secretary of the British Association, Philosophical Institution, Birmingham. A room has been provided for the exhibition of philosophical apparatus, models, machinery, specimens of nutural and artificial prodacts, manufectured articies, \&c.; and it is especially requested that those who desire to take advantage of this arrangement will be careful to scnd, with the objects which they exhibit, an exact description of their fabrication and use. Information for members, on their arrivel, is to be given the Pree Grammar fichool, New Street, at which place there will be an attendance of proper persons for that purpose daring the wrek of the meeting and the preceding week. Every accommodation which this commodious and magmificent edifice effords will be given to the philosoplrers. Thomas Knott, Rsq., one of the most vehuable pablic men in Birmingham, is bailiff of the school this year.

ExBAN 2 Avianyiot.

Weaw Ships.-We leam from the Arany and Namy Chromicle that the tw steam-ships which liave been orlered to be lualt (one here, and the other a Plitadelphia), are to de constructed upon the same molel, and are iotended to be as near alike as possible, with the exception of the engines. To test the comparative alvantages of the two descriptions of engines adopted, one of the steamers is to be fitted with inclined engines, of ten-feet stroke; the other veagel to have two vertical engines of the same power uf seven-feet struke. The dimensions of the hull are reported at

Slean Nnoigation between Boaton and England.-The arrangements have been completerl for establishing three steamers on this line, of 1,000 tons each, and the British Guvernment have contracted for eigit years to pay the proprictors 270.000 dollars every year, for the transportation of the mafls in these slige. They will ply once a fortsight, after the first of May, $\mathbf{1 8 4 0}$, ealling at Italifas and Nova Scotia-Borton Trawoller.

Sterem Commenication with Aoverica.-We learn from Paris that M. Con'e, director of the post-office, has presented to the government a project for the cmiablishment of steam-packets between Bordeaux and Now York. According to this scheme twedve packets, of 450 horse-power, are to be employed upon this service. The packets might promptiy be transformed into shipe of war. A wet dock is to be oprned at Pacillac in orjer to receive them. A steamer of 150 horse-power with be employed to tow up to Bordeaux sum of the packets as mny come and take their cargoes there, so as to prevent accidents to their machimery. This fine scheme will require an outlay of $22,000.000$. It appears to have been recetved by government with great favour. M. Come has been ordered in present his plan on the opening of the next session.-Conrrter ie Bordeama.

The Irom Steam-Boat, Bridegroom, was launched on the 13th of June, and on the $16 i \mathrm{~h}$ was running with passengers on her station, two days and a -half only being occupied in fixing and completing the boiler and engines. On the l7th she ran with the Naiad (a buat built on the diagonal buard plan, and hitherto said to be the lightest possible mode of building), and heat her in the distance from Blackwall to Woolvich half the length of the dockyard, although the Naiad was one-thinl her superior in power, and allowed to be the fastest boat upon the Woolwich station.

The from Steant Vravel, Orwell, of 32gytons, and 80 horse-power, built for the I prwich Steam Navigation Company, wat launched from Mesars. DitchLurn and Mare's ship-building yard, Blackwall, on Thursiay, Jane 27.

Iamneh of an Iron Stermer.-On Saturday, lst July, there was launchod, from the luikling yard of Mr. Juhn Laird, North Birkenlead, an iron steam vessel. callet the buchess of Iancuster. She is about 220 tons, and 90 horse power. and is mended to ply letueen Liverpoul and I, neavior, with gousls and prasengers. She will be of light draft of nater with a full cargo-Manchisher Adiwrliser.

Manchester and Leeds Rnilusey.-The first portion of the line from Manchestec to Litlieborough, was opened on Thursday, 3rd ult., and a great number of pertions iravalled betweon thow towns. The joursey from Hatifax to

guarters, is nuw performed in little more than two hours. When the mail bags are sent by the railway to Littleborough, an arrangement uhich will, we hope, be soon adopted by the post-office authorities, the Halifax levers will arrive an hour carlier than at present,-Halifax Express.

Birmingham and Derby Raihray.-This railuay, it is stated, will be upened to the pulbite on Munday the $12 i \mathrm{~h}$ inst.

North Midkawd Rnilwny.-Mr. Jackson, of Lundon, contractor for the work: on the line of the North Midland Rallway, from Bull Bridge to Belper, has taken the contract for the station at Derby. The eatimate is alrout 79,000 .; the works to le completed in six months.

Edinburgh and Glusgow Railway.-The works on this impoutant railway are making very great progress. and when completed will compete with any simitar undertaking in the kingdom, both in execution and extent of profis. The three extersite viaducts over the Joun, the Redlume, and the shenond valleys, consisting of 20,15 , anl 36 arches, of from 50 to 60 foet span carls, have been contractel for by men of skill and great experience, cossiderably under the parliamentary estimates. This wilf make the average per mile, including for land and rails, not exceeding 20,000 . When these works are compared with others of a similar nature executed in this country, the directors are justly entitled to a very considerable durrer of credit, for the attention they have devoted to the interest of the sharehohlers, for the result of their haloura will be without a parallel in the bistory of railways. The whole line will be completerl in 1841. We understand that the south earl of the (ilasfow, Paisley, Kilmarnock, and Ayr Railway will be opened in July. From the nature of the comtry, and the price of lafour and materials bing so much cheaper in Scotland than in lingland, this work will ber completed for 11.600. per mite. The fatinbtrglt, Leith, and Newhaven Railwiay Amended Bifl has passed the House of 1 arls, and is now only waiting the royal assent. The eatablishmeat of this line of communications, by męans of a tunnel under the new town of Lidinburgh, with the sen coast, is of the utmost importance to all the Scotch railways; for thus, as their termini they have scaports in the Frith of Forth, the Clyde, and the Ayrshire coast and connecting the whole manufacturing distrivt of Scotland, with the facility of steam-buat communication, will, in a very short period, improve the commercial prosperity of this valuable portion of the British empire, and amply repay the sharehokders for their enterpising epint in promoting works of so important a character.-Glasgou paper.

Glasgow and Paisley Joint Raitucay.-The key-stone of the railway bridge over the river Cart, in Paisley, was set by Mr. Firrington, the engincer, un Saturday, amid the cheering of the workmen. The bridge was designed by Joseph Locke. lisq.. and we extract the following description of its dimensions from the Paisley Adontiver:-"As this is the Jargest arch on the whole line, we may state two or three particulars regarding it. The span is 85 feet. The top of the abutnente, from which the arch appears to spring, is 25 feet 4 inches alove the bed of the river. The additional height to the lower part of the arch, or, as it is ealled, the rise, is 18 feet. The total height from the bed of the river to the top of the parapet will be 54 feet 2 inehes. The breadth over the parapets will be 28 feet. We have stid that the arch apprars to spring from the abutments, but the truth is it springs from the foundation, eigitt feet below the bed of the river, and is carried up with the same radius alf the way. A line, stretching from the foundation on the one side, over the arch, to the fuundation on the other side, measures 182 feet. The depth of the epriugers, which weigh frow two and a half to three tons each, is six and a half feet. The depoh of the other stones decrease as they approach the top, by the following gradations :- 5 feet, 4 feet 8 inches, 3 fret 8 inclues, and 3 feet. Exclusive of the springers, thero are 63 stones forming the arch, each measuring in breadth nineteen aswl a-half inches. The smallest stones used in the arch contain 18 culjic feet, and weigh from 27 to 28 cwt . The stones in the two abutments weigh about 2.200 tons, and those in the arch itself wrigh atout 900 tons. The way in which this tridge has been ereeted, has drawn oxpressions of approbation from almost every beholder, acientific, practical, and ordinary. The supports in the river were put up with great strength, and on the most improved principle, so as to remove every sensation of tear, either from wurkmen or spectators. The stones were all conveyed to the crown of the arch on a temporary railway, and in witnessing, from the Old Bridge, the trucks moving upwards, they looked like a luge land turtle creeping up a hill with a sheep on its back Fivery thing was done in a quiet, catm way, which would have let one to suppose the operation one of the most ordinary descripion. The arch will be a standing monument to Mr. Iyon's crectit, and we congratulate thim on the safe placing of its last key-stone."-Greenork Adeertioer.

Raifung from Florence to Leghorn.- We leam from an esteemed correspundent. that the promoters of this railway have submitted to the imperial government, for its sanction, a report apon the project which they have recoived from Robert Stephenson, Fiq., the eminent engineer, who has lat"ly returned to this country after a personal inspection of that part of Jtaty. The fine determined upon by Mr. Stephenson will commence at Leyborn, ncar the new dock, pass near the city of Pisa, and thence proceed tou ards Pontedera, almost parallel to, and in the immediate vicinity of, the ruyal posting road. It will then keop to the left of the Arno, passiug near Fimpoli and Montelupo, and, crossing the river, proced along its right hank as far as Fhorence, where it will terminate within a short distance of the Porta al Prato. Mr. Stephenson states that the groposed line can he construc!ed at small cost, as it traverses a district almost perfectly level, thene being only two points nt which works of any magnitude will occur. Mr. Stephenson is of opinion that the sum required for the completion of the railwiny, including land. compensation, and the necessary establishment of engines and carriages, will be about fifteen millions of 'luscan livres, and that the whole may be finished in four years from the commencement of the works. Ile recommends that the line be undertaben in four distinct sections, the first being that from Leghorn to Pisa, which he thinks might be fipished in fiftecn months, and which would give the contractors and other partiet

Railuay from Vruice to Milan.-One of the most stupendous works of modern times is a projected rallroad from Venlec to Milan, connecting the seven richest and most populous cittes of Italy with each other, Venice, Padua, Vicenz , Verona, Mentua, Brescia, nad Milan ; the most gigantic portion will be the bridge over the fagoons, connecting Venice with the main land. The length of the railrond will be 166 Italian (about the same in Finglish), miles, passing through a population of thrce and a lalf millions, the seven, cities havmg alone a pupulation of half a million, viz., Venice, 120,000 , P'alua 44,000, Vicenza 50,000 , Verona 46,000, Mantua 34,000, Briscia 42,000, and Milan 180,000 inhabitants, to which may be added 20,000 foreigners in Venice and Milan.-Foreign Quarterly Review.
Brighton Raihoay.-A half yearly meeting of the proprietors was held on the 18 th ult. at the London Tavern, when a very satisfactory report of the Directors and of the Engineer, Mr. Mastrick, was read; the report of the latter contained a full account of the progress of the railway on the whole length of the line, which is divided into 18 contracts; we regret that we have not space to give this report, but must confine ourscives to the following extract.

The following in a mmmary of the earthoork removed and to be removed on the line, and of the mes and horses employed on the works:

No. of contract.	Quantity of carth work removed.	Quantity of earthwork to be removed.	Number of Men.	
1	115,000	94,425	277	39
2	328,000	138,494	228	34
3	297,000	290,203	290	18
4	Tunnel just begun.	...	290	25
5	398,000	441,381	680	65
6	147,000	245,873	280	50
7	148,523	354,876	177	12
8	Tunnel just begun.	204	20
9	125,143	310,982	29.4	34
10	The Viaduct.	. . .	208	54
11	100,410	448,999	420	57
12	27,000	526,710	120	12
13	320,000	400,000	440	60
14	Tunnel just begun.	,	178	11
15	50,000	662,000	300	21
16	Not begun.	341,121		
17	230,000	60,000	203	31
18	130,000	112,000	180	27
	2,416,076	4,427,064	4,769	570

The Directors will perceive from the foregoing summary that one-third 0 the whole of the earthwork hes been excavated, and this has been done in a period of eight months; from which it might appear that sixteen months more would be required to remove the remainder; but as the commencenicut of the works upon every contract it requires a considerable time to stock it with materials, wagons, horses, \&cc., the above jeriod is no criterion of tine necessary to complete the remainder. I truat, therefore, you are satisficd with the progress of the works ; and I have only to add, that the whole of the railray can be opened to the public within eighteen months.

GREAT WESTERN RAILWAY-THE BOX TUNNEL.

One of the greatest obstacles to the accomplishment of this stupendous undertaking wat found to exist in Box Hill, a large cxtent of elevated ground lying directly between, and about equi-distant from, Chippenham and Bath. This hill, the higheat part of which is about four hundred feet above the proposed level of the rail-road, could not be avoided; to make an open cutting through it was impossible, and to perforate it was thought by many equally so. Nevertheless Mr. Brunel, with that boldness for which he is so celebratd, adopted the latter plan, and accordingly it was determined that a tunnel, one mile and three quarters in length, forty feet in height, and thirty feet in width, should be made through the lill. The extraordinary attempt of looring through this immense mass, consisting in great part of solid beds of free-stone, was commenced in the summer of 1836 , and will, it is hoped, be completed in 1841. The difficulties that have stood in the way of the performance of this great work, particularly that part of it on the east, or Chippenham side, have bcen appalling; but hitherto they have been surhounted hy the enterprisc, skill, and perseverance of Mr. Brewer, of Rudloc, aud Mr. Iewis, of Bath, the gentlemen who contracted with the directors for the completion of that portion of the work. Their contract extends from shaft No. 8 , which is sunk at the proposch mouth of the tunncl on the east side, to a point three hundred yards towards Shaft No. 6, and altogether 2,418 feet from the entrance at the Chippenham end, this portion Messrs. Brewer and Iewis confidently expect to be able to finish in January next.

Independent of the difficulties arising from the laborious nature of the undertaking, the constant flow of the water into the works from the numerous fissures in the rock has been constently most anuoying, and in the rainy season so formidable as almost to destroy all hope of being able to contend with it. In Norember, 1837, the stenm-pump then employed being quite in-
adequate to the task of making bead against it, the yater increased so farfully, having filled the tunnel and risen to the height of fifty-six feet in the shaft, as to cause the total suspension of the work till the July following. This would have caused may persons to have ahandoned the work in despair, but Messrs. Brewer and Lewis determined to fulfil their contract if posible. erected a second pump, worked by a steam-engine of fifty-hone power, and had the satisfaction of vanquishing their enemy and resuming their wort. A few months afterwards (in Nov. 1838) the works were again stopped by 2 a influx of water, which, however, was got under in ten days, the engine dis. clarging 32,000 hogaheads of water a day.

The tunnel between Shafts No 7 and 8 (1,520 feet in length) is entirnh finished at the roof, and for six feet below it, where the base is fourteen feen wide; but half-way between the two shafts there still remain about three huudred and fifty feet of cutting to be done, which is expected to be clearod away some time uext month. In this portion of the work Messn. Brener and Lewis commenced their operations at each end, worting towads ibe centre; and when the two cuttings closely approximated, much anvet! was felt lest a straight line should not have been kept, and the ouion of the two portions of the work should not have been true; but on breaking through the last intervening portion of the rock the accuracy of the beading was proved, and to the joy of the workmen, who took a lively intereat in the result, and to the triumph of Mcssrs. Brewer and Lewis's scientific working. it was found that the junction was perfect to a hair as to the level, the tio roofs forming an unvarying line, while at the sides, the utmost deriution from a straight line was only one inch and a quarter. This, in a cutting of 1,32 feet in length, begun, at opposite ends, and worked towards a common centre is, perhaps, unexampled in the annals of tuanelling.

The cutting on the Chippenham side has bitherto been, and it has elradr extended two thousand feet, through one solid bed of freestone or superion oolite, in many places one lundred and thirty feet thick, and lying apon 1 bed of fuller's earth, or clay, onc hundred and twenty feet in thichness: under which blue marl, resting upon lias clay, is found. So uninterroped and compact is the rock through which this end of the tunnel passes, that so masonry is required in any part of it, the stone itself forming sides and root and nothing lecing required at the bottom but the rails on which the carriags will run-Abridged from the Wiltshire Independent.

A large statuc of a female figure representing France, clothed in flowing drapery, and bearing a crown of stars, is now in process of termination in one of the ateliers of the Institute. It is to be placed in the contre of ibe Place du Palais Bourbon, in front of the Chamber of Deputies, aul this ypure will henceforth bear the name of the Place de France.

The President, \&cc., of Columbia Collego, Now York, have agreed to plase the gildel crown, which formerly adorned the cupola of the college premus to the revolution, upon the figure-heal of the British Queen steancr, caperid at Now York lluring the summer. This superbly raade crown has remand in their library since 1777 .

Organic Remains.-In excavating for the Great Western Railway, a for days since, a remarkable fine tusk of the Mammoth was discovered lyiny on a bed of new red sandstone, about seven feet below the surface. betwpen the Bristol Conton Works and St. Philif's Bridge. The tush, together nith sme very beautiful sjecimens of iron and lead ore, found near the same spou, have been kindly brought to the Philosophic Institution by Dr. Fairbrother for the inspection of the mombers aud their friends.-Cambrian.
Russia.-At a general meeting of the shareholders in the Zarskojeselo ral. roal, held at St. Petersburgh at the end of last month, it appeard bs bit te port of the directors, that the cost of the formation of the roail and its satrmi had amounted to $5,281,667$ roubles. The original calculations wrer foundes upon the anticipation of 300,000 passengers within the year, but, during the preceding twelve months, the number of travellers letween the capital and Zarskoicselo hat amounted to 500,000 , and the number which passed ajen: the whole line to and from Paulowsk was 707,001. The reccipts amountalio 920.237 roubles. At the end of the first nine months the reccipts csorded the expenditure by 316,976 roubles. Of this balance 90.000 roubles were ar plied in paying the interest and reimbursing the loan from the cronn: an! 140,000 roubles to the payment of interest on shares; 15,848 rcubles wire d: vided, according to the statutes, among the directors; 1,555 roubles were ${ }^{[W]}$ to the chief engineer; and 69,572 roubles were carried to the reserved furd.

The experimuntal praving of Oxford-street.-Another of the specimens et asphalte paving-vi\%., that laid down by the Scoteh Asphaltum Cumpant has given way (although repaired since it was firat laid) under the catsof. dinary traflic of Oxford-street. The specimen was 50 feet by the widh the road, containing 210 square yards, and when laid down, with what wa consiblerel by the asphalte and bitumen companies most extraodinary and unparalleled expelition, the work occupied 11 days. The road was strippelin Thursday night, 4th ult., by the parish workmen, under the direction of Mr Scaice, the surveyor of Mary lebone, of the Scoth asphatium contaned in the above-mentioned space, and marly the wla,ke repaved with Alerkes. granite, groutel, and comple:ed turing the follosing day, the ruad hent open to the public to the extent of about two-1hirds of its width early in the afternoon of triday. The only specimens of the experimental paving no remaining in this great thorouglifare are those laid down by the fid: Travers Company, the Bastenne and Gaujac Bitumen Company, a portion of priante paving filled upand cemented together by Claridge's asphalu. and the wooden blocks. Among these specimens no material alicration bas taken place,-Tines,

PROCEEDITGS OF PARLIANEITT.
Huus of Commons.-List of Petitions for Private Bills, and progress therein.

Aberbrothwick Harbour
Alenleen Hartour
Ballochney Railu:y
Darnsley Waterworks .
Bath Cemetery
Relfast Waterw orks
Birmingham Canal
Birmingham Canal
Birmingham \& Glos. Riway.
Bp. Auckland\& WeardaleRa.
Blackheath Cemetery
Bradford (York) Waterworks
Brighton Gas
lirighion Cemetery
Bristol \& Gloucestershire Ra.
British Museum Buiklings
Brompton New Road
Cheltenham Waternorks
Commereial (landon aud
Blackwall) Railway
Dean Forest Railway
Deptforl Pier
Deptford Pier Junction Rluy.
1eptford Steam Ship Docks
Fklinburgh, Leith, and New-
haven Railway .
Fyemouth Hartour
Frasertargh Harbour
Giencral Cemetery
Gravesend Gas
Great North of England Ra.
Great Western Railway
Great Central Irish Railway
Herefordshire and Gloucestershire Canal .
Henre Gas
Liverpool Dreks
Liverpool Buildings
Liverpool and Manchester
Fxtension Railway
London and Birmingham Ra.
1amion Bridge A pproaches, \&e.
Lomion \& Croydon Railway
Lonulon Cemetery
London \& Greenwich Rlway
London and Southampton (Guildford Branch) Rlwy. London and Southampton (Portsmouth Branch) Ra.
Manchester \& BirminghamRa.
Manchester and Birmingham
Fixtension (Stone\& Rughy Ra
Manchester \& Leeds R/way.
MaryleboneGas \& CokeComp.
Monkland \& Kirkintilloch Ra.
Necropolis(St.Panc.)Cemetry
Newark Gas
Newcastle-upon-Tyne \& N.
Shields (Extension) Rlwy.
Northern \&c Rastern (i)Rlwy.
Northern\& Eastern(2)Rlwy.
North Midland Railway
Norh Union Railway
NottinghamInclosure \& Canal
Over Darven Gas
Perth Harlonar \& Navigation
Portisheul Pier
Preston Gias
Preston and Wyre Railway
Fremton and Wyre Railway,
Harbour, and Dock
Redcar (No. 1) Harbour
Redcar (No. 2) Harbour
Rishworlh Reservoirs
Bochdale Waterworks
Rochester Cemetery
Sawmill Ford Bridge \& Road
Slamannan Railway
South Eastern Railway
S. Rastern (Deviation) Ra.

Teigamouth Bridge
Tyne Dock
Tyne Steam Ferry
Walsill Junction Canal
Weat Durharn Railway
Westminster Improvement
W'ishaw \& Coltness Railway
Wyrley and Kesington and - tirmingham Canal

	Bill read first time.	Bill read second time.	Bill read thired time.	Royal Assent.
Feb. 6.	$\overline{\text { Feb. } 27 .}$	Mar. 12	Apr. $\overline{5}$	
Feb. 8.	Mar. 15.	Apr. 15.		
Feb. 12.	Mar. 14.	Apr. 8.	May 3.	July 1.
Feb. 21.				
Fel. 22.				
22.				
Fel. 20.	Mar. 15.	Apr. 12.	June 13.	July 1.
Fel. 21.	Mar. 15.	Apr. 1.		
Feb. 22.	Mar. 18.	Apr. 15.		
Feb. 22.	Mar. 18.			
Feb. 21.				
Feb. 21.	Mar. 18.		May 31.	
Feb. 21.	Mar. 18.	May 28.		
Feb. 21.	Mar. 7.	Mar. 19.	May ${ }^{\text {May }}$ 3.	
Feb. 22.	Mar. 18.	$\begin{aligned} & \text { Apr. } 12 . \\ & \text { Apr. } 30 . \end{aligned}$	May 3.	.-
Feb. 22.	Mar.12.	Mar. 22.		
Feh. 14.	Mar, 8.	Mar. 21.	June 20.	-.
Feb. 19.	Mar. 18.		June 21.	July 19.
Feb. 22.	Mar. 18.	$\begin{aligned} & \text { May } 28 . \\ & \text { May } 28 . \end{aligned}$	June 21.	$\begin{aligned} & \text { July } 19 . \\ & \text { July } 19 . \end{aligned}$
Feb. 22.				
Feb. 19.	Mar. 11.	Mar. 27.	May 30.	July 1.
Feb. 12.		Apr. 8.	May 28.	..
Feb. 20.		Apr. 8.	Apr. 16.	
Feb. 20.	Mar. 11.	Mar. 21.	June 7.	
Feb. 21.	Mar. 18.			
Feb. 18.	Mar. 13.	Mar. 25.	May 3.	June 14
Feb. 14.	Mar. 4.	Mar. 13.	May 1.	June 4.
Mar. 12.		-		
20.	Mar. 13.		.	ne 4.
eb. 22.	.			
Feb. 21.	.			
Feb. 21.		May 28.	-	
Feb. 14.	Feb. 28.	Mar. 12.	May 13.	.
Feb. 8.	Feb. 22.	Mar. 6.	May 30.	June
Feb. 19.	Apr. 11.	Apr. 26.		\cdots
Feb. 19.	Mar. 18.	Apr. 8.	May 3.	une
Feb. 19.	Mar. 18.			e 4
Feb. 21.	Mar. 18.	Apr. 8.	May 3.	ne 4
Feb. 22.	.			
Feb. 6.	Feb. 25.		May 3.	
Feb. 18.	Mar. 18.	Apr. 23.	..	ly
eb. 11.	May. 1.	May 14.		
Feb. 18.	Mar. 8.	Mar. 19.	May 30.	
Frb. 22.	Mar. 18.			
Peb. 12.	Mar. 14.	Apr. 8.	May 3.	,
Feb. 21.	Mar. 15.			..
Feb. 14.	Fcb. 28.		A pr. 18.	
Feb. 18.				
Feb. 22.	Mar. 18.	Apr. 16.	June 4.	July 10.
Feb. 22.	Mar. 27.	Apr. 16.	June 4.	July 19.
Feb. 11.	Mar. 4.	Mar. 14.	May 1.	July 1.
Feb. 22.		\cdots		
Fel). 19.	Mar. 18.			
Feb. 21.		Apr. 12.	June 3.	
.		.	May 2.	June
Feb. 22.				\cdots
Feb. 6.	Feb. 20.	Mar. 6.	Mar. 19.	
Feb. 6.	Feb. 20.	Mar. 4.	Mar, 15.	July 1.
Feb. 21.	Mar. 18.	Apr. 12.	Mar. 15.	July 1.
licb. 19.		Mar 30	-	
Feb. 22.	Mar. 27.	Mar. 30.		
Feb. 21.	Mar. ${ }^{6}$	Mar. 26.	May 30.	-
el. 7.	Feb. 21.	Mar. 6.	May 6.	
eb. 22.	Mar. 18.	.		
eb. 21.	Mar. 18.		June 10.	
Feb. 12.	Mar. 18.	Mar. 27.	May 28.	July 1.
Feb. 11.		Mar. 25.	May 15.	June 14.
Feb. 22.	May 6.	May 30.	June 19.	July 19.
Feb. 21.	Mar. 15.	May 7.	June 13.	
Feb. 21.				
Feb. 22.				
Fch. 21.	Mar. 18.	Apr. 8.	May 14.	July 4.
Feb. 21.				
Feb. 12.	Mar. 14.	Apr. 8.	May 3.	y
Feb. 18.				

EMGIREMEITG WORES.

The Patent Rolative Disc Engine.-Mr. Whishaw having been requested to examine and report on the principle of construction of the Rotative Disc Engine, and to institute a comparison between it and those of the reciprocating kind, devoted a week to the purpose, and examined six different engives, the whole of which were represented by the parties at whose works they are in use, to have performed their duties most satisfactorily. One of these engines (Mr. Whishaw observes) has been working for fifteen months, and has only required during this period the expenditure of three shillings for repairs. Mr. Whishaw continues:-"The advantages to be derived from a rotative engine of simple construction, yet producing a mechanical effect equal to one on the reciprocating principle, at much less original cost, and with less expenditure of fuel, must be obvious to every one. Such a machine has long been a desideratum amongst engineers. The attempts which have hitherto been made to sccomplish this deairable object, so far as my knowledge extends, have failed, either from the motion of the various parts of the machine being such as to produce so great an amount of friction, and, consequently, of rapid destruction; or from the engines requiring a greater supply of steam to effect a given amonnt of work. In my examination, therefore, of this invention, I have particularly directed my attention to these two important points. As regards the first, I find the moving parts of this engine are so few in number, and their motion so uniform and regular, that the amount of friction must be very materially reduced; the wear, therefore, of these moving parts, and their liability to derangement, will be reduced in a proportionate degree. This opinion is fully borne out by the examination I have made of several engines, which have been in operation for a considerable time; some of these were taken to pieces in my presence, for the purpose of ascertaining the wear of the moving parts, the amount of which appeared so small to be inappreciable. With respect to the second, viz., the quantity of steam reqaired to perform a certain amount of work-I have made several trials with an engine of this construction at the works of the British Alkali Company, near Bromsgrove, which is applied to a great variety of work, but as a considerable portion of the duty performed consists of pumping, I was thus enabled to make such a comparison between the different portions of the work, as to obtain an accurate indication of the whole duty performed. The result of these trials is, that the work done by this twenty-four inch Disc Engine, working with ateam at 29 lhs. pressure, is equal to tweuty horses' power, after making ample allowance for friction; and the consumption of fuel (common Staffordshire coal) is equal to two hundred weight per hour, or rather more than eleven pownds per horse per hour. This engine is worked by high-pressure steam, which, after performing its duty, passes into the atmosphere; and, during the experimental trials, 1 found, by the mercurial steam guage, that the average pressurc was equal to 29 lbs . on the inch; but in order to work this engine to the greatest advantage, the pressure should be considerably increased. I am informed, that this engine was fixed upwards of twelve months ago, at which time the patentees had not acquired the experience in its construction which they now possess. Taking all these circumstances into consideration, viz., the want of experience, the disadvantageous presture at which the engine is working, the inferior quality of coal used, and the amount required per horse power, and, moreover, that this amount does not exceed the quantity consumed for a high-pressure reciprocating engine of equal power, I am of opinion, that Rotative Disc Engines, constructed with all the advantages necessarily to be obtained by experience, will be found to be decidedly economical re regards the consumption of fuel. Tnis engine, which I find to be equal to twenty-horse power, with steam at 29 lbs . would, with steam at $43 \frac{1}{}$ lbs., be equal to thirty-horse work. It occupies a space equal to four feet square by seven feet high, and its whole weight, including the frame, is 41 cwt .3 qrs. $16 \mathrm{lbs} .$, but as the frame of this engine is too light, an additional weight will be necessary for giving stendiness to the machine, which would probably increase the weight to 24 tons; whilst, I am informed, that the weight of a high-pressure reciprocating engine of equal power would not be less than twenty tons. The foundation of this engine consists of brick-work nccupying four feet square by five feet deep."-Abridged from the Mfid. Count. Herald.
Devonshire.-An iron bridge of three arches, each 30 feet span, is to be erected over the river Ottrr, near Newton Poppleford, under the directions of Messrs. Green and Son, of Exeter.

Rochester.-We are informel that the foundation stone of the new bridge over the river Dove, will be laid on Thursday, the 8th day of August next, at 12 oclock at noon; and that the commissioners and their friends dine together at four oclock on the same day, at the Black Swan Inn, Uttoxeter. The stone will be lajd with masonic honours.

Worcester and Birmingham Canal.-At the last half-yearly meeting of proprietors, held at Worcester, it was stated that the company had engaged a fredging machine, for the purpose of taking out the shoals in the Severn below Worcester, with a view to remove those impediments to trade which now exist. The operation is expected to be commenced in about two months.

Ribble Navigation Improvement.-We are enabled to state, from the best sources of information, that the operations of the Ribble lmprovement undertaking are procceding most satisfactorily. The cunstruction of the cofferdam is completed, and everything is in readiness for commencing the dislodgement of the water on Monday next; the engine ard all the pumping
apparatus being quite in readiness for work. As soon as the water is pumped out, a number of masons. \&s nany as there will be room fur, will commence the excavation, so as to clear uut the rock in the shortest possible time. Evorything has hitherto gune on most favourably; and shoutd the autumn turn out to be a dry geason, the directurs have very confident expuctations of fiaishing this year the removal of all the rock requireal for the accumplishment of that department of the projected deepening. The cxcavation will be effected in threc separate portions, that compr sed in the present coffer-dam being the most difficult length. It is most gratifying to add, that, unlike most of the great undertakings which mark the enterprise of the clay, it is computed that, as regards the excapation of the rock. consideral, originally, the most formidable part of the Ribhle Improvement, the seinal cost will be considerably below the estimates. Simultaneously with the excavation, the dredgtag process will be actively carried forwand, as the steam drelging vessel will be porfectly rearly for commencing operations on Tueslay next.-Prestow Chromicls.

Ohasgow,-On Frday, 12th nlt.. a section of about 200 feet in length of the treastwork of Port Glaggow Wet-dock gave way, and sunk about 10 fcet.-Scottieh Garardian.
Hereford and Glownoter Canal.-We understand that the company of proprictors of the Herefordshire and Gloueestershire Canal Navigation will shortly call a meeting, for the purpose of fuxing the mode of raising the moncy for the completion of the canal from Ledbury to this city. Our realers will recollect that the company, previoua to obtaining their act of the present session of parliament, offered to the new shareholders a priority in the reccipt of the dividends to the amount of five per cent.; but so convincel are many of the proprietors of old shares, that seven per cent. priority will be, on reaching the supply of water, practically the same thing as five per cent. priority, that we doubt not a proposition guarantecing a priority of seven per cent. per annum to the new sharcholders will be acceted to at the intended meeting. We learn th t materlals are in preparation for the purpose of commencing the work immedintely after the meeting above mentioned, and that other measuros are being taken to effect the speedy completion of the canal. Ay this undertaking cinnot but be of the utmost interest to all our readers connected with tho city and county of Hereforl, we trust they will be glad to be informed occasionally how the works are going on, and we shall endeavour to obtain such intefligence on the sulject as will from time to time give a general ilea of the company's progress.-Hereford Joarnal.

WEW OHTURORERE, Aec.

St. Satiour's Church.-The ceremony of laying the first stone for the new elifice about to be erectel as an enlargement of St. Gaviour's Church, in the Borough of Southwark, took place on 26 th June. The new portion of the rhareh aill be mitel to the present choir th which the service portion of the The new building will, when completed, be usel for the performance of divine service on Nundays, init the part of the Luilding in which the service is now performed will be retained for the burial, christening, and marriage scrvices. The sew building will contgin sitions for 2,000 persons. one-third of which sittings will be free. It will be 103 feet in longth, by 65 in width. The design is Gothic, and, as fris as an opinion may be formed from the drawings and clevatiuns in the vestry, it will be very elegant and commodious building.

Christ Church, New Nerth-road, Hostom.-This chureht, built and enulowed ly the Metropolls Churches Fund, was on Saturday, the z2l ult., eonsecrated by the Bishop of London. It is a plain but spacious edifice, designed by Mr. Blore, in the Nurman siyle, and will contain nearly 1.200 persons, almost one-half of the seats leing free for the use of the poos.

Rotherhithe--The first stone of the thind church, to be called "qAll Gaints." uas laid on Morulay, July 16 . by Major-teneral Sir W. Gomm, K.C.B., who gives the site, which is on the LoNer Meptforl-roat, sbout two miles from London-bridge. The inscription on the foundation stone is as follows:-

By Major-Generul Sir William Gomis Che was laid
The stte wir Wilion Gomun, K.C.B., July 15. 1839.
Rev. Eluard Blick. M.A., Rector of Rotherhithe Thomas Simpson, Esy., John Beatson. Eisq., Churchwardens. S. Kempthorse, Esq., Architect.,
Meesss Piper and Son, Builicrs."

The church is calculated to hold 1000 sittings, of whech one-third are free, one-thiml sccondary seats, to be let at a low rate, and the remainder pew sittings. The design is Gothic of the early Englishl styld, with a tower 59 fcet high. and spire 50 feet adhlitional. The building is to be faced with white brieks, and to have dressings of Anth stone : the internal dimenstons are 63 feet in lengith, 43 feet in breadth, and 97 feet in height, the contract 183,4121 , without the spire. and $300 l$. extra ff the spire be executed.

New Independent Chapely West Bromuch.-On Wedn. slay, the 5th ultimo, Lhis clanpel whe opened for divine worship. It is considered a very chaste and plegant specimen of architecture, in the Doric style, and contains about 1,000 sitthing; of this number 410 are free, nanely, 160 for chilifren, and 250 for allilts. Mr. Rogers, late of Birminghan, is the architect, anid Mr. Fisber of West Brumwich, the builder of the chapel, the whole cost of which will exceed 2,2001 .
An elegant new chapel, oslled "Wesley Chspel," was opened in Nottingham, on Thuraday, the 20 th June. It will hold 2,000 persons, and has leen 'rected at an exprense of 8,000 .
Uckfeld Church.-This church is about to be partially rebullt under the direction of Mr. Moseley : the tower of tbe old church, and part of the

Cbancel being in a goot state, are to remain: the nave is to be rebuilt of the country stone, in the same style as the old cliurch, that of the period of the 14th century, tho internal dimensions of the part rebuilt being $\$ 0$ feet by 48 feet 6 in. The timbers of the roof are exposed, as there is no ceiling, and the hight to the tie-beam is 28 feet 6 inches,-the old Tower is to be raised and summounted by a timber apire. There are two side galleries, and accommodetion for 915 sitting, of which 479 will be free. Mesari Cheal and Marksich of Uckfield are the builders, amount of contract 2,4061 .
Horsham.-A Chapel of Ease is to be crected in this town under the dirertion of Mr. Moseley, for which a plot of land has been given, and a grant of 3001: has been maule towards the erection by the Incorporated Society, and 200\%. by the Diocesan Church Building Society. The style of the building is the carly Engligh. It is to be built of the country stone, and will afford accommolation for 990 sittings, onc-half of which will be free. The dimensions of the interior are 70 feet by 45 feet, and the height to the tie-beam. the timber of the roof being open as in the preceding church, is 25 feet. There is a ganery on each side of the chapel. Estimate 2,500l.
Kingston.-A new church is to be crected under the direction of Messers Scott and Moffat.

Warwickshire.-The Society for prumoting church accommolation within the Archdeaconry of Coventry have mate a grant of 6001 . towards the erection of a new church at Harnall, W"arwickshire.
Metropelis Churches Fund Society.-The annual general meeting of the subecrilers to this fand took place on liriday, 21 st June, at the Christian Knowledge Society's office, No. 67. Lincoln's Inn Fiekis His Grace the Archlishop of Canterbury in the ehair. The following report was read:"The committee reported that the whole of the aum pleced at their disposal, after the instalments payable on the fourth year shal lave been receivel, is either expended or pledged; but they feel convinced that when the sabsenbers to the fuml are acyuninted uith the method in which it has been applied. they nill find both a cause of gratitude for the past, and a stimulus to increased exertion fur the future. The Eishop of Landon, in 1836, contemeplated the ereetion of at least fifty new chorches, and for the acoumplishment of this purpose it was estimatel that a sum not less than $309,00 \mathrm{cu}$. must be raited. The sum hitherto subseribed did not amonnt to half that sum, yet they are enabled to hold out the prompert of forty-one new churches being built, either wholly or in part, from the funds of this society. In the above number of forty-une churches there are inohuled ten thich it is proposed to build in the parish of Bethnal Green. The sum already sulveribed specially for the parish of Bethnal Green, including the grant from this society, imounts to 22,9911 . 17 a. The sum subscribed for endiwments amorntsto no more than 736%.
 The amourit of subscription up to the 1st of June last, is 132,728. 13r. 6d., slioning an increase during the last year of $5,6041,02,3 d$.' The report was favourable received and adopted.
Fulham.-On Snturday, 13th ult., a meeting was held of the inhabitants of the districts of All Saints, in this parish, in orler to consider of the expediency of enlarging the church, an object which for some time has been greatly wanted. The Biahop of Lomdon was in the chair. It appearel, however, that the estimates prepareal for the work wure so expensive 111 proproseycr, that the tnesteased accomanolation that woukl be gained, and the diffectity was so great of removing many of the inconveniences of the present buikling. that the general opinion of the meeting was alrerse to the measure: and it was agreed, on the proposal of the Bishop (wholioaded the absertption with a liberal ofter of 5001 .). to attempt to raise n fund adequate to the erection, on the same site. of a new, and langer, and more commodious church. The old and justly admired tower will remain. Before the meeting was aljoumed, 1,6301. hat been subscribed, and there is goorl reason to hope that within a short time the whole sum required will be oblained without having recours to any rate.
New Churches in the Potteries.-The District Committee for the Newrathe and Potteries, appointed by the Diocesan Society of Liehfiell, since their appointment, have already received, in donations and subscriptions, 7008. The District Committee have submittel to the Lord Bishop, and with has permission to the inhabitants of the Potteries generally, the following outlipe of a plan for extending church accommodation within its limits :-1. That measures be taken for erecting, in the rst instance, not fewer than five additional churches, within the parishes of Stoke-upon-Jrent, Burajern, Woletanton, or the Liberty of Normacott, in the parish of Stone. 2. That earb church contain from 200 to 1,000 sittings, according to the present or prospective yants of the locatity for which it shall be provided. 3. That a district, with cure of souls, be attached to each church. with the requisite contents. 4. That an endowment of 1,0001 , together with a parsonaze house. be provided for each, in nildition to the fund reyuired by I and 2 Wm . $1 F$. cap. 38, for reprirs. 5. That the patronage of each church 50 built and endowed be, with the bishop's consent. Yested in the person or persona to whom it may be assigned, by I and 2 Wm . 1 V ., cap, 38,300 . 2. The sub committee, appointed to obtain statistical information respecting the dies, \&c., of the five proposed churches, have adopted the following reolulions - I. That in consequence of an application made to K. E. Heatheote, Rey.. for a ate at Green Dock, Longton, and acced ed to by hrm, the anb-committer recammend Grecn Dock ns an eligible situation for an ndditional chureh. 2. That the sub-committice, being encou aged to expeet liberal tasistine from Mesars. Minton, in the prection of a church between Penhuh pad Hint
Hill, yecommend this altuatiun also. 3. That John Smith, Ead., having top-
sented to supply a site for a chureh at Northwool. in Hanley, this situation also be recommended. 4. It having been stated that oome of the Irineipal is babitan of Burstem, have formed a wish and intention to orect a new parish church, and it having also been suggested that it would be adrisable to retain the present churchas a district chapel; the sub-committee are of opnion that such arrangement would be the most eligible method of accompishing the views of the Diocesan Society in that part of the Potterics, and as soch recoenmend them to encourage and asaist it to the utracst of their puwer. 5. That the sub-committee are of opinion that an additional ehurels is much needed in the sonthern part of Tunstall, but have not yet obteined any facilities to obtain them precisely in the choice of a site.-Staffordshirc Peresery.
d Catholjc Church was opened at Everingham in a style of splendour nnequalled in England. The Luilding cost 30,0001.; and the procession of hishops and elergy, with the Pope"s banners and the host elevaied, was more splendid than ever witncssed before in modern days in .this country.-sisfReld Irte.

Woberhampton.-The Duke of Sutherland, with the Hberality which characterises all his procedings. has, we understand, determined upon restoring the Leveson Chancel, in the Collegiate Church of Wolverlampton. The plans, which are already drawn. inclide the restoration of the fine table monument which was concealed in the ohl vestry, beneatls a rude deak; and atso the removal of the fine statue of Admiral Leveson from the Dean's Clancel into his own. The flecurative railing which will surround these is of the most chaste design, and in excellent tastc. Our readers are, perhaps, aware that the Duke elao gave 1051. to tho general interior alteration. John Newton lane, Eisy, hat, likewise, given the anthorities 251. to expend in ciesnimg the interesting monuments in Lane': Chancel, - Wotverisemptom Chronicle.

Incorparated Cherch Bullding Society.-On Thursiay, 181h ult.; a very full meeting of the committee was held, at which several applications for grants were registered. The Bishop of London was in the chair. Amongest other business transacted, grants were voted and confirmed towards
Ehikling a chnpel at Tamworth, Warmickshire.
Hariding a chapel it Xearhorough. Yorkshire.
Suilling a chapel at Coates, Whittleyoy. Cambridgeshire.
linilding a church at Kiln Down, Goughurst Kent.
Huidding a church in the Vifle of Dunkirk, Kent.
Huilding a chapel at Lame's (ivennap, Cornwal).
lebeulding the church at Llansantfraid. Cardignushire.
Finlarging by rebuilding the church at Grinshill, Salop.
Hebaikting the church at Llanelly, Carmarthen.
Kebuilding the body of the chureh at Llannon, Curmarthen.
Kinlarging and repairing the chapel at Farlow, Herefordshire.
Enlaring by extending the west end of the clapel at Cornhill. North Durtiam.
Kepening the charch at Winterborne Stoke. Wilts.
Kepewing the church at Jlandegwing. In Carnarvonshire.
Bullalng a gallery in the church in Cholesbury. Bucks.
Finlarging by extending the east end of the chapel at Finthwaite, Lancashlie.

Repairing the chapel at West Mitton, Powerstock, Dorset.
Increasing the accommodation In the church at Nuttatl, Nottinglaanahire, Bepaining the clurch at Toxteth Park, Lancashire.
Finlarging the church at Womborne, Staffordshire.
Enlarging the church at Butley, (iloucester.
Fur rebuilding the old, and the orection of a rew gallery in the church at Tunnhill, Yorkshire.

Repewing the ehurch at Colerne, Wiltshire.
Re-arranging the pews and building a gailery in the church at Chipping Nor un, Oron.

Hepelring the charch at Weston. Hereforlshire.
Knlarging the chureh of St. Mary's, Gateghead.
Buibing a chapel at Daventry, Northampton.
Boilding a chapel at Timperly, parish of Bowilen, Chester.
Builing a charch in the parish of St. Mary, Taunton. Somerset.
Building a cliapel at Emsworth. Warblington, Southampton.
Building a ofapiel at Wreetoham, Farnham, Surrey.
Pulding a chapel at Bradford, Wiltshire.
Building a elorch et Barton's Village, Whippingham, Southampton.
Recainling the nave of the church at Uckfield, Sussex.
Finlarging by rebuikling the chureh at Llangelynin, Carnarron,
Relmilding the church at Eigremont, Carmarthen.
Ifnikling an additional aisle to the church of Llechryd, Cardigan.
For erecting a gallery in the chureh of Earlisland, Hereford.
Eepewing the church at Llanvythid, Glamorganshire.
Finlarging the church at Llantrythid, Glamorganshire.
Jnlarging the chureh of St. James's, Islington.
Jhing $\$ 3$ grants, soperal of which are for building or rebuiking entire eluirches.
"rarciclatirs,-Oa Friday, 10th ult., the first atone of a new church at the Qumbos, in the pariah of Hulemowen, near the fifih mile stone from BirmingItims, wis laid by the Right fon. Lord Littleton, accompanted by the Rev. 18. 13. Hone, the vicar, and other gentlemen. The day was extremely loclemrit.

Staffordshire.-A general meeting of the gubscribers to the testimonial to Fiarl Talbot was held on the 2nd instant, at the Swan Hotel, Stafford, Fel wari Monkton, Eag., in the chair. The tub-committee appointed for the puir pase of preparing plans having reported that they had ascertained it was h:* lorduhp's intention previously to the sulseription being opened, to ercet selourdh apon satme part of his eslate, and the moeting baing deairow of oo-
 ajl ved That the subsertption shouk be elosed on the 31 at of Dacembar. 1839;
and that the amount of sulsecriptions at that time received be placed at his lordship's disposal, either for the erection of a church, or the pndowment of the same, as his lordship may determine.-It is stated that the subscription already amounts to 1,3151 .

The Royal Stables at Windsor.-The grant of 270,000 for the erection of stables and a riding-school at Windsor Castle having been agreed to, they will be commeneed under the superintendence of Bir Jefiery Wyattville furthwith. The Queen's arrival at Windsor Castle is not expected to take place until the end of August next. at which time, short though it may be, it is contemplated that the riding-school will hive so far progressed as to enable her Majesty to take equestrian exercise there, shoukl the state of the weather require the rillng-school to be resorted to for that purpose.
Harrow School.-The sovernors have adopted the plan of $\mathbf{M r}$. Decimus Burton for re-building in a lianilsome manner the head master's house, destroyed by fire Octuler 22, 1838, in the same atyle as the school building and the new clapel, now nearly completed, for the use of the school.
Monument to the Memory of the Late Sir Pulteney Mnicolm.-On the 29th June last. a meating of the subseribers to the fural for arecting a monument to the memory of the fate Admiral Sir Pulteney Malcolm, was hehi at the 'Ihatched House Tayem, in St. James's Street, to receive the report of the committee apponted at the last general meeting of the subscribers, Garl Powis in the clair. The secretary read the repurt, which stated that the list of subscrlptions already rcceived amounted to $£ 756$. Including $£ 103$ remitted from lndia, but exclusive of the subseriptions to the local memorial in Fskilale, amonnting to nearly E200, whieh will be sufficient to erect a handsome tablet in the parish elyurch of the Malcolm family at Wenterkirk; and that on a reference to Mr. Bailey the sculptor, the cominittec had ascertained that a handsonse marble monument might be erected to the memory of the late Admiral Sir P. Malcolm in the metropolitan Cathedral of St. Paul's for the sum of $£ 1,000$. The committee therefore rccommented that as soon as the subscriptions should amount to that sum. Mr. Hailey be requested to submit designs for the intended monument for the approbation of the committee, and thit he be authorised to execute a monument according to such of the designs as should be approved of by the committec.
The Projected College at Bath.-The Plan for the erection of the new Protestant College at Bath, to be called Queon's College, has been decidled on. It is a very beautiful specimen of the Elizabcthan style os architecture, with an elegant syuare tower in the centre. Lord Poweracourt has given another donation of $£ 50$ towards the crection.-Bath Gazette.
Improvement in the Old Bailey.-On Monday, the 15tht ult., workmen commenced the alteration agreed to by the Common Cunncil, of laying down a wooden roadway in lien of the stone jitching hitherto employed. By the alterntion, much noise from the carriage passing through dwe Old Baikey, during the sitting of the Central Criminal Court, will be preventod, without the nuisance and expense of straw, which has hitherio been laid down on the above occasions.
The Sutherland Monwment.-During the atorm of Tuentay the 15 th June, the monument erecteal to the late Ifuke of Sutherland, on Lilleakall Hill, Salop, wa struck by the electric flujd, and sustained considerable injury. A chimney belonging to a steam engine at Aston, was knorkel down by the lightning.
Fimewry.-A spacious builling is about to be erected for the Finsbury Savings Kank, under the direction of Mr. Bartholomew.
Disfrict Surveyors.-At a meeting of the Magistrates for the county of Middlemex, on the 10 th ultimo, Mr. Filmund Wroolthorpe was elected surveyor to the Limehouse and Katcliffe District, and Mr. Davies for the district of Mile-end, Old Town.

Wellington Memorial.-At the last general mecting of the committee, it was resolved, on the motlon of the Duke of Cambridge, that the resolutions of June 9,1838 , appointing Mr. Wyatt as the artist fifould be confirmed. Here, therefore, the matter ends.
Nelson Memorial.-A minute was on Saturday, 18th ult., signed by the Lords of the Tressury giving their masent to the design for the monument of Lord Nelson, selected by the comnattec, The comnittee cannot, however. proceed to the erection of the monument until the Commissioners of Woods and Foresta shall have determined upon the necesary arrangements as to its site. or rather as to the alterations which the erection of the monument may sender necesaary in Trafalgar-square.-Obeerver.
St. George's Hall.-On the 18th and 19th nlt., the exhibition-roms in Post-offe-plnce were openel to the anbacribers to St, George's Hsil and their friends, for the purpose of inspecting the numerous desipns sent in by the different architects competing for the erection of that buidding. The elevations and interiur views were liung around the malle, and produced a very gtriking effect. The successfuil design is, we Lelieve, by Mr. Elmes, of London. It is of very pure (ireek architecture, the principal front being a portico of grand propiortion, and eariehed with bas-reliefa, on the execution of which, howeres, much depends. Perhaps within the limits of their resources (30,0001 .) the commitice could not have marle a more judicious selection, the insuprrible objection to many desigis, from their extent and elaborate detall much more cautlvating to the eye, being that the expenue of executing them would far exteed the fande at the dispomal of the commitiee. -Limerped anamdurd.

LIET OF सPW PATRETA.

granted in fngland from 27 Th jung to 25th July, 1839.
Richazd Hodgson, of Salisbury-strect, Strand, Gentleman, for "Improvementr is the forms or shapes of matcrials and substances used for buildiug and paviny, and their combination for such purposes." Communicated by a foreigner residing abroad,-June 27 ; six months.

Moses Poole, of Lincolns Inn, Gent., for "for improvements applicable to wheeled carriages and in gurings." Communicated by a foreigner residing abroad.-June 29 ; six months.

Henry Pape, of Little Newport-street, Leicester-square, minsical instrument maker, for "certain improvements on stringed musical instruments." July 2 ; six months.

Henrik Zayder, of North-street, Sloan-strect, Gent," for "improvements in the manufacture of paper."-July 2 ; six mouths.

Charles Osborne, of Birmingham, cork-serew manufacturcr, for "a certain improvement, or certain improvements, in the construction of cork-serews.-July 2 ; six months.

Alexander Cochrane, of Arundel-strcet, Strand, Gent., for "an imaproved lock."-July 3; six months.

Alexander Cruceshanks, of Liverpool-street, New Road, for "certain improved methods of producing or manufacturing certain inflammable substances, and of applying the heat and light obtained from certain inflammable substonces to various useful purposes.-July 3 ; six months.

James Yates, of the Eftingham Works, Rotherham, iron founder, for "certaix improvements in making, forming, or producing raised or projecting letters, mouldings, figures, or other ornamental work for external decorations of buildings and other purposes.-July 3; six months.

Thomas Prench Bereey, of Morton Hall, Norfolk, Esq., for "certain improvements in cartridges.-July 6 ; six months.

Edwabd John Jones, of Paulstone House, Hereford, Gent., and John Ham of the City of Bristol engineer, for "an improved process of manyfacturiny cider and perry."-July 6 ; six months.

Grorge Philcox, of Southwark-bquare, watch maker, for "certain im. provements in chronometers, watches, and other time keepers.-July 6; six months.

John Ericsson of Cambridge Terrace, civil engineer, for "an improwed steam-engine, particularly applicable to locomotive purposes and steam mavigation. July 6; six months.
John Farrie, of Church-lane Whitechapel, sugar refiner, for "improve. ments in making and refining sugar.-July 6 ; six months.
Petre Rothwell Jackson, of Great Bolton, Lancaster, engineer, for "a new and improved method of mangling, calesdering, glazing, and finishing cotton, linen, wollen, and other goods and manufactures, and certain machinery to effect the same."-July 8 ; six months.

Edward Francois Josrph Duclos, of Clyne Wood Works, Swansea, Gent., for "improvemeats in the manyfacture of sulphar, sulphuric-acid, and sulphate of soda."-July 11 ; six months.

Willinm Woodley, of Observatory House, Stoke Newington, Captain in the navy, for "improtements in propelling vessels and carriages, and other machinery."-July 13; six months.

Thomas Bell, of St. Austel Cornwall, hotel keeper, for "improvemeuts in obtaining copper from copper slag."-July 13 ; six months.
Janes Yates of the Effigham Works, Rotherbam, ion founder, for "certain improvements in the construction of cupola furnaces, for melting metals."-July 13 ; six months.

Daniel Rames, of Charlotte-street Bloomsbury, for "improvements in paoing roads, and such like ways." Communicated by a foreiguer residing abroad.-July 15 ; six months.
John Hemmina, of Edward-street, Cavendish-square, Gent., for "improvement c in gas meters."-July 16 ; six months.
John Reynolds, of Bridge-street, Blackfriars, Esq., for "certain ineprovements in the manufacture of salt."-July 16 ; six months.
John Gronge Shuttheforth, of the Mount, near Sheffield, soap boiler, for "a new mode of obtaining a rotatory motion, from the rectilinear motion of the pioton-rod of a steam or other the like engine.'.-July 18; six months.

Edward Bhowns of Lyme Regia, Dorsetshire, ironmonger, for " improbements in apparatus in cooking,"-July 20 ; six months.
Thomas Nicholas Raper, of Bridge-atreet, Blackfriart, Gent., for "improvements in rewdering fabrict and leather waterproof."-July 20 ; six months.

Mosss Poole, of Lincoln's Inn Fields, Gent., for "improvements in casting for printing purpases." Communicated by a foreigner residing abroad. July 20 ; six months.

Prizr Robkrt Drommond Lord Willodghby de Earsby, for " improventeuts in compresing peat."-July 20 ; six months.

David Jozngton, of Glagow, manufacturer, for "certain improvements
in the manufacture of hinges." Communicated by a foreigner reidiag abroal.-July 20 ; six months.

Alexander Southwood Stocker, of the Union Rolling Mils, Bitmingham, and Thomas Johnson of Ridgacrec Irom Works, Staforn, bo "certain improvements in machinery for manafacturing shoe-keek, and the-tips."-July 20 ; six months.

Join Charlxs Schwirso, of Albany-street, Regent's Park, happ miker, for "certain improvements in the constraction of locks."-July 80 ; in months.

Charles Flude, of Liverpool, chemist, for " certain improvements is the the manufacture of white lead."-July 20 ; six month.

John Fredfrick Myers, of Albemarle-street, Piccadilly, musical instru ment make, and Joserph Stores, of Bilborough-street, New Rosd, muivi instrument maker, for "certain improvements in the constrwetion of cetain musical instruments, part of the said improvements being applicable to than of the kind commonly called piano fortes, and part of those of the kind wommonly called seraphines, and to certa!n descriptions of organs." Parfly comsmunicated by a forcigner residing abroad.-July 20 ; six months.

Joshda Crockyord, of Litchfield-street, Soho, Gent., for "an improen mode of applying cotton and other wieks to tallow, and other the bite nhb stances used for candles, in order to consume the same."-July, 20; is months.

John Hanson, of Rambliffe, York, patent lead pipe manufactorer, for " certain improved apparatus for meastring and registering the quatity of gas, water, or other fluid passed through the same."-July 24 ; sir month.

James Kay, of Pendleton, near Manchester, cotton spinner, of an es. tension for the term of three years from the 26th July, 1839, of an inrestion for "a new and improved nachinery for preparing and apiwing Aas, hemp, and other fibrous substances by power."-July 24 ; six months.

James Templeton, manufacturer in Paisley, and aleo William Quighi, weaver in Paisicy, for machinery for "a new and improved mode of ans. facturing silk, cotton, woollen, and linen fabrics.-July 25 ; six montbs.

TO COREMAPONDETEAS.

(i. W. R.-We are fearful; of again trespacsing on our pages an the abif: of railway curves, having already devoted considerable space and dirtusian ts that purpose, we! must , est for a short time, and if hereafier we whould beddiois of matter, we will again find room for some more communications, we haveretived on the sulbject. Respecting the other portion of G. W. R.'s letter, we wat recommend him, as well as other engineers, to study atgebra, at least the ndiments; he will then find the adeantages of it, and see the imposibility of w. or any other scisntific work being able to abandon the use of it, and in assert to the latter part of his hetter, "which is the best and mont simple treative of th locomotive engine," we recommend Mr. Robert Stephenson't scientific tratik ad Pambour's work, more particularly the first.
Lieut.-Cul. T.'s communication on brick ovens voill appear in our mazt mandr.
Mr. G.'s drawings of boilers were recoived too late for this mowlh; they wit appear in the next Journal.

The British Association.-We shall feel obliged for copies of any papers liss may be read before the next meeting at Birmingham.
We shall feel obliged if our correspondent at Bristol will favover with his conmunications early in the month.
Norris's Locomotive Engine.-Can any of our subscribers favour wn mid some facts conrected with the performances of these enyines since they haserng introduced in England, stating the distance run in a giovn time, the gnasting fuel consumed, and the gradients of the railway. Also inforw us whet or the fuel consumed, and the graduents afions of the engises und their peculiar construction, or where thay difn from our own engines; we do not wish the performances of the engine to br confined to one trip, but to several trips,

The notices of several books 'sent for review are umavoidably patpowi mit next month.
The Editor will feel obliged to country aubscribers if they will forood on account of works in progress, or any newspapers containing arlicks or prourrid comected with the objects of the Jowrnal; it will also be doing a great mrive enginears and architects will couse all adoertisements comsected with comtris to be tuserted in the Journal.

Communications are requested to be addreased to "The Editor of the Cin: Engineer and Architect's Journal,' No, 11, Parliament Street, Weamisur or to Mr Groombridge, PaHyer Alley, Paternaster Row; if by post, to th rected to the formar place ; f by parcel, please to direct it to the meerent of two places where the couch arrives at in London, as we are frequently pod ots expence of one or two shillings for the porterage only, of a very andly perch
Books for review menst be sent carly in the month, commesmications an or in the 20 th (if with wood-cets carlier), and adeertisements on or befor the tid instant.
The First Vuldae may be had, bound in cloth and letigete ingolz Pbice 17 r.

Bitcncus.

By accident pages 296 and 297 of the present nuwber have bers tranpod;c was not discovered wntil the sheef had beren printed of. The coneshls of 297 thowld be page 296, and the conterts of page 296 should be pagt 99 .

CLUB CHAMBERS.-REGENT STREET.

	5	Scale of Feet.		
	5	0	10	20

In consequence of the great scarcity of chambers for residence in the immediate vicinity of the Club Houses, several gentlemen, principally subscribers to the Clubs, formed themselves into an Association for the purpose of supplying the want. Fortunately, at this time, the mansion occupied by the late Mr. Blicke, in Regent Street, between Pall Mall and Piccadilly, was to be sold; a better situation than which for the purpose, in the whole metropolis could not lave been selected. The Association immediately entered into an agreement for the purchase of the property, together with the freehold ground in the rear, and upon obtaining possession, they decided upon pulling down the premises, and engaged Mr. Decimus Burton, the eminent architect, to make designs fur a new building, which were submitted to the committee and approved; a contract was then entered into with Mr. Hicks, the builder, for erecting the present mansion for the sum of $20,00 \times 1$. The contractor commenced operations for erecting the new building in August last year, and agreed to have it fiaished in the present month.

By reference to the annexed engraving, it will be seen that the elevation of the present edifice is of the ltalian style of architecture; it occupies a frontage next Regent Street of 76 feet, and consists of a ground story, rusticated and terninated by an enriched lace band or string course, eariched with the Vitruvian scroll; this atory forms a
basement to the upper part, containing the principal story, and a second and third story, surmounted by a bold and enriched cornice, the main characteristic feature of the Italian style. Between the principal story and the ground floor an entre-sol is introduced, the ,windows of which are placed between the panelled pilasters, supporting the consoles of the bold projecting balconies to the windows above.

A plan of the ground floor is given in the amexed engraving, which is fully explained by the reference; it is approached in the centre by a portico, projecting forward with coupled Doric columns on each side, and recessed back to give depth; it opens into a grand entrance hall, the height of the ground story and entre-sol. The four upper stories are similariy divided as the ground floor, except as to the room C, and adjoining room, over which there is no story, and with the exception that on all the stories above the entre-sol there will be an apartment over the eutrance-hall.
The building will contain 77 chambers; 27 are provided with alcoves or recesses for the bed, and 50 without; some of the rooms are so planned that two or three may be formed into one suite instead of being engaged separately. The basement story is occupied by the kitchen and domestic offices of the establishment, likewise rooms for gentlemen's servants. This story is arched over with flat brick arches, supported by iron girders, rendering it perfectly fire-proof,

The two staircases are of stone, and all the corridors have stone floors. and enclosed within brick walls, which is a great security against the extension of fire in any part of the building.

In the interior the architect has displayed considerable ingenuity in providing for what is so very essential to a building possessing so many inmates, that is, warmoth and ventilation, the means of effecting Which we shall next proceed to describe.

The ventilation is provided for in the following manner:-on each side of the principal staircase, on the basement story, is a furnace with an iron pipe or flue 12 iuches diameter, fixed in the centre of a vertical brick chamber, rising through the several stories and roof, where it is terminated by a cowl. These vertical chambers communicate on each story with horizontal chambers, formed between the ceiling and floor of the corridors, as we shall presently describe. Each room is or can be furnished with a ventilator near the ceiling, opening into the horizontal chamber just described; when the fire is lighted in the furnaces, it heats the iron pipe or flue, and rarifies the circumjacent air within the vertical chambers, and causes the air to rise and pass off, through the cowl at top, with considerable rapidity. To supply the partial vacuum which would be created by the escape of the rarified air, the air within the rooms flows through the ventilators, and passes by the horizontal to the vertical chambers, thereby keeping up a constant circulation.

The horizontal chambers are thus made, over the corridors on each story, an inch rubbed slate slab set with a close joint forms the ceiling, and a 4 inch Portland stone landing forms the floor of the corridors above, leaving a vacancy for the chamber of 18 inches in height, between the slate slab and stone landing.

The warming of the building is effected by the patent hot water apparatus of Mr. H. C. Price, of Bristol, erected under the superin-
tendance of Mr. Manby, a drawing and description of which is given in the first volume of the Journal, p .237 , the apparatus for the present building is erected on the basement story, on the north side of the principal staircase, the hot air chamber or vault is immediately behind, the top of which is nearly on a level with the ground floor, as shown in the annexed plan; a supply of cold air flows through a trunk, the mouth of which is furnished with gauze wire to filter the air, into the vault where it passes upwards between the vertical iron chambers filled with hot water and becomes heated, the warm air then escapes through apertures in the top of the vault, and is distributed throughout the principal staircase and corridors. Before we hare done with the apparatus for warmth and ventilation, we must not omit to notice, that the corridors and water closets are lighted with gas, and the light enclosed in glazed lanthorns, furnished with tubes leading from the top to the external part of the building, thus preventing the possibility of any heat or effluvia escaping within the bailding.

On the basement story, a well has been sunk to the depth of 150 feet, and afterwards bored 100 feet more down to the chalk stratum, for supplying the premises with pure spring water, which is lifted to the top of the building by means of a steam engine of 3 horse power, which is also employed for raising coals, furniture, \&e, up the wellhole of the back staircase.
Every alcove, or recess for the bed, is furnished with hot and cold water, and pipes trapped and communicating with the drains for a water-closet, if the tenant should wish to have one.

From this brief description, it will be seen, that the architect has not forgotten the essential comforts of the numerous occupants of these extensive premises, and that no exertion has been omitted to insure for this valuable association, the support of the subscribers to the club houses in the vicinity.

GROUND PLAN.

REFERENCE.

a, open area; b, water closet : c. dining room; d, gas burner and cases for pipes; e, ventilators ; f, corridors; g, entrance fur cold air to warm water apparatus; h, lead flat part of which is removed to show the apparatus $i: k$, ventilating chamber; l, grand staircase, the arrows show the current of warm air passing through the horizontal chamber, and distrbuted into the staircase ; m, coffee and readiug room; n, entrance hall; 0 , alcoves or bed recesses ; p, house maids closet.

THE DAGUERROTYPE.

Tas secret process of this important discovery for prodtographic plates, was revealed to the French public at the the "Académie des Sciences," on Monday, 19 th ultimo ; the att. at the meeting was very numerous, so much so, that upwards os persons were unable to obtain admittance. M. Arago commenced h. oboervations by referring to the process of M. Niepce, the first discoverer of the art, and the subsequent improvements made by M. Daguerre. He then proceeded to explain the great discovery, of which the following is an extract froin a report in the Journal des D.bats.
M. Arago stated that, according to M. Daguerre's process, copper plated with silver is washed with a solution of nitric acid, for the purpose of cleansing its surface, and especially to remove the minute traces of copper, which the layer of silver may contain. This washing must be done with the greatest care, attention, and minuteness. M. Daguerre has observed, that better results are obtained from copper plated with silver, than from pure silver; whence it may be surmised, Arago observes, that voltaic action is connected with this phenonenon.
After this first, preparation, the metallic plate is exposed, in a wellclosed box, to the action of the vapour of iodine, with certain precautions. A small quantity of iodine is placed at the bottom of the box, with a thin gauze between it and the plate, as it were, to sift the rapour, and to diffuse it equally. It is also necessary to surround the plate with a small metallic frame, to prevent the vapour of iodine from condensing in larger quantities round the margin than in the centre; the whole success of the operation depending on the perfect uniformity of the layer of ioduret of silver thus formed. The exact time to withdraw the sheet of plated copper from the vapour, is indicated by the plate assuming a yellow colour. M. Dumas, who has endeavoured to ascertain the thickness of this deposit, states that it cannot be more than the millionth part of a millmimere. The plate thus prepared, is placed in the dark chamber of the camera obscura, and preserved with great care from the faintest action of light. It is, in fact, so sensitive, that exposure for a tenth of a second is more than sufficient to make an impression on it.

At the bottom of the dark chamber, which M. Daguerre has reduced to small dimensions, is a piate of ground glass, which advances or recedes until the image of the object to be represented is perfectly clear and distinct. When this is gained, the prepared plate is substituted for the ground glass, and receives the impression of the object. The effect is produced in a very short time. When the metallic plate is withdrawn, the impression is hardly to be seen, the action of a second vapour being necessary to bring it out distinctly: the vapour of mercury is employed for this purpose. It is remarkable, that the metallic plate, to be properly acted upon by the mercurial vapour, must be placed at a certaiu angle. To this end, it is enclosed in a third box, at the bottom of which is placed a small dish filled with mercury. If the picture is to be viewed in a vertical position, as is usually the case with engravings, it must receive the vapour of mercury at an angle of about 45°. If, on the contrary, it is to be viewed at that angle, the plate must be arranged in the box in a horizontal position. The volatilization of the mercury must be assisted by a temperature of 60° of Reaumur $=167^{\circ} \mathrm{F}$.

After these threp operations, for the completion of the process, the plate must be plunged into a solution of hypo-sulphite of soda. This solution acts most strongly on the parts which have been uninfluenced by light; the reverse of the mercurial vapour, which attacks exclusively that portion which has been acted on by the rays of light. From this it might perhaps be imagined, that the lights are formed by the amalgamation of the silver with mercury, and the shadows by the sulphuret of silver formed by the hypo-sulphite. M. Arago, however, formally declared the positive inability of the combined wisdom of physical, chemical, und optical scieuce, to offer any theory of these delicate and complicated operations, which might be even tolerably rational and satisfactory.

The picture now produced is washed in distilled water, to give it that stability which is necessary to its bearing exposure to light without undergoing any further change.
After his statement of the details of M. Daguerre's discovery, M. Arago proceeded to speculate upon the improvements of which this beautiful application of optics was capable. He adverted to M. Daguerre's hopes of discovering some further method of fixing not merely the images of things, but also of their colours : a hope based upon the fact, that, in the experiments which have been made with the solar spectrum, blue colour hus been seen to result from blue rays, orange colour from orange, and 30 on with the others. Sir John Herschel is sure that the red ray alone is without actiun. The question
bether it will be possible to take portraits by this method? - disposed to answer in the affirmative. A serious diff-- presented itself:-entire aboence of motion on the it is essential to the success of the operation, and this e obtained from any face exposed to the influence of M. Daguerre, however, believes that the interposiwould in no way interfere with the action of the

1 plate, while it would protect the sitter suffi-
by m_{m} atum is, The substan, fact, so little sone pictures executed by the Daguerrotype is, in tallic plate, that the least friction destroys it, like a drawing in chalk: at present, it is necessary to cover it with glass.

From his numerous experiments on the action of light on different substances, M. Daguerre has drawn the conclusion that the sun is not equally powerfully at all times of the day, even at those instants when his height is the same above the horizon. Thus, more satisfactory results are obtained at ten in the morning than at two in the afternoon. From this, too, it is evident, that the Daguerrotype is an instrument of exquisite sensibility for measuring the different insensities of light, a subject which has hitherto been one of the most difficult problems in Natural Philosophy. It is easy enough to measure the difference in intensity between two lights viewed simultaneously, but when it is desired to compare daylight with a light produced in the night-that of the sun with that of the moou, for example-the results obtained have had no precision. The preparation of M. Daguerre is influenced even by the light of the moon, to which all the preparations hitherto tried were insensible, even when the rays were concentrated by a powerful lens.
In physics, M. Arago indicated some of the more immediate applications of the Daguerrotype, independently of those which he had already mentioned in Photometry. He instanced some of the most complex phenomena exhibited by the solar spectrum. We know, for example, that the different coloured rays are separated by black tranversal lines, indicating the absence of these rays at certain parts; and the question arises whether there are also similar interruptions in the continuity of the chemical rays? M. Arago proposes as a simple solution of this question, to expose one of M. Daguerre's prepared plates to the action of a spectrum; an experiment which would prove whether the action of these rays is continuous or interrupted by blank spaces.

The description of the process appeared to excite great interest in the auditory, amongst whom we observed many distinguished persons connected with science and the fine arts. Unfortunately the locality was not adjudged suitable for the performance of M. Daguerre's experiments, but we understund that arrangements will be made for a public exhibition of them. Three highly curious drawings obtained in this manner were exhibited; one of the Pont Marie; another of the M. Duguerre's atelier; and a third of a room contuining some rich carpeting, all the minutest threads of which were represented with the most mathematical accuracy, and with wonderful richness of effect.

MORE GOVERNMENT JOBBING.

The tocsin of a'arm has been sounded by an influential Whig marquis for another Government enquiry into the causes of accidents on rai.ways; and doubtless an attempt will be made to issue a commission similar to that on "Steam Vessel Accidents," which we noticed very fully in our last number. No doubt the Commission will be issued with the sinister understanding that a similar report is to be recommended, for the appointment of Goverament Inspectors, to superintend the working and coistruction of railways, and that no locomotive engine shall be allowed to run without a license from these Obstructors.
it behoves all manufacturers to unite and act firmly in resisting these encroachments on British enterprise, for if Government once can obtain an act for such a purpose, it will be carried to other branches of our Manufactures and commerce.
The Railway Companies have already united themselves into an Association, and thereby resisted very serious encroachments attempted to be made on their rights; a similar association we again advise ought at once to be furmed by the steam Boat proprietors and builders, for if they leave it till next Session of Parliament, they may depend upon it, that attempts will be made to levy such arbitrary laws and restrictions on their proceedings and profits, that they will not be able, without considerable difficulty, to get them again repealed or altered.

DESCRIPTION OF VICTORIA BOILERS.

Fig. 1, Elevation of Boiler.

Fig. 2, Sectional Plan.

Fig. 3, A Longitudinal Section.

Scale of Feet.

80	25	20	15	10	5	0

Fig. 4, Transverse Section.

Fig. 5, Transverse Section.

DESCRIPTION OF THE NEW BOILERS OF THE VICTORIA HULL STEAM SHIP.

Manufactured by the Butterley Company from the Plans of Josepa Glynn, F.R.S., M.Inrt.C.E., \&c. \&c.

The Civil Engineer and Archilect's Journal presented to its readers a complete description, illustrated by engravings of the former boilers of this vessel, which, it will be remembered, exploded twice. The loss of life occasioned by these accidents gave rise to a lengthened inquiry, during which several engineers of reputation furnished most interesting professional evidence, that was fully reported in the Journal; more especially that of Mr. Ewart, from whose drawings those engravings were taken. After this inquiry had been concluded, the Victoria was removed from London to Hull, and the boilers were taken out and condemned. Application was then made to the Butterley Company, who had been mentioned during these proceedings as having for many years manufactured marine pngines and boilers, both for the navy and for private sorvice, without an instance of the slightest accident on board any of the vessels propelled by their machinery. The owners of the Victoria were therefore induced to order the new boilers to be made at their establishment near Derby, and Mr. Glym, whose works have been noticed in the former volume of this Journal, was requested to examine the vessel, and to determine what was best to be done under all the circumstances.
The engines were not at all injured, neither were the cabins; and it was desirable to avoid moving the engines, which, from their peculiar construction, are connected with the deck and sides, as well as the floor, of the vessel, and also as far as possible to save the cabins, and to preserve the trim of the ship, by keeping the centre of gravity in its proper position.
The former boilers were long and cylindrical, they projected aft underneath a range of bed-cabins; these dangerous sleeping-berths were without hesitation condemned and taken doom, and the main mast, which passed through those cabins, was shifted nearer the stern of the ship. The "fire-hole," which might well be called so, was only four feet inlength from the front of the boilers to the engines; although the grates to be stoked were nine feet long, and the chimney was placed in the middle of this contracted space. Such it may be remembered was the situation of the boilers in the first instance; the reader is referred to the former engravings (Vol. I. p. 285,) for other particulars. The engravings now given show Mr. Glyn's arrangement of the new boilers, in which there is considerable novelty. The vessel is very narrow for her tonnage, being a long sharp-built ship, so that there is not room to put fires of convenient length, even in the whole width of the hold. In order to make the grates of moderate leagth, and yet of sufficient area to raise steam for these powerful engines, two heights of furmaces have been constructed, with two ranges of flees, 80 that it may be said that there are two sets of boilers, the one above the other; the lower set of boilers having no top, and the apper set having no bottom.
The lower set of boilers is seven feet longer than the upper set, giving that space for the stokers to manage their fires; there is the
same distance between the lower boilers and the engines; the men who work the fires of the lower set stand in the hold of the vessel. The platform on which the ligher tier of stokers stand is made hollow, like a venison dish, but the space below the men's feet is constuntly supplied with cold water from the sea, and they are protected by a rail or balustrade from falling from the platform when the ship rolls or pitches. There are three safety-valves, each ten inches in diameter, loaded to five pounds on the square inch, by a weight equal to the whole pressure resting upon each valve, so that there are no levers which can be tampered with, and all three safety-valves are inaccessib.e to the men; but by a very simple apparatus the whole of the steam, the boilers contain, may be immediately discharged into the air. The pressure of steam is indicated by a mercurial gauge, on which it acts like a barometer, placed in front of the boilers, und graduated in inches of mercury, so that any person may know the force of the steam at a single glance. Each boiler has three gauge cocks, showing the height of water above the flues, so contrived as not to be affected by ebullition in the boilers; the lowest gauge cock shows nine inches of water on the flues, the highest eighteen inches, the water level in regular work being midway between them. There are also glass tubes to show the height of water in each boiler, and there are three reversed valves to prevent the possibility of collapse by atmospheric pressure.

The water for feeding the boilers is supplied to them through sluices of brass placed in front, and raised or lowered by a screw, with an index to each showing whether the slide be open or shut.

The cylinders of the Oictoria's engines are $64 \frac{1}{2}$ inches in diameter, baving a stroke of 6 feet 4 inches; her wheels are 26 feet in diameter, making from 16 to 18 revolutions per minuje.
The steam pipes are fitted with stop valves, so that any one of the boilers may be disused, and the engines worked for a time in case of need by the other two. Each boiler has a damper moved by a wheel and pinion, to regulate or stop the draft through the fires, and to chect them when the engines are stopped. There are chinnels or watercourses 15 inches mquare below the flues, for the purpose of cleaning out the boilers, and also for bringing a current of water from the after part to supply the rapid evaporation from the furnaces in front.
Figure 1 shows a front view or elevation of the boilers and steam receivers, which are immediately below the deck, with a section of the ship and the coal boxes at the sides.

Figure 2 is a sectional plan, the middle compartment showing the upper central boiler, the side compartments showing the lower wing boilers.
Figure 3. A longitudinal section through the furnaces, flues, chimney, and steam receivers, showing a portion of the deck, the kelson ney, and steam receivers, she sleepers on which the boiters rest. The backs or bridges of the furnaces are built of fire-bricks, with a plate of iron in the middle to prevent air from passing through the joints of the brickwork. It also shows a section of the platform on which the firemen stand, with the space for cold water below their feet.
Figure 4 is a cross section through the chimeny and steam receivers, showing the position, form, and action of the dampers. The water
spaces, it will be observed, are narrow flat chambers six inches wide, and their sides are held together in every direction by numerous pillar-bolts and screws; so that the boiler plates, it may be said, are stitched together like a mattrass.

Figure 6 shows cross sections at the three points marked $A B, C D$, and EF on the plan, with the grates in some of the furnaces.

The arrangement and the details of these boilers will be interesting to professional and practical engineers, who will find Captain Bell willing to afford them all the information he can give, and to permit them to inspect the boilers and engines, which are now fitted with machinery designed by Mr. Glym for starting, stopping, and reversing their motion, so that one man can now manage each engine, and obey the orders of the captain or pilot with all the promptitude and certainty that can be wished; whereas it required to do this with much labour, confusion, and delay, often causing mischief to the shipping in a crowded river.

There are various other alterations of less importance, all contributing in some degree to the economy of labour and fuel, and the general security of the machinery.

The Victoria took her station in the beginning of July, and is now runing between London and Hull.

THE CHURCHES OF LONDON.
The Churches of London, by George Godwin, Architect, F.R.S., aud F.S.A., assisted by John Bertton, Esq., F.S.A. London, C. Tui, 1839.

The churches of London afford a subject, upon which hitherto no perfect work has appeared. although as an important feature of the giant metropolis they are deserving of the highest attention. Who can stand on one of the city bridges and look behind him, and not think of the many tales which the clustering spires call to his memory? The crowd of masts below the bridge do not bear the flags of more nations than the mute towers of the city record traditions of former ages. The dome of St. Paul's reigaing in majesty over the subject turrets, calls back to our imaginations the Roman temple, the Italian's missionary, the aspiring tower of the structure of the middle ages, the conquest of nations, the destruction of cities, the fleeting joys and sorrows of many days. The Celt, Roman, Saxon, Catholic and Protestant have worshipped there, revolutions of mind, of man, and of matter stand before us in all the dread terror of human mutability and weakness. This is a scene unequalled in Europe, the breadth of the river, the circling amphitheatre, the forest of masts, the hum of steam boats, mock the Tiber and the Seine, richer in architectural pomp or palatial grandeur.

It is a sickly unnatural sentimentality which can induce us to view emotions of enthusiasm similar scenes abroad, and remain dull to all their influence here; it is the true nature of ignorance to neglect what is around us, and to be struck with wonder by the productions of distint climes. It is this which causes us to be dead to beauty and to foster vice, to treat genius with neglect, and to shower our honours on impudence, presumption and conceit, which purchases Vasari, and leaves England without a single work, in fine which elevates the glory of other countries and obscures cur own. The architect reserves his adiniration for Greece and Rome, and feels astounded that the public do the same; justly punished as he is, that his own works should be neglected from the spurious feeling which he himself has fostered and produced. If, huwever, he wish the public taste to be pure, if he wish native art to be protected, and England to hold a high rank both abroad and at home, he must show his fellow countrymen by his own example, that they have works worthy of attention, and edifices of which any nution might be proud. He must uphold the reputation of London, us foreigners do that of Paris or of Rome, and make every one feel interested in encouraging, and protecting that of which all participate in the glory. In the same manner as no one will allow an injury to a public museum in which he considers himself as having a property, so all will be ready to promote that in which they are considered as having an interest at stake. At Paris it is the public voice which hus completed the Madeleine and the Pantheon, which has raised the Arc de l'Etwile from its ruins, and placed a monument at the Place de la Bastille. It was this which saved the Column from destruction, and replaced the statue of its founder, which has given Paris all its beauty, and daily urges such improvement. It would avail a minister less to strike off a tux from his budget, than to produce some new mouument which might be an incentive to national pride, and gratify the popular demand for art. In England on the contrary, if St. Paul's were destroyed to-morrow, it is doubtful if the public would demand its restoration; it is certain that St. Saviour's has been mutilated, that competition for public editices is a nulity,
that the Parliament House and the Exchange have scarce yet a site on which to be built, that the British Museum is incompleted, and Trafalgar Square defaced. Here it is that churches are deformed with spikes, heroic statues adorned with pigtails, columns raised without an ormament, or to bear an incongruous one, national galleries built which are neither national nor a gallery, domes made which cannot be seen, and the monstrosities which elsewhere disfigure five hundred years here crowded into ten.
The way to remedy this is to cultivate the public tante, to give them an interest in the creation and maintenance of great works, to give architecture that strong hold on the public mind, which it ean derive from history alone. A rough hewn stone is one of the best known monuments of London, it lives in the pages of the historian and in the traditions of the people, and is invested with a protection which ensures it from destruction and confers on it respect. Who passes London stone, and does not seem to hear Shakspeare whispering in his ear, "Now is Mortimer, lord of this city?" To take only the city and briefly enumerute the leading incidents which attach to its churches would take up more space than even respect for such a subject would allow us to afford, but we cannot refrain from reminding our readers of something of the interest which must be excited by the study of this subject. There is St. Paul's on the ruins of a Roman temple, in the great nave of which once was the resort of all the fashiun of the city; there was the trader's mart and the fop's promenade, the tall steeple of which was used as a warehouse, and where an oven was buitt in a buttress; which is the noblest monument of our architecture, aud one of the greatest stains on our national character, where the nation erects a pantheon to heroes-to give the church a two-penny show. To what does the fame of herves fall when it is only commemorated to maintain a publie imposition and a verger's fee. St. Bartholomew's, Smithfield, again, with ita Saxon or Normin arches, looks down on the jousting field of lords, and the offering pluce of ma tyrs, unregarded in its obscurity as one of the few mouldering relics of our ancient styles. Its neighbour, St. Sepulchre's, his also its tale of iuterest. St. Peter's in the Tower, hides the murdered corse of many a royal and noble victim, Queen Anne Bolevn and Catherine Howard, Thomas More and Thomas Cromwell. The Temple, with its round church, the monuments of the crusaders, and the tomb of Heraclius. All Hallow's, Barking, which has tales of the dreams of kings and the worship of angels, which had a special commission of defacement issued against it, and which records the names of the Earl of Surrey and Archbishop Laud. St. Andrew's, Undershaft, where apprentices led their may-day brawl, and poor John Star came with his licence to beg; where is the earliest instance of pews and book-cages, some of the latest relics of the age, which the innovatiun luas supplanted. St. Bartholomew's, by the Exchange, (soon to gire up its ancient tower,) heard the words of Miles Coverdale, the great translator of the bible. Allhallow's, Bread-street, in the parish where Milton was born. St. Olave's, Hart-street, near the palace of Whittington. St. Dunstun's, in the East, with its buttress spire, and st. Michael's, another gothic work of Wren's. St. Mary's, Addermanbury, held the cursed bones of Jeffereys. St. Albun's, where the preacher told the progress of his sermon by the shifting hour-glass St. Michael's, Wood-street, the tomb of the Scotch King, James IV. St. Giles', Cripplegate, near the birth-place of De Foe, with its walls covered with tombs and names, Milton and his father, Fox, the Martyrologist, Speed, and muny more. St. Benet's, Paul's Wharf, where Inigo Jones reposed after all his glory. St. Cutherine's, Cree Church, the tomb of Holbein, and the scene of Laud's consecration service, where he prepared the scaffold for himself and his prince, and desolation for his country. Christ Church, Newgate-street, holds the ashes of four queens. St. Helen's, Bishopsgate, a vestige of the middle ages, where the nun's grating is yet to be seen, and where Gresham and many other nuble citizens repose. St. Andrew's, Hutborn, where Sacheveral preached the kingtom into a flame, and where poor Cbatterton lies undistinguished from the general mass. it Mary's Le Bow, with its beautiful spire, and with the warlike tules of its old one, where the Norman crypt stands upon a dried up fen. st. Olave's, Jewry, the tomb of the distinguished Boydell, the promoter of the arts. St. Swithin's, sheltering in its wulls the London-stone. The old church of Ethelburga. The pleasing spire of St. Bride's, and the tumb of Samuel Richarrlson. St. Mary's, Aldermary, with its gothic tower, and the tomb of the fannous surgeon Pott. St. Stephen'; Walbrouk, one of Wren's greatest glories.
These are but trifing among the points of interest which may be elicited, and they will merit extensive illustration. We are bappy, therefore, to recognize the service which has been rendered to shis cuuse by the publication of Mr. Godwin's work in a popular forto, and we trust that he will be able to carry out his design of extending it a the oiher sections of the metropolis. We have too often pribed
this work during its progress to allow any remarks in its favour on this occasion, we can only say that the public and the profession owe to Mr. Godwin a large debt of gratitude for the production of a work so cheap, so excellent, so useful, and so interesting.
We now give some extracts, accompanied by a few of the wood engravings :-

BT. GEORGE'S, BOTOLPH LANE.

The annexed wood-cut represents the exterior of the church, which is plain and unpretending. It possesses, however, two characteristics of Wren's churches, -a tower rising at once from the ground, and a solid unbroken basement-story conferring stability in appearance on the whole edifice. The top of the tower is finished with a comice and parapet; and has urns at the angles.

In the interior, the church is divided by Corinthian columns, (two on each side, into a nave and aisles. The columus are very far apart, $\rightarrow 0$ greatiy so, indeed, as to produce an unpleasing effect: insomuch as the entablature and camerated ceiling above them appear to have no support. The church is lighted from windows in the ceiling, in the aisles, and at the east end. There is a gallery at the west end containlug an organ.

> St. Martin's, Ludgate.

The following engraving affords a representation of the south fron ${ }^{t}$ of the church as it was erected by Sir Christopher Wren, after th ${ }^{\mathrm{e}}$ destruction of the old building by the fire of 1666 . In order to wide ${ }^{n}$ the street, the church was set farther back, and all projections from the face of the building avoided. The elevation is not in any way remarkable for beauty.

The tower rising from the ground in the centre of the design is rendered pyramidical in its upper part, by the introduction of two large scrolis comnecting with it the two side walls. A small cupola surmounts the tower with a gallery around the top of it , and from this rises a light spire supported upon arches.

Between Ludgate-street, and the body of the church, is an ambulatory, or lobby, the whole depth of the tower, and which has the effect of lessening within the church, the sound of passing coaches. The church itself is a cube of nearly equal sides. The length is 57 feet, the breadth 66 feet, and height 59 feet. The steeple is 168 f fet high. The cost of the church was $£ 537818 \mathrm{~s} .8 \mathrm{~d}$. Four composite columns within the area, standing on high plinths, and supporting entablatures which proceed from pilasters against the walls, form it into a Greek crose,-that is to say, a cross, of which the arms are nearly equal. The organ is in a small balcony at the west end; the altarpiece is plain, and consists of pilasters, entablature, and pediment, of oak.

ST. MATTHEW'S, FRIDAY STREET.
With the exception of the east end, which is represented in the following engraving, the building is entirely devoid of expression; indeed, this may almost be said of the part excepted, which, if it has any, certainly has no ecclesiastical, character. Next to fitness, we hold expression of purpose to be the most essential quality in arch itectural design; tried by which canon, little can be said in praise of the edifice under notice.

The east end, as may be seen, presents a series of circular-headed windows on a lofty stylobate; and is sunnounted by a bold cornice and balustrade. The material of this end of the edifice is of stone; the other walls, with the tower, \&cc. are of brick.

A piain roon, of most uneven shape, about 60 feet long and 33 feet broad within the walls, with a plain flat ceiling, sligbt'y coved at the sides, forms the church.

A gallery ut the west end contains a small organ; the altar-piece at the east end displays some good specimens of carving. This latter, tcgether with the tuble and rails, was the gift of James Snyth, Exq. in 1685 ; at which time, the church was rebuilt by Sir Christopher Wren.

St. Mart magdalen's.

The church built by Wren is a substantial fubrir, with a belltower at the north-west corner; the latter, however, as well as the north side and west end of the church, is shrouded by houser. The south side and east end of the pdifice, display a series of circular-headed windows, at a considerable beight from the ground, with trusses at the sides of each of them, supporting a contiuued cornice above. A stone balustrade of mear ant insignificaut cha-ra-ter, terminates the design.

The tower bas a bold cornice around the upper part of it, and is surmounted by five steps, forming a pyramid which supports a small stone belfry : the whole plain and simple, and productive of a better effect in the original than in a drawing.

Withinside the churci, the ceiiing is flat, (excepting immediately against the four sides, where it is coved, and has a modillion comice around it, ind a lage flower witbin a circular panel, in the centre. There are groined openings in the coved part of the ceiling, to admit the semicircoler beads of the windows which light the church. Against the north wall is a gallery of oak, supported on iron columns: and at the west end is a similar gallery containing an organ which was erected by subscription in 1781. The pulpit, a good piece of workmanslip, is atixed to the south wall.

THE THAMES TUNNEL SHIELD.

We are indebted to our highly respected contemporary, "The Miuing Journal" for the following engraving and description of the Shieid used in the construction of the Thames Tunnel, by Mr. Brunel.

The shield cousists of twelve great frames, which, being independent of euch uther, m..y be advanced separately, by means which will be better understoud on r. ferring to the plate; cach division, as is
attempted to be shown, has boards in front, three feet long by six inches in breadth, and three and a half to four inches in thicknese (known by the technical naune of poling boards"), supported and kept in position by means of screws, which are lodged against the front iron frame; these bourds, to the number of forty-four in each frame, are in suceession taken down while the earth in front of each is excavated, the first board being always replaced before a second is removed, and thus forming a constaut firm buttress. The several parts will be better understood by reference to the following numbers:-

1. Poling boards.
2. Poling screws.
3. The "top staves" covering the upper part of the excavation till the shield is succeeded by brick-work.
4. Screws to raise or depress the top staves.
5. "The legs," being jackscrews fixed by ball joints to the shoes 6 , upon which the whole frame stands.

7 and 8 . The sockets, where the top and bottom abutting screws are fixed to force the division or frames forward.

The design and organisation of this machine cannot be too much adinired, and we only regret our inability to do it fall justice.

CANDIDUS'S NOTE-BOOK. FASCICULUS VIII.

I must have liberty
Withal, as large a charter as the winds,
To blow on whom I please.

I. If any reliance may be placed upon what is said in an article in the 6th No. of the Art Union, on the "State of the Arts in New South Wales" architecture is looking up in that remote region of the globe. The Roman Catholic Cathedral at Sydney is there spoken of as being a building much superior to "most of the places of public worship in this metropolis," (London, we presume;) which it certainly may be without taxing admiration too largely. After all, however, the information positively afforded amounts to no more than that the building is of freestone, the interior "graced by splendid Gothic columns," and that it is capable of containing at least 3000 persons. Hence it may be supposed that it is in the Gothic style, but of what period or class we are not informed. As to that, we are left entirely to conjecture, and can therefore only guess that at any rate the interior is of an unusually rich character; for how else can we account for the splendour of the columns, which in themselves are hardly ever the most striking or decorated features in Gothic architecture. Again, the capacity of containing three thousand persons is but a very vague and unsatisfactory criterion as to dimensions; since it very much depends upon whether the congregation are packed together aud piled up in galleries or not. I do not question the fact itself, but I certainly do question very strongly whether its being made to contain that number of persons, is not altogether fatal to the architectural effect. If not, they manage things very much better among the antipodes than they do here at home. The only other building expressly spoken of is Mr. M'Arthur's residence at Cambden, un "extensive and elegant villa, built in the best and chasest Italian style, with a large and graceful colonnade." Could we but know what are the writer's ideas as to elegance and gracefulness, and what he considers the best and chastest Italian style, we might be able to form some opinion as to the value of his commendation. At present we are wholly in the dark, his account being not a whit more luminous than the definition I have seen somewhere given of a horse, namely, that it is a creature with four legs and tail behind it, with a thing upon its back, called a saddle, for people to sit upon. "There are other fine buildings," the writer adds, "in the colony, but this certainly reflects the greatest credit on the architect." Why, then, I ask, is his name kept a profound secret ;almost as if it were one quite unmentionable-not fit to be even whispered to ears polite? Surely architects do not swarm already to that extent in New South Wales as to render it matter of great difficulty to ferret out the author of such a building.
II. There is one thing in respect to which almost all architectural works are more or less defective, some most deplorably so, and scarcely any perfectly satisfactory, namely, sections. Very few are to be met with of any of the buildings in the volumes of the Vitruvius Britannicus and most other works of that class; while in publications consisting of mere designs, it seems to be made a rule never to show anything whatever of the kind. One might therefore imagine that the interior of a building is of comparatively little, if any, importance, that it offers nothing for study with regard to design, decoration, construction, or contrivance; whereas the fact is, that without complete explanation by means of sections, there will be a great many particulars, as to which we must remain in doubt-perhaps be entirely at a loss. One of the most complete series of illustrations of any English building, is the second edition of Brettingham's work on Holkham House, the seat of the Earl of Leicester, and one of the most princely residences in this country. Yet although that monograph contains an urusual number of sections, several others are still required in order to explain various parts of it; among the rest, another transverse section on a line through the centre of the statue gallery and the two imer courts, and another through the state dining-room from north to soath, to describe the alcove. Neither would it have been amiss had there been two more plans, one to show the mexzanine floor on the east side of the house, and over some of the rooms in the north front; another of the attic floor in the centre of each of the wings; besides which, a section through at least one of these latter would not have been superfluous. Again, though there is a plan of the attic in the roof of the body of the house, none of those rooms are shown in any of the sections, except one immediately above the tribune at the end of the hall, and which must be on a much lower level than the others, in fact, on that of the mezzanine floor. Owing to this omission, it is impossible to tell bow those rooms are lighted-whether by dormer windows
or not, since nothing of the kind appears in the external elevations. What renders the omissions of this kind the more provoking is, that they might have been supplied without at all increasing the number of the plates, because several of those of ceilings and chimney-pieces might have been very well retrenched, as might also some of those of the lodges, \&c., which have scarcely any merit or interest whatever, certainly none in comparison with the particulars here mentioned, the latter being indispensable to a full explanation of the House itself. One extraordinary-indeed quite unaccountable-circumstance is, that the second edition of the work gives a totally different design of the interior of the chapel from that contained in the first one, and not only different but decidedly inferior also, and in quite another style from any other part of the interior, notwithstanding which, no notice is taken in the letter-press to that edition of this most singular discrepancy !
III. As to books of "Designs for Villas," et hoc genus omne, they invariably make it a point to shirk sections altogether. A merc elevation with a ground plan, generally of the most common-place description, is considered quite sufficient for a design, and indeed what is so shown is oftener than not of such quality as to extinguish all regret that no more of it sexhibited. One is puzzled to guess what class of persons they are who purchase the rubbish that has been published under the title of "Villas and Cottages in various styles,"- Castellated included; things that absolutely make one sicken at the name of architecture, and almost ready to forswear it for ever. Look, again, at the samples of dowdiness and ugliness that have had their portraits taken because they happen to answer to the name of gentlemen's seats! Not one in fifty of things so shown are worth representation; yet, had the sums that have from time to time been squandered a way upon many of them, been employed with economy and real taste combined, they might have been as beautiful as they are now the reverse. It is wonderful that people who are as anxious about the make and cut of a coat, as if it was intended to last them their whole lives, bestow no more study and foresight in selecting a design for a house, than if it was a thing that would be worn out in a fortnight.
IV. Or rather is not strange at all, but perfectly natural that such should be the case, seeing that people in general, even of that class, are perfectly ignorant of architecture as of fine art, and have never had the slightest taste for it instilled into them during their education "Good heavens!" methinks I hear some fine lady mamma exclaim, "surely the fellow does not imagine that the children of people of fortune are to be educated as if they were to be house-builders?" Certainly not: I recommend no such thing. I do not desire to see people of fortune study building, yet I do wish to see them study architecture; nor even that as professional men, but as the gentleman, the man of education, and the man of taste ought to do. Such, however, are the odd misconceptions and the obstinate prejudices most persons labour under, that it is impossible to bring them to view the matter in such light. You may attempt to convince them and correct their misapprehensions, and after laving reasoned with them two hours, find that their first notions are immovably fixed. The consequence is that out of a becoming horror lest their sons should be suspected of having ever talked with a carpenter or mason, they suffer them to associate with grooms and jockeys, who may initiate them into all the mysteries of the turf, and from the turf they procced to the green of the gambling-table.
V. As part of liberal education, the study of architecture is not only beneficial as far as it tends to form the taste generally, but highly advantageous inasmuch as it furnishes a pursuit that is a never-failing resource. But it will be said that persons may employ their time quite as innocently and far more protitably both to themselves and to others than in any such pursuit, let the gratification be as great as it may. I am silenced : heaven forbid that with a view of recommending a pursuit as harmless as it is elegant, I should divest any one from employing his time, his fortune, his talents in any way that would immediately benefit society. All that I ask is why do not those who have both leisure and fortune, so employ them, instead of squandering away both, as too frequently happens, in pursuits disgraceful to themselves, and injurious both to themselves and to others? Why are there so many idle time-killers in that class of society-votaries to excitement, and victims to ennui! The man who has a sincere taste for architecture may at least defy the fiend Ennui.

RAMBLES BY PHILOMUSEUS,-No. 2. paris.

One of the first things which strikes the visitor to Paris is the rapid change in style which has taken place within the last two years. The Louis Quatorze and Louis Quinze have gone to the tombs of
their fathers, and left scarcely a trace behind, and the restoration reigns in paramount splendour. The principal cafés and shops shine with gothic ormaments and arabesques, to the exclusion of the Louis Quatorze, and with only occasional instunces of Pompeian. Tbis latter style in some degree divides the empire with that of the restoration, and it is to to be hoped will maintain its ground, as it possesses greater purity, and makes greater use of the human figure. Scarcely one or two instances of old established cafés does the bastard French Greek remain at all undisturbed. The splendour of some of the restoration buildings is such as to be without parallel in London, and shows equally a more extended love of art among the Parisians, and readier means of availing themselves of it. The number of first rate decorators, which the quality of the work shows to have been employed, is such as to mock all the resources of our London artists, and forcibly to point out the advantage which the Parisians possess from the extension of artificial instruction. For practical purposes decoration in London is so dear and so difficult to be obtained, that it is out of the power of tradesmen to avail themelves of it. We are particularly deficient in artists who can draw well, and still worse off for such as can colour even decently. There is however a class of workmen from whom perhaps the decorafprs could draw recruits; the papier mache manufacture being now so much cultivated, that tolerable men for flowers and arabesque painting could be obtained for thirty shillings a week.

In Paris the taste for the restoration, like that for all other styles arises from political causes, and is the manifestation of the moral circumstances which affect the whole frame of society. Luxury and degeneracy of taste produced the styles of Louis Quatorze and his successor, and the wants of a predominant monied aristocracy led to its revival; the reign of Louis Sixteenth, the precursor of immense revolutions, frst imitated the sober manners of the English, and then in its farther license fell back upon the Greek and Roman styles. The prevalence of the Egyptian style under the consulate is referable to the same elements, and in every instance we see the mind of the nation chronicling its successive phases in the remains of the several styles which are the outward figures and physical manifestation of the moral agitation within. We have nothing of that kind here, the influence of a style or a fashion is confined to a particular class, produces no effect on the nation at large, and leaves few monuments of its existence. In France the whole nation is agitated, every department of literature and art is called into active participation, and the style of the day is that of the whole nation. The novellist calls into life the personages and events of the middle ages; the dramatist exhibits them on the theatre, the periodical press swarm with illustrative publications, the painter and the sculptor seek no other source of inspirations, the engraver distributes their images among the people, the decorator gothicises the mansion, the architect repairs the old buildings, and even the cook and the barber participate in the general conflict. Thus in a few years the whole nation is physically and nationally metamorphorized. One general tone pervades society, and whether he will or no the artist must conform to it. With his hair und beard a la Raphael, he dines in a Gothic restaurant, finishes the evening at the Theatre de la Renaissance with a medieval drama, seals his billet with a seal like that of an old abbot, and wamed by the notes of the cathedral like clock on his chimney piece, retires to sleep under a canopy carved in quatrefoil. Go into the Bibliotheque Royale, the print-room is filled with students of castles and cathedrals, the library with romaunt readers, and the museum with copyists of furniture and costume. It is evident that we can never compete with such a concentrated force of application, but at any rate by a better instruction of our workmen, we may become more efficient copyists, and avail ourselves to a greater extent of what is already done to our hands.

The most pleasing feature to an Englishman of this rage for the restoration, is the respect which is paid to gothic monumeuts, and the efforts which are making for their repair and preservution. The Archbishop's Palace which was demolished, being now conyerted into a Place, and the adjacent houses cleared away, Notre Dame towers over the lle de la Cité with a majesty which has few rivals. The church of St. Germain l'Auxerrois, and other gothic buildings are also undergoing restoration and completion, and freed from the barbarisms of the pseudo classic artists they will possess a greater interest than ever.

THE THAMES TUNNEL.

This work now approaches completion, and people naturally ask what is to be its future destiny. That it will pay no one ever conceives, and that it is of any great utility is equally problematical. To climb down one pair of stairs and up at another, and to promenade in a catacomb is little inviting as a matter of pleasure, and rather too tedious for business, so that it will probably remain what it bas hitherto
been, more a kind of show, than productive of public advantige. It may however be well worth the consideration of its managers, whether by the use of a stationary engine, it could not be made a relativety convenient mode of passage, so that by a low rate of toll carriages might be induced to pass over, If too foot passengers could also be conveyed across in a car for a little higher toll than they coold proceed alone, it would perhapa become a favourite source of amosement.

One of the most interesting propositions hitherto made respecting this great work, emanates from a destlinguished forelgp nobleman, the Count Hawks Le Grice, a member of several of the academiea abroad, and eminent at Rome for his taste and his cultivation of the att. He proposes that the tunnel should form a repository for busts of illusstrious men, and that the entrances on the Middlesex and Surrey sores should be effected by two triumphal arches, one recording the achiepe. ments of the navy, and the other the heroic deeds of the army. That the public may be enabled to judge of the feasibility of this arrange. meut, and of the effect which it is calculated to produce, the Corm has kindly offered to fit it up temporarily with a number of burs for this purpose, so that soon an opportunity may be afforded for brimiog it into full operation. After alluding to the interesting fentures of this project as a national work, the Count obwerves, that " if we corsider the grandiose style of the architecture, the massive and broad effect of the whole, and the form of the semi-elliptical arch which allows the eye to embrace the whole stupendous structure without being distracted by any details, we must say that it all goes to prose that the viaduct of the tumel is singularly adapted for the exififtion of sculpture. To those who bave bad the ligh intellectual treat of seeing those chefs d'ourre of art, the Apollo, the Laocoon, the Olyppian Jupiter, the Minerva Medici, and the Ariadne in the Vatican to torchlight wilh at once acknowledge that the circumstance of the Tunnel being lighted with gas would greatly contribute to the efed of sculptural art. It is moreover known that artificial light is superior to daylight, as the contrast of light and shade is greater and the effect of chiar'oscuro enhances the value and the bezuty." Tbe Court recommends that the busts should be semi-colossal, executed with more than usual spirit and boldness, the hair should be well mased, and in their execution should be that simple majesty of fotm, that solemn quietude and sedate expression, that dignity of gesture freed from ostentation, which is the distinguishing character of Greek art.

EXPERIMENTAL RESEARCHEX UPON THE RELATIVE ILLUMINATING POWERS OF DIFFERENT LAMPS AND CANDLES, AND THE COST OF THE LIGHT AFFOBDND BY THEM.

> Bi Andhew Ure, M.D., F.R.S., \&c. \&c. \&c.

Read before the Institution of Civil Engireers, 11th Junc, 1839.

The production, diffusion, and econozay of ligbt are subjectu of the highest interest both to men of science and men of the world ; leading the former to contemplate many of the most beautiful phenomena of physics and chemistry, while they provide the latter with the arificial illumination so indispensable to the business and pleasures of modern society. The great cost of light from was, spermaceti, and eren stearine candles, as also the nuisance of the light from talloy ones luve led to the invention of an endless variety of lamps, of which the best litherto known is undoubtedly the mechanical or Carcel lamp, ∞ generally used by the opulent families in Paris. In this lamp, the oil is raised through tubes by clock-work, so as contibually to overtion at the bottom of the buming wick; thus keeping it thoroughly soatiod while the excess of the oil drops back into the cistern below. I hare possessed for several years an excellent lamp of this description, which performe sooet satisfactorily, but it can hardly be trusted in the hands of a servant; and when it gets ot all deranged, it must be sax to its constructor in Paris to be repaired. The light of this harp when furnished with an appropriate tall glass chimney is very brilizin, though not perfectly uniform; since it fluctuates a little, but ulrap perceptibly to a nice observer, with the alternating ection of the pumpwork; becoming dimmer after every successive jet of oif and trighler just before its return. The fame, moreover, always fickers mone or less, owing to the powerful draught, and rectangular peverbertiors shoulder of the chimney. The mechanical lamp is, however, ramal. able for continuing to burn, not only with unabated but with inctasing splenduar for seven or eigbt hours, the vivacity of the compurtion increaming evidently with the increased temperature and fwency of the oil, whioh, by its ceuseless circulation through the ignised wiok, geth eventually pretty warm. In the comparative expariments nace upat

conamonly taken as the standard. I do not think it entitled to this pre-eminence : for it may be made to emit very different quantities of light, according to differences in the nature and supply of the oil, as well as variations in the form and position of the chimney. Besides, such lamps are too rare in this country to be selected as standards of illumination.
After comparing lights of many kinds, I find every reason to conclude, that a large wax candle of three to the pound, either long or short, that is, either 12 or 15 inches in length, as manufactured by one of the great wax-chandlers of London, and furnished with a wick containing 87 or 28 threads of the best Turkey cotton, is capable of furnishing a most uniform, or nearly invariable standard of illumination. It affords one-tenth of the light emitted by one of the Argand lamps of the Trinity House, and one-eleventh of the light of my mechanical lamp, when each lamp is made to bum with its maximum flame, short of smoking.
The great obstacle to the combustion of lamps, lies in the viscidity, and consequent sluggish supply, of oil, to the wicks; an obstacle nearly insuperable with lamps of the common construction during the winter monthe. The relative viscidity, or relative fluency of different liquids at the same temperature, and of the same liquid at different temperatures, has not, I believe, been hitherto made the subject of accurate researches. I was, therefore, induced to make the following experiments with this view.
Into a hemispherical cup of platinum, reating on the ring of a chemical stand, I introduced 2000 water-grain measures of the liquid whose viscidity was to be measured, and ran it off through a glass syphon 1 of an inch in the bore, having the outer leg 31 inches, and the inner leg 3 inches long. The time of efflux became the measure of the viscidity; and of two liquids, if the specific gravity, and consequent pressure upon the syphon, were the same, that time would indicate exactly the relative viscidity of the two liquids. Thus oil of turpentine and sperm oil have each very nearly the same density; the former being, as sold in the shops, $=0.87 \mathrm{G}$, and the latter from 0.876 to 0.880 , when pure and genuine. Now 1 found that 2000 grainmeasures of oil of turpentine ran off through the small syphon in 95 ecconds, while that quantity of sperm oil took 2700 secouds, being in the ratio of 1 to 281; so that the fluency of oil of turpentine is $28 \frac{1}{2}$ times greater than that of sperm oil. Pyroxilic spirit, commonly called maphtha, and alcohol, each of specific gravity 0.825 , were found to run of respectively in 80 and 120 saconds; showing that the former was 50 per cent. more fluent than the latter. Sperm oil, when heated to 865° Fahr., runs off in 300 seconds, or one-ninth of the time it took when at the temperature of 64°. Southern whale oil, having a some, what greater density than the spenn oil, would therefore flow off faster, Were it not somewhat more viscid. Its specific gravity is 0.926 , and it takes just the same time to flow off an sperm oil, either in its cold state or heated to 265°.
8000 grain-measures of water at 60° run off through the said syphon in 75 seconde, but when heated to 180° they run off in 61.

In the adjoining figure, $\mathbf{A}, \mathrm{A}, \mathrm{B}, \mathrm{B}$, is a section of the cylinder, which constitutes the cistern ; the oll being containcl between the inner and outer cylinders, and receiving heat from the filme of the lamp, which passen up through the inner cylinder, B, B, and is reverberated more or less against its sides by the top of the iron chimney e, be ng notched ant beht back. D is a stop coek which is opened to allow the of to descend to the wick, and is thut when the cistern is to be epparated from the pipe of mupply, for for the purpuse of re-charging it with oil. The flame is modified, not by raisiag or lowering the niek, as in common lamps, Lat by raising or loweing the bell-muuthel glass ehimney, ahich rists at its bottom on three points, and is moved by means of the rack-work mechanimp F. The concentric cylindric space, A, A, \& B, B, contains a pint imperial, and should be made catirely full before lighting the lamp; so as to leave no air in the cistern, which by lits exprnsion with the heat, would inevitably eause an overflow of the ofl.

Concentrated sulphuric acid, though possessing the great density of 1.840, yet flows of very slowly at 64°, on account of its viscidity; whence its name of oil of vitriol. 2000 grain -measures of it took 660 seconds to discharge.

Mr. Samuel Parker, long advantageously known to the public for his sinumbral, and pneumatic fountain lamps, as well as other inventions subservient to domestic comfort, having recently obtained a patent for a new lamp, in which the oil is heated, by a very simple contrivance, in the cistern, to any desired degree, before arriving at the wick, f instituted an extensive series of experiments to determine its value in the production of light, and consumption of oil, compared to the value of other lamps, as well as candles in these respects.

The following arrangement was adopted in these experiments for determining the relative illumination of the different lights. Having trimmed, with every precaution, my French mechanical lamp, and charged it with pure sperm oil, I placed it upon an oblong table, at a distance of 10 feet from a wall on which a sheet of white paper was stuck. One of Mr. Parker's hot-oil lamps, charged with a quantity of the same oil, was placed upon the same table; and each being made to burn with its maximum brilliancy, short of smoking, the relative illumination of the two lamps was determined by the well-known method of the comparison of shadows; a wire a few inches long, and of the thickness of a crow-quill, being found suitable for enabling the eye to estimate very nicely the shade of the intercepted light. It was observed in numerous trials, both by my own eyes and those of others, that when one of the lamps was shifted half an inch, nearer to or further from the paper screen, it caused a perceptible difference in the tint of the shadow-Professor Wheatstone kindly enabled me to verify the precision of the above method of sladows, by employing, in some of the experiments, a photometer of his own invention, in which the relative brightness of the two lights was determined by the relative brightness of the opposite sides of a revolving silvered ball, illuminated by them.

1. The mechanical lamp was furnished with a glass chimney 1.5 inches in diameter at the base, and 1.2 at top; the wide bottom part was 1.8 inches long, and the narrow upper part 8 inches. When placed at a distance of 10 feet from the wall its light there may be estimated as the square of this number, or 100 . In the first series of experiments, when burning with its maximum flame, with occasional flickerings of smoke, it emitted a light equal to that of 11 wax candles, and consumed 912 grains of oil per hour. The sperm oil was quite pure, having a specific gravity of 0.874 compared to water at 1000 . In a subsequent series of experiments, when its light was less fickering, and equal only to that of 10 wax candles, it consumed only 815 grains, or 0.1164 of a lib. per hour. If we multiply this number into the price of the oil (88. per gallon) per lib. 11d., the product $1.2804 d$. will represent the relative cost of this illumination, estimated at 100.
2. The hot-oil lamp burns with a much steadier flame than the meclanical, which must be ascribed in no small degree to the rounded slope of the bell-mouthed glass chimney, whereby the air is brought progressively closer and closer into contact with the outer surface of the flame, without being furiously dashed against it as it is by the rectangular shoulder of the common contracted chimney. When charged with sperm oil, and made to burn with its maximum flame, this lamp required to be placed one foot further from the screen than the mectanical lamp, in order that its shadow should have the same depth of tint. Hence, its relative illumination was, in that case, as the square of 11 to the square of 10 ; or as 121 to 100 . Yet its consumption of oil was only 696 grains, or somewhat less than 0.1 of a lib. per hour. Had its light been reduced to 100 , it would have consumed only 576 grains per hour, or 0.82 of a lib. If we multiply this number by 11d. the product 0.902 d . will represent the relative cost of 100 of this illumination.
3. The hot-oil lamp being charged with the southern whale oil, ot specific gravity 0.926 , at 2 s . 6 d . per gallon, or 3 s d . per lib., when burning with its maximum flame, required to be placed 9 feet and 1 inch from the screen to drop the same tint of shadow upon it as the flames of the other two lamps did at 10 and 11 feet with the sperm oil. The square of 9 feet 1 inch $=82$ is the relative illumination of the hot-oil lamp with the southerm whale oil. It consumed 780 graing or 0.111 of a pound per hour; but had it given 100 of light it would have consumed 911 grains, or 0.130 of a pound, which number being multiplied by its price $3\left\{{ }_{2}\right.$, the product $0.4875 d$. will represent the relative cost of 100 of this light.
4. A hot-oil lamp charged with olive-oil of specific gravity $0.91 t_{s}$ at $58.6 d$. per gallon, or 7 fd . per lib., when burning with its maximum flame, required to be placed at 9 feet 6 inches to obtain the standard tint of shadow upon the screen. It consumed 760 grains per hour. The square of 9 f feet is $90 t$, which is the relative intensity of the light of this lamp. Hiad it emitted a light $=100$, it would have cont
sumed 840 grains, or 0.12 of a pound per hour-which number multiplied by the price per pound, gives the product 0.9 d . as the relative cost of 100 of this light.
5. A hot-oil lamp charged with Price and Co.'s cocoa-nut oil (oleine), of specific gravity 0.925 , at $48.6 d$. per gallon, or $5 \frac{1}{2} d$. per lib., had to be placed 9 feet from the screen, and consumed 103 grains per hour. Had its light been 100 instead of $81\left(9^{*}\right)$, the consumption would have been 1277 grains, or 0.192 of a pound per hour; which number multiplied by its price per pound, the product $1.031 d$. will reprezent the cost of 100 of this illumination.
6. In comparing the common French annular lamp in general use, with the mechanical lamp, it was found to give about one-half the light, and to consume two-thirds of the oil of the mechanical lamp.
7. Wax candles from some of the most eminent wax-chandlers of of the metro polis were next subjected to experiment; and it is very remarkable that, whether they were threes, fours, or sixes in the pound, each afforded very nearly the same quantity of light, for each required to be placed at a distance of 3 feet from the screen to afford a shadow of the same tint as that dropped from the mechanical lamp, estimated at 100 . The consumption of a genuine wax candle, in still air, is, upon an average of many experiments, 125 grains per hour, but as it affords only $1-11$ th of the light of the mechanical lamp, 11 times $125=1375$ grains, or 0.1064 of a pound is the quantity that would need to be consumed to produce a light equal to that of the said lamp. If we multiply that number by the price of the candles per lib. $=30 \mathrm{~d}$. the product $=5.892 d$. is the cost of 100 of illumination by wax. A wax candle, three in the pound (short), is 1 inch in diameter, 12 inches in length, and contains 27 or 28 threads, each about 1-90th of an inch in diameter. But the quality of the wick depends upon the capillarity of the cotton fibrils, which is said to be greatest in the Turkey cotton, and hence the wicks for the best wax candles are always made with cotton yarn imported from the Levant. A wax candle, three in the pound (long), is $\frac{z}{}$ of an inch in diameter, 15 inches long, and bas 26 threads in its wick. A wax candle, six to the pound, is 9 inches long, 4-5ths of an inch in diameter, and has 22 tbreads in its wick. The light of this candle may be reckoned to be at most, about 1-11th less than that of the threes in the pound. A well-made short three burns with surprising regularity instill air, being at the rate of an inch in an hour and a half, so that the whole candle will last 18 hours. A long three will last as long, and a six about 91 hours. Specific gravity of wax $=0.960$.
8. Spermaceti candle, three in the pound, is 9 -10ths of an inch in clianeter, 15 inches long, and has a plaited wick, instead of the parallel threads of a wax candle. The same candles, four in the pound, are 8 -10th of an inch in diameter, and $13 \frac{1}{\frac{1}{2}}$ inches long. Each gives very nearly the same quantity of light as the corresponding wax candles: viz., 1-11th of the light of the above-mentioned mechanical lamp, and consumes 142 grains per hour. Multiplying this number by 11, the product, 1562 grains $=0.223$ of a pound, would be the consumption of spermaceti requisite to give 100 of illumination. Multiplying the last number by $24 d$., the price of the candles per pound, the product 5.352 d . is the relative cost of 100 of this illumination.
9. Stearic Acid candles, commonly called German wax, consume 168.5 grains, or 0.024 of a pound, per bour, when emitting the same light as the standard wax candle. Multiplying the latter number by 11 , and by 16 d . (the price of the candles per lib.), the product 4.224 d . will represent the relative cost of 100 of this illumination.
10. Tallow candles ; moulds, slort threen, 1 inch in diameter, and $12 \frac{1}{2}$ in length; ditto, long threes, $9-10$ ths of an inch in diameter, and 15 in length; ditto, long fours, 8-10ths of an inch in diameter, and 13 t in length. Each of these candles burns with a most uncertain light, which varies from 1-12th to 1-16th of the light of the mechanical lamp-the average may be taken at $1-14 \mathrm{th}$. The threes consume each 144 grains, or 0.2 of a pound, per hour; which number, multiplied by 14, and by $9 d$. (the price per pound,) gives the product $2.52 d$. for the relative cost of 100 of this illumination.
11. Palmer's spreading wick candles. Distance from the screen 3 feet 4 inches, with a shadow equal to the standard. Consumption of tallow per hour 232.5 grains, or 0.0332 of a pound. The square of 3 feet 4 inches $=11.9$ is the relative illumination of this candle$11.9: 0.3332:: 100: 0.28$; and $0.28 \times 10 d .=2.8$ the relative cost of this illumination.
12. Cocoa-nut stearine candles consumed each 168 grains per hour, and emitted a light equal to $1-16$ th of the standard fame. Multiplying 168 by 16 , the product 3088 grains, or 0.441 of a lib., is the quantity which would be consumed per hour to afford a light equal to 100 . And 0.441 multiplied by 10 d ., the price per lib., gives the product 4.41d. as the cost of 100 of this illumination per hour.
13. A Gas Argand London Lamp, of 12 holes in a circle of of on inch in diameter, with a flame 3 inches long, afforded a light $=78$
compared to the mechanical lamp; and estimating the light of the said mechanical lamp as before, at 100 , that of the bot-oil lamp is 120 , and that of the above gas flame 73.57, or in round numbers 80 , and the common French lamp in gencral use 50.

Collecting the preceding results, we shall have the following tabular view of the cost per hour of an illumination equal to that of the mechanical lamp, reckoned 100 , or that of 11 wax candles, three to the pound.
table of cost per hour of one hondred of illuminatiox.

Since the hot-oil lamp affords sufficient light for reading, nriting, seming, \&c., with one-ffth of its maximum fame, it will burn at that rate for 10 hours at the cosi of about One Penny,; and is, hence, nell entitled to its inventor's designation, "The Economic."

Sir D. Brewster, in his examination lately before the Committee of the House of Commons on lighting the House, stated, that the French light-house lamp of Fresnel emitted a light equal to that of 40 Argand flames: whereas, according to other accounts, it gave much leas light. With the view of settling this point, before being examined by the said Committee, I repaired to the Trinity-house, and tried one of the two original Fresnel lannss, which had been deposited there by that eminent French engineer himself. This lamp consists of four coocentric circular wicks, placed in one horizontal plane; the innermost wick being I of an inch in diameter, and the outermost 34 incbes. Being carefully trimmed, supplied with the best sperm oil, surmounted with its great glass chimney, burning with its maximam flatae, and placed at a distance of 13 feet 3 inches from the acreen, it let fall a shadow of the same tint as that let full by the flame of my mechanical lamp, placed at a distance of 4 feet 6 inches from the screen. The squares of these two mumbers are very nearly as 87 to 1 (175.5625 to 20.25) ; showing that the Fresnel lamp gives less than 9 times the light of my mechanical lamp, and about 9.6 times the light of one of the Trinity-house Argand lamps. The Fresnel lamp is exceedingly troublesome to manage, from the great intensity of its heat, and the frequent fractures of its chimneys-two having been broken in the course of my experiments at the Trinity-house.

Mr. Goldsworthy Gurney, the ingenious inventor of the new lighthouse lamp, in which a stream of oxygen gas is sent up through a small tube within the burning circular wick of a small Argand lamp, having politely sent two of his lamps to my house, along with a bag of oxygen gas, I made the following experiments, to ascertain their illuminating powers, compared to those of the mechanical lamp and wax candles.

His larger lamp has a wick of an inch in diameter, but emits an oxygen flame of only $\frac{1}{8}$ of an inch. The flame is so much whiter than that of the best lamp or candle, that it becomes difficult to determine, with ultimate precision, the comparative depths of the shadows let fall by them. The mean of several trials showed that the above Budelight (as Mr. Gurney calls it, from the name of his residence in Cornwall,) has an illuminating power of from 28 to 30 wax candles. His smaller lamp has a flame t of an inch in diameter, and a wick of an inch. Its light is equal to that of from 18 to 20 wax candlea. He propose to mount 60 such lights, distributed into 8 compartmente, in the ceiling, for lighting the House of Commons, the light being reflected downwards by concave mirrors.

The Committee of the House of Commons, on lighting it, having asked me what was the relative vitiation of air by the breathing of men, and the burning of candles, I gave the following answer:-

Wax contains 81.75 parts of carbon in 100 , which generate by combustion 300 parts of carbonic acid gas. Now, since 125 grains of wax constitute the average consumption of a candle per hour, these wrill generate 375 grains of carbonic acid; equivalent in volume to 500 cubic inches of gas. According to the most exact experiments on respiration, a man of ordinary size discharges from his longa 1693 cublc inches of carbonic acid gas per hour, which is very nearly the double of the quantity produced from the wax candle. Herce the combustion of two such candles vitiates the air much the sume as the breathing of one man. A tallow candle, 3 or 4 in the poumd, generates
nearly the quantity of carbonic acid as the wax candle; for though tallow contains only 79 per cent. of carbon, instead of 81.75 , yet it consumes so much fuster, as thereby to compensate fully for this difference.

13, Chariotte Street, Bed ford Square.

STONE FOR THE NEW HOUSES OF PARLIAMENT.

Report (addressed to the Commissioners of Her Majesty's Woods, Forests, Land Renenut, Works, and Buildings), as the Result of an Inquiry, undertaken under the authority of the Lords Commissioners of Her Majesty's Treasury, by Charles Barry, Esq., H. T. De La Beche, Esq., F.R.S. and F.G.S., Williay Smith, Esq., D.C.L. and F.G.S., and Mr. Charles H. Smith, with reference to the Selection of Stome for Buidding the Nen Houses of Parliament.
My Lord and Gentlemen.-In conformity with your instructions we have the honour to report, that in the months of August, September, and October last we made a tour of inspection to various stone quarries in the kingdom, and visited numerous public buildings, with a riew to the selection of a proper stone to be employed in the erection of the new Houses of Parliament. We have also, in further compliance with your instructions, procured a fair average specimen of the workable stone from each of the quarries which we have visited, and have deposited cubes, prepared from such specimens, as well as from others which have been forwarded to us, in the Museum of Economic Geology.

From the number of quarries which we have visited, we consider that we have been enabled to obtain a competent knowledge of the varied character of each of the several classes of building stone in the Kingdom which are likely to be suited to the object in view, although we are well aware that there are many other freestone quarries in various parts of the country which we have not examined, where stone of different varieties, in some cases, perhaps, not inferior to those which have been brought under our immediate inspection, may be obtained. From many of such last-mentioned quarries we have received specimen blocks, and the requisite information concerning them, since the completion of our tour. We have not considered it necessary to extend our inquiry to granites, porphyries, and other stone of similar character, on account of the enormous expense of converting it to building purposes in decorative edifices, and from a conviction that an equally durable and more eligible material could be obtained for the object in view from among the limestones or sandstones of the Kingdom. We have, nevertheless, to acknowledge the receipt of several specimens of granite, among which are some from the estates of the Marquis of Breadalbane, near Oban, in the west of scotland, accompanied by a munificent offer on the part of his Lordship that, should the granite from that locality be considered fit and available for the proposed new Houses of Parliament, he would be willing to make a free gift to the nation of his interest in any quantity that might be required for the purpose.

In order to render more complete the inquiry upon which we have been engaged, we have availed ourselves of the valuable assistance of Professors Daniell and Wheatstone, of King's College, London, in determining the physical properties of a large proportion of the specimena which we have obtained.
The details of the information collected in the course of our inquiry will be found at the end of this report, arranged in a series of tables, (A), (B), (C), and (D), for the purpose of more easy reference and comparison.
Table (A) exhibits an alphabetical enumeration of all the quarries which have been brought under our consideration; the names and residences of the parties interested in them; the mineral character and component parts of the stone, its colour, structure, and ordinary weight; a description of the workable and other beds; the price of stone at the quarry ; the cost of its carriage to the pool of London; the coot of labour upon it, with reference to that upon Portland stone, in London; an enumeration of the public works wherein the stone is either known, or reported to have been employed; and such general remarks as are applicable to the peculiar circumstances of each quarry.

With respect to the cost prices enumerated in this table, it should be stated that they have been fumished by the several partiea interested, without reference to a large supply, which if required would no doubt occasion new and more economical arrangements to be made, so that the atone would probably be supplied upon more reasonable terms.

Table (B) exhibits a list of the public buildings that we have viaited, detailing the time of their erection, the stone of which they
are constructed, and their present condition ; arranged alphabetically, according to the class of stones employed in them.

Tables (C) and (D) contain the results of the analyses and experiments of Professors Daniel and Wheatstone, a description of the mode in which they have been conducted, and their observations upon the subject.

In proof of the necessity and importance of the inquiry upon which we have been engaged, the lamentable effects of decomposition observable in the greater part of the limestone employed at Oxford, in the magnesian limestone of the minster, churches, and other public buildings at York, and in the sandstones of which the churches and other public buildings in Derby and Newcastle are constructed, afford, among numerous other examples, incontestible and striking evidence. The unequal state of preservation of many buildings, often produced by the varied quality of the stone from the same quarry employed in their construction, shows the propriety of a minute examination of the quarries themselves, in order to acquire a proper Enowledge of the particular beds from whence the different varieties have been obtained. An inspection of quarries is also desirable for the purpose of ascertaining their power of supply, the probable extent of any given bed, and many other matters of practical importance.

It frequently happens that the best stone in quarries is often neglected, or only in part worked, from the cost of bareing and removing those beds with which it may be associated; and, in consequence, the inferior material is in such cases supplied, especially when a great order is required to be fulfilled in a short space of time, and ato an insufficient price, which is often the case with respect to works undertaken by contract.

As the supply of stone in particular localities would often appear to be due to accidental circumstances, such as the cost of quarrying, the degree of facility in transport, and the prejudice that generally exists in favour of a material which has been long in use; and as the means of transport have of late years been greatly increased, it becomes essential to ascertain whether better materials than those which have been employed in any given place may not be obtained from other although more distant localities, upon equally advantageous terms. The decomposition of stones employed for building purposes appears to be effected by chemical and mechanical causes, according to the conditions under which such stones were placed. With reference to sandstones, such as are usually employed for building purposes, and which are generally composed of either quartz or siliceous grains cemented by siliceous, argillaceous, calcareous, or other matter, their decomposition is effected according to the nature of the cemented substance, the grains being comparatively indestructible. With respect to limestones composed of carbonate of lime, or the carbonates of lime and magnesia, either nearly pure or mixed with variable proportions of foreign matter, their decomposition depends, other things being equal, upon the mode in which their component parts are aggregated, those which are most crystalline being found to be the most durable, while those which partake least of that character suffer most from exposure to atmospheric influences.

The varieties of limestones termed oolites, being composed of oviform bodies cemented by calcareous matter of a varied character, will, of necessity, suffer unequal decomposition, unless such oviform bodies and the cement be equally coherent. Those limestones which are usually termed "shelly," from being chiefly formed of either broken or perfect fossil shells cemented by calcareous matter, suffer decomposition in an unequal manner in consequence of the shells, which, being for the most part crystalline, offer the greatest amount of resistance to the decomposing effects of the atmosphere.

Sandstones, from the mode of their formation, are very frequently laminated, more especially when micaceous, the plates of mica being generally deposited in planes parallel to their beds. Hence, if such stone be placed in buildings at a right angle to its natural bed, it will decompose in flakes according to the thickness of the lamine; whereas, if it be placed upon its natural bed, the amount of decomposition will be comparatively immaterial.

Limestones, from the general mode of their formation, are not liable to the kind of lamination observable in sandstones; nevertheless, varieties exist, especially those usually termed shelly, which have a coarse laminated structure, generally parallel to the planes of their beds, and therefore the same precaution in placing such stone in buildings upon its natural bed, is as necessary as with the sabdstones above noticed.

The effects of the chemical and mechanical causes of the decomposition of stone in buildings, are greatly modified according as such buildings may be situated in town or country. The state of the atmosphere in populous smoky towns produces a greater amount of decomposition in buildings so situated, all other conditions being equal, than in those placed in an open country, where many of the aeriform
products which arise from such towns, and are injurious to buildings, are not to be found.

The chemical action of the atmosphere produces a change in the entire matter of the limestones, and in the cementing substance of the sandstones, according to the amount of surface exposed to it. The mechanical action due to atmospheric causes, occasions either a removal or a disruption of the exposed particles; the former by means of powerful winds and driving rains, and the latter by the congelation of water forced into or absorbed by the external portions of the stone. These effects are reciprocal, chemical action rendering the stone liable to be more easily affected by mechanical action, which latter, by constantly presenting new surfaces, accelerates the disintegrating effects of the former.

Buildings in this climate are generally found to suffer the greatest amount of decomposition on their southern, south-western, and westem fronts, arising, doubtless, from the prevalence of winds and rains from those quartems; hence it is desirable that stones of great durability should at least be employed in fronts with such aspects.

Buildings situated in the country appear to possess a great advantage over those in populous and smoky towns, owing to fichens, with which they almost invariubly become covered in such situations, and which, when firmly established over their entire surface, seem to exercise a protective influence against the ordinary causes of the decomposition of the stone upon which they grow.

As an instance of the difference in degree of durability in the same material, subject to the effects of the atmosphere in town or country, we may notice the several frustra of columns and other blocks of stone which were quarried at the time of the erection of St. Paul's Cathedral in London, and are now lying in the Island of Portland, near the quarries from wheuce they were obtained. These blocks are invariably found to be covered with lichens, and although they have been exposed to all the vicissitudes of a marine atmosphere for more than 150 years, they still exhibit, beneath the lichens, their original form, even to the marks of the chisel employed upon them, whilst the stone which was taken from the same quarries (selected no doubt with equal if not greater care than the blocks alluded to), and placed in the Cathedral itself, is, in those parts which are exposed to the south and south-west winds, found in many instances to be fast mouldering away.

Colour is of more importance in the selection of a stone for a building to be situated in a populous and smoky town than for one to be placed in an open country, where all edifices usually become covered, as above stated, with lichens; for although in such towns those fronts which are not exposed to the prevailing winds and rains will soon become blackened, the remainder of the building will constantly exhibit a tint depending upon the natural colour of the material employed.

Before we proceed to adduce a few examples of the present condition of the various buildings that we have examined, we would wish to observe, that those which are highly decurated, such as the churches of the Norman and pointed styles of architecture, afford a more severe test of the durability of any given stone, all other circumstances being equal, than the more simple and less decorated buildings, suoh as the castles of the fourteenth and fifteenth centuries, inasmuch as the material employed in the former class of buildings is worked into more disadvantageous forms than ln the latter, as regards exposure to the effects of the weather; and we would further observe, that buildings in a state of ruin, from being deprived of their ordinary protection of roofing, glazing of windows, \&c., constitute an equally severe test of the durability of the stone employed in them.

As examples of the degree of durability of various building stones in particular localities, the following may be enumerated. Of the sandstone buildings which we examined we may notice the remains of Ecclestone Abbey, of the thirteenth century, near Barnard Castle, constructed of a stone closely resembling that of the Stenton Quarry, in the vicinity, as exhibiting the mouldings and other decorations, even to the dog's tooth ormament, in excellent condition. The circular keep of Barnard Castle, apparently also built of the same material, is in fine preservation. Tintern Abbey may also be noticed as a sandstone edifice that has to a considerable extent resisted decomposition; for, although it is decayed in some parts, it is nearly perfect in others. Some portions of Whitby Abbey are likewise in a perfect state, whilst others are fast yielding to the effects of the atmosphere. The older portions of Ripon Cathedral, constructed of sandstone, are in a fair state of preservation. Rivaula Abbey is another good example of an ancient sandstone building in a fair condition. The Norman keep of Richmond Castle, in Yorkahire, affords an instance of a moderately hard sandstone, which has well resisted decomposition.

As examples of sandstone buildings of more recent date, in a good state of preservation, we may mention Hardwicke Hall, Haddon Hall,
and all the buildings of Cragleith stone in Edinburgh and its viefnity. Of sandstone edifices in an advanced state of decomposition we may enumerate Durham Cathedral, the churches at Neweastle-upon-Tyne, Carlisle Cathedral, Kirstall Abbey, and Fountains Abbey. The mandstone churches of Derby are also extremely decomposed; and the church of St. Peter's at Shaftesbury is in such a state of decay, that some portions of the building are only prevented from falling by means of iron ties.

As an example of an edifice constructed of a ealciferous variety of sundstone, we may notice Tisbury Church, which is in unequal coodition, the mouldings and other enrichments being in a perfect state. whilst the ashier, apparently selected with less care, is fant moaldering apay.

The choir of Sonthwell Churoh, of the twelfth century, may be mentioned as affording an instance of a magnesio-calciferous samadstone, resembling that of Mansfield, generally in good condition, after long exposure to the influences of the atmosphere.

Of buildings constructed of maghesian limestone we may mention the Norman portions of Southwell Church, built of stote similar to that of Bolsover, and which are throughout in a perfect state, the mouldings and carved enrichments being as sharp as when first executed. The Keep of Konnggburgh Castle, built of a magnesian limestone from the vicinity, is also in a perfect state, though the jointe of the masonry are open in consequence of the decomposition and disappearance of the mortar formerly within them. The Church at Hemmingborough, of the fifteenth century, constructed of a material resembling the stone from Huddlestone, does not exhibit any appearance of decay. Tickbill Church, of the fifteenth century, built of a simils material, is in a fair state of preservation. Huddlestone Hall, of the sixteenth century, constructed of the stone of the immediate vicinity, is also in good condition. Roche Abbey, of the thirteenth century, in which stone from the immediate neighbourhood has been employed, exhiblts generally a fair state of preservation, although some portions have yielded to the effects of the atmosphere.

As examples of magnesian limestone buildings in a more adranced state of decay, we may notice the churches at York, and a large portion of the Minster; Howden Church, Doncaster old Church, and others in that part of the country, many of which are so much decomposed that the mouldings, carvings, and other architectural decorations, are often entirely effaced.

We may here remark that, as far as our observations extend, to proportion as the stone employed in magnesian limestone buildings is crystalline, so does it appear to have resisted the decomposing efiects of the atmosphere; a conclusion in accotdance with the opinion of Professor Daniell, who has stated to us that from the resuits of experiments he is of opinion that "the nearer the magnesian limestones approach to equivalent proportions of carbonate of lime and carbonate of magnesia, the more crystalline and better they are in every respect"

Of buildings constructed of oolitic and other limestones we may notice the Church of Byland Abbey, of the twelfth century, especially the west front, built of stone from the Immediate vicinity, as being th an almost perfect state of preservation. Sandysfoot Castle, near Fer. mouth, constructed of Portland oolite in the time of Henry the Rigith, is an example of that material in excellent condition; a few decomposed stones used in the interior, and which are exceptions to this fact, being from another oolite in the immediate vicinity of the castle. Bow and Arrow Castle, and the neighbouring ruins of a church of the fourteenth century, in the island of Portland also afford instances of the Portland oolite in perfect condition. The new Church in the island, built $\ln 1766$ of a variety of the Portland stone termed roach, is in an excellent state throughout, even to the preservation of the marks of the chisel.
Many buildings constructed of a material sitnilar to the oolite of Ancaster, such as Newark and Grantham Churches, and other edifices in various parts of Lincolnshire, have scarcely yielded to the effects of atmospheric influences. Windrush Church, built of an oolite from the neighbouring quarry, is in excellent condition; whilst the Abber Church of Bath, constructed of the oolite in the vicinity of that citr, has suffered much from decomposition; as is also the ease with thie Cathedral, St. Nicholas and St. Michael's Churches, in Gloucester, erected of a stone from the oolitic tocks of the neighbouthood.

The churches of Stamford, Ketton, Colley Weston, Kettering and other places in that part of the country, attest the durability of the shelly oolite termed Barnack Rag, with the exception of those portions of some of them for which the stone has been tll selected. The excellent condition of those parts which remain of Glastonbury Abbef show the ralue of a shelly limestone similar to that of Doolting; whilst the stone employed in Wells Cathedral, apparently of the same Kind, und not selected with equal care, is in jarts decomposed. The Man-

many other buildings in that vicinity, constructed of the limestone of Ham Hill, are in excellent condition. In Salisbury Cathedral, built of stone from Chilmark, we have evidence of the general durability of siliciferous limestone; for, although the west front has somewhat rielded to the effects of the atmosphere, the excellent condition of the building generally is most striking.

In the public buildings of Oxford we have a marked instance both of decomposition and durability in the raterials employed; for whilst a shelly oolite similar to that of Taynton, which is employed in the more ancient parts of the Cathedral, in Merton College, Chapel, \&c., and commonly for the plinths, string courses, and exposed portions of the other edifices in that city, is generally in a good state of preservation a calcareous stone from Heddington, employed in nearly the whole of the colleges, churches, and other public buildings, is in such a deplorable stats of decay that in mapy instances all traces of architectural decoration have disappeared, and the asbler itself is in many places deeply disintegrated.

In Spofforth Castle we laye a striking example of the unequal decomposition of two materials, a magnesian limestone and a sandstone; the former employed in the decorative parts, and the latter for the ashler or plain facing of the walls. Although the magnesian limestone has been equally exposed with the sandstone to the decomposing effects of the atmosphere, it has remained as perfect in form as when first employed, while the sandstone has suffered considerably from the effects of decomposition.

In Chepstow Castle may be observed a magnesian limestone in fine preservation, and a red sandstone in an advanced state of decomposition, both having been exposed to the same conditions as parts of the same archways; and in Bristol Cathedral we have a curious instance of the effects arising from the intermixture of very different materials, a yellow limeatone and a red sandstone, which have been indiscriminately employed both for the plain and decorative parts of the building. Not only is the appearance in this case unsightly, but the architectural effect of the edifice is also much impaired by the unequal decamposition of the two materialy, the limestone having suffered much less from decay than the sandstones.
Judging therefore, from the evidence afforded by buildings of various dates, there are many varieties of sandatone and limestone employed for building pupposes which successfully resist the destructive effects of atmoupheric infuraces; among these, the sandstones of Stenton, Whitho, Tintern, Rivgulx, and Craigleith, the magnesio-calciferous sandstomes of Mansfield, the calciferous sandstone of Tisbury, the crystalline magnesian limeatones, or Dolomites, of Bolsover, Huddlestone, and Rache Abbey, the oolites of Byland, Portiand, and Ancaster, the shelly polites and limestone of Barnack and Ham Hill, and siliciferous limestone of Chilmark, appear to be amongst the most durable. To these, which may be alt considered as desirable building materials, we are inclined to add, though they may not always have the evidence of ancient buildings in their favour, the sandstones of Darley Dale, Humbie, Longannet, and Crowbank, the magnesian limestones of Robin Hood's Well, and the oolite of Ketion.
15, however, we were called upon to select a class of stone for the more immediate object of our inquiry, we should give the preference to the limestones, on account of their more general uniformity of tint their comparatively homogeneous structure, and the facility and economy of their conversion to building purposes; and of this class we shQuid prefer those which are most crystaline,

In conclusion, having weighed to the best of our judgment the evidence in favour of the various building stones which have been brought under our consideration, and freely admitting that many sandstones as well ag limestones possess very great adyantages as building materials, we feel bound to state that for durability, as instanced in Southwell Churoh, \& $8 \mathrm{c}_{4}$ and the results of experiments, as detailed in the accompanying tables; for crystalline character, combined with a close approach to the equivalent proportions of carbonate of lime and carbonate of magnesia; for uniformity in structure; facility and economy in conversion; and for advantage of colour, the magnesian limestone, or dolomite, of Bolsover Moor and its neighbourhood, is in our opinion the moat fit and proper material to be employed in the proposed new Houses of Parliaraent.

We have the honour to be, my Lord and Gemtiemen,
 Your very humble and obedient servants,
 (itigned)
 Charles Barry.
 H. T. De Da Beche.
 William ізath.
 Charles H. Smath.

Londom, Mareh 26, 1839.
We sleng give the tables referred to in the report in gur next JournalBprral $_{9}$

ON THE OBSTRUCTION OF STREAMS BY DAMS.

(From the American Railroad Journal.)

An Essay on the Obstruction of Slreams by Dams; milt Formula for abcertaining the rize of noater caused by their comatruction. By S. A. Roebling, Civil Eingineer.
When a stream is to be obstructed by a dam, for the purpose of creating a water-power, making a slack-water navigation, or feeding a canal, it is a matter of importance to know how high the water will rise above its former level in time of freshets.

Owing to the want of proper investigation, notions contradictory to common sense, have been entertained by professional men on this subject, and the consequence has been, that their works have not realized their expectations. With a view of throwing some light upon this very important subject, the following illustrations and deductions, based upon the theory of D_{u} Bual and Eylelncin, are offered to the public.

To compute formule for the rise of water by dams, it is necessary to know the amount of water discharged by a freshet, the average wilth of the stream, its average depth and area of croes section.

But the gauging of a large stream in high water is a difficult matter, and at the period when the construction of a dam is to be commenced, there is generally no time to wait for a freshot, for the purpose of making the desired measurements. I would therefore propose, for ascertaining the greatest discharge of water, to guage the river when at its medium height. For this purpose, let a cross section of the stream be taken, and the velocities of the surface measured at each sounding. It bas been ascertained by experimenty, that the velocity of water, in streams, decreases towards the bottom for every foot depth:

0.0080

where v signifies the velocity at the surface. If we now put the depth, for which the average velocity is to be ascertained, equal to h, and denote the required average velocity by v^{\prime}, then we have the velocity at the bottom equal to

> ט-0.008 © \&

From the surface velocity and bottom velocity we find the average velocity:

$$
\begin{gathered}
v^{\prime}=\frac{v+v-0.008 v_{0} h}{2}=0-0.004 v_{\omega} \hbar \\
\text { or, } v^{\prime}=0(1-0.004 h)
\end{gathered}
$$

When the average velocity, for each sounding, has been thus calculated, we can find the discharge per second, in cubic feet.
For ascertaining the discharge of a river, in time of a high freshet, let its width equal to l. By dividing l into the area of the cross section which has been measured, we get the average depth of the water, which may be represented by h. The area of the profile, divided into the discharge, gives us the average velocity of the whole section, which may be represented by v. The average velocity of a stream in different stages of the water, are, according to Buat and Eytelwein, as the square root of the different average depths.
Now, let us represent the average velocity of a cross section of a bigh flood by v^{\prime} and the average depth of that section by \boldsymbol{k}^{\prime};

$$
\begin{aligned}
& \text { Then is } v^{0}: v^{\prime}:: \sqrt{h}: \sqrt{\prime h^{\prime}}: \\
& \text { therefore, } v^{\prime}=\frac{\sqrt{ } h^{\prime}}{\sqrt{h}}=v, ~ \sqrt{h^{\prime}}
\end{aligned}
$$

The average velocity of a high freshet, thus found, multiplied into the area of its cross section, gives us the required discharge.
The above method should be applied, if the necessary measurements can be taken, when the stream is at or near its medium height. Without thoee data, however, an approximate result can be obtained by the formula:

$$
v=90.9 \sqrt{\left(\frac{a}{p} \times \frac{h}{l}\right)}
$$

where t is the average yelocity in feet per second, a the area of the profile in superácial feet, A the fall of the river for a certain length l in feet; p signifies the perimeter of the profile, not including the line of surface.
The product of the area into the velocity, thus found, will give the required discharge, This formula, however, cannot be relied on when the stream is irregular; it applies with accuracy only to sinooth and regular channels and to cunals.
The velocities with which water is discharged through a horizontal opening in the side of a vessel, are according to the laws of gravity, in proportion to the square roots of the respective heights of the columas of water above the orifices, The pressure, which the particles
of water support at a certain depth, is proportionate to the velocity with which they tend to esoape. This velocity is hypothetically equal to that acquired by bodies falling through the same space. The velocity of a body, acquired at the end of the first second of its fall is $=2 \times 16.1=82 \cdot 2$ feet, and if we denote the different velocities by v and V, and the respective heights by k and H, then according to the laws of gravity

$$
\begin{aligned}
& \text { is } \quad: V: \sqrt{k}: \sqrt{ } H \\
& \text { and } \mathrm{V}=\sqrt{\frac{v^{2} \mathrm{H}}{h}}
\end{aligned}
$$

If we take $v=32 \cdot 2$, and $k=16 \cdot 1$, we bave

$$
\begin{aligned}
& \text { I. } \quad \mathrm{V}=\sqrt{\frac{32 \cdot 2^{3} \mathrm{H}}{16 \cdot 1}=8.024 \mathrm{NH} \quad \text { and }} \\
& \text { II. } \quad \mathrm{H}=\frac{v^{2}}{8.024^{2}}=0.0155 \mathrm{~V}^{3}
\end{aligned}
$$

The quantity 8.024 is called the hypothetical co-efficient for falling bodies, and this co-efficient will be here generally denoted by the letter α. In applying the above rule to the motion of water, the case is somewhat different under differert circumstances. Du Buat and Eytelwein have made a number of satisfactory experiments to fix coefficients for the velocity of water in different circumstances.

According to these experiments, for instance, the value of the coefficient for the discharge of water over a waste-weir, of common construction, is found to be - $\quad . \quad 5.7$

For large and well constructed dnms, where all circum-
stances are favourable to the discharge, $\quad . \quad=7.5$
Before we can proceed to demonstrate the discharge of water over dams, we have to examine the laws under which water generally will be discharged, when under a certain head.

The annexed diagram represents a vessel, Q R, filled with water up to A. Suppose that sufficient water is flowing in to keep the surface at the same level, and that there are several sinall openings, P, E, B, above each other in the vertical line $A B$, in one side of the vessel.

The jets of water streaming through the opening P, E, B, are represented by the horizontal dotted lines, P M, E H, BG.

Let us put $A P=x$; the velocity with which the water rushes through the opening P, be $=y$; and the co-efficient of this velocity be $=\alpha$.

So is, by formula 1.

$$
y=\propto \sqrt{ } x
$$

The same is applicable to every other opening B, with a head of pressure $=A B$; and if we denote AB by h, and the corresponding velocity by t , we have

The same is true for every ${ }^{\circ}$ other absciss and ordinate, as A P , and P M, and from this it follows, that the curved line A M H G, which is formed by the extreme points $M, G, \& z$. of the dotted lines, representing the velocities of the water-jets, forms a parabola. If we now imagine the vertical line A B consists of a great number of such small openings, than the amount of water, or the sum of all the water-jets, may be represented by the area of the parabola. The superficial content of the parabola A B G is

$$
=\mathrm{AB} \cdot \mathrm{BG}=\frac{1}{1} \mathrm{~F}
$$

If we denote the width of the perpendicular narrow opening or slit A B, by l ', the amount of water discharged through this slit will be

Now, suppose the great rectangular opening, ABCD, consists of a large number of such vertical openings, and let be

$$
\mathrm{AC}=\mathrm{BD}=\boldsymbol{l}
$$

and the discharge through that rectangle $=Q$, then we bave

$$
Q=310 h
$$

and by substituting for p, its value $=\alpha \quad \sqrt{h}$, we have the discharge per second, or
III.

$$
\begin{aligned}
& Q=\frac{1}{1} \times 1 k \\
& \lambda \sqrt{ } k=\frac{Q}{\frac{\beta}{\alpha l}} \text { or } k^{\prime}=\left(\frac{Q}{\frac{1}{\alpha l}}\right)^{2} \text { or } \\
& k=\left(\frac{3 Q}{2 \alpha l}\right)^{\frac{1}{3}}
\end{aligned}
$$

and

In investigating the state of water, when obstructed by dams, three different cases present themselves.
1.

When a dam serves only on a waste-weir, and the pool above it forms an extensive sheet of water, the surface of which is kept af the same level, without any perceptible current.

In the amexed diagram, B D represents the dam or weir ; the live K A, the level of the upper pool; and C F, the bed of the river or reservoir, corresponding to the average depth of the water.

The body of water, discharging over a dam, will sink considerably below the level of the surface of the pool, before it reaches the breast of the dam, forming a curve tangential to the surface of the pool.

The formule III and IV apply to this case exactly. The height 4 , or the head of the fall, is in the diagram represented by the lines $K L=A B$, the elevation of the surface above the top of the dam.

If we, therefore, know the quantity of discharge per second, we find by the formula IV the height corresponding to it; and if the height is known, we find the discharge by formula III.

The height of the water above the edge of the dam, or $\mathbf{B} \mathbf{E}_{\text {, }}$ and the contraction of it below, is here not taken in consideration, as it is of no practical use.

2.

When, as in the first case, the comb, or top of the dam is above the surface of the lower pool, and the water in the upper pool arrives at the head of the fall with a certain velocity.

With reference to the above diagram, let us term the point \mathbf{K} in the surface of the upper pool, where the water is horizontal, or nearly so, or has yet about the same inclination as the pool farther up, the head of the fall.

The elevation of this point B above the top of the dam, or A B, may be denoted by the letter
The height of the dam, or B D, by
The average width of the pool, by - - - - . . \quad -
The length of the dam, by ${ }^{-}$- - - ${ }^{-}$feet, by
The line C F represents the bed of the river, (corresponding to the average depth) as well as the base of the dam, and all the heights are calcnlated from it.

If we now suppose the upper pool forms a still water without avy current, then we have the former case, and if we represent the fall, or A B, by the letter h^{\prime}, we find according to formula IV

$$
h^{\prime}=\left\{\frac{3 Q}{2 \alpha l}\right\}^{\frac{1}{2}}
$$

But in the present case the water arrives at the bead of the pooh, with a certain velocity due to the current in the river above the pool, and this velocity comes to the aid of the velocity of discharge, caused by the height of the fall.
The velocity of the discharge is therefore equal to the velocity, doe to the height of the fall, plus the velocity, due to the current of the pool. But the quantity of discharge remaining the same, and the velocity being increased, the height of a discharging body of water will be reduced in a proportion corresponding to the increased relocity. The water in the pool, is in consequence of the curresh in mo-
tion through its whole depth, though the velocity near the bottom is but very small.

We find the area of the cross section equal to
($h+\mathbf{K}$) B
and if $\%$ represents the average velocity of the current in the pool, we have

$$
v=\frac{Q}{(h+h) B}
$$

Now, let us represent the height which corresponds to this velocity by the letter H , then we have, according to formula I ,

$$
\mathrm{H}=0.0155 v^{2}
$$

and by substituting for \boldsymbol{v} its value, we get

$$
H=0.0155\left\{\frac{Q}{(h+k) B}\right\}^{2}
$$

For finding the true height of the surface of the pool above the top of the dam, or the height $\mathbb{A} B=h$, we have therefore to deduct the value of H from the value of h^{\prime}, and we arrive at the formula

$$
V^{\prime} \quad \mathrm{AB}=h^{\prime}=\left\{\frac{3 Q}{2 \propto l}\right\}^{\frac{1}{2}}-0.0155\left\{\frac{Q}{(h+k) \mathrm{B}}\right\}^{2}
$$

And if we put the co-efficient $\alpha=7.5$ and $B=l$, we have

$$
\mathbf{V} \quad k=\left\{\frac{3 Q}{15 l}\right\}^{\frac{\Omega}{3}-0.0155}\left\{\frac{\mathrm{Q}}{(h+k) l}\right\}^{*}
$$

This formula contains in the substractive member the value of A itself. As this term of the equation, however, is comparatively small, it will be sufficiently correct in practice, to find the value of h by approximation, without making the formula more intricate by further reduction.

Example I.

Suppose a dam of 500 feet long and 11 feet high, has been constructed across a river of the same width, the average depth of which in time of a high freshet is ten feet, and its discharge at the same time 25,000 cubic feet, per second. How much will the water rise above the top of the dam, if all circumstances are favourable to the discharge, and the co-efficient α is put $=7.5$?

The above formula for h, is here

$$
A=\left\{\frac{3 \times 25000}{15 \times 500}\right\}^{\frac{1}{3}}-0.0155\left\{\frac{25000}{(A+11) \times 500}\right\}
$$

Now, let us assume $h=4.5$

$$
\text { then is } h={ }^{3} \sqrt{ } 100-0.0155\left\{\frac{25000}{15.5 \times 500}\right\}^{v}
$$

$$
\text { or, } \quad \lambda=4.641-0.161
$$

therefore, $\quad h=4.48$ feet.
This result is near enough to the assumed value, and therefore suffisiently correct.

3.

When the top of the dam is lower than the surface of the lower pool, and the water in the upper pool arrives at the head of the fall with a certain velocity.

The annexed diagram may represent the case in question, and we will represent the depth of the river below the dam, or E D, by the letter
The height of the fall from the upper level to the lower level, or A E, by
The height of the dam, or B D, by . . - . -
The length of the dam, or width of the river, by - - l
The quantity of water discharged per second, by - - Q
The line C F may represent the bed of the river corresponding to the average height h of the water.

To simplify the demonstration of this case, let us suppose the water in the upper pool form a perfect level without current, and not consider the effect which the whirl below the dam, caused by the fall of the water, has upon the discharge.

The quantity of water discharged through the height $A E_{\text {, will then }}$ be found by formula I II.

$$
=\alpha l H / H
$$

The body of this water above the level L E presses upon the body
of water below, included between the dotted lines L E and M B, which, therefore, will be forced to pass off through the height E B.

Let us now imagine a pipe E H GIB, of the width of the river, and the height E B resting ou wo of the dam, with one vertical opening. E B at the dam, and another horizontal opening H G at the surface of the lower level, below the fall. The body of water included between the lines L E and M B, would then pass through this pipe, and be discharged at the surface of the lower level with a velocity corresponding to the pressure of the water above, or due to the height A E. The velocity of the water flowing through the height E B is therefore found, according to formula I

$$
=\alpha \sqrt{ } H
$$

and the discharge

$$
=\text { EB. l. } \alpha \sqrt{ } \mathrm{H}=\alpha l(h-k) \vee H
$$

The discharge through the height A is equal to the sum of discharges through A E and E B, and therefore

$$
\begin{align*}
& \mathrm{Q}=\alpha l \mathrm{H} \sqrt{H}+\alpha l(h-k) \sqrt{H} \\
& \mathrm{VI} \quad \mathrm{Q}=\alpha l(\mathrm{H}+h-k) \sqrt{H} \tag{or}
\end{align*}
$$

and from this we find
VII

$$
H=\frac{Q}{\alpha^{2} b^{2}(1 H+h-K)^{2}}
$$

The value of H must be found here by approximation, as in formula V.
With respect to the velocity of the current in the upper pool, Mr . Eytelwein offers a formula for the value of H , the application of which is very difficult on account of its perplexity. The following demonstration, however, will bring us near enough to truth, and fumish a formula which will be found sufficient to all practical purposes.

When H has been found by formula VII, we have then an approximate value for the average depth of the upper pool, or

$$
\mathrm{AD}=\mathrm{H}+h
$$

The area of the profile of the upper pool is therefore

$$
=l(H+h)
$$

From this we find the average velocity of the current in the pool

$$
=\frac{Q}{l(H+h)}
$$

which velocity is owing to the current of the river above, independent of the fall of the water over the dam.
According to formula II, we find the height, corresponding to this velocity

$$
=0.0155\left\{\frac{\mathrm{Q}}{l(\mathrm{H}+a)}\right\}
$$

which ought to be deducted from the value H in formula VII, as we have done in case No. 2, in order to arrive at the true height of the fall.
We therefore arrive at the formula.

The objection can be made against this formula, that the current of the upper pool may be reduced by the resistance of the water below, and that then the value of H is found too small.

To examine this question, we muist distinguish several cases. The first case is, when a dam forms a breast-dam, with no lower slope. The falling water will here produce a whirl, the effect of which will not extend far below the dam, and will have little influence on the current of the tail-water. The second case, when the dam has a long slope forming an inclined plane, or better, an inverted parabola, on which the water glides down. The lower body of water, after having moved down the slope, shoots off in a more horizontal direction, not affecting the bed of the river immediately below the dam, but pushing ahead the tail-water, the current of which consequently will be increased. Without reference to the form of dams, other considerations present themselves with respect to the depth of the water. When the river is not deep, and the lower level but little above the top of the dam, the escape of the tail-water will be increased by the mechanical momentum, produced by the height of the fall of the water, rolling down the slope, and the resistance offered to the current of the upper level, will be therefore decreased. On the other hand, when the dam is very low and the water very high, the momentum of the falling water will be increased proportionably by the general increase of the velocity of the river, and will therefore also increase the velocity of the tailwater below the fall, so as not to resist the current above.

It appears, therefore, thrat we may apply the above formula, without any deduction, in all cases favourable to the escape of the tail-water. When the construction of the dam, and the features of the river, however, are unfavourable to the discharge of the tail-water, then we must reduce the value of the substractive member of the formula.

The value of the co-efficient α should be fixed with reference to the construction of the dam, and to the nature of the pool above the dam.

When a dam serves as a waste-weir, and the pool above the dam, forms proportionally an extensive sheet of water with no current, then the value of α is found, according to Du Buat and Eytelwein, to be
For a dam in a small stream, with no wing-walls and embankments confining the current, we may put $\alpha \quad-=7.00$
For a dam in a large river, with wing-walls and high embankments, leading the current fairly to the fall, we may put α
$=7.50$

Example 2.

A river is 500 feet wide, its average depth in time of a freshet is ten feet, and its discharge at the same time 25000 cubic feet per second. A dam of 500 feet long, and 7 feet high, has been constructed across the river. How much will the water be raised above its former level, or how much is the height of the fall from the upper level to the lower level?

The co-efficient α be here $=7.5$.
By applying the formula VII, and subatituting the above data, we have

Let us assume $\mathrm{H}=2.00$; then we get

$$
\begin{aligned}
& \mathrm{H}=\frac{44.44}{(3 \times 2+3)^{2}}-0.0155\left\{\frac{25000}{12 \times 500}\right\}^{\prime} \\
& \text { or } \quad \mathrm{H}=\frac{18.7^{2} 5}{44.44}-0.0155 \times 17.361 \\
& \text { or } \quad \mathrm{H}=2.367-0.269=2.098 \text { feet. }
\end{aligned}
$$

which result is near enough to the assun'ed value of H , and therefore sufficiently correct.

Exabaple 3

A dam of 800 feet long, and 6 feet high, is to be constructed across a river of about the same width, and which in time of a ligh freshet discharges 60,000 cubic feet per second, and has an average depth of 16 feet. What will be the height of the fall, or the value of H , if we put $\alpha=7.5$?

$$
\begin{aligned}
& \text { Let us asaume the value of } H=0.8 \text {, then we have } \\
& \alpha=\frac{6000^{2}}{7.5^{7} \times 800^{9}(3 \times 0.8+16-6)^{2}}-0.015 x\left\{\frac{60000}{16.8 \times 800}\right\}^{*} \\
& \text { or } H=\frac{100}{(0.533+10)^{i}}-0.0155\left\{\frac{6 x 000}{134^{4} 00}\right\}^{\prime} \\
& \text { or }=\frac{100}{110.944}-0.0155 \times 19.927 \\
& \text { or } \mathrm{H}=0.901-0.3088=0.593 \text { feet. }
\end{aligned}
$$

This result does not agree with the value assumed for H_{p}, and is too small. From the nature of the fortnula it follows, that we must assume a smaller quantity for H. Let u* therefore put $H^{\prime} \mathbf{0 . 6}$, and we have

$$
\begin{aligned}
\mathrm{H}= & \frac{60000^{7}}{7.5^{2} \times 800^{2}\left(\frac{3}{2} \times 0.6+10\right)^{2}}-0.0156\left\{\frac{60000}{6800}\right\}^{\prime} \\
& \text { or } \mathrm{H}=\frac{100}{(8 \times 0.6+10)^{2}}-0.0155\left\{\frac{60000}{13280}\right\}^{2} \\
& \text { or } \mathrm{H}=\frac{100}{108.16}-0.0155 \times 4.158^{2} \\
& \text { or } \mathrm{H}=0.924-0.316=0.608 \text { feet. }
\end{aligned}
$$

This result agrees well with the assumed value of K, anct is therem fore sufficiently correct.

ON GEOLOGY, APPLIED TO ARCHITECTURE.

Being part of a Course of Six Leclures, by G. F. Rrchardson, Esq., of the British Museum. Delivered at the Royal Invtitute of Brition Architects. Lecture the Fifth.

In my last discourse I alluded to the fact that as stones are selected for proximity rather than for value, because they are nearest rather than because they are the best, it followed that those countries would saturally exhibit the, best specimens of architecture whose geological formations were best adapted for this object, whose limestones were finest and most abundant, whose marbles were purest and most frequently to be found. I reminded you that the lovely land of Greece Fas most faroured in this particular, and that her mountains of llme.
stone and of marble offered the most picturesque sites for the diu of the builder's art, whils they contained within their caves '. quarries materials of the most valuable and most enduring quality, while the dryness and serenity of the climate of those regions allowed such materials to be placed in situations which our less genial atmosphere forbids us to expose in the same manner. Yet the geological features of our island are so striking and important, that the geologists of the continent are always anxious to investigate our strata, and their singular organic remains, our Wealden and lias with their colossal dragon forms, our coal and our primary rocks in the north of England and in Wales; while I have the authority of our friend Mr. Donaldson for the fact that foreign architects who visit this country are alike impressed with the variety and value of the stones which our strete present. The fact is, that our island contains in a limited space, an epitome of, with one or two comparatively unimportant exceptions (the Muschel Kalk is one, the Calcaire Grossiere a second, and the Miocene deposita of the Tertiary series a third), with these relatively insignificant deficiencies our island contains a miniature resomblance of the whole earth. Professor Whewell, the late president of the Geological Society, in his farewell address on quitting the chair, employed in allusion to this fact, and more particularly with reference to the labours and discoveries of my distinguished friend Mr. Murchison, an image which is so rare, so ingenious, and so natural, that I can discover no illustration more fitted to convey a correct idea of this interesting fact. Alluding to the number and variety of the rocks contained in the limited area of our own island, and refering in particular to those which had been investigated by the labours of Mr. Murchison, he observed that nature in this respect seems to have condescended to imitate our own process, and as in the construction of our geological maps we place in the corner minute delineations to merre as types of the strata, so she had placed in our island, our corner of the globe, types of strata whose representatives were to be found elsewhere, diffused only over vast areas, in short, over the map of our planet. Our island exhibits in fact, with the few exeeptions I bave named, a complete ascending or descending scale of the chronology of the earth, and the geological map before you, extending in a direction from south-west to north-east exhibits the regular succession of the strata, eitber commencing with the primary and oldest formations in the north and west of our island, and proceeding down to the tertiary or most modern in the south, or on the contrary, ascending from the modern tertiary in the south, to the older or primary in the north and west. The three grand divisions under which the strata of our isfand may be claved are, first, the primary and mountainous or mining districts, whose inhabitants of course are miners and mountaineers; secondly, the midland regions exhibiting a succession of fertile hills and valleys overspread with towns and cities, and crowded with a dense population, whose industry is supplied by the coal with which the strata of these districts are abrndantly interspersed. The thind class is formed by the chalk and oolitic limestones which extend from the western to the northern coasts of our island. To pursue these routes along the map, the traveller who would wish to inveatigate the first of those geological series which we have described, would be required to start from the extremity of England, the Land's End, to traverse the whole of Cornwall and the north of Devon, and thence passing through Cumberland by the Isle of Man, to. the south-western shores of Scothand, should proceed either through the hilly districts of the border counties, or along the Grampians to the German Ocean. Such a traveller would meet in all his journey little else than mountains and mineth and would consider the country he had traversed barren, and cold, and thinly peopled, its scanty population being composed of miners and mountaineers. To take the second route a traveller would start nearer, from the coast of Devon, anrl crossing the Midland Counties from the month of the Exe to that of the Tyne, would find a succession of fertile and highly cultivated scenes, interspersed with uumerous towns and cities, and in many parts crowded with a manufacturing population who derive the chief supply and incentive to their industry from the vast mines of coal with which these districts are abundantly supplied, they being located in the new red sandstone. The largest, most cossiderable, and most influential towns in England are placed in this peculiar stratum the new red sandstone, as the following list will evince: Exeter, Bristol, Worcester, Warwick, Birmingham, Lichbeld Coventry, Leicester, Nottingham, Derby, Stafford, Shrewabury, Chester, Liverpool, Warrington, Manchester, Preston, York and Cartisle.

The third route would extend nearer from the coast of Dorset to that of Yorkshire, from Weymouth to Scarbro', and the traveller through such a district would pass only over elevated plains of oolite limestore and chalk, without a single mountain, or mine, or coalplt, or a manafactory of any importance, and would meet with a population atmont exclusively agricultural. These different appearances being dednoible from stratfication.

The first of our travellers will have seen only these north-western The frat of our travellers will have seen only these north-western
portions of our country which are composed- of rocks belonging to the prima y and transition series; the second will have traversed those fossil portions of the new red sandstone formation, which are made up of the detritus of more anoient rocks, and have beneath and near them, inestimable treasures of mineral coal, while the third will have confoned his route to wolds of limestone and downs of chalk, which are beat adapted for sheep waiks and the growth of com.
We will now, with your permission, take the various counties beginning with the southem coasts, and proceeding in a northerly direction, will describe the chief formations which present themselves. Beginning with the Land's End, we have in the county of Cornwall the primary formations, the granite and the sienite, with schistose rocks, and similarly ancient formations; in the adjoining county of Devonshire we find rocks of the greywacke and transition series; and passing into Wales, and thence to the border counties of Scotland, will meet with rocks of similarly aucient origin; in Dorsetshire we have the lias and the oclite, in Hampshire and the Isle of Wight we have the tertiary formations, which also extend into Sussex ; at Brighton we meet the chalk which extends to Beachy Head, beyond which the Wealden strata terminates at the coast; the chalk again appearing on the coast of Kent. At the Isle of Sheppey we meet with the tertiary beds, which form a part of the London basin. In the county of Sussex we have the remarkable and peculiar Wealden deposits, which Lave been ascertained by my distinguished friend Dr. Mantell, to be the bed of an ancient and mighty river, which overflowed through the vallies of Kent and Susety, constituting the drainage of an extensive tract of country.

The road from Bath to Oxford, and thence by Stamford to Lincoln, afords an instance of similarity in the character and cultivation of the soil and the occupations of the people, which attends the line in which the oolite traverses England from Weymouth to Scarborough. The road from Dorchester, through Salisbury to Basingstoke, or from Dunstable to Royston, Cambridge and Newmarket, and thence into Norfolk, affords a like uniformity which characterise the line of chalk from near Bridport in Dorsetshire, to Flamborough Head on the coast of Yorkshire. In the same line of direction or line of bearing of the strata across England, a journey might be made from Lyme Regis to Whitby, almost entirely upon the lias formation; and from Weymouth to the Humber without once leaving the Oxford clay of the oolite formation. Indeed almost any route taking a north-east and south-west direction across England, will for the most part pass continuously along the same formation, while a line from north-east to south-west at right angles to the former line, will nowhere continue on the same stratum beyond a few miles. Such a line which displays the greatest variety in the strata, will give the best information of the order of superpusition, and various condition of the very numerous strata that traverse our islandin a succession of narrow belts, the main direction of which is nearly north-east and south-west. This line has afforded to Mr. Coneybeare the instructive section from Newhaven and Brighton to Whitehaven, published in his Geology of England and Wales, along which nearly seventy changes of strata take place.

We have described the south-eastern portion of our island. The sract extending from London to the sea in a south and south-easterly direction, is occapied by the various deposits of the tertiary, the chalk, and the Wealden. Of these the tertiary beds, deposits analogous in date and character to those of London occur in the craig formation, so called of Norfolk and Suffolk; the chalk appears again in Witshire, Oxfordshire, Bedfordshire, Cambridgeshire, Norfolk and Yorkshire; the Wealden formation is confined to Kent and Sussex, with some few indications in Wiltshire, and with regard to the last of the secondary strata, they are disposed in the manner I have deacribed in narrow belts, traversing the island from south-west to worth-east, but developed of course in a mamer so varied as to render them extremely irregular in their relative situation aud character, one particular formation being contracted in its course through one county, expanded in another, lost in a third, and reappearing in a fourth. The best general idea, I repeat, which we can best convey to a popular andience, being that the older rocks are developed on the west, and in proportion as we proceed north till we reach the great coal fields of Northumberland and Derham, and the transition beds of Cumberliand, and the primary rocks of the borders and of Scotland, and the whole of the strata of our island, as I have before described, forming a descending scale, which commencing with the tertiary series, the upper or latent deposits in the south proceeds onward to the deeper rocks in the sorthern districts of our island, and comprising, as before stated, a variety of geological deposits to be found elsewhere, only diffused over areas of far wider extent. This variety of deposits of course while it provides generally the requisite supplies for the chief wants and pecessities of mankind, yields abundant sapplies for the purposes
of the architect, and when to the materials already known and employed, shall be added those which have been discovered and brought into notice by the labours of the commission to which I have before had occasion to allude, you will perceive gentlemen, that the geological deposits of our native land, are such as will supply ample materials for the exercise of your taste and skill. That in this as in every other respect your beautiful and highly valuable art may be cultivated to the honour of our native land, and the embellishment of its splendid capital, is the sincere wish of the humble individual who now presumes to address you.

A brief but luminous and interesting description of the chalk formation which the lecturer described as the bed of an ancient sea abounding in the usual marine exuvie, weeds, corals, shells, and fish, formed the conclusion of the discourse of this evening.

RAILWAY CURVES.

Sir-I would have trespassed on your columns before this, to answer the remarks in your April number signed J. Ely, but that, having been on leave of absence for some time, it, as well as your May number, lay most innocently by, neither cut nor read, until my return on the twenty-first of the latter month, when it was too late to send anything even for your June number.

Mr. Ely asserts the incorrectness of a statement of mine, and founds his assertion on the supposition that the object of "A Sub." was, "to begin curving sooner, and make the radii of portions of his curve greater." On referring, however, to "A Sub."'sletter, I can see nothing about beginning sooner, and surely there can be no reason why a constant curvature might not be commenced just as soon as "A Sub." 's or Mr. Ely's plan of a gradually increasing curvature; and if the two kinds were to commence together, (which is the real case to be considered,) my observation "that if the curvature is not equable, some part of it must be sharper than if the same radius were used all through," is perfectly correct. A figure would make it quite clear, but I don't like to encumber you with one.

Mr. E. also dissents from another assertion of mine, viz. "that when an engine is entering upon a curve, it will not be affected by the nature of the path it was pretiously describing;" and brings forward a fact to disprove it ; still, however, I must maintain my assertion, but I only supposed the case of an engine travelling alone. I don't nor never did mean to say, that the action of a train upon the engine dragging it, does not depend upon the relative positions of the paths they are both describing; it certainly does; and in the case he mentions, it will easily be seen, that the drag of the train upon the engine, it being on the commencement of a curve, is more oblique when the former is on a straight line, than when it is on a curve of opposite curvature (forming an S). In fact, in an S curve, the commencing rail of the one is in direction with the concluding rail of the other. This obliquity of strain at once accounts for the difference of wear and tear he mentions, it being only at the commencement of a curve.
In the latter part of his communication, in endeavouring to carry out the similarity which "A Sub." took for granted that there existed between an engine upon a railway and a projectile, Mr. Ely seems to have mistakenfriction for gravity, for he states that "gravity acts upon a locomotive with the same effect as upon a projectile, viz. to bring it to a state of rest, Now gravity, on the contrary, teads to keep every
body in a state of motion, until that motion is put a stop to, either suddenly, by the inertia of some greater body it meets, or gradually, by the retarding force of friction; which latter force is what really tends to bring all bodies to a state of rest.

As to his primá facie case, that "the vertical pressure upon the rails increases as the squares of the velocities decrease," or in other words, that the vertical pressure (or neight) varies inversely as the square of the velocity. I shall not at present enter upon it, further than asking him for a proof, as it would indeed be a discovery; for we know that the friction of a train varies as the weight or vertical preasure. If, therefore, the vertical pressure can be diminished by increasing the velocity, the friction can also!

As I don't think "An Assistant Engineer"'s query has been yet answered, I take the liberty of advising him not to connect the two curves by another of a less radius, but to commence one of them a little farther up on the tangent, (from which I take it for granted it springs, as in the figure 1 subjoin. And to enable him to do so, I think he will find the following approximation to the distance he should go upon the tangent, a useful one.

Let $A D=d$ be the distance which it is necessary to go upon the tangent, $\mathrm{CB}=c$ the least distance between the curves, (which I suppose to be already described upon the ground,) then $c=$ (nearly) to EF: d
$:: \sin . \angle \mathrm{AFB}:$ rad. and $\therefore d=\frac{r}{\sin . \angle \mathrm{AFB}}$. This of course is but an approximation, but it will be found sufficiently correct for all practical purposes, where the distance to be gone on the tangent, or that between the curves, is not very great. The $\angle A F B$ may be got from its tangent, which is known, as i suppose the curve AGB to be laid out by offsets perpendicular to it. The same formula will answer when the curves cut, only then, c should be taken equal to the distance CL; and of course the distance gons upon the tangent should be taken in an opposite direction. It will also apply when it is desired merely to pass through a given point e.

June 18, 1839.

$$
\begin{aligned}
& \text { I am, Sir, } \\
& \text { Your most obedient servant, } \\
& \quad \text { R. W. T. }
\end{aligned}
$$

[This communication not being feceived until the 8th August, is the teason that it did not appear earlier.]-Edrtor.

IMPROVED RUNNING GAUGE,

FOR ASCERTAINLNG IF THE WIDTK BETWEEN THE RALLS OF A RAILWAT be in guage.

SIR-Observing the notice in your Journal for this month that Mesers. Bramah and Fox are manufacturing the railway gauges invented by Mr. Cowper, I take the liberty of suggesting, through the same medium, what I consider will be an improvement, viz. instead of having a man to watch the index, and throw oyster-shells, \&c. upon the road where it is out of gauge, I would male the machine self-
acting in this respect by the addition of a lever (A in the annesed sketch) having its fulcrum at e; the sliding axle C should run through the lever at d, and have collars fitting exactly to the sides of the lever, so that while the axle could turn freely on its axis, the least motion in the direction of the axis should be communicated to the lever. To the end f. of the lever should be attached a moveable slide B, having two slits a a in it, and moving close under the bottom of a box or bopper indicated by the dotted lines; this box should be filled with Calris sand or powdered chalk, and have an opening in the bottom exactly corresponding with the solid part (b) of the slide B. When the mchine is running upon rails of true gauge, the solid part (b) of the slide will be under the opening in the bottom of the box, and prevent the escape of the material within; but on coming to a different width of rails, one or other of the openings in the slide will be brought under the opening in the bottom of the box, and allow a greater or less quantity of the material in the box to escape, as the width of the rails is greater or less than the true gauge.

Barnsley,
 2nd Aug. 1889.

I am, Sir,

Your obedient servant,
W. J. Hindle, Civil Enginact.

ON PEAT FUEL.

Str-Having long known that peat is underrated as a fuel for steam boilers by Tredgold and others, and believing that in various parts of the country, especially in Scotland and Ireland, there is immense store of excellent fuel, which by simple and inexpensive machinery might be so improved as to be of great use not only to those living pear it but likewise to distant parts. It was with much interest that I read the article in your last number, on Lord Willoughby De Eresby's patent pressing machinery, as constructed by Mr. James White, but however ingenious and effective this plan may be, I fear the first cost and the difficulty of getting repairs done, in the out of the way situation in which the machinery must necessarily be worked, will prevent it from coming into any thing like general use. Another consideration, which I regret to see, is the observation, that the black peat free from fibre is the only kind of any service. Thinking these views have a strong tendency to limit the use of peat, which I beliere is directly contrary to his Lordship's wishes, I beg to trouble you with a few observations which are the result of a little experience, and regret that circumstances at the time put an end to the operation I was engaged in rather prematurely, and at a time when perseverance only was requisite to produce results useful to the individuals and to the country. Four years ago three gentlemen erected, about 14 miles from Edinburgh, a steam engine of 4 horse power, with edge rollers and hydraulic presses, with the intention of manufacturing an improved fuel from peat, this they did to small extent, but gave up before it was well tried, for reasons that had nothing to do with the business either as to the improvement of the peat as a fuel, or to loss or gain as a commercial transaction; soon after this was abandoned, the late Michael Linning, Esqu of Edinburgh, one of the parties, erected Dear Glasgow, alongside of the Gainkirk railway, a manufactory with horse power, which was likewise prematurely stopped by his sudden death but not before he had shown in some respects the value of his labours, whether this is now carried on or not I do not know, but it was af these works that any knowledge 1 have was obtained. Like Lord Willoughby, we found that the finer parts of the peat made its escape with the water through the linen cloths with which the bozes were lined, and that the pressing was tedious and slow, and thinking that I saw enough to prove that pressing is both troublesome and needless; I will state as shortly and clearly as I can, how I should proceed to improve peat, and render it so compact that it would bear a considerable carriage, and for certain purposes, such as iocomotive machinery, be very valuable.
As is well known, all common peat when merely weather dried is of a spongy texture, and occupies much room; this I have seen is entirely owing to the fibres-break them down, as is easy to do, either with edge stones or in a clay mill, and then the peat ahrinke upon ifself like clay, instead of shrinking within and consequently holiow. I hare seen a piece of peat, merely molded with the hand till it was well mixed, after a few days drying, so compact and hard that when struck against coal it broke it, and the piece of peat would bear cutting, and take a polish as fine as Cannel coal. All, therefore, which I think requisite to make peat an excellent, and for many purposes a better fued than coal, is to pass it under edge stones or a clay mill, when well broken down, lay it to draiu for a short time on a rough boarded or stone floor, with a small slope, and after it has draiped, mould it and dry it under low sheds like bricks or tiles, this would be only clildren or women's work.

As to its use as a fuel to raise steam, prepared peat might be burnt in the same fire-place as coal, but common peat will answer well on the spot for that purpose, only a larger fire-place would be required, with the bars rather closer and less draft. I have carefully weighed peat, and found a steam engine, with an 8 inch cylinder, 16 inches stroke, and making 70 strokes per minute, the steam at 30 lbs . pressure, kept in full work for an hour and a half with one cwt. of peat, the evaporation of water during that period was from 50 to 60 gallons, and this with what was called bad peit and otherwise unsaleable.

Mr. Liming made two or three experiments with the locomotive engine on the Gainkirk railway, which carried very heavy loads of coal. Phave seen certificates of the engineer and others, that the steam was well kept up, but that, as might be suspected, more peat was burnt than coal ; this most likely was partly owing to the steam draft being too strong for the peat, it being the same as when coal was burnt.

If the common road steam carriages which we hear are about starting, would procure a supply of peat, I believe one of their greatest dificulties would be surmounted, at least there would be no clinkers to annoy them.

Considering the immense stores of peat in Scotland and Ireland, as well as in some parts of England, often far from coal, and the general want of capital and skill in these districts, which are mostly inhabited by poor people. I trust these rough observations, which are simply to recommend methods of improving peat, which are within their reach, will be considered worthy of insertion.

I am, Sir, your obedient servant,

Timothy Burstall.
Saind Phillipt, Bristol, August 12, 1839.

ARTICLES FROM THE FRBNCH JOURNALS.

translated yor the jocranl of the franillin ingtituts,

 By J. GRIBCOM.
The Arterian Fells at the Abattoirs of Grenelle, Paris.

This well has now a depth of 418 metres, ($=1371$ feet.) The sound, or borer, weighs 20 thousand; its height is treble that of the dome of the Inralides, and it requires two mechines of immense power to put it in motion. The instrument is still in the chalk bed, the hardness of which is comparable to dint. M. Mulot, the director, states that the sound advances a foot per dey.-Rec. Soc. Polyt., Jwly, 1838.

Analysis of Several Bituminows Minerals. By M. P. Berthisr.

As bituminous substances have of late years claimed an increased share of public attention, this celebrated analytical chemist has examined the consticution of a number of those which have gained the most notice on account of their practical applications.

Bitwoen of Seyoel.-There are at Seyssel, (in the department of L'Ain) three kinds of minerals. 1. The sandy mineral. 2. The very fusible calcareous mineral. 3. The calcareous mineral of difficult fusion.

The fint of these melts in boiling water, and becomes detached from the stony matters to which it wan adherent. It rises to the surface, or sticks to the aides of the vessel in brown lumps, or forms a iransparent conting of a brownish red colour. A rich specimen of it gare
$\left.\begin{array}{llll}\text { Bituminous oil } & \text { - } & \cdot & 086 \\ \text { Carbon } & 0 & 020\end{array}\right\}$ bitumen -106

In the mass it is much less rich. When purifed by hot water, this bitumen is called la graisse, grease.

The second variety is called at Seyssel asphaltum. It may be pulverized and xifted, but the powder spontaneously forms into balls. The specimen analyed contained $\cdot 11$ of bitumen, $5 \cdot 89$ of carbonate of lime, without clay, and quite pure.

The mastic of Seysael is prepared by mixing nine parts of asphaltum with one of the pure gremse extracted from the sand.

The third veriety is a compact limestone, in extremely thin, parallel beds. It consists of

The bituminous mineral of Belley is very similar to the preceding. It is found in several communes in very considerable quantities, ncar the surface of the ground. It is of variable quality. A variable specimen yielded

Carbonate of lime824
Carbonate of magnesia	.	.	\cdot	.020
Sulphate of lime
Argil	.013			
Bitumen	.	.	\cdot	.
	.	.023		

Bitwnen of Bastenne.-This bitumen flows out from several openings or springs, mixed with water. Analysis of the solid gave
$\left.\begin{array}{lll}\begin{array}{ll}\text { Oily matter } \\ \text { Carbon } \\ \text { Fine quartzy sand, mixed with argil }\end{array} & .0200 \\ & \frac{.763}{1 \cdot 000}\end{array}\right\}$ bitumen

Bitumen of Cwba.-This is transported to Burope under the name of Mexican asphalt, or chapopote. It is a solid bitumen, which exists in abundance near Havang. It may be used with great advantage in paving. It consists, like the greater number of natural bitumens, of at leat two different substances, the one soluble and the other insoluble in ether and spirits of turpentine. It is the relative proportion of these two substances which imparts to each bitumen its peculiar properties.

Bitumen of Monastier. (Haute-Loire.)-This does not soften in the least in boiling water, and hence cannot be extracted by simple means in the large way. It contains
$\left.\begin{array}{lccc}\text { Bituminous oil } & : & : & -070 \\ \text { Carbon } & : & : & -035\end{array}\right\} \cdot 105$

This bitumen of the Hante-Loire differs essentially from those of Seyssel and Bastennes by it infusibility in boiling water, and its fusibility in alcohol. -Annales des Mines, tom 13, liv. iii.
New Mode of Preparing Carbwretted Hydrogen Gas for the purpowe of IUwmination. By M. Selligue, Engineer.
This new invention has gained for M. Selligue the premium of 2000 francs proposed by the Societé d'Encowragement. It consists in obtaining pure hydrogen by decomposing water by means of incandescent charcoal, and then carburizing it by mixture during the simultaneous decomposition of another liquid substance rich in carbon and hydrogen. Among all known subatances, that which appears to answer best is the oil of schist (l'huile de schiste).

The furnace is composed, first, of three vertical retorts, communicating with each other, so as to form, in a manner, only one. In a double furnace there will be tix retorts. These are all open at both ends, but closed below by sliding stoppers (couvercles rodes), so that simple contact and the least pressure is sufficient to shut them firmly. The top of each retort is closed by a head fixed by keyed gudgeons and iron cement. Each head bears itself a stopper, or cover, like those below.

The first retort, into which steam is introduced through a tube, communicates below, by a tube twice bent, with the second, which connects at top with the third by a similar tube, and this third retort has, below, a vertical tabe with branches, by which the gas is conducted to a refrigerator, and thence to the gasometer. This tube dips into a trough of water, to serve as a hydraulic closure. The third retort bears at top a fannel syphon, through which the carburizing substances are introduced. 2nd. Two horizontal tubes, placed in the sides of the vault, serve as boilers to vapourize the water ; each communicates at one end with the first retort by an arched tube, and to the other end is attached a funnel syphon, by which the boiler is supplied with water. 3rd. Two furnaces. 4th. A chimney in four parts, uniting at first into two, and then into one, in order to regulate the fire with greater ease.

Operation.-Having flled with charcoal the first two retorts in each of the (double) furnaces, and suspended chus in the two last, in order to increase the surface, the fire is lighted, and when the retorts have attained a cherry red heat, gentle flow of water and oil is made through the syphons. The water falling into the boilers is instantly evaporated, passes into the first retort, then into the second, where it is deprived of its oxygen, and reaching the third, the hydrogen alonc mingles with and carries along the carbonated hydrogen simultaneously formed from the oil in the last retorts. The united gases then issue from the lower end of the third retort, and press off through the branches, while the more volatile matters are deposited in the reservoir of water.-Amaler des Mines, Oct. 1838.

Fowielle's Fillering Apparatur.

A trial has been had in the courts at Paris, relative to the validity of the claims of the "Freuch Filtering Company," who are now the possessors of Ponvielle's patent, to an exclusive right, founded on the merits of this invention. It was urged by the opposing party, that this right, being dependent on the application of high pressure, is invalidated by the fact of a prior use of the amme principle to the process of filtration, as was shown by brevefa
(patents) of an anterior date. This ples was answered on behalf of the Company, by the proof that Fonvielle's mode of applying high presure wat entirely different from those of his predecessora. These were to force the water through tisuces of felt, wool, or flax, or through skinh, while Ponvielle's consists in filtering through sand, pounded stones, gravel, and other inert animal substances, which is so different, that previous to this date it had been found impracticable to apply high pressure to such filters, the effect being inevitably to overturn the filtering bed and confound the materials with the liquid to be filtered;-that this beiug the diffieulty, in this consistod the merita of the invention. M. Fonvielle had diacovered the means of so retaining and come pressing the materials, as to be able to apply high presoure, the mole agent which can operate on great masses of water. In a word, filtration on a great scale is the principal object of Fonvielle's patent. It was shown that the greatest effect of preceding methods was to filter five hectolitres ($=132$ gallons) per day, whereas it was proved that filters of the "Prench Company," of the same capacity, would give in the same time fifteen hundred and too thowand gallons, or even more. Hence the evidence of a nev idea-a great and real invention.

But the patent of the Company proves its value by two other new and happy applications; the first is the facility of cleaning the filter, without unpacking it, by a simple play of opening stop cocks, continued for 3 or 6 minutes only. This alone is enough to condemn every other filter which cannot, like those of the Company, clean themselves. The second is the happy use of the laws of hydraulic level, in raising the filtered water to a height nearly equal to tbat of the fountain head, a principle of the highent utility in thic domestic and other arts, while all other filters leave the water simply at their feet.
The honourable testimony of the Academy of Sciences, evidenced by the report of Arago, was brought into view, and the advocate for the Company, at the conclusion, read another commonication, addreased to the President from the same academician, containing some new developments of the scientific question, and treating this delicate and interesting subject in the enlightened manner, and with the energetic precision, which distinguish his pen. We cannot withhold the following extract from it :-
" I will add a few words on the merits of the queation. This will only be pursuing the task I have long imposed on myself, of defending the rights of inventora, dead or living, against imitators, copyists, and plagiaries-a task in which, to the great displeasure of the English, I have been allowed to restore to our countryman, Papin, the honour of the discovery of the steam engine, and of stoam boats.
" When the law declares in general cerms (en these genérale) that a patent shall never be granted for a simple idea, it goes perhaps beyond its own object; but lt thereby shows the complete separation which society ought to make between a theoretical and a practical machine. To transform an apparatus which works with difficulty, or scarcely works at all, into a powerful, common, economical machine, which, occasionally, changes completely the manufacturing aspect of a whole nation-nothing more is sometimes requisite than en apparently insignificant alteration, which, in the shopa, might be derignated by the simple term, 'a turn of the hand.'
"The machine which we owe to the genius of Watt, includes no principle which is not seen in the much older machine of Neucomen, only the stcam was no longer condensed in the body of the pump, but in a separate cylinder. What did Bramah add to the principles of Stevin and Pascal in the hydraulie press? Nothing, absolutely nothing! He onfy modified the shape of the large piston, so as to render it completely tight and ataunch. Watt and Bramah are none the less regarder as the principal and most skilful promoters of British industry. M. Fonvielle may have added to the results of his predecessors only his demonstration of the possibility of filtering under atrong pressure through filters par excellence. composed of sand and pounded sandstone; he may have only proved that the two materiale in question can be so disposed as to maintain their situation under the action of rapid currents, and not to mingle with and be carried away with the fluid mass,-he is still an inventor: but he has dono more; he has found the means of cleaning the fllter without dismounting it, without handling it. The two inventions united form a process whose efficiency is not contested, and which provide the means of filtering vast masses of water with very small machines. Nothing like this eristed before. Never, for example, had the city of Paris suspected the possilility of filtering, on the spot, the wher of the public fountains. Now, our citizens are certain of soon seeing this valuable improvement realized. The only water not subjected to filtration will be that for washing the streets. Well! this might have been possible without any one having recently invented any thing! The able engineers of Paris, the hydraulic engineers of London, where the subject of filtering was not long since an object of pariiamentary invettigation, might have had in their eyc all the elements of a simple, elegant, economical solution of the problem, and yet no one has seized hold of it ! Vain supposition! Snch preteusions cannot be supported, without opposing the most usefal thing In the world-common sense itself.
"The name of the engineer Thom of Greenock, has been cited in the memoir of our adversaries. This name, which was parenthetically introduced into my report, did not prevent the celebrated Mylne, engineer of the New River, the chief hydraulic establishment in London, from considering Fonvielle's apparatus as a good and usefal invention. When lately Mr. Mylne came to Paris With Mr. Curtis, President of the Bank of England, for the purpose of inquiring relative to a project for the distribution of water at each houng and on Frich oocmion the Manicipal Comeil charged met with the
preparation of the eccount of charget, Mr. Mylne declared to m tonded to apply to the 'Prench Company; and parchase from th t^{0} their process of filtaring.-Rec, Soc. Polyteeh., Juillet, 1838.

CHBLSEA FATER-WORRS.

Water may with truth be called the blood of cities; the first introdection of it into London was by leadeu pipes in 1236, in the reign of Heary 11 L ; it was brought from Tybourne. In 1285 was erected, in Westcheap, a great stone castellated cistern of lead called the Great Conduit. The Tum upon Cornhill was constructed in 1401. Periloun-pool, Maswell-hill, Hackree, St. Marylebone, and Hempstead-heath, were the sources from whence the supplies were derived; and new conduits were in the yesr 1546 erected in Lothbury end Colemanstrect "The brook of Tybourne (wcoording to Pennant) furaisbed nine conduits for cupplying the eity with water. Here the Lord Mayor had a banqueting-house, to which he and the Aldermen wre cocustomed to repair on horseback, attemeded by their ladion in magoon, add efter viewing the conduit (query, if thoy tested the weter), roturned to thi city, where they were magnificently entertained." Thamen water wan frix supplied to the hooses of the citizens in 1582, by eagine at London Bridgh made by Peter Maurice; the water was carried over the stoeple of St. Mor nus, and thence into the houses in Thames-street, New Fish-streot, and Grees church-street, up to Cornhill, by the north corner of Leadenhall, then the highest ground in the city. Here the water from the principal pipe rove into a standard, rushed out through four spouts, one ranning each why at ever side. The chief conduits were at Leadenhall, Cripplegate, Paul's-gute, Oth Msh-street, Cripplegate, Oldbourne, Fleet-bridge, and Aldgate. Stome describes that at Fleet-bridge as having the image of St. Christopher ait the top, and lower down surrounded with angels, with oweet-sounding beila before them, whereupon, by means of an engine within the tower, they "dyron hours of the day and night, chymed awehe a hymine as was appointed" Ia West Smithfield was \& pool, which, according to Burton, was called Horee. pool, and another in St. Cilea's, and divera fiir wells and aprings, by which the city was served with sweet water. These conduits continned till they were destroyed by the fire of 1666 .

The vast improvement, by means of pipes conveying water to every boose, is but of comparatively modern date: to the ancients it was not in me, as loast only in the more epplendid habitations of the rich. The luyge kisd of iron pipes called mains they hid not discovered the menas to fumicte. Watar was conveyed to their cities by means of thoee gifautic squederts, whose ruins are the admiration of posterity. That at Rome cafled Nes amin, according to Frontibus and Strabo, was six milet and a-half in length, wim formed of 1,000 arches. That called Aqua Martia was taben from the Trax, and was 38 miles in length, and brought the water in a wandering coorre 43 miles, part of it having a subterranean chamel. The nine eartier aqpeducts distributed into Rome 14,018 quinaria, which is eqnal to $28,000,000$ culic feet, and when all the aqueducts were in operation the supply morb have exceeded $50,000,000$, which, putting the population at $4,000,000,13$ cubic feet would give above a hogshead and a-half of wates to emeh inhat tant.
The first fonndation of the Chelsea waterworks was by act of Perliament passed in the year 1724. Two years afterwards the basin in the Green-purt was constructed to sapply Whitehall and part of Westminster. They Also formed the reservoir in Hyde-park. At that time they possemed the meas of supplying 10,000 houses, at a cheaper rate than the New River Compary. In the year 1742 the extraordinary severity of the winter deatroyed the works and a new act was passed to increase their capital. In 1767 the deily mupply raised by their works amounted to 1,740 tuns ; it was shorthy afer increaned to 3,500 ; in 1809 it exceeded $6,500!$ and it now may emoumt to 20,000 turs

The more easily attainable any article of general neceenity mad consumption, the more fastidious in his choice becomes the comsumer. The supph of water to the metropolis in the past century was not only more scantr, bat of a quality very much inferior even to what it was some years since; the inhabitants of third and fourth rate houses were then content to reccive a moderate supply. The great convenience of which, and the amall item it muke in the yearly expenditure, the saving of labour and of time it afforiod, ware found to beneficial, that its quality was herdly considered, or if it was, to sid a remedy was supposed almost hopeleas. In harger booses, quantity was the object comeidered, that for draught being otherwive procured, and in the smaller tenements the convenience was unknown; but as enterprise and oovepetition became extended, it was necemary thet not only the quantiry, but the quality should be considered. To effect this objoet, many differmot pime have, therefore, been tried; many bave failed, after enormous wams expedded. The means by which the Chelsea company have endeavoured so cocesed hus been by applying the principle of the filter on a acale of greater maguitale than has hitherto been attempted.
It had always been the opinion of foreign chemirts, that although water, in certain and moderate quantities, might by this means be brought to 4 grout degree of purity, yct it would be fonnd, if attempted to any great extent that the earthy, lineous, and vegetable particles would be only held in molution and the water would still continue to deposit whatever impurities it possssed acquired from the source from whence derived; also, thei even is is guised greater degree of purity from the process, yet that a surfice of water exponed is is quiencent atate in a sank, shallow in cocaperiven to its ernt
imbibe from the depositions of the atmosphere, earthy particles aufficient to counterbalance whatever good the filter might have effected. It had also heen thought that the nature of the Thames water is such, from the variety of the deposits it receives in its course through the metropolis and its precincts, that no process would prove sufficiently effective to give it that degree of pority spring water possesses; and that although the water of the Thames has the property of parifying itself, and will afterwards remain in that state longer than almoat any other, and for that reason is always preferred by sescoing ships, also for many other purposes, among which may be mentioned that none other is found to be of equal value in porter breweries; yet, that as the process which goes on by the ehemistry of nature in the closed tank, or in the cask in the hold of the ship, requires time for its operations, and the constant and speedy supply necessary for daily use not allowing this, so peouliar a property could not be brought into action. It was the constant complaint that the water received into the reservoir of bouses was both nauseons to the taste, unwholesome to the constitution, and hardly fit for domestic parposes; the fact was, that being in a state of chemioal action during its state of tranaition, it could not, by ponsibility, be othervise. It may be thought that, abmit dver water to whatever process you may, you can never render it as pure as that procured immediately from the apring. This to a certain extent may be true; yet, a all springe must partake of the nature of the soils through which they pass, they will all more or leas be found to possess different quantities, and they will all, without exception, aequire that property called "hardness." In much a state the olement loses some of its mont wholesome and nutritive properties, and plants and fowers watered immediately from a apring, especially if that apring is covered, are seldom found to thrive, and are frequentiy destroyed; you will often find gardenern filling a reservoir for future use, thus giving themselves double labour, the benefoial effects of which they find in the improved state of their plants, although not alwey aware of the cause. Nothing but exponure to the light and gir will effectually deprive water of that pernicious quality. The Thamen, fowiag through a tract of country dentitate of minerals, can only receive into its composition those bodies which form the nature of the soil through which it passea; and although there are other rivers, buch as the Nava and the Volga, which are more translacent, and are found to make less deposit, they are not more wholesome nor do they possess its peonliar properties. When it enters the bounds of the metropolis, the adulteration which it receives unfts it for domestic nse, but as that adulteration is immediate, the deleterious particles it receives have not tufficient time afforded effectually to amalgamate themsetree with its other component parta, and by immediately, mubmitting it to the process of a mechanical fliter, it purity becomes restored withont ita parting from those beneticial propertles whioh al a minning stream it has scquired. The attempt, therefore, of obtaining water for the capital of greater pority than the Thames, by seeking the source of apply from any spring or rimulet a few miles distant, is a work of aupererogation, and will not, and has not, been found to answer; the bofore-mantioned causes will continue to operate. That water will be found the best whose axposure to the air has been longeat, and whose state of motion has been greatent. Wo do not mean to say that there are not limits to this; but it always has been found, without these are nataral and loesd causes to prevent it, that moh is the ceso, provided always the imparities it contrects in the immediate vicinity of ite connumption are removed. We proceed to show how that object has been attempted to be attained, and we think offected. There is also another cause, which, to a much greater extent than is commonly supposed, mant render harmleas whatever bad effects the immense drains and sowers whioh open into the Thames from the metropolis would otherwise create-that if, the action of the tide ; the river in its fill to the sea, from its deolination carres down with it all the imprities it has collected in its oourais it leaves none behind-that It does not if clear; Its depth for ages has meither increased nor decreased, and did not artificial and local causes operate, it would be as pure near ita mouth as at its source; for in the anme proportion an its etream would become turbid from all it had received in ite way, so the width it sequires is it approachea tot embouchere counteracts and nallifies the effeot. Now the Hde, ceting ageint the current, carries back. but a mall portion of the deposit it has brought into the sea, the saline particles of which, mixing with the weters of the river, in a great meanure noutralizes the effect of whatever impuritien it may have received.

In the beginning of the year 1810 the Chelses Waterworks were removed from the original bite, at the east end of the cut made from the river, which now forms the Belgrave-besin, to the bank of the Thames, neariy opposite the Red-house, Battersea. The ground which they oecupy is about dix eares ani chalf. The supply of water from the river was, till the lite improvemeats, received into the malns from a building called a Dolphin, which atood shont 50 feet from the bank. Thin was fabricated of bridk, till within about eight feet of the murface of the stream at low-water mask; above it wat a structure of tron, pierced in holes in every direction, through which the element fowed, and which, by preventing any large or foreign body from passing, to a certain extent cupphed the purpose of a filtes. A ittio highor, noar the Ranelagh-banin, was the mouth of a large sowor; and thus this contrivance coold not by any postiblity have been of much use in parifying the supply. This building has been removed, and the moin phpes are now ladd morous the bottem of the bed of the river to the Surrey side, from whence they recelve their supply, and which, from having nothing but a few land-drains opering Into it for conc milen, is in a great degree free from thowe objection which the dexoely poprolated wate of the morthern oide with the oumions Tha weter
then belng received from the mains into the flrat reservoir, which is 100 feet in length by 70 in breadth, and ten fect deep, then enters a basin lined with stone and brick, from which it is forced up into the southern reservoir, $\mathbf{3 0 0}$ feet in length, by 160 in breadth, and the northern one, 540 by 140 feet. Both these reservoirs are lined throughout with what is called brick-on-edge paving, and being located at a considerable elevation above the fiftering beds, the water flows from them into the filters, of whlch there are two-the southern one 240 feet by 180, and the northern 351 in length by 180 in breadth, the latter being placed at a greater elevation than the other. Having passed through both of these, it is alowly received into an open culvert immedlately from them, of about 15 feet in depth, and from thence being taken into the mains, some of which pass under, and are sflixed to the bridge over the Belgrave canal, then applies the district. The fommation of these filtering beds, and the gjeat scale on which they are constracted, is curious. The sides are elevated about 12 feet above the level of the ground, strongly embanked, and covered with turf; the bottom is formed of clay, which is 18 inches in depth. Upon this are placed, upon the northern 9 , and in the southern 11, brick tunnels, which extend from one end of the bed to the other, eech three feet in diancter, and two bricks in thickness, and so constrncted that every other brick is left out, and the water has a free passage through them. They are then surrounded on all sidet, and covered to the height of 24 inches with gravel stones; above this is a layer of six inches of 2 shelly concrete, and upon that a bed of coarse sand, upon which is another of fine sand. These two beds may be about five feet in depth. Between the tannels placed on the sand are wooden trougha, three feet in length iby ofx inches in width, and three deep, at sbout ten feet distance from each other. The use of these-and it is most ingenious-is to prevent the water from washing the sand into holes when It is admitted into the filter. The deposit whieh the water makes on the surface of the sand is easily removed, and requires the sand, with which it becomes mixed to the depth of two or three inches, to be raked off once in three weeks or a month, which is done in a few hours, the intervals of removal depending, to a certain extent, on the action of the wind and tide. A steam-engine of 120 horse power rises the water, to the smount of 3,500 gallons a minute, or upwards of $5,000,000$ gallons in the course of the day. The expense, we underntand, has excoeded the arm of 60,0001 . -Times

Draining of Land by Stran Powne.-The dralnage of land by ateam power has been extensively adopted in the fens of Linoolnmire, Cambridgeshire, and Bedfordshire, and with immense advantage. A steamengine of 10 horee powor has been found caticient to draln a distriot comprising 1,000 marea of land, and the witer can always be kopt down to any given dintance below the plants. If rain fall in oxcess, the water is thrown off by the engine ; if the weather is dry, the slulces can be opened, and water let in from the fiver. The engines are required to work foup months out of the twelve, at intervils varying with the season, where the districts are large; the expense of drainage by rieam power is sbout 2s. 6d. per scre. The first oost of the work varies with the difforent nature of the substrate, but generally it amounts to 20s. par acre for the machinery and boildinga. An engine of 40 horne power, and coool-whool for dralning, and requisite buildings, costs ebout 4,0002 and is capeble of draining 4,000 acres of land. In many places in the fons, land has been purchased at from 101. to 20l. per acre, whiph has been $s 0$ much improved by drainage as to bo worth 60l. to 701. per acce. The following lint shews the number of steam-ongines employed for this purpose in Englands-Deeping Fen, near Spalding, Lincolnshire, containing 25,000 acres, is drained by two engines of 80 and 60 horse power. March Weat Fen, in Cambridgeabire, conkinjig 3,600 acres, by one engine of 40 horne power. Minarton Mom, with Everton and Graingley Carra, containing about 6,000 scres, effectually drained by one engine of 40 horse power. Littleport Pen, near Ely, about 28,000 acres, drained by two steam-engines of 30 or 40 horis power each. Before steam whas used there were 75 wind engines in this district, a few of which are atill retained. Middie Fen, near Soham, Cambridgeshire, sbout 7,000 acres, drained by an engine of 60 horse power. Waterbeach Level, between Ely and Cambridgeshire, containing 5,000 acres, by a ateam-engine of 60 horse power. Magdalen Fen, near Lynn, in Norfolk, contains upwards of 4,000 acres, and is completely drained by a steam-engine of 40 horse-power. March Fen distritt, Cambridge, of 2,700 acres, is kept in the fineat possible state of drainage by a 30 horec-power ongine. Feltwell Fen, near Brandon, 2,400 acres, by an englne of 20 horse power. Soham Mere, Cambridgeshire, formerly (as its name implies) a lake of 1,600 acres, drained by 40 horse-power engine, the lift at thia place being very great.Lincoh paper.

In the first volume of our Jqurnal, p. 98, will be found a very interesting paper on the sbove subject, accompanjed by drawings of the water-wheel.ED. C. R. A. Jotranaz.

THE IRON TRADB.

The following paper, "On the state and praspects of the tron trade in Scotland and Sowth Wales, in May, 1839," was read before the Liverpool Polytechnic Society, on the l3th Jwne, by Jormph Jounson, Esq., Irom merchant, liverpool.

The veat and increasing importance of the iron trade to this country must be co apparent to the mont bedinument obeerver, that 1 foel fully parminded I
need offer no apology to you for intruding upon your notice the consideration of a subject that appears, at first sight, so completely without the legitimate sphere of the objects for the promotion of which this society was established. The daily increasing magnitude of this branch of British industry is surprisingly great ; hat to enable you to obtain s clear view of its rapid extension, I have extracted from Dr. Ure's valuable "Dictionary of Arts, Manufactures, and Mines," the following sketch of its progression from 1740 to 1826. The Doctor observes, p. 687, that, "Till 1740, the smelting of iron ore in England was executed entirely with wood charcoal, and ores employed were principally brown and red hematites. Earthy iron ores were also smelted; but it does not appear that the clay ironstones of the coal basins were then used, though they constitute almost the sole smelting material of the present day. At that era there were fifty-nine blast furnaces, whose annual product was 17,350 tons of cast-iron-that is for each furnace, 294 tons per annum, and 5t tons per week. By the year 1788 several attempts had been made to reduce iron ore with coked coal; and there remained only twenty-four char coal blast furnacea, which produced altogether 13,000 tons of cast-iron in the year, being at the rate of 546 tons for each per annum, or nearly 11 tons per week. This remarkable increase of 11 tons for 5 t was due chiefy to the substitution of cylinder blowing machines, worked with pistons, for the common wooden bellow.
"Already fifty-three blast-furnaces, fired with coke, were in activity, which furnished in toto 48,800 tons of iron in a year, and which raises the annual product of each furnace to 907 tons, and the weekly product to about $17 \frac{1}{1}$ tons. The quantity of cast-iron produced that year (1788) by means of coal was 48,800 tons, and that by wood charcoal was 13,100 , constituting a total quantity of 61,900 .
"In 1796, the wood charcoal process was almost entirely given up, when the returns of the iron-trade, made by desire of Mr. Pitt, for establishing taxes on the manufacture, afforded the following resulta :- 121 blast-furnaces, furnishing in the whole per annum 124,879 tons, giving an average amount of each furnace of 1032 tons.
"In 1802 Grest Britain possessed 168 blast-furnaces, yielding a product of about 170,000 tons, and this product amounted, in 1806, to 250,000 tons, derived from 227 coke furnsces, of which only 159 were in activity at once.
"In 1820 the make of iron had risen to 400,000 tons, and in 1826 to about 600,000 tons.
" From 1823 to 1839 the iron-trade saw many fluctuations. The price of forge pig-iron varying from 2l. 10a. to 106. per ton at the works. But the make of this country was still increasing, and, in 1838, I believe it reached to upwards of $1,000,000$ tons."

For many interesting particulars connected with the iron-trade of the United Kingdom, and particularly for a detailed acconnt of the introduction of the heated air-blast, by Mr. Neilson, of Glangow, I must refer you to the excellent work from which I have made the foregoing extrects.

The introduction of the hot-blast formed quite a new era in the iron trade, and the consequent increase of produce of iron, particularly in Scotinand, where this inventiou was firat applied, has been incredibly great, and in still progressing. I have been very kindly furnished by a friend, who is intimately connected with the Scotch iron trade, with a list of all the furnaces now in operation in Scotland, the number out of blant, the number erecting, and about to be erected; I have every confidence in the accuracy of my friend's information, and have no doubt but that the correctness of the list may be relied upon. This list shows that there are in Scotland fifty furneces in blest, five out, seven building, and twenty-aix contemplated. With the permiasion of the meeting, I will read over the names of the works, and their respective owners.

Names ot Works.	Owners. \quad In	Out of Blast.	Building.	Contem. plated.
Clyde.	Jamer Dunlop. 4	1		4
Calder	W. Dixon and Co. .. 6		-	
Carron . . .	Carron Company .. 4	1		
Muirkirk . .	Muirkirk Iron Co. . . 2			
Devon	Devon Iron Co. . . . 2	1		
Shotts	Shott's Iron Co.. . . . 2		1	
Monkland . .	Monkland Iron Co.. 5			
Gartaherrie..	W. Baird and Co. .. 7	-	1	6
Dundyvan ..	Dunlop and Co... . . 5	-	1	- 4
Summerlee..	Wilsons and Co.... 4			2
Castle-hill.	Shott's Iron Co.. . . . 2		-	
Bona	Bona Iron Co. 1		-	.
Govan......	W. Dixon, Eag. . . . 2			4
Wileontown.	W. Dixon, Eaq..... 1			
Coltnesa	Mr. Holdsworth .. 2	-		
Onnos	W. Young 1		-	
Carabroe	Alison and Co.		2	4
Galaton	M ${ }^{\text {Collam and Co... }}$	1	-	
Blair	Mr. J. M'Donald .,		2	
Housle	Mr, Gallowry	1		2
	50	5	7	26

Sapporing the whole of these furnacen to be in full activity by the and of the year 1842, and giving the arerage produce of eighty tons per week to each furnace, we shall have \&cotland alone producing upward of $\mathbf{3 6 0 , 0 0 0}$
tons of cast-iron per year, nearly equalling the make of the United Kingiom twenty yeari ago. Sixty-five out of eighty-aeven furnacea I have enumertied, are situated in or about the Monklands, to the south and southeast of Glasgow, and distant from that city seven to ten milet. The works in that district have the command of the blackband ironstone, the possession of which my informant atates to be so great an advantage, that without it, the tade would not bo worth following. The furnaces in the Monklands, by asing this combustible blenkband ironstone, may average 100 tons in seven dap each, but those which have not this materin, do not yield neariy so large a quantity. Therefore, bearing in mind that the Presbyterians atop their fornaces one shift, or nearly twelve hours on each Sunday, we may safaly pat down the average yield of the furnaces in Scotland at eighty tons per week esch.
Three of the largest makern of iron in Scotland are directing their etteation to the manufacture of bar-iron, and with every prospect of most complete success. The Monkland Iron Company are erecting mills and forges capable of making 230 tons malleable iron per week. Dualop, Wilson, and $\mathrm{CO}_{\text {on }}$ of Dundyvan, are making preparations to enable them, when in full operation, to make 300 tons of bars, \&c., weekly, and they will be partially at work in two months. William Dixon, Esq., of Govan Iron Works, has now ready for immediate working, capabilities for producing 200 tons of mallesble iron per week. His mills and forges are on the outakirts of Glasgow, and are known as the Glasgow Iron Works, at the Town Head.

The Muirkirk Iron Company have five puddling furnaces, rolling mill, $\&$ e., but they are not making more than about twenty tons of bans weekly.

This statement comprises the present, and so far as is known, the prospective operations in the malleable iron trade in Scotland, with the exception of two small forget, the Lancefield and the Gartness, where they pudtle: little from white iron.

It was for a long time considered doubtful whether the Scotch cost-iron, made as it is with raw bituminous coal and heated air, would anower for mel. leable iron, and several experiments have latety been made with a rim to ascertain more nearly than had hitherto been done its applicability for this purpose. So far as I have been able to learn, these experiments hare been attended with most satisfacto.y results. I was informed a few days go by Edmund Buckley, Eseq., of Manchester, who has for a long time just taken a very lively intereat in these matters, that in some trials recenthy made by Mesars. Beecroft, Bntler, and Co., at their works, at Kirkstall, near leedi, they found 4 cwt . 2 qrs. of Scotch pig-iron to yield, by the procen of boiling instead of puddling, blooms of 4 cwt .1 qr .8 lbs . each, showing only the comparatively trifing waste of 20 lbs. in a charge of 4 cwt .2 qu., and the quality of the iron was found to be at least equal to any made rith cold air. Indeed, many thousand tons of Scotch cast-iron have been purchaned from time to time by the iron masters of Sonth Wales to mix with their own country metal in their puddling furacces, thus affording unqueationable prof of it fitness for conversion into malleable iron. I have no doubt thas we may speedily receive extensive supplies of bar-iron from Scotland, such a we have hitherto received principally from South Wales and Staffordshire.

I must now ask your indulgent attention for a little while longer, and rtquest the favour of your company on a very interesting tour through the mineral districts of the counties of Gloucenter, Monmonth, and Glamorgs. I class the iron works of the Forest of Dean with those of South Wules, a well from their proximity to the latter, as from the circometances of thair being worked by those eminent South Wales iron masters, Mosirs. Gooct, Lewis, and Co., and W. Crawshay and Sons. At the "Cindeford" wats there are four furnaces, three in blant, and one out, producing on an arerge from 100 to 120 tons each of excellent forge pig-iron weakly. As the "Sewdley" works there are two furnaces, one in and one out of blat, producing sbont ninety tons of iron per week; and at the Park-end wortr there are two furnaces, one in blast, and the other out, making about eifhty tout per week.

The differences in the produce of furnaces may be acconnted for in a rind of ways; some are larger than others, come have superior blowist enpia, and others may be under better management. The furneces I hare anmod are all that are on the Forest of Deap; but large quantities of iros are are raised here, and are sent, as well as the iron, to different works is Soath Wales and Staffordahire. The shipments are made at a wharf a little belot Newnham.

Leaving the forent, we will proceed to Newport. Here you will and a most excellent river navigation-the Uak, and at all seavons of the year my be seen large numbers of vessels, of various tonnage, waiting to recedre the mineral produce of Monmouthshire, in the shapes of conl and iron. Hertas viewed the port, and noted all its facilitien for shipment, and especially the magnificent dock now constructing for affording to the shipping incrawd conveniences, we will, if you please, proceed to the interior of the coarts, and notice the various works in the order in which we reach them.

The first worka we arrive st are those of Cupel Hanbuy Leigh, Eiph sam Pontypool, and are called the Pontypool Iron Works. Here yoa Fill fad three furnaces in blest, and one out; two blown with cold air, and oue wist hot. There are not any furnacet erecting, or about to be ereeted berh. The make of these three furnaces is sbout $\mathbf{3 0 0}$ tonit per weak. The hotsir fir are sold chiefly for foundry purposes, and the cold-air iran in ased hy Mr. Leigh, for tin-plates, of which he has been for a long time pasta very emidera maker. The yield of the Ironstone at theae works is about 90 par coinh ; bot Mr. Leigh imports large quantities of the richer ores from Lineuntre med Cornwall, for the improvement of the quality of his iron.

A little further up the valley we reach the works of the Pentwyn and Gobsnos Iron Company, where you will find five furnaces all in blast, and one about to be erected; three are blown with bot-air, and two with cold. The produce of the five furnaces is about 450 tons per week. They have just completed first-rate forges and rolling mills, calculated to make 350 tons of bar and other malleable iron per week. About a mile above thesc works, you find those of the British Iron Company, at Abersychan. Here are four farnaces in blast, all blown with cold air, and two out of blast. The four make about 380 tons of pig-iron per week, from which they make about 270 tons of malleable iron, and the remainder is made into castings, \&c.

We next arrive at the Varteg Iron Company's works, where you will find five furnaces all in blast, four blown with hot, and one with cold air. They produce about 350 tons of pig-iron per week, from which they make about 160 tons of bars and rails, sbout twenty tons of castings for engine uses, \&c., and the remainder is sold for foundry purposes.

Pursuing our course for two miles further up this valley, we arrive at the wrorks of the Blaenavon Iron Company, where we find five furnaces all in blast, blown with cold air, and six others erecting. This nineral property, I am told, is one of the best and most valuable in the county of Monmouth, and these works have been long distinguished for the superior strength, and general excellence of their iron. These five furnaces produce about 400 tons of cast-iron per week, about one-half of which is refined, and part of it made into cable iron, and the remainder is sold for tin-plates and foundry work. This company arc erecting extensive forges and rolling mills, and will, in a few years, contribute largely to the supply of bar-iron and rails.

We have now arrived at at the extremity of the first valley, and, crossing the mountain, we will descend to Abergavenny. The rolling-mills on the left-hand side are those of the Garndyrris Iron Company, and have been worked for many years by the late firm of Messrs. Ilills and Wheely. They are now united to the Blaenavon Iron Works, and are carried on by the same company.

By the time we have reached Abergavenny, I strongly suspect that you will f cel disposed to enjoy the comforts of a good dinner, an evening walk in that mont delightful country, and a refreshing sleep, for all of which gratifications yon will here find the most ample provision.

Next morning, after the usual and very necessary preliminaries, we resume our tour, and in about five miles we reach the works of the Clydach Iron Company, at Lanelly. Here are four furnaces at work, and all blown with cold air. They produce about 320 tons of pig-iron per week, from which they make about 230 tons of bars, \&ec., and the remainder is run into castings and ballast iron.

The Nant-y-glo Works are the next we arrive at, situated, as their name imports, in the Valley of Coal. Here, some years ago, was expended upwards of 50,000 . in attempts to establish a profitable iron work, but without success; and not until the property was purclased by the present talented and enterprising proprictors, Mesars. Joseph and Crawshay Bailey, was any remuneration realised. These works now rank amongst the very first class. Mesms. Bailey have, within the last few years, purchased the Beaufort Iron Works. At the two establishments they have fourteen furnaces in blast, ten blown with cold and four with hot-air, and I am informed that they intend erecting four others very soon. Their make of pig-iron is from 1200 to 1300 tons per week, from which they make about 750 tons bars, rails, and rods, and the remainder is sold for foundry purposes.
Near the Nant-y-glo works, and situated in the same valley, are the Coalbrook Vale Company's works, consisting of three furnaces, all blown with cold air, and another is about to be erected. The make of the three furnaces is 160 to 180 tons of cast-iron per week, all of which they make into castings, or dispose of for that purpose.

A mile lower down this valley you reach the Blaina and Cwm Celyn Iron Company's iron works. These two properties have recently been purchased by a joint-stock company, and promise well for their proprietors. Messrs. Russell and Browns, the former proprietors, are the managing directors. At Blaina they have two furnaces in blast, and one sbout to be erected, all blown with cold air. They yield about 120 tons of pig-iron per week, which is nearly all made into castings on the spot. At Cwm Celyn they are building four funaces, the entire produce of which is to be made into malleable iron.

We have now finished our inspection of the works in the second valley, and will proceed to the third, which is called Ebbw Vale, from the river Ebbw fowing through it.

The first works we reach are the Beaufort, which I have already informed you, belong to Messrs. Bailey, and their produce I have included in the return for Nant-y-glo.

Proceeding onwards, we arrive at the Ebbw Vale works, the property of Mesars. Harfords, Davies, and Co., who are also the owners of the Sirhowey iron works, situsted in the next valley. At Ebbw Vale they have three furnaces in operation, and are building a fourth. They blow one furnace with bot, and two with cold air. These furnace are veny productive, yielding 100 cona per week each. At Sirhowey, they have four furnaces in blast, and one undergoing repairs ; two are blown with hot, and two with cold-air. These furnaces also make about 100 tons per week each, $t 0$ that at the two works they make about 700 tons of cast-iron weekly; the whole of which is converted into bars, rails and rods. Their make of malleable iron is from 600 to 630 tons per week.

One mile lower down the Ebbw Vale, you will find the Victoria Iron Work, recently established under the able superintendence of Roger Hop*
kins, Esq. These Forks belong to the Monmouthshire Iron and Coal Company. Only onc furnace is yet at work, but another is ready to be blown in, and they are erecting two others. They have just commenced the manufacture of bar-iron. I have been informed that they iutend building ten aiditional furnaces lower down the valley, near to Abercarne. When in full operation, they calculate on making 1000 tous of wrought or malleable iron per week; but this expectation will probalbly require a few years for its accomplishment.

Having seen all the works in the third valley, we proceed to the fourth, and we here find, first, the Sirhowey works, to which I have already alluded, and next to these, the works of the Tredegar Iron Company. At Tredegar, they have five fumaces in operation, all blown with cold air; they are buildiug two others, and contemplate the erection of two more, making nine altogether. They now produce 400 to 450 tons cast-iron weekly, which is nearly all made into bars, rails, and rods; of these they make about 330 tons per week.

We must now travel on to the fiftl valley, in which we find only the Rhymney and Bute Iron Works, belonging to the joint-stock company of that name. This is a very extensive aud most valuable mineral property, and these works bid fair very soon to rival the largest establishment in South Wales. They have now six furnaces in blast, two blown with hot, and four with cold-air; and they are building four others. They make about 550 tons pig-iron per week, from which they produce 450 to 480 tons malleable iron in the same period of time.

The whole of the works we have visited since we left Newport, send tbeir iron to that port for shipment, and it is conveyed cliefly down tramroads by locomotive-engines, and by cauals.

We must now take a stretch or five or six miles to the westward, and this will bring us to the hitherto unrivalled establishment of Sir John Guest, Lewis, and Co., at Dowlais. Here you will fiud fifteen furnaces in full actirity, and fonr others building. I find that I have omitted to note how many were blown with hot, and how many with cold air, but if my memory serves me correctly, I think five with the former, and ten with the latter. These fifteen furnaces make on an average 1350 tons of pig-iron per week, nearly the whole of which is converted into malleable iron, say about 1000 tons bars, rails, and rods per week. At this establishment they employ upwards of 4000 hands.

The next works we reach are those of the Pen-y-darran Iron Company. They have six furnaces in blast, and one out, making about 400 to 500 tons cast-iron per week, and they convert ncarly the whole of it into malleable iron, of which they produce about 400 tons per week. I believe the whole of these furnaces are blown with cold air.

We have now, gentlemen, performed a very good day's work, and I an sure you will heartily join me in a proposal to take up our quarters for the night at the Castle Hotel, at Merthyr Tydvil, where I give you my word that you may make yourselves comfortable, if you choose. You must take care to muster for breakfast at cight o'clock to-morrow morning, and at nine we will go to see Mr. Crawshay, who is a very early man of business.

The preparations of the morning over, and our arrival having been announced at the Cyfarthfa office, we will now on our way to Cyfarhtfa see the Iron Works, belonging to Messra. Crawshay and Sons, and shall no doubt be willingly accompanied by Mr. Williams, their talented engineer. These works are in my opinion the neatest and best arranged in all South Wales, and Mr. Williams I am sure will have pleasure in showing you the whole of the machinery. Amongst other interesting objects for your attention, you may here see tbe largest pump I ever heard of. The diancter of the working barrel is six feet, and the length of the lift in the barrel is four fcet. It pumps up the whole of the river Taff, and the water, after turning all the wheels alout the frorks, is discharged into the bed of the river. This nay appear, at first view, an expensive way of obtaining power; but experience shows that it is cheaper than erecting a number of small engines, or trausmitting power through complicated machinery. Besides the Cyfarthfa, Messrs. Crswshay have the Hirwain works, which are situated about some six miles from Merthyr. At the two establishments there are in the whole fourteen blast furnaces, twelve at work, all blown with cold air, and two inoperative. They make about 900 tons of cast-iron per week, and the greatest part of it is made into malleable iron, of which they produce 600 to 650 tons per week.

We next visit the Plymonth Iron Works, helonging to Messrs. Richard and Anthony Hill. Herc are seven furnaces, all in blast, and all blown with cold air, making 700 tons of cast-iron per week on an average, and from which they make about 600 tons into bars, \&c. weckly.

About six miles from Merthyr, over a mountain, are situated the works of the Aberdare Iron Company. They have six furnaces in blast, two blown with hot, and four with cold air, producing 350 to 400 tons cast-iron per week. They make about 220 tons bar-iron per week, and the remainder of their produce is disposed of for foundry purposes.

At the Pentyreh Iron Works, near Cardiff, there are two furnaces in blast, blown with cald air, and making about 150 tons cast-iron weekly.

The whole of the iron made at the seven last-uamed works is shipped at Cardiff, where a very commodious dock has recently been constructed by the Marquis of Bute, under the superintendence of William Cubitt, Esq., F.Il.S., C.E., for the better accommodation of vessels entering that port.

The statistical information I promised to obtain, I found I should have great difficulty in procuring
you on these sulyjects the opinion of an excellent friend of mine, who has ample means of furning a tolerably correct estinate. Lis remarks are very general, and as such I offer them. Ile says, "To make 1000 tons of loariron weekly, requires about 4000 persons of every description, hut I cannot give you the proportionate numbers to each process. The rates of wages for men range from 128 , to 60 s., for women 68 . to 10 s ., and for boys 78 . to 11 s . per week."

There is another brauch of statistics of the iron trade on which I felt desirous of affording you some information, and in obtaining this 1 have been sonewhat more successful, though it was not procured withont very great difficulty-I mean the proportions of the materials used in each process, and the waste of the iron. 1 anm glad to say that I can inform you on these most important points with the utmost exactness. Fifteen furnaces, averaging ninety tons each per weck, will produce 1350 tons of cast-iron with a consumption of 50 cwt. of coal per ton of iron, inclusive of calcuning-say 3375 tons of conl to furnaces and calcining, ami to the blowing engines 10 cut. of coal per ton of iron, or 675 tons. If the furnaces make 1350 tons of castiron, 100 tons may be deducted for ballast iron. Then refining 1250 tons, at $22 c w t .1 \mathrm{qr}$. of pig to the ton of refincel iron, will produce 1110 tons refined metal with a consumption of 9 cwt. per tom, or about 500 tons of coal weekly for the refineries. 1110 tons refined nactal will yield of puldled iron, at 21 cwt. per ton of the metal, and 18 ewt. of coal per ton of iron, 1045 tons with 9.10 tons of coal; and then the rolling-mills, at $22 \frac{1}{2}$ cwt. of puddled iron and 20 ewt. of coal per ton, will produce 915 tons of merchant hars, or what is called No. 2 iron, with a ronsumption of 915 tons of coal. $* *$

Within the last three years, Mr. George Cranc, of the Yiniscedwyn iron works, has discovered, that by using heated air, he can melt iron ores with the anthracite coal. When I was last in South Wales, I visited Mr. Crane, at his works, near Swansea, in order that 1 night see and judge for myself of the merits of this discovery. To cnable you to form some idea of its value and national importance, I need only inform you that it lias added to the available resourecs of this kingdom, for the purposes of its iron trade, a district sixty to seventy miles long, by six to eight miles broad, abounding with the anthracite or carbon coal, lime, aud ironstonc; and, further, that it has alrearly trebled the value of this extensive mineral property. * * *

Mr. Crane has yet only one small cupola furnace, in which he uses anthracite exelusivel, for firing the other two, he uses, as I lave before remarked, threc-fourths bitmaimens, and one-fourth anthracitr roal; and ly using anthracite in tois compratively small proportion, Io cfacts a sariag of Es. to lis. per ton in the cont of manher iron, and very materially imponcs its quatit. His furnares aho fich a liefter produce, in proportions of
 onld air and cohe, he could ohtan ondy twenty to twenty-two tons of castiron pre werk, by being fircd with anthracite coal alone, and blown with hot ait. has produced, on an averise of many months, thirty-five tons per week, ind the larger fumaces, in whith he uses the proportions I have before stated, have increased, the No. 1, from thirty-four to thirty-five tons up to forly-five to forty-nine tons; and the No. 3, from fifty to fifty-five up to sixty-five to cighty tous per week. All his furnaces are very small, and his blowing machincry not so good as it ought to he, lience his very limited produce.

The quality of this iron is very higlily spoken-Mr. Crane has received assurances from several parties who land used it for varinos purposes, that, " for bars it had given great satisfaction;" "for foundry work it was admirabli," that, "in re-melting, it was fomd very fluid, and at the same time very strong"-a union of qualitics most desirable, but rarely to be met with.

With respect to the economy of this new process, Mr. Crane las, on the average of several months, produced the ton of cast-iron with the before-mitheard-of small quantity of 27 cwt . of coal, and he entmertaiss the greatest confulence that le will be able to reduce the quantity still furlicer, say to 22 cwt. Ilis main bed of anthracite coal is cighteen feet thick. I produce a sample of it as obtained from the mine.

The maturing of this most important plan has cost Mr. Crane much time, and money, and anxicty, and it is to hoped that he will be most anmpy repaid for his valuable scrvices.

This new feature in the iron trade soon attracted the attention of capitalists, both here and in London; and the countics of Pembroke, Carmarthen, and the western part of Glamorgan, give fair promise soon, at least to rival Mommouthshire aml the castern part of Clamorgan, in the manufacfure of iron. I will first enumerate the works already in operation in the Swansea and Neath districts, and then inform you of the extent to which new establishments are being erected and others contenplated.

The Niaeteg iron works are worked by Messrs. Robert Smith and Co., with bituminous coal and hot air; they have two furnaces at work, producing from 180 to 290 tons per week of cast-iron. A part of this they make into malleable iron, but 1 am not aware of the exact quantity-perhaps, about sixty to seventy tous per week.

The make of Mr. Crane, at the Yniseedwyn iron works, I have already acquainterl you with.

The Neath Ahbey Irom Company have two furnaces in hast, blown with leated air, and fircd with threc-fourt's bituminous, aml one-fourth anthracite coal. They thake about 160 tons of cast-iron per weck, the chief part of which : ande into casting on the spot, for their very eatensive engineer. ing cstablishment.

The Millbrook Iron Company lave two furnaces in blast, producing about forty tons per week, blown with cold air.

The works crecting in the anthracite district are the Venallt, in the vale of Neath, and belonging to our enterprising townsmen, Messrs. Jevons and the Messrs. Arthur, of Neath. They are carried on under the firm of Jevons, Arthur, Wood, and Co. They are building two furnaces, and bope to be in hast by the cud of the year. They have a very abundant supply of both kinds of coal and iroustone.

The Ystal-y-fera works, near Swansca, are also being erected by a liverpool company, at the head of which stands our spirited and axcellent fellowtowusman, Sir Thomas Brancker. This company is building four furnaces, and I an told that they intend building four more. Their fuel is all of the anthracite kind.

The Cambrian Iron Company are erccting four furmaces near Pile, on bituminous coal, and I have been informed, intend building four furnaces in the anthracite district.

Niessrs. Mellins and Co. have one furnace near lile.
The Givendrath is a new work about to be established ly a London corapany near Swansea, but I could not ascertain the extent to which they intend going. Mr. Crane informed me that he knew of twelve to fourteen new iron works, of from two to eight furnaces each, erecting, and about to be erected, in the anthracite district, the existence of which will be solely attributable to lis invaluable iliscovery.

The aggregate nunher of furnaces in blast in South Wales we have found to be 122; out of blast, 7; luilding, 31; and contemplated, 91; and, allowing for the twelve works that Mr - Crane alludes to, as being likely to be erected soon, only five fiumaces each, or sixty in all, we thus find ihat probably within the next five years the number of furnaces in South Wales will be doubled, and number 24 . Allowing an average produce of cighty tons per week for each furnace, we have the astounding quautity of $1,015,040$, or, it rount numbers, $1,000,000$ tons of cast-iron produced in this district alone-a quantity equal to that produced last year in the whole of Great Britain.

MOTTO FOR A LOCOMOTIVE ENGINE.

Mr. Ellitor.-Allow me to subscribe a motto for a Locomotive, the emtion of an ingenious friend, if you have a corner of your Jourual to all up, perhaps, for the novelty and "naivete," of the idea you will insert it in your next :-

> " Gpon the futir clements I feed,
> Which life and power supply,
> To ran nyy race of houndless speed,
> By loss of one I dic."

> J. H.

Important Invention in the Maupacture of Paper Ilangince.We were favoured a few days since with an opportunity of visiting the extensive pape: works of Messis. J. Evans and Co., at the Alder Mills, near Tamworth, where we had the plcasure of witnessing the application of an ingenions and very beantiful piece of mechauisur, the invention of the Messrs. Evans, to the printing of paper hangings, which cannot fail to produce a complete change in this department of our manufactures, from its superiority over the ordinary micthod of block printing. The Messrs. Erans would have brought their invention into practical operation many years ago, had it not been for the heavy duties imposed on the manufacture of stained papers, which, by limiting the consumption, rendered their invention comparatively uscless, a fact which supplies another argument against the imposition of heavy dutics upon the nranufacturing skill and industry of the country. In conncetion wi:h the present invention, we may here state that the Messrs. Evans took out a patent in February last, for an important improvement in the manufacture of paper, by the application of a pneumatic pump in the compression of the moisturc from the pulp, by which menns the substance is almost instantaneonsly couverted into paper. Hy thes invention they are, we understand, enabled to mannfacture a continuous eheet of paper six feet in width, and nearly 2,000 yards in length every hour. This paper, as it is taken off the reel, is in every respect fit for immediate use, and is conveyed on rollers to another part of the mill, in which the printing machinery is erected, through which it is passed with great rapidity, and receives the impression of the pattern intended to be produced, with an the precision and beauty of finish which machinery can alone effect. In order to connect the operations of the paper making and printing machines, the Messrs. Evans are at present engaged enlarging their premises, and wbea this alteration is completed they will be enabled to print, flaze, and enthow, the most complicated and delicate patterns in paper hangings, in every variety of shade or colour, as rapidly as the paper can be mamutictured. Some idea may be formed of the power of the machinery, and the linportance of the invention, when we state that during our viait to the midn, the machincry was working at a rate which would produce 1,680 rands of psper per hour, consisting of two very beantiful patterns, the only hand labour employed being that of one man, who superintended the mikiuinery, and four girls, employed in rolling up the paper in pieces of the required length. The whole procets of manufacturing the paper from the pelte and
impreming it with the most complicated patterns, is carried on within a comparativehy amall apece, and with a precision and rapidity which affords another intance of the progress and triumph of science and mechanical sill, in supplying the nocensaries and comforts of civilised life. We understand it is the intention of Messrs. Evans to exhibit some specimens of their beautiful manufacture at the forthcoming meetiug of the British Associa: tion, and we feel confldent that amongst the many ohjects of interest which the mecbanical skill and industry of liriningham afford, the preseat will excite not the least interest or gratification. We may, perhaps, here observe, that the Messrs. Evans have also exectited a very ingenious design of an enrelope, which seems admirably adapted for mecting the vicws of government in the contemplated change about to be made by the alloption of Mr . Rowland Hill's plan of a uniform penny postage. Specimens of this design have been forwarded to the Chancellor of the Bxcliequer for examination, and from the accurity which it affords against any successful attempt at forgery there appears great probability that it will lie in part, if not wholly adopted.-Midland Cownties Herald.
Cerooraphy.-An aceount has appearod in the American papers of a now method of engraving, the nature of which appears to le untinown, hough specimens have been published. The editer of the Bosfon Daily Idrertiser says he has endeavoured, but without success, to form some conjecture as to the manner in which the work is executed,-"Being printed," he olscerves, " on a large sheet in common with the letter-press of a large new.paper, the plate must be of the character of a wood engraving, yet it posses.ies almost the delicacy of a copper-plate engraving, and abounds in lines which are evdently inipracticable in wood engraving. The uniformity of the lettering, although varied by the diversity of charactera afforded by the use of different fonts of type, shows that this part of the work is of the nature of stercotype casting, but in what manner the shading, roads, and other arbitrary lines aro inserted, it is difficult, from an inspection of the impression, to imagine, unless it be by some process of ctching. From what is stated by the inventor of the rapidity and cheapness of the execution, the size to which the plate may be extended, its adaptation to the rapid and cheap mode of printing, by which the ordinary book and newspaper printing is excented, we cannot but regard it as a very important and useful invention, particularly applicable to the printing of maps and drawings, in conncrion with letter-press, for the illustration of works of almost every deseriptiou." The New York Olserver further states-" The advantages of Cerography are, 1. The engraving of many aubjects can be executed with a rapidity approaching very near to that of drawing upon stone; and the whole cxpense of a plate preparol for the press will ordinacily be less than that of a plate in copper or wood. 2. The plate is durable under the preas. A million good copies may be struck from it ; and as it can be stereotyped, the number of plates may be multiphed indefnitely at a trfling expense, and each plate will give a million copies. 3. Lines of all engravings, except, perhaps, the very finest class, can be mado with nearly or quite the same perfection as in copper or steal, and with less labour. 4. We know of no limit to the size of cerographic plates. We suppoee they may be made as large as the bed of the largest Napicr press. 5. The printing is executed with the common printing press, and of course as rapidly as wood-cut or letter-press printing. With this statement, onr readers can judge, as well as ourselves, of the effects which Cerography, in the hands of accomplished artists will probably produce on the other arts of engraring. We suppose that, with an improvement of which it is evidently susceptible, it will also have an important effect on the art of printing, especially on printing in the characters of the Chinese, Mindoo, and other Oriental languagea. Even in its present state, it will, no doubt, be used as a substitute for type-setting in some cases; but of this we will say more hereafter.

Antipicial Ivory.- Certain partics in Sbeffield have just olitained apatent for the making of a substance so nearly resenbling ivory, and so applicable to all the purposes of that valuable material, that it is almost impossible to detect the difference. We understand, ulso, that an imitation of tortoiseshell is prepared and in use, which for some purposes is little inferior to some varieties of the real article.

Mowing Machins.-An ingenious carpenter at Ingatestone, namel Gruom, is engaged in the construction of a machine for mowing mewdows, k ce to which he bas lung directed bisattention: and our ir formant, who his si ell he ne del, states that hopes may le entertained of a successful applicati in of the principle. It is to be driven by hand, fin the same way as Buddiars mathine for mowing lawns, but will work as well through valli.ys as on lecel gromm ; and he calculates that it will cut us wile a breadth in a day as severior eight ordinary labourers. The work is performed by two or ihrce sets of ievolving ecythes or knives; put in motion, our correspendent idits, by as sucoliat cumplicatel machinery.-Fssex Herald

Consimpton of Finine Smokf.- We have be n requested, by a corre somdent at Bradfori, tu notice a plan, which he has successfully aitopted, tor the consumption of engine amoko, and whith we havegrat fleasure in aulaniting to our readers, convincel that few subjects of oreater im; wance can nttract public attention in this manufacturing district. Messrs. Wiond and Walker, of Bradforl, have applied this afpisatus to four large lolers. sup, wigg steam to tho 80 horse engunes, and to two amall toilers. supplying a 30 horse engine; ami, this uerk, Mr. Thomuson has completed a likinjpiratis it tho boflers, supplying a 90 horse earibic. As this is a p.tent matier. we have not the power 19 entur into particulars. It is the propert) of a Nir. (heciham. The saving in fiv! is such as to fully rematerite the adopion of this plan; and bow much the pulice liealit and confort mist tie benefited. we we el not say. We are authorised by Mr. Thumpon to state, that, he will th hapiy to allow an inspection of his works to any gentleman desiruus of atopting ilais
plane-Lesde Antelligencer.

BEVIITME.

Description of the Warmiug and Fentilating Apparatus at the Risidence of Charles Babbage, Eeq., Dorsct Strect, Munchester Square. By Charles James Richardson, F.R.I.B.A.
This pamphlet is a succinet description of one of Mr. Perkins' apparatus fitted for warming Mr. Babbage's residence, and forms an addendum to a work by Mr. Richardson on Warming and Ventilating, noticed by us some time back.
In this pamphiet, the author has given drawings, of Mr: Babbage's house shewing what way the pipes are distributed throughout the rooms and stairease. He has also given some additional drawings upon an entarged seale, explaining the apparatus.
Upon examining the drawings, it appears to us, that it would be far better, if instead of the pipes branching off from a multiple cock at right angles, they were made to start with a curve, and the month formed with a large orifice, gradually diminishing off like a trumpet, to the size of the pipe. From the want of some such arrangement, probably it is, that the dining room and hed room circulations of Mr. Babbage's residence are not effective ; we imagine, that aceording to the construction of the multiple cock, the hot water rushes up to the end or top of the cock, and distributes itself rapidly through the two upper branches, and passes by the two lower unes, where the water circulating through the pipes creates an eddy, and prevents a free egress into the lower pipes; therely ulastructing the free circulttion to the bed rooms and dining room: we should very much like to see this suggestion tried, which night very easily te done, without mueh disturbance of the pipes. We feel convinced that warming apparatuses are often condemned for the want of a little attention in ascertaining the canses of their failure or defect, as it is often foumd that in some situations, an apparatus is effective, while in others, a similar apparatus proves a total failure.

The quantity of fuel stated to be sufficient for warming Mr. Babbage's residence is very small, and if it dues its duty effectively, must prove the apparatus to be very economic.

The Throry of the Steam-Engine. By Comte de Pambour. London: J. Weale. 1839.

The author has in this work entered upon a hitherto almost unexplored field of rese irch; for the authors who had previously written on the steam-engine had scareely touched upon the general theory. He has endeavoured to analyze the phenomena which take phace in steam-engines, to point out the laws which govern their effects, and to reduce them to a perfect systern. This was an arduous enterprise, and has not been altogether without success: the anthor has established two fundamental laws, which he considers as forming the basis of the whole theory, bnt he las neglected others which camot with propriety he omitted. However, when we consider the magnitude and novelty of the undertaking, we cannot be surprised at finding some defects and omissions, which it would require a long and laborious investigation to remove; we ought, therefore, to give M. de Pambour credit for the service which he has rendered to science, hoping that his work, which every one who takes an interest in the subject ought to possess, will, by opening a new clannel for discussion, stimulate others to join their endeavours in a work of so much general utility and interest. We wish it then to be distinctly understood that, in the observations we are about to make, we are far from having any intention of depreciating the labours of the talented anthor, whose chief fault seens to have been a deficiency of practical experience : our sole aim is to elicit truth, and aid, as fir as lies in our power, in the advancement of mechanical science.
The work is divided into twelve chapters. Chap. I. is intended to prove the inaccuracy of the ordinary methods of calculation, and the accuracy of the proposed theory.

Chap. II. treats of the laws which regulate the mechanical action of steam.

In Chap. III. the general theory of the steam-engine is developed, aud in each of the following chapters it is applied to a particular system of engine.

In the first section of Chap. I., where the ordinary mode of calculation is expluined, there is a little confurion respecting the term thcorelic effect. The author tells us, page 5 , thut by this ruode

The force applied to the piston was computed, in supposing the pressure of the steam in the cylinder equal to that of the steam io the boiler: that is to say, the area of the piston was inultiplied liy the pressure of the stean in the boiler, which gave tixe force exerted by the engine; this result was then multiplied by the velocity of the piaton. aud thus was obtained the theoretic effect of the engine. But the ronult of this calculation having been compared
with that of some experiments made on engines of the same kind, the ratio between the two results had furnished a fractional coefficient, which was regarded as the constant ratio between the theoretical and practical effects of all cugines of the samesystem; therefore, in multiplying the number expressing the theoretic effect by this fractional coefficient, a definitive product was obtained, which was the practical effect that could be expected from the engine.
Now, the theoretic effect cannot be obtained without first deducting from the pressure in the boiler that on the opposite side of the piston; and the co-efficient was applied, not to the effective pressure so found, but to the total pressure in the boiler, the pressure on the opposite side of the piston being regarded as part of the direct resistance overcome, and therefore added to the useful effect.

Iu the next paragraph to that just quoted, the same rule is expressed algebraically, a constant coefficient being used to pass from the theoretic to the praclical effect ; thus, the former is expressed by a_{π}, and the latter by $k a_{\pi}, a$ representing the area of the piston, π the pressure in the boiler, and k the constant coefficient. M. de Pambour here gives a table of the coefficients indicated by Tredgold, and in the next following paragraph corrects the thoove rule, by deducting afterwards the pressure on the opposite side of the piston. He then says that the coefficient onght to be applied to the ffectire, and not to the lotal pressure of the steam, in which case the coefficient must necessarily be smaller; but he states that "the calculation comes to the same either way, provided a suitable coefficient be used." One example will prove, that the calculation cannot come to the same either way, when the sume coefficient is used in two cases in which the total pressure is different, but the pressure on the opposite side of the piston the same.

Taking the author's example of a ligh pressure engine working at the total pressure of 65 lbs . per square inch, and applying the coefficient $\cdot 3$, and deducting 15 from the product, we find 24 lbs, for the practical effort applied by the engine, the effectlve pressure or theorcfic effort being 50 lbs ., so that if we had to pass from the latter to the former, we ought to make use of the coefficient $\cdot 48$. (M. de Pambour calls it -5.) If now we take another case, in which the total pressure is only 45 lbs ., we shall find the practical effort by Tredgold's rule to be 12 lbs. , the theorctic effort being 30 lbs ., so that the coefficient in this case would be only 4 to make the cialculation come to the same as by Tredgold's rule. Thus, no suitable coefficient can be found, which may be applied to the effective pressure, when the total pressure varies, without essentially changing the rule.

We think the author must be in error with regard to the following rule, which he states (puge 9) to have been used to calculate the evaporation necessary to produce a given effect.

The rule consisted in calculating the volume described by the piston, and in supposing that volume to have been filled with steam at the same pressure as in the boiler, and then applying to it a constant coefficient. That determiaed in the preceding problem was usually employed, but it was applied as a divisor, with a view to augment the craporation in proportion to the losses represented by that coefficient.

This rule is doubtless entirely destitute of foundation, nor lave we found it laid down by any author who has written on the steamengine. Tredgold very properly omitted the co-efficient in the divisor, which has in reality nothing at all to do with the question, and Firey has erred by using too ligh a constant divisor in the expression of the quantity of water evaporated, which thus differs, still more widely thau Tredgold's, from that condemned by M. de Pambour.

SLCT. II.-Objections against that Mode of Calculation.
These objections are in substance as follows :-The urlinary calculation supposes that the steam, generated in the boiler under any given pressure, loses a certain colstant proportion of that pressure during its passage through the steam pipes and valves.
That the steam laving arrived in the cylinder as a pressure rather less than that in the boiler, a certain fixed proportion of its power is expended in friction and other resistances in the engine itself; the remainder, besides producing the useful effect, being supposed to overcome the resistance on the opposite side of the piston; excepting, in the case of high pressure engines, the force, over and above the pressure of the atmosphera, required to expel the steam from the cylinder after having accomplished the stroke.
To this is objected:-
Ist. That the friction and other losses, to which the diminution of effect is attributed, canuot absorb so great a portion of the force of the steam as is supposed. To prove this, the author shows, by applying his own co-efficient -5 to the theoredic effect of a high pressure engine having an usgful effoct of 100 horses power, that Tredgold allows a power of is horses to move the machinery, and of 40 to draw the pieton. .Bat, if he had applied Tredgold's own rule, he would bave found 16.79 and $54 \cdot 17$ inatead of the above numbers, which sherf the aberrdity of the rule in a still stronger light.

It is however well known that there is not actually so great a loss of effect in engines as the above rule attempts to account for, eo that it is unnecessary to make such exaggerated allowances for friction; otherwise another strong objection might be urged agaimst the rule, namely, that it gives 25 ibs. total, or 10 lbs. effective pressure as a limit below which steam cannot be used in high pressure engines, even without doing any work; which is contrary to experience.
The second and third objections are, that the co-efficient used to pass from the theoretical to the practical effect of an engine, is sometimes too high and sometimes too low to make the calculated resulis harmonize with practice, the ratio of the effect produced to the theoretical effect falling in some cases as low as $\cdot 25$, and rising in otbers to -8. However, until more conclusive experiments have been made, we must continue to doubt the accuracy of the facts themselves. As the author here instances'five experiments from Wood's Treatise on Railroads, it is necessary to say a few words respecting them. The power of the engines, which were stationary, was calculated by multiplying the area of the pistons, by the pressure of steas in the boiler, and by the velocity of the pistons; and the work done was estimated by adding together all the various resistances calculated by certain rules, previously determined by experiment, and multiply. ing the sum by the velocity of the load. The ratio of the work done to the power developed by the engines, calculated as above, way found in the several cases :

$$
\cdot 256, \cdot 288, \cdot 309, \cdot 27 \text { and } \cdot 3
$$

The two first experiments were made with condensing, and the three latter with high pressure engines, all stationary. To account for the loss of effect in the former, we have the loss of pressure experienced by the steam during its passage from the boiler to the cylinder, the pressure in the condenser and the friction of the engines.

The first experiment was made with an engine constructed by Boulton and Watt, with two thirty inch cylinders, length of stroke 5 feet. The steam is stated to have been generated under a pressure of $45 l b s$. per square inch above the atmospheric pressure, for want of knowing which we must content ourselves with assuming it at $14-7 \mathrm{lbs}$., and the pressure in the condenser, for the same reason, at llb. per square inch.

A train of seven loaded carriages, each weighing 9408lbs, was drawn up an inclined plane 2646 feet in length, and rising 154 feet 6 inches, in 620 seconds, the engine making 374 single strokes.

Mr. Wood calculates the resistance of the load to have been equal to 4991 lbs , which would require a pressure of $7062 \cdot 18 \mathrm{hbs}$. on the piston, or $5 \cdot 020 \mathrm{lbs}$. per square inch. To this we have to add the friction and losses in the engine.

Calculating the friction of the engine by Pambour's rale, page 172 of the work under review, and adding llb, for the pressure in the condenser, we find.
Pressure corresponding to the useful effect
5020 Hm
Pressure in the condenser
1.000°
Friction of the engine withaut load 1.000
Friction owing to the load of $5020 \mathrm{l} \mathrm{l} s$.
0.717

Total friction and resistance in the engine
Total pressure per square inch of the piston necessary to
overconc all the friction, and resistance of the engine and
its load
7737
But the pressure in the boiler was 19 -2lbs., therefore it would in this case be necessary to admit that the steam had lost $11 \cdot 3631 \mathrm{bs}$. in its passage from the boiler to the cylinder, which we think inadmissible, when the velocity of the piston was no more than 181 feet per minute. We are of opinion, that the fraction $4631 b$. would be sufircient allowance for loss in the steam pipes and passages, in which case there would still remain 11 lbs. to be accounted for. This cannot all be attributed to friction and losses in the engine; but, if we ald seven eighths of it to the load, and the remaining eighth to the friction of the engine, due to that additional load by Pambour's rule, we slall lhave
Pressure corresponding to the useful effect
14.645ithe

Pressure in the condenser
Friction of the engine without load
-000
Friction due to the load 14645! bs.
Total friction and resistance in the engine

Total pressure on each square inch of the pistons necessary to overcome all the resistance and friction of the engine and its loand
Loss of pressuge in tlie pipes and passages
Total pressure in the boiler

The quantity of water evaporated on the former supposition would have been no more than $0-632$ cubic feet per minute, hardly half as much as would have been allowed by Watt, namely, 1.344 cubic feet. On the latter sapposition the expenditure must have been $1 \cdot 430$ cubic feet., or very nearly the same as Watt's allowance. It is, therefore, much more likely that the pressure in the cyiinder was 18.737 lbs . per square inch, than 7.717 lbs ., and if so, the resistances are necessarily estimated too low, or the pressure in the boiler too high, or, what is more probable, both these errors bave been committed at once. It is also more than possible that Pambour's rule gives too low a result for the friction of the engine in this case. However it may be, we cannot put any confidence in such experiments, nor admit them as arguments against the ordinary mode of calculation. We are much more ready to admit that the useful effects may sometimes amount to 8 of the whole effort of the engine; for we believe, as we have already stated, that the allowance made for friction is generally much too high.
We quote the fourth objection, as it embraces an important part of the theory of the steam engine, and we have some observations to make upon it, which materially affect the views explained by the author. He expresses himself thus:

4th. The measure of the theoretic effect of the enginc results from three elements, to wit: the surface of the piston, the pressure of the steam, and the velocity of the motion. The causes which are said to explain the reduction to which this theoretic effect is liable, are : first, the friction of the engine, then the contraction of the passages, their changes of direction, the friction of the steam, its waste and its condensation. Now of the last five causes, the condensation is the only one that can diminish the pressure of the steam during its passage, and that condensation is almost entirely oisriated by the precautions used in practice: all the remaining causes of reduction act merely on the velocity. If then these causes produce definitively a reduction in the theoretic effect, it cau only be by reason of their action on the relocity.

What is here objected to is, therefore, that the pressure of the steam in the cylinder is supposed to be diminished by the contraction of the passages, their changes of direction, the friction of the steam, and its waste, which M. de Pambour asserts to act merely on the velocity ; but this objection, as regards the contraction of the passages, is cancelled in Section VII., where he states that the degree of opening of the regulator acts upon the pressure in the boiler, but can have no influence on the pressure in the cylinder. Now this is admitting that the area of the passages influences the ratio of the two pressures ; so that, if we suppose either of them known, the other must be determined by the area of the passages. It is most natural to assume as known that pressure which may be immediately measured, mamely, that in the boiler, and conclude from that on the pressure in cylinder, which is the method usually followed. If, with the same load, und consequently the same pressure in the cylinder, a contraction of the passages causes the pressure in the boiler to rise (which must necessarily be the effect, if the velocity remains the same,) it is very clear that, with the same pressure in the boiler, a contraction of the passages will necessitate a diminution of the load, which must be accompanied by a diminution of the pressure in the cylinder. Thus, the contraction of the passages, and every other cause which tends to retard the motion of the steam from the boiler to the cylinder, may be said to diminish the pressure in the cylinder, and they cannot be said to act upon the velocity, since that is known. This last objection, therefore, falls to the ground.

The formule objected to in Section III. are based on a law, (that of the velocity of falling bodies, which as there applied, have no reference whatever to the velocity of the piston of an engine, which they were intended to determine. We shall therefore merely remark that the velocity sought was that corresponding to the maximum useful effect of an engine, and not to a given load, as M. de Pambour seems to have supposed.

Sect. IV.-Vier of the Theory proposed.

This section contains only the basis of this theory, consisting of the two following laws:-1st. That there is necessarily equilibrium between the pressure of the steam in the cylinder and the resistance against the piston; and 2 d . That there is also a necessary equality between the production of steam and its expenditure. These laws are undoubtedly true, and we believe the author of the work before us to have been the first to point them out; but, as it is of importance that do inaccuracy, however slight, should be found in the exposition of a principle, which is supposed of itself to explain the whole theory of the steam engine, we shall quote the paragraph from page 20, in order to point out an error, which, though perhaps too trifing $t 0$ be of any consequence in practice, should nevertheless be avoided in the expression of a general law.

Now in every machine which has attained a uniform motion, the power is strictly in equilibrio with the resistance; for were it greater or less, there would be acceleration or retardation of motion, which is not the case. In a steam-engine, the force applied by the mover is no other than the pressure of the steam against the piston or in the cylinder. This pressure then, in the cylinder, is strictly equal to the resistance opposed by the load against the piston.

Consequently, the steam in passing from the boiler into the cylinder changes its pressurc, assuming that which represents the resistance to the piston. This principle, of itself, explains all the theory of the steam-engine, and in a manner lays its play open.

The error alluded to is, that "the pressure in the cylinder is strictly equal to the resistance opposed by the load against the piston." Now the mean resistance opposed by the load can never exceed the pressure which the steam exerts against the piston, which, while the piston is in motion, can never be atrictly equal to its whole pressure in the cylinder, though in most, or even in all cases which occur in practice, the difference may be inappreciable. It would, however, have been preferable under these circumstances, if the word prachically had been used instead of strictly.

The method of calculating the effort applied on the pison, consists in ascertaining the quantity of water evaporated and transmitted in the form of steam to the cylinder in a given time, which, compared with the distince travelled by the piston in that tirire, gives the density of the steam in the cylinder, whence its elastic force may be deduced. By the ordinary method, the elastic force of the steam is assumed to be reduced in a constant proportion during its passage from the boiler to the cylinder, the loss of elusticity being supposed to be very trifing with steam pipes, \&c. of suitable dimensions, and a moderate velocity of the piston; while M. de Pambour asserts that that loss may be very great, even as much as one half of the total pressure in the boiler. This is however in opposition to the law of the flowing of elastic fluids, which must obtain in a steam engine as well as under any other circumstances. Now it must beesextremely difficult to ascertain with any degree of accuracy the quantity of water which passes in the form of steam through the cylinder, particularly in locomotive engines, from experiments on which M. de Pambour deduced his theory; for the rise of the safety valve can by no means be admitted as an accurate measure of the quantity of ateam escaping through it, until all the phenomena connected with it have been more satisfactorily elucidated; and no experiment can be satisfactory, unless the engine be compelled to work for a considerable length of time under precisely the same circumstances.

Sect. V.- Vero proofe of the accuracy of the theory proposed, and of the inaccuracy of the ordinary theory.

The tendency of these proofs, is to establish "that the pressure of the steam in the cylinder is strictly regulated by the resistance on the piston, and by nothing else," and implicitly, that the ratio of the pressure in the cylinder to that in the boiler is independent of the area of the steam passages and the velocity of the piston. It is assumed throughout that the pressure in the boiler is, or may be, the same with all loads. All this is, lowever, distinctly contradicted in the last paragraph of the section. The following extracts will prove the truth of our assertions.

In fact, were it actually true that the steam be expended in the cylinder, either at the pressure of the boiler, or at any other pressare that were in any fixed ratio whatever to that of the boiler, then, bince the quantity of steam raised per ininute in the boiler would be expended by the cylinder at one and the same pressure in all cases, and would conseqnently fill the cylinder a fixed number of times in a minute, it would follow that the engine, so long as it should work with the same pressure in the boiler and the same apertures or steam passages, would assume the same velocity with all loads. Now, we see that the very contrary takes place; for, the lighter the load, the greater becomes the velocity of the engine.

The Allas engine, for instance, evaporated 132 cubic feet of water in drawing 195.5 tons, and 95 cubic feet only in drawing 127.6 tons. Since the same number of cylinders-full of steam was expended in each case, the steam of the first must have been of a density different from that of the second; and here again it is manifest that, notwithstanding the equality of the pressure in the boiler, aud of the opening of the regulator in the two casen, the density of the expended steam followed the intensity of the resistance, that is to say, the pressure of steam in the cylinder was regulated by the resistance.

6thly. It is clear, moreover, that if the pressure in the cylinder were, as it is thought, constant for a given pressure in the boiler, then fter an engine has been found capable of drawing a certain load with a certain pressure, and of communicating to it a nniform motion, it would follow that the same engine conld never draw a lese load with the same presaure in the boiler, without commonicating to it a velocity indefnitely mocelerated; since the
power having been found equal to the resistance in the first case, would be neceasarily superior to the resistance in the second.
7thly and lastly. On looking over our experiments on locomotives, the same engine will be seen sometimes drawing a very light load with a high pressure in the boiler, and sometlmes, on the contrary, a very heavy load with a low pressure. It is then impossible to admit, as the ordinary theory would have us, that there is any fixed ratio whatever belween the two pressures. This effect, moreover, is most easy to explain; for it depeuds simply on this, that in both cases the pressure in the boiler was superior to the resistance against the piston, and no more was needful in order that the steam, generated at that pressure, or at any other fulfilling merely that condition, might, on passing into the cylinder, assume the pressure of the resistanco.

Here the author evidently assumes that a decrease of the load of an engine would not be followed by a corresponding diminution of pressure in the boiler. But it is clear that this effect can only be prevented by partially closing the regulator.
All that precedes is, as we have already stated, contradicted in the following paragraph, which is the last of the section.
It is, however, essential to observe, that we wish to establish liy these reasonings, that, since the pressure in the cylinder is fixed a priori, it camot depend on the pressure of the boiler; but we belicve, on the contraty, as will be seen, Sect. VII., that the pressure in the cylinder being once regulated by the resistance on the pistou, that of the boiler afterwards depends on it, in proportion to the size of the passages, the volume of steam produced, and the weight of the safety-valves. It would only be for want of making this needful distinction, that we could be thought to admit an entire independence between the two pressures.

Sect. VI.-Comparison of the trootheories in their application to particular examples.

The facts here stated require a corroboration before we can admit them as evidence of the correctness or incorrectness of any theory. The examples cited are two experiments which are glven, pages 233 and 234 opPambour's Trealise on Locomolites.

1. The locomotive engine Leeds, which has two cylinders of 11 inches diameter: stroke of the piston, 16 inches; wheels, 3 feet; weight, $7 \cdot 07$ tons; drow a load of 81.34 tons, asconding a plane inclined $\frac{1}{1300}$ at the velocity of 20.34 miles per hour ; the effective pressure in the boiler being 54 lbs . per square inch, or the total pressure $68 . \% 1 \mathrm{lbs}$. per square inch.
2. The same day the same engine drew a load of $38 \cdot 52$ tons, descending a plane inclined $\frac{1}{1094}$, at the velocity of 29.09 mile! per honr; the pressure in the boiler being precisely the same as in the preceding experiment, and the regulator opened to the same degree.
We do not believe it possible that, under such circumstances, the pressure in the boiler could be so high in the second case as in the first. But if the pressure were really 63.71 lbs . on the square inch in the first case, we are led to the conclusion that it could not have been more than $\mathbf{4 6} \cdot 44$ in the second, to satisfy all the conditions supposed. On this hypothesis we should find, using the coefficient 0.625 , in both cases:
1st Case. Useful effect, by the ordinary calculation,
($68.71 \times 0.625-1471$) $\times 190 \cdot 08$
5367 lbs.
U'seful effect produced, from M. de Pam-
bour's calculation, page 35
Difference
2nd Case. Useful effoct by the ordinary calculation,
$(46.44 \times 0.625-14.71) \times$.
Useful effect producel, from M. de Pambour's calculation 2708

Difference. Mean difference
Thus, supposing the amount of resistances, as calculated by M. de Pambour to be correct, as well as the pressure in the boiler in the first case, but reducing the pressure in the second case in conformity with the law of the flowing of elastic fluids, and making use of the coefficient -625, we commit an error by the ordinary mode of calculation of 37 lbs . in the first case, and 13 lbs . in the second, one plus and the other minus, so that the mean error is 12 lbs . By M. de Pambour's method, the error is 404 lbs . in the first case, and 181 lbs . in the second, one plus and the other minus, making the mean error $134 \frac{1}{2}$ lbs. But we lave no doubt one of the resistances has been estimated too high in the second case, namely, the resistance caused by the blast-pipe. In the first case, this was assumed to be equal to 3.4 lbs . on each square inch of the pistons, which wo believe to be very near the truth; but in the second case, where the cylinder is filled with steam of less elastic force, the resistance it apposes to its expulaion is taken at $5 \cdot 1 \mathrm{los}$. per square inch, we calculate it to be alont $2 \cdot 6 \mathrm{lbs}$.
per square inch, which makes the aum of resistances in the second case (supposing all the rest correct) less by 475 lbs . than in the author's calculation. We should thus have in this case,

This difference, being on the same side as that in the first case. makes the nean error 374 lbs.

However, ignorant as we are as to the actual pressure in the boiler, and the exact quantity of steam which passed through the engine in the two experiments, we can offer nothing but surmises and hypothess on the subject, hoping that all doubt and uncertainty may shorthp he cleared away by more circumstantial and conclusive experiments.
We would not be understood to approve altogether of the ordiant mode of calculating the power of a steam-engine: we belipve the friction of the engine to be generally much exiggerated, and we do mat look upon the system as perfectly accurate; yet we cannot admit the proofs brought forward by M. de Pambour as conclusive of the insecuracy of this, or the accuracy of his own theory.

Sect. VII.-Of the area of the steans passages.

We have already mentioned that the author asserts in this gection " that the degree of opening of the regulator can have no influence on the pressure in the cylinder, but that its reaction, on the contrary, is upon the pressure in the boiker." This he endeavours to demonstrate in the 48 th and following pages, but we think we can shew from the following quotation that he has miscomprehended the meaning of the expression, that the degrec of opening of the regulator influences ine pressure in the cylinder, and that bis arguments fully prove that this pressure is really influenced by that circumstance.

It should be borne in mind that, when it is stated that a contraction of the steam passages is accompanied by a diminution of presare in the cylinder, the velocity of the piston is supposed to be contiut the author admits that that contraction may change the quantity of steam which passes through it, therefore, a smaller quantity having to fill the same space, its density, and with it its pressure must neces. sarily be diminished. But M. de Pambour objects to this, that the pressure in the cylinder is always strictly determined, à priori, by the resistance on the piston. This is true; but if the resistance on the piston is not known, neither is the elastic force of the steam, and it is evident that with a given pressure in the boiler, area of steam pasages and load, the piston of an engine can only travel at a certain velocitr; so that, if the pressure in the boiler remain the same, but the area of the passages be contracted, the same velocity can only be kept upty diminishing the load or resistance on the piston, in which case the pressure in the cylinder must aloo be diminished, according to M de Pambour's own theory.

In concluding our remarks on the first chapter, we will obeerve that in our opinion the theory proposed does not differ in any great degre from the ordinary theorv, but in consequence of the opinion entertained by the author, that there can exist any difference whateres between the pressure in the boiler und that in the cylinder, the reault furnished by the two theories appear to be totally at variance. M. de Pambour's chief objection to the ordinary theory is to the ure of 4 constant co-efficient; but if the co-efficient were applied to the effer. tive pressure, instead of the total pressure in the boiler, it would be little more a method of coefficiente than that proposed by the author: for it would become

$$
r=k(R-p),
$$

r being the pressure on each square inch of the piston due to the load or useful effect, R the total pressure in the cylinder (which we may assume to be known, since we suppose that pressure to differ but is. considerably from that in the boiler, and, therefore, consider it a sufi. ciently near approximation to take off a constant proportion of the latter), p is the pressure on the opposite side of the piston, and k the constant co-efficient. By M. de Pambour's theory we find

$$
r=\frac{1}{1+\delta}\{(R-p)-f\}
$$

in which f is the friction of the engine without any load. M. de Pam. bour estimater the fraction $\frac{1}{1+8}$ at $\frac{7}{8}$, and $f=1 \mathrm{lb}$.; and if we a. sume $R-p=16$, for a condensing engine, we sball have, for that particular case, $f=\frac{1}{16}(R-p)$, and

$$
r=\frac{7}{8}\left\{(R-p)-\frac{1}{16}(R-p)\right\}
$$

$$
\text { or } r=\frac{105}{128}\{R-p\}=-8203(R-p)
$$

If now we assume $R-p=14 l b s$, we shall havo

$$
\begin{aligned}
r & =\frac{7}{8}\left\{(R-p)-\frac{1}{14}(R-p)\right\} \\
\text { or } r & =\frac{13}{16}(R-p)=.8125(R-p)
\end{aligned}
$$

Thus if we made use of the co-efficient 8203 instead of 8125 , we should commit an error of $\cdot 0078(R-p)=\cdot 10921 \mathrm{l}$. per square inch. In the same manner it may be shewn that if we applied the same coefficient, 8203 , when the effective pressure $R-p$ was 18 lbs , the error would be $0061(R-p)=\cdot 10981 b s$. per square inch. It is thus demonstrated, for condensing engines, that, supposing M. de Panbour's constant co-efficients to be correct, no error wortly of notice would be committed by applying a constant co-efficient to the effective pressure in the cylinder.

For high pressure engines, the same valucs are attributed to f and δ as for low pressure condensing engines. Thus, taking $R=601 \mathrm{bs}$, and $p=151 b s$. for simplicity, we find

$$
r=\frac{7}{8}\left\{(R-p)-\frac{1}{45}(R-F)\right\}
$$

$$
\text { or } r=8556(R-p)
$$

Assuming now $r=95$, whence $r-p=80$, we have

$$
\begin{aligned}
r & =\frac{7}{8}\left\{(R-p)-\frac{1}{-}(R-p)\right\}, \\
\text { or } r & =8641(R-p)
\end{aligned}
$$

The error committed by making use of the co-efficient 8556 instead of the latter would be $0085(R-p)=681 b s$. per square incl, $=01$ r nearly. In the same manner, by taking $R-p=10$, it may be shewn that the co-efficient ought to be $\mathbf{7 8 7 5}$, in which case the error cummitted by using the first co-efficient would be $0681(R-p)=$ $-6 \leqslant 1$ lbs. $=087 r$ nearly. This error is too great, even for practical purposes; but it would be easy to determine another co-efficient for the lower pressures, which should be sufficiently accurate, and the method of co-efficients would be as correct, and much more easy of application than that proposed in this work.

An Essay on Arilhmetical Perspective; in which the representation is obtained by computation from the known dimensions and position of the objcet. By C. E. Bernard, C. E. 1839, J. Williams, London.
Mr. Barnard in this essay has attempted, what we believe has not been before done, to make Perspective a Science, and a branch of Nathematics. Instead of drawing the lines to vanishing points, he proposes to ascertain the relative positions, heights and lengths by arithmetical calculation, although the artist may be averse to this mode of proceeding, calculation being foreign to his profession, it will be found by the engineer and the scientific, a most interesting and valuable acquisition. We cannot do better than by letting the author explain for himself, for which purpose we shall give some extracts from the introduction.

By the term Arithmetical Perspective, I mean the application of arithmetic to the purpose of obtaining the dimensions and position of the representation of an original object, which application of arithmetic amounts to this: when certain geometrical relations are found to exist between lines, we substitute the numerical values of those lines for the lines themselves. Now, as by far the greater part of the linet necessary to the consideration of perspective are imaginary ones, by making use of their values we are thus enabled to deaignate them, and to draw only snch are absolutely esscntial to a complete representation of the original. The object, however, of the present treatise is to show how we may indicato the original linea of an object, as well as the imaginary ones, by means of their numerical values; thus obviating the neceasity of drawing a plan and elevation of the object to be represented perspectively.

In the description of oljects whose forms are geometrical, such as buildings, by means of perspectve, it will ofien be the easier mode to ascertain the dimenions and position of the representation, by computation than by construction, according to the usual methods. If, for instance, a draughtsman were asked of what size should a tower, one hundred feet in height, and distant a mile, be shown upon his drawing, he would be obliged to perform several operstions before the required answer could be given; the truth of which would depend altogether upon his accuracy in drawing.

Arithnetically, however, the result may be obtained with far greater correctness and dispatch, thus : if the picture be viewed at the distance of a foot, shen $5280: 100:: 1: \infty$, or $x=\frac{100}{5280}=0,22$ in., the required helght of
the representation. But, before detailing the means by which we arrived at this answer, some preliminary considerations require our attention.

Proposition I.-The size of the image in the eye varies as the size of the object directly, but as the distance of the object inversely.

Let the distance $v b$ be constant, then in the triangles $a v b$ and $q v r$, we lave by the preceding, $a b: a v=q r: 0 r$. Likewise in the triangles $a v c$ and $\nu v r$ we liave : $a v: a c=o r: j r$; therefore $a b: a c=q r: p r$, and altcrmately $a b: g r=a c: p r$. That is to say, the size of the image is in proportion to the size of the object, when the distance remains the same.

liet the size of the object be constant; then in the triangles avc and por we have ac : $c v=p r: p v$, or $\frac{p r}{p v}=\frac{a c}{c v}$. But $p v$ is constant, for it is the radial from v, the pupil, to p at the back of the eye; therefore $p r$, the image, varies as $\frac{a c}{c t}$: that is, as $a c$, the object directly, and as $c t$, its distance reciprocally.
We now perceive that oljects vary in apparent size according to their distances, because the images of those objects in the eye actually become larger as the objects approach, or they decrease in size as the originals recede.

I have here considered the object to be of but one dimension, as a line. If, however, the object le of two dimensions, as a plane, then the plane of the image will evidently vary as the plane of the original object directly, and reciprocally as the square of the distance.

Mr. Barnard commences his instructions by giving some definitions of perspective, he then proceeds to lay down preliminary propositions, for the study of his system of perspective.

PRELIMINARY PROPOSITIONS.

Proposition 1.-The size of the image in the eye is proportional to the size of the picture, divided by the distance of the picture.

It has already been proved that the size of the image pr is proportional to the size of the object ac divided by the distance co. Let $x z$, representing the plane of the picture, be drawn parallel to ac, then the trianglea avc and $x v z$ are similar, and therefore the sides about the equal angles proportional.

But $p v$ is constant, therefore the image $p r$ varies, as $s z$, the picture directly, but as $x v$, the distance of the picture inversely, which relation is the same as that already shown to exist between the image and the original object; therefore, if the representation he drawn, as here supposed, bearing the same proportion to its distance as the object does to its distance; we may then dismiss altogether the consideration of the image formed within the cyc, and confine our attention exclusively to the olject and its representation.

Proposition 2, Case 1.-The representation is equal to the product of the original object into the distance of the picture, divided by the diatance of the object.

In the triangle $a v e$ let ac be perpendicular to $v c$, and draw $z x$ from z parallel to $c a$. Then we have, by preceding propositions, $v \in: a c=0 z: x$;

$$
\text { or } x z=\frac{a c \times v z}{o c}
$$

Example :-Let ac, equal to 1000 feet, be a vertical line whose perspective representation is required; ve, equal to 5000 feet, the distance of the object from the point of sight v. Let also the plane $x z$, upon which the representation of ac is required to be drawn at the distance of 500 feet from t, be parallel to ar; then, to find the height $x z$ of the representation, we have $t E=\frac{1000 \times 500}{5000}=100$ feet.g the required height.

Cabi 2.

In the triangle $a v c, a c$ and $x z$ are drawn parallel, being both perpendicular to $b 0$. By the previous proposition we have $v b: a b=v y: y x$

$$
\begin{aligned}
& \text { adding these } 2 \overline{v b: a b+b c=2 v y: y x+y z} \\
& \text { but - } a b+b c \text { is equal to } a c \\
& \text { and . } y x+y z \text { is equal to } x z \\
& \text { therefore : } 2 \text { vb: ac=2vy: } x z \\
& \text { dividing each side of the equation by } 2 \\
& \text { we get . vb: ac=vy:xz } \\
& \text { therefore } \quad x z=\frac{a c \times v y}{v b}
\end{aligned}
$$

Example:-Let ac, equal to 1100 feet, be a vertical line, whose representation is required; $v b$, equal to 5000 feet, the distance of the object, and $x z$, the plane of the picture parallel to ac, at the distance of 500 feet from v. The for the height of the representation we have $x z=\frac{1100 \times 500}{5000}=110$ feet.

Cabs 3.

In the triangle $a v b$ let $a b$ and $x y$ be both perpendicular to $o b$; then by the previous propositions

$$
\text { we have } \quad 0 b: a b=0 y: x y
$$

also in the triangles $c v b$ and $x y y$
we have . ob: $b c=0 y: y z$
multiplying the first equation by 2 , and then subtracting the second,

$$
\begin{aligned}
\begin{aligned}
\text { we get } \\
\text { but } \\
\text { and }
\end{aligned} & \text { - } \quad a b-a c \text { is equal to } a c \\
\text { therefore } & x y-y z \text { is equal to } x z
\end{aligned}
$$

Example :-LLet ac, equal to 900 feet, be a vertical line, whose representation is required; 06 the horizontal distance, or distance of the object, equal to 5000 feet, and $x y$, the plane of the picture, parallel to $a b$ at the distance of 500 feet from v. Then $x z=\frac{900 \times 500}{5000}=90$ feet, the required height of the representation.

In each of the foregoing three cases, we observe that the same rule holds good; namely, the height of the representation is always equal to the height of the original, multiplied into the diatance of the picture, and the product divided by the distance of the object, whether the base of the object be level with the point of sight, below it or above it. It is evident that the same rule applies to horizontal lines (lines drawn upon the horizontal plane), for the purpose of obtaining the widths, by merely substituting in the above proportion the word width instead of height, thus :- the width of the representation is alwaye equal to the width of the original object, multiplied into the distance of the picture, and the product divided by the distance of the object. Olserve, that this proportion for the widths holds good only when the plane of picture and the original plane are parallel.

If the distance of the picture be taken $=0$, we have $0 c: a c=0: x x$, or $x x=\frac{a c \times 0}{c C}=0$. If the distance of the picture be taken equal to the distance of the object, we have vc:ac=vc: $x x$, therefore $x z=\frac{a c \times v c}{0 c}$ $=a c$, the size of the original; hence the picture $x z$ may have any value whatever between o and the original, according to the distance of the picture.

Propasition 3.--If we consider the surfuces of objects, we shall find that, the distance of the picture being constant, the representation varies as the object directly, but as the square of the distance inversely.

Let the original plane, $a b c d$, and the plane of the picture, maop, be parallel. We have, upon the vertical plane,-
vi: ad=os: mp and apon the horizontal plane of $: ~ a b=v:$ wn multiplying $(v t)^{2}: ~ a d x$ $a b=(0 s)^{2}: m p \times m n$

but $a d \times a b$ is equal to the surface of the plane $a b c d$; also sap \times an ia equal to the surface of the representation, or $(v t)^{2}: a b c d=(0 s)^{2}:$ map and mnop $=\frac{a b c d \times(v s)^{2}}{(v t)^{2}}$
that is, the surface of the representation is equal to the original surface mal. tiplied into the square of the distance of the picture, and the produet divided by the square of the distance of the object. Now, if (vs)${ }^{2}$ be constant, then minop varies as abcd directly, but as $(v t)^{2}$ inversely.

Having, I hope, already, by aid of the very few propositions just given, succesafully demonstrated the loading principle, I shall now endeavoir to apply the foregoing rules to some of the most obvious and general examples in perspective.

The author has given full instructions and rules for the application of the system to Parallel perspectice, followed by similar directions for Angular perspective. From which we select the following practical example:-
"Required the perspective representation of a square building, of which the accompanying aketch is a plan.

"Let the length of a side be 30 feet, and the height 38 feet Let the length of the radial og be 40 in , and that of the radial of 30 in ; then the distance between $g h$ will be equal to 50 in .
"Upon the plane of the picture draw $g h_{1}$ and make it equal to 50 in (See engracing beloro.)

"Let the radial distance of g be 120 feet; then the radial dintance of h will be 90 feet.
"Suppose the distance $a a$, or the distance from a to the radial plane of g, to be 80 feet; then for the distance from a to the radial plane of h we have 70 feet.
"The height of the eye is 5 feet. To find lts representation we have $90: 5=30: a$, or $a=\frac{15}{3} \mathrm{in}=1.66 \mathrm{in}$, below $\mathrm{g} \mathrm{h}_{\mathrm{o}}$. For the distance of a from A we have $90: 70=30: a$ or $a=\frac{210}{9}=$ 23.33 in. from h. Set off this last distance from h upon $g h$, and at the distance so set off draw a perpendicular to $g h$, and make the part below it equal to 1.66 in. for the point a; next drew $a g$ and $a k$.
"For the distance of b from A we have $120: 70=50: b$, or $b=$ $\frac{210}{12}=17.5 \mathrm{in} . \quad$ Set off that distance accordingly, to intersect $a \operatorname{lin} b$ and from b draw $b g$.
"To find the distance of d from g we have $150: 80=40: d$, or $=d$ $\frac{320}{15}=21.33$ in. from g. This distance set off in like mamer, from g to meet $a g$ in d and from d draw $d h$.
"For the height $a m$ we have $90: 38=30:$ am, or $a m=\frac{114}{9}=$ $12 \cdot 66$ in. Make $a m$ equal to $12 \cdot 66 \mathrm{in}$, and from m draw $m g$ and $m h$, to meet the perpendiculars from d and c in p and n. Now from p and n draw $p h$ and $n g$.
"Let the thickness of each of the piers be 6 feet ; then for the point 1 we have $90: 70=30: 1$, or $1=\frac{2100}{96}=21 \cdot 87 \mathrm{in}$. from k . The point 2 , in the centre, is $=\frac{2100}{105}=20 \mathrm{in}$. from h; the point 3 is $=$ $\frac{2100}{114}=18 \cdot 42 \mathrm{in}$. from h .
" In a similar manner we find that the point 4 is $=\frac{80 \times 40}{126} \mathrm{in}$. from g ; the point $\delta=\frac{80 \times 40}{135}$ in, and $6=\frac{80 \times 40}{114}$ in. from g.
"At those distances, when set off, draw perpendiculars to $g h$.
${ }^{\omega}$ Let the height of the springing s of the arches be 24 feet; then we have $90: 24=30: 8$, or $8=\frac{72}{9}=8$ in. above a. Make as equa to 8 in , and from 8 draw $8 g$ and $8 h$.
"Let the arches be semi-circular; then the height t to the crown will be 33 feet. Hence we get $90: 33=30: t$, or $t=\frac{99}{9}=11 \mathrm{in}$. above a. Set it up, and draw $t g$ and $t h$. The intersection of $t g$, with the perpendicular from 5 , gives the representation of the crown of the one arch; and the intersection of $t h$, with the perpendicular from 2, gives the representation of the other arch."
The concluding sections contain practical examples, and shows the applicability of the system to Landscape Painting.

Although we have extracted very freely from the volume before us, we must refer the scientific reader to the essay itself, if he wishes to obtain a knowledge of the author's system, from which we are sure he will derive much pleasure, by contemplating its novelty and ingenuity

The Ancient Half-Timbered Houses of England. By. M. Habershon Architect. Large 4to. 36 Plates. Weale. 1836.
We know not how to account for the date upon the title-page otherwise than as an error of the press; the introductory essay bearing the date of March, 1839. It is possible, therefore, as it is so recently published, that that portion of the work may still draw forth some reply from Mr. Pugin, unless he should consider Mr. Habershon an antagonist less worthy of his notice than was the anonymous writer in Frazer's Magazine, or else deem it more prudent to be silent. Indeed silence appears to be almost his only course for safety, since it will be exceedingly difficult for him, we imagine, even to make a show of disproving his egregious unfairness with respect to estimating the architure of the present day, and further his attuck on Protestantism. In fact, Mr. Habershon has decidedly the best of the argument; and his remarks must convince every one, that in order to make out anything like a zase in favour of his own views, and his own church, Mr. Pugin was obliged to have recourse to the most trumpery expedients and clumsy shifts, foisting upon us the house of the commandery of the Knight's Templars at Grantham, as a specimeu of an ancient inn, because it is now converted into one; and dragging forward the wretched structure at Battle Bridge, as an instance of a modera crosa, because it happens to bear the name of King's Cross. Had Mr. Pugin contented himself with showing that the Roman Catholic religion is greatly more favourable to the display of magnificence in sacred buildings than Protestantism either is or affects to be; and that with here and there an exception, our modern churches are greatly inferior in architectural character and style, he would have said no more than the truth, and no more than what the public, architects included, are ready to admit. But when he would make it appear that not only our buildings belonging to that particular class-and in which poinp and splendour are rather shunned than at all aimed at-are inferior to thuse of Catholic times, but that architecture itself has progressively declined among us since the Reformation, and continues to decline still more and more every day; he quite overshoots his mark, and lays himself open to the charge of either wilful blindnesss, or very great ignorance. No one can deny him zeal, even to fariouspess, in support of the cause in which he has put himself forth as a volunteer adrocate; yet it may be questioned whether even his own party will not consider hims rather an officious banglar. No one but a complete bunglar would have gone out of his way as he has done, in order to call attention most pointedly to one very important difference in the condition of Catholic
and Protestant church; namely, that the clergy of the latter may marry, while those of the former are interdicted from doing so; which prohibition has been the source of the most enormous scandals to the see of Rome, not only among its monks and inferior clergy, but its dignitaries; nay, more, in the person of its supreme pontiffs, the popes themselves, many of whom have been men of the most notorious profligacy, surrounded by mistresses and bastards, and who, could thry sce Mr. Pugin's satirical etching, displaying the "Nursery windows" of the present Ely house, in Dover-street, would hold it to be a most bitter and stinging libel upon themselves.

Now, had Mr. Pugin been forced to bring forward, or even in any way to allude to this very unfortunate point of contrast, we might have pitied and compassionated the awkward perpelxity he must bave found himself in: but when we find him actually lugging it in for the nonce, all we can say is, that he slows himself a most blundering Malaprop of an advocate, and a very great blockhead.

We have expressed ourselves with far greater vivacity than Mr. Habershon does, for he does not apply rerbis ipssissimis, the epithets we have made use, yet what he says clearly enough proves they are richly merited; therefore the only difference between us is, that he has more of the guaviter in modo, than we care to display towads an offender like Welby Pugin,-one who speaks of all his professional bretliren of the present day with contempt, stigmatizing them in a lump, without a single exception in favour of any one architect or any one buikding, but cautionsly abstaining from mentioning or alluding, in any way, to what he cannot hold up to ridicule. Criticism he does not even once attempt; for, in all that he says, there is nothing that amounts to more than a brief and decisive enunciation of censure, without any attempt to specify or even explain the grounds for it. Adopting a very different course, Mr. Habershon distinctly answers all his allegations; completely anatomizes his contrasts, and examines his plates one by one, in doing which he convicts our amiable "Mrs. Candour" of the most jesuitical sophistry and cunning, and of a direct-most laboured effort to represent modern arelitecture in a very degraded state by making the most far-fetched and strained comparisons. According to Mr. P.'s rule, we should be justified in contrasting a village alms-house of the fourteenth century with Grcenwich Hospitil, the old gateway leading into Bartholomew Close with the archway at the corner of the Green Park, and Oxford Cathedral with St. Paul's, by way of showing the great progress since the time of the Reformation.
Nay, we very much question whether Mr. P. is quite sincere, because his zeal looks quite over-acted, and very much like that of a barrister who feels that he has undertaken to defend an exceedingly bad cause. As the triumph would have been infinitely greater, we naturally suppose that could he possibly have done so, he would have brought forward some of the rery best specimens of modern gothic and confronted them with only second-rate ones of the earlier period he selects from, in order to show the prodigious superiority of the original style; whereas by resorting to a directly opposite mode of comparison, he has acted highly indiscreetly, and incautiously, and thrown a slur upon the cause he professes to defend. When he compares together Bishop Skirlaw's chapel and the one at Somer's-town; the compliment to the former is of a strangely equivocal kind, somewhat akin to that of telling a well-dressed woman she looks far more like a beauty and a fine lady than a slattemly dowdy doga.

Setting aside, however, all unfaimess of this kind, there is one circumstance which, in his "candour," the author of the contrusts ought most assuredly to have noticed and bonie bonest testimony to, namely, that so far from our being at all insensible to the beauties of gothic architect, the study of it has been greatly encouraged annong us during the last half century, and that an acquaintance with it is now considered almost indispensable to every professional man. He might further have admitted that, considering the style was hardly begun to to be brought again into practice until the commencement of the present century, a greater proficiency has been attained to in than could reasonably be expected; and of this he might have found very satisfactory proofs had he, instead of going to the worst and most paitry modern specimens he could pick up, referred us to the buildings and designs of such men as Barry, Buckler, Rickman, Salvin, which have pot merely a knowledge of, but a true feeling for the style. Nay, were all the reproaches heaped by him on Protestants and no modern architects greatly more merited than they are, from him do they not come with the best possible grace, and might therefore, at all events, be less acrimonious in tone-or has he altogether forgotten the fattering, yet certainly well-merited reception which the publications of the lute Augustus Pugin met with from the very class of persons he reviles. If, after seriously corisidering all this, and what has been urged against him, both by Mr. Habershon and nrany others, Mr. Welby Pugin should still persist in the opinions he has put forth, without in any degree qualifying them, in consequence of not having duly
attended, in the first instance, to all the mitigating circumstances; then we suy he owes it to himself-to his character, to say so in the most direct and expheit manner, and so as to leave no room for its being imagined,-to afford no opportunity for its being said that he has neither the courage or e'se the ability to clefend lis assertions, nor the generosity to confess his errors and exaggerations. If he was at all sincere in professing to have been "actuated by no other feeling than that of advameing the cause of truth over that of error," it certainly behoves him now to admit that he had been somewhat too hasty in forming his estimate of mudern English talent from the specimens which somehow other obtruded themselves upon his notice, and caused him quite to overiook others of a fur superior quality. Neither would it be altogether amiss were he to afford us the means of jurging of his own taste and ability in design, by letting us see something that he himself has executed.

We bave been led on to saly so much more concerning Mr. Pugin than we at first intended to do, that we must now defer our remarks on Mr. Habershon's work, till our next number. All, therefore, that we have to add is, that we consider him to have greatly the better of the argument over the author of the coutrasts, in every respect, and shows himself to be well informed in other matters, besides those connected with his profession. He makes a terribly hard hit at the vaunted unity of the Roman Catholic church, which once presented to Europe the singular spectacle of rival anti-popes, both of course equally infallible, anthag in cordially amathematizing each othcr. As to schism among the people, that is effectually prevented by the repression of all private opinion on matters of religion; and Mr. Habershon has expressed this so pointedly and convincingly, that we will give his own words:
"Order reigns at Warsaw," was the cruel irony of a minister in the Channer of Deputies, after the extermination of the capital of Poland by the Russians. The Church of Rome in her extermination of the Albigenses, in her St. Bartholomew massacre, in her dragonades under Louis XIV., in the still darker acts of her inquisition, has endeavoured to destroy all who have dared to think-and then, Jrawing tighter her gags, and closing firmer her dungeons, lest a sound should escape, she repeats courageously: "See the divisions of the Protestants and the unity of the Catholics.'

Specimens in Eccentric Circular 7'urning, mith practical instructions for producing corresponding pieces in the art. Illusirated by Copper Plate Engratinga and Cats. By John Holt lbbetson, Esq. Third Edition. London: Longman and Co.
Mr. Iduetson is an amateur mechanic and turner, and from the appearance of the work before us, he has paid very considerable attention to his favorite art of turning. The engraving at the commencement of the volume, and explanation of a compound eccentric chuck invented and made hy hiniself for the purpose of tuming, displays considerable ingenuity in its construction, and the various engravings throughont the work, slow its endless application.

We ore sure all turnets, whether they be amateurs or otherwise, will derive considerable pleasure and instruction from a perasal of this work, which will suggest to them, many new applications of thier art.

Boileau's Traterse Tables.

We have examined these tables, which appear to be in every respect worthy of the confidence of those who employ the methoil of surveying, to which they are applicable.

The author has appended several useful tables to the work, among which, are tables for converting chains into yards and fect, and vore rersa, and he also shows how his traverse tables may be applied in setting out railway curves; but from our own experience in these matters, we are of opinion, that the practical application of the authors method is by no means easy, on account of the natural obstacles which every where present themselves to the proceedings of the engineer.

A series of Litlographed Drancinga of the London and Birmingham Railnay by John C. Bourve, with Topographical and Discriphite Accounts, by John Britton, F.S.A. Parts III. \& IV. comtaning 18 Dravinge.
This is a splendid specimen of railway art, and is a work which does credit to the artist, and communicates an interest to the railway. The two parts now before us complete the work, and are given with the letter-press to the whole; the lithograph drawings are beautifully
executed, and are faithful representations. It is in fact a work which to the engineer is a splendid memorial of cotemporaneous skill, white by the nobleman and the admirer of the fine arts, it deserses preservation as a unique specimen of art, and illustrative of one of the most striking enterprises of this wonder-working age.

An Essay on the Boilers of Sleane Engines, by R. Armstrong, C. E. Lonton, Juln W e:ale.
We feel mach pleasure to see the re-appearance of this very useful, excellent, and practical work, we shall not fail to notice it fully next month.

Mr. Richardson's work on Elizabethan Architecture will be noticed in the next Journal.

A second part of the Practical Treatise on Bridge Building, by Edward Cress, Architect, \&c., is just published.

PROCEEDINGS OF BCIEETTIFIC BOCIETTES.

ROYAL SOCIETY.

May 16.-J. G. Childere, Beq. V.ip., in the chair.
A paper was rearl, entitled

- On the lisidility of certain rays' beyond the ordinary red raym of the Solar Sjectrum.' By J. S. Cooprr, Esq., in a better to M. Pabaday, Esq.

The author states his haring observed an extension of the red portion of the solar spectrum, obtained in the ordianry way, beyond the space it ourupies when seen by the naked eje, by viewing it itrough a piece of derp blue cobalt glass. He finds that the part of the spectrum thus rendered perceptible to the right is crossed by two or more very broall lines or bands; and observes that the spacc occupied ly the most powerful calorific rays, coincides with the situation of the red rays thus rendered visible by transmission through a blue medium. The anthor expresses a regret that lie has not had sufficient leisure to pursue the investigation of these phenomena.
May 30.-The Marquis of Northanpton, P.R.S. In the chair.
Profs. C. Hansteen, M. Melloni, L. A. J. Quetelet, and F. Satart, wert elected Foreign Members; Edward D. Daveuport, Esq., James O. Halliwell, Lsq., G. W. Mackmurilo, Esq., and the Venerable Charles Thorp, D.D., were elected Fcllows.
The papers read were :-
'Fifih Leiter on Vollaic Combinations; utth some necount of the effects of a large Constant Battery;' addressed to M. Faraday, Eeq. By J. F. Daniall. Esq.

The author, pursuing the train of reasoning detailed in his preceding lethes, enters into the further investigation of the variable conditions in a volzaic combinntion on which its efficiency depends: and the determination of the proper proportions of its elements for the economical application of its power to uscrul phrposes. He fimds that the action of the battery is by no means proportioned to the surfaces of the conducting hemispheres, but approximates to the simple ratio of their diameters; and hence concludes that the circulating forec of both simple aml compound voltaie circuits increases with the surface of the combucting plates surrounding the active centres. On these principles he constructed a constant battery consisting of serenty cells in : single series, which gave, hetween charcoal points, separated to a distance of three-quarters of an incli, a flame of considerable rolume, forming a continuous arch, and emitting radiant heat and light of the greatest intensitr. The latter, indeed, proved highly injurious to the eyes of the spectators, in which, although they were protected by grey glasses of double thicknes. a state of yery active inflammation was induced. The whole of the fare of the nuthor became scorched and inflamed, as if it had been exposed for many hours to a loright milsummer's sun. The rays, when refiected from an imperfect paraloolie metallic mirror in a lautern, nid collected into a forus be 2 glass Iens, readily burnel a hole in a paper at a distnnce of many fett from their source. The heat was quite intolerable to the hand held near the lastern. Paper steepell in nitrate of silver, aurd afterwards dried, was speedily turned brown by this light: and when a piece of fue wire-gauze was hedd b, fore it, the pattern of the latter appeared in white lines, corresponding io the parts which it protected. The phenomenon of the traisfer of the chastcoal from one electrode to the other, fret obserted by Dr. Hare, was alumadantly apparent; taking place fron the zincode (or positive pole) to the platinode (or negative pole). The arch of flame betreen the electrotes was nttracted or repelled hy the poles of a magnet, according as the ose or the other pole was held above or below it; and the repulsion what at tiven oo great ins to extinguish the flame. When the flame was drawn tome the pale of the magnet itself, includedl in the circuit, it rotased in a beantiful manner. The healing power of this hattery was so great as to fooe, with the wemost readiness, a bar of platinum, oue-eighth of an inch square: and he mast irfuaible inetale, such as pure rhodium, iridium, titanium, the mative ailhy of iridium and osmium, and the native ore of platinum, placerlin a carity acoupes out of hard carbou, freely melted in considerable quantities. In conclasion. the author brielly describes the results of some experiments on the eralutian
of the mixed gases from water in a montined space, and consequently under high pressure; with a view to ascertain, first, its what manner conduction would be carried on, supposing that the tube in which the electrodes were introluced was quite filled with the electrolyte, and there were no space for the accumalation of the gases; secondly, whether, decomposition having been effected, recombination would take place at any given pressure; and lastly, whether any re-action on the current-force of the battery would arise from the additional mechanical force which it would have to overcome. These cxperimeuts the author purposes pursuing nt some future time.

- In experimental Inquiry into the Iffuence af Nitrogen in promoting Temptable Decomposition, and the conncxion of this process with the growth of Plants,' by R. Mugg, Esq.

The author considers it as a general fact, to which thero are very fow if any esceptions, that vegetable bodies in the state in which they are produced in nature, undergo spontaueous decomposition when kept under circunstances favouriug such an action; and that from the decomposition of each compound products peculiar to that sulstance result.

Jume 6.-I. Baily, Esq., V.P. in the clair.
(icorge Barker, Esq., was elected a Fcllow. The paper read :

- Experimints on the Chemical Constilution of sevcral bodiez uhich undergo the linous formentation, and on certain rosults of the Chemical Aclion,' by R. Rigg, Esq.

The special object of this paper is to show, first, that sugar is nort constiluted of carbon and water only; secondly, that during the vinous fermentation water is decomposed ; thirdly, that nelther pure carbonic acid nor alcohol, in the common acceptation of the term, is the product of this chemical action; and fourlify, that fennented liquors owe some of their valuable qualities to peculias products formed during fermentation.

Jume 13.-J. W. Lulbhock, Esq., Tre3surcr, in the chair.
The following papers were read :-

- Rencarches on the Tirles. Tenth Series. On the Latcs of Lon Woter at the Port of Plymouth, and on the Permanency of Mcan IValer', by the Rer. W. Wiewhle.

In this memoir, the author investigates the question, how far the mean watcr, that is, the heiglit of the tilc midway between ligh and low water, is permanent during the changes which high and low water undergo. That it is so approximately at Ilymouth, having becu already ascertained by short serics of observations, it was desirable to deteraine the real amount of this permanency by induction from longer scries of obscryations. A period of six rears was chosen for that purpose; and the method of discussing these ohgerrations was the same, with slight moditications, as in former researches. The beight of low water, cleared from the effects of lunar parallox, and very nearly so from those of lunar declination, and compared with the height of high water, similarly cleared, cnabled the author to ascertain whether the uean water also was affected by the semi-menstrual incquality. The resilts of the calculation show, that the height of mean water is, within two or three inches, constant from year to ycar; and that, for cach fortuight, it has a semi-menstrual incquality amoming to six or seven inches;-the height leing greatest when the transit is at 6 h ., and least when at $11 \mathrm{l} .,-$-the immediate cause of this inequality being, that the seni-menstnal inequality of low water is greater than that of high water: this inequality, howeser, is prohably moditied by local circumstances. These rescarches have also verified the Lucoretical deduction, that the height both of low and of high water being affected by the moon's deelination, their meau height partakes of the variations in this latter element, in successive years, consequent on the change of position of the moon's orbit. At Plymouth, the increase in meau low water amonnts to about two inches for cach degrec of increase in the declination. In the high water, this change is less marked. The parallax correction of the height of low water is obtainet from all years alike, by tahing the residue of each observation, which remains when the semi-menstrual inequality is taken away, and arranging these residues for each hour of transit, according to the parallax. The declination correction is olitained in a manner analogons to the parallax correction, from each ycar's obscrvations, with some corrcction fur the varintion in the mean declisation of the moon in cach year.
2. 'Researches on the Tides. Eleventh Series. On cerfain lide Observationn made in the Irdian Seas, hy the Rev. W. Whrwnll.

This paper contains the resnlts of the examination by the author of certain series of tide obscrsations made at several places in the Indian Seas, which were forwarded to the Adniralty by the Hon. East Inclia Company. These Jocalities were Coclun, Corringa River, Surat roads in the Gulf of Cambay, Gogali, on the opposite side of the same Gulf, and Bassadore, in the Islaud of Kissmis, in the Persian Gulf.
3. 'On the Electrolyais qf Secondary Compotads,' by J. P. Danizli, Esq. The discovery of definite electro-ohemical action aturally suggesto the inquiry into the relative proportion of that part of a voltaic current winich, in the case of its tiecomposing a saline solution, is carried by the elements of the watct, and that part which is carried by the elements of the saline compound, and into the definite relations, if any such there be, subsisting between the iwo clectrolytes so decomposed. This question was the origin of the investigation which formed the subject of the gresent communication.
'Experimental Researcher on the mode of operation of Poions.' By J. Brake, Eeg,

In this paper the author cxamines more particularly the action of those poisons which appear to produce death by affecting the nervous system.

Junc 20.-John William Lubbork, Esq., V.P. and Treasurer in the chair.
Sir Thomas Dyke Acland, Bart., M.l'., Edwin Guest, Esiq., and John Hogg, Esq., M.A., were olected Fellows.

- On the conditions of Equilibrium of an Incomprcstible Ftuid, the particlea of which are aeted upon by Aeceleratiny Forces,' by James Ivoay, Ebq., K.H., M.A., F.R.S., \&c.

The intention of this paper is to examine the principles and methods that have heen proposed for solving the problem of which it treats, with the view of ohriating what is obseure and execptionable in the investigation usually given of it. The principle first advanced by llayghens is clearly demonstrated and is attended with no difficulty. This principle requires that the resultant of the forces in action at the surface of the fluid in equilibrium and at liberty, shall le perpendicular to that surface: and it is grounded on this, that the forces must have no tendency to move a particle in any direction upon tha surface, that is, in a plane totiching the surface. In the Principia, Sir Isaac Yowton assumes that the earth, supposed a homogencous mass of fluid in equilibrium, has the figure of an oblate clliptical splicroid of revolution which turns upon the less axis : and, in order to deduce the oblateness of the spheroid from the relation between the attractive force of the particles, and their centrifugal force caused hy the rotatory velocity, he lays doun this principle of equilibrium, that the weights or effuris of atl the small columns extending from the centre to the surfacc, halance one another ronnd the centre. Tho exactness of this principle is evident in the case of the elliptieal spheroid, from the symmetry of its figure : and it is not difficult to infer that the same prineiple is equally true in every mass of fluid at liberty and in equilibrium hy the action of acrelerating forces on its particles. In every such mass of fluid, the pressure, which is zero at the surface, increases in descending below the surface on all sides: from which it follows that there must be a point in the interior at which the pressure is a maximum. Now this point of maximum pressure, or centri, is impelled equally in all directions by all the small columns standing upon it and reaching to the surface; and as the pressure in every one of these columns increases contimally from the surface to the centre, it follows that the central point snstains the total effect of all the forecs which urge the whole body of fluid. It follows also, frotn the property of a maximum, that the central point may be moved a little from its place without any variation of the pressure upon it : which proves that the forces at that point are zero. Thus the point of maxiusum pressure is in stable cquilibrium relatively to the action of the whole mass of fluid : which establishes Newton's principle of the cquiponderance of the central columns in every instance of a duid in equilibrium and at liberty. The two principles of Iluyghens and Newton being established on sure grounds, the next inquiry is, whether they are alone sufficient for determining the figure of equilibrium. Of this point there is no direct and satisfactory investigation: and in applying the two principles to particular cases, it has been found that an equilibrium determined by one, is mot in all cases verified ly the other; aud eren in some instances, that there is no cquilibrimm when both principles concur in assigning the same figure to the fliul. Further researches are therefore necessary to dispel the obscurity still inhercnt in this subject. In a mass of duid in equilibrium, if we suppose that small canals are extended from a particle to the surface of the mass, the particle will be impelled with equal intensity by all the canals: for, otherwise, it would not remain immovable, as an equilibritm requires. It has been inferred that the equal pressures of the surrounding fluid u_{i} on a particle, are sufticient to reduce it to a state of rest. Hence has arisen the principle of equality of pressure, which is generally admitted in this theory. Now, if the matter be considered accurately, it will be found that the only point within a mass of fluid in equilibrium which is at rest by the sole action of the surrounding fluil, is the central point of Newton, or the point of maxinum pressurc. Tlee reason is that, on nccount of the maximum, the pressure of all the canals terminating in the central point, increases continually as the depth increases; so that, besides the pressures of the canals, there is no other cause tending to move the particle. With respect to any other particle, the pressure caused by the action of the forces in some of the canals standing upon the particle, will nccessarily lncrease at first in descending below the surface, and afterwards decreast; so that the effective pressure transmittel to the particle, is produced by the netion of the forces upon a part only of the fluid contained in such cunals. If a level surface be drawn through any particle, it is proved in the paper, that the cqual pressures of the surroundiug fluid on the particle, are caused solely ly the forces which urge the portion of the fluid on the outside of the level surface, the fluid within the surfince contributiug nothing to the same effect. Thus a particic in a level surfarc is immoveable by the direct and transnitted action of the fluid on the outside of the level surface; but it will still be liable to be moved from its place unless the borly of tluid within the level surface have no tendency to change its form or position oy all the forces that act on lts own particics. What has heen said not only demonstrates the insufficiency of the principle of equality of pressure for cletermining the figure of equilibrium of a fiuid at liberty, but it points out the conditions which are neccssary and sufticient for solving the problem in all cases. The pressure must be a maximun at a central point within the mass: it must be zero at the surface of the fluid : and, these two conditions being fulfilled, there will necessarily exist a series of interior level surfaccs, the pressure being the same at all the point of every surface, and varying gradually from the maximum
quantity to zero. Now all the particles in the same level surface have no tondeney to move uron that surface, becanse the pressure is the same in all directions: whercfore if we add the condition that every level surface shall have a determiuate figure when one of its points is given, it is evident, both that the figure of the mass will be ascertained, and that the immobility of the particles will be established. Maclaurin's demonstration of the equilibrium of the elliptical spheroid will always be adinired, and must be instructive from the accuracy and elegance of the investigation. That geometer was the first who discovered the law of the forces in action at every point of the spheroid; and it only remained to deduce from the known forces the properties on which the equilibrium depends. These properties he states as three in nuniber: and of these the two, which relate to the action of the forces at the surface and the centre of the spheroid, are the same with the principles of Iluyghens and Newton, and coincide with two of the conditions laid down above. The third property of equilibriun, according to Maclaurin, consists in this, that every particle is impelled equally by all the rectilineal canals standing upon it and extending to the surface of the spheroid. Now it does not follow from this property that a particle is reduced to a state of rest within the spheroid, by the equal pressures upon it of the surrounding fluid; because these pressures may not be the effect of all the forces that urge the mass of the spheroid, but may be caused by the action of a part only of the mass. Maclaurin demonstrates that the pressure impelling a particle in any direction is equivalent to the effort of the fluid in a canal, the length of which is the slifference of the polar semi-axis of the surface of the spheroid and a similar and concentric surface drawn through the particle, which cridently implies both that the pressures upon the particle are cansed by the action of the flud between the two surfaces, and likewise that the pressures are invariably the same upon all the particles in any interior surface, similar and concentric to the surface of the spheroid. Such surfaces are therefore the level surfaces of the spheroid; and every particle of the fluid is at rest, not because it is pressed equally in all directions, but because it is placed on a detcrninate curve surface, and has no tendency to move on that surface on account of the cqual pressures of all the particles in contact with it on the same surfacc. Maclaurin scems ultimately to lave taken the same view of the matter, when he says that "the surfaces similar and concentric to the surface of the spheroid, are the level surfaces at all deptlis. (F1. 5. 640.) It thus appears that the conditions laid down above as necessary and sufficient for an equilibrium, agrec exactly with the demonstration of Maclaurin, when the truc import of what is proved by that geometer is correctly understood. The general conditions for the equilibriuu of a fluid at liberty being explained, the attention is next directed to another property, which is important, as it furnishes an equation that must be verified by every level surface. If we take any two points in a fuid at rest, and open a communication between them by a narrow canal, it is obvious that, whatever be the figure of the canal, the effort of the fluid contained in it will loc invariably the same, and equal to the differcnce of the pressures at the two orifices. As the pressure in a fluid in equilibrium by the action of accelerating forccs, varies from one point to another, it can be represented mathematically ouly by a function of three coordinates, that determine the position of a point : but this function must be such as is consistent with the property that olstains in every fluid at rest. If a, b, c, and $a^{\prime}, b^{\prime}, c^{\prime}$, denote the co-ordinates of the two orifices of a caual ; and $\phi(a, b, c)$ and $\phi\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ represent the pressures at the same points; the function $\phi(a, b, c)$ must have such a form as will be clanged into ϕ (a^{\prime}, b^{\prime}, c^{\prime}), througli whatever variations the figure of a canal requires that a, b, c must pass to be finally equal to $a^{\prime}, b^{\prime}, c^{\prime}$. From tbis it is easy to prove that the co-orlinates in the expression of the pressure must be unrelated and independent quantities. The forces in action are deducible from the pressure; for the forces produce the variations of the pressure. As the function that stands for the pressure is restricted, so the expressions of the forces must be functions that fulfil the conditions of integrability, without which limitation an equilibriun of the thuid is impossible. Thus, when the forces are given, the pressure may be found by an integration, which is always possible when an equilibrium is possible: and as the pressure is constant at all the points of the same Icvel surface, an equation is leence obtained that must be verified by every level surface, the upper surface of the mass being included. But although one cquation applicable to all the level surfaces may be found in cyery casc in which an equilibrium is possible, yet that equation alone is not sufficient to give a determinatc form to these surfaces, except in one very simple supposition reapecting the forces in action. When the forces that urge the particles of the fluid, are derived from independent sources, thic figure of the level surfaces requircs for its determination as many independent equations as there are different forccs. In the latter part of the paper the principles that have been laid down are illustrated by some problems. In the first problem, which is the simplest casc that can be proposed, the forces are supposed to be such functions as are independent of the figure of the fluid, and are completely asecrtained when three co-ordinates of a point are given. On these suppositions all the level surfaces are determined, and the problem is solved, by the equation which cxpresses the equality of pressore at all the points of the same level surface. As a particular example of the first problem, the figure of equilibrium of a homogeucous fluid is determined on the supposition that it revolves about an axis, and that its particles attract one another proportionally to their distance. This example is deserving of attention on its own accoint; but it is chiefly remarkalite because it would seem at firt, fron the nutual attruction of the particles, that peculiar artifices of investigation were required to solve it. Bat in the proposed law of atfraction, the
mutual action of the particles upon ove another is redacible to an atractive force lending to the centre of gravity of the mass of fuid, and proportional to the distance from that centre; which brings the forces under the couditions of the first problem. The second problem investigates the equilibrinn of a homogeneous planet in a fluid state, the mass revolving about an asis, and the particles attracting in the inverse proportion of the square of the distance. The equations for the figure of equilibrium are two ; one deduced from the equal pressure at all the points of the anme level surface; and the other expressing that the stratum of matter between a level surfice and the upper surface of the mass, attracts every particle in the level surfice in a direction perpendicular to that surface. No point can be proved io a more satisfactory manner than that the second equation is conteined in the bypothesis of the problem, and that it is an indispensable condition of the equilibrium. Yet, in all the analytical investigations of this problem, the second equation is neglected, or clisappears in the processes used for simplifying the calculation, and making it more manageable ; which is a remarkable instanse of attempting to solve a problem, one of the necessary conditions being omitted. The equations found in the second problem, are solved in the third problem, proring that the figure of equilibrium is an ellipsoid

The Society adjourned over the long vacation, to meet again on the 21 st of November.

COLLEGE FOR CIVIL ENGLNEERS.

We direct the attention of our readers to the prospectas of the above institution, which is appended to our Jourmal ; we have ont time or space to devote to it so largely as we should wish this mooth, but we shall not omit to make our remarks in the next. We shall merely mention now, that before the promoters can expect to have the support of the profession, there must be some alteration made in the mode of instruction, and an addition to the council; besider, we do not like the wholesale way of manufacturing engineers from the cradle, as it would appear by the tables in the prospectos is the intention of the promoters.

The Royal Acadeny of Scirnces of Berlin appreciating the utility of the Horks published by the ('ount De Pambour, and particulary of his theory of the stcam-engine w hich hasjust appeared in this countey, lias, in its siting of the 6th of June, elected him, by unanimity of votes, member of the seaders.

BTMASE TATEGATYON.

The Britial Quren.-In the notice of this splendid ressel in our Juty number, we omitted to state that the decorations of the salown and prasengens dpartments were entrusted to Mr. Simpson, of the West Sirand, lomdon, who has displayed considerable taste in the finisling. We ain bere give a short description of the aprariments. Immediately leading from the principal staircase and the state-room are two saloons, the une alapted for a dining, and the other as a drating or ladies' room, either of which are expe. cially spacious and aqreeable. The dining-room, 60 feet long ant alout 30 fect wide, is most elaborately fitted up and decorated in the Elizateihanstyle, uith devices and historical subjects painted in a very superiur manner it a new material which gives to the painting the appearance of being wothed in tapestry or worsted work; it is further enriched by additional carving α flowers. ornaments, gilding, \& c., and is, en masse, exceedingly chaste and unjque. The stairease is of a novel description in a ship, having a duuble 看ght of stairs descending on either side, and is very richly carved in Hoglish oak. The drawing or laflies' room is much smaller than the preceding, but derorated very neatly in white with gold mouldings and arabesque hapgings in corresponding colours, so that for extent. as they form a vista or nearty lo feet in length, for variety and elegance, it can be safely said that this sute of rooms has never yet been surpassed.
Government Steamers.-It is not generally known that a steamer of vir! large tonnage is about to be launched from Chath m Doekyard. It will hars teen legun and finished in the incredibly short space of eight neeks. Weate informed that this extreme expedition is an experiment under difeecion of the Guvernment, in order to ascertain the shortest possible time in whirb surb a vessel can be completel. The number of hands has leen unlimited; in fart. the men are working on her at the present moment as thick as bees ina hir, and they are allowed to make as many working hours per day as they ean The sum apportioned sor the labour, we underatand, is 4,0004 .; sud should 1 not cost that. the overplus is to be divided among the men. The experimem has excited the greatest possible interest in the neighbourbood.-Gmennd Gazelte.

The Cyclops Steam Frigate.-This magnificent vessel, the largest steam man-of-war in the world, Was lately launched from Pembreke Doctram. Hes dimensious are as follows :-Longth. 225 feet, beam Letwren yndike 38 fot. depth of hold 21 feet. Her tonnage is about 1.300 , being 200 tons larger thin the Gorgon, launchel from the same slap about eighteen monilh since the cyuipment, as a man-of-war, will be the same in all respects as a fngate. having a complete gun or minn deck as well as an upper or quarter ifect. Oa the main deck she will carry cighteen long 36 -pounters, and on the ufr deck four 48 -poundets and two 96 -pounders on swivels, carrying a ball of:s inclies dimeter, and sueping round the horizon 240 degrees.- The (yrlep lite the vessel already referred to, will le commanded by a pest rapram, these two being the only steamers taking a frigate's rabli. her cretei consist of 210 men, 20 enginecrs and stokers, and e lieutenanits part w
marines, who will have charge of the guns, all of which move upon slides and fixed pivots, therely taking a much wider range than the ondinary carriage can give. She will be schooner rigged, but her foremast will be of the same scantling and height as that of a 36 -gun frigate. Her draught of water, with all on board, including six months' provisions, completely armed, and with twenty days' fue), will be fifteen feet. This quantity of fucl (400 tons) will be carried in the engine room. but there is space in the fore and after holls for ten days' more coal, making in all sufficient fuel for a thirty days' run. She has an orlop deck below the gun deck, of dimensions so magnificent that there is room to stow with comfort eight hundred troops and their officers, so that, taking her all in all, the Cyclops may be considered the most powerful vessel in her Majesty's service.

Sceam to India_The Vermon, a splendid frigate-built East Indiaman, was launchel on Saturdny, Aug. 3, from the building yard of the Messrs. Groen, at Blackuall; slue has a powerful atcam engine to propel her in calms, at the rate of five knuts an hour, so as to accomplish the voyage from the Lizard to Calcutia in seventy-five days.

Lawech of an Iron Steamer.-On Friday, 9th ult., one of the most landsome steam vessels of her size ever built was launched from Mr. Borrie's slip adjoining his foundry. Considering that this is the first vessel of the kind constructed by Mr. Borrie, her mould and appearance bear unequalled testimony to his scientific skill. She glided into the water amid the checrs of a large concourse of apectators. The following are the dimensions of this vessel:Length of keef, 116 feet; length on deck, 130 fcet; breadth within the pad-dle-boxes, 21 feet; breadth over all. 37 feet; depth of hold, 9 fect ; measurement. 300 tons; draught of water when launched, 15 inches. Her calculated alraught, when her engines, boilers, compliment of passengers, \&c., are on boand, is 30 incles ; but it is expected that it will not exaed 28 inches. This is, we believe, the lightest draught of water ever attained by any vessel of her size in Great Britain. She will be propelled by two engines of thirty-five horse puwer each. The engines have expransion valves attached. for diminishing the consumption of steam in the eylinders; and the builers combine two arrangements in their constructim, the one calculated to consume the smoke, and ilse other to ensure a more rapid generation of steam than any marine loilers hitherto in use. The symmetry of this vessel is greatly admired, and scems to be as near perfection as can be attained. She must be a very fast amooth-water sailer, for which alone she is adapted. Altogether the vessel is a new laurel to Mr. Borrie's increasing reputation as an enginecr.-Dundee Chronicle.

The irom steam-boat, Robert F. Stockton, will not answer for service in the Delaware and Raritan canal, for which slie was built, on account of her draught of water, which is upwards of seven feet. Her cost was more than 20,000 dollars.-New York paper.

Launch of an Iroa Sloop.-On Monday, 12 ih ult., a handsome iron sluop, built by Messrs. James and Charles Carmichacl, "as launched 'from their building-yard in the lron Works, Sea Braes. She is named the Tinker, and measures sixty tons. She appears to be an excellent vessel; and all present at the bunch andmired her buoyant appearance in the water. This is the first iron sailing vessel which has been built at lisis port; but it is probable that the trade of building iron vessels to be propelled by sails, as well as by steam, will speedily increase, and be carricd on to a great cxtent very soun. In the yard from which the Tinker was launched there is the frame-work of an iron steamer of 200 tons, which, we understand, is to be employed on the Mid-Lothian and Fife Ferries.-Dundee Chronicle.

PROGZTES OF RAIFWAT的.

Great Western Railuay.-The works between Bath and Bristol are proceeding most satisfactory, two out of the threc tunnels are all but complete. The arch of the bridge over the Avon 100 feet span is tumed, and the piers of two other bridges are formed, large quantities of timber fur the permanent way are ready, and every thing indicates that this portion of the railway w ill be opened in the ensuing spring.

Marelester and Birmingham Railvay.-The viaduct across the valley at Stockport, one of the heaviest contracta on the line, is now rapidly progressing. This work consists, in part, of 23 arches of 63 feet span. Thicse arehes, or rather the centres on which the arches are to be turned, require 3,500 cubic fect of timber for the construction of cach, and there are to be eight arehes completely finished before the centre of the first is struck. It Nill, Iberefure, require 30,00 feet of timber in the construction of this part of the work. The brick work is theee feet in thekness. The highest arch will work. Mr. Ferncley's seven-story mill alwut 12 feet.-Stuffordshire Advertiper.

Midlend Connties Railuny.-The contract for the crection of the station at Leieester has been undertaken by Messrs. Waterfield and Smith, in conjuncthon with the building company, and it is expected to be covered in by November next. The amount of the contract is under $£ 15,000$. The tunnelling under the freemen's common is now extended to nearly twenty yards, but would have been much more ere this, had it not been for the falling in of the shaft some weeks ago. The soil is hard clay.

Lirerpont and Manchester Railuay.-The fifteenth half-ycarly mecting of the shareholders was held on Wednesuay, the 24ih July. By the balance shect it appears that the total receipts for the half-year ending the 30 h of June, 1839, were $\{123,814$. 6s. 8d.; the expenses $\lfloor 75,402$, 7s. Id ; giving a net 1 rofit for the half-year of $£ 48,211$. 19 s .7 d .; to which is adderl, $£ 5,089$. 15 st . 8 d ., lsalance from the last account, leaving a disposabre s.m of $453, j 01.15 .3 \mathrm{~h}$. From which sum the directors recommended a dividend of 54.10 s . jer share, amonntirg to $£ 49,023$. 4s. 6d., leaving a balance of $£ 4,278$. 10 s . Yyi. to be carrel to the credit of the next half-year's account, which proposition was unanimousely agreed to by the proprictors.

Glasgow, Paisley, and Ayr Raidoay.-We have much pleasure in stating that eleven miles of this line (from Ayr to Irvinc) were yesterday week passed uver by an engine and train, with a party of the directors and their friends. The cogine was one of those furnished by Stark an I Fulton, of Glasgow, and performed remarkably well. The road was uncommonly smooth and firm for one so recently laid, part of it having only been fibished the previous evening. This part of the line will be opened to the public on Thursday next. The whole line from Ayr to Glasgow, including the Arklestone tunnel and other works constructed by the Glasgow and Ayr, and Glaugow and Greenock Companies jointly, will, it is believed, be completed very early in the summer of next year. - Ruilway Tirses, July 27.
Lancaster and Preston Railway.-The operations of this line of railway are in a very active state of progress. At this end of the line the works are already beginning to assume a very interesting and railway like appearance. The via'luct across Water-lane promises to be a very handsome structure, the arches being exactly at right angles with the road. The skew bringe in Marsh-lane is an excellent and sulstantial erection, antl is in a forward state of progress. On Messrs. Mullins and M'Mahon's contract the uperations are proccerling most satisfactorily, and with all possible alacrity.-Preston Chronicle.

York and North Midland Railtony.-The laying of the second line of rails is proceeding with rapidity, and will be completed from this city (York) to the unction in about four months. The other works from Milford to Altofts are progressing very favourably, and no doubt exists that the contractors will have completed their respective contracts in Narch next.-Yorkshire Gozette.
London, Sotsthampton, and Portsmouth Raihony.-Mr. T. Brassey has taken the contract for the formation of the railway from Bishop Waltham to Fareham, and has engaged to complete that portion by May next.
Bristol aud Expter Railway.-On Tueslay, 30th July, the first stone of the Bristol and Exeter railway bridge, over the river Parrett, at Bridgewater, wias laid in the presence of some of the directors, and of a numerous loody of workmen empluyed by the contractor Mr. Bromhead. The bridge is to be of stone, a single arch of 100 feet span, and is to bear the name of the "Somerset Bridge."-Bristol Journal.

Opening of the Verenilles Railuony.-This railway branches from the St. Germain railway, and was undertaken in 1838 by the Paris Rothschilds. It has been two years and a half in progress, and passes through a diflcult country. It was opened on Sunday the 4 th instant, and carried 12 or 15 thousand persons, giving a return of 2000 .

Railroads in Belgium.-We are assured that the negociations between the govermment and the assignees of Mr. Juhn Cockerill are terminated, and that the Minister of Public Works intends to make Seraing the general and sole manufactory for every thing necessary for the continuation, \&e., of the iron railroads. The eompact, it is said, is drawn up in such a manner as not to require he approbation of the Chambers, the two ministers who have drawn it up having confined themsclves to the limits of the votes of credit, which they suppose will be annually given for the iron railroads. This cannot be adnitted; for if such an estalulishment is purchased by the state, the ninister cannot apply the sums voted for the iron railrouls to the payment of real property, the purchase of which has not been legally sanctioned In such a case the Treasury would incur risks which connot be recuvered by the responsibility of the ministers. A fire or an inundation might destruy Seraing and all it contains. Who then would insure for the loss, if the acts of ministers had not been ratified by a law ? -Bruscels paper.

Raihoays in Germany,-That part of the Taunus Railway which lies between Frankfort and Höchst was opened on the 7th inst. The first train started at five in the morning. The tuo places, formerly two hours asunder, have been brouglit within a distance of eight minutes of each other. On the same day (the 7th) the Fmperor Ferdinand's Railway, from Vienna to Brunn, a distanco of about nineteen German (eighty -five English) miles, was opened with great solemnity. The first tr in performed the distance m a few minutes over four hours. The day appears ts have been celebrated, particularly at Brunn, os a civic feast, and the ticke s 1 hich had been sold were disposed of by the first purchasers of them at a considerable advance, to thpse who were anxious to be able to boast that they had been amung the first travellers by the new railway. We regret to find that the day did not pass over without an accident. In the evening, as one of the returning trains had stopped at a station to take in water, the locomotive engine of the train next in succession ran into the lindermost carriage, by which means several persons were seriously hurt, though none dangerously. The engincer to whose carelessness the accident was attributed, was immediately placed under arrest.

NEW HOUSES OF PARLIAMENT.

We are happy in being able to state that the works connected with the embankment for the new Houses of Parliament are now rapidly drawing to a conclusion. The twelfth and last course of the granite facing of the river wall has been commenced, and we hope ere long to announce that the entire of this great hydraulic work has heen completed. As there las not been any material alteration in the construction from the drawing and specification given in our first vol. pape 31, we refer to them for a full description of this solid and beautiful structure.

The coffer dam, which is one of the largest ever executed, has remained perfectly entire, and, we may say, alnost free from leakage since it was closed in December last; the greatest quantity of water collocted in it, incluling land apringa and drainage, has not exceeded, we understand, twenty cubic feet per minnte, Fhich from a mase of Fork upwards of twenty thou-
sand fect in area, appears almost incredible. Now that its "occupations gone," we wish to sec it removed, for instead of a protection it seems merely a dingy screen to the massive falric behind.

This undertaking, although great in extent, is we hope merely the commencement of the magnificent scheme for the embankment of the river Thames from Vauxhall to London Bridge, and from the active measures now in progreas, we are not likely to be disappointed.

The foundation walls of the new Houses are rising rapidly, and keeping pace with the river wall, they are all now out of danger of the watery element, at present, although they seem merely an intricate maze of brickwork, yet shortly we shall find order and beauty springing out of this apparent chaos of confusion.

Repairs of Freuch Ports.-The French Chambers have jassed the law authorising the govermment to expend 43 millions more ($1,700,0001$.) cn the repairs of 17 of the primejpal ports.

Gigantic Tannel--Zanino Volta, an Italian engincer, has brought formard a plan for a railway from the Like of Zuriel to Como, to join tne LombarloV cnetian railway. He proposes to pass the Gisison Alps by a lot.g tunnel, ulich, from his survey, he hopes to be able easily to carry through the granite rocks. M. Volta propesses to form the raits of the granite, which is of a good quality. Twoe intons have alrealy given their approbation to the plim, and the engineer hopes to obtajn sullicient surport to be able to carry it into execution.

Opening of the Williugton and Repton New Bridge.-This admirable and useful undertaking, which was commenced about threv years ago, has at length been completed, to the praise of the architect who designed and constructed it, to the honour of the spirited gentlemen by whom it was originated, and to the infinite satisfaction and delight of the inhathtants of the ucighbouring localitios, who set no thounds to their admiration on this uccason. The bridge is universalty allowed to be a fine specimen of arehitecture; it has been constructed uniler the superintendence of J. Trubshaw, kisp., civil engineer. It consists of five arches. It has been erected at a cost of 6,210\%.this sum including the toll-house.-The Staffordshirc Allecrtiser.
Ipsuich Het Dock.-The ceremony of laying the foundation stone of the lock connected with this great and important undertaking, took place on Wednesilay, 26th Junc. The stone consisted of a fine block from the Yorkshire quarries, weighing about four tons ; on the upper side the following inscription, on a plate of cast iron, was let into the stone:-

IPSWIC'll DOCKK.

The first stone of this lock was laid on the 2 th day of June, A. D. 1839,

GIORGLI GREFN SAMPSON, HSQUIRE, MAYOR,
Dy his Alexander. Fsquire, Treasurer of the Commissioners, Peter Bartholomew Long, Fsuuire, Clerk.
Fincincer of the Works-Henry Robinson Palmer, lisquire, F.R.S., Vice-President of the Institute of Civil Fingincers. Contractor for the Works-David Thornbory; Esquire.

NOSTROS IN COMMODA PUBIICA

CONATCS, TU DOMINE SECCNDA

On the proposed site of the Docks a vast excavation hal been marle, in which work much difliculty arose from the infux of spring water; but, by the crection of a steam-engine, the inconvenience was in a griat measure overcome. The brick-uork was then commencerl, partly upon piling, and partly upon a concrete formed of gravel and lime. The lower surface of the fock is formed by in inverted elfiptic arch, having a span of 45 feet, and depth of 12 feet. This arch extends in length 230 fert. the spares being excepted in which the lock gates are to suing; of this distance, 45 feet in front of the lock, the space for th: gates, and akout 50 feet "ithin the lock, are in the course of luidling. The entreme depth to which the foundation reaches is 16 feet below the level of low watcr.anil will be 33 feet below the top of the coping: The number of bricks required will exced two millions, and the
 rials of u hich the lock is to be comps-sed, viz., brich-work, masonry, and concrete, will be nearly 12,000 tons.
Suspension Bridge across the Durube.-The patent for the construction of this bridge is granted to the Baron Signa, ank will be proceeded with immediately. It will cro:s the Danube between Pesth and Ofen, and will connect Hungary with Austria. Mr. Tierncy Clark, who built the llammersmith Suspension bridge, is to be the enginecr.-Railuray Mag.

Chard Canal.-It is with pleasure we notice the rapid progress of this work. Upuards of fifty men are now employed in different parts of the line, and it is confilently expected that the whole will be completed by the time specified. - Bristal Mirror.

Rocester Bridge.-On Thursalay the 8th ult., the foundats n stone of the lridge about to be erected over the River Dove, was latd with masonic honors by the Farl of Shrew sbury. 'The bridge will have one arch of 60 feet span and thres land arches, and is to be erected under the supenntendance of Mr. Fradgley, engineer,
Opowing of the Willington and Reptom Npw Bridge.-This admirable and useful undertaking, which was commemced about three ycars ago, has at lengeth been completed, to tho praise of the architect who designed and construeted it, to the honour of the spirited pentlemen by whom it was originated, and to the intinite satisfierton ano delight of the it hatitants of the neightourirg loralities, who set no bounds to iheir admiration on this occasion. The bridge is universally allowed to be a fine specimen of architecture. It has Lenn construeted under the superintendence of J, Trubshaw, Esg., civil cugineer; and consists of five arches, It has been crceted at a cost of $£ 6,210$;
estimated in cost $£ 1,000$., $£ 700$. of which has already been suborribet by the anblic ; and it is confidentlv hoped that the remainder will soon be procured. -Staffordshire Adeertiser.
Granton Pier.-His Grace the Duke of Buccleuch, who has just returnel from the Continent, visited Grauton l'Mer on Thursday, 8th ult., to Inspect the progress of the works since his departure. Upon examination, his Graer was much satisfical to find that the Pier is now 1,500 feet in length, and we believe is to extend about 270 fect fur her; and that other three jesties, rachs sive of the three already finished, each ninety fect long, with sheds for the recciving and housing of goods, and for the accommodation of passengers. together with two low-water slips, had heen bepun. His grise afterwarts visited the Quarry, where 100 vorkmen are employed, and gave lirections to Mr. Hawkins, reside nt ensinerr for the works, fire certain alterations and improvements on tt , so as to pr.serve the communication with the new rosul auljoining that of the Glasgow Railuny, contract for water, suphy of gis, aikl other improvements connected with the Pier.-Dwarke Chronicle.

Port of Liverpool.- A new and commodious dock is about to ke constructed by the Fllesmere and Chester Canal Carrying Company, on the site of the Herculnneum Pottery. It is to be to the southwand of the spacions dock now being formed by Lord Francis ligerton, and which will be eompleted in about threc months. Instead of railways operating injuriousily on canals, as was at first supposed, It scems that thry have really benefitell them, as the carryug trade both of his Lordship;s and the Eillesmere Company have incrrased po much as to render more accommodation absolutely necessary. At the south end of the fown a few private and weakhy individuals have bought all the shore, from the Earl of lefton and others, from the Brunswiek Duek to within a few yards of the Dingle.-Liverpool Mail.

DEV CETYROEXE, Eq.

Consecration of Kellyy Clurrh-This ceremony was performed by the Lan Bishop of lerelorel, on the 2 th July. The chureh is a remarkably neat eit. fice in the gothic style, lecuatifully si nated on an eminence cummandiag a most extens ve vien. it is luill and endowed at the entirc expense of $\mathrm{fl}_{\text {is }}$ Grace the Duke of Sutherland.

Wilfs.-The foundation stone of Christ Chureh, at Derrybill, in the parish of Calne, Wilts, was laid on Monday, July 29, by the Marquis of Lankdow ue
Isle of Portland. -Subscriptiuns are raising for the purpose of erectider a new church in the lsle of Purtland. Her Majesty has kindly given 300. iowards the fund, and an endowment of 1,5001 , has been also coniributed. The sum required for building the church is 2,000 .

Abergavenny.-Miss Herbert is luildingsan exira church and a ruw of almshouses for the poor at her sole cost.

Wotevrhampton.-A meeting was hokl at Wolverhampton on Tueslay, 29th July, to take the neccssary steps for erecting three new churches in that place.
New Churches in the Polterics.-The district committee for Newcastle and the Potteries, appointed by the Dioc isan siopiety of Lichfield, since ilheir appointment, have already receive: in dunations and sulscriptions 7001.

New Chapel at Hartshill.-On the 23rd July, the foundation-stone was latd of a new chapel for the congregation of Independent Dissenters at Chapel End, near Hartshill, Warwickshire.
Lcamingtow.-The new chapel of St. Mary, was consecrated by the Land Bishop of Worcester, on Saturlay 27th July last. The chapel is a golis edifice, and will seat about 1.200 persons.

Damage to Ripon Minster by Lightning.-On Monday afternoon, 12th ult. between three and fusir oclock, a licavy shower of rain fell at lipon, athended with thunder and lightning, which alpears to have done much danage to the Cathedral.

Elgin. Jaly 25,-The monument on the Tady lill, to the memory of the late Duke of Gorion. is now a'nost ronapleced. It is ninety feet hizh, atml has a very fine apparinec from the tom and country round about, \boldsymbol{A} phison from the top can ha;e a e'car and distinct view of Lomsiemouth and libe shipping, besides a long range on both sides of the Frith. The whole dues great credit to the contraciors, Messrs. Shant and Brander.-Ediabogh Courant.

Monumest to the memory of Whitfild.-A mecting of the committec a ho superintend the scrvice on Stinchcombe llill took place on the evening of the ce ebration, when the erection of a munument on Stiuclicombe Hill, iu memory of Whitfield's labours, wias suggested. The proposition was contially received. The monument, if crectel, will be visible from twelve combes, and from almost any place within a radius of twelve miles.-Glomester Chrmide.

Paddington,-An additional chureh is to be built in this parish, for wheh architects are invited to send in designs.
Rouen Cathedral.-The works of the eentral tour, intendel to replace that destroyed by lightning in 1822. are continued. The plan is an upen spire of iron work, to reach to 400 feet from the ground, with spires at the angles half way up the great one.
The Aucient Pigarims' Chapelat Maidstone.-This interesting little relic of early Fingli h architecture, after a lapse of 580 years, is again used as 3 place of publie worship. It was consecrated (or rather reconsecrated) by the Archlishop of Cintertary on tho libth inst the ancient chapel which ins feet 6 diches long from east to Hest, hy 25 feet wide, has bern careully restored and enlarged at the west hat, from the designs and urder the superintendence of J. Whicheord. Fing. It is now calculated to hold 600 persurs The cost of its restoration and enlargement has been defrayed by pulidiculacription, and amounted to between two and three thousand pounds.
Tovil New Church, near Maidstone, -The ceremony of Jayigg the fott soom
of this church was performed on the 18 th ult. by the Archhishop of Canterlary, in the presence of a large lody of the elergy and several thousand spectstors. The church is in the early Finglish style of architecture. and is to le lailt of Kentish rag stone. Its interior dimensions are $8: 2$ feet by 31 feet 6 inches in the clear, with a gallery at the west end, for the singers and children, and contains 800 sittings. It has a tower at the west end, surroonded wath an octagonal spire, being together 110 fuet in height. The plan of the church at the east cad is in the form of half a decazon, similar to many of the churches on the Continent. The contracts amonnt to rather more than 2000.-A Parsonage Honse is also in the course of croction, sittate celoce to the church. The land on which both the ehurch amd parsonage are building. was the gift of the Rupht Hon. the Farl of Jomney. The finds tor the erection of the church and pirsonage have been raisel by public subseription, aited by a grant from the Churela Builing Soitety.
Madley Church. - The Dean of Hereforl, u bose taste for ecelesiastical architerture is well known. has aftectel a kreat improvement in the fine old church. He has hal all the rubish romoied that had eollected from tim: to time about the building to that extent that not one pertion of its bise was visible. He has convertel useless maferials into matters of utility and ornament; he designed a communion table, a pair of maguificont chairs, kneeling stown, reading stands, and cominunion rail, and repaired the stalls. all of wheh lie has had most beautifully executed by his parish oner Mr. Davies. Ile has how all the painted glass arranged that was seatered alout in the different windows, and phectly whole in the windows of the chancel, making a most agreeable point in harmony of colour, as well as laving collected the seriptural subjects into that order that they were originally designed for. The good taste displayed by the Dean in the arrangellent of these matters, pives an interesting rppearance to the chancel ; and in uditition to these 1 m provemets, the Dean has male further designs in the hope that he shall, wilh the help of his parishioners, see them exceuted.-Frlix Farley's Bristol Juntral.
Daskinfell, a Presbyterian chapel on an extensive scale. is now in course of rection under the direction of Mr. Tattersall, of Manchester. We shall. pest month, give a full description of its orchitectural character.

FUBIIO BUILDIAGB, Ec.

Brecon-A new Shire Mall is about to be erectel at this place, for which lenders are requested.
Hitchen.-A new Town Hall is about to be erected, for which tenders are requested.
The Union Bank of Iondon.-A spacisus building is about to be erecte:l for this Mank, in Argyle-place, Regent-street, under the direction of Messrs. Newnham and Webb, architects.
Chatsuarth. -The conservatory which has been erceted for his Grnee the Duke of Devonshire is 375 feet long, 125 feet wille. and 75 feet high in the centre. We believe it is by far the largest in the world.
The Surrey County Lanatic Asylum. -The works of this Luilding erceting from the designs, and under the geueral superintendence of Mr. Moseley, the county surveyor for Middlesex, are proceeding rapidly. The building presents a principal froninge of 525 feet to the south-west ; the two extreme onde for a length of 112 feet, projecting 117 feet forward; the centre forms three sides of a quarangle, the principal elevation of which is completed by the superintendent's house, which. by adrancing 68 feet, and having an increased elevation, sustains the consegnence of the centre. The general line to the sky is broken by six towers at the anyles, having an additional stury, and being surmounted by battiements. The buidding will contain 350 patients, is fire-proof throughout, being entirely surmounted by an iron-roo:. The stile Efizabithen, -the principal front is faced with red kiln-burnt bricke, with bath-stone rustics to the quoins, phinths, cappings, mullions, reveals trings, copinge, and capt, and bases to the chimnies, and it may be said generally, that (small as the estiniate inity appear) no expense has been spared in making the building worthy of the rank which its dimensions entitle it to hold, either as to its picturesque or substantial construction. The contract with Messrs Baker and sion, the bmidders, inclusive of the offices, and airing court, walls. Bec., is under 45.0001 ., subsequent contricis have been enteriad into for warming and heating the baths with Messrs Barlow and Co., and for the apparatus for making and layng on oil-gas throughout, with Mr. Deville of the strand.

AnTIQUETHE感.

Roman Paucment.- Lately in excavating the ground for rebuikling the Hall if the Wurshipping Company or I)yers, in Cullege-strect, Dowrate-hill, at 13 ft .8 in. belou the level of the strect, and just alove the gravel. the workmen came to the remains of a homan pavement, formed of small pieces of tiles abont an inch square, bedded apparently on fine concrete; tho thin eartmon jars or bot the were abso found near the same spot, one of wheh is in a pericet state, und two coins nearly obliteraterl. the lower part of the grumb. d in wich the alove were fouml, for 4 ft .6 in . in thickness appeared to In the sediment or earihy matter from water, probably of the ancient Walltrook, and in it, seattered over the surface, was a large quantity, 20 cs l., of a animal lones.

Nowark Castif.-The interior of this vemerable pile of feudal gramleur, lhich has resisted the storms of war and the fury of the tempest for more than 700 years, is now cloarel away, and the site of the ground where the theatr-stricken and licentious John, the pedantic James, the equivocal Hen-
rietta, and the irresolute and vacillating Charles, bore so conspicuous a part is shortly to be opened as a cattle market for the lorough. The ground is the property of W.F. Handley. Fisq. Who purchased it at the late sale of the crou'n lands.-Notingham Review.
Arcirnt Trandle Wheel.-A part of an ancient trundle wheel was found a fer days ago in Clialmerston Moss, on the surface of the clay, and about 15 fet of moss above i^{\prime} : froin which circumstance it is supposed that it must have lain them for nearly 9 ofo years. The eonstruction is remarkably sinphe. The various mris are held together without nails, but in a strong and eflietent way.-Stirling Obecrerr.

Roman Causeway. - Kome works for improving the channel of the Scheldt have necessitated several exfensive cuthings acruss the old Koman chusenay, called La Chause de Brunelaut, which conneels, in a straight line, the fow ins of Bavay and lournay. These cuttings took place on the spot described in the itinerary of Antoninus as the Pons cicaldis. In the course of the work there have feen discovered. on various points, remains of ronstructions avel large quantities of materials, u hich indicate the site of n town ur lange vitlage, and it appenrs that in this locality several bridges hat lieen thront over the Selaelf. This diseovery shows that the point given by antiguriag as Pons Scallis. was not merely a bridge over the selielit, but a koman station, which was probably fortifiel.

Roman Pavempat.-A very interesting discorery was mule a few days b.ck in dixgny a cellar near the High Bridge. The workmen uncovered a large portion of lioman pavement composed of rude material. A layer of stomes had first been placed down, and over these, obliquely and absut hiff an inch apart, small hat tiles. the whole being converted into a solid mass by filliner up the crevices nith a ret cement. The pavement was a font lelow the present surface, and was evidently the floor of a Roman rlueling-house. It was broken up, and removed; the iragments now lie on Mr. W. Rudgard's wharf. \rightarrow Slamford Mircury.
Hnll.-Modern itaprovement has just destroyed the most ancient building in Hull, except the elannerl of litinity Church. the whest relic in the town. The space repaired for the crection of a new watch-huse, leastal by the corporation of the toan to the Crmmissioners of Her Majesty's Cusiomes, has fed to the pulling down of the old Chain House, at the south ent of lhigh-strect.-IInll Adeertiser.

Ancient Coin.-In one of the cuttings of the milway near Croyion, in few days since, a wortmm foum a guld moble of Whard lif. in excellent preservation. On the olverse side is the king in a ship, crownel and in armour, with sword and shied, the later bearing the arms of Eagland and France'

MIEOEHEANEA.

Alloy of Metals.-A curious and valuable discovery has just been made In the alloy of inctals. A manufacturer of paris has invented a composition much less oxidatile than silver, and whith will not nolt at less than a heat treble that which silver will bear; the cost of it is less than $4 d$. an onnee. Another improvement is in sted; an linglishman at Brussels has tiscovered a mode of casting iron 8 o that it dlows from the furnace pure steel, better than the be teast steel in Bingland, and almost equal to that which has undergone the process of beating. The cost of this steel is unly a $f: a r$ hiug per pound greater thatn that of east iron
Figerming on Marble.-Mr. Rayner, of Derhy, has made a disenvery in art \rightarrow-a new onethol of engraving on marble. x me of his pictoriad eff.rts hive elicited great aumiration. Iler Majes!y is in fosse sion of a variety of epecimens, nud the nob lity in England and Fraticic have introduced then into their drawinc-ruoms.

Iecture on Architerture.-On Wednes:lay evenlng, the 7th ult., the 1 st of a course tif six lectures, an liselesiastical and Dumsstic Arrhitecture. Was delivered by Mr. lladfield. of lerby, to the members and friends of the Mechanics' Institution, of llkeston. We understant that Mr. Hadfield intends lecturing in every town aul large villaye in the county of Derby, as he is devoting his time to an Arehitcctural survey of its Churches; an accurate description of which he is about to publish in a small work, t's be entitled, "An Architectuml (iazetter of the county Derby."
Falling Stars.-During the night of Friday and Saturday the 9 th and 101 h of August, the heavens were besirewel with lithe falling stars of extraorit nary brightness. Mr. loorstor counted above 800 of thein. It is not a if the singular that the prasants of France and Sasony have believed for ages fast that Saint Latrence weeps tear; of fire, which fall from the sky e.cry year on his fete. the 10th of August. This ancient (ierman trailition, un observintion, has lel within these few years to the liseovery of a fact, wh ch now en gages the attention of natronianers. The inhabitants of Brussels con licar witness that in the night of the loth of August this year Gnint Lawrence shed abunlance of tears.

A new method of preserving iron-werl from rust has been communicated by M. Payinen to the French listitute. It consists in plunging the pitces to Le preserved in a mixture of une part concentrated solution of impure soxin, (soidat of comnterce, and three parts water. Picers of iron left for three months in this lyuit hat lost neither weifht nor polsh: whilst similar pieces immersed for five days in simple water were covered with mist."

Simple Remedy to Purify Water.-It is nat gencrally knuwn as it ought to be, that pounled alum possesses the property of purifying water. A larg: table-spounful of pulverizel nlum, sprinkled into a hogshiead of water (the water atirred roind at the time), will, after the tapse of a fen burs, by precipitating to the buttom the impure partices, so purify it that it a ill ke furnd to possess nearly all the freshoness and elearness of the fines! spring wator. A pailful containing four gallons, may be purified by a single tea-spornful.Doncaster Chronicls.

LIET OF NHW PAMSDTE.

granted in rngland yrom 29 th july to 26th Augort, 1839.
William Colchegter, of Ipswich, merchant, for "an improwed soap frame.'-Sealed, July 29 ; six months allowed for enrollment.

Christophrr Nickels, of York Road, Lambeth, Gentleman, for "improvements in cutting India-rubler."-August 1; six mouths.

Louis Prancois Fenillet, of George Yard, Lombard-street, Gentleman' for "imaprovementa in casting type for printing."-August 1 ; six months.

Samdel Sidngy Suith, of Suffolk-place, Hackney-road, for " certain improvements in machinery for raising vater."-August 1 ; six months.

Josepy Webs, of Huddersfield, for "improvements in machinery for raising the pile of woollen and other cloths."-August 1 ; six mouths.

Alphonse Rene Le Mire De Normandy, of Cheapside, Doctor in Medicine, for "cerlain improvements in the manufacture of inks and dyes.August 1 ; six monthe.

Winliam Abbott, jun., of Wyndham-place, Middlesex, Gentleman, for "improvements in the manufacture of felt."-Augist 1 ; six months.

Thomas Knowlrs, of Manchester, cotton spinner, for "certain improvements in machinery or apparatus uned in the preparation of cotlon and other fibrous substances.-August 1 ; six months.

William Miller, of Clithero, Lancaster, engineet, for "certaim improvements in grates used in steam-engincy or other furnaces or fire places."August 1; six months.

Pirqre Jaceues Ferier, of No. 5, Paul's-chain, Saint Panl's Churchyard, jeweller, for "certain improvements in the construction of vapour and hot-air baths."-August I; six montlis.

Samuel Guppy, of the City of Bristol, merchant, for "improvements iu a certain process and apparatur tsed in the mamufacture of soap."-Augurt 1 ; six months.

William Morrett Williams, of Bedford-place, Commercial-road, for "an improved lock and key."-August I; four months.

John IIUmphrifs, of Kidderminster, carpet munufacturer, for "certain improvements in the manufacture of carpets and rugs."-August 1 ; six months.

John Mercer, of Oakenshaw, in the county of Lancaster, calico printer, John Dyniley Prince, the younger, of Manchester, calico printer, and Willoham Blythe, of Church, in the said county, manufacturing chemist, for "certain inproved processes to be used in the printiag, dyeing, or colouring of cotton, woollen, silk, or other cloths and yarme."-August 1 ; six months.
Sir John Scott Liline, of Kensington, Knight, for "certain improvements in the application of elantic fluids to the working of machinery."August 1; six months.

John Moorr, of Broad Weir, Bristol, Gentleman, for "an improvement or imprevements in the steam-engine or steam-engine apparatus."-August 5 ; six months.

Jonathan Fell, of Workiagton, Cumberland, for "improvements in building ships and other vessels."-August 5; six months.
Robert William Jeaprard, of Oxford-street, architect, for "certain improved means of retarding wheeled carriages."-August 6; six months.
Joseph Whitworth, of Manchester, engineer, for "certain improvements in machinery, tools, or apparatur, for planing, boring and cutting metals or other substances."-August 7; six months.
Thomas Burr, of Shrewbbury, lead merchant, for "improwements in rolllead and other sqfl metals."-August 8 ; six months.

John Fitzratrica, of Stanhope-street, Clare-market, Gentleman, for "a new and improved method of making and manufacturing thread and linen, by means of a material not hitherto used for that purpose." Communicated by a forcigner residing abroad.-August 10 ; six months.
Robert Varicas, of Burton-crescent, Middlesex, surgeon, for "inprovements in rendering fabrics and leather water-procof."-August 10; six months.

Nelson John Ifolloway, of Pentonville, Gentleman, for "am improved head for carriages. Communicated by a foreigner residing abroad.August 13 ; six months.

Henry Brown, of Mile-end, for "a new covering or plating for household furniture, picture frames, cabinet and fancy work, and other articles of domestic and personal we, and the mode of making anch covering or plating." -August 13; six months.

Miles Berry, of Chancery-lane, Middlesex, Patent Agent, for "a new or improved method of obtaining the sponaneous reproduction of all the images received in the focus of the camere obscmra.". Communicated by a foreigner residing abroad.-August 14 ; six months.

Jayes Capple Miller, of Mancheater, Gentleman, for "certain improvements in printing calicoet, moslins, and other fabrics."-August 15; six months.

John Mason, of Rochdale, machine maker, for "certain ingerotemento in
machinery or apparatus for boring and turning metals and other subtosecer.' -August 15; six months.
William Bridges Adams, of Porchester-terrace, Bayswater, Gentleman, and John Buckannan, of Glasgow, coach buider, for "certain improrements in the construction of wheel carriages, parts of which improaenvents are also applicable to machinery for propelling, and aloo for the purpove of mewring ahipe and other veseres, and for commanicationg motion betwreen diferent portions of machinery."-Angust 16; six months.

Joskph Scholefield, of Littleborough, Lancaster, cotton spinner, and Edmund Leach, of Littleborough, aforesaid, manager, for "certain improrements in loown for weaving various kinds of cloth."-August 17 ; six months.

Matthew Uzielli, of King William-street, London merchant, for "improvements in the modes of impregnating trood or timber seith chessical materials." Communicated by a foteigner residing abroad.-August 17; six months.

Grorge Augustub Kollman, orgadiat of Her Majeaty's German Chapel, Saint James, for "improvements in raimoays, and in locomotise and other car-riages."-August 17; Bix months.

Jamrs Vardy, of Wolverhampton, Gentleman, and Mozitz Platow, of Poland-street, Oxford-street, engineer, for "improvements in making decoctions of coffee and other malters."-August 17 ; six months.

Stephen Joyce, of Croydon, Surrey, artiat, for "certain improvemente in stowe for warming the air in buildinge, which ingromementr are aboo applicable for cooking or for communicatiag heat for other magel porpooes."August 21 ; six months.
Moses Poole, of Lincoln's Inn, Gentleman, for "inaprorements in introducing elastic materials into fabrics, to render them elastic or partly elastic." Communicated by a foreigner residing abrond.-August 23 ; six months.

William Coles, of Charing-cross, Middlesex, Esquire, for "improwements in reducing friction of machinery used in propelling vessels, lathes, and other machines."-August 23 ; six months.
Charles Barweld Coles, of Allsop-tertace, New-road, Gentleman, for " improvements in the method of fixing and carrying fire-arms on horsebect." -August 23 ; six months.
John Augustus Tule, of Seaton and Lower Iron Works, Cumberined, Iron Master, for "improvements in the manyfacture of irom."-August 26; six months.

Heney Puixus, of Old Slaughters Coffee House, Saint Martin's-lane, Gentleman, for "improvements in the methods of applying motive power to the impelling of machinery, which improvements are applicable to several mesful purposes."-August 26; six months.

James Bogardus, of Trinity-square, Tower-hill, Gentleman, for " ingmoed meant of applying labels, stamps, or markt to letters, and such ofher docm-munts."-Augast 26 ; six months.

Thomas Mac Gauran, of Golden-terrace, Pentonville, for "imeqroements in the manufacture of paper from a material not hitherto so engloyed." -August 26; six months.

Jorn MUIr, jun., merchant, of Glagow, for "certain improwementa in the apparatus connected with the discharging-press, for condmeting, distribatiag, and applying the discharging liqworn, and the dyeing ligwors."-August 26; six months.

TO OOB2REAPOMDEETHB.

A Sabscriber's queries shall be ansucered in the next Journal.
The communication relative to Bunnet and Corpe's Concentric Engine, we have bern obliged to postpone for want of space until hext mowth. Wr must plead thr same excuse for Lieut.-Col. T.'s communication, although kis article is in typr. and the druwings engraved.

Nelson Memorial-He have receinsd some additional particulars of denigns exhibited at the St. James's Bazaar, for which we cannot find space in the primet number. They shall appear next month.

The Journal for next month will contais 8 pages extra, and contajn sume important papers connected with the profession, we will then endeanour to bring wp all arrears.
We feel obliged to Mr. Casey of America, for his comenmaication monich arriond as our work was going to press. We shall be glad to kear from him again.

The Editor will feel obliged to comntry subecribers if they will forsoard asy account of tworks in progress, or any newspapers containing artickes or paragraphus connected with the objects of the Journal; it will also be doing a great mervice if engineers and architects will cause all advertivements consected with comtrerts to be inserted in the Journal.

Comasunications are requested to be addressed to "The Editor of the Cisil Engineer and Architect's Journal," No. 11, Parliament Street, Westminster, or to Mr. Groombridge, Panyer Alley, Paternoster Rown; if by port, to be directed to the former place; if by parcel, please to direct it to the meareat of in two places where the conch arrives at in London, as we are frequently pup io the expence of one or twoo shillingt for the purterage only, of a cery swall pareel.

Books for review must be sent early in the month, commumications on or tof ore the 20th (if with wood-cuts, earlier), and advertisements on or baforr tho z th instant.

The Fibst Volume may be had, bound in cloft and letrenem in gold. Price $17 s$.

PLANS, SECTIONS, AND ELEVATION OF A ROASTING AND BAKING OVEN.

Fg. 1.-Elevation of Front of Oven.

Fig. 3.-Plan showing the Purnace, Smoke Flues, \&ec.

Mg. 2.-Transverse Section through Centre of Oven.

Fig. 4.-Plan showing the Floor of the Oven, Smoke and Ar Fluea, \&ce

P, stoppers of ditto. W, welsh lumps.
B, boiler.
C, supply cistern.
D, damper.
Scale of Feet.

5	4	3	2	1	0	1

Fig. 5.-Plan showing the Ash-pit and Hot Air-flue.

A ROASTING OR BAKING OVEN.

Sir-In answer to your call for communications, I feel as a constant reader that it is my duty to contribute occasionally my mite, I will therefore now address you on the subject of Kitchen Fire-places.
Roasted meat is a favourite mode of cookery in England, although not quite so much in rogue as it was previous to 1815. Kitchen fireplaces are constructed chiefly for this purpose-but the consumption of fuel is far greater than is required to effect the object in view, consequently there is a waste of material, and an unnecessary inconvenience from excessive heat. The latter is more particularly felt in town-built houses, in which the kitchen is generally on the basement floor. Here the heated air ascends and fills the house with offensive effluvia. Another inconvenience arising from open kitchen fire-places is, that the boiling process camot be regulated with any certainty. It is a well known fact that violent ebulition is not only not necessary, but is even injurious, and that simmering is the extent required especially in soup-making. Now this medium can never be attained on open fire-places. I would propose to put an end to this waste of fuel, and annoyance to all parties, from the cook upwards, by doing away with open kitchen fire-places entirely, and substituting a mode of roasting which would be more effectual, and under a perfect controul.
The difference between meat roasted before an open fire-place, and baken in an oven, consists in this, that in the one case it has been exposed to a change of air, and in the other case the meat has been dressed in the same air, and in a confined space. Now if we can construct an oven which shall have a constant current of heated air passing through it, I conceive that meat can be more effectually roasted in it than it could be before an open fife-place, and that such an oven will be more convenient in all respects, more economical, and not liable to the objections which I have binted at as consequent on open fireplaces.

Annexed are six drawings of a roasting or baking oven which I designed in 1833, and I will now proceed to explain its mode of action.

The boiler B to be made of cast-iron $2^{\prime} 6^{\prime \prime} \times 1^{\prime} 9^{\prime \prime} \times 1^{\prime} 0^{\prime \prime}$ having an opening into it on the top of $6^{\prime \prime}$ diameter, for the purpose of cleaning it out, and for receiving a steaming vessel for cooking vegetables, \&-c., a cock to draw off boiling water, and a pipe to supply cold water from a small cistern C , having a ball cock or other contrivance, so that the supply may be self-acting. The upper surface of thes boiler forms the plate under the oven door.

The furnace is pluced under the boiler. The smoke flues S proceed horizontally by two openings, each $6^{\prime \prime} \times 6^{\prime \prime}$ ou the level of the 7th and 8th courses of brickwork, (from the floor line), inclining to the right and left until they clear the hot-air flue A; here they rise perpendicularly to the level of the tenth, eleventh, and twelfth courses, passing on each side of the oven, and separated from it by 4 inches of brickwork, until they reach the cast-iron frame of the oven door, which is placed on the boiler; here they again rise, and they ultimately join

Fig. 6.-Longitudinal Section through Centre of Oven.

in one flue $9^{\prime \prime} \times 9^{\prime \prime}$ over the centre of the door, and under the danper S. The opening into the furnace $6^{\prime \prime} \times 6^{\prime \prime}$ is by a cast-iron door in which is an opening of $2^{\prime \prime} \times 1^{\prime \prime}$ having a sliding shutter, by which it may be partially, or wholly closed.

The hot-air flue $A 6^{\prime \prime} \times 6^{\prime \prime}$ enters from the ashpit, immediately under the bearing bar, and proceeds horizontally on the level of the third and fourth courses, until it clears the back of the oven. Here it rises perpendicularly until it reaches the fourteenth course (and a part of the thirteenth), where it branches to the right and left immediately over the smoke flues, and separated from them by a tile. The joint between the tile to be protected by a piece of slate or thin iroa, to prevent any smoke from rising into the hot-air flues. These fues proceed horizontally until they reach the side of the oven pear the door, where they are admitted into the oven by two opening $6^{\prime \prime} \times 4^{\prime \prime}$ each, the upper part of the openings being on the level of the springing.
The hot-air makes its exit at the back of the oven, close under the soffit of the arch. From thence it may be carried up into a drying closet, or the hot-air may be made available for any other useful parpose.

The entrance into the ashpit may be closed partly or wholly, by means of the cast-iron door having an opening in it of $2^{\prime \prime} \times 1^{\prime \prime}$, and 2 sliding shutter, similar to that of the furnace door.
According to this mode of construction the smoke never enters the internal part of the oven; but when the gross particles of the coals have been carried off through the smoke flues, and the fire burns brighs and clear, the action of the furnace may be reversed by pushing in damper of the smoke flue S, opening the damper of the hot-air flue A_{1} closing wholly the ashpit door, and opening the shutter of the furmace door. By these means nearly the whole of the heat produced by the combustion of the fuel will be carried into the internal part of the oven, through the hot-air flues.

The hot-air should come in contact with every part of the surface of the meat, both upper and lower, and therefore the meat ought to be supported on the points of iron crows feet of this shape. By these the whole apparatus of spits,
 smoke-jacks, \&c., would be superseded.

Should other additional contrivances be wanted in large establisbments for stewing, simmering, or boiling operations, hot plates and confectioners furnaces may be advantageously introduced; but in all these cases the means of ventilation immediately over them should be provided, so that the unwholesome fumes may escape through fues into the open air.

I am, Sir, your humble servant, Robert Thomson, Luect.-Col, R.E.
Dover, 12th July, 1839.

IMPROVEMENTS IN BUILDING.

Oor indefatigable friend and fellow labourer, Mr. Loudon, during the last summer made a tour in the Midland Counties and collected much valuable information, which he has published in the Gardener's Magazine. That part which more immediately relates to the objects of our Journal, Mr. Loudon has kindly given us permission to publish, accompanied by the nood engravings.
Milford and Belper, a few miles from Derby, are two of the scenes of the extensive manufacturing operations of the Messrs. Strutt ; and here we saw some contrivances, which we think, if more knowh, would be extensively used. Among these the most important is, the syster of warming and ventilating invented by the late Mr. William Strutt, and first used in these works, and described in Sylvester's Philosopky of Domestic Economy, 4to, Lond. 1821, and now in general use throughout Britain for large buildings; but there are various others, some of which we shall attempt to describe.

Cottage Windon Slaybar.-One of the most universally useful of these is a window fastening, or staybar, as it is technically called, for cottage windows, or the windows of manufactories, or, indeed, buildings of any kind where the windows are fixed, and do not slide in grooves, or are not suspended by lines and weights. This contrivance bas the merit of being perfectly simple, very economical in its first cost, and not liable to go out of order. The same principle is appli cable to the opening and sbutting of doors and gates of almost every kind, as well as to windows. To give an idea of the value of this contrivance, it is necessary to observe that, in the latticed windows of cottages, there is very frequently either one entire frame, or a portion in the centre of one, which opens, and is kept open, by an iron staybar with an eye at one end, which moves on a staple attached to the fixed part of the sash, and a hook at the other which drops into an eye in the part of the sash which is to be opened. Now, the objection to this booked fastener is, that as there is only one eye for the hook to drop into, the window can only be opened to the same width, whether the ventilation required be little or mach; and, when the stapbar is not in use, it bangs down, and is blown about, and very frequently beaks the glass. The new staybar, on the other hand, opens the window or door to which it may be applied to various widths at pleasure, from an inch to the whole width of the window or door, and the staybar can never hang down, or run the slightest risk of breaking giass. The general appearance of the new staybar, supposing the widdow to be open to its full extent, is shown in Fig. 95, in which a is the staybar, which turns on the pivot b at one end, and slides along a horizontal groove under the guide byr c at the other.

Fig. 96 is a view of the staybar apart from the window, showing the eye d, the handle e, and the stud f, which drops into holes in the horizontal groove, so as to keep the window open at any desired angle.

Fig. 97 is a view of the groove and the guide-bar. g is the guidebar or small rod which is for the purpose of keeping the staybar in its place in the groove h; ii are two plates with holes, by which the groove and guide-bar are riveted to the window; k, vertical profile of the groove, the guide-bar being removed, so as to show the holes into which the stud of the staybar drops The groove is of cast-iron, and the guiding iron is of wrought iron let into it and riveted, and both are bolted to the bar of the window by means of the plates $i i$, which are of cast iron.

Fig. 98 is a section across the groove, the guiding rod l, and the bar of the window m, to which the groove is bolted; \boldsymbol{n} is the handle of the guide-bar.

The window is cast in two pieces; the larger (Fig. 99,) being 2 ft. 10 in high, by $2 \mathrm{ft}$.1 in . broad, and the smaller (Fig. 100,) being 1 ft. $4 \mathrm{in}$. high, by 1 ft . broad, exclusive of the lead along the bottom' and sides, which forms the rebate, and covers the joint. In casting the smaller window, it is essentially necessary that it be somewhat less in dimensions than the space into which it is to shut, in order that it may always move freely. The air is kept out from the room within, not by the tight fitting of the sides of the small window to the sides of the frame, but by the contact of the edges of the sides of the small window with the beads forming the rebates attached to the inside of the frame; and also by means of the contact of the beads, or rebates, of the small window with the edge of the sides of the large one, or frame into which it shuts. In consequence of the sides never touching, the window moves with the greatest ease, whether expanded by heat in summer, or contracted by cold in winter, and weather-painted and and smooth, or unpainted and rusty.

Man 68

Fig 101 is a horizontal section across the small window and the two side bars, showing the outside beads at $g \mathrm{~g}$, and the inside beads at $h h$.

Fig. 102 is a vertical section through the small window, and the top and bottom bars of the gexed frame, showing a weather flllet, or weather table, which projects half an inch from the general face of the wivdow at k, and the staybar in the situation in which it rests when the window is shut, and also the groove and guiding rod at i.

The total weight of this wiudow before being glazed is about 61 l lbs., and the prime cost in Derby is $128.4 \frac{1}{2} \mathrm{~d}$. thus:-

We consider this by far the cheapest and best cottage window that-has been hitherto invented; it has been used in a great variety of buildings for 10 years, and when it is known, it can hardly fail to come into general nse in cottage dwellings and manufactories. In London it may be obtained of Messrs. Cottam and Hallen, Winsley Street, Oxford Street, for 13s. bd. for a single window, or where there are more than half a dozen, for 12s. bd. each; at Messrs. Cubitt's, Gray's Inn Road; and at Mr Roe's in the Strand, manufacturer of zinc iron.

Door Staybar.-To understand how this staybar may be applied to opening doors fully, or, as in the case of hot-house doors, to any degree of width, and to retain them fast at whatever angle it may be desirable to set them open, or to keep them fast when shut, it is only uecessary to suppose the groove fixed to the wall horizontally behind the door.

Fig. 103 represents a horizontal section through a door (a), the wall of the hanging style to which it is hinged (b), and the wall against which it shuts (c). The door is supposed to be shut, and it is held in its place by the staybar d, which moves on a stud at e, and along a groove from f to g. All the rest requires no explanation to any one who has understood the deacription of the window.

Fig. 104 spows a staybar for a door or a gate, in which the wull is on the same plane with the door. In this adaptation of the staybar, the groove in which it slides is made curvilinear, merely to facilitate the operation of sliding, because it would slide if the groove were straight. The curve ab, therefore, may have any radius that may be

convenient, provided that it commences at b and terminates at a. The points c c c represent projections from the groove, having boles for screwing on a wooden guide-bar, to prevent the staybar from rising out of the groove.

Fig. 105 is a section of the groove of half the proper size, in which d is the guide-bar of woud screwed on to the groove at c; f is the opening in the bottom of the groove into which the staybar drops. These openings may either be made at each end of the groove, only, for the purpose of opening the door to the full width, or they may be made also at the intermediate points ce, so as to open the door to different angles, which may be convenient in hot-houses for ventilation.

Fig. 10t shows a vertical profile of Fig. 107, i being the guidebar, and k the door.

Fig. 107, of half the proper size, shows the manner in which the guide-bar g is attached to the door h, the fitting not being tight.

It is to be observed that both the straight and curved grooves require a sort of cover or guidebar all the length of the groove, placed so as to allow the hook of the stay or propping bar to be lifted out of the hole, but not ont of the groove. In the straight groove (Fig. 103, ef), a piece of wood $1 \frac{1}{2}$ by 24 in . does very weil for the cover; but in the curved groove a wrought or cast inon cover has been used, and the little tubes or projections marked c c in Fig. 104, are cast on the groove to fasten the wooden covers to securely.

Gates and doors for back sheds, and for varions departmerts connected with the kitchen-garden and offices of an estublishment, may be most advantageously formed with staybars, instead of locks, boits, or hooked or other fastenings.. In rural architecture, the use of these staybars is calculated to be still more extensively useful than in gardening.

k

An Iron Nosing for the Steps of Staire, or to serve as a kerb for foot parement in streets, is the next urticle that occurs to us. The object is to change steps of woorl or brick into steps of greater durability than if they were of stone or iron, and at a stmall expense. For this purpose a nosing, or rebated piece of iron, is made fast to the step of wood by iron studs, or by being let into the walls at the ends of the steps, and this retians in their pluce flat tiles of terro-metallic earth, which are much longer before they wear out than any description of stone; which produce a step much lighter than if the whole were of stone or iron; and which can be renewed at pleasure. Such steps are well adapted for granaries and other agricultural buildings, and, in some canes, for the stairs of offices to mansions and cottiges. The most economical application of this contrivance is, of course, in cases where the steps are made of wood.

Cout Iron Guttera io Roofs, as a substitute for leaden ones, are found cconomical and effective. Fig. 116 is a section of a gutter between two roofs, in which $a a$ is the gutter, with a flange $b b$ for joining the

different pieces together: $c c$ are the slates; $d d$ the rafters; and e the gutter beam. The fall requisite to carry off the water is found to be from a half to three quarters of an inch in the yard, and this necessarily occasions the plane of the roof to rise towards the centre of the building, as shown in the section Fig. 117, in which the rise is indicated by the dotted lines $f f f f$. All the care that this

requires in slating or tiling is, to bring the upper edge of the lower course of tiles to a level, as indicated in the longitudinal section through the gutter, Fig. 118; in which g is the gutter, h the lower course of tiles, $;$ the gutter beam, and k hollow posts for supporiing the gutter beam, and serving as pipes for conducting away the water from the gutter. Cast-iron gutters of this sort will be found peculiarly adapted for ridge and furrow hot-house roofs : and we shall hereafter show that, for all large hot-houses, this kind of roof is better adapted than any other.

THE PIETA.

A collossal group designed for the Catholic Church in Francie-street, Dublin, by Hogan,* communticated by the Cousir Hawks le Grice, Me mber of the Academy of St. Litkt, and of rarious Academies of Art and Science.

Tus group of the Descent from the Cross is, as is usually the case, composed of two figures, the principral of which is the Virgin seen seated on a large stone, The entire figure is draped, the under tunic falls to her feet; and the mantle over it is confued to the body by a band round the waist; and the sleeves of the mantle are confined by armlets, and reach down to the wrist ; a veil covers the heal, falling over the shoulders and on the left arm; it is collected in a large mass on the ground. The veil shades the left part of the face, and falls partly over the extended arm, the hand is open, and the fingers are slightly bent ; the left arm rests on her knee, and with one hand she holds the arm of her son. The figure is in an upriglit seated posture; the feet separated and the limbs incline slightly to the right side; the hair is parted on the forehead, and the face looks down on the figure of Christ, which appears at her feet, with its back leaning against a mass of stone; the body reclines towards the left side of the Virgin, whilst the head falls on the left shoulder; the right arm falls perpendicularly and the hand is bent at the wrist, with the fingers resting on the ground. The left leg is out-stretched, and the right slighty bent; passing uider the left leg a little below the knee; the Grapery is spreat out under the body.

The figure of the Virgin is very imposing-seated lonely in her grief, she seems to submit with pious resignation to the will of heaven, yet still hangs, with all the anguish of a lond mother, over the budy of her beloved son, extended in death at her feet. No arrangemenit could be better calculated to strike awe into the mind of the specta-tor-to arouse the Christian to feelings of piety and veneration. The group does not produce a momentary surprise; but on long contemplation we find a quiet solemnity about it which awakens the mind, by degrees, to all the better emotions of the heart, we are moved with pity, devotion, and respect-we seem lost, for a time, in meditation; and know not which most to admire-the sentinent or the execution of the who'e.

Beautiful as it confessedly is, in the present state, yet few can form an idea how much superior the effect of the group will appear when executed in murble. A plaster nodel always seems hard in its parts, and the outlines cutting, nor can those delicacies be given, or spifited touches be executed by the noodelling tool-the light and shado:v also furnish too great a contrast, and want the subdued warmth of the marble. The group should be executed in a slightly transparent marble, and the light coming from the top of the building, through an amber coloured glass window. This might produce a charming etfect, by softeuing the shadows into laalf tints, and then making the figure appear to start forth into roundness, glowing under a glory of light. The grand effect of this group will be alpparent to the must ordinary mind, but the means by which that gramieur is effected can oniy be appreciated and understood by a few.
It becomes therefure the province of the critic to examine the whole in detail, and to endeavour to show the parts which contribute to its value, as well as to point out where changes would have enhanced its beauty. The bold and nasterly character of the naked portions, the spirited touches of the drapery, and its anple folds, are all judicious, especially when we consider that the group is to be raised to some considerible lieight above the spectitor, where all parts, but purticularly the extremities, will appear more delicate, and the drapery richer in the folds, and tiner in effect of chicio- curo.

The detaching of the body of Christ from the principal figure is udmirably conceived, for when the group is viewed froun its proper situation, the whole wiil appear more cuspact, as the broad shadow from the figure will fill up the void between the two statues. Few sculptors would have fureseen that this architectonic arrangement was necessary to produce a good distint effect. It however shows that Hogan is learned in his art, and has paid attention to the optical science, which was commonly observed by the ancients in adapting their bassi-relievi or statues w any situation, and had Thorwaldsen thought of this, he night have much improved the figure of the Pope in his monument of lius VII. in St. Peter's, at Rome.
The naked proportions of the figure of Clurist are beautiful-the marking of the muscles, and the insertions of the bones are anatomi-

[^19]cally correct-the whole is moulded with more than ordinary care. The integuments and the muscles have the soft and relaxed appearance belonging to a dead body, but the pectoralis, the deltoides and the biceps are a little too rounded, and appear like muscles developed by mannal labour; however the thighs and legs are sufficiently delicateyet the appearance of the body strike one as too plethoric. The contour of the face, and the high forehead have the usual traditional character, such is employed in pourtraying the Saviour. The countenance is certainly divine, and its expression seems relaxed into the cold but placid sleep of death.

The head drooping on the left shoulder gives a lifeless appearance to the body, and materially assists the compositions. The right arm hangs nerveless from the trunk, and the bended fingers on which it rests have the stiffness of death itself. The graceful sway of the body, and the right leg bent under the left, is well conceived, breaking as it does the uniformity of the lines of the composition. The shelving rock on which the body reclines is calculated to display its form to the best possible advantage; the dark shadows detach the contour from the ground, and a broad light shows the figure off with the greatest effect. The drapery on which the body reposes is admirable.

The drapery also of the figure of the Virgin is disposed with judgment, the style is grand, and the execution shows great talent, -the action of the body and limbs is consistent, but the figure has more dignity than grace. The expression of the face is perhaps a little forced for the grave character of sculpture; it however is significant, and reminds us of the Niobe.

In the composition we remark that all the lines are skilfully contrasted, there is nothing angular or obtuse, each figure forming a pyramidal outline, and the whole group falling within the limits of an equilateral triangle. In short the composition generally considered is both grand and novel, a masterpiece of art, and reflects the greatest honour on its designer.

CANDIDUS'S NOTE-BOOK.
 FASCICULUS IX.

I must have liberty
Withal, as large a charter as the winds, To blow on whom I please.
I. Weat the Eglintoun mummery may have cost I have not heard, nor do I pretend to guess; but if vewspapers are of unimpeachable veracity 12001. were expended on the temporary pavilion alone, for the late Dover festival. Well what is that to me? Nothing, still it is a very great deal indeed to u, since such prodigal expenditure for the hurried, feverish festivity of a few hours, contrasts most strikingly with not the economy, but the downright shabbiness and penuriousness on occasions where even extravagance would be meritorious. If a public edifice that ought to be an ornament and honour to the country is to be erected, it must be pared down, denuded, impoverished in order to make a beggarly saving that would be swallowed up in a single public dinner. Did not the matchless Lawrence collection of drawings absolutely go a begging, though offered at little more than half of what Messrs Woodburn are now likely to make by the dispersion of them, not because there are no persons in this country who could afford to make such an acquisition, but because they are destitute of spirit or taste, if not both! Was it our poverty or our apathy that prevented us from being now in possession of the Egina marbles? If we really cannot afford to be liberal towards art, at all events we might be consistently frugal and parsimonions,-which however is what we are not, but rather totally the reverse,-alternately spendthrifty, and penurious, with no other sort of consistency than that of being egregiously absurd, let us be what we may. For some fate or feat of tomfoolery-the second term is as applicab.e as the first-tens of thousands are considered a mere bagatelle; no cost is grudged, no estimate required on such occasions; but if it is for any thing more lasting, John Bull becomes wonderfully prudent, begins bargaining and cheapening, and calculates how many odd sixpences he has in his pocket to go towards the $j o b$.
II. Bargains in art generally turn out like most other bargains to be confounded:y dear in the end. John Bull, however, or those who have the laying out of John's cash, do not think so ; as would plainly appear were uny one to write the secret history of some of our buildings; Buckingham Palace, to wit, which with most transparent kind of makebelieve, it was pretended was to be nothing more than an alteration of Buckinham House. What is the consequence? why all that has been expended upon it,-which is something more than a bagatelle, has, as
far as art is concermed, been utterly flung away. Instead of hiving any thing to be proud of, we have a good deal to be ashamed of. Theodore Hook says no, but in spite of ten Theodore Hooks, I main. tain yes. Then there was-most blessed past time! there mas, Kew Palace: what was expended on that mass of cockneyism in stone and mortar, I know not:-that whatever it was was all thrown away, is wat we all know. Then there was Carlton House, of which the ondy redeeming part, outside or in was, the portico: all the inside especially was costly paltriness, or if to paltriness there might be here and there an exception, it was only where there was some prettiness ; for everywhere there was the stamp of little⿻ess. The Hall was any thing bat princely in its taste or style, therefore it was rather a Lilleputhian compliment-quite a minikin one when on entering the hall at Holkham, the Prince assured the present Earl of Leicester, that what he beheld quite eclipsed Carlton House. And yet it may fairly be quertioued whether the sums expended from time to time in altering, refurnishing, \&e. would not bave built and furnished two such pabses as Holkham is. It has been said that George IV. was a liberal patrua of the arts; it is impossible to add that he was an intelligent one also. To say the truth it puzzles me to understand how he ever got the reputation of a patron of art at all, since every one of whom I have at times inquired have been puzzled to explain, or even to bring forward a single instance to show that he really was one. Hardly can his protection towardssuch a piece of coxcombmediocrity as Cosway be cited in proof of it;-indeed if all stories be true, he liked Cosway as a mere cos. venience. Or hardly can his putting implicit confidence in soch a persou as Nash-but hold! I must beware of The Hook.
-Yet hold again, I cannot forbear kooking on to this section an epigram which I have somewhere met with, and must now trust to memory for repeating as correctly as I can.

> Twixt Florence and London the difference is this, Nor think that I speak it in malice:
> The firat has the palace that Pitti is call'd, The second-the Pitiful palace.

Theodore likes a joke : so there is one for him.
III. Featina leute seems to be the motto of the architect of the British Museum, at least of his employers, since it is now more than twenty years that that building has been in progress, and it threateas to linger on full another twenty years before it is completed; wheress within the last ten or twelve, about as many buildings have been beguo and completed at Munich, almost any one of which would throw all ours into the shade. In comparison with the apartments of the Glyptotheca the sculpture rooms at the British Museum, may be said to be only whitewashed walls. In comparison with the Pimacotheca our National Gallery is a mere cheese-paring affair,-and even the farade little better than a moonshine imitation of Greek architecture, ber and unfinished in all but the columns; while as to the interior-why! the loggie alone of the Munich gallery, with its five and twenty domes and lunettes, presenting a display of fresco painting, about four bundred feet in extent,-though in itself only an accessory portion of the building, causes ours to look nobetter than a set of auctioneers' show-rooms in comparison. Not to be tedious, but passing over the Königsbsu, the Pesthau, the arcades and frescos of the Hof-garten, the Ludwigs-kirche, the Public Library, \&c. \&c. to come to the Allerheiligan Kapelle-an edifoe begun and completed within ten years-years, too, during which so mang other important buildings were in progress, not to include among them, the Walhalla, or the restorations and embellishments of the Regentburg Minster,-yet that one is constellation of art. Whant magnif. cence!-ubove, below, around-no matter where you look or where you tread, the whole is gorgeous, but its gorgeousness is majestic and solemn, -solemn is perhaps too weak a term, for there is a sort of severe and awe inspiring pomp, approaching to sublimity, both is the architectecture and the painting. Perhaps ${ }_{i}$ its character may be best expressed in the words of my friend - who calls it a transtiguration of a building. What a blaze of gold is the entire surface which serro as a ground to the figures painted in fresco on the domes, the large arches, vaults, and all along the upper part of the walls. Umatural: it will be said: true; and it is precisely this unnaturulness that gives propriety and architectonic fitness to the painting as decoration just as it is precisely the splendour of the gold ground that imparts of gaiety but dignity and solemn richness to this unparalleled interior. Infinitely more unnatural and contradictory, would any more positive and imitative mode of painting be, however ably it might be executed This doctrine is, it must be owned, far more suited to the meridian of Munich than of London. It would be very foolish for the lovers of matter-of-fact painting to make a pilgrimage to the capital of Borariz to bebold what has there been done in fresco-painting. It is rumoored that Leo von Klenze, the celebrated Munich architect,-at whom ty the bye, Joseph Gwilt turus up his nose, is commissioned to prepure
designs for a new Museum at St. Petersburgh; and the rear of the Hermitage is spoken as the proposed site, which, however, seems contradictory with the iden of any particular magnificence extermally.
IV. The prevailing vice of our modern Greek or Pseudo-Grecian school is that notwithstanding its professed accuracy-not to call it servility of imitation, its correctness extends tolittle more thancolumns alone. Evenas far as the mere order is concerned, all above the capitals of the columbs is quite reglected-left offensively bare and unfinished,-the friese a mere blank, pediment ditto. It avails not to say that the sculptures of the friezes and pediments of the examples professed to be followed, are not to be considered as belonging to the architecture itself, but merely extraneous decoration, that may be applied or omitted as most convenient. A very little stretching of that principle might be made to serve as an excuse for dispensing with the foliage of Corinthian capitals, for what else is it but mere useless decoration? Indeed it would be oniy consonant with both reason and good taste, where we cannot afford to keep up consistency of style by making the cornice and other parts of the entablature of the same degree of richness as the columns, to adopt as the only legitimate alternative that of making the columns consistent with the plainness of all the rest. Instead of which, while the entablature is suffered to present little more to the eye than a few naked mouldings and shelf-like cornice, the columns themselves have fluted shafts, and highly enriched capitals. That I do not speak merely at random, is easily proved by referring to the portico of the National Gallery and that of St. Pancras,-certainly not the worst specimens of the kind. Indeed the difficulty is not to find examples in confirmation of the defect alleged, but of exceptions to it. At present I can recollect only one, either in London or elsewhere, namely, St. Mark's chapel in North Audley. street. As for the greater part of our modern Grecian buildings, what they chiefly show is the utter want of all relish for the style on the part of those who profess to follow it. To say nothing of the omission of sculpture,when did the Greeks ever terminate a comice not beneath a pediment with a mere corona. If the enriched cymatium added to the raking comices of the pediment were not always continued along the horizontal ones on the sides of the building, decoration was invariably supplied by the antefixa, and the ridges of the marble tiling behind them. Yet our modern Greeks make no scruple of leaving a plain corona comice as a termination to the building, should there happen to be no pediment. I do not say that we need precisely copy antique examples in all their particulars; but if we pretend to imitate them at all, the very least we can do is to do so consistently, and to take care that-no matter how-the same degree of effect be kept up throughout. If that cannot be done-that is, is not allowed to be done, but uiggardlinpss calling itself economy steps in and say it can't be afforded: the next best thing to be done, is to dismiss columns altogether, -and in nine cases out of ten they are quite as useless in themselves, as owing to the treatment of it, the order is rendered valueless as decoration. But, the cry will be, if we give up our columns we surrender up every thing. Take away our columns and how shall we be able to astonish people by our classical taste? True, very true:-0 ar Public of what gullible stuff are ye made:

ON CHARACTER AND STYLE IN ARCHITECTURE.

Minds incapable of perfection, yet aiming at it, must be constiantly in the situation of students. But since the obligations of society prevent the greater part of mankind from continuing in the schools during the whole of their lives, casual information must be the chief source of improvement. The meaness therefore of an instructor should deter none from accepting instruction. With this apology for offering auy remarks to my betters, I have satisfied myself and hope to propitiate others, especially as I demand nothing for my trouble but the pleasure of seeing an error corrected.

Since competition has become a prevalent method of selecting an architect, it is desirable that persons who wish to bave designs offered them, should be able to express their wishes so as to be completely understood by those gentlemen to whom they address themselves. From the frequency of such competitions, the formulary of particulars has become fumiliar to most. Yet many incorrect expressions are taade use of in some of the best instructions.
An error which I should be glad tw point out occurs in the instructiuns given by the Council for the New Assize Courts at Liverpool. These are the words made use of, "the character of the building is to be Grecian or Roman arclitecture."
Suppose I were standing with the author of this sentence on a precipice of the Alps, overbanging a dark and dreadful chasm, each side of him arising lofty mountains piled one on another, the uppermost peaks lost in the clouds. While his heart beat audibly, and his haud
grasped fearfully the projecting tree, were I to ask him what was the character of this scenery, he would answer, dreadfully grand! He would hardly, I think, say that its character was that of the Peak, or of the Andes. Or again presenting him to a warrior hoary with age and toil, and crowned with victory, would he tell me that the character of face was that of a Wellington, and not rather that it was noble and venerable. In both cases rightly discriminating between the container and the thing contained. The term character when applied to a building has a precisely similar signification as when applied to scenery or to a countenance.
A style is a method of conyeying a character, and is as distinct from that character as the human form, the soul of which it is the external representative; it is the means of explaining to the senses some (insensib'e) idea; in short is the matter, some moral quality being its analogous mind.

An author desirous of explaining to the world his speculations on any subject, makes use either of prose or of poetry, as one or the other is best capable of conveying his thoughts. If prose be chosen, he considers whether his subject demands to be expressed in didactic, argumentative, or colloquial phraseology. If poetry be selected-does he desire to reform morality by a display of virtue, herioc measure will best forward his intention. Does he sing of love, a tender ode is a happy metre in which to tell of Cupid's deeds-or does he lift his soul in adoration, the sacred bymn is now the vehicle of his praise.

Painters too, have their styles varying with almost every artist. The happiest efforts of Turner's "Sunny style" would ill represent the lively energy so admired in Landseer's animals, or the domestic repose of Wilkie's firesides.

The Greeks and Romans had each a method (style) of building peculiar to themselves. With the Greeks the Doric order was expressive of extreme grandeur or sublimity; the Corinthian of perfect richhess or beauty. Among the Romans the Tuscan order represented the former quality ; the Composite the latter. The same qualities are represented by the same forms among us, with the addition of a quality drawn from our feelings with regard to the people from whom we received these forms. What this quality is, persons of greater taste than myself should determine; but I should say that the Greek style suggests the idea of mental power, and cultivated genius; the Roman of physical strength and commanding weight. Ecclesiastical Gothic architecture suggests feelings of religious reverence. Domestic Gothic suggests the liveliest ideas of pleasure that an Englishman can receive, in connection with the word home.

The aim then of an architect is to make such an arrangement of the parts and detail of a building as shail produce certain sentiments in the minds of beholders. The quality connected with theme sentiments is the character of the edifice. Thus the sentiments desired to be called forth on beholding a palace are those allied to splendour and majesty; the character then of the building should be splendid and majestic.

Accordingly as one feature predominates in one style, or method of building, is that stple selected to illustrate that feature. As the author selects poetry or prose, or any subdivisicn of either, for expressing his thoughts, so the architect uses Grecian, Roman or Gothic, and any subdivision of either to express his.

The author too combines narrative with conversation, and the poet song with epic verse. The architect composes a design of lonic aud Corinthian, or of the Doric and Ionic. The true taste of both consists in maintaining one character through the whole, and so combining as to produce larmony without monotony, and so contrasting as to produce variety without confusion.

The failure in our modern edifices is not so much, that our construction is bad or our detail faulty, as that our architects have either not greatness of soul to imagine, or completeness of education to express, an appropriate character in our buildings. Thus we have a palace of royalty degraded into a residence better adapted for Venus; and our private houses elevated into temples. Churches now fit for houses und now for stage-plays. Sometimes to spend his patrons money and display his own taste, an architect! relieves our monotonous streets by a house adomed with church windows, in the richest style of tracery. A rich feast for connoisueura, but that, alas! the mullions and tracery are executed in cast iron of a quarter of an inch thick. Cast iron indeed reigns triumphantly every where, adoraed with the garments of its cast down rivals, stone, wood, and brick. One would think from the cold and starved appearance of many buildings that the artists hearts were cast iron too.
But to conciude, if I bave explained to one person ignorant of the fact, that there is a difference between character and style I am satisfied.

THE DAGUERROTIPE.

The love of the marvellous is so very apt to induce persons to ex-aggerate-to stretch a leeth, in their account of new discoveries, whilp the belief of those who listen to them is in its turm so very stretching and elastic that very seldom indeed does any invention turn out to be the magnificent prodigy it was at first described. Yet although they have been deceived times innumerable nfter this fashion, the public are cver ready to give credit to the cry of Wolf! Wolf! or, to borrow another allusion, believe that the mountain is about to be delivered of some portentous gigantic monster, though it afterwards proves to be a mere mouse. Hence I myself am rather sceptical and slow of belief, lreing of opinion that it is all in good time to exult when we are quite rertain that we have got something worth exulting at. It is surely better to tind one's-self in error on the safe side and that the object of our anticipations greatly exceeds rather than at all falls short of them. Who is there who has not some time or other in the course of his life been grievously disappointed in a person officiously deacribed to lim as prodigiously handsome, or clever, or engaging, and whom but for such description, he might have discovered to be so, but whom, when his expectatious are thus excited, be onds does not at all answer to the idea he had preconceived, and in consequence sometimes falls into the contrary mistake, and sets down the rara abis-the pheenix in human shape, as no more than a very so-so-ish creature after all?

But what has this to do with the Daguerrotype? nothing-that is, something;-perhaps much: for what is related of it, certainly does ntagger beliel. To come to the most material point at once, is it merely that sort of hyperbole which is to be taken cum grano sa/ss, or ratber with a peck of salt?-or is it a fact that in the pictures so produced the minutest details are expressed, although not visibie to the naked eyc, yet capable of being rendered so by the ussistance of a powerful lens or microscope. Supposing, for inst:nce, a view to bet taken of Henry V Ij's chapel by the Daguerrotype, besides the utmost fidelity as to all that would be discernible in the building itself, seen at the same distance, would it be possible by means of a magnifying glass of sufficient power, to make out every moulding, every carving, every lineament in short, no matter how miuute, existing in the edifice itself? If such really be the case the discovery is of incomparably greater importance than it has been described. A drawing or series of drawings of the kind, would place any building, or auy otber work of art under our inmediate inspection, at any time, and all its details might be exaunined far more closely than in the building itself, and the carrings of a cornice or ceiing might be seen quite as distinct' y as the parts just on a level with the eye-the figure on the top of the York column as distinctly as the pedestal. Such buildings as the Alhambra-which it has cost years of patient industry on the part of artists to give us uny adequate idea of, even with regard to only its more important parts, may now, it won'd seem, be revealed to us in the most vivid reality, with the sole exception of colour.

I am afraid that a l this is by far too good to be true:- that a very scrious deduction indeed must be made from it to bring it to the trutli. Leaving to others to endeavour to explain or comprelend hom it can be accomplished, I should be very well satisfied with having evidence that it is accomplished, and that whether the causes can be explained or not, such is the fact. If it be-and Sir J. Robison's account (in the Edinburgh New Philosophical Journal) of drawings made ly the Daguerrotype, which lie had himself examined, goes to assert quite as much,so far from being at all overated, the discovery is rather underrated, and the very extraordinary results thus to be obtained from it, hare been noticed far more briefly and cursorily than they deserve. We are told that "a crack in plaster, a withered leaf lying on a projecting comice, or an accumulation of dust in a hollow moulding of a distant building, though not perceivable to the naked eye in the urigina! objects," may be detected in the drawing when examined through a magnifier! Yet beyond the mere mention of it, that by far the most wonderful and importint circumstance of all, is hardly dwelt upon. Is it not probable after all that such minutix have been bele d only through the magnifying lens of imagination?-in short, have not people faucied they have seen a good deal more than they really did!

Allowing, however, such to be the fuct, we are not distinctly informed, whether it is limited to the original drawing or not;-and yet, we must suppose that it is, since hardly could, what is not visible to the naked eye, but requires to be examined through a nicroscope or lena, be expressed by any graver. This therefore materially restricts the application of such mode of drawing, ouing to the inconvenience of keeping any considerable number of such plates, more especially, should it be requisite that each should have a glass before it to protect it from injury-as seems to be the case, for I understand that a mere tuuch of the finger will ubliterate any part it comes in contact witi. Ahother circumstince that, I must own, is rather puazing to
myself, is that the extriordinary powers ascribed to the Daguerrotype should not have been expmplified ere now by some more worthy suhject of interior architecture than one where the "threads of a carpet" seem chiefly to excite admiration. Why not at once have tiken a view of some gallery or museum filled with works of art, each of which-the most remote, it scems, ns well as the nearest-wonld be transcribed with all its detuils, no matter how intricate, or however minute. No less strange is it that opportunity should not have been afforded to the public of this country, of gratifying their curiosity and removing their doubts by the evidence of their own eyes, as might lave been, had a fow successful and well selected specimens been procured for the Polytechnic Institute and Adelaide Gallery of Science. Why has not sucl a subject as the Barri're de l'Etoile been taken, it it really be true that all its sculptur-s, all the details of its workmanship, can be so represented with a fideiity which the hand of the ablest draftsman cannot even aim at? Still it must be admitted that the circumstance of its mot having been done is no direct proof of the impossibility of its being accomplished; but merely proves the very great considerateness of those who wish to apprize us br degrees of what the Daguerrotype is capable of performing, instead of startling as too suddenly by all at once manifesting it.

However, staggering and incredible ns may be what has been 20-0 serted with respect to this discovery, I must presume it is a moos extriordinary one in itself, berause unless it in some degree answer to what bas been reported of it, all that has been said with the view of prepossessing us in its favour, would be not only useless but perfectly ridiculons. Therefore, although I must be allowed to hold back my own belief, until ocular demonstration be afforded me, I am willing here to suppose that the Daguerrotype can achicve the miracies attributed to it. This granted, let us now look at the consequences, and as far as one department at least of architectural drawing is con-corned-namely, that which consists in the portraiture of a ctual build-ings-a tutal revolution must take place, the labour and skill of the draftsman being entircly superseded by a natural operation, whereby the view itself-the image produced by the camera is fixed and perpetuated. In comparison with such pictures, the most currect and most elaborate hand-dram:ngs, would be unsatisfactory; how much more so, those of which the authors are content to give us a mere general resemblance of a building, or what is frequently no resemblance at all, ror affords any information as to details. How frequently architecture is now slurred over in what some profess to be architectural views,-how grossly incurrect they often are as to very importint particulars, and how grateful we have hitherto been for tolerable accuracy where inaccuracy seems to have been the genernal rule, need not be told. But from this time, those evils will be altogether corrected ; not only every detail, but every degree of shadow, every tone of light will be shown us as in the real object; truth will be substituted for specions falsification, mathematical precision for blundering of the eye and band. Instead of a greater or less degree of perfection-a greater or less approximation to truth, we shall have perfection-truth itself. No longer shall we be at the mercy of the draftsmen. They may now cry out "Othello's occupation's gone." Hardly will people be content with loose tbough eren spirited indications of what they may behold in exact images of the objects themselves. The further consequence of which will be, that when their eses are accustomed to such accuracy of delineation, persons will not overlook as they now do defects of perspective, and drawing in pictures, and such works of art where the Daguerrotype will be of no avitil. But-and in truth it is a most tremendous bud. it yet remains to be seen whether this vaunted discovery can fairly and honestly accomplish all that it is said to do. At present we havi only hearsay-except indeed that some like myself may have a very great deal of doubt besides. For my own part, I have very strubg doubts indeed, not becaluse I wish the invention may not be foumd to answer, but because I am greutly afraid expectations bave been raised that can never be gratified.

Cempros:

Sponn Tefegraph.-The apparatus is now fixed, and the telegraph will be in operation in a short tine. The lenefts derivable from this institation will, we doubt not, be duly apprcciated. The Hull Shipping Corspany, and others, have already ordered signals.-Hull paper.

Banquet in the Thames Tunnkl.-On Saturday afternoon, the in rectors of the Thanes Tumel Company gave an elegant dinner in the Tutnel to the persons employed in that undertaking, to celebrate their bsvimg reached low water mark. Mr. Hawes, M P. Was in the chair, and 230 prosous tat down to table. On a raised platform, about 500 visitorn, tire the jority of whom were ladics-were provided wish places to view the gratifrias sceue.

THE ROYAL ACADEMY.

Without touching upon the general question which has lately been agitated in several political and other journals, "How is the Royal Academy to be dealt with?" and which has been settled, for the present at least, by a majority of only five against Mr. Hume's motion, -without asking what are the merits or demerits of that body as regards the other two fine arts, it must be allowed, I conceive, by every one, that as far as architecture is concerned, the assistance it affords it is the smallest possible, indeed barely nominal. A comer allotted rather grudgingly to architectural drawings, at the Academy's exlibitions, and a series of half a dozen lectures annually, constitute almost the whole of all it has ever done, or affected to do, for architecture; and even this little has been considerably abridged, since for several years the annual lectures have been suspended, owing to the infirmities of the late and present *Professor of architecture, and the office itself has been allowed to become a nominal one. Most assuredly neither of the individuals alluded to ought for a moment to be reproached for his heavy personal affictions; yet it is justly matter of reproach to the Academy, that no one else is appointed to discharge those duties for which continued ill health incapacitates him who, by virtue of his office, ought to do so. We meet with nothing parallel under similar circumstances any where else; if a master is disabled from attending to his school, he must either depute some one else to do so for him, or his school must break up. But in the Royal Acadenny they manage matters differently ; provided there be nominally a Professor of architecture, it is all-sufficient. If he can give lectures, he does so ; if not, the students inust dispense with them. Yet what is this but saying that it is a matter of perfect indifference whether lectures of the kind are delivered or not? whether the duties of that professorship are punctually discharged or remain altogether in abeyance? Granting for a moment that such really is the case, the questioat then suggested by common sense is, wherefore shonld there be any such professorship, or any such lectures at all. If they are useless, let them be abolished; if not useless, why does the Academy presume to treat them as if they were so? That is the question, and one which, I suspect, it would puzzle them greatly to answer, even should they summon all the nous they have among them.

As painters, the majority of the Academicians may not care one jot about architecture and its interests; yet although they may individually be perfectly indifferent to it, as a body it is as much their duty that they should attend to it as to any other part of their institution. Here, therefore, another question starts up, namely, how happens it that architecture is so inadequately represented in the Academy as to be looked upon as a mere cypher? Is it because, although a partner in the firm with painting and sculpture, architecture bas only a very small share indeed in the concem, perhaps not more than one fiftieth part of the whole? Is it not worthy to be put upon the same footing with its co-partners? is there anything in the Academy charter to such effect? is it there expressly stipulated that the painters are to have the lion's share, and architecture be content with being admitted to the honour of participating by looking on?
I do not accuse painters, it is the Academy I accuse, for defrauding architecture of its just rights, to which they are bound as much to attend and to see supported, as those of painting itself. If architecture is to be treated merely as "a poor relation," taken in out of charity, to be subjected to continual insult; to be banished to a side table in a corner, or evensent down to the second table, when there are visitors at dinner, the sooner it shows its independence, and gets out of the clutches of such charity, the better. Better for it to be independent, and alone, than to be treated as the fag-end, the rag-tag and bobtail of the Royal Academy.

I shall, no doubt, be reminded that architecture has now a home and establishment of its own in the Royal Institute of British Architects. Tu which I reply, all the more disereditable to it, it is, then, that it should submit to the indignities put upon it by the Academy. Neitber does the circumstance just alluded to, warrant the latter at all in treating it as it plainly does. So long as architecture continues to belong to the Academy, it ought to insist upon justice from it. If, un the one hand, the Acudemy are very willing to get rid of architecture, and architecture can afford to be independent of the Academy, why do they not part by mutual consent? or why does not architecture fairly sue for a divorce?

Let the painters have the Academy and its exhibitions to themselves. If the architects care for having an exhibition at all, let them have a proper one; if not, let them go without one. If they remain with the Academy, and the latter can afford them 10 better accommodation than it now does on the upper floor, let other and sufficient

[^20]rooms be appropriated for the exhibition of architectural drawings on the lower floor of the building. By being kept quite apart from the pictures, and none suffered to intrude among them, the architectural drawings would be benefitted. Yet this is not all; additional and adequate space is not the only improvement which is required: some of the present regulations ought to be altered Instead of its being insisted upon that architecturil designs should have backgrounds and be coloured, to make pretensions as pictures, the contrary rule ought to be established, and no other colouring than shadowing with sepia or neutral tint should be allowed in designs, except in cases where colour is essentially part of the design, as in interiors, and perhaps in perspective views of buildings already executed; drawings of which class should be in a separate roon from the others. In many instances colouring becomes really the lenocinium artis, particularly when those extravagantly unnatural hues are resorted to, and those captivating, but deceitful, and exaggerated pictorial effects put into geometrical designs, which every exhibition at the Academy witnesses, and which only serve to draw the attention from architectural merits and defects, and fix it upon circumstances that have nothing to do with either. To be what it ought to be, an architectural exhinition would be upon a very different footing, from what that portion of theirs is at the Royal Academy ; it would be greatly more comprehensive as regards design, as it would einbrace every thing connected with the decorative part of architecture; while it would also be more select, no drawing being admitted but what had some kind of value or interest. That any improvement will ever tike place at the Academy in this respect is altogether hopeless. But then, it will be asked, am I so conceited and so silly as to imagine that what I have said will stir up arehitects to do for themselves what the Academy and the painters will not do for them. By no means; I no more expect it than I do to hear that St. Paul's has made a trip across the Atlantic in a steamer. Then why do I touch the subject at all? because I an anxious that, at all events, people should understand the disgraceful position in which architecture stands at the Royal Academy, and that no one should be able to say that, be it ever so bad, there is no remedy for it. Architecture can shift without any favour and patronage from the Academy; if not, it must be in a truly pitiable plight, seeing what kind of support and patronage it now receives from it. Whether in other respects the Academy be more than a mere club of artists, as some have affirmed, I leave to the consideration of others; and only add that, whatever may have been the case formerly, there is, now that the Institute has been established, not the slightest reason wherefore architecture should continue to submit to the contumelious treatment it receives at the hands of the Royal Academy.

Vindex.

ANCIENT STATUES.

On the different Materials employed by the Ancients for Statucs, and on the Varieties of their Marbles. Iranslated from the French of the Count de Clarac, Knight of rarious Orders, Keeper of the First Division of the Royal Museum of Antiquitits in the Loutre.
There are few substances capable of being subjected to the chisel and of receiving a form, which the ancients did not employ in the sculptural art.* Clay and wood, on account of the ease with which they are wrought, were doubtless the first inaterials employed in the infancy of sculpture, which only employed itself upon stones and metals when its processes were more advanced and matured. These first and rude essays were probably clothed with real stuffs, in order to give them a greater appearance of truth, until the period arrived when the chisel could attain the representation of drapery. As it is natural, also, in the infancy of art, to consider that the natural colour of objects adds greatly to the fidelity of their representation, it may easily be conjectured that when metals and stoues were used, those colours were sought which presented the nearest approach to the objects wished to be imitated. Thence originated polychromic sculp-

[^21]ture, or that which united sulstinces of different colours, and polylithic statues, or those composed of several stones.* These kinds of sculpture, which are rejected by modern artists, had a great sway among those of autiquity, even in the brightest periods of the art, and were held in greater estimation than monochromic sculpture, or that which made use of ouly one colour. As the periods in which the greater part of the sculptural substances have been used are unknown, :i chronotogical arrangement lecomes inpossible, and we have therefore arranged them alphabetically in their several classes.
Clax.-This unctuous and binding earth was used in the first essays in modelling, as in the case of Dibutades, 900 years before Christ. In Greece there still existed, in the time of Pausanias, many very ancient statues and bas-reliefs in terra-cotta.

woods mentioned in the ancient authors.

Box.- Statues were made of this, and the living tree also was cut into the figures of men and animak. We see instances of this appropriation of the box and the yow in the ancient paintings of the sursenm of Portici, now at Naples, where these trees are represented cut and disposed in compartments, serving as ornaments in the konam gardens, in the same way as they are used in modern times. Tablets of bos, and also those coverell with wax, were usell for drawing in the time of Apelles. $\%$ Cedar, was regarded as incorruptille. A resin was also extracted from this tree, which was applied to wooll :mend other objects wished to be preserved. It was ofteu used as a kernel or core of statues of gokl and ivory-aecorling to some authors the Diana of Ephesus was of this wooll. Citron.--This was a kind of eedar, and was used in making valuable tables of large dimensions. Mr. Monges read at the Institute, some years ago, an interesting paper on this wood and on the tables. Corki-The bark of this tree wis one of the first substances used for sinall figures. Cypress. Ebony was much esteemed. Dipenes aul Scyllis of Egina made many statues of it, and as a religions idea was attacleed to the colour of certain objects, it was probably used as a substitute for black narble. Fig. TREE, being white and easily workel, was also used for certuin divinities. Fir was used for the woul-work of the horse of Troy. Limetref. Lotci. Maple. Myrtle.-At Lemnos, there was, according to Pansanias, a statue of Venus crected by Pelops in female myrte. This was prolably a kind of log or rude idol, covered with real drapery. Oak. Olive. Palm replaced the cork, although, fron its fibres iund knots, it could not lave been fivourable to sculpture. Wild Peat-thee.-Of this wood there was a Juno at Samos. Peach. Pine. Poplak. Vise.-The wild vine, and that of Cyprus, were particularly used. The Diana of Ephesus was, according to some authors, of this wood. Although there are vine stocks of large dimensions, it is not easily to be conceived how statues could be maide of them, on account of the number of knots; the wood also is stringy, and not easily worked. Yew. Whlow. Osler. and Saliow.-An Esculapins of Spartil, and a Juno of Sanos, are mentioned as being made of wicker, but they must lave been as rude as scarecrows. The colossal figures called Arga, thrown yearly into the Tiber, were made of these trees; as also the immense Colossus in which the Germans burned their prisoners in honour of Teutites.
metals and other materials.
Adamant.-A statuc of Venus is spoken of as composed of adamant, and attracting a mass of iron. Aubichalcem or Orichalcun, was an alloy of copper and gold, esteemed for its brilliancy and hardness. 'To prevent bronze from changing, and to give it a good colour, it was rubbel with the amurcu of olive, or with bitumen. Bronze, or

[^22]Copper.-The manner in which we employ this metal, gilding it, or covering it with a colour which it should derive only from time, prevents us from investigating those mixtures which would give it greater brilliancy or beauty. At present, however, at Paris, much mure eare is used in the proportions of the alloys. Bronze or brass, more solid than copper, is only this latter metal united to tin or zinc in certain proportions; the ancients who executed an immense quantity of statues and works in bronee, made a great variety in their alloys. The brass, bronze or copper most celebrated, were those of Cyprus (Kupros), from which is derived the name of copper-of Corinth, the alloy of which is attributed to chance, to the melting and mixture of several metals during the burning of that city; but it appears thut this is hardly possible, and that the bronze is more ancient. In the time of Pliny it was imitated with an alloy of copper, gold, and silver -of Delos and of Egina was much esteemed, as well as that of Tartessus in Betica; Polycletes preferred the bronze of Delos, and Myro that of Egina. The different kinds of copper, of Cordora or of Mfarias, of Sallust, found in the Alps, and of Liry, mined in Gaul, were muelt sought after, and derived their names from the proprietors of the mines who worked them in the time of Cesar. There was also a black bronze, and also that which, being of a liver colour, was called hepalizon, from hepar, a liver. It was believed for a long while that the ancients dipped bronze in water to harden the arms which were made of it; but M. d'Arcet has proved that tempering softens irvues, and that it is only by alloying copper with tin in certain proportions, and by forging it, that it accuires hardness and elasticity, and becomes sonorous. Electrcm, which is mentioned in Homer, was either natural or artificial. It was made by mixing a fifth of silver with four fifths of gold. This alloy was much esteemed, because it was found to shine more with lights than either gold or silver. Pliny says that vases made of it assumed the colour of the iris or rainbow. The ranle of electrum was also given to yellow amber. Gold. Iron.-Sereral statues of this material are mentioned, both wrought and cast.* Lead. -The statue of Mammurius, who made the ancille or sacred bucklen in the time of Numa, was of this metal. Obrizum was the puret gold, which, after having passed several times through the fire, acquired a brighter colour. Some statues were made of massive gold, but in general they were embossed (called Sphurelaton) from a dhiu plate. Gold was thus used in statues where it was joined to ivory; and often statues in metal or wood were only plated or gilt. Gold of several colours were used, and sometimes also painted ormaments or precious stones were used in conjunction with it. SLlver is frequentls mentioned by authors as a material for statues; it is, however, less adapted for sculpture, and was less used than gold, of which several preparations were known. I's is enumerated by Homer among the metals in the shield of Achilles; but it is inore than doubtful whether this deseription and others relating to the arts were written by the great poet.
lrony was used in great quantities and at a very early date for statues, both by itself, and in conjunction with gold. It seems, according to some authors, that the ancients found out the means of moulding it, or at least of softening it. By sawing in the length, and by cutting out hollowing cylinders in the ivory, they obtained plates large and thick enough to be used even for colossal statues, of whicb the core or interior framing was of wood. The humidity of these statues was kept up ly the application of oil, either extermally of internally. The tooth of the hippopotamus was also used for small statues, probably in the place of ivory. Bone, and among others that of the camel, were appropriated to the same use. The Palladiun was reputed to be made of the bones of Pelops. \dagger

Wax was employed as well as plaster for models and moulds. Statues or figures were also made of it; ansl the Romans used it for the busts of their mestors (thence called cere), which on days of ceremony were decorated with clothes and ornaments.

Prich:-A statue of Hercules of pitch is cited as having been made by Dedalus.

Vellow Amber, Succinum, or Eifctrum.-Of this a statue of Augustus was made. Incense and Spices.-A stutue of Sylla was made of such compomals, and burned at his funeral. Empeducter, the Pythagorean, and Olympic victor, distributed to the people a boll made of myrrl. Mention is even made in the aucient authors of gredt

[^23]figures made of four pastf, of hay, and of sood. These hind of effigies were used also for sorcery ; those called neuropastes and oscille, were moved by means of thread, like our puppets; and some were also moved by quicksilver.
(To be continued.)

FRENCH FURNITURE, MANUFACTURES, \&c.

Upon a former occasion we called attention to an article in the second number of the Foreign Monthly Review, and we now do so to the fourth number of the same joumal; not for the purpose of bestowing any notice upon the capital, the witty, and humorous paper on Esskunst, or the Philosophy of Ealing, which has generally been pointed to as the most attractise of all the articles; but in order to lay before our readers soure extracts from that entitled "French Manufactures."
"، These works (L'Exposition, Journal de L'Industrie, and L'Album de L'Industrie, are directed to accurate representations and descriptions of all the best modern works of art (painting and statuary, properly so called, excluded), as well as of manufactured products that either exist in France, or are on the point of appearing. Does a new moulding for a marble climney-piece appear-does a new bronze boss for a door-handle, \&e., come ont-is a house erected in more than ordinary good taste-is a new lamp sold anywhere-lias a splendid carriage been seen in the Bois de Bonlogne-in a few week's time it is laid before the manufacturing public, in full detail, by these useful pubications, engraved with the utmost care on steel, and coloured ats naturel. For example, one of the numbers contains a very elaborate plate of the interior of Musard's caff, a beautiful specimen of Gothic work of every kind ; another has Marshal Soult's coronation carriage; a thirl lins the front of a modiste's slop in the Rue de Richelieu; a fourth presents us with some curious pumps ind other hydraulic instruments; and all of them are eunbellished with represutations of various articles that have figured in the great exhibition of arts and manufactures in the Champs Elysies."

To go even no further than this, we lave here a very striking proof of the much greater taste for art generally in France, and for works expressly intended to represent its procluctions; whereas such publications would not find snfficient market in this country. Unless they belong more or less to the class of antiquarian specimens, subjects of the kind would meet with no purchasers among ourselves. Indeed, there is reason for suspecting that eren works having architecture professedly for their object meet with very inadequate encouragement, or rather with discouragement, with chilling coldness and indifference. To be at all a saleable commodity, architecture must be served up in picture books, where the interest of the plates is made to lie not in the buildings so much as in the figures and costumes introduced, and in that sparkling effect of light and shade which may be made to set off the ugliest just as well as, perhaps better, than the most tasteful piece of architecture.

However let us drop these reproachful comments, and proceed with our extracts. "The hew stuff woven of silk and glass, or glass alone, attracted much attention in these galleries. According as the glass threads are coloured, yellow or white, they imitate gold or silver hrocade with the greatest nicety, and they lave the advantage of never tarnishing. Their ffect for furnilure is most splendid. The price is from 25 to 40 frams the ell." -Here then, is a perfect novelty, which wilt probably leall to some changes in decoration. If, as we presume, tissues woven entirely of glass are not likely to be at all injured by heat or flame, they might be applied to draperies and canopies, over chandeliers and lustres in a ball room, where, if tastefully designed and arranged, they would produce a striking and appropriate effect.

* In furniture, the prevailing taste of the Renaissance had it all its own way-it least for all cabinets, tables, bookeases, \&c. No other furniture in the world can be compared to that of France-we do not say in solidity, but in taste and appearance. To these two qualities the Parisian mamufacturers have recently alded those of good workmanship, of artistical design and execution, and of moderation of price. In many articles, ingenuity has been greatly on the rack, and soine of the beds which tunned into sofis or tents, and might accommodate Lall-it-dozen slcepers or one as the case might be, with others that shut up in a common portmanteau, were lighly creditable to their inventors. The carpets that come in for so important a share in English house-keeping expenses, were here in wonderful abualance, aud at comparatively moderate prices; the Anbusson carpets were nea ly as sumptuous things as what the Gubelins or Beauvais could turn ous. The cabinets, the commodes, the tubles, whether in oak, in ebony, or in rose-wool, (mallogany is eutirely gone out of fushion,) were all earved in the most smoptuous and expensive style, richly
ornamented with gilt bronze, and incrusted with plates of various coloured marbles, or mother-of-pearl."

Though we ought to desist from quoting furlher, we cannot refrain from extracting what is said relative to an invention by M. Colas. "This process admits of very speedy and cheap application to all works of art, and as an instance of its use, we may mention that a great quantity of wooden gothic panel-work being wanted at a low rate for the restoration of the church of St. Germain, L'Auxernois, the inventor has contracted to furmish many thousand feet, sculptured in the most exquisite mamer, after the original model taken from the old church, at litle more than the ralue of the material"!! After this we need not say that the article deserves to be perused by all our readers; and we should be glad if any could confirm what is stated as to the new process for copying gothic panel-work, since, unless very greatly exaggerated, it must be a most important invention, and one likely to improve our modern church architecture in that style.

SPEED ON RAILWAYS.

a communication by the copte de pambour to m. arago.

I'HE resistance of the air to bodies which travel through the atmosphere with a rapid motion, having given room to some persons to imagine that locomotive engines conld never attain a very great velocity on railways, I think it will be interesting to you to b now, that in an experiment I have just made (on the 3ril August, upon the Great Westem Railway between London and Maidenhead, we attained a speed of $55 \cdot 4$ Englisli miles per hour. The experiment was performed by the "Evening Star" locoonotive, manufactured by MrRobert Stephenson, of Newcastle: it has wheels of 7 feet diameter and drew only the tender loaded with 8 persons. It maintained easily, during 7 or 8 niles, a speed of 45 miles per hour, afterwards, for a distance of 3 or 4 miles, a speed equal to 48 iniles per hour, and at kast, two miles were travelled over, each in one minute and five seconds, which gives a velocity equal to $55 \cdot 1$ miles per hour. Although this very rapid motion gives one the idea that we are left to the mercy of chance, by the difficulty there would be to stop the engine in tinne, in consequence of the almost complete instantaneousucss with which obstacles present themselses, to overcome this difficulty it would be necessary to increase the inspection of the state of the railway, and to employ rapid means of transmitting to a distance, by signals, the state of the road.
With the engine employed for the experiment we were not able to go beyond the speed stated above, because the puap was not sufficiently large to feed the boiler, consequently we were obliged to suspend the vaporisation, and to decrease the speed, until the boiler was again replenished with water; but chere is no doubt that in only enlarging the diameter of the pump and feeding pipes, we might be able to maintain the greatest speed for a long clistance-and cren to go beyond it. Speed equal to what I have reported has already been mentioned in some journals, but as these statements are often inade upon hearsay cridence only, I have thought that it would be useful to you to be informed of it by the experimentalist himself. I have not given here the different dimensions of the engine, because my only object now is to make known the facility that there is in attaining considerable speed. I shall only add that the Gireat Western Railway is sensibly a level.

OBSERVATIONS ON THE RESTORATION OF RUINS.

Many who inngine themselves antiquarians consider it as a perfect desecration to remove the verdigris and dirt from a coin, so as to render the device plain and distinct, or to clean the pages or renovate the binding of a Carton.

Now this opinion, no matter how common, is generally admitted by those whose authority in such matters is unquestioned, to be a most mistuken and absurd one. In what possible way can it be defeuled? If a coin possesses any value from its antiquity, it is because we lave in it a specimen of ancient workmanship and device, and also because it is the same object which was faniliar to those who have long since ceased to exist. Therefore the more that coin resernbles in its appearance what it was when in circulation, the more distinctly shall we see in it the workmanship, the device, and the image, that were fauniliar to those who lived when it was in circulation. And not ouly is the value thus highly increased by the greater distinctuess of the image, but a new and not ideal value in some instances originates. By the study of these devices wr are able to check the aceuracy of the historians of the age in which they were made, and Capt. smyll, R. \therefore. bas lately written a book on coius (which from such a title wight
have been expected to be a treatise interesting only to a very few), whereas it may be considered as a historical work, and one too of a novel and most interesting description.

In the same way the most inveterate boke norms, although they justly give the preference to an original binding, never hesitate if a book is dirty, "soiled or sullied," or has an irreparably "frail" or tashed binding, to get it cleaned and reinstated in a vellum, Russia, or such other binding as most befits the date and nature of the work.

Although the best authorities therefore are clear as to coins and books, I do not think the same feeling exists with regard to the repair of ruins, although I cannot but think that all the three cases are parallel.

To destroy the picturesque effect of an old abbey or church, seems generally to be considered is a sort of murder of antiquity, the atrocity of whicli no inducement can palliate. Although it is impossible to deny tlat a dismantled tower may have a more picturesque effect at a distance than if it were entire, and also that slattered masoury does frequently assume a romantic outline which is no where else to be found, still a complete building may have in some degree a picturesque as well as architectural outline, and these advantages, when combined with that of perpetuating the perfection of the design to future ages, and its restored utility, are, I think, quite enough to warrant judicious restitution.

I need lardly say that I do not approve of such Vandalism as to complete an imperfect building in a different style of architecture from the original, as may be found in Idandaff cathedral, where the alterations, as far as I recollect, are in the Grecian order, which contrasts wretchedly with the original.

The most interesting spot in the three kingdoms I take to be W'estminster Abbey, and I am sure all will agree that were that building allowed to fall into a ruinous state-to lose its roof and so forth, it would not in any way possess the same interest. When we enter a veritab/e rain, destitute of all the minor details which it once possessed, we have to cause with ourselves in order to awaken a suitable interest, and after all, that interest camot but fall short in intensity of that which we at once and irresistibly feel on entering an old richly decorated cathedral, with its curiously carved oaken stalls, its lofty roof, and all the other adjuncts of an ancient building, which the storms of troublous times have not yet swept away from our view. And this is what makes the cathedrals and religious houses of England triumph so much in interest over similar buildings in Scotlind, where the fire of intemperate zeal has, in too many instances, left its records in shattered pillars and broken walls, the wrecks of glorious specimens of architeeture. How tenfold interesting, if entire, would lave been the cathedrals of Melrose, Dryburgh, St. Andrews, Aberbrothwick, Elgin, lona, and many more, where now enough only is left to show us ho, much we have lost. And if no new interest and opinion is formed on this subject, we shall, I fear, find such relics grow gradually less interesting. Every blast adds to the rubbish, and every winter curtails their extent.

The object I have in view in these remarks is to waken, if possible, such an interest in ruinous cluurclies, as slaall deterınine those toho hate an influence in the ercetion of weso churches, rather, when possible, cern although at a much grcater coat, tor restonk old ovies than build new.

What gave rise mose inmediately to the preceding remarks was a visit to the ishand of Iona, where the Duke of Argyll, with his characteristic benevolence, has recently erected, and 1 believe endowed, a chureh, which, however, cannot be said to possess the slightest claims to architectural elfect. In such a case, then, how much more suitable would it have been to have restored (with proper advice) part, if not the whole, that remains of the ancient cathedral, which St. Columbn erected soon after his arrival at the island in A.D. 563, and which was so miserably ransacked at the time of the Reformation, whereby Scotland lost her "ancient annals and MSS." (which were kept at Iona, "in hidden presses of the church,") and "large parchments signed by the king's own luands, and sealed either with seals of gold or wax."*

I trust that these remarks will at least get a little cousideration from those to whom they are more especially addressed; and should it bappen, as in many instances it may, that no drawings are in existence to shew the original plan of a building now much dilapidated, the best course is to take the advice of some architect who is thoroughly acquainted (as every one should be) with the styles of architecture which distinguished different ages, and with this arlvice to complete the building in keeping with those parts which still remain.

In conclusion I may be permitted to observe, that although I have no doubts as to the orthodoxy of the general principles herein advocated, I am nevertheless willing to admit that inany specious and even

* Sir George Mackenzic, Def. of Roy. Line of Scolland. Loud. 1685, p. 30. Transl. of Paulus Jorius.
reasonable objections may, in particular cases, be brought forwardnay more, I allow that even in the case of lona, I may have formed an erroneous opinion, as I had not time, during my visit, to examine either the old cathedral, or new church with that degree of care which, had my time permitted, I slould have done.

Stpt. 10, $1 \leq 39$.
L.

BUNNETT AND CORPE'S CONCENTRIC STEAM ENGINE.

Sin.-Referring to the June and July numbers of your valuable Journal, I beg to dissent from the conclusions you have drawn, respecting the merits of Messrs. Bumett and Corpe's Coneentric steam engine.
fam not disposed to deny the accuracy of the tables you have given; the results noted therein, inight paturally be expected from the manner in whicl the relative powers of the new, and old modes of application were decided; my object is to show that one main feature in the case has been overlooked, which, when taken into account, will considerably diminish, if not altogether du away with, the advantages which at first sight appear in favour of the Concentric engine; for whatever additional power is exerted by it, a corresponding expense of steam will be the necessary consequence, which is tantamount to no advantage at all.

If this can be shown to be true, I am humbly of opinion that it cannot be claimed for this machine, that any power is gained by its adoption, as we are only entitled to consider that we have gained power by new combinations, when these enable us, at the same expense, to produce greater effects than with the old.

In the Concentric engine there is nothing new in principle; the arrangement of its parts differs little, and that only mechanically, from those at present in use. Desirable as it may be, and often is, to modify the mechanical powers, to suit the various purposes of machinery; all the clanges we can ring upon them will never help us to an increase of power, beyond the lessening of friction tlirough sinplicity of construction.

In order to illustrate what is neant by these remarks, let me call your attention to the annexed diagrams, which are nearly similar to those in the last number of the Journal already referred to:-

Fig. 1.
Representing the new mode of applying the power.

A the aunular prston roi, B the commeting rod, C the crank, P the pition
Fig. 2.
Representing the old mode of applying the power.

$1)$ the piston rod, F the connecting rod, F the crank, ctitil to the crank C.
It is evident, from the construction of these diagrams, that the annular piston-rod A, will move through a greater space than the pis-ton-rod D requires to do, in producing revolutions of their respective cranks, C and F . The stroke of the piston D will be as the length of the straight line I I , or as the lines K K and $\mathrm{L} \mathrm{I}_{\text {, }}$, these three lines being equal to one another. On the other hand, the stroke of the annular piston-rod A will be as the curved line $\mathrm{K} \mathcal{G} \mathrm{K}$, which is mach greater than the straight line K K.
Now assuming that the impulsive force is a constimt qua) nity, and alike at each instunt on both pistous, it fulluws frou the abore, that the effects on the cranks will be respectively as the leagth of the curve K G K is to the straight line KK ; in other words, the length
of the stroke of the pistons will be as the length of these lines individually, thus involving an expense of steam in the Concentric engine, equal to the advantage which would seem to arise from the use of it.

Another view of the case may be taken, somewhat simpler than the foregoing, by which it may be shown that the mode of communicating power by the Concentric engine is a matter of every day occurrence.

Let the lever M represent one half of the beam of an ordinary beam steam engine, B its connecting rod working the crank C ; these together delineate movements ill most inseparable from the use of the crank, and nearly coeval with the steam engine itself, as it came from the hands of its great improver; the parallel motion alone is wanting to fill up the picture : and if it is to this circumstance, that the superiority of the Concentric engine is to be attributed, I fear its days are numbered as an engine "by which great power is gained;" that it may take its place with many of the best locomotive engines now in use, is not to be denied: but I beg respectfully to protest against the possibility of its exerting more force than others from the same quantity of steam.
It is nnder these impressions, that I have ventured to address you, and in the belief that these inperfect observations will account for the different results, obtained from the experiments made on the two engines; I am also inclined to believe that their appearance in the Jouranl, would be useful in counteracting whatever erroneous views way have been formed by the perusal of the tables.
$I \mathrm{am}$, Sir, with great respect, Your obedient servant,
Carron, Augual 16ih, 1839.
John Mac Donald.

CURVES ON RAILWAYS.

Sin-I beg to forward to you the following remarks on a point which has not been noticed in any of the numerous essays on this subject which have appeared in your Journal.
It is one of considerable importance, and is not (that I am aware of) to be found in print, except in Pambour's work on locomotive engines; the formula there given produces the same practical result as that which I have deduced, but is, I think, somewhat less simple in its application.

> Your's respectfully, M.

How much must the outer rail of a curve be raised above the inner, in order to counteract the centrifugal force of a carriage?
Let A be the centre of gravity of the carriage; draw a vertical line A B, and a horizontal line A C, representing the weight and centrifugal force respectively; then A D, the diagonal of the rectangle, will be the resultiont force of the two.

Now If a line (E F) be drawn at right ingles to A D; and DE, D F, be taken upon it each equal to half the distunce between the rails, the force A D, being perpendicular to the line of support, has no tendency to press the flange of the wheel agaiust either of the rails E or F . I'bis position of the rails, therefore, will answer the conditions of the problem.

Draw F H horizontal, and E H vertical.
Let W = weight of the carriage.
$\mathbf{W} f=$ the centrifugal force.
$\mathrm{K}=$ radins of curve in chains.
$\mathbf{V}=$ velocity in miles per hour.
$r=$ radius of curve in feut.
$0=$ velocity in feet per second.
$g=16 \frac{1}{12}$.
$\mathrm{EF}=a \mathrm{in}$ feet.
E H $=\boldsymbol{x}$ in feet.
Then the centrifugal force $=\frac{W}{2} \frac{0^{3}}{g r}($ see any work on Mechanics, $)$ $=\mathrm{w} f$.

$$
\therefore f=\frac{\pi^{2}}{2} \frac{g r}{g r}=\frac{\left(\frac{49}{4 \delta} V\right)^{2}}{2 \times 16 \frac{1}{12} \times 66 \mathrm{R}}=\frac{\mathbf{V}^{2}}{\mathbf{R}} \times \cdot 00101324
$$

By the similar triangles ABD,FHE,
AB:BD: FH:EH
or $\quad \mathbf{W}: \mathbf{W} f:: \sqrt{a^{2}-x^{2}}: x$

$$
\begin{aligned}
& \therefore 1: f^{2}:: a^{2}-x^{2}: x^{2} \\
& \therefore 1+f^{2}: f^{2}: a^{2}: x^{2} \\
& \therefore x=\frac{a f}{\sqrt{1+f^{2}}}
\end{aligned}
$$

Example.-What must the elevation be for a curve of 60 chains, (3960 feet), radius and velocity of 30 miles an hour, (44 feet per second,) the distance between the rails being 4.75 feet?

$$
\begin{aligned}
& \text { Here } f=\frac{44^{2}}{2 \times 16 \frac{1}{2}} \times 3960 \\
& =\cdot 0152, \text { and } \sqrt{1+f^{2}}=1.00011 ; \\
& \therefore x=\frac{4.75 \times \cdot 0152}{1}=\cdot 0722=8664 \text { of an incl. }
\end{aligned}
$$

The above formula is extremely simple, as the value of $\sqrt{1+f^{2}}$ will be very nearly 1 in almost all practical cases.

ON WARMING OF BUILDINGS.

Sir-Upon reading your remarks upon the warming apparatus at Mr. Babbage's house, described in my pamphlet, I find you consider that the part which is not effective is owing to the malformation of those pipes which branch from the multiple cock; as this is not by any means the case, you will perhaps have the kindness to notice the following few remarks in explanation. Mr. Babbage confined his experiments to a certain small amount of fuel, working his apparatus at the low heat of 250° Falr., this was not sufficient to cause a quick circulation through the whole extent of pipe, the four different courses containing 890 feet.

The furnace being placed in one of the servants' slecping rooms, it was more important to keep this room cool than to warm the rooms in the upper part of the house.

Mr. Babbage succeeded in his two principal objects, 1st, the making use of every particle of heat that was practicable, sufficiently with creating a draft in the chimney. 2nd, The perfect self action or regulation of the apparatus. It is his intention to extend lis experiments next year, in order to obtain (mithout producing any additional heat in the furnace room) with a greater amount of fuel, increased effect in the bedroom circulations.

I remain, Sir, your most obedient servant,
C. J. Richardson.

24, Manchester Street, Sept. 10, 1839.

*** Notwithstanding Mr. Richardson's remarks, we are still of the same opinion, that "it would be far better if the connection of the brunches were made with curves instead of at right angles;" if Mr. R. will consult any lyydraulic engineer, we have no doubt but what he will have the same feeling on the subject.-Editor.

Machanical Bricg Maxing.-At the meeting of the British Association at Birmingham, Mr. Cottnm exhibited a model of a brick and tile-making machine invented by the Marquis of Tweedlale, by which it was stated 30 bricks a minute, or nearly 30,000 bricks a day, might be made, whilst a good moulder could only mould from 5000 to 8000 a day. The clay was put into the machine at one end, and passing between two rollers was rolled into a long bar, which was cut into the required length of the bricks by a cutter worked by the same rhecl-work. The hricks, on coming out at the opposite side of the machine, were carried ly it to a distance of 200 yards, thereby saving a great amount of time and money in carrying. moperation usually performed by boys and women. As a proof of the superiority of the machine. made brick, it weighed 81 lbs., while a connnou brick weighed ouly 5 ibs., and the machine-made brick carried eight times the weight which the common brick would sustain.

STONE FOR THE NEW HOUSES OF PARLIAMENT.
Referred to in report in last month's Journal, paye 331.

Table A.

We have arranged this table differently to what it appears in the original report, and we have classified the quarries in districts and connties; which will enable our readers to sec more readily those parts of the kingdom which have been examined.

The Table contains The Name or the Quarry-its situation and county- The Mineral desifmation of the Stome; its component parts-and colour. Weight of a cubic foot of stone in its orlinary state-the entire depth of workable stone in the quarry; description of the beds, and size of blocks that can be procured. - Wherc known or reported to have been employed and general remarks-Prices of block stone at the quarry ; description and cost of carriage (c) to the pool of London; cost of stone delivered in London per cubic foot; and cost of plain rubbed work as compared with that upon Portland stone in London per foot superficial, Portland being taken at 1%.

DISTRICTS IN ENGLAND.

(Nовтя.)

Durhar.

PENSHER.-Pensher Collicry, Durham ; sandstone; coarse quartz grains, with an argillo-siliceous cement. plates of mica ; pate whitish brourn: 134 liss. 5 oz . depth 40 to 50 feet ; thickest bed, 20 fret ; blocks any practicable sizePensher chapel, Siotch church. Sunderland, St. John's chapel, Bishop Wearmonth, Wynyard Mansion-house, Sunderland pier, Seaham harbour, Victoria bridge on the Wear, \&c, ; 8id per fi. at quarry; c. by railway. I mile and a half to river, thence to Sumlerland, and thence by sea in London, total cost 13s 2d per ton, or 1s TI per fout in London; plain work $1 \cdot 0$.
REDCiATE.-Redgate, Durham ; sawdstone ; fine juartz grains with a cal-careu-argillo-siliceulus cement, mica in planes of bels; light ferraginous brourn; 139 lbs 10 oz; deph 20 feet; the beds vary from 1 tu 8 feet thick; the quarry is neglected and badly norked. It is sad to lave been set out sometime since under an inclosure act for the use of the parishioners for ever, who get all the stonc from it which they require free of eharge for royalty. The head or cover of the quarry is 6 feet thick; phain work 0.9 .
STENTON.-Stent on Village, Durham ; samtsour ; fine quartz grains and decomposed felspar, with an argillo-siliccous cement. forrug nous specks, and snme plates of nice; ferruginous lighl brounn; 142 lls . 8 oz. ; depthl 35 fect of rork quarried ; irregular beds froan a to 8 feet in thickness ; blocks 15 to 20 feet long-liound keep of Bern ril castle. joint-stock bank and market-house, Aermard castle; sinks are worked out of this stone 6 feet by 3 feet 6 inehes by 1 foot 6 inches, also grindstones. Another quary of stone, in all respects similar to the south east of this yuary, from Mr. (icorere White. furmer to Robert Brownless. Depth of wrokable stone 25 feet. Blocks of 8 or 9 feet cube. Id. at the quarry, fine-tooled face, inclinling joints and beds at 4d., if rubled $2 d$. extra. Quary joints 2 to 8 feet apart. Dip of bells 4° or 5°. The quarry was opened about 60 years since; jhd perfi. in small blocks at quarry ; c. by land to railroal cust uf Bishop Auck Iand. 8 miles, at $4 s$ per ton, thence to Stockton. by the railway, $2 s$ bl, thence to London, $8 s$ jer ton, in all $14 s$ 6 d per ton, or Is 5 d per foot in Lomdon; plain work 09.

Northumberland.

HEDDON.-Heddon on the Wall, Northumberland; sardstoue; coarse quartz grains and decomposed fel, par, with an argillo-siliceous cement, ferriginous spots; light-brours ochre; 130 lbs . 11 oz ; depth 49 feet; beds vary from 4 to 12 feet thick; blocks any practichble size-church at Heldun, steeple 17f4, Noman chancel, columns of portico to theatre, and Girey monument at Newcestle, and nearly all the buthings, ancient and modern, in and about Neun. $\because:$: rliy lxalls are occasionally met with in this stone as well as laminations of carbonaceuts matier. Quarry joints 11 to 30 fcet apart. Quarry opened above 200 y cars since. Quarry cover 10 fuct thick; fid to 101 perft. according to size at quarry; c. by laml to the 'Tyue at Newburne, 2 miles, thence to Neucastle, and by sea to London, or 1 s 81 to 2 s per foot for blocks under 4 tons, in London; plain wurk $1 \cdot 1$.
KENTON.-Kenton, Northumberland ; sandstone ; fine quartz grains with an argillo-siliceous and ferruginous cement, mica in planes of beds; bight ferrnimuzs brown; 145 hbs. 1 uz.; depth 25 to 30 feet; beds vary from a few melhes to 5 feet in thickness; 10 tom blocks if required; nearly all the new buildings at Newcastle creetel by Mir Grainger ; this stone is selected particularly for tine work, carving, *c., mill stones are male of it. The upper beds are similar to the York flagging usually brought to the London market-The bulk of the stone used for ordinary purposes in Newcastle is from the Felling near Gateshead, and the church quarry, Gateshead Fell. Joints in guarry 2 to 20 fcet apart. Dip of heds 11°. Quarry cover 15 feet. Quarry opened 20 years since; bid perfl. blocks under 7 feet. An blocks under 14 feet, 1 s blocks under 20 feet, ls 4 d lilocks under 50 fcet. at quarry ; c. by land to Newcastle, the small blocks $2 s$ bil per ton, large blocks 3 s 6 d per tun, thence by sea to london, 8 s per ton for blocks under 2 tuns, or 2 s per foot arerage size blocks in London; plain work $1 \cdot 3$.

Liнcolnshirc.

ANCASTER.-Ancaster, Jinculnshire; oolite; fine oulitic grains cemented by compact and ofien crystalline carbonate of lime ; creapm; 139 lbs. $4 \mathrm{oz}$. ; depth 13 feet: numerous beds, running into each other, from a fow inclics to 18 inches, the lowest beds are the most crystalliue; blocks 3 to 5 tous-
Wullaten Hiall, Balyoir Catlo, Belton Houm, and mumerom manaion and
churches in lincolnshire; this stome is worked with the same tools as Bath stone, joints in quarry from 4 to 20 feet apart, leds with a menterate dip, quarry cover 7 feet of clay; numprous and extensive quarries of similar stone in the immedinte loeality, opened several centuries since, now out of work$9 d$ perft. in random blokks at guarry; c. by land to Girentham, 7 miles, tience to Buston by camal is lid per foot, thence lyy sea to london Od per fool, in all 1 s 10 k , or 2 s 7 d per ff . in London; lidin t urk 0.5 .

GIT.ES (SAINT).-Near Lincohn, Limeolnshire; depth 8 feet; straight and thin beddel, thickest bed 15 inrlies, two blue beds below bottom of quitry, upper part of quarty alternations of clay or marl or limestones. lems vary muchin texture, best bed confains an abundance of shells-Lincoln Cathelral in part; quarry cover 5 feet thick.

HAYDOR.-IIaydur, lincointhire; limestone (oolitic); carlunate of lime with oolitle grains, infon crystilline; broumish rrame; 133 thss 7 oz. ; de wh 131 feet; thickest hed 18 inches; blocks 14 feet. 3 teet by 4 fert - 1 incoln calliciral, Boston church, Grantham church, Newark church. and most of the churches in the neighbourhuod, and in the loner part of Iancolnshote, Culverthorpe house. Belvoir castle, \&e.: it is essential that this stone shoutd always be set upon its natural Lrd. This yuarry and those immediately adjoining. Which are numerous and extensive, are of great antiquity. Quatty cover of clay 14 feet thick; 8d per fi. at quarry; c. Iny land to Sheafurd fol per foot, thence through Boston to the Pool of London, trom is 5 tio is $8 d$ prir foot accurding to scasun, or 2 s 4 d per foot in Londun ; plain work 0.5 .

Yorkskire.

BOITON'S QUARRY.-Aislaby, Yorkshire; sandstone; moderately fine siliccous grains withargillo-silicious cement, plates of mica and spots of carbon dissrminated; warm hight brown; 126 llis . 11 oz ; depth 46 ft ., top teds 26 feet deep for house betilding, bottum beels 20 feet for durks, \&c., beds cenerally from to 8 feet thick; blocks 100 feer- Whithy Alhey. New Úniversity Ialorary at Cambriage, Scarborouyh atul Brithlington Piers, Sheerness and St. Katheride s Docks. \&c.: blocks of 100 fept cube liave bren obtained from this quarry: stone usually sent In two-horse paris to Whithy, carrying 32 to 4 tons, each cart will make three journeys jer diem ; joints in quarry 10 to 25 feet apart, beils with a nuderate dip; quarry operned 23 yours since; 10 t to is perfi. according to size at duarry; land carivge to Whitby 3 d per foot, freight
 plain work 075 .

BRAMLPY FALL (Oln Quankr).-Leds (npar to) Yorkshire sandiviue : quartz grains (often course) and Ircompused felspar. nilh argillo-silicenus cement, mica rare, small firtuginous spots disseminated; bronen; 142 Hz. 3 or.: depth 45 feet ; six beds, the thickest of which is 16 feet ; blocks upto 18 tomsIn numerous bridges, waterworks. \&c. ; this quarry is nearly exhausted. The stone is now diffeult and expensi:e to cibtain in consequence of the great
thickness of head. Blocks of 18 tons have been obtained ; plain work 1.2 . BKODSWORTH.-Brodsworth, Yorbshire; magnesian limestone; clucfly carbonate of lime and carbonate of magnesia, with sub-oolitic grains. friable; light brown tint; 133 lbs. 10 oz.; depth uncertain, luit very great; regularly bedded, centrsl beds the best, hari] heds from 1 to $3\{$ feet. softer beds 6 Lu it inches, thickest beds 3 feet 6 inches-Doneaster old Chureh and Rfansion House, Brocklesty llall, \&r.; blucks of great size can le procured. Jeinis in quarty irregular, some 20 feet apart. Beds dip slightly; c. by land to Doncaster, and thence by water to lanilon, price of stone at Doncaster 1. ld. or 2 s ld in London ; plain work 0.85 .

CADEBY-Cadeby, Yorkshire; magnesian limestone; cliefly carlmanate of lime and carbonate of magnesia, with sub-nolitic and irregularly formert ersitic grains, friable; cream; 126 lbs. 9 oz. ; leeds from 8 inches to 3 fret 3 ioches thick, regularly and straight leedeled, central beds apparently the best stode, 4 feet thick-Day and Martin's, High Holloin, Amshouses at lilgewire; joints in quarry 5 to 14 feet apart. Bels nearly level; c. by land io Bun Navigation 1 mile, thence to Thorne 14 or 15 miles, thence by sea tu Ion:kn, or ls 1 kl per ff . in Iondon; plain work 0.8 .
ELLAND FDGFi- Yorksbire: sandstone; finc quartz grains wili an ar-yillo-siliceous cement, micaccous in planes of Leds; light grcy broun; lis ils. 4 oz.
GATiLERLAY MOOR.-Gaherley Moor. Yorkshire; sandstone; yuariz grains of moderate size and an argillo-siliceous cement, ferruginous spens, and plates of inica ; cream ; 135 lbs. 13 oz :; depth 30 feet ; irregularly bedded, from a few inches to 12 feet thick, some with diagonal cleavaze- Is fect of the top rock fit only for backing. 12 feet freestone, fit for ashlar ami otlier works; blocks 1 to 3 tons-Aste Hall, near Richmond. Richmourl antl Caterick Bridges over the Swale, Purse Bridge over the Tees. Skelton C'astle, Darlington lown llall, Sockburn Hall, and mmerous modern buildings; quarry prices for lalsour and stone-pwinted work $7 \boldsymbol{d}$, chiselled work $8 d .$, and rubtari Hork 9 . per superficial foot; $8 d$ per ft. for the 12 feet bed at guarry ; c. hy land to Darlington 6s per ton, thence by railuay to Stuckton So, theine liy sea to London 12 s , in all 23 s per ton, or 2 s 1 d in London; plain work 095 .

1HLDENLFY,-New Malton, Yorkshire; liescatone; calcarcous, nexenubling induratel chalk; whifisherram; 137 lis. 10 oz ; deplt 15 feet; in llin leds, much shattered on the fate, the thichest bed about 22 inchers: yncryKirkham prory, for pavings and also for columns in chapel at ('astle Huxand; if this stone is sent to Londen a railway should be laid from the yuarry to the Derwens, about one mite and a half, and thence in small craft to Jamhn. It may be worked freely in all directions. Dip of be.Is in this quarry \boldsymbol{q}^{2} to 5 ; plain work 0.8 .
llOOKSTONLi.-Harrowgate, Yorkshire; sandstom ; quartz trains of moderate size wihh siliceous cement; whitc and dark brown: $143 \mathrm{lts}$.10 ow.: irregular, from 2 to 6 feet; stune capenshe to get on account of the dig ui the beds. Occasionally stained with oxitle of irou. Guarry jodets a lew inches to 5 feet apart. Dij of bade 280°; plain Fortil. 25 .

HUDDLLSTONE.-Huddlestone. Yorkshire; mnguesian limestone; chiefly rarlonate of lime and carbonate of magnesia, semi-cry stalline : whitish cream; 137 Hes. 13 oz.; depth not ascertained; 30 feet in depth of rock quarried, irregularly bedded, from a few inches to 2 feet 6 inches thick, but beds have bern met with 4 feet thick; blocks from 50 to 250 cubic feet-York Minster. Selly cathedral, Huddlestone hall, Sherburne church, Westminater hall, Galeforli hall, \&ic.: quarry joints free and irregular, 3 or 4 main joints only. Dip of lowle very slipht. Blocks lately sent to Caminidpe from ile quarry from 8 to 10 tuns weight and 16 feet lom: whe back sent to Galeforth hall 14 tons. The lootton of the quarry has $\mathrm{lamer}_{\text {en }}$ bored, 40 feet derp, into a goorl freestone leul. Harl or glass veins in various directions occur in this stone as well as nolules of indurated matter; 2s. perff. at yuarry; c. by land to the Leeds and Selby railwiny 1 mile, thence to Selly, and thence by sea to London, total cost $16 s$ per ton, or 3 s per fout in london; plain work 0.95 .
JACKDAW C'RAIG.-Thiefdale, Yorkshire: magnesian limestoue ; chuefly rarbonate of lime and carlonnte of magnesia; dark cream ; irregular bells, from a few incles to 3 fect-lork Minster and probalbly most of the churelies in Jork, also for the late restomations of York Minster; this quarry, which is of great antipuity, is at the top of an arched stratification of the rock. exbifhting only a small purtion of the lowest bed, which is the best stone. It is probable daat the upper leds were guarried indiseriminately for York Minster sid the churches of Jork.
KIRK SMEATON. -Kirk Smeaton, Yorkshire ; magnesian limestove; chiofly carimpate o lime and carbonate of magnesia, slightly crystalline ; warm creans; rirgular up to 18 inches, thick and much dislocated; the quarries are on the north side of, and immediately aljoining the Went River, many quarried Hows remain in the quarry, and are covered with lichens (black), some of 2 tuns weight-The quarries are now out of work, and were probably forsaken uing to the trouble and cost of getting blocks of good size free from vents; r. Wy land to the Ayr and Cabler canil 5 miles. thence by railway, now disused. to fiomele, 18 or 20 miles. and thence by sea to London.
LEEDA: (New)--Near Lecils, Yorkslire; sandstone; coarse quarty grains awh deromposed felspar. with an argillo-siliceous cement, occasional jhates of maca; light brown; 147 lbs. 8 on.; the beds vary in thickness from 2 to 3 fre: 0 inclaes; blocks of large size; calcareons matter met with in the joints in this yuarry. These joints are from 3 to 14 feet apart, and there are some ir s joints; 10, per fi. blocks of 4 or 5 tons, at quarry ; c. in wotking weather anl under favourable circumstances, to Iondon, will cost about ls lid or is at per foot euke. or 2s per foot in London; plain work 1-2.
LONGIVOOD-FDGF. - longwond-edgc. Yorkshire : sasdstone; quartz proins of morlerate size with an arsillo-siliceous cement. mica chiefly in planes of berls: marm light brown groy; 153 lbs. 7 az .; depth about 18 feet; lie.ls vary from 6 inches to 4 feet in thickness, a yellow leed 4 feet 6 inches thick; blows 3 tons; ghl per ff. for 2 and 3 ton blocks, at quarry ; e. by land to Holderstield, at 3 d per foot ; plain work $1 \cdot 25$.
MEANWCODL.-Meanwood, Yorkslite; sandstone; fine and coarse quartz grsins and decomposed felspar, with an argillo-siliceous cement, micaceous, ind with a few ferruginous specks; light broun; 139 liss. 14 oz ; from 2 to 10 feit thick; blocks of great size; two blocks in the quarry, each weighing 9 tons. price 2s. 6al. per foot. Between this quarry and Wheatwool guarry is a yuarry, callel Addle Snithy, of similar stone, very coarse, where blocks of 10 tons may be procured; lod perft. for blocks of 1 and $1 \frac{1}{2}$ tons, at quarry ; . by land to Leeels. 21 per foot; plain work $1 \cdot 1$.
OSMOTHERLEY.-Osmotherley, Yorkshire; sandstone ; quartz grains of moderate size, with an argillo-siliceous cement; dark brown; depth of excavation 25 feet - hest bed from 5 to 6 fect, average thickness-The whole of the sillage of Osmotherley; quarry openel about 30 years since, now in work for sailroul chair lhocks, the stone encourages the grow th of black lichen. In the siemity is another quarry, of the same but raher superior stone, worked by dionge Duck, from which the stone was obiainel for the piers of the chain Lridge at Stockton; *d per $f t$. at yuarry; c. by land to Thursk, at $8 s$ or 9_{B} prr ton. thence to Yam, 12 miles, $8 s$ per ton, thence to Sturkton, at $6 s$ per tun. thence by sea to London, landing, unloading, cranage, \&c. ls per ton.
PARK QUAKRY.-Castle Itowarl, Yorkshire; sandotowe; fine sillceons grains. with an argillo-siliceous cement ; whitiah brows; depth 10 feet ; beda trom 16 tc 20 inches deep; blochs 27 feet cube-At Castle Howarl ; the pilaslers of the south front of Cistle Howard and the stabling are of Appleton tune.
PaRK SPRINC.-Lepds, Yorkshire: sandstone; fine quarts graint and decumpuase felspar, with an argillo-siliceous cument, mica chiefly in planes of beils ; lifht forraginous brou's; $1: 1 /$ lis. 1 oz. ; depth 10 feet; beds very irwalar, thickest bed nill work 3 feet; bured face of rock shaky; blocks any praceicible size. 3 feet thick-Conunercial buildings at Leeds from the old ifurrs. Hhech is of exactly similar stone to that of this quarry ; the old quarij, "hich is now worked out, was opened about 14 years since. Guarry whir 18 feet theck. This quarry was opened 2 years since; gil per ft. for 11 and 2 ion blocks, at quarry : r. by land to Kirkstall. thence by canal to Leeds, ind thence by sea to Iondon, tutal cost ls 7 tl per foot, or 2 s 41 per fuot in Lomion; plain work 1.25.
l'AKK NOOK.-Robin llurkl's Well, Yorkahire; magnesian limestome; thedly earimate of lime and carbonate of inagnesia, in part crystalline; erions: 137 liss. 3 oz. ; depth 15 feet ; straight bechled, from 6 incluss to 2 feet thich: 8 feet of the workable stone may be considered free from "allum" or onlichist Led, 2 feet 4 inches; blocks ant practicable size, 10 and 12 feet longcoulan Hood's Well, by romisi.le (1740), in good cundition. Pontefract old Burch, in a large windor Campsall-lomge. A skern Sparr. kue.; sinks and ink are made of this stone, hat the water wastes in them. Un the ofprosite We of the ruad are two yuarries of similar stone in the oreupation of hrorge besensun of Campsall, and Charles Sanl of Askern; 7t per fl. at quarry ; r.
don 168 . in all 26 s per ton, or 2 s 1 ld to 2 s 5 d per foot in London; plain work 0.75.

ROCHE ABBEY.-Roche Abbey, Yorkshire ; nagnesian limesfone; chiefly carbonate of lime and carbonate of inagnesia, with occasional dendritie spots of iron or manganese, semi-crystalline; whitish cream; 139 lbs .2 oz.; depth 15 to 20 yards ; irregularly bedded. thickest will work 2 feet 6 incles ; block's 8 or 10 tons-Roche Abley church, Tickhill-castle nutd chureh, Blythe churrh and liridge. similipek-hall, selly hall, two churches at Retford. Bathiry church, and numerous churches in Yorkshire and Lincolnshire ; no certainty as to large lilocks. The stone weathers hacks and in lines according to the led. In modern buildings it has leen employed in lurberk-chareh and Fur-beck-hall, Christchurch. Doncaster, Osherton and Milton churches, Notinghamsbire, residentiary deanery and cemetery. York, the external sculpture at Buckinglamepalace, the screen at Bawtry, two churches at lull, \&e. Quarry joints from 9 to 23 feet apart ; 81 preft. blocks of 11 tons, of the best quality. from is to 1 s Gel. at quarry ; c.by land to Koningshorgh, $4 \frac{1}{x}$ d per fout, thence
 London; plain work $1 \cdot 0$. ;
SCOTGATE IIFAD.-Iluldersfifld, Yorkshire; smndsone; quarta grains of molerate sizi with an argillo-siliceous cement, mica in planes of be.ls, and occasional spechs of carlon; light grienish grey; 158 llis.; deptli 12 yards; several beds, some much coarser in grain than the rest, thickest leet 3 feet 6 inches-York castle. Bath hotel, lluddersfield; quarry cover 12 feet thick; 81 per ft. at quarry; c. by land to IImdersfied, at 41 per foot, or 1 s 2 d per foot in London ; plain work $1 \cdot 2$.
SMAWSE.-Bramham Moor, Yorkshire; magacsian limeatone; chicfy carbonate of lime and carbonate of magnesia. slightly crystalline; lizht yellowish brown; I27 lis. 8 oz. ; depth 21 feet; irregular liuls, from a few inclies to 30 inches-the thickest bed, which is the lowest, will work in 20 -inch courses; blocks largest got, $8,0 \times 3.0 \times 3,0-1$ Fill ohl church, Kiporu minster, churela at Bishop Burton, St. Mary's churd and the minster, Beverley. the minster and several churches, \&e at York, and n new church at Appleby in Lincolnshire; this atone is not considered fit for landings, stejss, \& c. Depth of freestone below hottom of fuary y uncertain, hut prokably better than anyjet got. Stone works crisp and lirithe, and requires care in the working. The joints in this quarry are irregular and numerons, the beds are working nearly level. 'Ihe quarry was opened alout 100 years since; 71 pur fi. blocks of all sizes. at quarry; c. from quarry to Selby, Ils per ton, thence to London. 14s 4 l per ton, in all 2js 41 per ton, or $2 s$ l 1 d per foot in Lonclon; plain work $1 \cdot 0$.
VICTORIA.-Stanningles, Yorkshire; sandstome; fine quartz grains and decomposed felspar, with an argillo-siliceons cement. ferruginous specks: light brown: 145 liss. 3 oz ; depth 48 fect ; entite thickness of workable bedy 48 feet, thickest bed 6 fort; bioshs 120 feet cule : Catholie church. Leeds : stone wrll ealculated for steps, lanelings, and fine work, such as pionarles, \&ec. Quarry joints 6 to 12 fert apart ; $1 \mathrm{~s} \mu \boldsymbol{\mu} \mathrm{ft}$. at yuarry; r . by canals, 28 s per ton, or 2 s 9d per foot, in London ; plain work $1-2 \overline{5}$.

WASS.-Byland. Yorkshire ; oolity ; compart carlonate of line with oolitie gralns and an argillo-calcareous cement, carlon lisseminated: brone: soft 141 liks. 11 oz., hard 162 liss. 8 oz . ; numerous and variahle in thickness, two berls only of freestone, about 16 inclies thick; west front and a large propertion of Byland abley; now working for railway chair blocks. Main joints of quarry from 3 to 6 feet apart, a few cross joints. Betls nearly level. Quarry cover 10 feet thick. Quarry of great antiquity, long out of work, lat recently re-opened ; c. by land to Ofdwork. 14 miles, 88 6d per ton, thence to lork by canal, 12 miles, thence to Hull, and hy seas to Leındon ; plain work soft. $1 \cdot 0$ hand 1-45.

WARWICK.-South Crossland. Yorkshire: samdstowe ; quartz quins of moderate size wi han argillo-siliecous cement, wecasional plates of miea
 foet; blucks 12 to 90 feet long, 5 su 7 feet wide-Varion public liuiblings in Manchester, ant numerous residences, warohouses in ind near that place. and in the vicinity of the quarry : this puarry was opemed layears since; 8dd per fl. at quarry; e. by land to Huddersfiedd, thence to (iowle, and thence to London, 23 s to 25 s per ton, or $2 \mathrm{~s} 7 \frac{1}{2} \mathrm{~d}$ per foot ín London; plain work 1%.

WHEATWOOD.-Aldingley, Yorkshire ; samistone; quartz grains of moderate size and decomposed felspar, with an argillo-siliceous cement, ferruginous spots, and occasionally plates of mica; light bronu; 143 lis.; very irne. gular : of any practicable size, sume of 12 tons liave leen obtained-Nut Catholic chapel Leeds, parish chureh Leeds. krand junction camal, and London and Croydon rilroal; another yuarry of simitar stone. Belonging to the same quarrymen, half a mile morili-cast of the Wheatwond; 9 d per ft. for $1 \frac{1}{2}$ to 3 ton blocks, is Gl for 12 tons, at quarry ; c. by land to Laeels $2 d$ per :cot. thence by canal to (ioole, and thence by sea to London; plain work $1 \cdot 1$.

WHITBY COMPANY'S AISLABY.-Aislaby, Yorkshire; sandstone: siliceons grains of molerate size with an argillo-siliceous crment, some plates of mira and spols of carion disseminatel ; light brown; 126 lbs. 11 oz. : aleptls 80 fect ; 30 feut in depth, of a very fine grit, one half lemer white and the other half a warm tint, 50 feet. of a strong coarse grit-thickest leel 15 feet; blocks 40 feet by 25 feet, 40 feet by 15 feet-Some parts of Whithy abley, Sleights bridge, new library at Condiridge, Laths and town-hall at Whithy, cemetery Fighigate. Hunjerford marhet market-house, Ficeter; lut per fit. random blocks, from 60 to 200 feet, at quarry ; c. by land to Whitby, 3 miles ant a half, 3 ? per foot, thence by sea to the Poot of London, 9 s to 10 s Cal per ton. or is \&l per font raniom blucks. from 60 to 200 fect, in Lamion? plain work 075.

WHITBY COMPANY'S GKTON QCARRIFR, comprising Aracimfe.
 pats to dark brow"; depth Aruclitice to teet, Prumhans 50 feet: a strous gitit can be selectel uf an uniform colour. 'Ihickest beels as follou-Arncliffe 9 feet, Julian Yark 8 feet, Problitums 8 feet. Latue Righe 5 fert; Dhocks Arncliffe
$15 \times 10 \times 9$, Proddams $10 \times 8 \times 8$, Lease Rigge $10 \times 6 \times 5$-Grosmunt abbey and bridge, Fgton bridge. Inndon and Birmingham railway, Whitby and Pickering railuay; 11 du perft. random hlocks, from 40 to 150 feet cube, at quarry ; c. by rallway to Whithy, 7 to 9 miles. 3 d per foot, thence by sea to the Pool of London, 9 s to 10 s 6d fer ton, or is 9 ded per foot random blucks, from 40 to 150 feet cube.

WHITBY COMPANY'S SNFATON.-Sineaton, Yorkshire ; depth 12 feet ; a st rong girt, thickest bed 31 feet; blocks $24 \times 2 \times 3 \frac{1}{2}$-Parts of Whithy abley, smath portion of the parapet of Blackfriars bridyc. Loudon; the l'erey family; who endow el Whitby abliey, possessed this property, and it is conjectured that great part of the abbey has been buit of the stone from this quarry, no other in the vicinity being so much like that which appears in the building. The stone becomes thicker in desconding the valley; ls ld per ft. random ble eks, from 40 to 200 fect cube, at quarry; c. by railway to Whithy, 7 to 9 milus. 31 per foot, thence by sea to the Pool of London, 9 s to 10 s ol per ton, or ls 11 d per foot random hlucks, from 10 to 200 feet, in London.

WIITBY COMPANY'S NFWTON DAldi-Newton Dale, Yorkshire ; depth 6 feet ; a firm and strong girt, thackest hed 18 inches ; blochs 6×4 0×18 inches; leavisham church; $10 \mathrm{~d} p$ pre ft randum blocks, from 4 to 30 feet cube. at quarry ; c. ly railuay 16 miles, 3 l per foot. thenee by sea to the Puol of London, from $9 s$ to 10 s 6 d per ton, or 1 s 8 l random blucks, from 4 to 30 feet, per foot in Jondon.

(Midland Counties.)

Bedfordshire

TOTTERNHOF.-Totternhoe, Bedforlshire; limestone (argillacemes); calcarcuus and argiliaccous matter, in about equal portions, structure fine greenish white; 116 lbs .8 oz ; depth 7 fect ; thickest bel 4 feet : blocks 40 culic feet or upwards, 5 to 6 fect long ; lunstable Priory church, Luton, and many other churches in Bedfordshire. Hertfordshire, Wolsurn abbey, Fonthill honse, Ashidge, Organ-screen at Peterlorough minster, \&cc.; this stone is now almost out of use for extemal work, since the introduction of Bath stone, it having failed even where used as Ashlar only, protected by Porlland dressings; 1 s 3 i per ft. at quarry; c. by land to leighton, 5 miles and a half, thencr hy Grand Junction canal, total cost 1 s 3 l per foot, or 2 s 5 d per foot, in Londom; plain work $0-45$.

Derbyshire.

BALL CROSS.-Bakewell Fidge, Derbyshire; sandstone; siliceous grains with argillo-siliceous cement, orcasionally micaceous, fermugnous; ferruginous brown, striped, and zoned in deeped tints; 5 or 6 principal alternations of sandstone and shale, sandstone beds from 3 to 18 fect thick-At Chatsworth and at Bakewell: appearance similar to ormamental wood.
BOLSOVER.-Bolsover Moor, Derbjshire; magnesian limestone; cliefly carbonate of lime and carbonatc of magnesia, semi-crystalline; light yellowish bronon; 151 lls . 11 oz .; depth 12 feet; in numerous beds from 8 inches to 2 fect thick; blocks 56 feet cube-Southiwell church, and numerous buildings in the vicinity; this stone is very generally sawn into slabs for paving, \&c.; 10 d per ff. at quarry ; c. by land to Chesterfichl canal at Worksop 8 miles, at 68 per ton, thence by canal and the Trent to Stockwith, and thence by sea to London about 10 s , in all 16 s per ton, or 2 s per ft . in London; plain work 1.0 .
DUFFLFLLD BANK.-Duffield, Derbyshire; sandstone; quartz grains of moderate size and decomposed felspar, with an argillo-siliceous cement, ferruginous spots, and occasionally plates of mica; light brown, with dark brown and purplish tints ; 132 lbs. 14 oz .; depth 70 feet; one half of the depth is bronn stone, the other half white-the thickest bed is about 4 feet; blocks 150 fect-St. Mary's Bridge, Reporter Office, Mechanics' Lecture Hall, and Bishop Ryder's Church now bulding, Derby, also Duffied Bridge, \& c., Chimney shafts, (irammar School, Birmingham; this stone has not yet been sent to the London market. Quarry joints 3 to 30 feet apart, beds with a slight dip. Quarry opened about 40 years since; frem 1 to 3 tons is Id per ft. of white stone, gd of brown and white in equal quantities at quarry ; plain work $1 \cdot 1$.

DCKES QCARRIKS.-llolt, Stanwell Bridge, Derbyshire; sandstone; quartz grains, generally coarse, with decomposed felspar, and an argillo-silicement, ferrugnous spots; red, varied with green, brown, and prey; 144 lhs. 8 nz. ; depth not ascertained, at least 40 feet-Yenitcntiary, Milibank, and internal parts of Waterloo Bridge, London; quarry opened about 30 years since. More than 100,000 chair stones for the Birmingham and London Ritiway lave leen supplied from these quarries. Quarry joints from 2 to 20 feet apart. Dip; of beds 5° or 6°. Quarry cover 6 to 12 fect thick; 7d per ft. at quarry; r. by canal to Leicester, aud thence by Grand Junction to London, or 2 s 8 d in Lomklon ; plain work l-2.

HOPTON WOOD.-Midrlleton, near Wirksworth, Derbyshire; limestone : compact carbonate of lime with encrinal fragments abundant; warm light grey; 158 lbs .7 rz.; depth 40 feet ; in several beds, varying from 3 to 10 feet ihick; blocks 100 fect cube-At Chatsworth, Belvoir Castle, Trentham Hall, Drayton Manor, Birmingham Grammar Schiuol, \&ce.; 3s to 4 s per ft. according to size, nt quarry ; c. by land to Cromforl wharf, 3 miles, thence by canal to London, block stones 30 s per ton, slabs 40 s ger ton-by sea blocks, 22 s 6d jer ton, slabs 30 s per ton, or 4 s 10 d to 5 s 10 d per foot in London; plain Work l-4.
HUNGERIHLL - Belper, Derbyshire; sardsfone ; fine quartz graids and decomposed felspar, with an argillo-siliceous cement, ferruginous spots, and wcimionally plates of mica ; warat light brown; 135 lus. 15 oz ; depth not as-certainerl-Be'per new church and all the chief haildings in Belper; parts of certhiner - new chureh at Belper are beginning to decompose. Dip of beds in quarry variable. Quarry cover 0 feet thick. Quarry opened about 10 years since; is per ft. fir blocks of B cubic feet, at tharry: c. by land to canal, and thener b) waier in fondon; plain work $l \cdot 1$.

LINDROP.-Lindrop Hill, Derbyshire; quartz graing of moderate size with a calcareo-siliceous cement, micaceous: likht yellowish brou's; lerd bedded, but irregular, the thickest bed may u ork 3 fect 6 inches or 4 feet-la parts of Chatsworth house; quarry cover of shale and thick-bedded stone: is feet thick; c. by land to Cromford canal, 8 miles, thence by canal to lumion.
MORLFY MOOR.-Morley Monr, Derbyshire : mamdotone: fine quaria grains with silicenos cement. a few plates of nica disseminated; uatm browsish grey, often grepsiah; 130 lbs. 8 os. ; depth not ascertnined-Bank at Derlx Mr. Hackers's and Mr. Holmes's houses at Drrby, Berniston house ; $10 \mathrm{H} \boldsymbol{p}$ fi. best stone, at quarry ; c. ly land, 2 miles to little Baton, thence by caal to London ; plain work $1 \cdot 05$.

SHAW IANE,-Hunger Hill, Derbyshire ; sondstowe ; quartz grains, of molcrate size, with an argillo-siliceous cement, slightly micaceous ; marm light brown; 1351 lbs .15 oz ; depth 50 feet ; one half of the workable is brown in colour, the other half white, the thickest bed 5 feet; blocks 150 fret eubeLeicester church; is ld per ft. if all white, $9 d$ if half white and half brown nt quarry ; plain work l? 1

STANCLIFF or DARLEY DALF.-Darlcy Dale. Derhyshire ; mandotone quartz grains of molerate size and decomposed felspar, with an argillo-sil:ceous cement. ferruginous spots, and plates of mica; lighl frerraginaws browes 148 lbs .3 oz . ; depth 200 feet; irregular masses, without regular joints oe beds; blocks of very large size-Abbey in Darley IDale, Stancliff-hall. Birmingham grammar school. Birmingham and Nottingham railway stationhouses; quarry cover, 5 or 6 feet thick. The quarry was opened 5 yrars since; ls. $5 d$ per $f t$. up to 5 tons, at quarry; c. by land to Cromfont, 4l thence to the Pool of London, is Bl, or $3 s 3 d$ per foot in London; plain work 1.3 .

Nottinghamshire.

LINDLFY'S RFD QUARRY.-M nsfield. Nottinghamshire; sawdstame fine siliceous grains with magnesio-calcarccus cement; roseute brokn; 148 lbs. 10 oz ; depth 30 feet : irregularly beided. average thickness about 3 feet. remarkably sound and homogeneous; blocks up to 10 tons: Belfon-house (Lord Brownlow): cisterns and sinks are malc of this stone, lsut are not quite impervious to moisture. Quarry joints 30 to 40 feet alnart. Quarry eover wi impervious to moisture. Quarry joints $\mathbf{r a n i n a t e d ~ s a n d s t o n e , ~} 15$ fert thick. Quarry opened 80 or $1(0$ years since : gil per ft. blocks of all sizes, at quarry ; c. by tand to railway wharf at Mansfiekd, 1 mile, 1 s 8 g yer ton. thence to Pinxton, by railway, 2 s 10 l per ton. thence o (iainsborough, by the Trent and Irwash, 7s Gd, and thenere by sea to London, 18 s , or $2 s 6 d$ per foot in London ; p ain work $1 \cdot 1$.

LINDLEY'S WHITE QUARRY.-Mansfield, Nottinghumshire: atodstome ; fine siliceous grains with rnagnesio-calearenus cement ; whitich browe: 149 lbs. 9 oz . ; depth 30 feet now in work, further depth not ascertained; regularly and nenrly horizontally bedded, from 6 inches to 4 feet 6 inrhes: Blocks 10 tons-The Town-hall, Mansfield, Clumber-lodge, at Wollerton. ansi Belton; some of this stone contains crystals of strontian. Quary jointa about 20 feet apart. Quarry cover of marl 15 fect thick; 81 per ft. randum blocks, extra price for specified blocks or selected bed. at quarry :c. by kam to railway wharf at Mansfield, 1 mile, Is $8 d$ per $t n$, thence to Pinxion. 8 miles, by railroal, at $2 s 10 \mathrm{~d}$ per ton, thence to Gainsborough. Iry the Tien: and Irwash, at 7s 6d per ton, and thence by sea to London, alout Ils per ton, total cost 23s, or 2 s 2 d per foot in London ; plain work $1 \cdot 1$.

Northamplonshire.

BARNACK MILL.-Barnack, Nortlamptonshire ; oolite (Shelly): carbonate of lime, compact and oolitic, with shells, often in frazments, coarefty laminated in planes of beds; light whitish brows; 138 lbs. 12 oz : depthit feet freestone, 6 feet common wall stone; in berls from 9 inches to 18 inches: blocks up to 30 fect-Burleigh House. Peterborough Cethedral, Croyknd Abbey, Boston. Spalding, Holbeach, and Moulton clurches, and the greater proportion of churches in Lincolnshire and Cambridgeahire ; the old quarries in the vieinity are in a continuation of this bed, and are very extensive, the stone is used for tronghs and cisterns, which are perfectly impervions Quarry opened 4 years since; 1 s perft. at quarry; e. by land to Wansford miles is, thence to Sutton Bridge by canal, and thence by sea to London 1 is per ton, in all 19 s per ton, or 2 s 3 f per ft. in Lontlon; plain work 09.

Oxfordshire.

HKDDINGTON.-Heddington, Oxfordshire ; limestone; carbonate of lime. friable ; the worst or softest beds of this atone appear to have bacn ecoplored in most of the colleges and other public buildings of Oxfurd; plain wort 1.1

TAYNTON or TEYNTON.-Taynton, Oxfordshire: oolite (shelly) : car bonate of lime, partly oolitic and friable, with very small fragments of shelk irregularly laminated; streaky brown; 135 lbe. 150 oz ; depth about 20 feet beds vary in thickness from 3 to 20 feet, irregular and dislocsied in all dire tions-thickest bed about 7 feet; blocks of any prac.icable size- In maxt ow the ancient clurches and mansions of the neighbourhood. Blenluerm, Comberry park, Barrington park, in the interior of Si. Paul's, and many oitre churches in London and Oxford, in varions bridges, Witney. Cotham, Rack land, snd most of the ancient and modern mills in vicinity ; cisterns, trouglu sinke, copings, and ridges made out of this stone. The oolitic grains are un usually soft and chalky, and casily absorb nater; Is per fi., in large quanu ties 10 d , at quarry ; c, by land to Cassington wharf, and thence by wier io London, ls 6 d per foot, or 2 s 4 d per fout, in London; plain work $\mathbf{U} 9$.

Rutlandshirc.

KKTTON.-Ketton, Kutlandshire ; oolite ; oolitic grains of morlerave sim slightly cemented by carbonate of lime; durk rream rolowr: li?8 liwe 50 depth 4 feet; somelimes in one bed, sumetimes in two beds-s hard bed akore callenl rag, 3 feet 6 inches thick, coverel by crash, 5 fret, cuvered whe els from 15 to 20 feet thick. level and irregularly bedded: blocks up to thoter-
(ambrilge, Bedforil. Bury Saint Filmunds, Stainford. Ianton, \&c., many of the ancient and mulern buildings at ('ambridge. a'so in the meklern works of Peterlorough and Fily cathedrals, also St. Dunstan's church, Fleet-street, Londot: the rag beds are of a white tint, and the grains are cemented with highly crystallized carbonate of lime, the crash is of a dark briswn colour, very coarse, full of shells, clistinct ora, and very ferruginous. The ova in the freestoue beds are slightly attached or cemented tugelher. consequently the stwo is very absorbent. Ketton rag weighs 155 lbs .10 oz . per cubic foot. The and the neighbouring quarries, many of which are out of work, are of great antiquity. Joints 2 to 7 feet apart. Beds dip slightly ; ls 81 per fi. at quarry ; e. by larkl to Stamford, 3d per foot, thence to London, about 20 s ver ton, or if deliverel at Wansford the carriage and freight would be about the same cost, or 3 s 4 d per foot in Lonclon ; plain work 0.65.

Shropskire.

STANLEY.-Higley, Shropshire ; sandstome ; siliceous grains, of morlerate size, with a calcareo-ferruginous rement; grinding red, 146 lbs. brilding grey. 141 llss .7 oz ; depth 6 feet ; ashlar or building stone 1 to 3 feet. grinding or gun-barrel stone, upper bed 3 to 4 fept, lower led 37 feet ; blocke 10 feet to 60 or 70 feet - Stourport bridge (1776), Worcester and Bewilley bridges, filoucester Lridge. \&cc.; in the neighbourhood is another quarry of sandstone. Giains, moderate in size. of various siliceous substances, micaceous, cement, argillo-siliceous, colvur greenish brown; is per ft. building stonc, delivered at Gloucester,- $2 s$ 3d grinding stone, upper stratum,- $2 s$ ditto lower stratum, at quarry; c. by the Severn to Gloucester, 20s per ton, and thence by sea to Lamion, 13 s , camal dues, \&c. 1 s 2 l , or 1 s 9 d per foot buikling stone, under 3 tuns. 3s lld grinding stone, per foot in London; plain work grinding $1 \cdot 2$, building 085 .

Staffordshire.

HOLLINGTON.-Hollington, Stafordshire; samdstone; quartz grains of moderate size with an argillo-siliceous cement, plates of mica; light-broumish grey; 133 lbs. 1 oz.; depth 20 to 25 feet; one vein of inferior stone 4 to 6 feet thick in the middle of the quarry, thickest bed of good stone 8 feet ; blocks 30 to 40 feet square and 8 feet thick-Trenth m Hall, Drayton Manor Heathhouse, and variuus public and private laildings in Staffordshire. Town Hall Derby, Meer Hall Cheshire, see.; 7d perfl. blucks 1 to 2 tons, 9d blocks 2 to 4 tons, is 4 tons and upuaris, at quarry ; c. by canal in boats 20 tons hurihen, by the Grand Junction and Trent and Mersey, total cost per foot 28

PARR QUARRY.-Tixall, Staffordshire ; samdstowe; fine quartzose grains with a calcarea-argillo-siliceous cement, plates of mica; light grey; 124 lbs . $9 \mathrm{or}$. ; depth 10 to 15 feet; thickest ved, 6 to 8 feet; blocks 15 feet or more in length by 3 to 6 feet-liuins of a mansion belonging to the late lord Anson Tixall, Thumplal arcls, Farl of Litchficld, Tixall-haill, \&c., Saint George'schureh Birmingham, Sandwell-hall near Birmingham. \&c.; 8d per fl. selected stone at quarry ; c. by canal, 180 miles; plain work 0.85 .

(Soutb.)

Devonshire.

BEFRR.-Beer. Devonshire ; limestone; chiefv carbonate of lime, friable, and with partial induration; light tint of brown; 131 lbs .12 oz . ; depth 10 feet 6 inches; in 8 beds ; the uppermost 4 beds are the best, and are about 17 or 18 inches thick, the thickest bel 2 fect, or 2 feet 2 inches; blocks 6 to 7 feet logg, 3 fpet wide, and 2 feet thick-In the churches of the vicinity, Saint Peter's church Excter, in exposed parts, Colyton church, Charmouth, parish church in Dorsetshire, rebuilt 4 years since, and at Honiton within the last 2 years; e. from the quarry to the beach, one mile and a quarter, and thence by eea to the Pool of London in 50 or 60 ton vessels; plain work 0.55 .

Dorsetshirc.

PORTLAND (TRADE QUARRY).-Island of Portland, Dorsetshire; onlite; oolitic carbonate of lime, with a few fragments of shells; whitish brown; depth about θ feet of freestone ; level bedded as follows: rubbish heal, lirt bed 1 fool thick, top cap, 3i2 to $5 \frac{1}{2}$ feet, skull cap, 2 to 3 feet, roach 4 feet, tup bed 7 feet, flint bed 6 inches, lower or cottom bed 2 feet ; blocks of any practicable size-Various public buildings in London; 1s 4d derft. at guarry ; c. by sea to the Pool of London, including lighterage to Westminster, 14s perton, or 2 s 3 d per foot in Landon; plain work 1.0 .

PORTLAND (King Barrow East Find Qoarry. adjuining Warcroft).Island of Portland, Dorsetshire ; oolife; oolitic carbonate of lime, with a few gragments of shells ; whitish brown; depth 7 feet of freestone; the beds are as follow-head of quarry 15 feet, dirt bed 1 foot, skull cap 1 to 2 feet 6 inches, roach 2 feet 6 inches, freestone and good weather bed 7 teet; rublish at bottom of quarry ; blocks of any practicable size-Various public luildings in London; is 4 d per ft. at quarry; by sen to the Pool of London, including lighterage to Westminster, $14 s$ per ton, or 2 s 3 d per foot in London ; plain work 1.6 .

PORTLAND (Vfrn Strpest Quarry).-Island of Portland, Dorsetshire; oolife; oolitic carbonate of lime, with a few fragments of shells; whitish brown; top bed $134 \mathrm{lbs}, 10 \mathrm{oz}$. ; depth 81 feet of freestone; the beds are as followloose head 15 feet, dirt bed 1 foot, top cap 6 feet, skull cap $1 \frac{1}{2}$ to 21 feet, runch 2 feet 6 inches, top bell 8 feet 6 inches, called Birdseye stone; ruldish at bottom of quarry ; blocks of any practicable size-Various public buildings in London; is 44d per ft. at yuarry; by sea to the Pool of Londun including lighterage to Westminster, 143 per ton, or 2 s 3 d per foot in Lundon ; plain gork $1 \cdot 0$.

PORTLaND (Castles Quaray).-Island of Pottland, Dorsetshire ; oolite ; oolitie carbonate of lime, with a few iragmenta of shells; whition brown; depth 91 fcet of freestune; the beds are as follow- 17 feet of head, 12 inchas
pirt herl, 6 fect cap. $1 \frac{1}{4}$ fect skull cap. 18 feet workable freestone, cuntaining 4 fect of roach, 3 feet of grool witite, frec from shels, 3 feet of roach and flint, and 61 feet of inferior molite, fine grained, with cementing matter in a state of powder; blocks of any practicable size ; various public buildings in London; 1s 4 dd per ft. at quarry; by sea to the Pool of London, including lighterage to Westminster, 14 s per ton, or 2 s 3 d per foot, in London; plain work I. 0 .

PORTLAND (Warcroft Quarrifs).-Island of Portland, Dorsetshire ; oolite; oolitic carbonate of lime, with disseminated fragments of shells ; whitish brown; top leel 135 lbs .8 cz ; depth about 13 feet of freestone; level bedded as follows-rubbrsh head 8 feet. dirt bed 1 fout, top cap 3\} to 54 feet, skull cap 2 to 3 feet, roach $2 t$ to 4 feet, top leed 7 to 8 feet, rubbish beds 6 to 7 feet, roach 1 to 3 feet. and bottom bed $5 \frac{1}{6}$ to $6 \frac{1}{2}$ feet; blocks of any practicable size-Goldsnith's-hall, Reform Club-house, and other public buildings in London; is 4hd perft. at quarry; by sea to the Pool of London, 12s prer ton, heaving out of the ships ls per ton, lighterage to Westminster, ls jer tun, or 2 s 3 f per foot in London; plain wurk 1.0 .
PORTLAND (Magqoit Quarry).)-lsland of Purtland. Durgetghire; oolife; oulitic carbonate of lime, hith fragments of shells; whilish brown; depth lit feet uf frecstone ; quarry head of rublish 8 fect. dirt bed 1 foot. cap 6 feet or 7 fect 6 inches, skull cap $1 \frac{1}{2}$ to $2 \frac{1}{2}$ feet, ruach 2 feet 6 inches, top bed 8 feet 6 inches, loose limestone and fint 7 feet, bottom led supposed to be 7 feet thick; blocks of any practicable size-Several public buiddings in Tandon; Is $4 \frac{1}{2} d$ per ft. at quarry; by sea to the Pool of Londun, and including lighterage to Westminster, 14 s per ton, or 2 s 3 d per fuot, in London; plain work 1.0 .

PORTLAND (Goslangs Quarry) -Island of Porland, Dorsetshire ; onlife ; oolitic carbonate of lime, with fragments of shells; whitish brown ; ruach 126 lhs. 13 uz .; depth 8 fect of freestone; quarry head of rubbish 8 feet, dirt bed 1 foot, top cap 6 feet, skull cap 1 foot 6 inches to 2 feet 3 inches, roach 4 fect, top bed 8 feet, rubbish bed with layers of tints, bottom bed very soft, not worked; blocks of any practicable size \rightarrow Several public buildingsin Iondon; ls $4 \frac{1}{2}$ deerft. at quary ; by sea to the Pool of London, and including lighterage to Westminster, 14 s per ton, or 2 s 3 d per foot in Londun; plain work 1.0 .

PORTLAND (Grovk Quarry, Bowers).-Island of Portlantl, Dorsetshire ; oolite; oolitic carbonate of lime. with numerons fragments of shells; whitish brown ; best or lower bed 147 lbs. $10 \mathrm{oz}$. . curf $145 \mathrm{lbs} .9 \mathrm{oz}$. ; depth 6 feet of freestone; top or workable bed very close and compact, 9 feet thick, having a bel of roach on the top of it 3 feet thick, 25 feet of head to this quarry, containing the same beefs as in the other quarries, the cap and skull cat being 10 feet thick; blocks of any practicable size - tt. Paul's cathedral and several churches in London, tuilt during the reign of queen Anne; ls 4 dd per ft. at quarry ; ly sea to the Pool of London, and including lighterage to Westminster, 149 per ton, or 2 s 3 d per fuot in Lonalon; plain work $1 / \mathrm{l}$.

PORTLAND (Giodve Qtarry, Ren-Croft).-Island of Poriland, Dorset shire ; oolite; oolitic carbonate of lime, with a few fragments of shells; whitish broun; depth 16! feet of freestone; the beds are as follow-rubbish forming head 7 or 8 feet, dirt bed 1 foot, roach 1 foot 6 inches, top bed 4 feet, middle or curf bed, 5 feet 6 inches, bottom bed 7 feet ; blucks of any practicable sizeSt. Paul's cathedral and many churches in London. built during the reign of qucen Anne; is 4d porft. at quarry; by sea to the Pool of London, and including lighterage to Westminster, 48 per ton, or 2 s 3 d per foot in Lonilon plain work 10 .

The following remarks refer to the nine last quarries :-The dirt bed is full of fossil roots, trunks, and branehes of trees; often in the position of their former growth. The top cap is a white, hard, and closely compacted limestone. The skull cap is irregular in texture; it is a well-compacted limestonc, contalning cherty nodules. The roach beds are always incorporated with the freest ne beds that invariably lic below them; they are full of cavities formed by the moulds of shells, and occasionally contaiu oyster shells and beds of ifint near the top. The top bel is the best stone; it is a finegrained oolite, free from shells and hard veins. The botton bed is similar in appcarance to the top bed, and of the sanic component parts; but the stone ill cemented, and will not stand the weather. A middle or curf bed occurs only in the southernmost of the quarries, on the east cliff; it is soft to the north and hard to the south. Messrs. Stewards have several other quarries, both on the east as well as the west cliff, where the stratification is similar to that of the Way-croft quarry, but with variations in the thickness of the beds and slight deviations in the quality of the stone. Messis. Weston have also several other quarries, both on the North-cast and West Cliffs, where the stratification is similar and th stone more or less like that of the trade quarry. There are also numerous other quarries on the island, worked by various persons, where the stratification and stone accord generally with those of Messrs. Stewarls' and Messis. Weston's. The goorl workable stone in the Fast Cliff guarries is generally less in depth than it is met u ith in the same bed in the West Cliff guarries; but the East Cliff stone is harder, more especially to the south of the island. The buttom fart of the topled in the West Cliff quarries lecomes less haril and durable towards the south. The stone in most of the quarries, and sometimes in the same quarry, varies considerably in quality. Such slone as contains flints, or is met with lelow layers of fints, is inferior, and will not stand the weather. The bottom bed on the West Cliff is not a durable stone, lnit lias been worked to a considerable pxtent and sold as a good stone in the Iandon market. In every freestone bed the upper part of the bed is the hardest aurl most durable stone. The best stone is in the north-eastern part of the island, the Horst in the south-western part. The most durable stone has its cementing matter in a solid and half crystalHne atate; in the least durable stone it is in an carthy and posdery state. The annual consumption of the whole of the quarries in the islund is equal to an area of one acre of the gocxt workable stone, or alvut $24,000 \mathrm{t}$ ns; the chtire area unworked is about 2,000 acres. There are 56 quarries in the island,
and about 240 quarrymen continually employed ; of which number Messra. Stewards usually employ about 138 .
The curf bed in the Red-Croft quarry, is a shelly oolite, divided b a bar of oyster shells, 15 inches from the top, and by a sccond bar of the same shells $2 f$ fert lielow the upper bar. The bottom bed in this puarry is a a ellcompacted oulite, with very few shells, having a bed of roach 12 inches thick at the top; its characteristic distinctions are streaks of yellow occasionally. It is the liardest led in the island, but will nciertheless work and saw better than the midule bed, owing to its being morr homogeneous. Thic roach is throughout the island colitic, with a crment of carlonate of lime, sleclly, and full of cavities from casts of shells; colour, "hitish brown.

SFACOMBF,-Isle of Purbeck. Dorsetshire ; Limestore; Remi-compact carhonate of lime with frapments of shells; light broum; 151 lis. : depth 14 fcet : the workahte stone of this quarry. which is called ""Purbeck Portland," is met with amongst other stratit in the cliffs of the sonth part of Purberk, alout miduay from the summit, the thickest hed is 61 feet : blocks the largest. 6 to 8 ieet, by 2 to 3 fuet, by 3 to 4 feet-lighithousc at Mingate, the cluck-lanise, Dover-pier, prison at Winchester, at the West molia-docks, 40 years since. lighthouse now buiding on the lsle of Wight, obelisk, limcombe-park, and numerous churches, bridges. Xc. in the county; mude used for steps, land-
 per ton, boatage is 6d, is all 9s 6d, or 189 9fd per foot in London; plain work 1-15.

Willshire.

BEVIS'S QLARRY.-East Tisbury, Wi'tshire ; sandstone (ralriferows); fine siliceous grains with caleareons cement: greemish broum; 111 llse 2 oz .; quarry head 5 feet, top led 1 foot 6 inches, under hed 1 foot s inches. under berd 4 fert. under bell 4 feet, tinder beel 3 fect. under bed 3 fert, under or loottom bed I font 6 inches. hard lixel 3 feet. full of shell. The thickeat bed will Work from 2 feet 6 inches to 3 feet: blocks large, for 7 fret long-wialislury. Hindon, and other places, Kingston. Lary, numerous bridgers. churches, Nc.. in the county; this quarry was openel 30 years since; 1s $6 d$ perft. blocks of all sizes at quarry ; land and water carringe to the Pool of London 2s 6d to 2 s 9 kl per foot, or 4 s to 4 s 3 l in London; plain work 07.

CHILMARK.-Chilmark. Wiltshire; limestove siliciferous: carlonate of lime, with a moderate proporion of silica, and occasional grains of silicate of iton; lighe grechish brouen; 1:33 lles. 7 oz. : depth 20 feet freestonc; quarry head, loose fimestone and rubinsla if feet, 2 beds of rag or roach filled up with carlonate of lime 2 feet, 2 u hite beds (haril) 2 to 3 fect, trough hed 2 feet thick, green bed 5 feet, slant led 1 foor, 2 pinney beds eacli 2 feet thick, eleaving frd I foot, and fritting beels 3 feet 3 inches-the thiekest bed alont 3 feet: blocks from 10 cut . to 3 tons-some of 5 tons-Salisinury (athedral. Wilton Abbey, and many other ancient aud modem buildings in the viciaity; the u hite hieds are find grained uith crystallized carbonate of lime. the uppermost is the hardest, The trough bet is of the same compound, is very hard, and considered the lest leed for standing weather. The green bed is varied intexture, containing shells uncqually cemented. The slant leel is very friable. The pinney beds are crys alline. the bottom leed is the haritest-they are most in repute, are free in wurking, obtainable in large and sound blocks, and stand the weather. The trough and hard white theds are unahsoriment. The whote of the beds can $\mathrm{ln}_{\mathrm{k}}:$ an n . Sume are intersected with 8 mall veins of calcareous spar, others alound in shells, the cavitios of which are filled with spar-hut neither the veins nor sheils are barder than the stone in which they are imbediled: 2s per ft. trough bed, Is 9d bettom pinney lied, 2s hard white bed, is Gd other useful stone at duarry; c. ly lind to Fling Hharf. and thence by water to London 53 s 6 d per ton, or 5 s 41 trough ledd. 5 s lid bottom pinney bed, 5 s 4 d bard u hite bed, 4 s lal other useful stone in Landon; plain work 09.

CRANMORE--Doulting, Wiltshire; stelly nolits: carlonate of lime, with a few oolitic crains, and an shandance of small shells commonly in fragments, often crystalline; light trown; 134 thes. 4 oz . ; deptl) 10 fert ; in 4 or 5 beds, the thickest will work 20 inches; blucks of large size-Cathelral of Wells, Glastonbury Abbey, kc.; there are 3 or 4 quarries of great antiquity in the neighbourhood of this quarry, where a greater deptl, of stone is found. and where beds csist that will work in 5 feet courses; 7 d per $f t$. at quarry ; plain work 0.8 .

(SOUTH west.)

Glouctsitrshire.

KNOCKIEY, \&c.-Forest of Dean, Gloucestershire; sundstour ; silicpous grains of moderate size with calcareo-argillo-siliceous cement, plates of mica in planes of beds ; grey; 159 lbs. 5 oz.; depth 20 feet; 15 to 20 feet in four or five beds-the thickest beds from 6 to 10 feet; blocks up tu 50 fret ; Cardiff new pier, \&e.; troughs and grindstones are made of this stone. There are several guarries in the neighbourhood, such as Nag's Head quarry, Point guarry, (e... in some of which the leds are is fret thick. Quarrymen ristricted hy act of purliament from carrying on railroad blocks above 2 tons. Joints in this quarry 2 to 3 feet a mart, in others 3 to 9 fect apart. Quarry cover 25 feet. Quarry openet not long since; is to is 4 d per ff. for ton litorks at guarry: r . by land to lidney, 6 miles. 4 s per ton, thenee to the Yow of London, ifs or 17 s per ton, or 2 s (fd per foot in London: plain work $1 \cdot 3$.
 grains with an argillo-siliceuns cement, nicaceuus in planes of Levls: light purplish y ey wilh orcasional ligh grefish spols; 155 Ibs. 11 oz .; depth 40 leet of rock excavated; reaular leeds, consist of red rock and a silvery grey rock 12 fect in flepts, the latter is very hard nul divided into several beds, the thickest is 4 fect-the red beds are ratber slaky, thickest 3 fect-Cardiff new pier. Rc.: the silver grey bed is finely laminated, and fit ouly for landings, pavinge, Sc.; lld perfi. for red ruck, all sizes, at quarry ; c. hy land to Gatcomb on the Severn, 2 miles, 21 per fuot, thence to London; plain Fork $1 \cdot 3$.

WINDRUSIf.-Windrush, Gloucestershire ; ootife; fine ootitir rrains with calcarecus cement. And : few frugments of shells: cream ; sof1 118 lis. 2 os., hard 135 lis. 15 oz ; ; depple 10 to 12 feet: 8 fpet shelly roek in 3 yer 4 beds, 4 fert fruestone in 2 or 3 berls, 1 foot shelly leel-thickest bed 2 feet 6 incbes: blocks 5 to 40 fect; Windnush church, Barrington house, and all the otd buildinus within many miles of the quarry; this quarty is subterrancasgrealest distance from the entrance 170 yards. There is another subterrancan
quarrv below it. with 10 or 11 feet of workal) stone. Tombstotes in Windquarry below it, with 10 or 11 fret of workable stone. -Tombstotes in Windper fi. at quarty; c. by land to Carrington, \&d per foot, and thence by sea in Conlon, 25 s per ton, or $287 d$ per foot \ln London; plain work soft, 07 , hard 0.85 .

Monmoulhakire.

ABPRCARNE and NEWBRIDGF,-Monythersloync. Monmouthsbise. mudstowe, quartz and siliccous grains, moterately fine, with argillo-siliceous coment, micaceots, and will remains of fossil plants; dark bleish grey: 167
 clurclies and molern buildings in vicmity, new clocks at Newport and Cardiff; 4$\} d$ per ff. or 5 s per ton at the quarry; $c .12$ miles to Newport by canal or railuay $2 \mathrm{~s} 6 d$ per ton, freight to fondun 12 s per ton, in all 14 s 6 d , or 14 $5 d$ per ff. in Jondon ; phain work $1 \cdot 45$.
BARBADOFS.-Tintern, Monmouthahire; anndstone; fine and eoarse quartz and other siliceous grains, with argillo-silicrous cement, ferruginons spots and plates of mica; light greyish broun ; 146 ltss . 12 oz.; dejth 25 to 30 feet; thickest bed, 10 to 12 feet; blocks I to 10 tons-Tintern Abbey; $10 d$ io is perff. at quarry; c. by water to Westminster 17s od per ton; plain work 1.25 .

Somersetshire.

BA'll (I omor, Ihit.)-Coumbe Down, Somersetshire: oolite ; Chiefly catIxinate of lime in oolitic grains; ream; 116 fhs. ; depth ; feet; Riddinetop. 7 fout thick, top bed 31 fret. sccourl led 4 feet, thind berl 41 feet. bottom bed 2 fect. the top, second. and third beds are weather leds : blocks from 12 to 96 fect cule- On the Kennet and Avon and the Somerset Cual Canal Works \&r., Resioration of Henry the Sierenth's Chapel, 20 years since; ridges a ad trouglis are made of this stone. Six quarries now at work on Coombe Down:
 and A von canal, \&c. to London; plain work 0.7 .
BATll (Baymon (2tarey.)-Bor, Wiltshire; molite; cliefly carbonate of lime in moderately fine oolitic grans, with fragments of sliells(weather beds): crorm; 123 lis. ; depth 45 feet : rubble stone 16 feet, scallet 12 to 151 fert. black and white rag 5 to 10 feet, corngrit 15 to 20 feet, ground stone 16 to 22 feet, thickest bed 5 feet ; Wocks up to 10 tons-Laycock Abtrey, Longleat. Bow oorl. South Front of Wilton louse. Hindsor Castle, \&c.; the weather stone is generally used for plintlas. strings, cornices. \&e., the corn grit for Iressings, the scallet. Which is the fincst in grain. is used for ashlar. Jight quarties on the box escarpment, many of great antiquity; id perft at quarry: c. by land to Haycock. 7 miles. 4d leer foot. thence by canal. Kennet a mi Avon, and thence to Pimlico 16 s per ton, or is 1 ll jer fi. in London; plain work 0.7 .
Bath (Drewes Qcarry.)-Monckton Parleigh, Wiltshire; onlde : chiefly carbonate of lime in oolitic grains of molerate size ; creask; 122 lls .10 oz .: depilh 20 fect : Bruchlcy stone 8 feet. hard rag 4 feet, white rag 12 feet, hard White mag 2 fect, cappiny 20 inches (fine granned). Grey bed 3 feet, white treds, 10 feet, hard weather beit 3 feet, red weather bed 5 feet, the deepest beal about 4 feet 2 inches thick; blocks 120 to 125 feet-Buckingham New Palace. Saint James 's siquare, Bath; the capping and white beds are usuathy employ ed for carving; six quarries of tlus stone on the Down, all of which are sulbsetrancan. Guarry opened 30 years sinee; 6d per ft. at quarry ; by tand and water carriage, or is 10 k per ft. in London; plain work 07.

11AMIILLL-D lamhill. Somersetshire; limestone (zhelly); compact carbomate of lime with shells, chicily in fragments, coarsely laminated in planes; beds of drep ferruginous hrow"; 141 Hs .12 oz ; depth alxout 30 feet ; in numerous beds. the thickest 2 feet, the upper herls are the softest. the bottom beds are very ghelly and firm; used very extensively in nearly all the buiklings in the vicinity 10 or 15 miles from the quarry, all in excellent condition; the she hs in this stone are generally broken and pulverizen, but are well ceonented with a durabic eompound, probably of decomposed shells-the lower beds are nrt with on Norton Hill ; is $4 d$ per $f t$. nt quarry ; c. by land to load 7 miles, 6 s 8 d per ton, thence to Langport, Bridgewater, \&c. ; plain work 0.85.

(South Eagr.)

Kont.

CALVFRLEYY.-Tuubridge Wells, Kent : sandsfone ; fine siliceous graing with a slightly calrareous ceinent; mariegnter brovens; 118 lbs. 1 oz. ; iepth 3 feet to 6 feet 6 inches : three beris-upper 2 fect, middle B to 31 feet. Howrr 9 to 14 inches-upper bed the softest; blocks 70 or 80 feet and upa ards in 500 Cpper purt of rew Chedrchat Tunbridge Welis, Catholic Chapel, the Cabrerley llutel. new Market llouse, and Victoria National School, anal alyout 100 houses, \& c. at Tunbridge Wells and its vicinity; the largest bloet lifted romtained 500 fcet ; Bd perfi. if limitel, 4d if extensive at quarry; c. Iry hegd to Tunbridge, 6 miles 3 觬 per foot, thence by the Melway and Thanes to Lawdon alout 6il, nod other charges amounting in atl to is 2 d per foot cube, wr is $2 d$ to ls 4 d per ft. in London; plain work 0.7 .

Surrey.

GATTON.-Gatton, Surrey ; andolowe; fise silherous grnins with a calca-reo-siliceous cement, containing green silicate of iron aml plates of aice: greminh light brown; 103 lbs 1 los ; in 2 bedu-the top bad is from 18 to 15
inches, and contains flints, and is a hard and strong stone the puttom bed is free fromfints. and fit for ashiar, dressings. \&r.. the thickest bed is 2 feet 2 inflies: blieks 35 to 60 feet culbe, from 4 to 10 feet long-Hampton Court and Windsor Castif, ke.: many churches in Surrey. Town Hall ami Almshouse Establishment at ('ryydon, and several modern buildings in the parish of (iatton: this. and numerons old yuarries in the vicinity, now out of use, were fonnerly the property of the crown-it is yery pssential that this stone shoultil be laid in Laildings upn its beel; is thl to is 0.1 per ft. at London ; e. by land 19 miles, and thence to the Pool of London: plain work 07.

Wales.

Glamorganshire.

SITTON.-Sutton, Glamorganshire; limestone ; comphet earlmnate of lime, highly erystalline ; mery light cream : 136 lhs. ; ilepth 20 feet. probable depth ou feet: thickest bed in feet ; blocks 0 tons and upwarils-Dinraven castle. Ogmond abbey, St. Donats Corty, Neath albey, aml very ancient buildings, buth exstle and church. in the adjoining countios ; depending upon quantity required ; c . by land to the river Opmon, 1 mile, thence to London, 15 s per ton ; plain work 0885 .

DISTRICTS IN SCOTLAND.

Dusnbarlanshire.

PRESIDFNT.-Garscube, Dumbartonshire ; sandstone ; fine siliceous grains with an argilio-siliceous cement, miraceous; pale brownish grey ; depth $\theta 6$ to 100 feet ; irrugular beda, nith oceasiunal masses of liver roek of grrat size, frum G inches to 12 feet thick; blocke of any practicable sise-Bank of tic ot laml and houses aljaining in Ingram-gtreet, Glasgow, Huron's-court, Caunty of Tyrone, \&ce: in the lank and houses in cilasgow this stone assumes a foxy rolour, is uneven in tint, with uccasional stains of oxide of iron, its surface is porous, conseguently dingy from smoke and dirt. The east sifle of this quarry is cut of by a fault which towera the rock 50 feet. Plain work upon this stome in (ilangow is 4d. pur foot, wages 31a. per week. Quarry joints 6 to 1.5 feet apart. Dip of beels frum 8° to 10°. Quarry cover 17 or 18 feet thiek. Quarry openel 30 or 40 years aince; 1 s Gil per ff. from 10 to 20 feet cule. wher llows more or less in price in proportion to size. at puarry ; c. by land to the Forth and Chyle canal, a quarter of a mike, thence direct to the Poul of Lundan. at a cost prolably of las to 12 a per ton. or 2 akl per foot for blocts cuntaiuing 10 to 20 feet culke, in Lordion.

Ediuburghshire.

CRAIGLFITH.-Craigletth-hith, Filinunrghshire: mandotone: fine quartz graina with a silicuous cement, slightly catcareous, nccasional plates of mica; whitiah grey; 145 lbs .14 oz.; vary from 3 inches to 3 feet of the bed rock, which containa oceasional layers of lyeer rock, which fine off in all directions and operlap each other, they vary in depht from 6 mohes to 12 feet. the whole depth of rock not quarried is alout 250 feet, and consists of abwit 200 bels; n farther depth hur bren diseovered lay boring of 60 feet, the thickest bed is 10 feet : blorks any practicable length and breaulth, and from G inches to 10 feet thiek-Used extensively in public Lu ldings at Edinhurgh. the College (1580), Hegistry (1774), C urtu of Lary, Custom House, Royal tixchange. National Monument, and numeruus Churches. Ece as well as in private resudences, aliso fur landings, steps and pavings in several public Luildings in Lonlon, and is now being used in the repair of Blackfriars Bridgre; quarry openel about 70 years since, 15 acres of stone are at present barcl, and s much more yet to bare. The stone has been exporied, and partially nsed in Hamburgh, Altona. Gonttenburgh, and other places on the continent. The proportion of liver rock which is found in lenticular masas is small as compared with bell rock, and its occurrence uncertain. The stone is frejuently interstratified with shales on the south side of the quarry. For blocks, if in ramlom sizes, of bed rock an abatement is made in price of 71 per cent. and if liver roek 15 per cent; 80 in 28 per fi. for refl rock in blorks from 5 to 30 entic feet, 11 tit to $2 s 63$ for liver rock in blocks from 5 to 30 feet eube at quarry ; e. by land to Granton harbour, 2 miles, to Leith anyl thence by sea, lutal cosit from 1 s to 1 ad per cubic fout, or 1 s iond to 3 s 1 f for bed ruek in flacky frum 5 to 30 feet cube, 2 s 0 add to 3 s itd for liver r ck in Llocks from ${ }_{5}$ to 30 feet cube in London; plain work $1 \cdot 1$.

Flintahire.

TALACRE and GWESLYR.-Llanaga, Flintshire; sandstone; fine siliconue grains wilh an argillo-siliceous cement, mica in planes of beds; brounith olive; 150 jlbs. 4 oz .; depth 30 to 45 feet; the upper bel is a scy the-stone yrit, then shale, cec ., and below a freestone bed, thickest abont 6 feet; 15 ton
 yubins of Denlugh nnd Rhuddian eastles, modem manaton of Talacre; 1s per
 3 miles, thence by sea to London, 18 s per ton, or 2 s 4 d per font under 10 fect, 2571 per foot above 10 feet, in London ; plain work $1 \cdot 1$.

Porfarahire.

AUCHRAY.-Strathmartine, Forfarshire; sandatone; silicenus grains, moderately fine, with caleareo-argillo-silieeous cement, micaceous, chitefly in planes of beds ; purplish grey; 158 lbs. 14 oz. ; depth 40 feet ; thickest heil. 4 to 3 foet; blocks 4 to 5 tons-In the town and vicinity; quarry opened in 1832 ; 91 per fis under 2 tons, $11 d 2$ to 3 tons, Is 3 to 4 tons, 1 s 214 to 5 tons, Is fol 5 to 6 ions at quarry ; c. by railway to Dundre 5 miles, thence by sea to London 17a Gd pef ton; plain work 13.
GLAMMISS.-Glammiss. Forfarshire ; smastone; yiliceons grains of moderate gire, cement, alightly ralcareoun, mica abumlant in planes of beds :

any practicable size-(ilammiss Castle and Inverquharity Castle. supposed of the tenth century, Curtacliy Castle. and in modern buildings, Lendertis house, \&c.; 7 d per ft. blocks under 2 tans. 8 d ditto 2 to 3 ditio, 9 g ditto 4 to 5 dito. Is ditto 5 to 6 ditto, and upwards in proportion to size at quarry; c. ly railway to Dundee harbour, thence by sea to the Pool of Lombon, total cust about 19 s per ton; plain work 1.2 .

LIOCH.-Auchterhouse, Forfarshire; saxdstowe; siliceous grains wilh cal-espreo-argillo-siliceons cement, micaceous in planes of Leds; light purphish grey; 129 llss. 3 oz. $:$ deph 50 to 100 fect; thickest bed 4 to 41 feet deep Elocks 2 to G tons- $l^{\text {sed }}$ in all the public buildings of the vicinity ; quarry opened in 1832; 9 ll per ft. under 2 tons, 1 ld 2 to 3 tons. is 3 to 4 tons, Is 24 4 to 5 tons, is 5 d 5 to G tons, at quarry ; c. ly railway to Dundee, 5 miles, thence by sea to the Pool of London, total cost 17s Gil ; plain work $1 \cdot 3$.

LOC:HEE.-Lochee. Forfarshire; sandstone; siliceous grains of moderate size with an argillo-siliceous cement, slightly caleiferous, micaceous; blnish grey; 158 lis. $110 z$; tlepth 90 feel now ascertained; thiclest bed, 5 feet ; blocks any size under 5 tuns-In the principal buildings of the neighbourhood; this quarry aras opened in 1793 ; gd per fe. under 2 tons, 11 d from 2 to 3 tons, and in proportion accoriling to size, at yuarry ; c. by land to Dundee harbour, 3 miles, thence to the Pool of Landon, about 178 fil per ton, or ls lOd per outf under 2 tons, 2 s from 2 to 3 tuns, in London; plain work 12.

PYOTDIKKS.-Near Dundee. Forfarshire; sandstone; siliceous grains of moderate size qilh a calcareo-nrgillo-siliceous cement, micaceous; purphish Rrey; 162 lbs .8 oz . ; depth 40 to 30 feet ; the worknble stone is covered by 8 feet of ruck in thin layers, thickest bel of freestone 3 to 4 feet; a block of 7 tons lass been got-bixtensively for the Dundee harloour works; 10d to 1s 2d perft. at quarry; c. by land to Dundee, is 9 d per ton. thence to the Pool of Lonclon. 17 s 6d, in all 19 s 3 l , or 2 ld to 2 s bl per foot, in Lonion; plaik work 1.4.

Lanarkahire.

GIFFNFICCH.-Giflneuch Farm, Lanarkshire; sandstone; fine quartz grains with a calcareo-siliceous cement. mica in planes of betls: pale grey: 143 lbs .14 oz ; 20 feet of top rock. ycllow and inferior. 22 feet of lower rock, well cumparted amd of a grey culour, irregularly bedded from 12 inches to 8 feet ; Woolside terrace and crescent, St. Pinl's church in purt, and numerous private houses in (ilasgow, also the Bank at (ireenock, and in the Highlands, Hreland. \&ce. : price clargel in Gilasot for plain rubbed work td. per foot superficial-masons receive 21s. per week. Quarry joints 4 to 30 feet apart, quarry cover 5 feet thick. Quarry opened 30 years since ; 7d. perff. for blocks of 10 to 12 feet, and more or less in proportion to size at yuarry: c. by land to Port Dundas or \ddagger fromielaw quay, 3 miles, $2 s 41$ per tun, thence by sea to London; plain work $1 \cdot 1$.

Linlithgorsshire.

BINNIE.-Uphall, Lanlithgowshire ; eandstome; fine quartz grains with argillo-siliceous cement, micaceous, chiefly in plancs of beds : brotonish grey; $140 \mathrm{lbs} .1 \mathrm{oz} .:$ depth 50 feet : three hands of sandstore alternating with shale ; upper banul, average 14 fert, middle hand 18 feet, lower band from 18 feet, bands of shale 14 feet thick-New Club-house. Princes-street, Fidinburgh, New Bank, (ireenock, and numerous private houses in Glaskow and Elinburgh; joints in quarry from 2 to 9 fcet apart, beds dip; 10° to the west. quarry head of shale ant gravel. 20 to 30 feet thic, Quarry opened 45 years since; 1 s lid per fo. urdinary blocks, 1 s 10 kl to 2 s fur blocks from 12 tol 4 feet at quarry : e. by land to Union canal 2 miles 1 sper ton, thence to tillinburgh by canal 18, thence by sea to London 18 s , in all 20 s jer ton, or 2 s 91 to 3 s 8 s per ft. in London; plain work $1 \cdot 0$.

CAT CRAIf.-Cariddon, Linlithgowshire ; sandstone; fine quartz grains with silhecous cement: whitish grey; 141 lbs. 11 oz.; depth 21 feet freestone; freestone 3 fret thick. Wlare 2 feet, freestone in several beds 9 feel, blare 2 feet, freestone in sevcral beels, bottom not ascertained. the beds lip regularly : blocks of large size; in sea dykes: quarry cover of parth and blare 13 feet thick-quarry opened recently aml worked to a trifing extent; c. by water the quarry being upon the beach. 10s per tun; plain work $1 \cdot 15$.

CRAWBA NK.-Borrowstoness, Linlithgowhire ; samdetone ; fine quartzose grains with an argillo-siliceous cementasomerhat ferruginous, disseminated mica; light ferruginous brown; 129 lbs .2 oz . ; depth 50 to 60 feet; the thickest bed about 18 feet of straw-colonred stone; largest blocks 4 to 5 feet thick, 5 to 6 feet broad, 8 to 10 feet long-Roman Bridge. A. D. 140, old Church of Kinneil, twelfth century ; quarry joints from 9 to 10 feet apart. In the noighbourhool. about half a mile distant, are other quarnes, belonging to the Duke of Hamilton; one called Mrins quarry, containing an econumical stone for foundations, a nother called Craigenbect quarry, from whence stone is shipped extensively to St. Petershurgh for furnaces, ovens, and other simular purposes, it is also used for bridges, harbours. \&e. Borrowstonegs Harbour is free of dues; ls per cuble foot for blocks not exceeding 5 cubic feet al yuarry; c.by railway to Borrowstoness harbour and shipped at $2 d$ per foot, thence by sea to London at ls per cubie foot, in all 1 s 2 d per cuble foot, or 2 s 2 d for blocks not exceeding 5 cubic feet in London ; plain work 0 - 85 .

HUMBIE.-Humbie, Linlithgowshire; andetome, fine quarta grains with siliceous cement, slightly calcareous, mica chiefly in planes of beis; pale grey and likht brown; (white) $140 \mathrm{lbs} .3 \mathrm{oz.}$, (grey) $135 \mathrm{lbs} .13 \mathrm{oz}$. ; depth 88 foet; irregular masses, part beddel-20 feet of the top a dark stone, 43 feet below it a white stone, and 25 feet at the bottom a grey stone; thickest bed 8 feet; hlocks 90 cubic feet, ant opwards if required-Newliston house Kirkliston, Dundas castle. alditions to the Royal institution, front of Surgeorr's Hall, spire of Tron Church, and various other public luildinge in Edinburgh, Royal Fuselange und Bank, \&e. at Glasgow. ke.; this stone will work more freely than Craigleith and is not liable wspalt. 'Plain rubled wurk upon this stone thl. per foot at Glasgow, or 7d. per foot oper the entire face of a bullding. Quatry joinis from 2 to 12 feet apart. Dip of beds 10° to 20°. Quarry corer

9 feet thick. Quarry opened about 11 or 12 years; from 5 to 40 feet 1 s 10 d , or from 8 to 16 feet is $2 d$ white rock, and 18 grey rock, at quarry; ce by land to Queensferry, 2s $6 d$ per ton, including louling. thence by sea to London, 13 s or 14 s per ton, or 3 s 2 l per foot for large scantling, 2 s 6 d for blocks under 16 feet, in Lontlon; plain work $1 \cdot 0$.

Perthshire.

LONGANNET.-Tulleallan Esfate, Perthshire; sandstone; fine quartz grains with siliceous cement, containing oxide of iron, a few plates of micm dight ferrugixous brown; 131 1h. 11 oz.; depth 30 feet quarricd, and upwards of 156 feet below bottom of quarry ; thickest beds, 5 feet ; blocks 4 to 5 tons-Staadt-house Amstcrdam, Fxchange Falinburgh, Tulle Marr Castle Perihshire, and part of a street in Perth; a lease may be had for working this quarry upon moderate terms: 8d to 2 s 6 d per ft. at quarry ; c. by railway to the shipping pier, and from thence to the Pool of London, probable cost 1 bs per ton, or 1 s 8 d to 3 s 6d per foot in London; plain work $1 \cdot 15$.

MYLNEFIELD, or RINGOODIE-Longforgan, Perthshire ; sawdstone ; fue siliccous grains with a calcareo-argillo-siliceots cement, micaceous in plines of beds; purplish grey; 160 lbs ; depth 60 feet-Old steeple of Dundec, twelfth century, well preserved, locks of Dundee, royal asylum of Dundee, and all the principal buildings in Dundee, Bell Rock lighthouse, Royal asylum of Perih. Kinfauns castle, Castle Huntley. Pitfour castle, Hossie priory, and all principal builuings in vicinity; 9 d per ft. blocks under 2 tons, $11{ }^{\circ}$ blocks 2 to 3 tons, Is blocks 3 to 4 tons, is 2 d blucks 4 to 5 tons, is 5d blucks 5 to 6 tons, at quarry ; c, by water to Dundee, 5 miles, and thence by sea to the Pool of London, Ifs 6d per ton; plain work 1-3.

Ross-shire.

MUNLOCHY.-Bennetsfield Shore, Ross-shire; sandstone; fine siliceous grains with an argillo-siliceous cement, micaceous; red and variegated; 160 lbs. 9 oz . ; depth 60 or 80 feet; thickness of beds, from $2 \frac{1}{2}$ to 6 feet; blocks of large size-Cathedral church of hoss at Fortross, A. D. 1124 , Inverness old bridge, Crcmwell-court, and also for canals, locks, and basins; 5 d to $5 \frac{1}{2} d$ per fi. at quarry ; plain work $1 / 15$.

Stirlingshire.

DUNMORE-AVENUE:-Dunmore Park, Stirlingshire; sandstone; fine quartz grains, with an argillo-siliceous cement, containing oxide of iron, micaceous; ferrnginous light brown; depth 25 feet; thickest bel 7 feet; blocks 20 feet; this stone has not been used for a considerable periol, and has never been wrought for sale; c. by sea, at lis per ton
DUNMORE-WOOD.-Dunmore Park, Stirlingshire ; samdstone; fine quartz grains with an argillo-siliceous cement ; whitigh grey; depth 16 fect ; berds varying from 6 to 16 inches; on the estate of Dunmore; this stone has ncver been worked for sale; c. by sea to Londun, lls per ton.
DUNMORE CRAIGIIEAD.-Dunmore Park, Stirlingshire; sandstone; fine quartz grains with an argillo-siliceous cement: whitish grey; depth 12 feet ; thickest bed of liver rock 4 to 7 feet ; blocks 20 feet long-A tower on the estate 600 years old of this stone in gool condition; c. by sea to London, lis per ton.
DUNMORF STABLE.-Dunmore Park, Stirlingshire; sandsfone; fine quartz grains with an argillo-siliceous cement; whifish grey; 132 lbs. 2 oz .; depth 14 feet; in regular beds, thickest bed 7 feet; blocks 25 feet-Fxtensively on the estate, a set of offices built in 1826; c. by sea to London, 11 s per ton; plain wark 1%.

Table (B.)

SANDSTONE BUILDINGS.
Bakewell, Derbyshire.--The houses generally are of sandstone, and in fair condition. A new bank now erecting of sandstone from Bakewell Edge.

Bakewell Church.-(14th century.) Of a sandstone of the vicinity, very much decomposed.

Barmard Castle, Durham.-(14th century.) Circular keep, apparently of Stenton stone, in excellent condition. In modern works, the joint stock bank and market-house, of Stenton stone, in good condition.

Belper Near Chwreh, Derbyskire.-Built 10 years since, of sandstone from Hungerhill, in an incipient state (in parts) of decomposition.

Blandford parish church, Dorsetshire.-(1769.) Of a green siliceous finegrained sandstone, the dressings being of a stone similar to the Portland oolite; the former much decomposed; the latter in very good condition.
Town-hall, about 80 years old, of atone similar to the Portland oolite, in good condition.

Blancypeth castle, Durham.-Of ancient date, of sandstone of the vicinity ; recently restored extensively; older parts in various atates of decomponition.

[^24] stance of the decay and preservation of the two stones employed. Norman
gateway, west of the cathedral (the upper part of the 15 th century); the Norman archway and its enrichments, which are of a very fiorid charncter, built of yellow limestone (magresian?), in excellent condition.

Byland abbey.-(12th century.) In part of a siliceous grit (principally in the interior), and in part (chiefly on the exterior) of a compact oolite, from the Wass quarries in the vicinity. The west front, which is of the ookite, is in perfect condition, even in the dogs-tecth and other florid decorations of doorways, \&c. This building is covered generally with lichens.

Carlisle.-Ancient buildings :-Cathedral (13th century), of red sandstone, in various states of decomposition. Modern buildings:-many of red sandstone, more or less in a state of decomposition.

Castle Howard, Yorkshire.-Generally built of a siliceous fine-grained sandstone, from the park; generally in good condition, but is some paots, such as the parapets, cupolas, and chimney shafts, much decomposed. The pilasters of the north front, from a quarry at Appleton; in good condition, except where subjected to alternations of wet and dry, as in the plinths, where there are sigas of decomposition. The stables are of Appleton stone, sod in good condition.

Chatsworth howse, Derbyshire.-Original house, built of Ball Cross sandtone, from Bakewell Edge; not in very good condition, perticularly in the lower parts of the building. In the recent additions the same stone is enployed, together with that of Bailey Moor and Lindrop Hill.

Chepstonc castle, Monmouthshire.-(11th and 12th centuries, with additions of the 14 th century.) Of mountain limestone and old red sendstane; the former in good condition; the latter decomposed. Dressings of doonn, windows, archways, and quoins are for the most part of magnenian limestone, in perfect condition; the remainder is of red sandstone, and is generally much decomposed. Chapel (of the 12 th century) ; mouldings and carrings of windows, \&cc., which are of magnesian limestone, are in perfect condition.

Corwoold church, Yorkshire.-(15th century.) Generally of fine siliceocs grit of the vicinity, and in part of a calcareous nature. Tower in good condition. Porch decomposed. Lichens abundant on the north side.

Derby.-St. Peter's church (13th century), of the variegated coarse and stone of the vicinity, similar to that of Little Eaton. The whole in bad condition; but the red stones leas so than the grey or white.-St. Alkmond's clurch (of the 14 th century), of a coarse sandstone of the vicinity, in a very decomposed state, to the obliteration of the mouldings end other details; it has lately been scraped and painted, to preserve it from further destructios. -All Saint'R church (tower of 15 th century), of asendstone, similar to that of Duffield bank, partly in fair condition, and partly much decomposed, particularly the great western entrance. The body of the church, built 110 years since, of sandstone, in part decomposing. Modern buildings :-Town-hall, of sandstone of the vicinity, in fair condition.

The bank, of sandstone from Morley Moor, built a few yean since, in ver! good condition.

Durham, cathedral.-(11th and 12th century.) Of a sandstone of the vicinity ; aelected indiscriminately, and in all states of decomposition; few stones are quite perfect. Castle-(of 11 th century.) Of similar stome, and in a similar state.

Easby abbey, Yorkshire.-(13th and 14th centuries.) Of aandstone of the vicinity; mouldings and carvinge decomposed, and in part oblitersted. Walls built very rudely, and in varions states of decomposition; some parts however maintain their original surface.

Eccleston abbey, Yorkshive.-(13th century.) Of stone similer to that of the Stenton quarry. The mouldinge and other decorations, anch even at the dog's-teeth earichments, are in perfect condition.

Edinburgh. - Ancient buildings :--Holyrood chapel (12th centory), of sandatone from the vicinity, in part much decomposed; in other parts, yech as the west door, almost perfect.-The palace (built in the 16 th and 17 th cespturies), of similar stone ; generally in good condition, the older parts being slightly decomposed. The oldest part of the Tron church (1641), of sandstone, much decomposed. A house on the Castle-hill (1591), of sandetose, only slightly decomposed.
Modern buildings, wholly erected of sandstones from the Craigleith, Bat Hall, Humbie, and Binnie quarries: for the most part from the fint-meestioned quarty. None of them exbibit any appearance of decomposition, with the exception of ferruginous stains, which are produced apon some stonee Among the oldest is the Registry-office, which is of Craigleith atone, and buils above 60 yeara since; it is in a perfect state.

Fountain's abbey, Yorkshire.-(11th and 12th centuries, with additions of the 16 th century.) Of coarse sandstone of the vicinity, generally in bad condition, particularly the west front, which is much decomposed. The nave and transept, which are the earliest portions of the building, are the beat preserved.

Fountain's hall, Yorkshire.-(1677.) Of sandstone of the ricinity, and magnesian limestone in the dressing. The whole in fair condition.

Foreut of Dean, Gloucentershire.-Park End new church (built 13 years since, of sandstone, similar to that of Colford. No appearance of decamponation.

Glasoov.-Ancient brildinge:-High church (12th century), asoditone of
the vicivity; generally very much decomponed, particularly on the south side. Old quadrangie of the college (temp. James 2.), of sandstone, decomposed.

Modern huildings:-Hunterian museum (1804) ; superstructure said to be of stone from the President quarry; slight traces of decomposition on the south-west front. The hasement, of another sandstone, in a more advanced statc of decomposition; other parts of the building are almost in a perfect state. The other buildings are generally enected of stone from the Giffneuch and other quarries in the immediate neighbourhood, except the New Exchange buildings, which are of stone from the Humhie quarry, 30 miles from Glasgow, recently erected, in which there are not auy apparent aymptoms of decomposition.

Gloweenter, cathedral.- (Norman for the greater part, altered and cased in the 15 th century.) Built of a fine-grained and ill-cemented oolite, a shelly oolite, and a red sandstone (north side) intermixed, of which the former constitutes the greater portion. The tower (15th century), of shelly oolite, in perfect condition. The early turrets of the south transept are also in good condition. The body of the bnilding is much decomposed. The great cloister is built of the same materials as the cathedral. The moulded and decorated work is in good coudition; the other parts are more or less decomposed. The sonall cloister is built of a fine oolite, with a compact cement, and is in goorl condition.

7he new bridge. Of Whitchurch sandstone, parapets of Ruorlean finegrained sandstone; in good condition.

Haddon hall, Derbyshire.-(15 th and 16 th centuries.) Of a fine-grained sandstone, similar to that of Lindrop-hill. The dressings, parapets, chimney shafts, quoins, \&ce., are wrouglit and rubbed; the remainder of the walls is of rough walling. The whole in fair condition.

Harrouggate.-Cheltenham pump-room. Of sandstone from Woodhouse, near Leeds. Built recently; in good condition. Swan hotel, and other modern buildings, of a coarse sandstone of the vicinity; generally in good condition.

Hardwicke hall, Derbyshire.-(1597.) Of a fine-grained sandstone, chiefly from a quarry in the hill on which the house is built, intermixed with a calciferous grit, similar to that of Mansfield; geuerally in good condition. The ashlor is in parts decomposed, especially where it is net on edge.

Howden church, Yorkahire.-(15th century.) Partly of magnesian limestone, of a deep yellow colour, and partly of a coarse siliceous grit, of a fernuginous colour. Dressings and enrichments and the central tower are of the former stonc ; generally decomposed, particularly at the top of the tower. The other parts of the building, which are of the grit, are very much decomposed.

Kirkstall abbey, Yorkshire.-(llth century.) Of coarse sandstone of the vicinity, in various stages of decomposition, according to the aspect. The east side is in fair condition; some of the zig-zag enrichments and early capitals, and other enrichments of mouldings, are in perfect condition. The windowa of the chancel and tower (inserted in the 16 th centary), of a yellow sandatone, wre for the most part gone, and what remains is much decomposed.

Mangfeld towohall, Nottinghamshire,-Built 3 years since, of magnesiocalciferous sandstone from Mansfield. No appearance of decomposition.

Newocathe-tipon-Tyne.-Ancient buildings:-St. Nicholas's church (14th rentury), of sandstone of the vicinity, similar to that of the Heddon quarry; very much decomposed. Parts restored within the last century with the same stone now decomposing. The upper part of the tower and spire restored within the last five years, and painted to preserve the stone from decay. Other ancient luildings of the same stone nore or less in a statc of decomposition, according to the datc of their erection.

Modern buildings, built within the last 25 years, of sandstone from the Pelling and Church quarrics at Gateshead, and the Kenton quarry; parts ajready show symptoms of decomposition.

Pontefract castle, Yorkshire.-(14th century.) Built generally of a coarse grit, of a dark brown colour, occasionally mixed with an inferior magnesian limestone. The whole in $\&$ very decomposed atate, more particularly the sandstone, in which all traces of the original surface are effaced. Pragments of magnenian limestone are embedded in several parts of the walls with mouldings of the 12th century, in perfect condition.

Ratry castle, Durham.- (lith century.) Of sandstone of the vicinity. Parts in a perfect state; others slightly decomposed.
Richmond cantle, Yorkshire.-(11th century.) The Keep of sandstone, similar to that of Gatherly Moor; generally in good condition. Mouldings and carvings in columns of window in a perfect atate.

Ripon, Yorkshire.-An obelisk in the market place (1781), of coarse sandstone, much decomposed, in laminations parallel to the exposed faces.

Ripon cathedral.-I ower part, east end, S. E. angle, (Norman,) of coarse sandstone of the vicinity, in good condition. The west front, the transepts and tower, (of the 12 th and 13 th centuries,) of coarse sandstone of the vicinity, in fair condition. The mouldings, although generally decomposed, are not effaced. The dog's-teeth ornament in most parts nearly perfoct. The aisles of the naves, the cleriatory, and the choir, (of the 14 th and 15 th centuries, of coarse tandstone and magnesian limestone intermixed; not in good condition; the latter atone, on the south side, often in falr condition, the lower
parts of the building generally, but particularly the west fronts, which are of coarse sandstone, are very much decomposed.

Rivaulr abbey, Yorkshire--(12th century.) Of a sandstone at Hollands, one mile from the ruins ; generally in excellent condition. West front slightly decomposed; south front remarkably perfect, even to the preservation of the original tool marks.

Shaflesbwry, Dorsetahire.-St. Peter's church. (15th century.) Of a green siliceops andstone, from quarries half a mile south of the church. The whole building much decomposed. The tower is bound together by iron, and is unsafe, owing to the inferior quality of the stone.

Spofforth castle, Yorkshire.-(14th century.) Of coarse red sandstone, more or less, but generally much decomposed. The dressings of the windows and doors of a semi-crystalline magnesian limestone, are in a perfect state, the mouldings and enrichments being exquisitely sharp and beautiful.

Tintern abbey.-(13th century.) Considerable remains, of red and grey sandstones of the vicinity; in pert laminated. In unequal condition, bnt for the most part in perfect condition; covered with grey and green lichens.

Tinbury charch, Wiltahire.-(13th and 14th centuries; the lower part of the tower of the 12th century.) Of calciferous sandatone from Tisbury. The dressings are throughout in perfect condition. The ashlar variable; in part much decomposed; the undecomposed portions are covered with lichens. Tombstones in the clurchyard generally in good condition, some being more than a century old. The houses of the village built generally of the Tisbury stone, and are in very good condition. The whole covered with lichens.

Wakefield parish church, Yorkshire.-(Tower and spire of the 16 th century.) Of sandstone, much decomposed. The body of the church, of recent date, of sandstone, strongly laminated, and generally decomposed between the lamina.

Whitby abbey.-(13th century.) Of stone similar to that of Arslaby Brow in the vicinity; generally in good condition, with the exception of the west front, which is very much decomposed. The stone used is of two colours, brown and white; the former in all cases more decomposed than the latter. The dog's-teeth and other cnrichments in the east front are in good condition.

LIMESTONE BUILDINGS.

Bath.-Abbey church (1576), built in an oolite of the vicinity. The tower is in fair condition. The body of the church, in the upper part of the south and west sides, much decomposed. The lower parts, formerly in contact with buildings, are in a more perfect state; the reliefs in the west front of Jacob's ladder, are in parts nearly effaced.-Queen's-square, north side, and the obelisk in the centre, built above 100 years since, of an oolite with shells, in fair condition.-Circus (built about 1750), of an oolite in the vicinity, generally in fair condition, except those portions which have a west and sonthern aspect, where tbe most exposed parts are decomposed.- Cremcent, built about 50 years since, of an oolite of the vicinity; generally in fair condition, except in a few places, where the stone appears to be of inferior quality.

Bristol, cathedral.-(Of the 13 th and 14 th centuries.) Built of red asudstone and apparently a yellow limestone (magnesian?) strangely intermixed. The red sandstone in all cases decomposed; the limestone more rerely decayed. The tracery, \&c. of the windows, which are of the limestone, are in good condition; but the pinnscles and other dressings, which are of the same material, are much decomposed. The east end of the cathedral is a remarksble instance of the decay and preservation of the two stones employed. Norman gateway, west of the cathedral, (the upper pert of the 15 th century,) the Norman archway and its enrichments, which are of a very forid character, built of yellow limestone (magneaian?), in excellent condition.

St. Mary, Redeliffe.-(Tower of the 12th centary; body of the church of the 15 th century). Of oolitic limestone, from Dundry ; very much decomposed.

Burleigh-howse,-(15 th century.) Of a shelly oolite (Barnack rag), in excellent condition throughout. The late additious are of Ketton stone.

Bylond abbey, Yorkshire.-(l2th century.) In part of the siliceous grit (principally in the interior), and in part (chiefly on the exterior) of a compact oolite, from the Wass quarries in the vicinity. The west front, which is of the oolite, is in perfect condition, even in the dog's-teeth and other forid decorations of the doorways, \&c. This building is covered generally with lichens.

Colley Westom church, Northamptonshire.-(14th century.) Of a shelly oolite (Barnack rag), in perfect condition throughout.

Dorcheoder.-St. Peter's church. (15th century.) Of laminated oolite, somewhat similar to that of Portland, and of a shelly limestone, somewhat resembliug that of Hamhill. The latter used in pinnacles, parapets, and dressings. The whole in a decomposed state.

Glastonbury.-Abbey.-Joseph of Arimathes's chapel:-Considerable ruins, Norman ; of shelly limestone, similar to that of Doulting; generally in good condition; the zig-zag and other Norman enrichments perfect ; the capitals of columns, corhels, \&c., are of blue liss, much decomposed, and in some cases have disappeared. The church :-conaiderable remains of the choir, and a small portion of the nave (1lth century); of shelly limentone, similar
to that of Donlting, in good condition. St. Benediel's, parish church (14th century).-Of limestone similar to that of Doulting; in good condition. St. Jokn the Baptist's, parish church (15th century). - Of stone similar to that of Doulting; generally in fair condition.

Gloucenter.-Cathedral.-(Norman, for the greater part altered and cased in the 15 th century.) Built of a fine-grained and ill-cemented oolite, a shelly oolite, and a red sandstone (north side) intermixed, the former constituting the greatest portion of the edlifice. The tower (15 th century) of shelly oolite in perfect condition. The early turrets of the south transept are also in good condition. The hody of the huilding is much decomposed. The great cloister is built of the tame naterials as the cathedral. The moulded and decorated work is in good condition; the other parts are more or less deconsposed. The small cloister is built of a fine oolite, with a compact cement, and is in good condition.

St. Nicholan's church.-(Body, Norman; tower and spire, 15 thi century.) Or a shelly and inferior kind of oolite intermixed, and in unequal condition.
St. Michael's church.-(15 th century.) Built of the same stone as St. Nicholas's, and in the same condition.

Grantham church.-(13th contury.) Lofty tower and spire at the weat end. Built of an oolite sinilar to that of Ancaster; in good condition, more especially the tower, except as to some portions of the base mouldings.

Ketion church, Rutlandshire.-(West entrance door, Norman; tower of the 12 th or 13 th century; nave, aisles, and chancel of the 14 th century.) Of a shelly oolite (Barnack rag), in good condition. Dog's-teeth, carved corbels, and other enrichunents in a perfect state.

Keltering church.-(14th and 15 th centuries.) Of a shally oolite, finegrained, the greater portion resembling Barnack rag. The tower and spire in perfect condition. The lody of the church in parts slightly decomposed.

Kirkham priory, Yorkshire.-(13th century.) Inconsiderable remains. The western front and great entrance slightly decomposed throughout; the portions which remain of the body of the elnurch very perfect ; but many of the stones are much decomposed. The stone is very similar to that of the Hildenley quarry. The whole is much covered with lichens.

Lincoln.-Cathedral.-(Thic minster generally of the 12 th and 13 th centurics.) Of oolitic and caleareous stone of the vicinity; generally in fair condition, more especially the early portions of the west frout. The ashiar and plain dressings of the south front are however much decomposed. The mouldings and carvings of the east front are in a perfect state. Roman gate, of a ferruginous oolite, in fair condition. The casile gateway (13 th century), of an oolitic limestone; ashlar inuch decomposed; dressings jerfect.

Malton (old) church, Yorkshire.-(12th century.) Light semi-compact limestone, similar to that of the Hildenley quarry; generally in good condition, particularly the great west door (of the 1 lith century), where the zigzag and other enrichments are perfect ; some stones are much decomposed.

Montacute, Somersetshire.-Parish church (15th century):-Of Hamhill stone, in perfect condition, covered with lichens. The abley (15 th century) : supposed abbot's house and gateway, of Hambill stone, in good condition. Montacute-house :-(17th century.) Of Hamhill stone, in excellent condition.

Martock church, Somersetshire.-(15th century.) Of a shelly ferruginous brown limestone from Hamlill, iu good condition, except the plinth and base mouldings, which are much decomposed. Covered with lichens.

Newark.-Church.-(15th century ; the tower in part of the 12 th century.) Of an oolite aimilar to that of Ancaster; generally in fair condition, with the exception of parts of the base mouldings. The huilding is covered with a grey lichen.

The castle--(Norman, with additions in the 15 th century):-chiefly of andstone of the vicinity ; in anequal condition. A large portion of the dressings of the windows, te., are of an oolite, probably from Ancaster.

Town-hall (50 or 60 years old) :-built of the Ancaster oolite; in good condition ; in tome blocks however there is an appearance of lamination, where decomposition has to a slight extent taken place.

Oxford.-Cathedral:-Norman. (19th century.) Chiefly of a ahelly oolite, similar to that of Taynton; Norman work in good condition; the latter work nuch decomposed. Merton college chapel (13th century):-0f a shelly oolite resembling Taynton atone; in good condition generally. New college choistera (14th century) :-of a shelly oolite (Taynton) ; in good condition. The whole of the colleges, churches, and other public buildings of Oxford, erected within the last three centuries, are of an oolitic limestone from IIeddington, about one mile and a half from the University, and are all more or lesa in a deplorable state of decomposition. The plintha, string courses, and such portions of the buildings as are much exposed to the action of the atmosphere, are mostly of a shelly oolite from Taynton, fiftecn miles from the University. and are universally in good condition.

Paul's, St., catherlral, London.-(Finished about 1700.) Built of Portland oolite, from the Grove quarries on the East Cliff. The building generally in good condition, especially the nortli and east fronts. The carvinga of flowers, fruit, and other ornamenia are throughaut nearly as perfect as when first executed, although much hackened; on the south and west fronts, larger portions of the stone may be observed of their natural colour than on the north and cast fronts, occutioned by a yery nlight decomp. ${ }^{\cdots \cdots}$.af the nurface,

The stone in the drum of the dome and in the cupola above it appeate not to have been so well selected as the rest, nevertheless scarcely any appreciable decay has taken place in those parts.
Pickering church, Yorkskire.-(13th and 14th centuries.) Oolitic rock of the neighbourhood; very much decomposed; the windows, mallions, ad buttress angles, olliterated.
lickering casile.-(14 th century.) The walls of the oolite of the neigho bourhood, and the quoius of a siliceous grit. The Fhole in fair coadition.

Portland, Dorselshire.-New church (built 1766):-Portland oolite; me roach. In a perfect state, still exhibiting the original tool marks. Wathenan village, Tudor house, of Portland oolite, in excellent condition. old ehrreh, in ruins, near Bow and Arrow castle, (1'sth century), of Portland colite, re. sembling top bed; in very good condition; original chisel marks still appeiv on the north front. Bow and Arrow castle :-considerable remains of the kecp, many centuries old, of Portiand oolite; the ashlar reaembles the top bed, and is in perfect condition; the quoins and corbels of the machiealeded parapet appear to be of the cap bed of Portland oolite, and are in good condition.

Salisbury cathedral.-(18th century.) Of eiliciferoua limeatona from Chil. mark quarry. The entire building is in excellent condition, except the wex front, which in parts is slightly decomposed. The building generilly coresd with lichens.

Saxdypfoot cualle, near Weymouth.-(Temp. IIenry VIII.) Conadenble remains of keep; cliefy of Portland oolite, partly of the top bed aad perth of the fine roach; generally in excellent condition, with the exception of a few and apparently inferior stones. The inside ashlar of the walla is of hergegrained oolite, apparently from the immediate ricinity of the centle, much decomposed.
Somertion charch, Somersefshire.-(14th century.) Built chiely ofbue lias; the quoins, buttreases, parapets, and otherdressings of a coarse fempi. nous slielly limestone; in various stages of decay. The parapet of the cleristory of a lighter coloured stone, in good condition.

Stamford.—St. Mary's church (13th centnry) :-of a shelly colite (Ber. nack rag), in fair condition. St. John's church (14th century) :-d similes stone, ill selected, and consequently decomposed in parts, and in laminations, according to the direction of the beds or shells. St. Martin's churel (lith century) :-of similar stone, in good condition. AU Saiats:- (lower part of the body of the church 13 th century; the remainder of the 15 th century.) Tower and spire in fine condition. Body of church decompoaed. Standruit', hotel:-built 24 years since, of an oolite, similar to that of Ketton; is perfect condition. St. Michael's new church:-built four years since. No ip. pearance of decomposition.
Wells.-The Cathedral:-west front (13th century), upper part of town (14th century) ; of slielly limestone, similar to that of Doaising, gearelly decomposed, but not to any great extent. North flank (porch and tramex. 13th century; the remainder of the 14 th century), of similar stone, is good condition, except lower part of ftank and west tower. The central tower (of the 14 th century) in very good condition. South side of the cathedral generally in good condition. Chapter-house (13th century, with additions of the 15th century):-the whole in good condition, excepting the went froet α the gateway, which is decomposed. Close gates (15th century) much desow. posed, but especially on the south and south.west. The cloisters (15 sth ent tury) generally decomposed, particularly the mullions and tracery.

Hestminster abbey.--(18th century.) Built of meveral varieties of gtope, similar to Gatton or Ryegate, whlch is much decomposed, and alino of Cara stone, whioh is generally in bad condition; a considerable portion of the esterior, especially on the north side, has been restored at varioas parids; nevertheless abundant symptoms of decay are apparent. The cloisters, bull of several kinds of stone, are in a very mouldering oondition, except where they have been racently restored with Bath and Portland stones. The wex towers, erected in the beginning of the 18th centary, with a shelly variay of Portland oolite, exhibit soarcely any appearance of decay. Henry the 7th's chapel, restored about 20 years since with Combe Dowp Bath stome, is already in a state of deomposition.

Windruin onureh.-(16th century.) Of an oolite from the imbelinte vicinity ; in excellent condition. A Norman door on the nerth side, curichad
 tion. Tombstones in the churchyard very highly enriched, and beariag the dates of 1681 and 1690 , apparently of Wiadruah atone, are in perfect condition.
Wyke-church, Dorsetahire.-(15th century.). Of colite aimilar ta Porilesd; the whole in good condition, except the mullions, tracery, and dreainga of doors and windows, which are constructed of a soft material, and sed de. composed. On the south side, the ashlar in in part covered with rough oeth The entire building is thiddy covered with licheme:

MAGNESLAN LIMESTONE BUILDINGS.

Benerley, Yorkshire.-The Mintet ($12 \mathrm{th}, 13 \mathrm{th}$, and 14th enatratia), of magnesian limestone from Bramham Moor, and an oolite from Newtadd ; former, which is used in the west tower, central tower, and mowe miex parts the minster, generally in good coudition, but in othor parin of parts the minster, generally in good coudition, but in othor potan in
ployed on the east cite, is altogether in a bed condition. Some of the pinnacies are of Oultom sandstone, and are in bed condition. The building is partly covered with lichens. St. Mary's church (14th century), now in course of restoration, of magnesian limestone and oolite, supposed to be from Bram. ham Moor and Newlold respectively. The ancient parts are in a very crumbling state, even to the obliteration of many of the mouldings and enrichments.
Bolmeer eastle, Derbyghire.-(Teap. 1629.) Mostly in ruins; of magncaian limestone of several varieties, and of a calcareous fine-grained sandstone. The drewings, which are generally of andstone, are much decomposed; in some inatances to the entire obliteration of the mouldings and other decorations, add to the demenction of the form of the columns, rustications, \&c. Most of the string conrses, a portion of the window dressings, and the ashar, which we of magetian timetionc, are generally in excellent condition.

Bolsover church, Derbyshire.-(15th century.) Of a magnesio-calciferous sandstone, more or less in a dccomposed state throughout.

Cheprtow castle, Mownouthasive.-(11th and 12 th centuries, with adilitions of the 14 th century.) Of nountain limestone and old red saudstone. Thic former in good condition; the latter decomposed. Dressiugs of door, window, archway, and quoins are for the most part of magnesian limestone, and in perfect condition. The remainuler is of red sandstone, and is generally much deconiposed. Chapel (of the 12th century):-mouldings and carviugs of windows, sc., which are of magnesian limestome, in perfect condition.

Doncenter (ohd) charch.-(l5th century.) Of an iuferior maguesian linestonae, generally minch decomposed, more especially in the tower and on the south and west sides; now under gencrad and extensive repair.

Hevingborough eharch, Yorkshire.-(15th contury.) Of a white crystalline magnesian limestonc. The entirc building is in a perfect state, cven thic spire, where no traces of decay are apparent.

Howden church, Yorkshire.-(15th century*) Partly of viagnesian liuestone, of a deep yellow colour, and partly of a coarse siliceous grit, of a ferrugioous colour. Drowsing and corichuents, and the contral tower, are of the former atone, generally decomposed; particularly at the top of the tower. The other parts of the edifice built of the grit are very much decomposed.

Huddrotome-hall, Yorkahire.-1 $15 \mathrm{H}_{1}$ century.)-Of semi-crystalline magnesian timentone from the meighbouring quarry. In excellent condition, even to the entive preservation of the mouldings of the chapel window in the southweat froat. The outer gate piers in the fence wall, also of magnesian linuestone, very much decomposed.

Knaresboromgh costlc, Yorkshire.-(12th century.) Magnesian limestone, carious in part ; generally in very goord condition, except on the south and south-west portions of the circular turrets, where the surface is much decomposed. The mouldings generally are in a perfect state. The joints of the masonry, which is executed with the greatest care, are remarkahly closc. The stone of the keep, which is of a decp brown colour, and much rescmbles sendstone, is in good condition, especially on the south-west side.

Koningsborough castle, Yorkshire.-(Norman.) Coarse-grained and senicryotaline magnesian limestonc from the hill eastward of the castle; in perfect condition. The masonry is executed with great care, the joints very close, but the mortar within them has disappeared.

Lipon-Cathedral-lower part, east end, S. E, angle, (Norman), of coarwe sendetone from the vicinity ; in good condition. The weat front, the transepts, and tower, (of the 12th and 13th centuries,) of comerse sandstone of the vicinity, in fair condition. The mouldings, although generally decomposed, are not efficed. The dogs-teeth ornament in moat parts nearly perfect. The aisles of the nave, the cleristory, and the ahoir, (of the 14 th and 15 th centuries, of coaree sandstoue and magnesian limestonc intermixed, not in good cardition. The latter stone on the south side often in fair condition. The lower parts of the building generally, particularly the west fronts, which are of comrae sandstone, are much decomposed. Am obslisk in the market-place (1781), of eonse samdstone, is much decomposed, and in laminations parallel to the expoesed ficen.

Rolin Hoode woll, Yorkzhire.-(1740.) A rasticated building, of magne. cian limestone, to perfect condition.
Roche abley, Yorkthire.-(12th century.) Inconsideralle remains; of semi-crystalline magnesian limestone from the ueighbouring quarry, generally in fair condition; the mouldings and decorated portions are perfect. Gate house (of 12 th century), generally decomposed, with the exception of the dresvings and mouldings, which are perfect.

Selby chureh, Yorbakiner-(Nave and lower part of the tower of the 11 th century; the weat coost asd aides of the 12 th century; aud the choir, with ito ainies, of the 144 t century.) The Norman portion of the building, which in of groy magosion timestome, is in axcellent condition, particularly the lower pest. The early English portions of the building are also of magnesian lime. stome, and in a partially decomposed atete. The later portions of the building, which are too of magmesian linseatone, are much demomposed and blackesed.
Southoell chwreh, Nottinghamshire.-(Of the 10th century.) of magncman limentone similar to t at of Bolsover Moor, in perfect condition. The suondings and corichments of the doorvay appear as perfect as if just com. pleted. The ehoir, wisich is of the 12th century, and brilt of a tone similar to that of Mansteld, is generally is geod coadition.

Spofforth castle, Yorkshire.-(14th centary.) Of coarse red sandatone, generally much decomposed. The dressings of the windows and doors, of a semi-crystalline magncsian limestone, are in a perfect state, the nouldings and enrichments being exquisitcly sharp and beautiful.

S/udley park, Yorkshire.-Banqueting house, about 100 years old, of yellowish magnesian limestone, in perfect condition.

Thorye Arch Village.-The houses generally of this village are Imilt of magneaian limestone from the vicinity; they are in excellent condition, and of a very pleasing colour.

Thorpe Salvin, near Workeop.-Manor-house (1 stla century), in ruins; of n silicifcrous magnesian limestone and a sandstone; in unequal condition; the quoins and dressings are generally in a perfect state. Parimh ehurch 115th century), also of siliciferous variety of magnesian limestone and a sandstone; in unequal but generally fair condition. A Norman doorway under the porch is well preserved.

Tickhall chterch, Yorkshire.-(15th century.) Of unagnesian limestone, in excellent condition. The lower part of the tower (of the 12 th century) also in fair condition.

York--Ancient buildiuge.-Cathedral (transepts 13th century; tower, nave, \&c., 14th century):-of magnesian linestone from Jackdaw Craig. West end aud towers restorel 30 years since; they are in fair condition generally, but some of the enriched gables and other decorations are obliterated. The transepts are in many places much decomposed, especially in the mouldings and enrichments. The ceatral tower is generally in good condition, but several of the enriched parts are decomposed. St. Mary's abbey (12th cen-tury):-of magnesian linestone. West front of the church generally much decomposed; the north flank in better condition, but in parts much decomposcel. The gateway, which is of Norman origin, is in falr condition. Romon Mullangulav loucr:-built of small stones; such as are of magnevian limestone are in good condition. St. Denis's church:-Norman doorway, of magnesian limestone; south aspect highly curiched with zig-zag and other ornaments; the columus are gonc; the parts which remain are in good condition. St. Blaryaret's church (1 sth century):-of magnesian limevtone; east front much exposed, and in good condition. The porch is of Norman date, and has licen reconstructed ; four bands of enrichment in the heal in tolerably fair condition, but many stones, particularly those of a decp, yellow brown culour, are much decomposed. The other churchos of York (which are of the 1 th and 15 th centurics) are built of wagnesian liuncstone, and anc generally in an extremely decomposed state, in many instauces all architectural detail is obliterated.

Modern buildings.-The museum :-of Hackness sandstone, built nine yeats since, much deconposed wherever it is subject to the alternation of we i and dry, as at the bottom of the columns of the portico, plinth, \&ic. The castle (recently erected):- the plinth of the looundary wall (which is of Brankey Fall sandstone) already evibibis (races of decomposition. Jork Savings Bank: -lluddersfichl stonc (?), in good condition.

Workop church.-(Principally of the 13 th century.) Of a siliciferous varicty of magnesian limestone, and of a sandstone; in very unequal condition; some parts are very much decomposed while others are in a perfect state.
(Signed)

> Ciarlf:s Barry.
> II. T. De la Becte.
> William Smith.
> Charles II. Smith.

Description of the galyanic Telegraph at the Girfat Western Railway.-The space occupied hy the case containing the machinery (which simply stands upon a talle, and can be renoved at pleasure to any part of the room), is little more than that required for a gentleman's hat-box. The telegraph is worhed hy merely pressing small braws keys (similar to those on a keyed bugle), which, acting, by means of gavanic power, upon vajous hands placed upon a dial-plate at the other cnd of the telcgraphic line, as far as now opened, point not only to ench letter of the alphabect, as each hey may be struck or pressed, but the numericals are indicated ly the same means, as well as the varions points, from a comma to a colon, with nutes of udmiration and interjection. There is lihewise a cross (\mathbb{X}) upon the dial, which indieates that when this hey is struch, a mistake has been made in some part of the sentence telegraphed, and that an "crasure" is intended. A question-such, for instance, as the following, "llow many passengers started from Draytou by the 10 oclock train?"-and the answer, could be transmitted from the termimus to Drayton and lack in less than two minutes. This was proved on Saturday. This mode of commmaication is only completed as far as the West Drayton station, which is about $13 \frac{1}{2}$ miles from l’addingion. There are wires (as may be inagined) communicating with each cod, thus far completer, passing througlt a hollow iron tube, not more than an inch and a half in dimueter, which is fived about sis incles alowe the ground, running parallel with the railway, and about two or three feet divant from it. It is the intention of the Cireat Western Ihalway Comprans to carry the tube along the line as fast as completion of the rails tabes place, and nit. timately throughout the whole distance to Bristol. The machinery and the mode of working it are so exceedingly simple that a chind who couid real would, after an hour or two's instruction, be euabled efficiently to transnit and receive information, - Obvereer.

THE RIVER CLYDE.

Brtracts from a General Report on a part of the River Clyde, between Ja-maion-street Bridge and the Glabgovo Water-voorks. By William Bald, F.R.S.E., M.R.I.A., \&cc. Civil Engineer.

The first great step to improve and extend the trade of Glasgow, is to increase the width and depth of the river Clyde, and to render it safe in every part of its navigation; secondly, to give sufficient room and full protection to all ships frequenting the harbour or port of the city. But, to attain the first of these important objects, it is necessary to observe, that to preserve depth in river channels by artificial means, is attended with a constant and a considerable expense; but, if natural means can be called into action to secure depth, and also width, or even partly to assist in doing so, it would be extremely desirable, and is the first thing whicb should occupy the attention of the engineer in the improvement of a tidal river channel. If increased width be contemplated for any river, beyond the limits which nature has assigned to it, for the discharge of its land-flood waters, it will clecrease in depth what has been given to it in width; and, on the other luaud, if the natural breadth of a river be narrowed, it will acquire in depth, what has been taken from it in width; taking into account the nature of the soil at the bottom, and on the sides of the river, and the velocity of the water current.

Reflecting on these fundamental principles, and looking at the river Clyde, and the great necessity there exists of giving it increased breadth for the purposes of navigation, the first consideration should he, to preserve the depth where increased width is proposed to be given to it, by the immediate removal of every kind of obstacle which in any manner interferes with the frec tidal flow of the sea-water upwards, by deepening and widening the channel of entrance, clearing away all banks, shoals, and obstructions, so that the sea-tide flood may ascend freely upwards, to the grentest extent that it can possilly reach.

It is manifest, that any plan that shall increase the wlume of water into the upper reaches of the Clyde above the city of Glasgow, will be attended with the most beneficial results. The tide water in the Harbour will be increased; the time of high water will be more early, thereby enabling ships outward and inward bound to reach the port sooner, and depart from it earlier. The velocity of the tide of flood and ebb would be increased, not only througb the Ilarbour, but also through the whole navigable channel of the Clyde; and even for some distance this scouring power would be felt above Hutcheson's Bridge, by which the whole impurities of the scwerage of the city would be washed away downwards by the cbbing tidal current, and which would render Glasgow more healthy, and the water in the Harbour more pure.

By the removal of the weir at the New Bridge, the Clyde could be deepened upwards in such a manner as to allow a volume of water each tide to ascend the Clycle towards Dalmarnock Ford, of abont $13,200,000$ cubic feet, equal to 367,242 tons.

$$
\begin{aligned}
& (6,232 \times 13,200,000=82,262,400 \text { gallons, or } \\
& \left.\frac{13,200,000 \times 62.5}{2,240}=368,303 \text { tons. }\right)
\end{aligned}
$$

The removal of the weir would give a volune of water each tidc, into the upper reaches of the Clyde, to the end of the tidal flow above the Glasgow works, of $20,400,000$ cubic feet of water, equal to 567,557 tons.

$$
\begin{aligned}
& (6,232 \times 20,400,000=127,132,800 \text { gallons, or } \\
& \underline{20,400,000 \times 62 \cdot 5}=569,196 \text { tons. })
\end{aligned}
$$

$$
2,240
$$

This is nearly equal to a river line of four miles long, four feet deep, and two hundred and forty-two feet wide. This immense volume of water ascending and descending each tide, would eminently tend to carry away all impurities which are discharged into the Clyde at Glasgow; indced, the effects of this scouring power would be felt towards the lower extremities of the river Clyde, as far as the banks opposite Port-Glasgow and Greenock.
The removal of the weir would at once open an extent of river, between the New Bridge and IIutcheson's Bridge, of nearly twenty-three acres, equal in extent to the whole of the lower Harbour; and a deepening of threc or four feet would enable all the smaller craft in the lower Harbour to ascend into the very centre of the city, which would be a great relief to the lower Port, where the large ships lie. But this upper IIarbour of twenty-three acres is quite capable of being so improved, that ships of the largest class might lie in it, and Glagow would then indeed have the aspect of a great maritime port. To those who have visited some of the continental harbours and cities-such, for example, as Amsterdam and Rotterdam-nothing can appear more natural, and simple than to convert the whole of the Clyde, between the New Bridge and Hutcheson's Bridge, into a large floating harbour. It position in the very middle of the city, would confer many adventages on the merchant and trader.

In the first instance, the weir might be lowered about tluree feet; the bed of the river between the Newr and the Old Bridge decpened three feet, and hetween that bridge and the City Wharf decpencd only two fect. I am of opinion, that this extent of deepening will not endanger the Old Bridge at Stockwell-street, if proper precaution be taken; and this first step would afford immediate relief to the lower Harbour, by affording ample room to all the smaller craft to berth themselves between the bridges.

I am quite aware that none of the Acts of Parliament permit the river
trustees to deepen any part of the Clyde above Stockwell-street Bridge ; yet, notwithstanding, if the river were deepened even so firr up as that inioge, it would be a most important advantage. .The space between the New Britge and the Old is about fifteen hundred feet long, by nearly four hundred feet wide, being an arem of more than thirteen acres; it woald therefore afford immense accommodation to the smaller vessels frequenting the Port of Glasgow.

It is really to be regretted that so magnificent a harbour improvement should be sealed up, and prevented from being carried into execution, on account of the existence of the weir at the New Bridge. I am aware that it has been, and continues to be, a source of very deep regret to that active and commercial intelligence, which so pre-eminently diatinguishes the inhabitants of this great city, to have seen, for so long a period, a space so large fring wholly unoccupied, and which might be so easily and so cheaply converted into a most useful harbour; while, on the other hand, the lower Port is so crowded with vessels, that harilly a berth can be procured, nor even the necesasry repairs made to parts of the quay walls without seriously inconveniencing the shipping: and all this has arisen about the lowering of the weiv, Which the Giasgow Water Company object to, ws being injurious to their interest. On this important point I shall now proceed to offer a few obser. vations.

The principal objection offered to the removal of the weir at the Glagov New Bridge, has been made hy the Glasgow Water Company. They state that it would lower the level of their present supply. Now, looking at the Glasgow Water-works, and the numerous public interests connected with them, both industrial and manufacturing, looking at the immense vteas. power employed in the Water-works, amounting to no less, when compteted, than 682 horse power; and again, at the vast capital which has been invooted in those works, it really, on pullic grounds, becomes a question of the greatest importance, in deepening the river Clyde, and improving and enlurging the port of the city of Glasgow, to preserve these Water-works from sustaiaing any injury, either in lowering the existing level of the water in the Clyde, or deteriorating the quality of the water which affords the supply. Ot this most important subject, we fortunately have on record the evidence of the late Mr. Thomas Telford, and we have also the very clear and very able eridence of Mr. James Jardine, engineer to the Edinburgh Water-wrorks: both of these gentlemen mention distinctly, that if the bottom of the ford at Dalmarnock Bridge he secured, so that its present level remain undisturbed, the weir may then be taken awny at the Glasgow Bridge, and the Clyde deepened letween Dalmarnock Ford , and that bridge for ahout aix foet, writhoat, in their opinion, doing any injury to the Glasgow Water-works. But be it understood, that the work which they recommended, was not to rise above the level of the present hed of the Clyde at Dalmarnock Ford; for Mr. Telford says in his evidence, that when the bed of the river would be secured. "a stranger wonld be unconscious of any such operation having been performed there," hecause uo weir would lee seen thaversing the Clyde. Nuwerous interests would, I fear, offer many serious objections to the erection of a weir rising even a few inches above the bed of the Clyde at Dalmarnoct Ford.

Attentively reflecting on the evidence of Mr. Telford and Mr. Jardime. regarding the Glasgow Water-works, and considering that the Pord of Dalmamock is at present nearly eighteen inches above the level of the Clycte. where the present supply is taken for the Cranstonlill Water-works, I thiak it possible to obtain a supply of water from the level of the river at Dahoarnock, without raising its level by the construction of any weirs rising abore the present bed of the Clyde at that point, by simply securing the existing level of the river waters at the Ford. For I frankly avow, that I am decidedly opposed to the erection of any weirs across the bed of the Clyde. It werud perhaps even be much better to carry a sufficient quantity of water froma still higher level of the Clyde, to supply the Water-works, than in any manas to interfere with the river channel, by the erection of engineering worts which would obstruct the free passage of the land and tide maters, and prevent the navigation from being inproved hereafter in the higher reaches; and also to enlarge and extend those natural tidal flows or scouring powers. which would act so beneficially, not only in cleansing all deposition caxased by the city sewers, but would also be of great benefit to the liarbour is keeping it clear, as well as the whole channel bed of the river downwerda I an unahle to find language to express all my thoughts on the great ratar which I attach to this upper scouring power, and on the necessity whict exists that no part of the bed of the river shall ever be encumbered either with weirs, dykes, or locks, where it may be possible for the tidal rise to reach, or to which it at present extends.

Looking at the triumphant success with which the open tidal estories af rivers have heen navigated since the application of steam power to maritimar purposes, looking at the improvements which are being made in masy rivers, not only in Great Britain and Ireland, but also on the New and the Old Continents, to facilitate and extend the progress of this power tato the most remote corners wherc the tide flows, and the extension of this pemer. which so peculiarly characterisen and adorns the Clyde-the cradle of atester navigation-its further extension into the highest tidal reaches of the Clyitr. at once claims and clemands the dcepest attention of those intruated with the direction and improvement of the river and the poit of this great edty. Beflecting on the events of the last tweuty-five years, in the improvemest of the lower Clyde, who can tell to what an extent the improvemeat of the my reaches of the river may not be carried ?

In offering these few and limite 1 observations on a small part of the apper Cbde, I regret exceedingly that it has not been in iny power at present to bring under review the improvement of the lower water-hasin of the Clyde, from the Jamaica-street Bridge to Port-Glasgow; the nature of the wide expanse of the tidal estuary, as well as the narrow parts; the cause of the formation of the sandbanks and shoals opposite Port-Glasgow and Greenock; the basin of the Leven, the Cart, and the Kelvin, and their infinence on the ship chanuel. And as regards the upper Clyde, I more particularly regret not lseiug able to give the soundings, levels, nature of the bottom of the river, and the form of its bed, according to the various strata; the limit of the high floods, and those of low water, during summer and winter; the mode of securing the sides of the river when deepened; the area of the dry basin of the Clyde ; the quantity of water falling within it in a year; the average daily quantity passing through it at the city of Glasgow; the quantity of alluvian held in sospension by its waters; the limit to which the sea-water reachen, and ceases to be sensible to the taste; the mean hydraulic depth at numeroas places. These are subjects highly instructive to the engineer in deriaing plans for the improvement of estuaries, rivers, and harbours situated within them. I hope I shall be able, at no distant period, to submit to the trustees a detailed report upon the dry and water basins of the Clyde. Those basins will be found the most interesting in Scotland, whether as regards their physical structure, the immense and almost inexhaustible mineral wealth which they contain, or their capability of improvement in the tidal uarigation, combined with the probable connecting ramifications of railways. All those matters are intimately connected and blended with the rising commercina prosperity of the city of Glasgow, its port, and its river.
I am obliged to bring under your consideration, the great and pressing aecesuity which existe of affording inmediate accommodation to a large class of steamers, built or now building, and which may require to be furnished with eagines. My feeling on this subject is so great, that I cannot refrain from hoping, that this branch of mechanical industry will receive at the hands of the river trustees, all that protection to which it is so justly entitled, forming, as it does, a branch of national industry, not only highly creditable to Scotland and to the genius of her people, but which employs thousends of her mechanics-diffusing wealth among numerons classes, and calling into full activity that peculiar mechanical and inventive power, which has exteuded the fame of this land and its inhabitants through the most remote and distant regions of the earth.
This accommodation for steamers of the largest class ought, as soon as possible, to be afforded, although it should only consist of a simple excaration on the side of the earthen bank of the Clyde, bordered with a small cheap wharf, constructed of home-grown timber; and this might be done below the present quay walls, without interferiug with the present shipping accommodation, situated at the lower reaches at the entrance to the Iarbour.

Glangove, 30t及 July, 1839.

ON RAILWAY CONSTANTS.

By Dr. Lardnrr, L.L.D.

Abstract of a Paper "On Railioay Constants, and Resistance of Air to Railway Trains," read at the last Sessions of the British Association held at Birringham, for which we are indebted to the able reports of the "Al/henaum."
At the Liverpool meeting of the Association, in the autumn of 1837, an inquiry was undertaken by Dr. Lardner, in connexion with some other members of the Association, with a view to determine the mean numerical value of what werc called Railway Constants by analogy to similar numerical quantities in other branches of science and art. Constants is a technical name given to certain quantities, more especially in astronomical aud physical science, which enter largely into general calculations. As an exauple of thesc, may be mentioned, the height through which a body falls in a second of time; the length of a seconds pendulum; the ratio of the circumference of a circle to its diameter, and so on. A project of a magnificent kind was formerly suggested by Mr. Babbage, for the determination of the mean numerical values of the "Constants of Nature and Art." Among these quantities which enter railway calculations, that which is of the greatest practical importance is, the number by which is expressed the proportion which the tractive power, necessary to move loads on a railway, bears to the weight of the loads it moves. The great importance of this will be readily perceived, if it be considerel that such is in fact in a great tlegree the ratio of the cost to the work done. Accordingly, the first point to which this inquiry was directed was, the solution of that problem.

The reaistance opposed by a railway train, to the power which draws it, arises from eeveral causes; 1st, the friction or attrition of the axles of the wheels in their bearings; 2nd, the rolling friction of the tires of the wheels upon the rails; 3rd, the resistance of the air to the train moving through it. These are all the causes which produce resistance in the train moved. But independently of these, there are resistances peculiar to the engine, arising from the friction, or attrition of the various parts of the machinery which are in motion, and which suffer a pressure or strain, depending ou the resistance of the load drawn; also the re-action of the stcam, escaping from the blast pipe on the other side of the piston, and other similar causes. - Hout to simplify the inquiry in the first iustance, the resistance of the engiue
was put aside, and the investigation was directed exclusively to the resistance of the train. Varions methods presented themselves for testing this. The most direct method was the application of an instrunent called a dynamometer in front of the train, by which the train could be drawn, and which would afford a direct measure of the force with which it was so drawn This method, however, was suhject to several objcctions. It was found that the surface of rails, commonly regarded as level, were really subject to variations of inclination through small distances, which produced upon the dyusinometer sudden jerks, which caused its index to play betwecu such extreme limits as to render it impossible to urrive at any uscful mean of its indications. Besides this, if such an instrument were used to estimate the resistance of a train, moving with any cousiderable speed, it must necessarily be placed between the engine and the train, and would therefore show only a modified effect of the atmospheric resistance; inasmuch as the engiue would have already encountered and removed a portion of that resistance before the instrument could be affected by it. Numerous experiments were nevertheless made with such instruments, and it was not abandoned until its failure was rendered practically manifest. Another method occurred to Dr. Lardner for determining that portion of the resistance which is due to friction, by attaching to an engine such a load as the engine is capable of moving, at a slow uniform velocity, up a given inclined plane, and then taking the same load to a more steep iuclined plane, and detaching from it as many waggons as would enable it to move up the steeper inclined plane at the same slow speed as that at which it moved up the less stcep incliued plane. Under these circumstances it might be safcly assumed, that the absolute resistance to the engine would be in both cases the same, and the difference of the gravity of the two inclined planes would, in such a case, by the aid of mathematical principles, and by formula, which Dr. I ardner constructed, give the resistance due to the waggons detached in passing from the less to the more steep inclined plane. This method would be attended with the advantage of giving a result, in a great degree, free from the atmospheric resistance, and therefore would furnish a near approximation to the value of the friction, properly so called. As the motion would be slow, and a part of the train would be in front of the waggons detached, the atmospheric resistance would necessarily have but a very slight effect. As no opportunity, however, presented itself of executing experiments upon this principle, he did not occupy the time of the Section in enlarging upon it.

After much consideration, he arrived at the conclusion, that the method of investigation which was calculated to give the most satisfactory results as to the resistance of railway trains was, by observing thcir notion down steep inclined planes. This method had been already practised, and its principles will be easily rendered intelligible. If a body be placed on a steep inclined plane and allowed to descend it by the force of its gravity, its motion down the inclined plane would be accelerated. If the causes of resistance affecting the body were uniform in their effect, and independent of the velocity, then the motion of the body down the inclined plane would be uniformly accelerated, just as a body falling frecly and perpendicularly by gravity would, apart from the atmospheric resistance. By being uniformly accelerated, is meant this, that the increase of velocity which takes place every second of time is the same. Thus, whatever velocity is acquired by the body at the end of the lat second, having descended from a statc of rest, twice that velocity will be acquired at the end of the 2nd second, and thrice that velocity at the end of the 3rd second, and so on. It is evident, therefore, that a body, subject to such acceleration, would go on increasing its speed without any limitation. As the intensity of the force of gravity is exactly known, and as the effect produced in diminishing that intensity by a plane of given inclination is a matter of easy and exact calculation, nothing can be more certain than the computatiou of the motion which a body would have down an inclined plane if that body were suhject to no resistance. Now, if it be subject to resistance, the comparison of its actual and observed motion, with the motion which it would have, being subject to no resistance, computed, as just explained, ought to supply means of determining the amount of the resistance; but to do so it is necessary to know, to a certain extent, the law of the resistance which is in operation.

The resistance arising from attrition or friction, whether it be of surfaces rubbing one on another in the manner of a sledge, or rolling one on another as the tire of a wheel rolls upon a rail, or subject to the kind of attrition which takes place between the axle of a wheel and its bearings, have been all submitted to most elaborate and careful experimental inquiry; and the laws of tho resistances, arising from these, have been fully and clearly developed. The question of friction was formerly investigated by Coulomb, Ximenes, Vince, and others; bat recently a more extensive and valuable series of experiments on the sulject, than was ever before executed, has been made, under the order of the French government, by M. Morin, and their details made pablic. The resulta of these fully corroborate the laws which had already resulted from the inquiries of the philosophers who before examined the subject, which laws are as follows :-lst, the resistance arising from friction, whether of rubbing or rolling. or that between the axle of a wheed and its bearings, are, when other things are the same, independent of the velocity; 2nd, other things being the saine, these resistances are clirectly proportional to the amount of pressure on the ruthing surfaces, and independent of the magnitude of theac surfaces. To these laws, taken within practical limits, there can scarcely be said to be an exception. The cxtrene cases which become exceptional, having no application whatever to the present inquiry, it will not be nccessary to regard them.

The immediate consequence, from the friction being the same at all relocities, is, that it is a uniformly retarrling force, that is to say, that it destrors in the moving body on which it acts equal velocities in equal times. This, if it destroy a certain amount of speed at the end of one sccond, it will destroy twice that at the end of two seconds, three times at the end of three seconds, and so on. Now if a railway train, moving down a stecp inclinel plane, were subject to no other resistances than those arising from friction, it is erident that it mould move down the plane mith a uniformly accelerated motion, although that motion would be less accelerated than if it were subject to no resistance. In other words, the kind of motion affecting it would be the same as if there was no resistance, the degree of motion alone being altered. It has been stated that, suhject to no resistance, certain speeds wonld be gained by the train in one, two, thrce seconds. These speeds would be those duc to the gravity of the plane. These speeds mould, liowever, now be diminished by the anount of velocity destroyed br the friction; and as this latter would be increased in the same proportion as the speed imparted by gravity, the descending boly would be accelerated by a unifom force, equal to the difference between the accelcration of gravity and the retardation of friction. In a word, both of these being uniform and independent of the velocity, their difference, that is, the effective accelerating force, down the plane will be uniform and independent of the relocity.

Such was the reasoning on which was based all former investigations of the resistance of railway trains, by observing their motions down inclined planes. The acceleration due to gravity was calculated; the actual acceleration moving down the plane was observed, and the difference was supposed to give the retarding force due to the resistance. It is evident that by such a mode of proceeding, the effect of the atmosphere, or of any other canse which produced a retarlation increasing with the speed, was cither neglected, or was considered to be of such trifing amount, compared with the resistance due to friction, that it might lie regarded as involved in the estimate of resistance thus obtained with sufficient accuracy for practical purposes. Such, indeed, was the impression on Dr. Lardner's own mind when he commencel this investigation, and he accordingly proceeded on the same principles as those adopted by other inquirers, except that in the fornnula he included the effect of the gyration of the wheels, which was neglected in the calculations of M. de Pamhour, and which omission entailed an error upon hisresults.

With a vicw to determine the actual acceleration of a train down an inclined plane, the Whiston and Sutton inclined plains on the Liverpool and Manchester Railway, and a series of inclines on the Grand Junction Railway, exteading from Madeley for several miles towards Crewc, werc selected. This figure represents the inclined planes on the Liverpool and Manchester Rail-

Level.

way. The summit level which lies between them is about two miles in length; the Whiston inclined plane descends towards Liverpool, falling at the rate of 1 in 96 for aloout a mile and a lydf, and is succeeded by an inclination which rises at the ratc of 1 in 936 for a considerable distance.

The Sutton inclined plane falls, towards Manchester at the rate of 1 in 89 for about a mile and a half, and is succeeded by a portion of the line nearly level, for a considerable distance towards Manchester.

The first plane on the Grand Junction line dercended from the Madeley sumnit towards Crewe, falling at the rate of 1 in 177 for a distance of three miles and a quarter; this is succeeded by another which falls at the rate of 1 in 265 for a distance of rather more than three miles, which is succeeded by another falling 1 in 330 for a distance of nearly a mile and a half. This last is suceeeded by a level, which continues for several miles. These planes are represented in the following diagram.

Level.

3m. 20chns. 90 links. 3 m . 3chns. 72 links. 1m. 31c. 311.
The Whiston aud Sutton inclined planes on the Liverpool and Manchester line, are straight throughout nearly their whole length. The Madeley inclines, represented in the diagram, are, in some places, curved with a radius of a mile, turning altemately to the right and to the left; but considerable portions of them are straight. Λ stake, warked 0 , was placed at the summil of each inclined plane, and the length of the plane descending was divided out by stakes marked sucecsoively, $1,2,3$, \&c., into spaces of one hundreal yands. Watches, by which a second could be without difficulty bisected, were provided, and the moment of passing the successive stakes was obmerved to within, at the most, balf a second of the truth. Every care was taken to confer the laat degree of accuracy upon these observations; one
person was cmployed to call out the moment of passing each stake; another, supplied with a watch, declared the time, and the third took it down; and in ruany cases these were checked by having two sets of obsersers.

A few cxperiments conducted in this manner soon made it roanifest that the motion down an inclined plane was not, as has been hitherto supposed, uniformly accelerated. It was found, for cxample, that the increase of speed in each successive interval of time was not the same, but was ontinually less as the motion increased. In other words, the degree of acceleration ras gradually diminished. Now this was an effect evidently indi. cating an increase of the resistance with the increase of speed, and naturally suggested the idea that the atmosphere must have had a more consideralle effect than had been supposed. The mathematical formula, conmonly usel for the deternination of resistance, are founded, as has heen alrcady stated, on the supposition that the resistance is independent of the speed. These formula vere now applied to the motion of the train down the inclined planes for short distances, measured from the points at which the traius were respectively started, so that within the range of their application the train might acquire but very little speed, and therefore that the result might be only slightly affected ly the atmosphere. The results of such calculation, applied to the motion of the train for 100,200 , or 300 yards, were found to give a resistance, amounting to from the 400 th to the 450 th of the load This was not half the amount of the common estimate of the resistance to railway trains, which was about the 250 th part of the load, that resistance having been assumed to be the same at all speeds. It occurred to Dr. landner now to attempt an approximation at the resistance by another process, as follows:-trains were brought to a level and straight line of railuay, and, being driven by an engine until they attained a specd of 30 to 35 miles an hour, they were dismissed, and allowed to run until, being gradually retariled they were brought to rest. The line being staked out as before the moments of passing, the successive stakes were observed, and the rate at which the train was retarded by the resisting forces was olsserrel, for each 100 yards over which it moved; a calculation was made of the amount of resistance by the usual formula, founded on the supposition that the resistance is independent of the speed; but these calculations loeing confined to the first 100,200 , or 300 yards, might be considered as giving 2 fair 2 p proximation, since the clange of velocity throughont that distance was nod very consilerable. The result of such olservations indicated a resistance amounting to from a ninetieth to a hundredth of the load. It will he obscrved that in these last cases the velocity of the train, at which the resistance was computed, was very considerable, while, in the former cases, taking the initial motion down an inclined plane, it was very amall. The inference, of course, which followed, supposing such calculations to gire correct results, was, that the actual resistance at high speeds was many times more than when the motion is slow. Since, howerer, these methods of calculation could be regarded as only approximative, and were, in fect, based on principles which were only true on the supposition that the resistance was independent of the velocity, which supposition was contradicted by the results of the calculations themselves, it was considered neceasary to resort to some other and more correct method of determining the resistanct.

If it be admitted that the atmosphere produces any cossiderable resirtance, since that resistance must increase in a very high ratio with the apeed, it would follow, that if an inclined plane of sufficient leagth coald be ob. tained, the motion of a train would continue to be wceelerated until it would obtain a velocity which would produce a recistance from the air, meh ar. combined with friction, urould be equal to the gravitation dowow the pleve. When such a velocity should be attained, the moving force down the piane, being equal to the resisting force, no further acceleration would tale plact. As it was thought, howcver, that the inclincd planes, which were accessible. inight not be of sufficient length to produce this effect with such trains as it was possible at that time to obtain for experiments, it occurred to Dr. Lardner that the end would be equally attained by starting the train from the top of the inclined plane at a considerable speed; that thus, the to celeration it would receive while descending being added to its initial speed, might be expected to give that velocity, at some point of the descent which would be atteuded by a resistance equal to the gravitation of the train down the plane; at which point, thercfore, acceleration might be expected to cease, and a uniform motion to be maintained to the bottom of the phane.

The first experiments tried with this view were completely successfiu, and the result obtained was in exact accordance with what had been anticipated. On the summit level of the Liverpool and Manchester Railway, marked is the diagram No. 1, a train of four carriages was placed, and was drawn h! an engine to the top of the Whiston plane (bat), from whence it was started at a considerable speed. Its notion was accelerated for a short distapee, but soon becane pertectly uniform; and it descended through the greater part of the plane at the uniform velocity of 31.2 miles an hour. This erperiment was again repeated with the same coaches, increaning the loach As was expected from the gravitation of the increased load, a greater relocity was now obtained; but still a uniform velocity resulterl, and the train descended the plane with the most perfectly uniform motion, at $33 . i 2$ wiles an hour. These experiments were tried repeatedly on the same day nith the same results. A moderate wind blew down the plane, so that the it. ference was, that this train, in a calm atmosphere, would have suffered a resistance greater than a ninety-sixth part of its weight, at the vrlocitios alove mentioned. This experiment, with a train of four cosches, was tr peated on the Sutton plane, and on the inclines mear Madeley, reprement
in the diagran; and in every case a mifonn velocity was obtained,-this velocity diminishing with the steepness of the place.

When these first experiments became known, one of the objectious brought against them was., that a train of four coaches was so light, that a moderate atmospheric resistance would retard it; and that as, in the practical work ing of railways, such trains were never used, the results obtained had no practical utility; and that with heavy trains, such as those actually used on railways, no such results would ensue. This objection, among others, was adranced in a Report puhlished by Mr. Brunel, the engineer of the Great Wextern Railway. In order to meet this objection, trains of greater nagnitime were subsequently trien, and the same results ensued-a uniform velocity leing attained in every case in which the train could lee started from the top of the plane with a sufficiently high speed. In the fullowing Table I, is exhibited the mean results of a vast number of experiments tried with trains of four, six, and eight coaches. In the third column, the letter espresses generally the atate of the wind-F fair, A alverse, C moderately calm, and CC a dead calnn; the fourth column gives the gradieat down which the motion took place; and in the last columin is expressed, in miles per hour, the uniform velocities which the train altained, and which it preserved through a length of the plaue sufficiently considerable to show that it would not have received any further iucrease.

Table 1.

Number of Cosches.	Weight.	Wind.	Gradient.	Uniform velocity attaincd.
	Tons.		One in	Imiles per hour.
4	15.6	F	96	31.2
4	18.	F	96	33.72
4	18.	F	177	21.25
4	20.5	F	177	22.9
4	20.5	F	89	38.25
4	20.2	F	265	19.13
6	27.5	A	89	32.3
6	27.5	F	89	37.5
6	27.5	F	96	34.6
6	27.5	A	96	27.8
6	34.5	C	89	35.3
8	36.5	P	89	>36.5
8	40.75	P	177	20.15
8	40.75	S	177	<17.7
8	40.75	CC	89	31.4

The lant experiment with a train of eight coaches, weighing nearly forty tons, shows that, in a dead calm, the resistance of that train at 31 miles on hour amownted to the eighty-ninth part of its weight; whereas the common estimate of the resistance of such a train at that speed has been hitherto about the 250/k part of it: weight! This fact alone, werc it unconnected with any others, would auficiently illustrate the enormons extent of error which has prevailed hitherto in such estimations in railway practice. The thind experiment with eight carriages was made with a side wind, the effect of which is abundantly manifested by the speed expressed in the last column. While the same train, moving with a fair wind down the Madeley plane had a resistance equal to the 177 th of its weight, at 26 miles an hour, its retistance with a side wind was of greater amount at 17.7 miles an hour. The relative effects of a fair and adrerse wind, are likewise exhibited in the thirl and fourth experiments with six coaches, down the Whiston plane. The velocity, which gives a resistance equal to the 96 th part of the loatl, was $34 \frac{1}{b}$ miles an hour with a fair wind, and only 278 with an adverse wind

When the first experiments indicating these results became public, various objections were urged against them by Mr. Brunrl; and although it was not considered by Dr. Lardner, or by any of the other persons engaged in this inquiry, that such objections were entitled to any serious attention, yet it was thought adrisable to make experiments which would show whether or not they had any foundation in truth. One of these objections was the following: that the circumstances under which such experiments were performed, were not really, though they were apparently, similar to those of an ordinary train in motion; that the carriages were here sent with the square end foremost, to meet and receive the full resistance due to their anfice, which is totally different from the case in which the engine precedes them. The engine in front, it was stated, would act as a sort of cut-air or bow, and thus destroy or diminish the resistance produced by the fat front of the carriages moving foremost. In orler to ascertain the full value of this objection, Dr. Lardner took an engine, 'The Pury,' with her cender, and obtained two coaches, weighted so as to be nearly equal in weight to the engine and tender. The connecting rods and working-gear of the engine were detached from the driving whecls, so that the engine should be subject to no other friction sare that which a coach is subject to The Pury and its tender, and these two coaches, this prepared, were placed saccessively at the summit of the Sutton plane, falling $\mathrm{z}^{\frac{1}{g}}$ towards Manches ter, and the Liveryool and Manchester Railway: and they were allowed to
descend by gravity. The circumstances of their descent were found to be, in all respects, alike, passing corresponding stales at very nearly the came time, and very nearly the same speed. The full particulars of this, and other experiments, will be published: but, in the meanwhile, the principal results of this experiment are exhibited in Table JI:-

Table II.

	Weight.	Total distance run.	Tiuse of running total distance.	Greatent spced.	Time of descending the Sutton plane 1-89.	
Fury and Tender	Tons. 11.39	liards. 4,710	$\begin{array}{ll} \text { m. } & \text { s. } \\ \text { I1 } & 37 \end{array}$	m. per l.	m.	8. 29
Two Coaches	11.33	4,577	1140	$28 \cdot 12$	4	24
Difference.	-06	133	03		0	5

It appears, therefore, that the difference in the whole distance run by the coaches, and by the engine and tender, amounted to only 133 yards, in a distance little short of three miles; and that there was only three seconds difference in the time. The maximum speed attained was nearly the same; and the time of descending the inclined plane only differed by five seconds. This difference, such as it was, was in favour of the coaches with their flat front. In fact, the differences of the numbers in the successive columns of the above table, are only such as would take place in the same experiment tried twice successively with the same comches.

As a second test, the engine and tender was now placed in front of four coaches, 80 as to form a regular train, and it was allowed to descend the plane in the same manner. The engine and tender was then removed, and replaced by tro coaches of equal weight, and the train of six conches was then allowed to descend the plane in the same way. The result of the experiment is exbibited in Table III.

Table III.

$\left.\begin{array}{c} \text { Pury, Tender and } \\ \text { four coaches } \end{array}\right\}$	Weight.	Total distance.	Time of runniug total dis. tance.	Greateat velocity.	Time of deacending Sutton plane 1-89.	
	Tons. $27 \cdot 45$	Yards. 5,068	$\begin{array}{cc} \text { m. } & \text { B. } \end{array}$	$\begin{gathered} \text { m. per h. } \\ 30 \cdot 5 \end{gathered}$	$\underline{4}$	$\begin{array}{r} \mathbf{8 .} \\ \mathbf{3 3} \end{array}$
Six coaches	$27 \cdot 45$	4,850	$10 \quad 48$	31.	4	28
Difference		218	121		0	5

It is needless to enlarge upon these results. The plain and inevitable inference is, and that infcrence would be further corroborated by what he had still to explain,-that the form of the front, whether flat or sharp, has no observalule effect on the resistance; and that whether tbe engine and tender he in front, or two carriages of the same weight as the engine and tender, the motion of the train, and the resistance to its motion, will be exactly the same.

The form of a boat, or beak, having been given to some of the engines on the Great Western Railway, apparently with a view to diminish the effect of the atmospheric resistance, Dr. Lardner determined to ascertain how far such a form would produce any practical cffect. He accordingly constructed a head or beak, to place before the first carriage of a train. Two boards were constructed equal in height to the body of the carriage, and being attached to cach corncr, were united in front at an angle, the vertex of the angle being tlve feet six inches before the flat front of the carriage, and the basc of the angle being six feet six inches, corresponding with the width of the carriage. This apparatus would have the effect of a cut-air. It was first tried with a single coach, which, having it attaclied in front, was moved as before down the Sntton plane, and the circumstances of the motion having been onserved and recorded, the beak was removed, and the coach again moved down with the flat end exposed to the air. The result was as follow: :-

Table IV.

$\left.\begin{array}{l} \text { Coach with point } \\ \text { ed front } \end{array}\right\}$	Weight.	Total distance run.	Time of running total distance.	Greatest velocity.	Time of descending Sutton plane 1-89.	
	Tons.	Yards.	m. s .	m. per h.	m.	8.
	$5 \cdot 35$	3,975	110	$24 \cdot 3$	5	35
Coach with flat front \qquad	$5 \cdot 35$	3,905	110	23•7	4	45
Difference		70			0	50

It is evident that no cffect whatever was produced by the beak, and, consequentiy, the flat end of the eoach produced none of that resistance which Mr. Brunel ascribed to it. The same experiment was now repeated with a train of eight coaches, down the series of inclined planes at Madeley. The beak being placed upon the first coacli, the train was started from the summit of the Madeley plane, falling T_{T}, and it was dismissed down the series of planes already described, the circumstances of its motion being carefully observed. It was then brought back to the top of the Madeley plane, and the beak remosed, and was once more dismissed, the circumstances leeing again observed. The particulars of this experiment is exhibited in Table VI.

It appears, therefore, that the distance run without the sharp end differcd only eighty yards in a distance of about eight miles; and the other differences exhibited in the table, are evidently such ouly as would take place with the same experiment twice repeated with the same carriages.
With a view to ascertain how far mere magnitude of froutage, indepenslent of the gencral magaitude of the train, is productive of resistance, the front of a coach was enlarged by side boards, extending on either side about 20 inches, adding about 24 square feet to the front surface, forming a sort of kings in front of the carriage, but no corresponding width being given to any other part of the carriage. The coach, thus prepared, was placed at the sumanit of the Suttou planc, and allowed to descend from a state of rest. It was then brought once more to the summit, and the sides removed, and it was allowed to descend with its proper front. The result of these two experiments is exhibited in Table V.

Table V.

| | Weight. | Total
 distance
 run. | Time of
 running
 that dis-
 tance. | Greatest
 speed. | Time of
 moving down
 Sutton |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| plane l-89. | | | | | |$|$

From which it was inferred, that mere width of frontage, apart from the general increase of magnitude, was not productive of any considerable practical effect in incrcasing the resistance.

A strong impression existed in the minds of some engineers and scientific men, to whom Dr. Lardner communicated the results of these experiments while they were in progress, that the shape of the hinder part of the train might have an effect upon the resistance. It was supposed that in very rapid motion a tendency to a vacuum would be produced behind the train, and that a corresponding atmospheric resistance, due to this partial vacuum, would be produced in front; that, consequently, if the square shape was removed from the hinder part, less resistance would be found. Although Dr. Lardner did not attach any weight to this oljjection, he was willing, neverthelcss, to submit it to trial, and with that view he prepared a train of three carriages, which he first placed at the summit of the Sutton plane, falling $\frac{1}{1}$, and allowed them to descend by gravity in their ordinary statc. He next allowed them to descend, having the pointed end behind; they next descended with the pointed end before, ; and, lastly, they were once more allowed to descend without the pointed end. The result of these four caperiments is given in Table V1I.

In the third column is expressed the entire distance run, in yards; in the fourth column is the time of going that distance; in the fifth column is the speed acquired in descending the Sutton plane; in the sixth columu the time of descencling that plane; in the seventls column the time of moving a
 time of moving from the twelfth to the twenty-eighth stake, throughout which, the motion being tolerably rapid, the effect of the air might be expected to be greatest. It will be evident, from this table, that the pointed end, whether before or behind, was not attended with any appreciable effect, the discrepancies being only such as would occur iu the same experiment twice repcated.

It had been suggested that the resistance opposed by the air might be more or leas produced by the spaces between the succeasive carriages of the train, the end of each successive carriage being more or less exposed to pressure against the air. In order to ascertain what weight this suggestion was entitled to, a train of eight carriages was prepared, having tenter hooks attached round the corners of their ends. Canvass was prepared, which. being hooked on these, miglit be stretched from carriage to carriage, so as entirely to enclose the spece between the successive carriages, and to convert the whole train into ene unbroken prism. The train being thus prepared with the canvass, was brought to the summit of the Madeley plane, and allowed to descent towards Crewe, the circumstances of the motion being observed as in the former experiments. It was then again removed to the summit, and, the canvass being taken off, the train was allowed to deacend in its ordinary state, the spaces between the carriages loing left open. The residt of these two experinents is exlubited in table YIII; and it will be
seen that the differences are nothing more than what would arise from casual causes affecting the same experiment twice repeated.

Being iupressed with the idea that the amount of resistance might be more or less dependent on the general volune of air diaplaced by the trin as it moves, rather than by the mere magnitude of frontage, an experiment was made which was attender with a result sufficiently remarkable. A trin of five waggons was prepared, weighing exactly 30 tons, and loaded with iron rails: sides and ends were constructed, which, being put up, these waggons received the form of coaches, but which, being moveable, could be put up or laid flat upon the waggons at pleasure, This train of waggons was brought to the summit of the Madeley plane, and allowed to descend, hy gravity, towards Crewc, the circumstances of its motion being observer., a before. It was then brought back to the summit of the same plane, and the sides were taken down and laid flat upon the waggons, and it was then moved down the plane. The particulars of these two experiments are exlibited in Table IX.

The effect of the form of the waggons upon the resistance is bere sufficiently manifest, and the concurrent circumstances upon the several gradients plainly show the increased resistance produced by the increased magnitude of the train. From this and the former experiments, it may therefore be inferred that the mere form, whether of the front or hinder part, or the mere magnitude of frontage, produces no practical effects upon reaistanct; but that, by increasing not the frontage only, but the whole votwone of the train, a material cffect is produced.

It had lseen found, contrary to what was at first expected, that by in. creasing the number of carriages in the train, that portion of the resistance which zuust be ascribed to the atmosphere was increased. It sppeared, at first view, that the chief, if not the only source of atmospheric resistance was to be found in the frontage or maximum transverse section. The experiments, however, arc entirely incompatible with any such supposition. Had such been the case, the trains of six and eight carriages ought to have acquired a considerably greater velocity in descending the inclined planes, than the trains of four carriages, which was not the case. This is in some degree accounted for by the result of the last experiment indicating the connexion between the volume of air displaced and the resistance, and not between the mere frontage and the resistance. But, in addition to this, there is another circumstance, which was pointed out by Dr. Lardner long since. The wheeds of the several carriages produce a vorter of air around them, and play is some measure the part of fanners or blowers. A considerable force must be absorbed by so great a uumber of these wheels moving at such a velocity. In a train of eight carriages we have thirty-two three-feet wheels, playing these parts of blowers, and revolving from four to five times in a second. How much force must be expended in maintaining such a motion, it is needless to say. But, besides this, another circumstance vas observed. In these experiments, as well as in general railway practice, it is found that an extensive current of air moves bosidc a train, the current diminishing in velocity as the distance from the train increases. Immediately contiguood to the side of the coaches, the air moves with little leas velocity than the coaches themsclves. Outside that is another current, moving at a leas rate, and beyond that another at a further diminished rate. There is, thus, s succession of currents, one outside another, extending to a considerable distance at each sidc of the train. All the resistance produced by the motion of this mass of air through the atmospherc, forms part of the reaistance opposed to the moving power.

In all the experiments which werc made on the series of planes hetween Madeley and Crewe, it was found that in moving over those parts of the line which were curved, the uniform velocity was precisely the same as on those parts which were straight. There was no discoverable difference in the rate of motion, from whence it follows that curres like these, having a radius of a mile, produce no observable effect upon the rexistance. The experiments were so numerous, and performed under such a variety of circumstances, that, unexpected as these results were, there can lee no doubt of their truth.

It has been stated confidently in print and at public meetings, by men reputed to possess information in practical science, that the atmoppheric resistance has been long known, not jerheps with perfect accarecy, beut that tables, giving a near approximation, have been published by differeat inent ment, and are to be found in most elementary works; that ealculations founded on these tables, of the resistance of the atmosphere may be made, and that such calculations would give nore correct resulta than anch; experiments as have now been described. As such statements are celculated to mislead, Dr. Lardner had no heaitation in declering that ther are utterly unfoundod. No details exist, nor have any experimenta ever beea made by which the resistance of the sir to a train of railway carriages could be obtained by any calculntion whatever; nor was the amount of fach reristance ever suspected, even by the persons who have rentured to vifict such statements, as have been here proved to exist.

Having been satisfied of the large amount of the resistance of raitway trains at the usual speed of passenger trains, the next inquiry was one of a still more difficult kind, namely, to obtain, by reducing the resulte of the experiments to mathematical analysis, an estimate of the quantity of this resintance which was due to friction and to the atmosphere respectivels Part of the details of this investigation may be seen by refereses thr volume of the Transactions of the Britiab Association, lately puilishes. and the remainder will appear in Dr. Lardner's second Refirt. In the

Table V.

$\left.\begin{array}{c}\text { Eight coaches, with pointed } \\ \text { end foremost ,........ }\end{array}\right\}$	Weight.	Total distance min.	Time of running total distance.		Initial speed.	Uniform speed on 1-177.	Speed at foot of 1-265.	Speed at foot of $1-330$.	Time of moving down 1-177.		Time of moving down 1-265.		Time of moving down 1-330.	
	Tons. 40.75	Yards. 14,411			m. per h. $23 \cdot 70$	m. per h. 24.	m. per h. $19 \cdot 25$	$\text { m. per } h .$	$\begin{array}{r} \mathrm{m} . \\ 8 \end{array}$	$\begin{array}{r} 8 . \\ 41 \end{array}$			$\mathrm{m} .$	
Same train, with flat end ..	40.75	14.331		39	23.37	26.18	$19 \cdot 25$	14-35	7	53	9		4	57
Difference		80	1	9	-33	$2 \cdot 18$. 52		48		42	0	7

Table VII.

$\left\{\begin{array}{c} \text { Pour coaches, with flat } \\ \text { front and end } \end{array}\right\}$	Weight. Tons. $14 \cdot 8$	Total distance run. Yards. 5,209	Time of running total distance.		Greatest speed. m. per h. 32•14	Time of moving down Sutton plane 1-89.		Time of moving 21 miles.		Time from stake 12 to stake 28.	
			$\begin{aligned} & \mathrm{m} \\ & 13 \end{aligned}$							m.	9
Same, writh pointed end . . .	14.8	5,350			31.03		25	7	50	2	9
Same, with pointed front. . . .	14.8	5,376			$32 \cdot 14$		23	7	30	2	5
Same, writh flat front and end	14.8	5,518			32-14		22			2	6

Table VIII.

	Weight.	Total distance run.	Tim run tot dist	of ing nce.	Initial speed.	Uniform speed on 1-177.	Speed at foot of 1-265.	Spced at foot of 1-330.	Time of moving down 1.177.	Time of moving down 1-265.	Time of moving down 1-330.
Bight coaches, with canvas..	Tons. $40 \cdot 75$	Yards. $14,367$		$\begin{array}{r} \text { s. } \\ 39 \end{array}$	$\begin{gathered} \text { m. per } \mathrm{h} . \\ 26.39 \end{gathered}$	$\begin{gathered} \text { m. per } \mathrm{h} \text {. } \\ 25 \cdot 57 \end{gathered}$	$\begin{aligned} & \text { m. per h. } \\ & \text { 18. } \end{aligned}$	$\mathrm{m}_{12 \cdot 4} \mathrm{per} \mathrm{~h} .$	$\begin{array}{rr} \mathrm{m} . & \mathrm{s} . \\ 8 & 2 \end{array}$	$\begin{array}{cc} \mathrm{m} . & \mathrm{s} \\ 8 & 47 \end{array}$	$\begin{array}{rr} \mathrm{m} & \mathrm{~s} . \\ 5 & 31 \end{array}$
Same withont canvas	40.75	14,731		39	23.37	26.18	19.25	14.35	$7 \quad 53$	832	457
\| Difference		364			3.2		1.25	$2 \cdot 31$.	09	015	034

Tably IX.

	Weight.	Prontage.	Total distance nin.	Time of running total distance.	Uniform velocity on 1-177.	Velocity at foot of 1-265.	Time of moving down 1-177.	Time of moving down 1-265.
Five wagons, with high sides	Tons. 30	Square feet. 24.	Yards. $14,058$	$\begin{array}{ll} \mathrm{m} . & \mathbf{g} . \\ \mathbf{3 4} & \mathbf{5 5} \end{array}$	22.75	$19 \cdot 50$	$\begin{array}{cc} \mathrm{m} . & \mathrm{s} . \\ 18 & 51 \end{array}$	$\underset{\mathbf{6}}{\mathrm{m}}$
Same, without high sides ..	30	47.8	10,019	324	17.	8.50	1544	$9 \quad 47$
Difference ...		$23 \cdot 8$	4,039	251	$5 \cdot 75$	11.	37	252

mennwhile we may state the results, from which it would appear, that It considerable an error has been committed in overrating the amount of renistance dne to friction, as in underrating the whole reaistance. The formulse, eatablished by Dr. Lardner, have been applied to a limited number of experiments performed ander different circumstances, and the results agree in giving the friction a value amounting to from five to six pounds a ton of the gross weight. How widely this differs from the common estimate may be perceived when it is stated, that that eatimate is from nine to eleven pounds per ton. Mr. Woods. the engineer of the Liverpool and Manchesler railway, has applied a method of calculation to one of M. de Pambour's experimente, by which the resintance from friction is obtained very nearly free from the effect of stmospheric reaistance, but it is not the method used hy Dr. Lardner. The result ohtained by Mr. Woods is the same as that obtained by Dr. Lardner.

Dr. Lardner read at the meeting a communication from M. de Pambour, stating, that that gentleman had been engaged in similar inquiries, as to the amount of the friction and the atmospheric reaistance, with a view to correet, in the forthcoming edition of his work on Locomotive Engines, any errors which might have existed in the former edition, and the results which M. de Pambour stated, that he obtained for the friction, were the same as those obtained by Dr. Lardiner and Mr. Woods.

Dr. Lardner proceeded to mey, that the results of this entemsive conrse of
experiments corroborated and fully established a doctrine which he had ventured to advance before a committee of the Honse of Lords in the year 1835, but which was then and subsequently pronounced to be paradoxical, sbsurd, and one which could have no practical truth. That doctrine was, that a railway laid down with gradients, from sixteen to twenty feet a mile, would be for all practical purposes nearly, if not altogether, as good as a railway laid down, from terminns to terminus, upon a dead level. The grounds on which he advanced this doctrine were, that a compeasating effect would be produced in descending and ascending the gradients, and that a varistion of speed in the train would be the whole amount of inconvenience which would ensue; that the time of performing the journey, and the expenditure of power required for it, the expense of maintaining the line of way, and supplying locomotive power, would be the atme in both cases; that, therefore, he thought that no considerable capital ought to be expended in obtaining gradients lower than those juat mentioned. He stated that he was asailed with the most unsparing ridicule when be advanced this doctrine, and that up to the present hour, so far as he knew, it had never been adopted or assented to by any practical man in the country. He anw, howwas ever. its complete verification and eatablishment in the results of these experiments, and determined on making an axperimentum erucis, which should put its truth beyond all queation. The variety of gradients on the railway extending between Liverpool and Birmingham, offered a favourable thentre
for such an experiment, and accordingly a train of torelve coaches was prepared, each coach being loaded to the gross weight of five tons. An enginc, called the Hecla, was provided, weighing twelve tous, with her tender weighing ten tons, making a gross load of eighty-two tons. It was determined to run this train from Liverpool to Birniugham and back, olserving with the utmost precision, the moment of passing each quarter-mile post, and obtaining thereby the actual speed with which every gradient, from one end to the other of the line, was ascended and descended, and the velocity on the levels. Hy taking a mean of the speed in ascending and descending the gradients, it would be necessary, if the doctrinc held by him had any truth in it, that this mean should be exactly, or very nearly, cqual to the speed on a level. The journcy was accordingly performed, and the resuits of it will be published in detail in Dr. lardner's second report. But, in the meanwhile, the speed, in ascending and descending the several gradients and the mean between them, is exlilited in Table \mathbf{X}.

Table X.

Gradient.	$\begin{array}{l\|l} \hline & \text { Speed. } \\ \text { Ascending. } & \text { Descending. } \end{array}$		Mean.
One in	miles per li.	miles per lis.	
$1: 7$	22-25	41.32	31.78
265	24.87	$39 \cdot 13$	$32 \cdot 00$
330	25-26	37.07	31-16
400	26.87	36.75	31.81
532	27-35	34.30	$30 \cdot 82$
590	27.27	33.16	30.21
650	29.03	32.58	$30 \cdot 80$
Level			$30 \cdot 93$

He said, that on this table it is scarcely needful to make a single observation. It is quite evident, that the gradients do possess the compensating power which he ascribed to them. The discrepancy existing among the mean values of the speed, is nothing more than what may he ascribed to casual variations in the moving power. This experiment also was made uuder very favourable circumstances, the day heing quite calm. Without going into the details of the principle on which these remarkalle results depend, it may be stated generally, that since the chief part of the resistance of a railway train depends on the atmosphere, and is proportional to the square of the velocity, a very small diminution in the velocity itself produces a considerable diminution in its squarc. A train, in ascending a gradient, may thcrefore relicve itself from as much atmospheric resistance as is equal to the gravitation of the plane by slackening of its speed. If its specd be slackened so as to render the resistance cqual to that which it would have upon a level, then the engine would have to work with a less evaporating power than on a level, inasmuch as the motion would be slower. In practice, therefore, it can never be needful to slacken the apced so much as to equalize the resistance with that upon the level. Supposing the evaporating power to remain the same, the speed need only be slackencd, so that with the same evaporation an increased resistance can be overcome at a speed less than the level, but not so much less as would render the resistance equal to the level. This, in fact, is what takes place in practice, as is apparent from the results above given.

Dr. Lardner concluded by stating in detail a number of conclusions which he considered to be warranted by the experiments; but he reserred to limself the power, when the experiments should be all reduced, of morlifying these conclusions, if it should appear necessary to do so. lie stated, that many of the experiments had been only recently made, and had consequently not been submitted to mathematical analysis. Meanwhile he had taken care to lay nothing before the Section, except what had been fully borne out by the experiments themselves. He regariled the following conclusion as established by his experiments.

1. That the resistance to a reilway train, other things being the same, depends on the speed.
2. That at the same spead, the resistance will be in the ratio of the load, If the carriages remain unaltered.
3: That if the number of carriages be increased, the resistance is increased, but not in so great a ratio as the load.
3. That, therefore, the resistance does not, as has heen hitherto supposed, bear an invariable ratio to the load, and ought not to be expressed at so much per fon.
4. That the amount of the resistance of owfinary loads carried on railways at the ordinary speeds, more especially of passenger trains, is very much greater than engineers have hitherto supposed.
5. That a considerahle, but not exactly ascertained-proportion of this resistance is due to the air.
6. That the shape of the front or hind part of the train has fronservable effect on the resistance.
7. That the spaces between the carriages of the train have no obsezvable effect on the repistance.
8. That the train, with the same width of front, suffers iwcreased resistance with the increased bulk or volune of the coaches.
9. That mathematical formula, deduced from the supposition that the resistance of railway trains consists of two parts, one proportioned to the loarl, but independent of the speed, and the other proportional to the square of the speed, have been applied to a limited number of experiments, and have given rcsnlts in very near accordance, but that the experiment must be further raultiplied and varied before safe, exact, aud general conclusions ean be drawn.
10. That the amount of resistance being so much greater than has been hitherto supposed, and the resistance produced by corves of a mile radius being inappreciable, railways laid down with gradients of from sirteen to twenty feet a mile have practically but little disadrantage comparad with a dead level; and that curves may be sarely made with radii less than a nile; but that further experiments must be made to determine a wefe minor limit for the radii of such curves, this principle being understood to be limited in its application to railways intended chiefly for rapid trafic.

In the course of hin address, Dr. Lardner took occasion to acknowledes the very valuable assistance which he lad received from Mr. Edward Woods, the enginear of the Liverpool and Mancliester Railwar, who ascisted Dr. Lardner in almost all the experiments, and conducted some of thean hinself in Dr. Lardner's alssence. To the skill and intelligence of that gentleman, as well as to his general mathematical acquirements, he felt himself much indebted. Mr. H. Earle was also associated in these experiments, and took part in the direction of many of them.

PINE ARTS IN ITALY.

We give insertion to the following well authenticated anecdotes to show that many of our wealthy countrymen are most egregiously imposed upan in their quest of old pictures and ancient statues; this mania has become so general that many artists of talent are compelled to fabricate old pictures reputed to have been painted by the ancient masters ; statues, busts, and fragments of aculpture are chiselled out of Greek or Parian marble, and to favour the deception they are defaced and stained by iron rust and tobacco-juice, to give the fragments the appearance of having been docomposed and stained by the hand of time. Coins and engraved gems are also commonly made and sold as antique. It is but justice to declare that we have seen works in sculpture in imitation of ancient art so well executed, and their atyle and character in such strict unison with the purity of Greek art, that they have bafiled the most experienced eye to discover the frand. The celebrated Girometti of Rome, by command of the late Pius 8th, made a copy of a gem engraved by Discorides, both the original and copy of which were deposited in the museum. One however was stolen and sold by the parloiner to a nobleman for a large sum of money, but most fortunately the stolen cameo proved on examination not to be the original. A Mr. - an Englishmen of some considerable attainments and taste for the fine arts, was commissioned by the English Goverument to visit Rome for the purpose of purchasing works of art for the British Museum; on his arrival in this city, be found his way to the sanctum sanctorum of Vescovalle, in Piezza di Spagna, a dealer in antiquitien, when that man of art expatiated with all the sobtile eloquence of an Italian, on the merits of his wares. Our countryman fett flattered at the compliments so unsparingly pail to his teste and discernment in having selected some of the most soul-breathiug creations of the ehisel. Mr. - elated with his good fortune, called on our distinguished fellowcountrymen Gibson, the eminent sculptor, to invite him to a higb intellectaal treat, and on the road to the shop Mr. M. spoke of Phidian and Praxitiles, and dwelt with the eloquence of a Philostratns on the beantiea of the worls which he had selected, giving quotations from Pliny, Winkleman, and Viscoati, in proof of their authenticity. Our artist felt humbled in his own estimation after such Demosthenian eloquence, and filled with veneration as a lover of Greek art, they entered the studio where our man of letters pointed with conscious pride to the objects he had selected; our sculptor was thrinderstruck, not at the beauties of the works, but at the statnes, at they were indeed nondescripta, monstrosities, composed of odd fragments, the worts of sculptors of the time of Conatantine, consequently of the wornt era of Roman art.

WILLIAM WILKINS, A.M., F.RS., \&c.

Ir is our painful duty to announce the demise of Mr. Whkim, Profesor of Architecture to the Royal Academy, who died at his readence at Cambridge, on Saturday, Angust 31 last, in the 61 at year of his age : his remans perc interred in the chapel of the College of Corpus Christi.

Mr. Wilkins entered the Cambridge University as a scholar of Cains and Gonville College, in 1796, and graduated in 1800, as sixth wrengler of his ycar. In 1801 he succeeded to the University Travelling Bachelorehip, amd passed fonr years in Greece and Italy in the prosecution of his atudies, amongat the remains of ancient art, preparatory to commencint his profession of architect, and during which time he was elected a Pellow of his College.
Among Mr. Wilkins' earlier workn are Donnington Catle and Osberson (of looth of which, elevations, \&x., may be found in "The New Vitravios Britannicas, bat neither have mach architectural merit. At Ceabidge he
was employed on many buildings that afforded, more or leas, opportunities for the display of talent, yet that which ought most to have distinguished him, it being entirely his own, namely Downing College, is by no means so creditable to his taste as the new screen nt King's College. Besides these works he malc some additions at Corpus Christi and Trinity Colleges, and exccuted, we believe, some repairs at St. Mary's Church, in that university. Another lage public building erected by him is the East India College at Haileybury, which, however, does not say much for his invention, being not only in precisely the same style, but little more than a repetition or rariation of his design for Downing, as was strikingly manifested by the two drawinge at the Eshibition in 1838. (See our tirst volume, p. 224.) In the Nelson coluna at Great Yarmouth he showed infinitely more originality, and he also designed another memorial to the sane hero, namely that in Sackville Street, Dublin. In London he built the Cuiversity Club House, the London Uuiversity, St. Gcorge's IIospital, and the National Gallery, all of which are delineated aud rescribed in the new edition of the "Public Buildings," by Mr. Leeds. Though unfinished, and now perhaps never likely to bo completed according to the original desigu, the University is one of the happiest of his works, far more 80 than the National Gallery, which seems hardly to be the production of the same architect, the dome of the latter being as unsightly a feature in composition, as in the other it is gracciul. Perhaps Mr. Wilkins would have earned much higher fame for himself, hat not his stndy of, and unquestioning reverence for antiquity, and the classical works of the Greeks, in some degree fettered his ideas and lowered his anblition, preventing him from aspiring to higher merit than that of merely applying correct imitations of Grecian orders and porticoes to his own buidings, sometimes without even attempting any thing further, as in the house at Osberton and Downing College. His literary productions, too, were quite as much archnoological as architectural: they consist of the following pullications :-Antiquities of Magna Grecia, imp. fol. Cambridge, 1807; Remarks on the Topography and Buildings of Athens, roy. 8vo. 1816; The Civil Architecture of Vitruvius, 2 vols., inip. 4 to. 1817 ; Prolusiones Architectonicas, tto. 1837.

In his private character, Mr. Wilkins was a most amiable and honourable man, warm in temper, but kind-hearted, affiable, gencrous and liheral, without the slightest tinge of that ostentation which sometimes renders pecuniary liberality little better than pride and self-worship. Unlike his predecessor in office at the Acadeiny, he was not given to make any parade of public donations, but his liberality was prompted by sincere benevolence, and placed heyond the suspicion of any unvorthy motive. We have heard anecrotes of his kindness and generosity that reflect the highest honour upon his memory, and prove hin to have been, what is infinitely superior to hia highest title as a sebolar or an artist, a truly noble-minded and worthy man.

Marine Railway Slip.-The Courriet de Bordeaur contains a description of the mariue railway, an apparatus introduced into Frauce from the United States, and by means of which vessels of any size can he hanled ashore in an upright positiou for the purposes of careening, \&c. It will he remembered that by means of this railway a vessel was hanled up and lowered again the uther day in presence of the Duke and Duchess of Orleans. It cousists of a railway, which may be prolonged indefinitely under the water to suit the rise or fall of the tide, amil also on shore, according to the size of the shipyard. Upoa this an immense kind of wooden carriage, propartioned to the size of the veasel, is made to traverse by means of strong capetans. This carriage is of such a nature that it can be got nurler the keel of the ship, or rather the ship may be made to float on to it , and, by meanas of a system of Fedgea and ropes, can thas be so mlapted to the hall as to fit and embrace it tightly all around. The ship is kept in the perpendicular, either with or without her cargo and crew on board, and the capstans being set to work, the carriage and its burien are hauled up the railway at the rate of from two to three feet per minute. The adrantages of this system over that of dry docks, or of laying a vessel on its side, are stated to be very great; and a great saving of time and moncy is also effected. It was brought into France by M. Plantevigne, of Bordeanx, who bes taken out a petent for it.
** Is not this marine railway, the same as Morton's patent slip, which las travelled from England to America, and thence to Prance? -[Edrror C. E. \& A. Joveral.]

AN ARITHMETICAL BALANCE, OR NEW CALCULATING MACHINE.

By M. Leon Lalanne, engineer, "des Ponte et Chaussies." Commnmicated to the "Académie des Science." at the sitting on the 2nd ultimo.

In making an estimate for the construction of an ordinary road, a cabal, or a railway, it is not sufficient to calculate the quantity of ground work to be removed: but it is important also to ascertain the mean distance to which the cuttings have to be removed. For this purpose it is requisite to employ a person will versed in calculation, and particular care is required to aroid errors.

The ordinary mode of proceeding is to divide the section into lengths, and then to ascertain the cubical quantity of earth in each divieion, and multiply it by the distance to which it has to be re-
moved; the sum of all the products so found, divided by the total quantity of earth to be removed, gives for quotient the mean distance, or lead. This operation, the author observes, is always excessively tedious. For example, a road fuur kilomètres (4374 yards) in length, would be divided into about 100 spaces, of about 40 métres each, and each division would require two multiplications of numbers of between 3 and 5 figures by numbers of 2 or 3 figures.

Now if we compare the algebraic formula which represents the method by which the average distance is determined with the relation which exists between a system of parallel forces acting in the same direction at different points of a lever, when they are in equilibrio, we slmall observe a striking analogy; for, calling $p, p^{\prime}, p^{\prime \prime}$-the distances from the fulcrum it which the forces $P, P^{\prime}, P^{\prime \prime}$, are applied on one of the arms of the lever, and 8 the distance from the fulcrum to the point where the force $\mathrm{P}+\mathrm{P}^{\prime}+\mathrm{P}^{\prime \prime}+$, equal to the sum of the former forces, acting on the other arm, should be concentrated, we shall have

$$
\mathrm{z}=\frac{\mathrm{Pp}+\mathrm{P}^{\prime} \mathrm{p}^{\prime}+\mathrm{P}^{\prime \prime} \mathrm{p}^{\prime \prime}+. .}{\mathrm{P}+\mathrm{P}^{\prime}+\mathrm{P}^{\prime \prime}+.}
$$

Now this distance is precisely that which serves to determine the mean distance of transport δ of the volumes $P, P^{\prime}, P^{\prime \prime}$.. removed respectively to the distances $p, p^{\prime}, p^{\prime \prime} \ldots$

So that, to determine the mean distance of transport, mithout calculation, it suffices to suspend on one of the arms of a lever, which balances one its point of suspension, weights proportional to the volumes to be transported, at distances from the point of suspension proportional to the respective distances of transport; and to seek at what distance on the other arm of the lever a weight equal to the sum of the former should be suspended, that the whole system may be in equilibrio.

The machine presented to the Academy by the author is founded on this principle; it was constructed from his own designs, at the expense of the "administration des Ponts et Chaussécs," by the celebrated optician, M. Ernst. It is in the form of an ordinary balance without scales, of which the beam has a breadth of several centimètrcs. The two arms of the beam are divided into equal parts on each side of the axis of suspension, and one of them is divided into equal intervals by small transverse ridges, between which are placed the weights, which are in the form of flat plates. This simple arrangement overcomes the difficulty which it seemed would be met with in practice, in consequence of laving to $6 x$ a great number of differcut weiglits at variable distances and sonetimes very near to each other. The total weight suspended on the other arm is contained in a small moveable scale. This instrument liss 150 divisions on each side of the axis, in a length of about 30 centimètres (12 inches) ; each division corresponds to a distanse of four mètres (4.4 yards), so that the instrument is capable of indicating distances of transport as far as 600 mêtres (656 yards), which is never exceeded in the construction of an ordinary road. The scale of weights is at the rate of one demi-centigramse to a cubic mètre. As the quantity of cutting is on an average not more than 5, and never exceeds 20 cubic mètres per zaètre run, each arma of the balance will not, for a road four kilomitres (4374 pards) in length, be charged on an average with more than 100 , and in extreme cases with 400 grammes at most.

Since the apparatus gives the value of δ in the general formula,

$$
\mathbf{\delta}=\frac{P p+P^{\prime} p^{\prime}+P^{\prime \prime} p^{\prime \prime}+\ldots}{Q+Q^{\prime}+Q^{\prime \prime}+\cdots}
$$

in which the quantities $P, P^{\prime}, P^{\prime \prime} . . p, p^{\prime}, p^{\prime \prime} . . Q, Q^{\prime}, Q^{\prime \prime} .$. may lave any finite value whatever, positive or negative, it may be employed not only for the deternination of means, and the solution of the rules of alloys, but also for all the operations comprised implicitly in the formula, as the rule of three, common multiplication and division, involution, \&c. It is even applicable to the calculation of terraces, and may farnish the results very repoditiously. From trials which have been already made, it is calculated that the mean distance may be found by means of the machine in at most one-fuurth of the time required by the ordinary method.

A very simple modification would render the arilhmetical balance available for calculations of a much higher order. Thus, to obtain the value of x in the formula,

$$
a^{\mathbf{x}}=\mathrm{A}^{a} \mathrm{~B}^{b} \mathrm{C}^{\mathrm{c}}
$$

it is sufficient, besides the graduation in equal parts, to add lugarithnic divisions analogous to those of Gunter's rules; for the preceding equation gives

$$
x=\frac{a \log A+b \log B+c \log C+\ldots}{\log a}
$$

which indicates the equilibrium of a lever clarged on ope of its arms
with the weights a, b, c, \ldots at the respective distance $\log A, \log B, \log$ C_{1}. from the point of suspension.

Involution, evolution, compound rule of three, and many other calculations of that kind, are but very particular cases of the preceding formula.

BEVIBWF\%

An Ebaay on the Roilers of Steam Engizes. By R. Armstrong, Civil Engineer. London, Jolin Weale, 1839.
A new edition of this excellent work has appeared with additions, making it more complete, and consequently more deserving the attention of the public, the various rales and practical data which abound in it, entitle it to be considered a text-book for boiler makers, as well as boiler users. Having largely quoted from its contents in our former notices, nothing of a very material character presents itself, which we can transfer into our pages, but perhaps the following may be interesting to some of our readers:-

General Rules for proportioning the length of Boilers.

Kule I. A plain boiler without any inside flue, to be hung upon what is called the "oven plan," ought not to exceed in length six times the square root of the horse power in feet, or in ordinary circumstances, six times the square root of the area of the fire-grate in feet.

Rule II. A boiler without any inside flue, to be set up in the common way with a wheel draught, ought not to exceed in length four times the square root of the horse power; or four times the square root of the area of the fire-grate in feet.

Rule III. If a flued boiler, or boiler containing one or more inside flues, (and the latter pass quite through,) is to be set up with a split draught, it ought not to exceed in length three and a half times the square root of the horse power, and if with wheel draught, three and a quarter times the same, or three and a quarter times the square root of the area of the firegrate in feet.

Rule IV. If a flued boiler with an inside uptake, like a Boulton and Watt boiler, (Art. 82,) is to be set up with a split draught, it need not exceed in length from three to three and a quarter times the square root of the horse power; or if it is to be set up with wheel draught, then the length of the boiler ought not to exceed three times the square root of the horse power, or of the ares of the fire-grate in feet.

The author, after detailing some experiments on the rate of combustion and evaporation, proceeds to describe the boiler by which those experiments were made:-

This boiler was purposely chosen of this simple and elementary form, and set up in the cheapest and simplest manner; that is, upon the "oven plan," so that all alterations or improvements that it night have been found expedient to make, either in the setting or the construction of the boiler itself, might be in the shape of additions merely, and therefore capable of being separately proved, both as to first cost and profit ; and also that observations might be made upon it, for a sufficient leugth of time, without the liahility to error arising from complication of construction, or interruption from the necessity of cleaning out flues or otherwise. It was thus made to answer the purpose of a trial boiler in order to guide the firm to which it belonged

Fig. 1.

[^25]in their choice of what kind of boiler to adopt in the erection of new works then contermplated by them.
The following figure represents a longitudinal section through the ceotre of the boiler, furnace and chimney, in all respects proportional except an to length, which is to a scale of onc-half of that for the depth and width, and fig. 2 represents a plan, or bird's-eye view, of the furnace, flame bed, chimney, \&c., supposing the boiler to be removed: and the same letters refer to the same parta in both figures. The boiler is bung upon castiron brackets, rivetted to its sidea a little above the centre, and with broad flanges reating upon the top of the zide walls, as is shown in the croan mertions, figures 3 and 4. It is fixed in an inclined position, or with a fall of about 8 incles to the front, so that by far the greatest proportion of the water is brought immediately over the furnace, as is shewn in fig. 1. A is the fire-grate with the ordinary furnace bridge at the end of it, only thm the latter is provided with a longitudinal aperture, abont 2 inches wide, communicating by a channel at its bottom, with the external air at B. and provided with a valve, so that the smoke could be consumed upon Parker's principle, if necessary. But in addition to this, there is also another bridge B , at about half the length of the boiler, which divides the game bed info two chambers C C. The damper plate D , is hang by side rods in the short passage leading to the chimney, which is the only part that can be properly called a flue. The damper is inverted, or made to open down wards, so that the current of smoke or hot air is made to pass over instead of under it. The octagonal chimney is 30 yards high and 3 feet wide inside at tbe

Fig. 2.

top, and intended to be large enough for two such boilers, which it evidently is. The following cut (fig. 3) is a eross section of the boiker takem

through the furnace at A , just in front of the fire bridge. This bridge is an inverted arch of the same radius as the boiler, and placed 8 or 9 irches below the bottom of the latter. The second or flame bridge B, is principally for the purpose of spreading the flame and heated air around the comevex heating surface of the boiler in a stratum of comparatively equal thickness, and is considered an absolutely essential requisite when a boiler is ser up upon the oven plan, and two or three such bridges are still more ecosemical. They are usually called check bridges, from their tendency to check or impede the rapid current of hot air in its passage to the chimney, sad consequently retain the heated gases longer under the boiler, which they certainly do, quite as cffectually as causing the amoke to pass through bong winding fues; but this is perhaps the least important purpose they sabserve.
The flame bridge is shown in elevation \ln fig. 4 , which is a crous soction of the boiler and flame bed at the ruidlle of the length of the boiler. This bridge is an inverted arch about five inchen from the boiler, and equally distant all round. We may state here, that proper attention to the comstruction of these bridges is a matter of considerable importance; sometimes people have done away with them altogether, and then an exormsas
waste of fuel ensues, the fiame being then apt to divide itself into two curreats, one on each side of the boiler, and thus run off to the chinney without taking much effect upon the boiler bottom; others again have gone into the other extreme, and huilt a continued inverted arch from the fire bridge to the end of the boiler, which we need hardly observe, hurries the heated gases too rapidly off to the chimney.

Fig. 4.

Dimensions of Boiler :-
$\left.\begin{array}{l}\text { Length } 33 \text { feet } 8 \frac{3}{4} \text { innhes } \\ \text { Dismeter } \\ 5-5 i\end{array}\right\}$ outside. One-half of the convex surface was wholly exposed to the direct action of the flame and hot air, except about 1 inches in depth all round along each side and across the ends, amounting to abont 1 square yard. The quantity of water worked with was 15 cubic yards, which was kept uniformly supplied by means of the ordinary feed pipe and float; the temperaturc of the feed water being the same as that of the atmosphere.
Dimensions of Fire Grate:$\left.\begin{array}{l}\text { Length } \quad 5 \text { feet } 6 \text { inches } \\ \text { Breadth } \quad 5-6-1\end{array}\right\}$ clear within the bearing bars, and within the side walls of the furnace. Fire bars in one length, 1 年inch thick, $\frac{6}{6}$ inch between each, and set sloping, or declining towards the bridge, so as to be 2 feet 8 inches from the boiler bottom at the back and 1 foot 11 inches at the front end of the grate.
The boiler was made by Mr. Fairbaim, of Manchester, with the beat Low Moor iron ${ }^{\frac{6}{8}}$ thick. It supplied steam to a 16 -horsc engine, loaded so as to require never liss than 24 cubic feet of water evaporated per hour, also steam for heating drying cylindera, boiling water, and a variety of other parposes, amounting at times to nearly as much as the engine required iteelf.

The chapters upon the "Deposit of Sediment Incrustations," and "Causes of Explosions," deserve particular attention, more particular since the report of the commissioners appointed by parliament to investigate this subject. We fully concur in the opinion expressed in note 1, page 260 , respectling Mr. Josiah Parkes's system of slow combustion, as applied any where, but particularly to a steam boat, where another objection besides that stated by the author, viz. increased immersion arising from the increased size and weight of boilers and water, would have a very heavy drawback to the passage of the vessel through the water, but as regards the application of the system of wiredrawing the steam, this method has been in use in America for years, the steamers on the North River and other places answer perfectly, and are of higher power than have been employed in any other part of the world.
In conclusion, we heartily recommend the book to all persons employing, or taking interest in steam engines.

Architectural Remains of the Reigns of Elizabeth and James I., from accurate dramings and measurements, taken from existing spetimens. By C. J. Richardson, M.R.I.B.A. Folio, Lond. 1839.

Even those who regard the architecture of the Elizabethan period as an anomalous fashion of the art, rather than a distinct and well-matured style, mast allow it to be interesting in an historical point of view, apd so far to deserve attention. Neither can it be denied that although in the best examples of it there is always a very considerable mixture of alloy-much that is poor, mean, and fantastical mixed up with what is stately and picturesque, there is also generally something worth notice even in the worst. Yet while we freely admit this, by no means are we of opinion that it is to be recommended for imitation at the present day, because anything approaching to a direct copy of it, must retain all the defects of the originals, at the same time that it must fall short of them in many circumstances to which they are mainly indebted for the interest they excite as records of the period to which they belong, and its architectural taste;
 puzzling, and yet w. revolution to the a_{1} signedly on their past,
and monotonous transcripls us w.....
Doric or Ionic columns, have at length satiated the public, aus te" them to welcome any change from the chilling insipidity of that socalled classical style, as one decidedly for the better. And if change was to take place, to what could we revert with greater propriety than one which has a claim upon us as being strictly national and coeval with a brilliant period in our annals and our literature. Unfortunately though suclı reason sounds plausible enough, it is when fairly examined, but a very silly one. It would be just as wise to extinguish gur gas lights and break up our rail-roads, as now after the lapse of two centuries or more, to fall back upon what is at best the exceedingly imperfect and half-wrought style of an age, which presents a sad declension in architectural taste, compared with its predecessors, and one moreover as much at variance with all our habits and feelings, as the farthingales and ruffs of those days are with our modern notions of elegance in dress.

Yet, although whim and the love of singularity, together with a confusion of ideas as to picturesqueness and beauty, (whereby they are supposed to be identical, may lead some to adopt the style in question, just as they find it, without any attempt to purify or enuoble it, we have very little apprehension of its becoming at all general. In fact, it is by far too expensive for such purpose; if buildings in it are not upon such a scale, both as to magnitude and decoration as to be stately, they appear only heavy and uncouth, fantiastically oldfashioned withal. Hardly does it admit of being simplified without requiring to be also greatly purified; since the mere omission of ornament tends only to take away all the character derived from $i t$, and to render its intrinsic deformity all the more apparent and repulsive. Unless richness or even a prodigal magnificence can be indulged in, this style supplies nothing for interiors; since if it be divested of its carpet-patterned ceilings, its cumbrous fire-places, its elaborately carved wainscotting, nothing remains but rude and heavy forms, and proportions absolutely revolting to the eye of taste. In order to accommodate it, therefore, in any degree to general purposes, it would be necessary to do a very great deal more than merely compose from extant examples; nothing less, in fact, than to puify it of all its defects, and supply all its deficiencies, retrining only just so much of it as would furnish the leading ideas for something similar, yet greatly improved in character. We are of opinion that here would be a good field for any one to exercise his talent in, and assuredly a series of studies showing what is and what is not now available in Elizabethan, would be likely just at the present to find favour with the public.

It is time for us, bowever, to break off from our general remarks, and to speak more immediately of Mr. Richardson's work. After what we have already said, it would be quite idle in us to profess any particular admiration of the subjects it contains, further than as curious documents, not without their historical value as such, but in no wise tending to contradict what we have just been urging. Among them are one or two designs and plans by John Thorpe, copied from the originals in the Soanean Museum; and that which forms the frontispiece, strongly conforms what we have said as to buildings in this style when divested of the fantastic ornament peculiar to it, since scarcely anything can be more meau and quaint than that design intended to have been executed by Thorpe for lis own residence. To
be sure, it is not at all fattered, for being a fac-simile of the original drawing, whichis a sort of bird's-eye view; it is shown as no building is ever seen, and is moreover delineated in the dryest and stiffest style. How greatly the designs are disfigured by that exceedingly preposterous modes of representation is rendered evident by the one forming No. 2, in plate 7, where it is quite distorted in 'Thorpe's bind'seye perspective of it, for when put into proper perspective as has been done by Mr. Hichardson in the following plate, it becomes so superior as hardly to nppear to be the same thing. Yet, although as so shown, it is one of the best subjects in the book, by no meuns would it be difficult to render it a far better one, equally picturesque in composition, but more elegant, and more consis tently rich throughout in its details.

The work is very handsomely got up, and the coloured elevation of one of the sides of the gilt room at Holland House, makes a splendid appearance, though gorgeous as it is, the effect is hardly equal to the expensiveness of such mode of decoration. Among the subjects to be given in the course of the work are Burleigh, Wollaton, and Blickling, which if suitably illustrated will be welcone enough.

A Praclical Treatise on Bridge Buidling. By E. Crest, Esq., Arch., C.E. F.S.A., \&c. Part II. London : John Williams.

The appearance of the Second Part fully maintains the high character promised by the first. The work exhibits many valuable examples of bridge building; among which are 7 plates of the Strand Bridge constructed by George Rennie. Four plates of Skew bridges, on the Midland Counties Railway, which will be accompanied, when the work is completed, by a Treatise on Skew arches, by Mr. Woodhouse, the Engineer of the Railway. Three plates of bridges over the Ouse, near York, on the Great North of England Railway, Messrs. J. \& B. Green, Engineers, besides several other well execnted engravings.
A Practical Treative on the Construction and Formation of Railmays. By Jas. Day. London: John Weale, 1889.
This small volume contains a great deal of useful matter condensed in a narrow compass, and will be found very servicable to the student; throughout the work are distributed some serviceable tables, which will be of assistance to the engineer or contractor.

A Practical Trealise on the construction of Oblique Arches. By Joun Hart, Mason. Second Edition, with Additions. London: John Weale, 1839.
We gave our commendations to this work on its first appearance, and we now with pleasure direct the attention of the Profession, Masons, and Bricklayers, to the equally practical contents of the present Edition.
Theory, Practice, and Architecture of Bridges. Part III \& IV. Lon-
don: John Weale, 1839 .
In our former notices of the two first parts of this exceilent work, we spoke in most farourable terms of the manner in which it was got up, and of the utility of its contents; we also promised in our last review to notice the practical papers; but we regret that an overpress of matter precludes us at present from fulfiling our pro-mise,-we will, however, endeavour to do so in the next Journal, by which time we hope to see another Part out. In the mean time, we recommend to all, to possess themselves of the work while the publisher is in the humour to sell it at the present low price.
Sir John Rennie is about to publish a work on Harbours.
Repton's Landscape Gardening and Landscape Archilecture. A new Edition. By J. C. Loudon, F.L.S., \&c. No. I. II. III. London, Longman \& Co.
Repton's works are so well known to the Architect, and to every lover of landscape scenery, that it renders it quite unnecessary for us to give, at present, any lengthened notice of the appearance of a new edition, which is now being republished under the able auspices of Mr. London, who stands very justly pre-eminent in his profession as a Landscape Architect. The high price of the former edition of Repton's works, prevented them being largely distributed,-but we hope, now that Mr. Loudon has undertaken to issue the work at about a sixteenth the price of the former edition, it will have a far more extended sale. We shall not allow many more numbers to be published, without giving an extended notice of their contents.

LETTER FROM MR. GODWIN JUN. ON NECESSITY OP

 INVESTIGATIONBS IN ACOUSTICS.Sir-The report recently made to the Commissioners of Her Majesty's Treasury by Messrs. Barry, De La Beche, W. Smith, and Charles Henry Sinith, on the sandstones, limestones, and oolites of Britain, (and to which you drew attention in the last number of the Journal,) forms with the numerous tables and results of experiments by Messrs. Daniell and Wheatstone appended to it, one of the most valuable contributions to architectural science that has been made in modem times. One hundred and three quarries are described, ninety-six buildings in England referred to, many chemical analyses of the stones given, and a great number of experiments related, shewing anong other points, the colhesive power of each stove, and the amonut of disintegration apparent when subjected to Bradd: process. It offers in conseguence materials for deductions of great pructical importance beyond those made or required to be made, in the tooly of the report, and will lead, I hope, to the publication of : comprehensive treatise on the subject by competent hands.

This being the case then, it must I think, seem desirable to all, that goveinment should continue the good work they have so well begun, and that this report should be but the commencement of a valuable series; and I would venture to suggest touching the next step to be taken, the importance of appointing a committee to inquire tinto the most desirable forms of buildings and the best mode of construction, in a phonoc:amptle point of view, to investigate the science of sound and to deduce principles to be hereafter applied in the erection of buildings. On this subject, which is of the most vital importance to the excellence of the new houses of parliament, we are confessedly entirely ignorant, (and I speak not of architects alone) we do not know so much as would enable one to say with ceriainly before a building be finished, whether or not it will be well adapted for oralo. rical purposes. Eren in churches and other edifices where the roice is to issue invariably from one spot, many circomstances at present beyond our reach because not fully understood, may have the effect and every day do have the effect of preventing persons in certain positions from hearing; but in an apartment where, as in the House of Commons, individuals will arise from all parts Indifferently to address the meeting, the difficulties become much more numeroos, the probability of failure in some one respect or another, is pecessarily much greater. Sincerely therefore do hope that a commissiou will be immediately appointed to collcet information on the subject, and conduct a series of experiments on a large scale, without which nothing effectual can be looked for. Independently too, of the immediate occasion for this inquiry, the mass of facts that would be collected and the truths obtained, would be a great boon to the profession at large, and could not fail to produce most advantageora results.

I ought perhaps to apologize for troubling you with this commundcation; but must offer in extenuation, that having bestowed some little attention myself upon the subject, and gained a knowledge of difficulties which at present meet the inquirer at every step, 1 am strongly desirous that some sufficient proceedings should be taten to procure more satisfactory data for reasoning than do now exist.

I am, sir, your obedient servant,
George Goodwin, Jow.
Brompton, Sept. 18, 1839.

BLOWING UP THE WRECK OF THE ROYAL GEORGE AT SPITHEAD.

Colonel Pasley commenced his submarine explosive operation against this Immense wreck, on the 29th August, when he fired no fewer than five charges of gunpowder against her water-logged tim-bers-we believe with great effect. One of these charges consjoted of 180 ib ., the other four of 45 lb , of powder each. The effect of these discharges at the bottom of the water, the depth being 14 fathoms, was very remarkable, resembling the smart slock of an earth. quake. To those who stood on the deck of the lighters anchored near the point of explosion, the sensation mas not unlike that of z galvanic slock, and these luge vessels were violently shaken. No column nor dome of water was, however, thrown up, as had beea expected by those who lad witnessed Colonel Pasley's experiments in the Thames and Medway. The water over the explosion remained quite tranguil for several seconds after the shock had been felt, and the sound heard, when it suddeuly burst forth in a circle of bubbles and whirlpools, gradually extending on oll sides, till it became ubout 40 or 50 feet in diameter. This circie of agitation was at first white with foam; but ended by becoming of a deep blue, or almest Whack colour, probably from the mud at the bottom being stirred up. Sereril
fish were killed by the first explosion, but none by those which followed, and it is natural to suppose that the noise and shock would drive those fish to a distance which it did not kill outright.

On the 22 nd ult. Colonel Pasley renewed his operations, and with the usual success which attends well-directed perseverance, at length succeeded in fring off one of the enormous sub-marine mines of gunpowder against the wreck. A cylinder, containing 2,32. 1 lb . of powder, was carefully lowered to the bottom, where it was placed alongside the most compact portion of the wreck which has yet been discovered by the divers. This operation was effected by means of hauling lines rove through blocks nttached to the bottom of the slip by the divers. When everything was ready, the vessel in which the voltaic battery was placed was drawn off the distance of 500 feet, which is the length of the connecting wires, and instantaneously on the circnit being completed the explosion took place, and the effects were very remarkable. At first the surface of the sea, which had before been perfectly smooth and calin, was violently agitated by a sort of tremulous motion, which threw it into small irregulur waves, a few inches only in height. This lasted for three or four seconds, when a buge dome of water made its appearance, of a conical or rather beehive shape. At first it appeared to rise slowly, but rapidly increased in height and size till it reached the altitude of 28 or 30 feet, in a tolerably compact mass. It then fell down and produced a series of rings, which spread in all directions. The first, or outer one of these, having the aspect of a wave several feet in licight, curled and broke, as if it had been driven towards the shore. Neither the shock nor the sound was so great as had been expected by thuse who had witnessed the former explosions by Colonel Pisley, where the quantity of powder was only 451 b . ; but the effect produced on the water at the surface, considering that the depth was 90 feet, was truly astonisling. What the effect has been upon the wreck will not be fully ascertained by the divers till the present spring tides are over, and the long periods of slack water at the neaps enable the divers to remain for upwards of half an hour under water. In the mean time, it is highly satisfactory to know that Colonel Pasley has completely established his command over the application of the voltaic battery to sub-marine purposes, and that he can now with certainty explode his charges at any depth of water. This will give him the power of placing his cylinders against the most refractory parts of the wreck, and by blowing these to pieces, and dislocating the knees, timbers, and beams, enable him to draw the whole up, bit by bit, to the surface. Any person who has seen the operation of breaking up a ship on land, knows that this is the only way of going to work with a mass so firmly bound together as a line-of-bittle ship, that even the action of 57 yeary of decay under water goes but a small way to disintegrate the parts. The manly perseverance of Colonel Pasley, therefore, we are well convinced, will, in the end, effectually clear the noble anchorage of Spithead of this extremely troublesome abstruction.-Tines.

LOCOMOTIVE POWER APPLIED TO CAṄAL TRANSIT.

On the 21st and 22nd of August an experiment was conducted on the Forth and Clyde Canal, of a novel and lighly interesting aature,隹 John Macneil, C.E., and consulting engineer to the Cabal Company. It is well known that the baulage of boats on this canal has bitherto been performed by horses, the rates of speed being for the heavy sloops, brigs, \&c., in the London, Dundee, and other trades, about $1 \frac{1}{6}$ to 2 miles per hour, when drawn by two or five horses, according to the state of the weather, and for the swift or passenger buats between 8 and 9 miles per hour, on an average, when drawn by two horses. The object of the experiment was to ascertain the possibility of using locomotive steam power to draw the boats instead of borves : accordingly, a single line of rails, upon blocks, like an ordinary railway, was laid down for a considerable space along the canal banks, near lock 16 ; and a loconotive engine and tender, built by Mr. William Dodds, having been brought down the canal and set on the rails, on the morning of the $21 \mathrm{st}, \mathrm{Mr}$. Macncil, Mr. Johnston, the canal director, and-several engineers and gentlemen, being present, the experinent commenced by attaching to the engine the towinglime of the first passenger boat that made its appearance, and which contained upwards of 90 passengers, with their luggage. There was a trifing delay in disengaging the horses and tying the line to the engine, but this wits anply compensated when the "Sictoria" briskly set off, and nlmost immediately gained a speed of 17 l niles per hour, which she kept up round two curves, and until the termination of the rails made it necessary to stop, amid the cheers of the dolighted passengers. This experiment was repeated, during the course of the day, with each passenger bout as it came to the railed space, and
with equal success each time. On one occasion a towing-rope, which was much decayed, got foul with a corb-stone and broke, but without causing the slightest inconvenience, except about one minute's delay. The engine employed being intended only for a slow trade, was not calculated to go at a greater speed than eighteen miles per hour; but it was the opinion of all present, that with proper passenger locomotives, a speed might be obtained equal to that upon the best railways, few of the latter possessing the advantage secured by the canal baik of a perfect lerel throughout.

The nature of the motion wiss lighly gratifying to all the passengers, being more uniform, steady, and smooth than when the boats were diawil by horses.

Several of the heavy (masted) vessels were also tahen in two during the two days of trial, at the rates of $3,3 k, 4$, and 5 miles por hour; ;und, on one occasion, two loaded sloops, and a large waggon boat, were together attached to the engine, and hauled with case at the rate of 23 miles per hour, whilst only ouc-fourth of the ste:m was allowed to pass the throttle-valve.
The furegoing statements render palpably apparent the immense advantages which might be gained by this new adaptation of steam power-a great economy in laulage expenses, as one enfine might draw at least 6 sloops, which now would require from eighteen to twenty-four borses, and, if necessary, at double the present speed; and a proportional increase of the important traffic on the canal, which might be reasonably expected.

Passengers would increase in a great proportion, when attracted by economy and speed of transport. The Union Canal might be traversed in two hours, and the Forth and Clyde Canal in one and a half, instead of four hours and three and a half, as at present, and this by only assuming 16 miles per hour, though more might easily be performed, as the experiments, have shown.-Glagon Courier.

THE EXPERIMENTAL PAVING OF OXFORD STREET.

The extended time allowed by the Marylebone vestry for testing the durability of the various specimens of experimental paving laid down in Oxford-street having expired on the the 3rd ult. a large body of the menbers of the Experimental Paving Committce proceeded to Oxford-street, for the purpose of entering into a minute examination of the specimens, prior to completing their final report and recommendation to the vestry as to the plan which it would be most advisable to adopt. The-blocks of granite laid down, and the interstices of which are filled up with Claridge's Asphalte, was found to be in excellent condition, as was also the granite laid down by the parish and grouted together. The Bastenne Gaujac bitumen had stood the test of the wear occisioned by the number of vehicles passing through this extensive thorouglifare in a surprising manner, but at parts where the traffic is most severe here and there, slight ruts are perceptible. On arriving at the wooden blocks, the surface was found to be as smooth and even as when first laid down. Five of the blocks were taken up and minutely examined by the committec, and one of them split into pieces for the purpose of discovering if any symptoms of decay had made its appearance, but the wood was found to be perfectly sound, and the diminition of the length of the blocks (12 inches), notwithstanding the immense weight of the vehicles continually passing ower them, was scarcely perceptible. Having completed their survey of the road, the committee adjourned to the Court-house for the purpose of deliberating as to the best mode to be adopted, when a loug discussion ensued upon the subject. Mr. Kensett supported the adoption of the wood, and Mr. Harbull and several others opposel it upon the ground that the material was of too slippery a nature for lorses. Alter a varicty of arguments, in the course of which three or four amendments were put and negatived, the following resolution was put and carried-viz. "That it appears to the committee that the wooden block paving has proved itself equal to the traffic and paving of the whole of Uxford-street, and it is, therefore, resolved to recornmend to the vestry to adopt the wooden block paving for that thoroughfare, subject to certain conditions and regulations." The greatest interest is manifest on this subject in Marylebone.

Exgraving on Marale.- A discovery of some importance to the statualy has recently been made by Mr. C. Page, of Pimlico, by means of which entgraving on marble is greatly improsed. In cutting letters in marbic in the ordinary method, the celges chip off, and the defects are covered by painting them over; but Mr. l'age obviates this difficulty by covering the surface of the polished narble with a coat of cement before the clisel is used. The cement effectually prevents the narble from chipping; and wheu the coating is removed, the letters remain as perfect of if cut in copper.

PROOFRDINGS OF PARIIANEENTH.-SESSIONS 1839 ,

Hous of Cammons.-List of Petitions and Private Bills, and progress therein.

Abertrolhwick Harbour
Aberlcen Harbour
Ballochney Railway
Barnsley Waterworks .
Bath Cemetery
Belfast Waterworks
Birmingham Canal
Birmingham \& Gilos. Rinay.
Bp. Auckland \& WeardaleRa.
Blacklsenth Cemetery
Bradford (York) Waterworks
Brighton Gas
Brighton Cemetery
Bristol \& Gloucestershire Ra.
British Museum Buildings
Bromp:on New lioad
Cheltenham Waterworks
Commercial (London and
Blackwall) Railway
Dean Forest Railway
Deptiord Pier
Depiford Pier Junction Rluy.
Depiford Steam Ship Doch's
EdimLurgh, Leith, and New-
haven Railway
Eyemouth Harbour
Fraserburgh Harbour
General Cemetery
Gravesend Gas
Gireat North of Eingland Ra.
Great Western Railway
Great Central Irish Railuay
Herefordshire and Glouces-
tershire Canal
l Jeme Giss
Jiverpool Dreks
Iiverpuol Buildings
Liveryool and Manclester Fxtansion Railway
Iondon and Birmingham Ra.
TondonBridgeA puroaches, \&e London \& Croyton Railway London Ciemetery
London \& Greenwich Rlway
Jondon and Souhhampton
(Guildford Branclı) Rllwy.
London and Southampton
(Portsmouth Branch) Ra.
Manchester \& BirminghamRa
Manchester and Birmingham
Extension(Stone\& RugbyR:
Manchester \& Leeds Rlway.
MaryleLoneGas \& CokeComp.
Monkland \& Kirkintilloch Ka.
Necropolis(St.Pane.) Cemetry

Newark Gas

Newcastle-upon-Tyne \& N . Shiclds (LAtension) 141wy. Northern \& leastern (1)Rlwy. Northem\& Eastem(2)Rlwy.
North Midland Railway
North Union Railway
Not tinghaminclosure \& Canal
Over Daruen Gas
Perth 1 larbour \& Navigation
Portishead Pier
Preston Gas
Preston and Wyre lailway
Preston and Wyre Railway,
Harbour, and Dock
Redear (No.1) llartour
Redear (No. 2) Harbour
Rishworth Reservoirs
Ro'hdale Waterworks
Rochester Cemetery
Sawmill Furl Bridge \& Road
Slamannan Kailway
South lisstern Railuay
S. Fasiern (Deviation) Ra.

Teignmouth Bridge
Tyue Dock
Tyne stean Ferry
Walsall Junction Cinal
We:t Durlarn lailway
Westininster lmprovement Wi:hau \& Colmess Railway Wyrley and lissington and Birmingham Cupal

Yetition presented.	Bill read first time.	Bill read second time.	Bill read third time.	Royal Assent.
Feb. 6.	Feb. 27.	Mar. 12.	Apr. 15.	May 14.
leb. 8.	Mar. 15.	Apr 15.	APr	,
Feb. 12.	Mar. 14.	Apr. 8.	May 3.	July 1.
Fcb. 21.	
Feb. 22.				
Feb. 22.	June 17.	June 27.		
Feb. 20.	Mar. 15.	Apr. 12.	June 13.	July 1.
F'eb. 21.	Mar. 15.	A ${ }^{\text {rr. }} 9$.	..	
Feb. 22.	Mar. 18.	Apr. 15.		
Fcb. 22.	Mar. 18.			
Feb. 21.				
Fel. 21.	Mar. 18.	Apr. 22.	May 31.	June 17.
lebs. 21.	Mar. 18.	May 28. Mar. 19.	July 30. May 13.	Aug. 17.
Feb. 22.	Mar. 18.	Apr. 12.	May 2.	June 4.
Feb. 22.	Mar. 18.	May 30.		
l'el). 22.	Mar. 12.	Mar. 22.	Apr. 30.	June 4.
Feh. 14.	Mar, 8.	Mar. 21.	June 20.	Aug. 17.
Fel. 19.				
Feb. 22.	Mar. 18.	May 28.	June 21.	July 19.
Feb. 22.	Mar. 20.	May 28.	June 27.	July 19.
F'cb. 22.				
Fcb. 19.	Mar. 11.	Mar. 27.	May 30.	July 1.
Feb. 12.	Mar. 14.	A pr. 8.	Ma 28.	June 14.
Fel. 20.	Mar. 15.	A pr. 8.	June 7.	July 1.
Feb. 20.	Mar. 11.	Mar. 21.	Apr. 16.	May 14.
F'els. 21.	Mar. 18.			
Feb. 18.	Mar. 13.	Mar. 25.	May 3.	June 14.
Feb. 14. Mar. 3.	Mar. 4.	Mar. 13.	May 1.	June 4.
Feb. 20.	Mar, 13.	A pr. 22.	May 15.	June 4.
Fel. 22.				
Feb. 21.				
Feb. 21.	Mar. 18.	May 28.	June 27.	July 29.
Feb. 14.	Feb. 28.	Mar. 12.	May 13.	Junc 14.
Feb. 8.	Feb. 22.	Mar. 6.	May 30.	Junc 14.
Feb. 19.	Apr. 11.	A pr. 26.	June 6.	Aug. 26.
Feb. 19.	Mar. 18.	A pr. 8.	May 3.	June 4.
Feb. 19.	Mar. 18.			
Feb. 21.	Mar. 18.	Apr. 8.	May 3.	June 4.
Feb. 22.	\ldots	.	.	.
cb. 6.	Feb. 25.	Mar. 7.	May 3.	June 4.
l'eb. 18.	Mar. 18.	Apr. 23.	June 13.	July 4.
Fcb. 11.	May. 1.	May 14.		
Feb. 18.	Mar. 7.	Mar. 18.	May 30.	July 1.
Feb. 22.	Mar. 18.	-		
Feb. 12.	Mar. 14.	A pr. 8.	May 3.	July 4.
Feb. 21.	Mar. 15.			
Fel. 14.	Feb. 28.	Mar. 11.	Apr. 18.	ay 14.
Feb. 18.	Mar. 15.			
Feb. 22.	Mar. 18.	Apr. 22.	June 4.	July 19.
liel. 22.	Mar. 27.	Apr. 16.	June 4.	July 19.
Fel. 11.	Mar. 4.	Mar. 14.	May 1.	July 1.
Feb. 22.				
Febl 18.	Apr. 11.	Apr. 23. Apr. 12.	June 6. June 3.	July 1.
Feb. 21.	Mar. 18.	Apr. 12.	June 3.	July 19.
Feb. 14. Feb. 22.	Mar. 13.	Apr. 8.	May 2.	June 4.
Feb. 22.				
eb. 6.	Feb. 20. Feb. 20.	Mar. 6.	Mar. 19.	$\text { Apr. } 19 .$ $\text { July } 1 .$
b. 6.	Feb. 20.	Mar. 4.	Mar. 15.	July 1.
Feb. 21.	Mar. 18.	Apr. 12.	June 13.	July 1.
Fel. 19.				
Feb. 22.	Mar. 27.			
Feb. 21.	Mar. 6.	Mar. 22.	May 30.	
Fob. 7.	Feb. 21.	Mar. 6.	May 6.	June 4.
Feb. 22.	Mar. 18.			
Fel. 21.	Mar. 18.	Apr. 22.	June 10.	'Ju'y 1.
Feb. 12.	Mar. 18.	Mar. 27.	May 28.	July 1.
Treb. 11.	Feb, 27.	Mar. 25.	May 15.	Junc 14.
May 3.	May 6.	May 30.	June 19.	July 10.
licle 14.	Mar. 15.	May	June 13.	Ju
lich. 21.				
(eb) 22.				
Feb. 21.	Mar. 18.	Apr. 8.	May 14.	July 4.
Feb. 21. Fel. 2.	- Mar. 14.		May 3.	

PROCFEDINGS OF BCIENHIFLC BOCXENEES.

INSTITUTION OF THE ARCHITECTS OP IRELAND.

The first annual meeting of this excellent institution was held on Wednesday, Aug. 28, at No. 10, Gloucester-street, for the purposes of electing a council and other officers for the ensuing year, and of transacting other business of importance.

Richard Morrison, Ese, the Vice-President, in the Chair.
An animated conversation ensucd between the respected Chairman and other gentlemen present, on the great advantages which the Institution must confer on the country. It was stated, that while the professional architects of Ireland were inferior to no other class of men in Europe, in the several branches of their profession, and were competent to raise the architectural taste of the country to the pre-eminence which we should hold in enlightened society, they were thwarted in all their efforts by a body of men who laid claim to the title of architects, though they were, in reality, merely mechanics, without any of the knowledge, taste, and learning, which are indispeusable to the profession. The many tasteless and deformed buildings which everywhere meet the eye while going through the country, bear undeniable proof of the truth of this allegation, while the chaste designs which are occasionally met with afford evidence that real talent, if encouraged, is not wentixg among us. The Institute is founded on the principles of the Royal Inotitute of British Architects, and it is intended to include among its members and associates all the qualified members of the profession in the country, as well as all the resident nobility, gentry, and other encouragers of the fine arth, and also, as honorary or corresponding nuembers, the principal learned men of other countries. The objects of the society arc the advancement of civil architecture, and of all the other arts and sciences connected with it; the formation of a library and musenm; the carrying on of a correspondence with learned men in all parts of the world; and, in fact, the raising of the profession to its legitimate state in the country, and the improving of the netions taste for architecture.

The Secretary read a very flattering letter from Lord Fitzgerald and Veaci, consenting to become the President of their society, and also from the Marquis of Normanby and other noblemen and gentlemen, stating their warm feelings of co-operation with the objects of the Institute.

The following are the officers appointed for the ensuing year:-
President, Lord Fitzgerald and Vesci; Vice-President, Richard Morricon, Esq.; Council, William Murray, Frederick Darley, William Dean Butler, William Farrell, James Sheil, George Papworth, and John T. Papworth, Esqrs.; Treasurer, William Murray, Esq. ; Secretary, John T. Papworth. Esq. : Bankers, Messrs. Latouche and Co.

The Mining Journal-We feel ourselves called upon to direct the attention of those of our readers engaged in mining pursuits, to the sulseription now going on among the members of that interest, to express their sense of $\mathbf{M r}$. English's conduct, in the late action for libel brought against him lry a Mr. William Millic Thomas. The jury expressed the sense of all well-thinking members of society by awarding a farthing damages, while the judge awarded a farthing only for the costs, and his friends have taken this opportunity to present him with a permanent testimony of his victory, and of their esteem.

smensy TATEGATYON.

The Sesostris.-The launch of this beautiful vessel took place the beginning of last month, from the duckyard of Mr. Pitcher, at Northfleet. The St sostrss is one of a class built by order of the East India Company, for the expres; purpose of protecting their trade in the Indian seas. She is a magnificent vessel, of the highest ordcr of navat architecture, and is altogethar worthy of the important post assigned to her. She is now in the bast India Ducks receiving her engines.
The Boston and Liverpool Steam Ships.-Mr. Cunard, the enterprising proprictor of the line of steam ships to run between Boston and Liverpool, ria Halifax, has arrived in town. He came passenger to New York in the British Queen.
He has determined, as we are informed, that the large boats of his line shall run, between Liverpool and Boston, merely stopping at Halifax some liours, to discharge freight and passengers. Of these boats he has four nov bulding at Glasgow. each 1.260 tons, with engines of 460 horse power. They are upwards of 200 feet long, and 34 feet wide. He has two smaller loats building, for the purpose of keeping up a communication lueta cen Picton and Quebec.
What Mr. Cunard asks of the Bostonians is, that they should provide han with a wharf, without charge, at which his vessels may be safely moored while in this city. Such a wharf, it is supposed. will cost from $\mathbf{4 0 . 0 0 0}$ dollars to 50,000 dollars. The committec appointell some time since for that parpose. are taking measures, we believe, to collect the necessary amount. We cannot have a doubt of thi ir speedy suceess. It is not to be supposed that our inerchints will hesitate a moment about securing to themselves the great ndvantage of a scmi-monthly steam-packet communication with Kingland. It was the establishment of regular lines of packets between New Yopk apal Isveryool that first leal to the great concentration of the forcigen irade in that city. We ought to improve the present opportunity of regaining cor fair share of that trade.
Mr. Cunard's line is to cummence its trips on the lst uf Nay mari. bor
point of sceam ships we slall then stand on a par with New York. We
shall have four, and for some time to come she is not likely to have a frate. uumber.-Boston Atlas.

Sromboli.-This fine steamer was launched at Portsmouth on Tuesifay, 27 th of August, and immediately after warpet under the sh-i si masted. When that was done she was taken into dock, and is there at present to be coppered and fitted for engines, boilers, machinery, and pardles. The following are her dimensions:-Length, 180 feet 15.8 inch; ditto of keel for tonnage, 157 feet $23-8$ inches; extreme brealth, 34 feet 4 inches; ditto for tonnage, 34 feet; depth of hold, 21 feet; tonnage. 966.

Promethers, steam-vessel, built in Shecrness dock-yart, was launched the 23 rl of September; her dimensions are :-Length between the perpendiculars, 164 feet; keel for tonnage, 141 feet 6 inches; extreme breadth, 32 feet 8 inches; breadth for tonnape, 32 feet 6 inches; moulded, 31 feet 10 inches; depth in hold, 18 feet 7 inches; burten in tons, 795 ; her engines are to le of 200 horse power. This vessel was built in the short space of 3 months.

Lemplhening of a Steamer.-A curious operation lately took place in Chatham Duckyard, that of lengthening the Gleaner steam-vessel, which had been taken into dock for that purpose. She was sakn in two a little more than one-third of her length from her stern, and ways were laid from the fore part of ber to tread on, the purchase falls were rove, and brought to two capstans, and the order being giver by the master shipwright, the men hove anay, and in five minutes the fore section was separated from the after part a distance of 18 feet. The space between will now be filled up by new timber. There is no reeord of any ship or vessel having been lengthened in this lock-yanl before the Gleaner.

A splendid steam-ship, of eight hundred tons burthen, built for the Russian Government, was launched at Gravesend on Monday, the 9 th ult.

The Vernon steamer sailed on Saturday, the 7th ult., from Blackwall, for the Cape of Good Hope, being the first attempt to send an occan steamer round that point to India.

Canal Steam Navigation.-Messrs. Robins and Co. scem determined to introduce steam power on canals. On Saturday last we went, by invitation, to their warehouse in Camp-field, to witness the experimental trip of another hoat. The vessel is the same as the one in which the propellers were used, about a year ngo, and its name is Novelty. It is a rotatory engine of about ten horses pouer, the invention of Mr. Kowley, surgeon, of this town. The boiler worked in Loril's mill, in Garrat-road, about six months ago, and is therefore too heavy for the purpose; but if the experiment succeeds, maclinery will be male expressly for it. the action of the propellers was so wolent as to shake the boat very much, and cause great leakage, thereby remlering it unfit for use. To avcid thas, Mr. Rowley has alopted the rotatory form, and the motion is very pleasant. At a few minutes before two oclock, the boat set off along the Bridgewater Canal, as far as a place called 56 minutes, and the return thence in 45 minutes, bing at the rate of nearly five miles an hour. The depth of water in the duke's canal is only four feet, and therefore the boat could not go at any speed. Subsequently, however, she was taken on the river Irwell, and procecded up the river as far as the New Baiky Bridge, and she went there, from the junction locks, in ten minutes. She then went down as far as Throstle Nest weir, and performed the distance from the bridge to the locks in eight minutes, and to the weir in cleven minutes; thus going in less than twenty minutes; she then returned from Throstle Nest weir to the locks in twelve minutes. Several xentlemen were on board, and expressed their perfect satisfaction at her preed and motion. She started for Iondon on Nonday morning, tugging a nother bost with her, it being the object of Messrs. Hobins, not so much to gain apeed, as to cconomise the labour of horses, \& c . The distance by canal to London is 264 miles, and were a direct line made instead of the roundabout "junctions." it might be lessened 100 miles, and then canal passenger traffic would be a very profitable undertaking.

Her Majesty's new Steamer Medusa, intended for the morning line of packets between Liverpool and Dublin, pruceded on an experimental trip to Kingstorn, under the command of Jieutenant Philipps, accompanied by Captain Bevis, her Majesty's agent in Liverpool. She accomplished her return passage in the unparalled short time of nine hours and thirty-eight minutes, from pier to pier, and this under many disalvantagecus circumstances, having to content with a very heavy bicam sea, ard her engines leing new and stiff, and falling short by nearly a revolution per minute of their speed. We understand she was frequently going thirteen knots per log, and had she been favoured by a spring tide, her passage would scarcely have exceeted nine hours. She, and her sister ship, the Merlin, were modelled by Sir W. Symonds, and their marlinery, which has proved to be of the viry first oriler, was constructel at the celebrited foundry of our townsmen, lawcett, Preston, and Co. They are of about 900 tons burden, and 320 horse power, and, owing to their great benm, have admirable accummolations. The size and the strength of these ressels, their puwer whether under canvass or steum, and the circumstance of their passing the perilous navigation at the entrance of our river by daylight, a matter of great consideratiou at all seasuns, but particularly in the winter, have left the public uthing to desire.-Siverpool Standard.

Electro-Magnetic Navigation.-Mr. Faraday recently received a letter from M. H. Jacoli, dated St. Petershurgh, on the application of electro-magnetism io navigation, and Mr. l'araday has caused it to be inserted in the London and Edjibwrgh Philamophical Magazine fur the current monli. The following is a short extract from this very curious paper:-" In the application of eleciro-magne ism to thic movement of machnes, the most important ubstacle always has been the embarrassment and difficult manipulation of the battery. This obstacle no longer exists. During the autumn of 1838 , arm at a season (in 1639) alrcady too advancell. Imrle, as you will have learnet by the Gazettes, the first experiments in navigation on the Neva, with a ten-oarad shallop, furnished with paddle-wheels, which were put in motion by an electro-magnetic machine. Although we voyaged during entire days, mad usually sith 10 or 12 persons on board, 1 was nut well satisfied nith
this first trial, for there were so many faults of construction and want of insulations in the machines and battery, which could not be repaired on the spot, that I was terribly annoyed. All these repairs and important changes being accomplished, the experiments will shortly be recommenced. The exprience of the past year, combined aith the recent improvements of the battery, give as the result, that to produce the force of one horse (steamensine estimation, it will require a battery of 20 square feet of platiua distributed in a convenient manner, but I hope that eight to ten square feet will produce the effect. If heaven preserve my health, which is a little affected by continual labour, I hope that by next Midsummer I shall have equipped an electro-magnetic veasel of from 40 to 50 horse power."

HNGIDFHEIDG WORES.

Diving-lwll at the Breakwater.-We understand that preparations have been for some time past in prokress, under the direction of W. Stuart, Hisq., the Superintendant of the Breakwater in Plymouth Sound, for the purpose of putting a diving-bell at work upin a part of this grand national undertaking. On Thurstlay last the bell was lowered down at the western end of the work, with the view of facilitating the formation of the foundation at that end, from 3 to 4 fcet below the lowest ebb tide; and the extension of the slope lower down, round the head, with large blocks of granite dovetailed horizontally and vertically. This is the first occasion on which the bell has been used upon the breakwater, though it has byers frequently used in carrying on other public works in this port.-Plymouth Herald.

Portishead Pier.-With a view to the port of Bristol becoming the packet station fur Irish and foreign mails, a prospectus for a pier at Portishead has been published, in order to secure, at all times of the tide, a safe and commodious station for vessels.-Bath and Cheltexham Gazette.
Thomis Rholes, Esq., Commissioner for the lmprovement of the Shannon, is alrealy on his tour of inspection.-Waterford Mail.

Pembroke Dockyard is to be considerably enlarged westward, and a new dock formed, agrecably to the insiructions of Government.

The Boston Harbour Committee, acting on the suggestion of Mr. Valentine, have resolved to sink a vessel, to act as a breakwater, at the end of the new work in the haven, and for that purpose lave purchased the old Witham steamer ; this and some other precautionary measures are expected to preserve the remainder of the work, of which a very considerable portion was recently waslipd away.

Lincolnshire.-The plan for deepening and widening the Till between Haddow and Till-bridge, is not to be relinquished. The fall from Till-bridge to the Fossdyke being only 2 feet, it is proposed to cut a half secti 11 canal. thereby opening a water communication from Till-bridge to the Foss. Were this desirable object accomplished, the dyke would be rendered available for the purposes of navigation; and to the agricultural district ti would prore a valuable acquisition, as the conn, coals, manure, sic., now transmitted by land-carriage might be sent by vessels at a much cheaper rate.-Lincolw Mercury.

River Mersey.-A meeting was held at Liverpool, for the purpose of forming a company to undertake to make a tunnel under the Mersey, to connect Liverpool with the Cheshire stde of the river. Mr. Stevenson, Mr. Vignoles, and other eminent engincers, declared the undertaking practicable.-Chester Clironicle.

The Nevocastle Subscription Water Company's large reservoir, at the Westgate, has just been completed under the superintendence of W. D Anderson, Fsq., the engineer of the corporation. It will hold more, we believe, than four times as much water as the old reservoir, and the town has been partially supplied from it since Tuestay last.-Neweastle Chronicle.

Galway Docks. - We stop the press to announce the effect of an extraordinary spring tite, accompaniel with a south-west gale, to be compared only with the hurricane of the 7th of January last. The pale burst in a large cofferlam of our new docks, within about an hour of high water. and filled the basin, in an incredibly short period, to within 10 inches of the coping. The devastation wrought by the angry and raging element was majestically ter rific. The immense pieces of balk, used as piles, witre shattered to pieces, and nothing could withstant the force with which the tide rushed in. The gates fortunitely escaped injury. The men employed by Mr. James Stephens were happily removerl from the works before the tremendous (we may say) cutastrophe. The works inust be retarded for about a fortnight. Stones of a ton weight were rolled forth as pebbles by this destructive tide, and shoult the wind continue in the same point. the coping of the dock must be covered by the succeeding tides. No lives were lost.-Galuay Adpertiser.
Survey of the Coast between the Thames and Portomouth. We have recently observed notices in the local journals of inspections, by commissioners of known respectability, of harbours on this coast ; and, on making the necessary inquiries, we are exceedingly glad to learn the very important nature of the investigation in which they are engaged. They have been appointed by the Board of Admiralty to inspect the harbours nd the coast between the Thanes and Portsmouth, in order to enable them to frame a general report founde 1 on satisfactory data as to the means of improving the communication between this country and France ly steam packets, and of affording shelter to ships in distress during contrary winds or storms. There is not a single harbour along the coast in question which a vessel of any considerable size, or which steam packets can enter, near the period of low water. The commissioners are Atmiral Gordon, (olonel Thompson (a military engineer), Messrs. James Walker and Cubitt (civil engineers), Captain Drewe (a member of the Trinity House), and Captain Vidall (a post captain in the navy).

Improvement of the Port aud Harbour of Chester.-At a numerous and influential meeting of the inhabitants of Chester and its neighbourhood, held in the Exchange, for the purpose of hearing the reprort of the progress made by
the River Dec Navigation Improvement Committec, to inspect Messrs. Stevenson's plans, and also to hear. the remarks of Mr. Scott Russell on the subject, the Mayor, John Uniacke. Fisq., who presided, explained the steps which had been taken by the committec apponted by the mecting leld in December last, whose report, uith that prepared by Messrs. Stevenson, civil engineers, of Fidinturgh, would be submitted to the meeting. The citizens of Chester, he observed, entertained no hostile fecling to the River Dec Company, but he thought the latter were hound to fulfil the engagements they had entered into when they obtained their bill, a century hgo, to keep sixteen feet of water in the river at moderate spring tides, or forfeit the tenure of their ucrupancy. If the cilizens of (hester could not get the reitess they sought, their only course would le to demand it at the hands of parliament.
The reports in question were then read. by which it appeared, alter a careful survey, that the estimated expense of improving the navigation of the River Dee, from Chester to Elint, and of obtaining sixteen fect at lugh water, of ordinary spring tides up to Chester, was as follows :-

For improving the turn at the Cheese House. $\begin{array}{lll}5 & s & d . \\ 350 & 0 & 0\end{array}$
For forming rubble facewalls at the first and second turns below the Cheese House
For extending the stone causeway from the Lower Barrel Perch to the Pentre Rock, including perrelies or lsaicuns
For a ateam dredge, with apparatus and punts, and for dredging the bed of the river, so as to obtain sixteen
feet at high water of ordinary spring tides
11,304150

Incidents on 22,6411 . 8s., at 10 per cent
Total
$1,527 \quad 150$
$0.45818 \quad 0$ $2.264 \quad 2 \quad 9$ $£ 24,90510 \quad 9$
Mr. J. S. Russell, of Glasgow, afterwards addressed the meeting, contending that a simple practical plin of improvement was new proposed to the inhabjtants of Chester, which would repty them in a few years, by the increase of dues, for the money they had expended. when they might proced still further with their improvements, and deepen the river from sixteen to thenty fret. On the motion of Dr. Thackeray, seconled by l\&. S. Walker, lisfl, the report of the Messrs. Stevenson was adopted. W. H. Brown, Esy., said he had been authorized to state to the meeting, that the River Dee Confpany would give their fullest consideration and aid to any definite well-considered plan for the improvement of the river; they had consulted some of the nost eminent encineers on the subject, many of whom considered the drexlging scheme as guite problematical ; but still the company were quite willing to aid the committee in making a trial of it, ant for that purpose they hat agreed to give 200 . towards furnishing a dredging machine and working it near the bends of the river. Mr. Stephenson and Mr. Russel remarked hat no permanent good effect could be produced at the bents of the river by dredging, until the walls named in the report were made. W. Wardell, Fisq., afterurtids addressed the mecting, expressing a hupe that the Kiver Dee Cumpany woutid go hand in hand with the meeting in carrying ont the improvements suggested.

PROGREAB OF RAILWAYB.

Lancaster and Preston Railway, and W'yre Railway.-The operations on both these lines of railway are now procceding with all possible activity. On the Iancaster line, the viaducts, Xc., required for carrying the line to a terminus, in this town, are in a state of considerable forwardness. The works on the Wyre line are also beginning to assume a business-like appearance at this end of the line, and a large skew bridqe crossing Ashton-lane, promises to be a very elegant structure. We are informed by a gentleman much interested in the railway operations of this neighbourthool, that the lines will probably open simultancously ; but it is fully expected that the Lancaster fine will be ready for opening in June next. At $1 \cdot 7$ cetwond, the buildings are going on witli great spirit. An hotel, on a very extinsive and splendfel scale, is on the eve of Leing rrected. (ircater enterprise has been lately exhibited in the progress of the Wyre railway, and other erections connected with it, than has been the case at any previous perioxi.-Preston Charonicle.

Chester and Crouer and Birkeniond Railuays.-We think our friends who have not lately visited the tuo railways in course of construction in the vicinity of this city, would be much gratified by an inspection of the works, which are progressing with great rapidity. We woud especially recommend to their notice the railuay at [ipton, and the agueduct under the canal at Christleton, through which the Ches:er and crewe railway is to pass. The inverted arch, which is to lear the weight of one-half, is now finished. We understand the canal will be turned from its present temporary course, and fow over the acqueduct in two or three months. The foundation of the Tarvin Road bridge is being laid, and the double line of permanent rails between that place and Chester give a very finished appearance to that portion of the line.-Chester Gazette.
The Milland Comenies Railuray Comipany have very wisely instituted a third-class train of carriages. by which passengers are conveyed, morning and evening, between Derby and Notlingham, for a shilling each. We hear also that last week an arrangement commenced, by which passengers from Birmingham and Derby can reach Nottingham in time for the coaches to Lincula and Hull.
Glaggow, Paishy, and Grecnow Raihuay.-Last month the directors of this railway made their quarterly inspecion of the works:-lin (ilasgow, on what is called the Joint. Line, the piers of the arches are springing up in every direction ; and alihough solately commencel, the works are well forward. Most of the masoniry leetween (ilasgow and Yaisley is cumpleted, and the line is almost entire. Several miles of the permanent rails are now laying, and in a month or two the cutting at Arkleston will be the only part
unforthed. The tunnel there is being bricked, and will be ready, Fe under-
glapd. in January. In Pasley, the masonry, whirh is of the most impasing find, is likely to be funished this year. From Paisley to the river Gryfe in ind way is in a very alvanced state; and thence, over the entire Bishopton chatruct, the rapid advance made duriny the last three mouths appears wonderfuts. then the nature of the material is taken into account. The tunnels esjuche ${ }^{2}$ are pushel forward with great evergy and detrmimatun, and their posetion is in pleasing contrast with the popular pretictions of six niontlis tack. The West Ferry cutting is finished, and presents a sphendid vista of perpendicular rucks. About 45,000 yards of whin rock ba:c heen excavated here, at the expence of nearly $100,000 \mathrm{lbs}$. of ganpuwder. -Greenock Aderriser.

York and North Midlawd Railuay.-The laying of the seeond line of rais is proceeding with rapidity, and will be compintel from this city (York) til the junction in about four montlis. The other works from Milforl to Altofta are progressing very favourably, and no doubt exists that the contractors will hisve completed their respective cuntracts in March nexL-Y'riativ, Gazelle.

Slorkport I'iaduct. We mentioned a month ago that six archea of thes stupendous undertaking liad been turned and completet; since then anmber of the large arches (63 ft . span) has been turned, sad the piers for three others arc nearly ready to recetve the framing of the centros, so that seren arches, two of the small and five of the large, are so far cumpleted as now to assume a feature from which the public may gather some idea of the oxtraonlinary magnitude of the undertaking. The preatest praise is due to the contractors for the alacrity with which the work has praceeded: and judging from present appearances. We might venture to predict that all the ten arches on the Lancashire side of the river will be completed in the course of the present year. This is a most extraorilimary instance of despatch even equal to rnilvay spred, when it is told chat they werr commenced in March last, that eight of them are 63 ft . span, and five of theon 73 ft . above the surface of the earth to the under side of the areh, and that each will consume 140,000 bricks and 3,500 feet of timber.

South Fastern Rniluwy. (Godstone, Surrry).- The line of the Suuth Faxiern Railway is now being set out through this parish and meightourfood, and active operations are cespected to commence in a few weeks.-Swsrrs Erprews. September 21 st.

Birmingham and Derby Junction Railuray.-Fingneer's report at the kas
 with your instructions. I have to submit to you the following brief rematis on the present state of the works.
The double line of the permanent way is laid and ballasted the a le.t. distance, with the exception of about a mile near Derby, which. I expert, will be completed in the month of Octover. The recent unusually lieas rains, which delayed the opening of the line for several weeks, cinsed a general subsidence in the newly-furmed embankments, and have required great excrions on the part of the contractors to maintain the permanme way in yood order. No interruption to the traffic has, however. wivisul from this source, and 1 anticipate. in consequence of the rapid consolidation of the embankments, some reduction in the repairs during the coming uinier.
Fxcepting on the part of the line near Derby before mentioned. fitthe remains to be done by the contractors in compteting the line leesides snititg the slopes and similar works, and the progress making. will, I expect, enslity me to bring acarly the whole if their accounts to a close in the course of it few weeks. The necessary arrangements for commercing the conveyinner of goods between Birmingham and Derly will be made by the end of september.
The stations at Burton and Hampton will be completed in the coarse uf the ensuing month; and, in the mean time. the nature of the traffe at the intermerliate temporary stations will best point out the extent of accommesdation to be there permanently provided. Eight locomotive pngines las.e now been reccived, and four are in the cuurse of delivery.

A considerable number of coaches have bren plaweel wion the lime, and in a few recks more, a stock of carriages nill be ready suflicient for the tequirements of every kind of traffic at present conteraplated. From a careful revisal of the state of the works, with a view to a final settlemetit of tise contractors accounts; I Lave every reason to believe that the tutal exp-ame, under that head, will not exceed the amount of $m \ell$ last estimate.

I am, dear sir,
Yours, respectfully, Joun C. Braxinsusw.
Heary Smith, Lisq.
Kesident Fugimeer.

MANCHESTER AND BIRMINGHAM RAILWAY.

Engineer's Report to the Board of Directors read at the inot Half-gearly Meeting, beld on Sth of September.

Gendemen.-I beg to preaent the following Report on the rete of progress of the works under contract during the last half-ycar:

No. 1, or Faipfield Strest Contract.-The beaviest work on this contract is the cast iron oblique bridge (of 128 fect 9 inches span) over Pairield 8 treet The masonry of one abutment in in a forward state, and the rate of proyress is caris as to insure both being ready for the ercetion of the arch by the middie of next month, when the castings are expected to be ready, and the founder bat undortaken to have the iron work erocted nt the end of this year. The ouber part of this contract consists of arches of brich work of 45 feet span, of which eraly five remain to be tumed, and the piers and contres are ready. 1 coteraia an doubt of this contract being completed within the specificd tine.

No. 2, or Chancrry Lume Coniract,-Does not comprehend any wart demandiby extraordiuary exertions. All the piers and abutments am built, and the impets ready for the arches. The arches are of in fret apan, and sixtren only reazaim to be turned, which will be accomplished in six weeky, A portion of cto paraper is built, and the rate of progress in cach department is consistent with the eve tract being completed within the specified period.
No. 3, or High Roar Confract,-Chiefly consists of ifty-two asehen of 35 ma
facd ready for turning; twenty-four are ready for the imposts, which are in the round; the piers for the remaining six are commenced, and are about half Guith. The number of centres in use, and of hands employed, enable the conrartors in turn one arch daily; the whole, therefore, will require but six wreks, onless delayed by unfavourable weather. The south end of this contract is teminated by a cast iron oblique bridge over the Hyde Road. The plera and aburments of this bridge are in progress, and the whole of the iron work is cast, and now fitted together. The contractors had not possession of the Innd for this contract until April last, but have nevertheless undertaken to complete it simultanfously with their other contract. No. 2. The state of the works as now reported, and the arrangements made, are sufficient to justify a confident expectation of the completion of the work acenrlingly.
No. 4, or Heaton Norris Contruct.-The excavation of Heaton Norris, and its sorpsponding embankment, are the only heavy work, and they are in a forward state. On the 13th of last month, the embankment from Heaton Norris to the Hyde Road required but 50,000 cubic yards to complete it. This work, therefore, his adyadeed consistently with its completion by the beginning of November next, as stated in my Report of last half-year. At the same date there remained in the Heaton Norris entting 112,820 cubic yards. It will be obscrved that this quantity exceeds that which is required to faish the embankment; the surplus (being all sand) will be required for ballanting the permanent way. The embankent at the wouth end of this oontract extonds to the north abutment of the Stockport Viaduct, and requires only 12.700 yerda to complete it. The bridges onder the lino are nearly all completed, except that which crosses the Stockport Road. This is an oblique cast iron bridge, each from the patterns made for the Hyde Road bridge. The iron work of both is in the same state of forwardness. The erection of the bridges over the line has just commenced, and will, I have no donbt, proceed with the energy necessary to bring the work to completion in the apecified time. It may be proper to observe, that three bridges could not have been begun earlier, bacause the foundetions are in sand full of water, which couid not be effectually drained until the cutting was nearly finished. I have no reason to apprehend any diappointment in the completion of this Contract in he proper time.
No.S, or Stockport Viaduct Contract.-The north abutment is built to the level of the cornice. Three arches are turned and backed; the fourth in nearly or; the centering for the fifth is being fixed; the aixth and soventh plers are built and the imposta are upon them roady for the centering; the bece of the eighth pier is complete, and that of the ninth is just begun. The cofferdam for the porth pier in the Mersey is finished, and that for the mouth is in progress. This Contract is proceeding satisfactorily, and I think consistently with the completion in proper time.
No, 6, or Congleton Viaduct Contract.-Bight millions of bricks have been made. The quantity will be sufficient to carry on the work until the return of the brick-making season. The contractor ls erecting his machinery, and the frat stone is expected to be lajd in nbout a fortnight.

Manchester, Sept. 5th, 1839.
Geo.W. Buck.

NHW OxTYROters, Ex.

Northumberland.-On the 9th ult. the foundation atone was laid of a new thurch to be erected at Tynemouth. The architects, Measrs. John and Bepjamin Oreen, have selected for the style of architecture, the gothic of the 15th eatory, having the perpendlcular character In the subdivision of the mullions of the تindows, \&oc., which wras prevalent in this country about the time of Henry he 7th, and other features whlch mark the etyle. The building will be highly mamental to Tynemouth, being placed at the weat end of the village, where the Preston and shields roads divide. The plan of the church is in the form of a roos, with a transept at the north and south sides, and a chancel at the oast nd, beyond whick is a robing room. There will be a tower or turret, and sur nounted by a apire 95 feet high from the ground. The leagth of the church aside is 83 foet, including the chancel, and the breadeh 41 feet, exelusive of the ransepts, which project 9 foet on each side. The number of sittings provided or at present is 500 (on the ground goor), of which 250 are free $\&$ but the interior I arranged so that galleriea may hereafter be erected, whenover it is found neessary to incroses the aecommodation. The site on which the church ta built as been preaented by his Grace the Duke of Northumberland, together with a onation of 200 . towards the orection. - No eoovile Chromicle.
Bfaffordshire.-The first stone of a new church in the parish of Walsall, wae id by the Right Hon. the Countess of Bradford, on Monday, 14th ult. The stended church will be gothic atructure, supported by butireases, with emattled turrets and a tower, capable of accommodating 1,150 persons. About 50 aitting will be free.-Mr. Highway is the Arehiteot.
Rye Cherch.-This ancient and spaciout building is undergoing cortain imrovernente, which, whon completed, will add materially to its beauty and conenience. The gallery in to be considerably enlarged, chiefly for the accommoation of the achool chlldren, and for the reception of the orgen; and a doorway aderneath, which is said to have been closed for at loast 100 years, has also int been opened. But the most material alteration will be made in the two imitDee gothic windows, at the east and west of the edifice. A large portion of if window at the chancel end, which is now bricked up, will be opened; and ie plain glase will be replaced by either painted or atained glasa. The aamo teration is to be made in the western window, which will greatly enhance the :a sty of the church. This is done at the muggestion of John Haddock Lardner, a4., who has liberally offored to defray the whole of the expenee.- Brightom aselfe.
Durestshire.- It has been decided to build a new church at Marshwood, and oders liave been advertised for, for carrying the work into execucion. - Dersef ronty Chronicle.
Choitonham.-The two new churehes now building in our immediate vicinity - Gast approaching completion. That on the border-line of Leckhampton rish, the wrork of which had for a long time beon suapended from want of nds, is again is active progrese, and the tower appears already riaing concides
ably above the hody of the church, the interior of which is also in a very forward state; masons and plasterery being alike busily employed Lherein. Chriat Church, whose noble and cathedral-looking tower forms quite the crowning ormament of the town's architecture, has been for some time in the possession of the carpenters and painters, who are still actively engaged on the pews and general fitings. The pulpit and reading-desks, which are of white stone, aculptured and carved in harmony with the gothic atyle of the exterior style of the building, are nearly finished, and judging trons the present appearancos, the church scems likely to be quite ready for the performance of divine service in the course of a month, or six weeks at farthest. The second week in October lias been named as the probable time of consecration, but we believe nothing has yet been positively fixed on the subject.-Cheltmanam Looker on,

Church Building Commission.-The 19 h annual report of the Commissioners for Building New Churches has been just issued. At the time of printing their last report the Commissioners state that 225 churches and chapels had been completed, in which accommodation had been provided for 297,912 persons, including plet,495 free seats appropriated to the use of the poor. Since that time they report that 18 churches have been completed, affording arcommodation for 16,000 persons, including 9773 free seats for the poor; making in the whole 243 churches and chapels; affording accommodation for 314,412 persons, including 174,270 free seats for the poor. In addition to these, 18 other now churchea are now building, and in a very forward state: the number to be accommodated in pews is 7207, and in free seats 9949 ; total 17,156. Plans for eight other churches have been approved of, and it is in contemplation to build eight others, at various places. Conditional grants of moncy have been made to 38 parishes, townships, or places, in aid of building churches and chapels; as also for providing sites for churches and chapels in 48 other different places, interspersodly throughout England. Applications for further church accommodation have been made by the inhabitants of 47 districts, situate respectlvely elther in England or Wales.

Mamehester.-The new Unitarian Chapel was opened for divine service at the beginning of the last month, it is situate nearly opposite Olifford-stroet, Upper Brook-atreet. The chapel (the corner stone of which was laid on the 8th Bept., 1837, the walls being at that time level with the foor) is a handsome stone edifice, from an original design by Mr. Charles Barry (who was present during the services), the architect of the new houses of parliament, of the frec grammar school of King Rdward IV. Binningham, ${ }^{2}$ nnd of the Royal Institution and the Athen rum in this town. The style of architecture of this chapel, is what is designated the mixed or English. The west, or entrance end, has a cathedral-ilike appearance, chicty the result of a bold arch, cnclosing gothic folding-doorn, and a double arched window abovo, between light elegant pllass. 'The cornera, an well as both sides of the building, are flanked by masive stone butcreases, surmounted by crocketted pinnacles, and a high pointed roof, covered with green slatcs. The sides of the chapel are respectively divided, hut cight buttresses, into seven beys, cach containing a high arched window. The east or vestry end, has a circular window, below which is an attached, projected building, comprising a convenient vestry and a committec-mom, carh about fourtern feet square. The entrance to the chapel has two porches; stairs on each aide of the outer arch communicate with the organ gallery and small galleriea which form its wings, all heing over the porches, and not projecting at all into the body of the chapel. The inner porch opens into lobbics, through which are entrances to the floor of the chapel. The position and form of the west-end gallerics, placed as it were in arched recesses, and therc being no other gallery, contribute to a ploasing and novel effect, which is produced in the interior by the lofty apace terminating in an arched roof, approaching to the pointed of or lancet form. The dimensions of the chapel are 73 by 37 feet, inside measure. The chapel contains, on the foor, 88 pews, and four in the amall galleries, and will furaish accommodation altogether for 450 persons. There are two side isles, as in the late Mosley-atreet chapel, dividing the pews into three ticra, all on the level; and the building can be warmed by means of hot water passing under the flooring, and the warm air from which ascends through gratings bordering the aisles. The cost of the land around (which is horeafter to be surrounded with an iron palisading, in harmony with the style that pervades the building,) and of the edifice itself, which was erected by Masers. Bowden and Rdwards, is between 8,000l. and 9,0001.-A/anchestet A doerliser.

PUBERO muntorwam, Ec.

Plymouth.-A meeting was held on the $18 t h$ ult. to take into consideration the erection of a Public Hall of very epacions dimensions in this town. Mr. Wightwick, the architect, submitted designs, and an entimate for the building, which met with the general approval of tho meeting. The design for the building exhibits a grand Curinthian Portico toward Lociyer-atreet; and a neat front towards the east, harmonising with the architecture of Princess-aquare. To give an iden of the size of the great hall, it may be premiged, that the ball-room of the Royal Hotel is about 77 feet by 40 feet, while the ceiling of the room proposed, measures 100 feet by 80 . This will be surrounded with a gallery 10 feat wide, along the aides and one end, and 20 feet wide at the other end. In the eastern portion of the building are twe handsome rooms, 50 by 25 each; and below these are the entrance from Princess-square, with roonis for a resident house-keeper. A great extent of basement is necessarily provided, to be apportioned off for slore cellarage as required. The great hall would be lighted by two vast lantern ranget, extending from end to ond, immediately undar the cornice of the ceiling; and supported by opposite rows of lofty columns, or axta, atanding forwards the width of the galleries from the outer walla; so that the interior, (divided, as it were, into a spacious lofty nave, and lower side aisles, and having alao galleries on smaller colamns across both ends,) will oxhibit an unusually rich agd varied perapectlve. This design was, however, merely sobmitted by Mr. Wightwick, at a sketch, to be modfied as occanion may require; and as made out chiefly with the view of obtaining definite information as to the cost of such a building,-Plymouth Herald.

Royal kischange.- The joint committee of the Gresham trust, and the Meseme' company, have applied to Sir Robert Smirke, Mr. Hardwick, and Mr. Barry, to
examine the designs sent in for the new Royal Exchange, and select six for the choice of the committec. It is said that the last-named gentleman has declined, and we suppose that the others must be placed in an awkward predicament, as their immediate relatives are understood to be competitors in the contest. It is to be hoped, at all events, that the design chosen may reflect credit on the city of London, and that no paltry considerations of mere rental, will lead to the selection of a project, whose only merit may be its producing "shent per shent" upon the outlay. If such should he the case, the ex-Chancellor of the Exehequer had better have tept his $\mathbf{1 5 0 , 0 0 0}$. laid out in the purchase of valuable buildings for a site to receive such an excresence, and the committee had better pause ere they pull down the wedgelike masses in front of the Bank, which may serve to concoal this evidence of the taste of our citirens. The eyes of all Europe may be said to be upon the choice of the committee, which is either to reflect credit or diagrace upon our national architecture.-Times.

Thorualdsen, who has recently completed some mythological bas-reliefs, is at present occupied with a bust of Holberg, and, when that is finished, will undertake, for the Baroness Stampe, a statue of himself in marble. The sculptor is now residing at the beantiful estate of that lady, where she has built an atelier for his use. He has lately visited Hamburgh, and made many short excursions in the neighbourhood, which have resembled a continued triumph. Wherever he went he was received with procesaions, speeches, and all the uaual manifestations of respect and pleasure : peasants, it is asid, came many miles to see him, and landlonds refused to accopt payment for the refreshments furnished on these occa-sions-a proof how far his popularity has extended among the people, hovever imperfecty the grounds on which it rests may be underatood.-Athancown.

A Rivel Sorthe.-A method has been resorted to for the purpose of cutting the weeds on the apper Witham of aewers, which has proved of great utility, and is deserving of being extensively adopted. It is this: several scythe blades are rivetted together in one length, so as to reach across the river, and also to curve down towards the bed of it. The elasticity of the acythes, and their united length, naturally cause the curvature to take the proper edaptation, and fit the bed; but there are also some weights added, to asaist in keeping the implement at a proper depth : besides which it is requisite to let the edge be always horizontal : a broad piece of iron is therefore rivetted at each extremity, at right angles, and to these ends ropes are attached. Three men on each side of the river draw the apparatus upwards, thus meeting the weeds as they are bent downwards by the current: by proceeding thus the weeds are cut close to the roots. Four miles a day can be cut and cleared, but it is necessary to have four men on each side the river to haul and relieve each other, and eight men to follow with rakes. - Stompord Mercury.

Wrought Iron Wheels.-Bourne, Bartley \& Co's. Patent Wrought Iron Wheels for locomotive engines, railway carriages, scc. The Wheel is made of wrought iron; the spokes of which are fat, and placed with their edges towards the running course of the wheel. The Patentees prefer making the naves of wrought iron, but they may be cart on, though the wheel woukd then be inferior to one with wrought iron naves.

Copying Oil Paintings.-The German papers state that M. Leipmann, of Berlin, has invented a macbine for obtaining copies of oil-coloured paintings. It is further said, that the inventor produced with his machine, in one of the rooms of the Royal Museum, at Berlin, 110 copies of Rembrandt's portrait, painted by himself. M. Leipmann offers these copies for sale at a louis-d'or each.
T. H. Wyatt, Eeq, has been appointed architect and surveyor to the Midillesex Hospital in lieu of Mr. Basevi, who resigned that appointment.

LEET OF ETBW PATMETYE.

granted in gngland from 5th september to 26th geptember, 1839.
Chanles Grbinfiaf, of Douglas, in the lsle of Man, for "certain improements in smuffers.' -Spaled, September 5; six months.
Bryan Donkin, of Blue Anchor Road, Bermondsey, Engineer, for "an improvement or impropements to be used in the process of making paper by hand or by machinery." Communicated by a foreigner residing abroad.-Septemlier 5 ; six monthe.

Pavl Rosin, of St. Paul's Chain, London, Gent., for "improvements in spinning." Communicated by a foreigner residing abrond-September 5; six months.
John Rapson, of Emmett Street, Poplar, millright and engineer, for "improvements in steering ships and vessels."-September 5 ; six months.
Frinerick Brown, of Luton, in the county of Bedford, ironmonger, for " improvements in stoves or fire-places."-September 9 ; six months.
Samuel Stocker, of High Holborn, pump maker, for "improvements in beer, cyder, and spirit engines."-September 11; six manths.

Moses Poole, of Lincoln's Inn, Geut., for "improvements in apparatus applicable to stcam-boflers in order to render them more safe." Communicated by a foreigner residing abroad. \rightarrow September 11; six months.

Stepran Roaras, of the city of Bristol, merchant, for "certain improve-
ments in building the walls of houses and other edifices."-September 1A; sil months.

Isaac: Donns, of Mashro, and Willam Owen, of Rotherham, both in the county of York. civil engineers, for "cerfain improsements applicable to railways, and in the ronsfruction and manufacture of wheels, engines, and machivery, to be used thereon, part or parts of which are applicable io other engimes, and which wheels without a flange are also applicable for use on turnpike roads."September 16 ; six months.
Job Tarlor, of Pendleton, near Manchester, joiner and builder, for "rortain improvements in machinery or apparatus for cutting or forming onamertal mouldings or devices in wood and other materials." -September 19; nix months.
Willian Newton, of Chancery Lane, for "an improved machine or apporatss for weighing various kinds of articles and goods." Communicated by a foreigner residing abroad.-September 19 ; s1x months.

John Wertheimer, of West Street, Finsbury Circus, printer, for "improvements in producing ornamental raised surfaces on paper." Communicated by a foreigner residing abroad,-September 19 ; six months.
Thomas Topd, of Kıigston-upon-Hull, Gent., for "improvements is propelling vessels"-September 19 ; six months.
Henty Nbedh m Scrope Sheapnrll, of Gosport, Gent., for "improoements in corkscrews."-September 26 ; six months.
Samezl Wilks, of Catherine Cross, Darleston, Stafford, iron founder, for "improvements in boxes and pins, or scretos for vices and presses."-Seprember 26 ; six months.

William Henry Hornby, and Williak Kenforthy, both of Blackbum. manufacturers, for "sertain improvements in the machinery or apporatur for sizeing, and otherwise preparing cotton, wool, fax, and other warys for weaviny." -September 26 ; six months.

TO CORREBPOADEXTAE

We have received sevcral more commanications on railhay cwroes: we are afraid of tiring the patience of many of our readere by the continwonce of the discusaion, but knowing the great interest of the subject to the juaior nembers of the profestion, we have been induced to extend more apace to it than we otherwise should have done. We shall select a few of the comuminkications which remain on our table, and publish them next mouth, when we hope the drectusion will terminate, urless there be any additional communice. tion essentially different to what has already appeared.

Nelson Memorial. We have to apologize to thove partie who have forwarded us additional descriptions of designt, for not making room for their papers, we will try what we can do mext month.

Letters from Mr. Habershon and " A Catholic," relative to owr resier an half-timbered houses, are postponed until next month, when we ahall cometude the review.

Thanks to Mr. Lewis Cubitt for his parcel.
In consequence of the very great length of some of the papers in the pre. sent Journal, which we considered best to publish in fill, rather than divide them, we are obliged to pastpone several commmicafions, reviews of wre books, and the principal wood engravings, indended for inio month.

The report on the stone for the new Houses of Parliament will be encluded next month, we have only one more table to publish, which is on 11 chemical analyses of stone, by Prafeseors Daniel and Wheatstone.

The Life of Watt, by Arago, will also be concluded next month, if will ie seen that we have apparently placed the paper out of its proper place, by inserting it after our usual notice to correapondents, which is gewerally the concluding article of the Journal, we have so placed it in order that the "Euloge" might appear unbroken when the volume is bound up; the eontionane mill form the first article next month.

The third volume of the professional papery of the Royal Bingineers wn received as we were going to press; each additional volume, we are happy to say, increases in interest.

We shall be obliged, if correspondents who frovur we with engramings and lithographs of designs of buildings, will favowr us with a few partienlors reLative to their construction, cost, dimensions, \&fc.

The Editor will feel obliged to coundry subecribers if they will formard an account of works in progress, or any newspapers containing articles or paragnaph connceted with the objects of the Journal; it will also be doing a grrat arrier d engineers and architects will cause all advertisements connected weth coubracts to be inserted in the Journal.

Communications are requested to be addresped to "The Dditor of the Cint Engineer and Architect's Journal," No. 11, Parliament Street, Frathinutr. or to Mr. Groombridge, Panyer Alley, Paterwanter Row; if by part, to to di. rected to the former place; if by parcel, please to direct it to the meanet of th two places where the coach arriver at in London, as we are frequently put to th expence of one or two shillings for the purterage only, of a very swall pared.
Books for review must be sent early in the month, communicationa on or for the 20 th (if with wood-cuts, earlier), and advertisements on or before the Sth metant.

Thr Fiagt Volume mat de had, bound in cloth and hetteryd da dou Price 17s.

THE LIFE OF JAMES WATT.

The interest attached to a life of Watt, and the additional attraction of ite emanating from the pen of Arago, has naturally excited in the public, a desire to possess a work, apparently possessing such a valuable chardcter. The controversies which have been raised by those who have read it in its original form, have excited a curiosity, which the well selected extracts in the Athenæum were calculated to provoke. Under such circumstances, this work necessarily demanded our attention, and we thought it therefore, better to give a complete translation accompanied by notes, rather than by referring to specific points, to appear in the position of treating M. Arago unfairly, or of availing ourselves of materials, which were not at the public's disposal.
In determining upon this task at that short notice, which the nature of a periodical work allows, it happened unfortunately that the illness of the gentleman, to whom it was originally confided, still turther diminished the brief period, which was necessary for the discussion of a subject so extensive. It rarely happens that a translator can be placed in a pusition more embarrassing than that imposed by the work of M . Arago; coming, as it does, with all the weight of a great name, its pretensions are contradicted by a mannerism and poverty of style, which on the one band, compels the translator toslurover these defects, or else to allow the points of detraction full play. Confused by this dilemma, we have generally felt it our duty at every sacrifice, to adbere strictly to the terms of the author. To render his text more clear, we bave introduced engraved illustrations of which he was not able to avail bimself, and we have still further elucidated it, by occasional notes of our own, and from the able columns of the Athenæum. To Tredgold and to Mr. Robert Stuart, it is needless to sny, that no one engaged in the discussion of such a subject. could fail to be under obligations.

We bave felt it our duty to express in our remarks, a difference from the views of M. Arago, at which the worshippera of names may feel astonished, but of which the lovers of truth will appreciate the necessity. With the most lavish promises, the work presents most insignificant performance, nothing true of what is new, and nothing new of what is true. It is neẹdless to say, that England comes out from this chamber of totture, pure as she went into it, unaccused by her own confessions, and triumphant over the imputations of her adversaries.

HISTORICAL EULOGIUM ON JAMES WATT.

Read before the Academy of Sciences, at Paris, on tho Beh of December, 1833, by il. Arago.
After running through a long list of battles, murders, plagues, famines, and catastrophes of ali kinds with which the chronicles of some country were filled, of which I do not remember the name, a philosopher ex. claumed "How happy is that nation, the history of which is barren " Why must we say, in a literary point of view, "Ill luck to whoever is obliged to relate the history of a happy people." If the exclamation of the philosopher loses nothing of its truth when applied to individuals, the converse, unfortunately, characterises with equal truth too many biographies.

Such were the reflections which struck me whilst I traced the life of Watt-whilst I collected togetber the kind communications of the relations, friends, and companions of that illustrious mechanic. His life, truly patriarchal, was devoted to labour, atudy, and meditation, and affords none of those striking events, the relation of which, used skilfully, uerves to relieve the dryness of scientific subjects. I will relate it, however, were it only to shew in what an humble position were prepared those projects destined to raise the English nation to an unexampled degree of power. I shall particularly endeavour to point out minutely the numerous inventions which indiseolubly connect the name of Watt with the history of the steam engine. 1 know the dangers of this plan, I feel the objections which may be rised against it, I know it may be said chat we came to hear an historical sketch, and have been obliged to listen to a dry and barren lecture, a reproach, by the bye, which would be of
litule weight with me, could I but give a lecture on the subject. I will endeavour, therefore, not to trespass too far on your attention, hut to recollect that clearness of expression is a matter of courtesy on the part of those who address a public audience

Childhood and Youth of Watt-His bmploymrnt as Philobophical Ingtrumbnt Mager to the Univereity of Glabgow.
James Wutt, one of the eight foreign membera of the Academy of Sciences, was born at Greenock, in Scotland, on the 19th of January, 1736. Our neighbours on the other side of the Channel, are wise enough to think that the genealogy of an honest and industrious fanily is just as worthy of preservation, as the musty deeds of titled houses, often celebrated only for the enormity of their crimes, or the greatness of their vices. I may, therefore, state, that the great grondfather of James Watt, was a farmer in the county of Aberdeen, and that he was killed in one of the battles of Montrose. The victorious party, as was the custom in civil wars, and, I was going to add, is now, did not think his death a sufficient expiation for the opinions which he had embraced, but still farther punished him in the person of his son, by confiscating his little property This unfortunate child, Thomas Watt, was brought up by some distant relation; and in the isolated position to which he was reduced, gave bimself up to serious and assiduous study. On the establishment of tranquility he removed to Greenock, where be taught mathematics and navigation ; and afterwards lived at Crawford's Dyke, of which he was one of the magistrates. He died in 1734, aged 92 years.
This Thomas Watt, had two sons, the eldest of whom, John, followed the profession of his father, at Glasgow, and died in 1757, aged 50 , leaving a chart of the River Clyde, which was published by his brother Jamea. This latter, the father of the celebrated engineer, was for a long time treasurer, member of the council, and baillie of the burgh, and distinguished bimself in those offices by his ardent zeal, and enlightencd spirit of reform. He pluralised, do not be afraid, (these three syllables, which are now almost excommunicated in France, shall do no injury to the memory of Watt;) he pluralised three kinds of employment, he supplied shipping, he was a ship owner, and a merchant, although these, unfortumately, did not prevent him from losing in business, towards the end of his life, part of the fortune which he had so honorably gained. He died at the age of 84, in 178%.
James Watt, the subject of this Eulogium, was born with a very delicate constitution. His mother, whose maiden nume was Muirhead, gave him his first lessons in reading. He learned writing and accounts from his father. He also attended the public school at Greenoct. Thus the humble Scotch parochial schools " may be as justly proud of inscribing the name of this celebrated engineer among the pupils, whom they bave formed, as the college of La Fleche, formerly boasted of Descartes, and as the University of Cambridge, still boust of Newton.
To be precise, I must relate that frequent illnesses prevented young Watt from constantly attending the public school of Greenock; that a great part of the year he was confined to his room, and that there he devoted himself to study, without any out-of-door aesistance. As usually happens, the bigh intellectual faculties, destined to produce such precious fruits, began to be developed in retreat. Being too sickly to allow his parents to think of imposing upon him a laborious occupation; they even left him the free choice of his amusements, and we shall sec whether he abused it. A friend of Mr. Watt one day perceived young James stretched upon the floor, and tracing with chalk all sorts of intricate lines. "Why," cried he, "do you allow this child to waste his time thus? send him to school." Mr. Watt replied: "Perhaps, sir, you may have pronounced a hasty judgment. Before condemning us, examine attentively what the boy is about." The reparation was not delayed; the child, only six years of age, was engaged in the solution of a geonetrical problem.
Guided by an enlightened tenderneas, the elder James Watt, placed a certain number of tools at the disposal of the young student, at an early age; the latter used them with the greatest skill; he took to pieces and put together again the childish toys which passed through his hands, and was always making new ones. At a later period he used them in the construction of a small electrical machine, the brilliant sparks of which becane a great source of amusement and surprise to all the companions of the poor invalid.
Perbaps Watt, with an excellent memory, would not have figured among the little prodigies of the ordinary schools. He would certainly have refused to leann lessons like a parrot; be who perceived from his early years the necessity of caretully cultivating the intellectual elements which were presented to bis mind. Nature, besides, had created him for meditaticul. James Watt, also augured very fuvourably of the rising faculties of his son; relations, however, more distant, and less clearsighted, did not partake of the same hopes.
"James," said Mrs. Muirbead to ber nephew one day, "I never saw a more idle lad than yourself; take a book and employ yourself usefully. It is more than an hour since you have spoken a single word. Do you know what you have been doing all this while? You have been taking off and putting on the lid of the tea-pot; you bave put the atesm which goes from it, sometimes in a saucer and sometimes in a silver apoon; you have amused yourself with examining, uniting together, and laging hold of the drops, which the condensation of the steam formed on the surface of the porcelain or polished metal; is it not a shame to employ your time thus?"

In 1750, perhaps, each of us, like Mrs. Muirhead, would have used the same language; but the world has progressed, and our knowledge has increased. Thus, when, as I shall presently explain, the principal discovery of our colleague consisted of a particular means of converting steam into water, the abject of the reproaches of Mrs. Muirhead will present himself before us under a different aspect, and little James before the teapot, will be the great engineer preluding the discoveries which were to immortalise him; whilst every one will, undoubtedly, remark that the words, condensation of sterm, should so naturally be found in the history of the childhood of Watt. Besides, although may be wrong as to the singularity of the anecdote, it may not be less worthy of preservation. When the occasion presents itself, let us prove to youth, that Newton was barely modest, when, to satisfy the curiosity of a great personage, who desired to know how attraction had been discovered, he replied-By thinking of it always ! Let us shew to all, in the simple words of the immortal author of natural philosophy, the principal secret of men of genius.
The taste for anecdote, which our colleague, for more than half a centory, diffused with so much grace among those by whom he was surrounded, shewed itselfat an early age. The proof of it will be found in some lines which I extract as a translation, from an unpublished note, written in 1798, by Mrs. Marion Campbell, a cousin, and a companion from childhood, of the celebrated engineer.*
"In a journey to Glasgow, Mrs. Watt gave her young son, James, in charge to one of her friends. A few weeks after she came back to see him, but certainly without thinking of the singular reception which awaited her. Madam, said this friend to her as soon as she perceived her, you must send James back quickly to Greenock. I can no longer bear this state of excitement in which he puts me. I am harrassed for want of sleep. Every night, when the usual hour of bed time for my family is at hand, your son contrives, skilfully, to raise some discussion, in which he always finds means to introduce a tale which necessarily beget others. These tales, either pathetic or comic, are so charming and interesting, and my whole family listens to them so intently, that you might hear a tly buzz. Thus hour follows hour without our perceiving it, but on the morrow I am almost dyiug with fatigue ; do, Madam, take back your child with you."
James Watt had a younger brother, John, t who, by determining to follow the career of his father, left him, after the Scotch custom, the choice of his arocation; but this arocation was difficult to find out, for the young student occupied himself in all with equal success. The banks of Loch Lomond, already so celebrated by its connexion with the historian Buchanan, and with the illustrious inventor of logarithms, developed his taste for botany. His rambles upon different Scotch mountains, caused him to perceive that the inert crust of the globe is not less worthy of attention, and be became a mineralogist. James, in his frequent encounters with the poor inhabitants of these picturesque countries, deciphered their local traditions, their popular ballads, and their wild prejudices. When his ill-health detained him at home, chemistry became the principal object of his experiments. The Elements of Natural Philosophy, by 's Gravesunde, also initiated him into the thousand wonders of general physic. Indeed, like all sick persons, he devoured all the medical and surgical works he could procure. These latter sciences bad so excited the curiosity of the scholar, that he was one day discovered carrying off to bis chamber for dissection, the head of a child which had fallen the victim of some unknown malady.
But Watt did not design himself either for botany or mineralogy, for letters, poetry, or chemistry, neither for physics, medicine, or surgery, although he was so well versed in each of these classes of study. In 1755 he went to London, and placed himself under Mr. John Morgan, mathematical and marine instrument maker, in Finch-lane, Cornhill. The man who was to cover England with machines, by the side of wbich, as to their powers, the ancient and colossal machine of Marly would be but a pigmy, entered on bis industrious career, by making, with his own hands, subtle, delicate, and frail instruments ; those small, but admirable reflecting sextants, to which the nautica art is so much indebted for its progress.
Watt only remained a year with Mr. Morgan, and returned to Glasgow, Where rather serious difficulties awaited bin. Relying upon their ancient

- I am indebted fir this curlons document to my friend, Mr. James Watt, of Soho. Thanks to the profonnd vencration whlich he has preserved for the memory of his ilinstrious father; thanks to the taezhaustible cutnplaisance with which he has recoived alt my demands, t have beca able to avoid several inaccaracies which glited infin the mome estepined biographies, aud from which even I, deceived by vetbal communicntions, too lighily received, did not, at first, know how to gosrd myeelt.Note by M. Arago.
+ He died in 1702, on board one of hls father's ships, on the paomge from Greenock to America, at the age of 23 years.
privileges, the incorporated trades looked upon the young artist from London as an intruder, and obstinately denied him the right of opening any kind of workshop. Every means of reconciliation having failed, the University of Glasgow interposed, granted to young Watt a small place within their own precincts, allowed him to eatablish a shop, and honoured him with the title of their mathematical instrument maker. Some small instruments, of this date, of exquisite workmanship, made entirely by the hand of Watt, are still existing. I will add, that his son recently shewed me the first sketches of the steam engine, which are truly remarkable for their fineness, their strength, and precision of stroke. It was not, therefore, without reason, wharever people may say, that Watt spoke with complacency of his manual skill. Perbaps you will think that I am uver scrupulous in claiming a merit for our colleague, which can add so litle to his glory. But, I will admit, that I never hear the pedantic enumerstion of qualities of which superior men bave been despoiled, without remembering that bad General of the age of Louis XV1., who always carried his right shoulder very bigh, because Prince Eugene, of Saroy, was a little hump-backed, and who did not think himself bound to endeavour to carry the likeness farther.
Watt had hardly attained his twenty-first year, when the University of Glasgow attached him to the University. He had for his patrons, Adam Smith, the author of the famous work on the Wealth of Nations; Black, whose discoveries concerning latent heat and carbonate of lime. gave him a distinguished rank among the first chemists of the eighteenth century; and Robert Simson, the celebrated restorer of the most important treatises of the ancient geometricians. These eminent persons at first, thought they had only saved from the trickeries of coipoiations, a skilful and zealous workman of mild disposition; but they were not slow in discovering the man of genius, nor in shewing him the strongest friendship. The students of the university considered it an honour to be admitted to the intimacy of Watt. Indeed, his shop! yes! a ebop! became a sort of academy, where all the illustrious men of Glasgow attended, to discuss the most delicate questions of art, science, ard literature. In truth, I should not dare to tell you what purt the young woikman, only 21 years of age, took in these learned meetings. if I could not rely upon an anonymous article of one of the most celebrated compilers of the Encyclopedia Britannica.
"Although still a student, said Professor Robison, "I had the vanity to think myself sufficiently advanced in my favourite studies of mechanics and physics, when I was presented to Watt. So that I was not a little mortified to see to what an extent the young workman was my superior. In the University, when any difficulty stopped us of whaterer kind, we ran to our workman. Once excited, every subject became for him a matter of laborious study and new discoveries. He never gare up till he had quite solved the proposed question, whether he reduced it to nothing, or whether he drew from it some clear and substantial iesult. Once the solution seemed to require the reading of Leupold's work, the Theatrum Machinarum: Watt immediately learned German. Under other circumstances, and for a similar purpose, he acquired I talian. 7 le artless simplicity of the young mechanic immediately gained the good will of all who addressed him, and, although I have lived some time in the world, I am obliged to declare, that I could not cite a second exmmple of an attachment so sincere, and so general sbown towards any person of incontestible superiority. It is true, that this superiority was veiled by the most amiable candour, and that it was united with a firm desire to acknowledge liberally the merit of every one. Watt, even delighted in endowing the inventive disposition of his friends with things which frequently were but his own ideas, presented under another form. I bave." says Robison, "the greater right to insist upon this rare mental disposition, as I have personally experienced its effects."

You will have to decide, if it were not as honourable to pronounce these last words, as to have caused them to be pronounced.

Studies so serious, and so various, to which the young Glasgow artisan was continually compelled, by the circumstances of his singular position. did not binder the routine of the shop. The latter he executed by day: while night was sacred to theoretical resealch. Wath, trusting in the resources of his imagination, seemed to delight in the most difficult undertakings, and in those for which it might have been supposed that be was least calculated. Will it be believed that he undertook to build an organ, he, who was so totally insensible to the charms of music, thet be could never even contrize to distinguish one note from another: for exumple, ut from fa? Nevertheless be succeded in the attempt. It cannot either be denied that the new instrumeat exbibited some capital improvements in the mechanical part, in the regulators, in the manner of appreciating the strength of the wind; but you will be surprised when 1 infurm you that its barmonical qualities were not less remarkable, and that they cbarmed even profersed musicians. Watt solved an importmos part of the problcm : he found out the medium assigned by an artist, in explanations of the phenomenon of pulsations; at that timie little appreciated, and of which he could get no infornation but in the profound, bat very obscure work, of Doctor Robert Smith, of Cambr.dge.

History op the Stbak Engine.

I have now come to the most brilliant period of the lite of Watt, and also, I fear, to the most difficult part of my task. The immence intportance of the inventions 1 nm about to describe to you does not admit of a doubt. Unfortunately, perhaps, I shall not be able to make the mo
thoroughly appreciated, without having recourse to tedious numerical comparisons. In order that these comparisons, if rendered indispensable, may be easily understood, I will allude as brietly as possible to the beautiful physical laws upon which it will be neceasary to base them.

By means of simple cbanges of tempersture, water may exist in three perfectly distinct states; in the solid state, the liquid state, and the erial or gaseous state. Below zero, of the centigrade thermometer, ($82^{\circ} \mathrm{F}$) water becomes ice; at $100^{\circ}\left(212^{\circ} \mathrm{F}\right.$) it is rapidly converted into gas ; in all the intermediate degrees it is liquid.

A scrupulous obserration of the points of transition from one of these states to another, leads to first-rate discoveries, which are the keys to the economical doctrines of the steam-engine.

Water is not necessarily hotter than any kind of ice, for it may be kept at the temperature of zero ($32^{\circ} \mathrm{F}$) without freezing; while ice may remain at aero ($32^{\circ} \mathrm{F}$) without melting; but it seems dificult to believe that water and ice, both of the same degree of temperature, both being at zero, only differ in their physical properties; that any element foreign to water, properly so called, cannot make a distinction between solid water and liquid water. A very simple experiment will, however, clear up the mystery.

Mix a pound of water at zero ($82^{\circ} \mathrm{F}$), with a poind of water at 75° centigrade, $\left(167^{\circ} \mathrm{F}\right)$; the two pounds of the mixture will be at 371° $\left.(9)^{\circ} \mathrm{F}\right)$, that is to say, at the medium temperature of the two component liquids. You thus perceive that the warm water bas retained $97 \$^{\circ}$ of its former temperature, whilst it has yielded the other 371° to the cold water ; all that ia natural, and what might easily be forseen.
But let us now repeat the experiment with a single modification; instead of the pound of water at zero ($32^{\circ} \mathrm{F}$), let us tase a pound of ice at the like temperature of zero, $\left(32^{\circ} \mathrm{F}\right)$. From the mixture of this pound of ice with the pound of water at $75^{\circ}\left(167^{\circ} \mathrm{F}\right)$, will result two pounds of liquid water, since the ice steeped in the warm water cansot fail to be melted, and it will keep its former weight. But do not $\mathrm{h} \div$ stily attribute to the mixture, as before, a temperature of $37 \frac{1}{2}^{\circ}$, ($99 \frac{1}{6} \circ \mathrm{~F}$.) tor this will lead to mn error: the teniperature will be that of zero only. No trace will remain of the 75° (1670 F .) of heat that the pound of water posessed. These 75° (1670 F .) will have disunited the particles of ice, and have combined with them, but without warming them in any way,

1 do not hesitate to pronounce this experiment of Black one of the most remarhable in modern natural philosophy. Look, indeed, at its consequences:

Water at zero, and ice at zero, (320 F .) differ in their intimate composition. The liquid comprises 75° (167° F.) of an imponderable subatance, called heat, more than the solid. These $75^{\circ}(1670 \mathrm{~F}$.) are so well concealed in the composition, I had alinost said in the aqueous alliance, that the finest thermometer does not discover its existence. Heat, impercepuble to our senses, imperceptible to even the most delicate instruments; in short, latent heat, for that is the name given to it, is one of the principal constituents of bodies.

The comparison of bolling water, of water at $100^{\circ}\left(212^{\circ} \mathrm{F}\right)$, with the ateam which ties off, and also of a temperature of 100° ($2120^{\circ} \mathrm{F}$.) , leads to lite results, but on a grander scale. At the time of being converted to a state of vapour at lu00 (2120 F), water becomes impregnated under a latent form, under a form not perceptible to the thermoneter, with an enormous quantity of heat. When steam resumes the liquid state, this heat is disengayed, and goes to warm every thing, on its way, susceptible of absorbing it. If, for example, you cause a single pound of steam at 101% (2120 F) to pass through 5035 pounds of water at zero, the steam will become quite liquified. The 6035 pounds resulting from the mixture are at a temperature of $1000(2120 \mathrm{~F})$. There enters then into the intima'e composition of a pound of steam, a quantity of latent heat which would raise a pound of water, if prevented from evaporating, from 0 to 5350 centigrade., ($964 \circ \mathrm{~K}$.) Tbis result will certainly appear enormus, but it sdmits of no doubt. Steam only exists on these conditious: wherever a pound of water at zero (32 F) is converted into steam, either naturally or artificinlly, it should take, to effect the change, and it does in fact take from the surrounding bodies, 5350 (9640 F) of heat. It cannot be too often repeated, that steam, in fact, restores these degrees upon whatever surfaces its ultimate liquifaction is affected. This is, indeed, the whole artifice from the fuel to the steam. They but badly comprehend this ingenious process, who imagine that aqueous gas only conveys to the pipes in which it circulates, perceptible or thermome. trical heat; the primcipal effects are due to component heat, to hidden beat, to latent heat, which is disengaged at the moment, when the steam, by coming in contact with cold surfaces, is converted from a gaseous to a liquid stare.

Henceforth, we must rank heat among the principal constituents of steam. We can only obtain hent by burning wood or coal. Steam, therefore, bears a market price higher than water, by the cost of the fuel employed in the act of vaporization. If the difference of the two values is very great, you must principally attribute it to latent heat, for thermomerrical or sensible heat only bears a very small proportion to it

Perhaps, at a later period, I shall have to dwell on some of the other properties of steam, so that if I do not mention them now, you must not imagine that 1 attribute to this assembly the disposition of certain students, who once said to their protessor of geometry: "Why do you take "to much trouble to demonstrate these theurema? We have the fullest * confidence in you; give us your word of honor that they are true, and 2 K 2
"that will be enough I" But I must not abuse your indu'gence; I must bear in mind, that by referring to special treatises, you can easily fill the gaps which I have been obliged to leave.

Let us now endeavour to determine the position of those nations which appear deserving of notice in the history of the steam-engine let us trace the chronological series of improvements which this machine has undergone from its first glimmerings, now slmost forgotten, down to the brilliant discoveries of Watt. I take up this subject with the fixed determination of being impartial; with a strong dexire of rendering to every inventor that justice which is due to him; and with the certanty of remaining independent of every consideration which should or way originate in national prejudice, alike unworthy of the mission intrusted to me, alike unworthy of the majesty of science. I admit, on the other hand, that I shall pay but little attention to the numerous decisions passed under the dictation of similar prejudices ; and, if possible, I shall beed still less, the severe criticisms which undoubtedly await me, for it is seldom in things of this nature that the future does not resemble the past.

A question well put is half resolved. If this sensible maxim had been borne in mind, certainly, the discussion on the invention of the steamengine would not have assumed that acrimonious and violent character, with which until now it has been so strongly impressed. But, in endeavouring to single out one inventor, where, of necessity, several should have been distinguished, people rashly cast themselves into a defile, without an outlet; a watchmaker, well acquainted with the history of his art, would be obliged to hold his tongue before any one who asked him, in general terms, who invented watches; on the other hand, he would be but little embarrassed by the question, if it related separately to the motion, to different forms of the escapement, or to the balance-so thus it it with the steam-engine : it presents, at this day, the realization of several original, but very distinct ideas, which could not have emanated from the same source, but out of which, it is still our duty carefully to search the origin and date.

If, having made any use whatever of ateam would give, as has been pretended, a right to figure in the bistory of this invention, we should be obliged to assign the first place to the Arabians, since, fiom time immemorinl, their principal food, which they call couscousson, has been cooked by the action of steam on strainers, placed over rude kettles. A result like this is quite sufficient to throw back all the ridicule upon the source from which it was derived. Did Gerbert, our fellow countryman, who wore the triple crown under the name of Sylvester II., acquire a greater, when, towarda the middle of the ninth century, be made the pipes of the organ of the cathedral of Rheims sound by the aid of steam? I do not think so: in the instrument, fashionted by the future pope, I can only discover a current of steam substituted for a current of ordinary air, the production of the musical phenomenon in the pipes of the organ, but in no wise a mechanical effect, properly so called. 1 find the first example of motion, engendered by steam, in a toy still more ancient than the organ of Gerbert; in an eolipile of Hero of Alexandria, the date of which goes back to 120 years before our era. Perhaps it would be difficult, without the aid of a figure, to give a clear idea of the mode of action of this little instrument; but I sball try.

When the gas escapes, in a certain way, from the ressel which con. tains it, this vessel, by means of re-action, tends to nove in a diametrically opposite direction. The recoil of a gun, loaded with powder, is on the same principle; the gas, engendered by the inflammation of the saltpetre, charcoal, and sulphur, flies off in the air, according to the direc. tion of the barrel; the direction of the gun, lengthened backwards, sbuts on the shoulder of the person who fired; it is, then, upon the shoulder that the butt end should re-act with force. To change the direction of the recoil, it is sufficient to cause the stream of gas to fow out in another direction. If the barrel were stopped at its mouth, and were only pierced with a lateral opening, perpendicular to its direction, and horizontal, the gas of the powder would escape laterally and horizontally; and the recoil would act perpendicularly to the barrel; it would be felt on the arm and not on the shoulder. In the first case, the recoil would push the person who tired, backwards, as if to overturn bim; but in the

- Hero's Steam Toy, A motion round an axim ia elegantly given, to a small
globe, by means of the re-action of steam apon the air. Two pipes, a, c, each having their upper extremity bent towards each other, rise from the cover of a vase, o; one of theso, c, acts merely as a pivot, the other, a, conducts steam, raised in the boiler, into the ball or globe, i. This is suspended between them by having the steam-pipe, a, inserted into it, and is fept in its position by the pivot formed at the end of the opposite pipe, c. Two pipes, m, n, also bent at right angles at their extremitics, are inserted into the circumference of the globe, and form a comsmunication between the cauldron and the atmosphere.

Heat being applied to the cauldron, the steam, flowing from it through the vertical pipe a, into the litule globe, i, thence finds its way through the pipes or arms, m, m, into the atmosphere; at this instant the re-action of the vapour on the air makes the globe revolve with a magical celerity, "as if it were anirevolve with a magical celerity,
mated from within by a liviag spirit."-Stuart.

second, it would tend to make him turn round on himself. If, then, you were invariahly to attach the barrel in a horizontal position, to a moveable vertical axis, at the moment of the explosion it would change its direction, more or less, and would cause this aris to turn.

Preserving the same disposition, let us suppose, that the vertical rotary axis be hollow, but closed at its upper part; that it abut below, like a chimney upon a cauldron, in which ateam is generated; that, moreover, there exist a free lateral communication between the interior of this axis and the interior of the gun barrel, so that, after having filled the axis, the steam penetrates into the barrel, and goes out through its side, by a horizontal opening. Except in intensity, this steam, in its escape, will act in the same manner as the gas disengaged from the powder would act in a gunbarrel, stopped at its mouth. and pierced laterally, but, here, we shall not have a simple shock, as happened in the case of the sharp and instantaneous explosion of the gun; on the contrary, the rotary motion will be uniform and constant, like the cause by which it is generated.

If we take, instead of a single gun, or rather a single horizontal tube, a vertical rotary tube, we shall have, with some sligbt differences, the ingenious work of Hero, of Alexandria. This is, without any fear of contradiction, a machine in which the steam of water engenders motion, and might produce mechanical effects of some importance-in fact, a genuine steam engine. Let us, however, not fail to remember that neither by form, nor by the mode of ection of auotive power, bas it any reamblance to the machines of that kind now in use. If ever the reaction of a current of steam should be rendered useful in practice, we must incontestably award the originality of the suggestion to Hero; * but at the present day the rotatory eolipile can only be cited here in the same manner as engraving on wood is referred to in the history of printing. \dagger

In the machines used in our factories, in steam packets, and on railways, motion is the immediate result of the elasticity of stearn ; it is, therefore, worth while to inquire how and where the idea of this power originated. The Greeks and Romans were certainly not unsware that the steam of water could acquire a prodigious mechanical power, and they explained, ever at that time, by the sudden vaporization of a large mass of this liquid, the fearful earthquakes which, in a few seconds drove the Ocean from beyond its natural limits; scourges which, at one fell blow, sweep from their foundations the strongest monuments of human industry, which raise dangerous shouls in the soundless depths of the ocean, and raise up lofty mountains even in the middle of contineuts. Whatever may be said, this theory of earthquakes does not necessarily suppose that its authors had gone into investigations, experimenta, and precise calculations. No one is now ignorant that at the time when heated metal is admitted into the earthen or plaster moulds of the founder, that a few drops of moisture, concealed in these moulds, are sufficient to cause a dangerous explosion. Notwithstanding the progress of science, our modern founders have not been always successtul in preventing these accidents; how then could the ancients have provided against them? While they cast the moulde of statues, the splendid ornaments of their temples, public places and gardens, and of the private habitations of Athens, and of Rome, some accident must necessarily have happened; the men of art found out the immediate cause ; the philosophers, on the other hand, carrying out the spirit of generalization, which was the characteristic trait of their schools, saw in these instances, genuine types of the eruptions of Etns.

All this may be very true, without having much relation to the subject with which we are engaged, and I have not, I own, dwelt so much as I might have done upon sucb slight linesments of the ancient science relative to the power of steam, desirous, if I could, of remaining in peace with the Daciers of both seses, with the Dutens of the age. \ddagger
Natural or artificial powers before they become truly useful to man, have nearly always been pressed into the service of superstition, and steam forms no exception to the general rule. The chronicles inform us, that on the banks of the Weser, the god of the ancient Teutons sometimes expressed his displeasure, by a sort of thunderclap, which was immedi-

- It is a remarkable fact, of which M. Arago appeari not to be aware, that Hero's simple edgine of emision is af this momiff In use, both in this connury and in Araerica. We know of one nteam-engine of Hero's of iwenty-one horsen' power, and lis only fauit is the consaming too much steam and fucl. It is, otherwise, a simple, cheap, and effective steam-engine. - Note of the Atheneam.
† These remarks alio apply to a pian published at Rume, in 1629 , by Branca, an Italian architect, in a work entitied, ha Macchina, and which was so engender a rothiory movement, by directiot the stenm issing from an eulipile, onder the form of a beliows or a blant of wind, opon the foath of a wheel. If, contrary to prubablity, steam should one day be employed, nsefully, as a direct blan, Branca, or the unknown anthor, from whom he might have borrowed this idea, wilt take a firtirate ponition in the bistory of this arew kind of machine; tnt, with regard to the prenent machlone, Branea's clatme are absolutely null,-Note of H . Arapa.
I For the anme reason, I cannot refraln from relating here an aneedote, which, With a spice of romance and paratux comparison, sit to what we now know of the action of iteam, gives as a gimpoe of the insportance which the ancieats attached to ployed by Juatiuian in the beigent. It is related that Anthemine, the architaet, employed by Justiaian in the boildins of St. Sophia, had a house near that of Zeno, and that to annoy this orator, bls open enemy, he placed on the groand floor of his own hoase, several canldroms fnll of water. From holes eat in the lids of each of thete cauidrons, he carried a texible tabe, which was opplied to the party-wall the tire wat lighted noder the canidrons, he made the toors dance as if they had been affected by an carthquene.-Notaby M. Arago.
ately succeeded by a cloud, filling the whole edifice. The image of the god, Busterich, found it is said, in antiquarian resegrehes, fully reveals the manner in which the pretended miracle was worked. The god was, metal, and the hollow head enclosed an amphora of water; wooden stoppers shut up the mouth and another hole situated above the forehead. Coals were adroitly introduced into a cavity of the skull and gradually heated the liquid; the steam engendered, soon drove out the atoppers, with a loud noise, and then rushed out, in two jeta, forming a dense cloud between the god and his stupid worshippers. It scemb, alm, that during the middle ages the monks made the invention tell, and that the head of Busterich did not perform only before heathen assembliea.*

The next step, by which we reach any useful ideas on the properies of steam, after the tirst glimpses of the Greek philosophera, is by an interval of twenty centuries. It is true, however, that then experimente exact, conclusive, and irresiatible succeed conjectures, unsupported by any tangible proof. In 1603, Flurence Rivault, gentleman of the chamber to Henry Ist, and tutor to Louis XIII., discovered, for instance, that a bomb of ihick metal, and containing water, explodes sooner or later, on being placed on the fire, after being stoppered; that is to any, when the steam is prevented from frecly expanding in the air, in proportion as it is formed. The power of steam is here characterised by a proof, clear, and susceptible to a certain point of numerical appreciation, but it presents itself still farther to us as a terrible instrument of destruction.

Able minds did not atop at this miserable conclusion, they perceired that mechanical powers must become, like human pasyions, useful or injurious, precisely as they are well or ill directed. In the case of steam only, the commoneat skill was really necestary to apply to productire labour, the terrible elastic power, which, according to all appearances shakes the earth to its foundations, suriounds the art of the statuary with imminent dangers, and bursts into a thousand pieces the thick metal of the bomb. In what state is this, projectile found before its explosion? The bottom contains very hot water, but still liquid; the rest of its interior is full of steam; this, for it is the characteristic mark of gaseors bodies, exercises its power equally on all sides, and presses with the same intensity on the water, and on the metal walls which retain it. Let us place a cock at the lowest part of the metal; when it is opened, the water, pressed by the steam, will spout out with extreme velucity. If the cock ends in the pipe, which, after having been bent outside around the bomb, is turned vertically from the bottom upirards, the water driven buck will ascend it so much the more, us the steam has more elatticity; or rather, for it is the sane thing in other words, the water will raise itself so much the more, as its temperature becomes higher; this ascending movement will only be limited by the resistance of the walls of the machine. For our bomb, let us substitute a thick metallic boiler, of large capacity, and nothing will prevent us from carrying great masses of the liquid to indetinite heights, by the simple action of steam; and we shall have created, in every meaning of the word, a steam-engine for draining.

You now know the invention which France and England have disputed, like formerly, seven cities of Greece contended, in turn, for the bonor of giving birth tu the immortal Homer. On the other side of the channcl, the Marquis of Worcester, of the illustrious bouse of Somerset is universully recognized; this side of the strait, however, we contend that it belongs to an humble mechanic, slinust totally forgoten by biographers, Solomon de Caus, who was born at Dieppe, or in its neigbbourhood. Let us examine impartially the claims of the two competiturs.

- Hero, of Alezandria, attributed the sonnds, proceading from the statee or Memoot when the rays of the san fell on it and which exciter sombch controverty, to the pasage by certain openingt of a current of ateam, which the sular heat produced, at the expence of the liguld, with which the Egyptian priesta are said to have foroland the foterior of the pedestal of the colossas. Sulomun de Cant, Kircher, and ottera have edrleavoored to find ont the particnlar meana by which the theocratic frand wat thus made to operate upon credulons imgiontions, bat every thing indeces as to believe that they have not hit upon the right cause, if on thin aubject any thige wern to be gueared at all.一Note by Mi. Arago.

I If any learned permonage thould discover that I have not gone far enoogh back, by beginoing with Fiarence Rivault; if he should point ont to me a quotation from Alberti, who wrote in 141I; and if, from thin anthor, be attirmed that in the commepcement of the fifteenth, century the lime-buraers foared entremeiy for themuive ad their ovens, the explosions of ime-stones, in which there might chance to be soas

 explosions, tnt aitributcd then to the iraniformation into abean of the air contained In the cavity, acted upon by the tames; and abould of those means of ammerica appteciation which seetu to be presented by Rivault's expertments.-Note by 1 . | appreci |
| :--- |
| rago. |

In the first era, many of the experimente of eteam were known and thoroaghly en derstood. Steain was lucluded, as it he by modera writers, boder the head of the air or gases, and was said to consint of water tarned into alr by heat. This has misled M. Arago, for, being apparently acqualsted with the works of the Greek philooophers only throogh the inedium of tranalations, he seems to lmagioe that when they apeak of air producing a given effect, they mean only atmoopheric atr, whereas they fully explain thembelves to mean water turned into air, sing the ward geperically. not specifcally, just as we should say water converted by heat into the gat of Faponr, commonly called, atesm. Therefore, he infert, thas thep were faporamt of the principle of gencrating atents from water for their pecellar purposes, nod aserts that the effeots meptioned are attribatable only to the saseons maiter of our atmosplerewhereas, Hero. of Alezandria, more then eentory before the Chriolas err, wader stood the subject of the geacration of stesm from water by heat, and its application to
true machinery, philosophical toys, or worse, engives devoted to the service of amper silion and idolatry.-Note of the Athenamen

Worcester, serious!y implicated in the latter years of the reign of the Stuarts, was confined in the Tower of London; one day, according to tradition, the lid of the pot in which his dinner was being cooked, suddenly flew off. "What is to be done in such a melancholy den, unless we have the liberty of thought?" The Marquis set himself to work, then, to think of the strange phenomenon which he had just witnessed. Then it orcured to him, that the same power which raised the pot-lid would, under other circumstances, become a useful and convenient motive power. On recovering his liberty, be publisbed, in 1663, in a book enitled the Century of Inventions, the meuns by which be proposed to carry out his idea.- This method, as to its essential character, seems, us far as it can be understood, to be the bomb half filled with the liquid and the ascending tube, which we have just described.
This boinb, this aame tube, are described in the "Raison des forces mouvantes," ta work of Solomon de Caus. There the idea is presented clearly, siinply, and without any exaggeration. Its origin has notbing romentic ; it tells no story of civil war, nor of celebrated dungeons, not even of the lifting of the pot-lid of a prisoner's kettle. \ddagger But, wbat is worth much more, in a question of priority, it is, by its publication, forty-eigbt years older than the Century of Inventions, and forty-one years antecedent to the imprisonment of Worcester

Thus brought back to a comparison of dates, the dispute would seem to be closed; for who could maintain that 1618 did not bappen before 1663? But those whose pincipal object seems to have been to remove every French name from this inportant cbapter in the history of the sciences, \oint suddenly shifted their ground, when La Raison des forces

- MARQUIS OF WORCESTER'S ENGINE.

B is the boiler; C, one of the veasels with a pipe to deliver the water to an elevated cistern 0 .
Now suppose the vessel C to be supplied from a cistern of cold water A by a pipe, so that it wonld be filled on opening the cock E, and alterwards cloning It; if, when the steam in the boiler is of sufficient strength, the cock F be opened, the pressure of the steam on the water in C would cause it to ascend from C, through the pipe a ioto the cistern D. The vessel C being emptied, mom the cock F being shut, it would refill with water on again opening the cock E. Another vessel C, and its cocks and pipes, are necessary to complete the species of water engine indicated by the description, and these may plete the species of water engine indicated by

- The Reaton of moving Forcen.

I M. Arago, with the sanne bad tate which infuences the uille and matter of this merooir in 200 manay places, bere endenvours to thriw amneceasary ridicale apoun a

 raeter, us men of linpurtintity and freedom from prejadice. by the ehvice of such a rater, ts as W att, would bave found it n eefnl to stippurt in the detalts, what he will not utherwise gain eredit for as a whole. This is tuo uld a gatime of the enrmy, however, W deceive the world; the French are too fond of realizing Swirt's oarcatm of knucking downa the other's moand intead of raining their own. It wnat thas that Voltuire, to acquire a repatatiou for his Heurtade, attempted to reduce, in his Easal our la Popsie acquire a reparation and Milion to his own level. M. Arago, however, with all his Afla about romance, hat set alioat a uure romaticic Frencb sentimental atory, about lise interview between the Marquis of Worcester and Bulomon de Cuus in a mad honse. Why did not M. Aragn, as the tame time, langh at the trailitiona of Archimedes and the bath, Gallteo and the inmp, and Newwn and ibe apple t why not conjare ap for these a similar ribaldry of myle, and all equal lowneme of thonght?-Xote of the tramolator.
If M. Arago ean tell what good French names have done in the blstory of the teamengine, he is welcome to leave there ms many as he hes, nind to dianter at many volames ms he pleates fom the pomderous librarict. He cmanot deprive our race of a savery, a bit, and a Trevithick, of appifing the ateam-engine to drainiog, to mining. to every branch of manafactures, to the pathiess orean, and the iron roan, the inventions of the high and low preasore principles, and thitir couverition in this contiment and the otber to many arta of peace and war, To all the rest the Freach are weicome-the and who bave done no more. France is tion rich in great names, who have ialred, and who bave done no more. France is loo rich in great names, gence of such petty jeulousies, which to wrong to a noble country, and to a memory ghleh every man uf selence mant hononr and respect. There are nobler places for M. Arago than the tribnne, eitber of the acadeiny, or of the senmte house. Tbis part, invented by Louls XIV; this deplorable symem has pralsed every thaltor and pailala down to the present time.-Note of the iranstator.

Mouvares was brought out of the crowded libraries in which it had been buried. They broke, without besitation, their ancient idol. The Marguis of Worcester was sacrificed to the desire of annulling the claims of Solomon de Caus; the bomb placed on the bluzing turnace. and its ascending tube ceased, in fact, to be the true germs of the present steam-engine.*

As to myself, I cannot concede that be has done nothing useful, who, reflecting on the enormous expansion of steam greaty heated, first saw that it could be used to raise great masses of liquid to any imapinable height. I cannot admit that some remembrance is not due to the mechanic, who, the first also, described a machine fit for realising such results. We must not forget that we cannot judge properly of the merit of an invention, except by transporting une's self in thought to the period at whicb it was conceived. and divesting the mind for the moment of all the information which ages, subsequent to the period of this invention, have contributed. Let us imagine an ancient mecbanic, Archimedes for instance, consulted on the means of raising to a great beight, the water contained in a vast closed metallic recipient. He would certainly have spoken of great levers, puilegs. simple or combined, perhaps of bis ingenous screw; but what would be his surprise if, to resolve the problem, some one proposed merely a bundle of sticks and a match? Will, 1 ask, would any one dare to refuse the title of an invention to a process with which the immurtal author of the first and true principles of statistics and bydrostatics would bave been astonished? t The apparatus of solomon de Caus, this inetallic envelope, within which was creuted an almost indefinite motive power, by means of a faggot and a match, will always figure nubly in the history of the steam-engine.

It is very doubtiul whether solomon de Caus and Worcester ever had their apparatus constructed: ; this honour belongs to an Englishman. Captain Savery. 1 assimilate the machine of this engineer to that of

Abstract

- It has bete printed that J. B. Porta gave, in 1608, in his Splrifall, niae or tom years befure the publication of the work of folumon de Cans, the description of a machine lateuded to raise water by means of the elantic power of steam. 1 have ahuwa elsewhere that the learited Neapolitan tpola neither direcily nor indiractly, of any machina in the ramage alluded to; but that his porpose, his only parpoes, was to determine, experimenially, the relative volunes of water and ateanc; that in the litile experinuevtal apparmtus empluyed fur this purpobe, steam could only raise the liquid, nccordiag tu the very words of the authur, a few laches; that in every descrip tion of this experiment, there is aut a single word implying that Purta was acqualated wist the puwer of this agent, and the ponibility of applying it in the production or an efiective machiue.

Can it be aqpused that I am obliged to quote Porta, if it be only on aceount of his researchea on the transtormation of water into ateam ' Bot 1 shovid then reply, that this phenomenon had already boen atadied with attention by Prureswor Bemon, of Urienns, towards the middle of the sixteenth centary, and that one of the treatioes of this mechauic, dated 1560 , especially conimins an kpany ou relativi volutnex of water and ateain.- Nots of A. Arago. The tandoar of M. Arago seetns to fall him more and more; bat we lenve this portion to the able castigation of the Aibenaum, beranfier quoted.-Nota of tho portion to iramplatur: \dagger Puting out of the y ueation the illugicality of thit paedoargament, we may almply obseive that it is but a part of the false system by which M. Arago ands it ply obsetive that it is but part of the lalse syatem by which a necesary to bolster up their shaliow ciaimit here we ane a reama for aeciuding it over as of suspicions autieulicity; for admining what ail Arago anyi concerniog the propertica of the apparatus of Soloinon de caus, was it not anticipated by the operation of Anthemins Hece, lainiy koew the the honse of Zenot Antbenitua cer did be attenipt such a ponerful ex periment in the honse of Zeno ainly kuew of the owndich of atiche and a mafch. - Note of the trandator. aint There is no durbi as tu the case of Solumon de Cano-he oever constracted a \ddagger There is no duabt as to the case or Molumon of Worcester, for he certalaly did. We bave done sumcient to shew the gruandlessmess of N. Arago's pretensious, so that We bave done sumcient to shew the questun with the fullowing able semarks of the

 We cannotAthenamin.
" When the revival of learaligg, towards the conclasion of the dark ages, exhanced once nuore the knowledge of the Greeks, Hero's work was one of the Arti productions of the prest. It gave au exciteusent to the mechanical talemt of the age-many ingeniof the prest. itated and exiended the contrivauces of Hero, and prodeced ingentons mechauical toy:; and Gerbert, Garian, Mathesias, Bapinta Porta, Solomon de Cane,
 Hero, and made some moditications of their structure, and extended their applicationa
 Cans-and endeavours to exait him to the pedeatal uf fane, as the laventor of the ateamengiat, because, forsowth, he took ap the inventions of Hero, and slighty modi-
 Ded Cans the following are it je well koown that he was engineer and architert w Charles the First, and was employed in deslgning hydraulic ornaments for hin Palace of Hichmosd ; 8 , That he tedicases the second part or hia work to Charles'a sister, the Of Kichmond; 3, That he Thed be restided, for a Unine, at Heidelbere; s, That a Preach Electres: Palesthoe; 4, That be resto the king of Prauce, in whose service he apperar, edition of his work was dedicated to the kiag the amongot other thinge in his biok, bo deteribei a machine fur throwiog up a jet of water, in a manner similar to Hero's deteribet a machine for hrowing ae dues not even claim as his own, bat feacribet stean jet; an invention which we does il as peut faire digerses machines, jem donnerat tci la demonptration d'unc."
dci la domonsfration d'unc." M. Arago builds the following theory:-1, That De Cags
On this slender ground, M. was certainly areuchman! 2, That this maebine, deacribed by De Cans, to make a wasall jut of water play ornamentally to theair, was certainly his own invention, and wav, literally, stearmengine, suitable to the porpuee of drmining mines of water! ! 3, That Bulumon de Caus is the inventor of the ateam-engime ! ! !
3, That bulamon we reply, -1, That De Caos may have been a German, a Frenchman, an Enylishman, or Juw; 2, That De Cana 11, in all probabulity, only describiop the in veption of another, and that be puts foith no clain to oripinality; and 8 , That the vention of another, and a mere machine for projectiog an ornamental jet of water for a gariten, inferfor to many of Herofin toys.
a garien, inferior but believe that M. Arago himself is aware of the weaknese of his ease ; for, in explaining the machine of De Caus-which be cults a verifable machino de vapowr, propre d opiret des epuisenemb-hi hase not incerted De Caus's unt drawing of the machine, which wonld have at once ahown ite noture as a tri. fal and useleas toy; bat he gives a ggare and deacription of his own invention, 20 altered as is lerd
his two predecessors,* although he introduced some essential modifications: that, among others, of generating the steam in a separate vessel. \dagger If it is of little difference as to principle, whether the motive steam be engendered at the expense of the water to be raised, and in the very heart of the boiler in which it is to act, or whether it originates in a separate vessal, to act at pleasure, by means of a communicating tube, having a cock above the liquid, which is to be raised, it is certainly not the same in a practical point of view.

Another change still more important, well
his reader to unppose an effect prodnced of a different and important character Herein we cannot bat think that M. Arago's candour appears for a moment to have yielded to his desire to flatter the vanity of bls conotrymen, and render hinuself popnlar "In the second era, the era of nuccessfal application of the power of steam to naeful purpuses, we find, first of all, the Marquis of Worcester. There is no doubt whatever urged by M. Arago, against the autheoticity of the Marquin'a written and published deacriptions of the steamengine, but he contents himself with asserting that the Marquis never made hiv machine! nor applied it to nse, and that therefore he stands on no better groond than De Cans. It is to be regretteri, that M. Arago did not make himelf better aequainted with the published htstory of the stram-engive, for he would then have known that the Marquis of Worcester not only made a steam-englae, but that It was applled to the parpose of raising water for the use of the inhabitants of Vauxhall; that it was of more than two-horse power, and that it was seen in operation, amongst otbers, by Cosmo de" Medici, on the 28th day of May, 1653, who gives testimony thos-" it ralses water more than forty geometrical reet, by the power of one man only; and in a very short space of time will draw op four vessels of water threagh a tube or chanal not more than a span in width, on which account it is consifered to be of greater service to the public, than the other machine near Somerset Honse;"-the machine at Somerset House being one driven by two horten.
In briet, het M. Arago say what be may, Worcester, Savery. Newcomen, and Smeaton, are the great names of this era; and Dr. Papin, though he minde many clever atiempts at the contrivance of machines, on the principles angueated by his predecessor, the Marquis of Worcester, and his contenuporarien, Savery and Newcomen, Was never known to make a single successfol attempt with atenm, excepting applying it to the extraction of nutriment from bones, an invention which beari his aame, an for which alone it is tbat futurity will ever mention it."-Note of the translator.

- Bonnani says, however, that after the death of Kircher, there was fonnd in his maseum the model of a machine which that enthasiastic anthor had describet in 165t, and whicb differed from that of Solomon de Cans, by the mere fact, that the motive ceam wasengevdcred in a vessel totally dletinct from that which contained the water to be raised.-Noto of M. Arago.

It is thas that M. Arago gradnally distribates in bis notes the siain corses of Solomon de Caus competitor, but we leave to our readers to make tbelr comments on this extriordinary line of conduct.-Note of the translator.

+SAVERY'S ENGINE.

It consisted of a furnace and boiler B; from the latter two pipes, provided with cocks C, proceeded to two steann vessels S, which had branch pipes from a descending main D, and also to a rising main pipe A; each pair of branch pipes had valves a, b, to prevent the descent of the water raised by the condensation or by the force of steam. Only one vesuel S, is shown, the other being immediately behind it. One of the steam vessels being filled with steam, condensation was produced by projecting cold water, from a small cistern E, against the vessel; and into the partial vacuum made by that means the water, by the pressure of the atmosphere, was forced up the descending main D, from a depth of about twenty feet; and, on the steam being let into the vessels again, the valve b closed, and prevented the descent of the water, while the stcam having acquired force in the boiler, its pressure caused the water to raise the valve a, and ascend to a height proportional to the excess of the clactic force of the stcam above the pressure of the air

Captain Savery afterwards simplified tbis engine considerably, by using only oue steam vessel. To prevent the risk of bursting the boiler, he applied the steelyard eafoty valve V, invented by Papin for his digester. The cocks were managed by hand; and, to supply the boiler with water, he had a small boiler adjoining to heat water for tbe usc of the large one, and thus prevent the loss of time which must have occurred on reflling it with cold watcr.Tredgold.
worthy of special attention, and equally originating with Savery, will be alluded to in the space we shall devote to the labours of Papin and Newcomen.

Savery had entitled his work, The Miner's Friend, hut the miners showed themselves little obliged to him for his complaisance, for, with only one exception, none of them give any orders for his engines. They were only employed in conveying water to different parts of palaces, country-houses, parks, and gardens; and were never used but in altering the level from 12 to 16 yards. We must acknowledge, morrover, that the danger of explosion would have been considerable, if there bad been applied to the apparatus that immense power which their inventor asserted they could attain.

Although the practical success of Savery was rather imperfect, yet the name of this engineer merits a very distinguished place in the history of the steam-engine. Persons whose whole life bas been devoted to speculative subjects, are unaware what a difficulty there is in bringing the mokt apparently well digested plan into execution. I do not, like a celebrated German savant, pretend that nature always crics out no! mo: when we wish to raise a corner of the veil which covers her, tut by following the same inetaphor, we are at least allowed to affirm that the attempt becomes so much the more delicate and difficult, and the succesa so much the more doubtful, as it requires the combination of a griater degree of mechanical skill, and the cinployment of a large number of material elements; under every one of which considerations, and taking the period into calculation, no one was ever placed in a more unfavourable position than Savery.

I have spoken until now only of those steam-engines, the resemblance of which, to those now bearing that name, is, more or less, indisputable. Now I shall consider the modern steam-enyine, that which is employed in our manufactories, upon vessels, and in the shafts of neurly all our mines. We shall see it arise, increase, and develope itself sometimes on the inspirstion of eome chosen individual, some on the spur of necessity, for necessity is the mother of genius.

The first name which we find in this new epoch, is Denis Papin. It is to Papin that France owes the honourable rank which she claims in the history of the steam-engine. However, the really legitimate prido with which we are inspired by his success, will not be without ilior. The claims of our fellow count yman are only to be found in foreign col. lections, his principal works were published beyond the Rhine; bis liberty was threatened by the edict of Nantes, and it was in mournful exile that he erjoyed for a moment that of which men of rescarch are the most desirous-tranquillity of mind. Let us quickly throw a veil over these unfortunate results of our civil discords; let us forget that fanaticism attacked the religious opinions of the philosopher of Blois, and get back to our macbinery, with regard to which, however, the orthodoxy of Papin has never been contested.

In every machine there are two things to be considered__on the one hand, the movement, and on the other, the disposition, more or less complex, with fixed or moveable parts, by means of which the motire power communicates its action to resistance, In the height to which mechanical knowledge has now-a-day been carried, the success of a machine, intended to produce great effects, depends principally upon the nature of the motive power, and on the means of applying and conducting its power. And it was to the production of an econumical moor, capable of communicating incessant oscillations, and with grent power, to the piston of a large cylinder that Papin devoted his life. To borrow afterwards, from the oscillation, of the piston. a sufficient power to turn the stones of a corn-mill, or the cylinders of a Hatling engine, the paddle wheels of a steam-boat, or the bobbins of a cotton spinning machine-to lift the clumsy hammer, which beats with frequent stroke* the colossal lumps of glowing iron, fresh from the reverbcrating fursace, to cut, like a riband in a lady's hand, thick bara of metal with the sheering blade of gigantic scissars; these are, I assert, no many problems of a very secondary rank, and which would not trouble the unost common-place mechanic. We can therefore employ ourselves in considering exclusively the means by which Papin proposed to engender his oscillatory motion.

Let us suppose a large vertical cylinder, open at top, and resting at the base, on a metal tahle, having a hole in it, clozed or opened at pleasure by a cock. Into this cylinder let us introduce a piaton, that is to say, a circular plate full and moveable, which will close it entirely; the portion of the atmosphere which occupies the lower part of the cylinder will then tend by its re-action to produce an inverse mation. This sccond force will be equal to the first, if the cock be open, since a gas presses equally on all sides. The piston will then be acted upan by two opposite forces, which will keep it in equilibrium; although it will descend, but only by its own gravity. A counterpoise in a small degree beavier than the piston, will on the contrary be sufficient to lift it to the top of the cylinder, and to keep it there. Let us suppose the piston arrived at this extreme position, and let us endeavour to point out the means of causing it to descend with great force and to bring it bark again. Imagine, that after baving closed the lower cock, we gucceed in suddenly annililating all the air contained in the cylinder, is a word to empty it. This vacuum having once been made, the piston only receiving its action from the external atmosphere which presses from above, will rapidly descend. This movement effected, tbe cock is opened the air inmediately returns from below, and counterbalances the action
of the atmosphere above; as in the beginning, the counterpoisa brings up the piston to the top of the cylinder, and all parts of the apparatus are restored to their original condition. A second evacuation, or rather if you prefer it, a second annihilation of the interior air will again bring down the piston, and so on as before. *

The true motor of the system would in this case be the wright of the atmosphere, and let us undeceive those who might imagine, that because they can walk and even run through the air with ease, that it possesses neither power, or weight. With a cylinder, two metres (78 inches) in diameter, the effort which the piston of the engine would make in descending, the weight which it could lift the whole height of the cylinder would be 31,000 kilogrammes (69,291 lbs.) This enormous power, frequently renewed, would be obtained by means of a very simple machine, if we discover a prompt and economical method of engendering and destroying at pleasure an atmospheric pressure in a meral cylinder.

This problern Papin solved - his fine, his great solution, consisted of the substitution of an atmosphere of steam, for an atmosphere of common air, if replacing this by a gas which at 1000 centigrade (2120 F) has precisely the same elastic power, but with an important advantage which the ordinary atmospheric does not possess, that of the power of the aqueous gas weakening itself very quickly when the temperature is lowered, so that in the end it disappears almost entirely, if the refrigera. tion be sufficient. I should characterize the discovery of Papin, as well, and in fewer words, if l should say, that he proposed to make use of steam to create a vacuum in large spaces, and that this method is prompt and economic. t

Tbe machine in which our illustrious fellow countryman was the first to combine in this manner the elastic power of steam, with the property which steam possesses of being annihilated by refrigeration, he never executed on a large scale; his experiments were confined to mere models. The water intended to engender the steam, did not evenoccupy a separate boiler, but inclosed in the cylinder, it rested on a metallic plate, which closed it at bo:tom. It was this plate which Papin heated directly to convert the water into steam, and it was from this same plate t hat he removed the fire when be wished to effect the condensation. A mimilar process, bardly endurable in an experiment intended to verify the correctness of a principle, would evidenily be inadmissible if it were requisite to make the piston move with rapidity. Papin, while he said ct tbat this could be effected by different constructions easily to be imagined," did not point out any of the-e modes of operation He left to his successors both the merit of the application of this fruitful idea, and that of the insentions in detail, which alone can secure the success of a machine.

In the first part of our investipation on the employinent of ateam, we quoted the ancient pbilosophers of Greece and Rome ; one of the most celebrated mechanics of the sehool of Alexandrin; a pope; a gentleman of the court of Henry the Fourth; an hydraulist, born in Normandy. that fertile hirth-place of great men, which has contributed toft he national pleiud, Mialberbe, Corneille, Pıuesin, Fontenelle, La Place, and Freanel; a member of the Husus of Lor.'s, an Euglish mechanic; and lastly a

- PAPIN'S MACHINE.

Consisted of a boiler B; provided with a safety valve V; and a cylinder Gi H, connected to the boiler by a stean pipe S. The cylinder was closed at the top, and contained a floating piston P; and the base of the cylinder terminated in a curved tube T, which ascended into a cylinder M; the bent tube had a pipe Y, from a reservoir of water communicating with it, and it was provided with a valve at r. Now suppose the cylinder $A H$, to be filled with cold water by the pipe Y, from the reservoir, and the boiler to contain atrong stcam; by opening the cock E., the steam would be admitted, and, pressing on the foating piston P, cause the water to ascend into the cylinder M: its return is prevented by the valve K, and the stearn cock E being shut, and the cock R opened, to let the condensed steam escape at the pipe R, the water from the reservoir refills the steam cylinder through the pipe Y, and it is ready for repeating the operation. The water raised to be directed to any useful object by the pipe D.-Tredgold.

- An Englith mechanist, Honbticosily decelved by an onfuithfal tranalation, asoerted mome time ago, that the hden of emplinglag steara in the same machine at an elastic power, and as a rapid nueans of engendering a vacuum, belonged to Hero. On my Whe I have prover incontestably tian the mechaniwi of Alexandria never thought of meam; that in his apparatus the aiternate movement was only to be prodaced by the dilatation and condensation of the sir, ariaing from the intermituing setion of the
colar raya-Note of At. Arago.

French physician of the Royal Society of London, for we are obliged to confess, that Papin almost always exiled, was only a corresponding Member of our Academy. Now is the time for ample mechanics and workmen to enter on the scene, in which it will be found that all classes of society have united for the formation of a machine, of which the whole world is to enjoy the benefit.

In 1705, tifteen years after the publication of the first memoir of Papin, at Leipsic, Newcomen and Cawley, the first, a hardwareman ; tha other a glazier, at Dartmouth, in Devonshire, constructed, (recollect that 1 do not say projected, for the distinction is important $)^{*}$ a machine intended for draining, and in which there was a separate boiler in which the steam originated. This machine, as well as Papin's little model, consists of a vertical metal cylinder, closed at the bottom and open at top, and a piston, well fitted, intended to traverse it in its whole length in ascending and descending. In both, when the steam arrives freely at the bottom of the cylinder, fills it, and thus counterbalances the pressure of the external atmosphere, the ascending movement of the piston is effected by means of a counterpoise. t In the English nachine, indeed, in imitation of that of Papin, as soon as the piston has arrived at the termination of its ascending course, the steam which had contributed to raise it, is refrigerated. A vacuum is thus made in the whole capacity
 lator.

+ NEWCOMEN'S STEAM ENGINE.

The following is a description of the engine, as far as it was improved by Newcomen. B represents the boiler with its furnace for producing steam; and at a small height above the boiler is a stemm cylinder, C, of metal, bored to a regular diameter, and closed at the bottom, the top remaining open. A communication is formed between the boiler and the bottom of the cylinder, by means of a short steam pipe, S. The lower aperture of this pipe is sant by the plate p, which is ground Gat, so as to apply very accurately to the whole circumference of the orifice. This plate is called the regulator, or steam cock, and it turns horizontally on an axis a, which passes through the top of the boiler, and is fitted steam-tight; and has a handle to open and shut it.

A piston P is fitted to the cylinder, and readered air-tight by a packing, round its edge, of soft rope, well flled with tallow to reduce the friction, and its upper surface is kept covered with water to render it steam-tight. The piston is connected to a rod, PA, which is suspended by a chain from the upper extremity D of the arched head of the lever, or woiking beam, which turns on the gudgeon G. This beam has a similar arched head E F , at its other end, for the pump rod \mathbf{H}, which reccives the water from the mine. The end of the beam to which the pump rod is attarhed, is made to exceed the weight and friction of the piston in the steam cylinder; and when the water is drawn from auch a depth, that the steam piston is too heavy for this purpose, connterpoise weights must be added at I, till the piston will riec in the steam cylinder at the proper speed. At some height above the top of the cylinder is a cistern L, called the injection cistera, bupplied with water from the forcing pump R. From this descends the injection pipe M, which enters the cylinder through its bottom, and terminates in one or more small holes at N. This pipe has at O a cock, called the injection cock, fited with a handle. At the opposite side of the cylinder, a little above its botom, there is a lateral pipe, turning upwards at the extremity, and provided with a valve at V, called the saifting valve, which has a litte dish round it to hold water for keeping it air-tight.
which it traversed, and the external atmosphere forces it to descend. To effect the necessary refrigeration, Papin, as we know, was satisfied with removing the pan of fuel which heated the bottom of his metal cylinder. Newcomen and Cawley employed a process much better in every respect, they caused a considerable quantity of cold water to flow into the ring-like space contained between the external surface of the cylinder of their engine and a second cylinder, a little larger, in which it was enclosed. Cold thus was communicated gradually to the whole thickness of the metal, and ultimately reached the steam itself. *

Papin's machine, thus perfected as to the manner of refrigerating the steam, or of condensing it, excited the greatest interest in the mine pro-prietors-it extended rapidly into eeveral counties of England and rendered important service; the little energy of its movements, a necessary consequence of the slowness with which the steam was refrigerated and lost its elasticity, was however a depp source of regret. Chance luckily pointed out a very simple means of remedying this inconvenience.

In, the commencement of the eighteenth century, the art of stuffing large metal cylinders and closing them hermetically by means of metal pistons was still in its infancy; therefore, in the first engines of Newcomen the piston was covered with a layer of water for the purpose of filling up the vacancies between the circular centre of this moveable piece, and the surface of the cylinder. To the great surprise of its constructors, one of their engines seemed to oscillate much more rapidly one day than it did generally. After examining it rarefully, they saw clearly that on that day the piston had a hole in it, and that the cold water fell in driplets. which in passing through the steam were rapidly dissipated. From this fortuitous observition is to be dated the consplete suppression of external refrigeration and the adoption of the rose spout which carries a shoucer of cold watcr throuch the whole extent of the cylinder, at the time pointed out by the descent of the piston. The action thus acquires the desired rapidity.

Let us see also, if chance has not a share in another improvement equally important. The first engine of Newcomen requires the closest attendance on the part of the person, who was constantly employed in opening, and shutting the cocks, either to introduce aqueous steam into the cylinder, or to throw into it a jet of cold water for the purpose of condensation. It happened one day that this persun was a youth named Henry Potter, who was very anxious of joining in the joyous games of his playfellows. He is burning with the desire of joining them, but the task which is confided to him, does not allow half a minute's absence. His head is excited, passion gives him genius, he discovers relations of which, until that moment he had never had any idea. \ddagger Of two cocks, one was to be opened at the moment when the beam, which Newcomen first introduced into his engines with such effect, bad terminated its descending osciliation, and it was obliged to be closed exactly at the end of the opposite oscillation. The management of the second was precisely contrary. Thus the positions of the beam and those of the cocks was necessaily dependent on each other. Potter took advantage of this remark, he observed that the beam could be used to communicate to the other parts, all those movements which the action of the engine required, and immediately carried his conception into execution. The ends of several strings were attached to the handies of the cocks, and the other ends Potter fastened to convenient points of the beam, so that

- Savery had already barl recourse to a current of cold water, which he qurned upon the exterior swrface of a metal vessel, to condense the steam which this vesel contalued. Such was the rigin of his assoctation with Newcomen and Cawley, bot it mont not be furgotten that the patent of Savery, bis machiues, and the work in which he describes them, are many years later than the memolr of Papin. Wote of M. Arayo.
\& A recent carricatore reprements sonue one Inviting an Iriahman to a dinner of roant beef and potntoes. "Ob!" says the Irishman, "I huve Just had a dinner of that sume, barrin the meat." This seems to be the case with M. Arago and his friends, De Cana and Papin, they contribnted every thing except what was most essential.Note of the translator.
\pm This ts one of thase overfown descriptions in which M. Arago delights to indulge. A mischievous boy, wanting to play traant, immediately becomea a subject of divinc inspiration. It is our doty to perform onr task strictly, so that we frel bonnd to make this apology to our readers for not veiling this phrase io more cobed terms.-Note of the translator.

There proceeds also from the bottom of the cylinder a pipe \mathbf{Q}, of which the lower end is turned upwards, and is covered witb a valve of this part is immersed in a cistern of water called the hot well, and the pipe itself is called the eduction pipe. Tn regulate the strength of the steam in the boiler, it is furnished with a safety valve, constructed and used in the vame manner as that of Savery's engine, but not loaded with more than one or two pounde on the square inch.
The mode of operation remains to be described. Let the piston be pulled down to the botrom of the steam cylinder, and shut the regulator or steam valve p. Then the piston will be kept at the bottom by the pressure of the atmosphere. Apply the fire to the boiler till the steam escapes from the safety valve, and then, on opening the steam regulator, the piston will rief by the joint effect of the strength of the steam, and action of the excess of weight on the other end of the beam. When it arrives at the top of the cylinder, close the regulator p, and, by turning the injection cock 0 , admit a jet of cold water, which condenses the steam in the cylinder, forming a partial vacuum, and the piston descends by the pressure of the atmosphere, raising water ty the pump rod H from the mine. The air which the steam and the injection water contain, is impelled out of the suifting valve V, by the force of descent, and the injection water flows out at the eduction pipe Q; and by repetition of the operations of alternately admitting nteam and injecting water, the work of raising water is effected.-Tredgold.
the oscillations of the beam acting on the strings by ascending and descending, opened and shut the cocks and supplied the place of manual labour; and for the first time the steam engine acts of itself, for the firs time it has no other attendant near it than the stoker, who, from time to time comes to renew and keep op the fuel under the boiler. For the strings of the boy Potter, manufacturers soon substituted rigid vertical rods, fixed to the beam and armed with levers, which press upwards and downwards the heads of the different cocks. The se rods have now been supplanted by other combinations, but however humilisting the confession may be, all these inventions are simply modifications of the mechanimm which was suggested by a boy who waited to join his playfellows.
In collections of apparalus there are a good many machines, of the utility of which to manufacturers great hopes bave been formed, but which the dearneas of their construction, or their maintenance, has reduced to mere curiosities. Such would bsve been the final lot of Newcomen's machine, at least in localities deficient in fuel, if the labours of Watt, of which I must now give you an analysis, had not introduced an unexpected perfection. This perfection, however, must not be considered as the result of any casual observation, or of a single ingenious inspiration, for its author arrived at it by ussiduous study, and by experimente of extraordinary beauty and delicacy It might be aaid, that Watt had adopted Bacon's celebrated maxim, "To write, speak, meditate, or art, when we are not well provided with facts to excite our thoughts, is to narigate without a pilot along a coast bristling with dangers; it is to launch out is the immense ocean without compass or helm.'

There was in the collection of the University of Glasgow, a amall model of Newcomen's steam engine, which had never worked property. Anderson, the Professor of Natural Philosophy, gave it to Watt to repair. Under the skilful hand of the workman, the tualts in its construction dis appeared, and from that time the model norked every year in the lecture room before the wonder-struck students. An ordinary man would have been contented with this success, but Watt, according to custom, inly saw the opportunity for deeper studits. Has researches were successisely directed to every point which seemed to clear up the theory of this mchine. He determined the quantity of expansion of the water when it passes from a liquid state to that of steam; the quantity of water which a given weight of coal can vaporize; the quantity of steam in weigbt which one of Newcomen's engiues, of known dimensions, consumes at each oscillation; the quantity of cold water which is necessary to be injected into the cylinder to give the descending oscillation of the piston ceitain power; and, finally, the elasticity of steam at different temperatures.

Here was enough to have occupied the life of a laborious mechanic; Watt, however, found out the means of surceeding in many and most difficult pursuits, without interrupting the labours of the worksbop. Dr. Cleland wished to take me to the house to which our colleague used to retire to make expetiments on leaving his shop, but unfortunately we frund it pulled down. Our sorrow was great, but of short duration; on the site of the foundation, still existing, ten or twelve hards lubourers, seemed as if sancrifying the birth-place of the modern steam-engine. They were hammering different parts of a boiler. larger certainly than the humble dwelling which formerly adorted the spot. On this site, and in similar circumstances, the most elegant mansion, the finest statue, the most sumptuous monument, would have beeu lems fitting to the genius loci than the gigantic boiler.

If the properties of steam are still present in your minds, you will perceive at once that the economic action of Newcomen's macbine require two intezoncilable conditions. When the piston descends, the cylinder must be cold, or it would meet steam still very elastic, which would greatly retard its action and diminish the effect of the exterial atmoe phete. When, therefore, steam at $1000 \mathrm{C}\left(212^{\circ} \mathrm{F}\right.$.) rushes into the same cylinder, if the surfaces are cold this steem warms them by a partial liquefaction, and until they acquire a temperature of 1000 C . (2120 F .) the elasticity is considerably diminished. The consequence is, a slowness in the movements, for the counterpoise does not lift up the piston before there exists in the cylinder a springiness sufficient to counterbalance the action of the atmosphere. Thence also an increased expense, since, as I have explained, steam is very dear. We shall see directly the immense importance of this economic consideration, when I inform you that the Glasgow model used at each oscillation a volume of steam several times greater than that of the rylinder. 'T he expense of the steam, or, what comes to the same, of the fuel, or, rather, if yun prefer it, the indispensable pecuniary expense of maintaining the movement of the machine, would be several times less if we could get rid of those successive coolings and heatıngs, the inconveniences of which \mathbb{I} have pointed out.
This problem, apparently insolvable, Watt resolved by the simpleas means. He found it sufficient to add to the former disposition of the machinery a vessel distinct from the cylinder, and only communicating with it by means of a narrow tube provided with a cock. This vesmel. which is now called a condenser, is Watt's principal invention, and not. withstanding my desire to shorten the subject, I cannot avoid explaining its action.

THE LIFE OF JAMES WATT (conciuded.)

If a free communication exist between a cylinder full of steam and a vessel exbausted of steam and air, part of the steam in the cylinder will pass with great rapidity into the vessel, and the motion will continue until the elasticity is uniform throughont. Supposing, then, that by means of an abundant and continual injection of water, the vessel could be kept constantly cold throughout its extent, the steam would be condensed on ity arrival, all the steam with which the cylinder was originally filled would be successively brought in, and the cylinder would thus be relieved from the steam, without its surfaces being in the least refrigerated, and the new steam with which it might be necessary to refill it would lose none of its elasticity.

The condenser attracts to itself the steam of the cylinder, on the one hand, because it contains cold water, and on the other, because the remainder of its capacity does not contain any elastic fluid. But the moment that a first condensation of steam has been effected, these two successful conditions disappear; the condensing water becomes warmed by absorbing the latent caloric of the steam; a considerable quantity of steam is formed at the expence of this warm water, and the cold water contained atmospheric air, which bas been liberated during the elevating of the tempersture. If after each operation, this hot water were not taken away, together with the steam and air which the condenser contains, it would in the end produce no result. Watt, effected this triple evacuation by means of an ordinary air pump, of which the piston is carrried by a rod attached to the beam and set in motion by the engine. The power employed in keeping the air pump in motion diminithesty so much, the power of the machine, but this is nothing in comparison with the loss which ensued in the old process, by the condensation of the steam on the cold surfaces of the body of the cylinder-see fig. 9.

One word more, and the advantages of another invention of Watt's will be apparent to every body. When the piston descends in Newcomen's engine, it is the atmosphere which impels it; this atmosphere is cold,

Fig. 6.

LEUPOLD'S ENGINE.
M. Arago has omitted to notice the contrivance of Leupold, which we thall bere give, in order that this ingenious inventor may not be passed over unnoticed. Leupold was a native of Saxony; in 1723 he commenced publiahing a large collection of machines, which extended to several folio volumea; among other inventions, he suggested the high preasure engine, and fowr-soay coch, a view is given in fig. 7. Over a boiler B, he placed two cylinders C C, fitted with ateamsight pistons, p p. A four-way steam-cock, S, is placed between the boiler and Hinders, so as to alternately admit steam into one cylinder, and let it out Fom the other. The piston, by the admission of atrong steam from the boiler below it, is raised, and depresses the other end of a lever connected to the rod of a plunger of a pump, which causes the water to rise through the pipe, and by the alternate action of the steam in the two cylinders a continual stream of water is raised. Thus the first rude notice of the principle of employing high preasure steam under a piston was given.

Fig. 7 and 8.

Fig. 7 and 8, show an enlarged view of the foom way cock, T is a passage to the top of the cylinder, and B that to the bottom, 8 the passage for the steam, and C the passage to the condenser. Fig. 7, shows the passage from S to T, open for the steam to pass from the boiler to the top of the cylinder, and the passage from B to C open to allow the eacape of the steam from below the piston to the condenser, when the diagonal is turned across to the opposite direction, the passages are then reversed, the steam from the boiler will then pass to the bottom of the cylinder by the passage from S to B, and the steam above the piston will escap through the passage T and C to the condenser. The other figure shows in what manner the steam may be shut off at any period of the stroke.
and must consequently cool down the surfaces of the metallic cylinder, open at the top, which the cold air successively covers throughout." This cooling down is only overcome during the ascending course of the piston, at the expense of a certain quantity of steam. No loss of this kind, however, exists in the improved engines of Watt ; the atmospheric action is totally shut out in the following way. The cylinder is closed at top by a metal covering, perforated only in its centre by an opening pravided with close stuffing, through which the piston rod moves freely, without allowing a passage either for the air or the steam. The piston thus divides the cylinder into two distinct and closed portions; when it descends, the steam of the boiler passes freely in the upper portion by a pipe properly placed, and forces it down in the same way as was done by the steam in Newcomen's engine. This motion is executed without any hinderance, the bottom of the cylinder only being in communication with the condenser, in which all the inferior steam is turued into water. From the moment that the piston has gone down, it is only required to turn a cock to open a communication between the two parts of the cylinder situated above and below the piston; when both parts are filled with steam of the same degree of elasticity, the piston is then in a state of equilibrium, and is raised to the top of the cylinder, as in the atmospheric engine of Newcomen, by the mere action of a slight counterpoise-see fig. 10.

While following up his search into the means of saving steam, Watt reduced still further, almost indeed to nothing, the waste, which occurred from the cooling down of the outer surface of the cylinder in which the piston works. To effect this, be enclosed the metal cylinder in a larger wooden cylinder, and filled with steam, the ring-like interval which divided them.

Thus was the steam-engine completed-the perfection which it derived from the hand of Watt is evident, its immense utility admite not of a doubt. You would expect therefore, that it would immediately re-place, as a means of draining, the comparatively ruinous engines of Newcomer. Do not deceive yourselves; the author of a discovery has always to contend with those whose interests it may affect, with the obstinate partisens of all that is old, with the jealous and the envious. These classes combined, form, we are obliged to confess, the greater part of the public, and yet in my calculation, I omit double cases to avoid a paradoxical result. This compact mass of opponents, time alone can separate and destroy; but time is not enough, they must be attacked boldly, they must be attacked without ceasing; the means of action must be varied, imitating the chemist, who, is taught by experience that the entire dissolution of certain alloys requires the successive employment of several acids. That strength of character and persistance of will, which in the long run defeat the cunningest intrigues, may not, some-

Fig. 9.

ATMOSPHERIC ENGINE, WITH CONDENSER.

Fig. 9, thowa an engine of this kind, where C is a cylinder, open at the top; P the piston. The steam passes from the boiler through the pipe S, and by a slide B into the cylinder at D, and raises the piston. A is a pump with a aolid piston, to receive the condensed steam, air, and water, and expel it ; the injection is made into the pipe E ; and I is the injection cock: \mathcal{F} is a cock to let out any air that may collect below the piston p, when the engine is et reat. To begin the operstion, the slide B must be raised above 8 , and steana admitted till all the air be blown out at the valve Q; the pistons heing at the top in both the Cylinder and pump: then ahut off the steam by the slide B, and open the injection : and in consequence of the condenation produced by the jet, the amosphere will press on the top of the piston and press it down, and during the first descent, the cock F should be open, but afterwards cloned: the injection being stopped, and the slide B moved to close the passage to the condenser, on opening that for the steam, the pistons will again ascend, and the air and water of condensation will be expelled at the valve Q. The alterate opening and closing of the passage and the injection cock are required to continue the action. The engine may be regulated by closing the valve B at any period of the ascent, and the cock I at any period of the descent.
times, be united with an inventive genius, and Watt himself in case of need, would furnish the strongest evidence of this. His admirable invention, his happy ides of the possibility of condensing steam in a vessel entirely separated from the cylinder in which the mechanical action takes place, dates from 1765 . Two years elapse, and yet he hes hardly taken any ateps to apply it on a large scale. His friends at last obtained an introduction for him to Doctor Roebuck, who established the Carron foundry, still enjoying a high celebrity. The manufactures and the inventor united; Watt gave up to him two-tbirds of his patent, an engine is made on the new principles and confirms, all his theoretical provisions. His success was complete, but at this period the fortune of Doctor Roebuck received a severe check; Watt'a invention would have doubtless restored it, all that was wanting was a sleeping partner to supply funds, but Watt thought it was better to give up bis discovery and change bis trade.
In 1767, whilst Smeaton was surveying between the rivers Firth and Clyde, for one of those gigantic works of which this part of Scotland afterwards became the scene, we find that Watt employed himself in similar operations for a rival line by Loch Lomond. Some time after, he drew up a plan for a canal to carry coal from Monkland to Glasgow, of which he superintended the execution. Several plans of the same kind, and, among others, of a navigable canal across the isthmus of Crinan, since finished by Reanie; extensive plans for the improvement of the ports of Ayr, Glasgow, and Grenock; the construction of bridges at Hamilton and Rutherglen; and an investigation of the ground across which the famous Caledonian canal was to pass, then occupied our colleague until the end of 1779 . Without detracting from the merit of these labours, I muat be permitted to consider their importance as merely local, and to assert that their conception, direction, or execution would never have given a name like that of Jamea Watt.

If forgetting my duties to the academy, I endesvoured to make you smile instead of relating what is useful and true, I could find here matter enough for a striking contrast. I could remind you of such and such an author, who, in our weekly meetings, demands loudly to communicate this little remark, that trifiing reflexion, the few notes drawn up only the evening before; I would paint him to you cursing his fate, when the

Fig. 10.

bOULTON AND WATTS SINGLE ACTING STEAM

 ENGINE.Fig. 10, shows a section of the cylinder C, condenser B, and air pump A, of a single engine, arranged as is most convenient for exhibiting the parts. The ateam enters from the boiler to the cylinder by the pipe S, through the valve c; and presses down the piston P, which is supposed to be taken at the time of its descent : the steam below it goes into the condenser, and is contime of by the jet which plays into it. The air pump bucket p is descending in the air and vapour which the pump had received from the condenser during the previous ascent. When the piston is at the bottom of the cylinder, a motion is given to the rod 0 , which shuts the valven a and c, and opcns the valve b; there is then a communication open by the pipe E, between the top and botuom of the cylinder, and the pressure of the counter weight must be sufficient to overcome the friction of the piston, and expel the stemm from the upper to the lower side of the piston: the action of the counter weight has also to expel the air and water of condensation through the valve \mathbf{Q} by means of the air pump.
strict letter of the regulations, when the earlier order of inseription* of some other member puts of the reading of it for another weeis, leaving to him, however, as a guarantee during this wretched week, its being in safe custody in our archives as a sealed packet. On the other band, we should aee the crestor \dagger of a machine destined to form an epoch in the annals of the world, submit without murmur to the stupid caprices of capitalists, and bend down his superior genius during eight years to the compilation of plans, to minute surveys, to tedious details of estimates, of repairs, and of square yards of masonry. Let us confine ourselves to remarking, that this conduct of Watt arose from a serenity of character, a moderation of wishes, and genuine modesty. So much indifference, however noble might have been the reasons for it, is atill open to blame : society is in the right to reprobate in the strongest terms those of ita members who by hoarding prevent the cireulation of the specie of the country; is it, however, less blameable to deprive one's native land and fellow countrymen, one's fellow men, of those treasures a thousand times more valuable, which spring from the mind, hoarding up for one's self those immortal conceptions, sources of the noblest and purest mental enjoyments, and in depriving of them, the manufacturers of mechanical combinations, who would multiply to infinity the produce of national industry; which would to break down for the benefit of civilization ard of the human race, the effects of an unequal position in society, which one day would allow us 10 go through the rudest workshops, without witnessing the melancholy sight of fathers of families, and unfortunate children of both sexes reduced to the state of brutes, and moving rapidly towards the tomb.

In the beginning of 1774 , after having overcome the indifference of Watt, be was placed in communication with Mr. Boulton, of Sobo, near Birmingham, a man of enterprise, activity, and yaried talents. \ddagger The two partners applied to parliament for a prolongation of Watt's patent, which was taken out in 1769, and had only a few years to run. The bill gave rise to a sharp debate. "This business," says the celebrated engineer in a letter to his aged father, "could only be carried on with considerable trouble and expense. Without the help of some warm hearted friends we should not have succeeded, for many most inflnential members of the House of Commons were opposed to us." It seemed to me worthy of enquiry, to ascertain what class of society belonged these influential members of whom Watt speaks, who refued to a man of genius, a small part of the riches which he was going to create. Judge of my surprise, when 1 found at their head, the celebrated Burke! Can it be true, that a man can distinguish himelf by the most arduous studies, be a man of learning and probity, possees in an eminent degree those oratorical qualities which lead and carry away political assemblies, and yet be difficient in simple common eense ? ${ }^{6}$ However, since the wise and important amendments which Lord Brougham has introduced into the patent laws, inventors will mo longer be subjected to those protracted annoyances to which Watt was exposed.

As soon as parliament had granted an extension of Watt's patent for twentr-five years, this mechanic and Boulton, in conjunction, commenced at Soho, those establishments which have proved the most useful schools in England of practical mechanics. Steam-engines for draining wese erected on a very large scale; and repeated experiments showed that with equal effect, they saved three-quarters of the fuel previously used

[^26]by Newcomen's engines. From this time, the use of the new engine extended in the mining districts, particularly in Cornwall; Boulton and Watt receiving as payment the value of a third of the quantity of coal which each of their engines saved. The commercial importance of this invention may be conceived by one authentic fact; in the single mine of Chacewater, where three engines were at work, the proprietors found it worth while to purchase up the righte of the inventors for an annual surn of 2,400 . Thus, in one single instance, the substitution of the condenser with internal injection had effected a saving of 7,200 . per annum. in the produce of fuel.

People agree, without difficulty, to pay the rent of a house or a farm; but this feeling ceases when it atfects an idea, whatever profit or advan tage it may have procured. Ideas, why they are conceived without labour and without trouble ! Besides, who knows but in time, every coe would have thought of them I In this way, no days, months, or years can give validity to a privilege. To these opinions, which it is not certainly necessary for me to criticise here, custom has almost given the manction of a fixed decision. Men of genius and mánufacturers of ideas, eeem condemned to remain deprived of all material enjoyments; and, it is very natural, that their history should continue to resemble a legend of martyrs. Wbatever we may think of these remarks, it is certain that the Cornish miners paid from year to year with more repugnance the rent which they owed to the Soho establishment. They took advantage of the first objections started by the plagiarists, to assume that they were discharged from all obligation. The question was a serious one: it might have greatly injured the fortune of our colleace, he gave up to it therefore his whole attention and became a legist ${ }^{*}$. The incidents occurring in the lang and expensive suits which Boulton and Watt had to carry on, and which at last they gained, are not now worthy of revival, but as l just now quoted Burke anong the opponents of the great mecbanic, it is but just to remember that on the other hand, the rights of persecuted genius were maintained before the seat of justice by the testimony of Roy, Milne, Herachel, Deluc, Ramsden, Robinson, Murdoch, Rennie, Cumming, More, and Southern. Perhaps also we ought to add as a curious trait in the history of the human mind, that the counsel (I shall have the prudence to remark that I am only speaking of the counsel of a neighbouring country) to whom malignity imputes a superabundant luxury of words, reproached Watt, agrainst whom they were employed in great numbers, with having invented only idean ; this, we may remark, led to the following apostrophe in Court of Mr. Kous, "Do as you like gentlemen, with these untangible conbinations, as you call Watt's engines, they'll crush you like flies, and blow you up out ot sight."

The persecutions sustained by a man of mind, where be has a right to expect, with justice, unanimous expressions of gratitude, seldom fail to discourage him, and to give a tone of asperity to his character. Watt's naturully good disposition could not resist such rough attacks; seven long years of law excited in tim a feeling which led him sometimes to express himself wth bitterness. "What I fear most," wrote he to a friend, "is piracy. I have already been cruelly attacked by plagiarists, and if I had not a tolerable memory, their impudent assertions would almost have persuaded me that I had never made any improvement in the steam-engine. You would scarcely credit, that the ill-feeling of those whom I have most served, goes to that length that they maintain that these improvements, far from being worthy of encouragement, are injurious in the extreme to the national wealth."

Watt, although greatly irritated, was not cast down; his engines, which, at first, like those of Newcomen, were only mere pamps for draining, in a few years he converted into universal movers, and gave them an indefinite power. His first attempt was the application of the double-acting engine.

To understand the principle of this, we must refer to the improved engine, of which we have already spoken at page 407. The cylinder is closed; the access of the external air is cut off; the piston is forced down by the pressure of the steam, and not by that of the atmosphere; the rising movement is effected by a mere counterpoise, for at the moment, when this action takes place, the stem, circulating freely above and below the cylinder, presses equally on the piston two opposite ways. So that, as every one may see, in the inproved engine, as in Newcomen's, there is no real power, except during the deacending stroke of the piston. A very trifling alteration remedied this serious defect, and gave us the double-acting engine. In the exgine known under this name, as in that which we have called the improved angine, the steam of the boiler passes freely to the top of the cylinder, and forces down the piston without any difficulty, for at the same time, the inferior capacity of the cylinder is in communication with the condenser. This movement once effected, the steam is cut off from entering above, and is mow, by opening a certain cock or valve, admitted to the under side of the piston, and raises it up simultaneously, the commanication from the bottom of the cylinder with the condenser is closed, and a similar passage is opened from the top of the cylinder to the condenser, and allows the steam to be drawn off from above the piston to the condenser, where it becomes liquefied; when this is done, and the piston arrives at the top, all the cocks and ralves again change their movements, and are repleced in their original

[^27]position. In this way the same effects are reproduced indefinitely. The motor, as has been seen, is here steam exclusively, and the engine, making allowance for an inequality depending on the weight of the piston, has the same power whether in ascending or descending. On that account it was justly called on its first appearance the double impoulre engine, or double acting engine.-see fig. 11 and 12

To make his new motor of eary and commodious application, Watt had to conquer other difficulties. He was obliged to find out the means of establishing a rigid commwrication between the inflextble rod of the piston oscillating in a straight line, and a beam oscillating circularly. The solution which he produced of this important problem, is, perhaps, his most ingenious inveution. Among the constituent parts of the steam-engine, you have, no doubt, obsarved an articulated parallelogram, which, at each double stroke, stretches out its sides and collapses them with the ease, I had almost said the grace, with which the gestures of a perfect actor charm you. Follow the progress of ita various tranaformations progressively with the eye, and you see that they are under subjection to most curious geometrical-laws. You will perceive three angles of the parallelogram describing, in space, arca of a circle; while the fourth, tbe angle which raises and lowers the piston rod, moves almost in a straight line. The immense utility of the result antonishes mechanics atill less than the aimplicity of the means by which Watt effected it. "-see fiy. 19 and 14.

Power is not the only element of success in manufacturing processes, regularity of action is equally easential; but how can we expect regularity from a motor which is engendered from fire by shovelfuls of conls, and even from coal of different qualities, under the superintendence of a single workman, often unintelligent, and almost always inattentive. The disposable steara will be so much the more abundant, and will flow into the cylinder with greater rapidity, and move the piston so much the farter, as the fire has more intensity. Great inequalitiea of action seem almost inevitable, and the genius of Watt had to provide for this palpable defect. The valves by which ateam is discharged from the boiler into the cylinder are not always open to the same extent; when the engine is working fast, theso valves partially close. A certain quantity of ateam must therefore require more time to pass through them, and the rapidity is diminished. The openings of the valves, on

BOULTON AND WATT'S DOUBLE ACTING ENGINE.
The parts are shown in Fig.11, where C. is the cylinder; the steam enters at S, and passen into the upper part of the cylinder at P, or into the lower part at D, as in Fig. 12, showing the piston in the state of ascending, and Fig. 11, as descending. Prom the lower part of the cylinder in Fig. 11, tho steam escapes through D into the condenser B, (see Fig. 10) where it is coudensed by ajet of cold water, which plays into it constandy; and the ancondensed gases and water pass through the valve G during the ascending stroke, and expelled at the valve Q into the hot well. When the ateam piston P, Fig. 12, ascends, the steam from the upper part of the cylinder paseas through P down the pipe B to the condenser. The ateam passages D and F are opened and closed by a D-alide, wo called from its plan resembling the letter \mathbf{D}; it is moved by the rod 0 , by tappots or other methods.

- These are Watt's termi in giving an aeconnt of his articulated parellelogram:
"I have myself beea surprised by the regalurlty of its ection; ; when I saw it move, for the firut time, I was as mooh pleased with the novelty, as if it had been tha itwontion of another person"
Bmentan, who wais a great admirer of Watt's invention, did not belleve that in prac. tice, it conid become an economical and general mude of commanicating directly rotatory movement to an arle. He maintalned that steamenginet coald alwaya be employed in raining water, which, when raised to a convenient height, could be used in its fali, to give motion to the backets or cloats of ordinary water whetls. In this rerpect, however. Smeaton's ideas have not been carried out, a lithough 1 saw, in 1834, while on : visit 10 Mr . Boniton's works, at 8obo, an oild ateam-engine, whith is nill used to raise Thiter from a iarge pond, and to poos it into the bockets of a large water wheei, when The reason is modry at not to sapply nomeleot water from the ntruam generally noed.Nofe of M. Arago. Lenpoid saggested the idea of giving rotatory motion by toennt of Grat ralding the water into an elevated cistern, and then allowing it to fall on an over. shut wheel, itrawing and description it yiven at page 403, vol. ili. Theatrum Machi-narum-Note of Trandetor.
the contrary, extend when the action flags. The parts necessary to effect these different changes connect the valves with axes moved by the engine, by means of a contrivance of which Watt conceived the idea from the regulator employed in some of the flour mills. He called it the governor, it is also termed the cemfrifugal power regulator. Its effleiency is such that some years ago there was, in the cotton-mill of Mr. Lee, s mechanic of great telent, a clock set in motion by the steam-engine of the factory, and which acted almost as well as the ordinary spring clock by its side.-see fig. 15.
Watt's governor is the secret, the principal secret, of the antonishing perfection of the manufacturing prodncts of the age; it is that whioh gives the ateam-engine an action free from any vibration, and which enables it with equal success to embroider muslin and to forge anchora; to weave the most delicate fabrics, and to commnnicate rapid motion to the massive atones of the flour mill. This explains why Watt said, without being liable to the

Fig. 18 \& 14.

PARALLRL MOTION.
The apparatus adopted for carrying this motion into effect, is represented in fig. 13, which is an elevation, or aide view of one half of the engine beam; and fig. 14, a plan of same; similar letters, in both figures, refer to similar parts; the beam moving on its axis A, every point in its arm moves in the are af a circle, of which A is the centre. Let B be the point which divides the arm, A F into equal parts A B, and B F, and let D C be a straight rod, equal in length to A B, and playing on the fixed centre or pivot C. The end D of this rod, is connected by a straight bar D B, with the point B, by pivot at B and D, on which the rod B D plays freely. If the beam be supposed to move alternately on its axis A, the point B will move ap and down in a circular arc, of which A is the centre, and at the same time, the point E will move in an equal cireular arc round the point C as a centre, therefore, the middle point E of the rod B D will move up and down in a atraight line.

Also let a rod PG equal in length to B D, be attached to the end f of the beam by a pirot, on which it moves freely, and let its extremity G be connected with L, by a rod G D, equal in leagth to $B E$, and playing on pivots, G and D.

By this arrangement, the joint $\mathbf{F} G$ being always parallel to $B \mathbf{D}$, the threo points AFG will be, in circumatances, precisely similar to the points, ABE, except that the system APG will be on a scale of double the magnitude of, ABC; AF being twice A B, and E G twice B E, it in clear, then, that whatcver conrse the point E may follow, the point G must follow a similar line, but will move twice as fast. But, since the point \mathbf{E} has heen already shown to move up and down in a straight line, the point G must also move up and down in a straight line, but of double the length.

By this arrangement, the pistons of both the steam cylinder and air pump are worked; the rod of the latter being attached to the point B , and that of the former, to the point G.

Fig. I5.

THE GOVERNOR.

Different modes of combining the parts are used by different engineers; one of these is shown in figure 15 , where g is the revolving axis, ftbe point of suspension, $j ;$ the balls, $e f$ the rods by which the balls are suspended. These rods are connected to the rods $i j$, and by that means raise or depress the sliding piece \boldsymbol{h}, and with it the lever l, which acts on the throttle valve, by the line C. The parts marked $h k$ are two rests to receive the balle when the engine is not in motion.
imputation of exaggeration, that to avoid the runnings in and out of servants; in case of illness, he would have his medicine given to him by arms from his steam-engine. I know very well, that with the common run of the world, this ease of action is supposed to be obtained at the expense of the power employed, but it is a vulgar error; the saying "great noise and little work," is not only true in the moral world, bnt is a mechanical axiom.

A few words more, and we shall get to the end of the technical details. Some years ago great benefit was found from not leaving a free communication between the boiler and the cylinder, during the whole duration of each stroke of the engine. This communication was shut off when the piston, for instance, had made one third of its stroke; the two remaining thirds of the length of the cylinder were then gone through, in consequence of the ipeed acquired, and particularly on account of the expansion of the steam. Watt had already pointed out this process,* and very good judges place this fimprovement, on account of its practical application, on a par with the condenser. It is very certain, that since its adoption, the Cornish engines have produced unexpected effects, and that, with one bushel of coals, they do the work of twenty men working for ten hours. We must recollect that, in the coal districts, a bushel of coals costs only mine pence, and then we shall see clearly that Watt reduced, in the greater part of England, the price of a man's days' labour of ten hours to less than a halfipenry! \dagger

Numerical calculations show so clearly the value of the inventions of our colleague, that I cannot refrain from showing two other comparisons, which I have borrowed from one of the most celebrated correspondents of the Academy, Sir John Hersche

The ascent of Mont Blanc, from the valley of Chamouni, is justly considered as one of the most laborious tasks which a man can get through in two days. Thus the maximam of mechanical exertion of which we are copable in twice twenty-four hours, is measured by raising the weight of our body to the height of Mont Blanc. This labour, or the equivalent of it, s steam-engine will effect by burning two pounds of coal. Watt has therefore shown, that the daily strength of a man does not exceed that which is contained in a pound of coal.
Herodotus relates that the construction of the great pyramid of Egypt occupied a hundred thousand men twenty years. The pyramid is of limestone; its volume can be easily calculated, and is ascertained to be about thirteen millions of pounds. To raise this weight 125 feet, the height of the centre of gravity of the pyramid, it would be necessary to burn, under the boiler of a steam-engine, 630 chaldrons of coal. There is, among our neighbours, a foundry which could be mentioned, which bouns a greater quantity of fue every week.

Copying Maching-Heating by Stbam-Composition of WatszBleaching by Chloring - Expreinents on the Physiological Efyects of breathing Different Gases.
Birmingham, when Watt took up his residence there, reckoned, among the inhabitants of its neighbourhood, Priestley, whose mere name speaks everything, Darwin, author of the Zoonomia, and of a celebrated poem on "The loves of the plants," Withering, a distinguished physician and botanist, Keir, a chemist well known by his notes on the translation of Macquer, and an interesting memoir on the cryatallization of glass, Galton, who wrote an elementary treatise on Ornithology, Edgeworth, author of several works justly appreciated, and father of the so celebrated Miss Maria, \&c. These saranst soon became intimate with the celebrated mechanic, and most of them formed, in conjunction with him and Boulton, a club, under the name of The Lanar Society. Such a singular title gave rise to many strange mistakes, although it only meant that they met on the evening of the full moon, a time of the month chosen in order that the members might see their way home on leaving.

Every meeting of the Lonar Society furnished Watt with a freah opportunity of showing the incomparable fertility of imagination with which nature

[^28]had endowed him. Darwin one day said to the members, "I have been thinking of a kind of pen with two nibs, by which any thing may be written twice, so as to give at once the original and copy of a letter." "I hope," replied Watt almost directly, "that I shall find out a better way of doing it; I will think of it to-night, and let you know to-morrow." The next day the cogying-machise was invented, and even a slight model sufficiently adranced to show its effects. This machine, which is of such utility, and so generally used in English offices, has lately received several improvements, which have been claimed by different persons; but I can affirm with certainty, that the present form was actually described and drawn in 1780 in the patent of our colleague.

The apparatus for heating by steam is of three years' later date; Watt made use of it in his own house in 1783. It must be observed that this ingenious process was already pointed out by Colonel Cooke in the Philosophical Transactions for the year 1745 ;* but the suggestion was quite unattended to. Watt, at all events, has not the merit of reviving it; it was he who first applied it, and it was from his calculations of the extent of surfaces necessary for heating rooms of different sizes, which at first served to regulate the application of this process.

If Watt, in the course of his long career, had only produced the engine with a separate condenser, working steam expansively, and the parallel motion, he wonld hold a first-rate rank among the small number of those whose lives

Fig. 16.

DOUBLE ACTING ENGINE, FOR BUPPLYING WATER.

Fig. 16, represents an engine, with the several parts before explained, combined in one view.
The steam, from the boiler, passes by the pipe 8, throngh the valve a, and forces down the piston p to the bottom of the cylinder C; juat before the piston trrives at the botiom, the pin on the rod of the air pump com :a in contact with the lever and reverses the valvos, by shatting the valves a, b, and opening c, d, which were shot ; the steam will now pass down the vertical pipe 8 , through the valve d, and force up the piston p to the top of the cylinder, at the aame Lime the steam, which forced it down, will escape through the valve b, to the condenser B, by a pipe, which conveys the ateam from the vaives to the condeaser. Thus one double stroke of the engine is performed, and the valves again rentored to their original position;-I is the handle to the injection cock for aupplying a jet of water into the condenser B, which liquifies the steam; the condensed water, together with the air, is removed by the aid of the air pump A, morked by the rod R, attached to the beam of the engine, and discharged, through the valve at the top, into the hot well, where part is forced back to the boiler, by the force pump L, and the remainder is allowed to ran to waste ; N is the cold water purap, also worted by a rod attached to the beam, for sopplying the condensing well ;- \boldsymbol{Y} is the governor, before explained, which is connected with the crank R by the horizontal rod, and regulates the throtule valve in the horizontal steam pipe \mathbf{S};-0 is a connecting rod, attached to the end of the beam, and, at the lower part, to the cranl that turns the fy wheel P, which equalizes the power of the engine;-M is a rod for the purpose of working the pump D, to raise water-when the piston descends, the water contained in the pump. will be forced through the lower valve, op the pipe G, into the apper air vesoel E. thence it passes, in a continued stream, to an elevated reservoir; as the piston of the pump is descending, a fresh supply passes op the pipe P, throngh the upper valve, into the superior portion of the pump, and which, when the piston rises again, is forced through the opposite valve, into the aur veasel \mathbf{E}, as before, and also, as the piston is being raised, a fresh supply of water passes through the lower valve, from the pipo P, and refils the pump, as at first.

- 1 bave read in work by Mr. Mobert Binart, that Sir Mugh Piste had foreseen before Colonet Cook, the application of stcam fur heating apartments. In the authors Garden of Eden, pablished in 1060 , he sugxeris somiething anulagona for the preservativa of planto in hot-honses. Sir Hugh Platte proposed to place coverings of tia, or of other metal over the veasels in whic b meat is cooked, and then to send througt openings in the cover, inbes, by which atcam could be tatroduced to heal them whereniry it
make an epoch in the annals of the world. Well! his name seems to me to be attached with credit also to the greatest and most prolific discovery of modern chemistry-the dircovery of the compasition of water. My assertion may appear rash, for numerous works, in which this important part of scientific history is treated authoritatively, make no mention of the name of Watt. I trust, however, that you will follow up this discussion without prejudice, that you will not allow yourselves to be diverted from the investigation by authorities, which are less weighty than is generally supposed; and above all, that you will not forget to remember how few authors, in these days, trace up a subject to its original source; how troublesome it seems to them to expose themselves to the dust of a library, and, on the contrary, how convenient it appears to be to reduce the whole labour of a work to the mere effort of compilation. The task which your confidence has entrusted to me, seemed to impose more serious obligations. I have hunted up numerous printed documents, and all the papers of a voluminous correspondence still in manuscript, and if fifty years after the event, I appear to claim, in favour of James Watt, an honour too carelessly granted to one of his most illustrious countrymen, it is because it seems to me useful to show that in the bosom of academies truth makes way sooner or later, and that, with regard to inventions, there is no prescription which can be claimed, or act of limitation imposed.*

The four fictitious elements, fire, air, water and earth, the various combinations of which are to give birth to all known bodies, are one of the numerous legacies of that brilliant philosophy which for ages dazzled the noblest intellects in the world, and led them astray. Van Helmont, first shook, al though slightly, the principles of this ancient theory, by calling the attention of chemists to several permanently elastic fluids, several airs in fact, which he termed gases, and the properties of which differed from those of common air, the snpposed clement. The experiments of Boyle and Hooke raised diff. culties still more serious, they proved that common air, which is indispensable for respiration and combastion, exhibited in these two phenomena notable changes in their properties, necessarily implying the idea of composition. The numerons observations of Hales ; the successive discoveries of carbonic acid by Black; of hydrogen by Cavendish; of nitrous acid, oxygen, muriatic acid, sulphurous acid and ammonia by Priestley, definitively disposed of the ancient idea of a simple and elementary air among those chance conceptions, almost always false, which are the offspring of those who have the audacity to believe themselves called not to discorer, but to guess the mysteries of nature.

In the midst of so many remarkable circumstances, water still preserved its elementary character. The year 1776 was at last signalised hy an observation which was to bring about the subversion of this general belicf. It must be acknowledged that from the same year, also are to be dated those singular efforts which were a long time made by chemists to disbelieve in the natural consequences of their own experiments. Thie observation to which I am going to refer was made by Macquer.

This judicions chemist having placed a white porcelain sancer over the flame of some hydrogen gas which whs broning quietly from the neck of a bottle, observed that thls flame was without any smoke properly so called, and that it deposited no soot. That part of the saucer which was touched by the flame was corered with driplets evident enough of a fluid similar to water, and which on examination proved to be pure water. That was most certainly a singular result. You must notice that it was in the middle of the flame, in the part of the saucer tonched, that the driplets of water were deposited. This chemist however did not pay attention to this fact, he was not surprised at what was really surprising; he merely mentions it without any remarks, he did not perceive that he had a great discovery at his finger's ends.

Does then genins in sciences of observation consist of the faculty of saying at the right moment, why $7+$

- The physical world rections volcanoes which have never made but one eruption, and in the intellectual world similarly there are men, who after one

[^29]bright fit of genius, disappear entirely from the history of science. Such was Wartire, of whom the chronological order of dates leads me to relate a truly remarkable experiment. In the beginning of tbe year 1781, this philosopher conceived that an electric spark could not traverse certain gaseous combinations without subjecting them to certain changes. An idea so novel, unsuggested by any existing analogy, and of which so many important applications have since been made, would Is should have thought have earned for its author, that all men of science should not forget to attribute to him the honour of it. Warlite was deceived with regard to the precise nature of the changes which electricity might engender; fortunately for him he foresam that they would be accompanied with an explosion, and for this reason he first made the experiment in a metal vessel, in which he inclosed air and hydrogen. Cavendish soon after repeated the experiment of Warlitre. The cerlain date of his labours (I designate in this manner any date resulting from an authentic document, or an academical or a printed paper) is anterior to the month of April 1783, since Priestley quotes Cavendish's experiments in a paper on the 2ist of the same month. The quotation moreover informs us only of one thing, that Cavendish had obtained water by the detonation of a mirture of oxygen and hydrogen, a fact already demonstrated by Warltire, In his paper of the month of April, Priestley added an important circumstance to those which resulted from the experiments of his predecessors. He proved that the weight of the water which is deposited on the surfaces of the vessel at the moment of the detonation of the oxygen and the bydrogen is the sum of the weight of the two gases.
Watt, to whom Priestley communicsted this important resalt, anw immediately in it with the penetration of a superior man, a proof that water was not a simple body. "What are the products of your experiment ?" wrote he to his illustrious friend, "water, light and heat. Are we not from that warrented in concluding that water is composed of two gases, oxygen and hydrogen, deprived of a portion of their latent or elementary heat, and that oxygen is water deprived of its hydrogen, but united to latent heat or light. If light be only a modification of heat, or a mere circumstance of its manifestation, or a component part of hydrogen, oxygen gas muat be water deprived of ita hydrogen but anited to latent heat."

This clear, plain and methodic passage is extracted from a letter of Watt's of the 26th April, 1783. The letter was communicated by Priestley to several savants in London, and afterwards delivered to Sir Joseph Banks, President of the Royal Society, to be read at one of the meetings of that learned body. Circumstances which I suppress because they are of no importance in the present discussion, caused the reading of this letter to be deferred for a year, but the letter was preserved in the records of the society, and is published in the 74th volume of the Philosophical Transactions, with its true date of the 26th of April, 1783. It was embodied by the Secretary of the Royal Society himself, at the time of going to preas, with a letter from Watt to De Luc, dated the 26th November, 1783.
I do not ask any indulgence for this profusion of details; it most be observed that a minute comparison of dates can alone show the trath fully, and that it is a question of one of those discoveries which confer the most honour on the human mind. Among the claimants to this prolific discovery, we shall find two of the greatest chemists of which Prance and England can hoastevery one will name Lavoisier and Cavendish. The date of the public reading of the paper in which Levoisier gave an eccount of his experiments, and in which he developed his views on the production of water by the combuation of oxygen and hydrogen is two months later than the date of the deposition of the already analyzed letter of Watt in the records of the Royal Society of London. The celebrated paper of Cavendish, entitled Experiments upon Air, is later still, it was read on the 15th January, 1784. We ought certainly to feel surprised that facts so well authenticated, could become the subject of a sharp controversy, but I must call your attention to a circumatance to which I have not yet alluded. Lavoisier declared in positive terms that Blagden, the Secretary of the Royal Society of London, was present at his first experiments on the 24th of June, 1783, and that "he informed him that Cavendish had already tried in London to burn hydrogen gas in elosed vesaels, but without having obtained any very considerable quantity of water." Csvendish also relates in his paper the communication mede to Lavoisier by Blagdon, and according to him it was much more extensive than the French chemist acknowledged. He said that the communication related to the conclusions to which his experiments lead, namely, the theory of the composition of water. Blagden made a party himself in the dispute, wrote in Crell's Journal, in 1786, conflrming Cavendish's assertion. According to hirn the experiments of the academician of Paris were only a mere verification of those of the English chemist. He maintained that he had informed Lavoisier that the water produced at London had a weight precisely equal to the sum of the weight of the two gases consumed. Lavoisier, adds Blagden in condasion, has told the truth, but not the whole truth.
Such a reproach is severe-were it true, should I not much diminish the weight of it, if I show that, Watt excepted, all those whose names figure in this history, are more or less exposed to it. Prientley relates in detail, and an his, experiments from which it appears that the water engendered by the detonation of a misture of orygen. and hydrogen has a weight exactly equal to that of the two gases consomed. Cavendish some time afterwards cligimed this result as his own, and insingated that he had commonicated it verbally to the Birmingham chemist.
Cavendish deduces as a consequence from this eqnality of weight that water is not a simple body. In the first place he makes no mention of the
paper placed in the archives of the Royal Society, in which Watt developed the same idea. It is true that when it came to be printed. Watt's name is not forgotten; but it was not among the records that the idea of the celebrated engineer was seen; but he declares that he knew of it, by its harigy been read lately at one of the meetings. Now, however, it has been cleaty proved, that it was not read till some months after that in which Carendish speaks of it.

On entering upon this important discussion Blagden announces his ittention to clear up every thing, and to put it upon a firm basis. He doe not flee in fact, from any accusation, from the citation of any date, so long a it is a question of securing to his friend and protector Cavendish, the prionty over the French chemists; as soon however as it relates to his tro fellowcountrymen, his explanations become vague and uncertain. "In the spring of 1783 ," said he, "Mr. Cavendish showed ua that he drew as a consequence from his experiments, that oxygen is nothing more than water deprived of is phlogiston, (that is to say, deprived of its hydrogen). About the some time, news arrived in London, that Mr. Watt of Birminghem had been led by some observations to a similar opinion." This expression, about the same time, to speak in Blagden's way, cannot be the whole truth. About the name time, settles nothing; questions of priority may depend on weeks, days, bours and minutes. To be clear and precise as he had promised, he should hare suid whether the verbal communication made by Cavendish to serersl membern of the Royal Society, preceded or followed the arrival in London of the new respecting the labours of Watt. Can it be supposed that Blagden would not have explained a fact of this importance, if he conld have quoted an autheatic date in favour of his friend?

To render the imbroglio complete, the compositors and printers of the Philosophical Transactions also took a hand in it. Several dates are iocor. rectly related, and in a separate copy of his paper distributed by Carendish to several scientific men, I perceive an error of a whole jear. By an unfortonate fatality, for it is a real misfortune to give way involuntarily to unfortanate fatality, for it is a real misortune to give way unerited suans none of these printed errors are farounable to Watt. God forbid that I should endeavour to inculpate by these remara the literary probity of the illustrious savants whose names I have quoted They only prove that in matters of discovery, the strictest justice is ill thas can be expected from a rival or a competitor, however eminent his repots tion may already be. Cavendish hardly listened to his steward when he consulted him about the investment of his millions ; you can tell now whether be was equally indifferent as to his experiments. We shall not be thesefore too fastidions in requiring in imitation of judges of civil causes, that the his torians of science should only collect written documents as available proofs; perhaps too I ought to add, puhlished documents. Then, but only then, would a stop be put to those disputes perpetually breaking out at the expenve of national vanity; and thus the name of Watt would resume in the histort of chemistry the exalted position which belonge to him. The solution of s question of priority when- it is based, like this in which I have just been ergaged, upon an attentive examination of printed papers, and on a minuse comparison of dates, assumes the character of a true demonstration. How. ever I do not consider myself bound to dispense with running rapidly one the various difficultien to which well judging minds seem to me to have attached some importance.

How can we, say they, admit that in the midat of an immense whirtiad of commercial affairt, that busily engaged with a maltitude of lawsuits, that obliged to provide every day by inventions for the difficultics of an infut factory, Watt could have found time to follow step by step the progresi of chemistry, make new discoveries, and propose explenations of which mates of the science would never have thought ? \dagger
I shall give a short but conclusive answer to this objection: I have now in my possession copies of an active correspondence, principally relating to che mical subjects, which Watt carried on during 1782,3 \& 4 , with Priesthy, Black, De Luc, Smeaton, Gilbert Hamilton of Glasgow, and Fry of BristoL

Here, however, is an objection which seems to me more specions, as it in prompted by a deep knowledge of the human heart. The discorery of the composition of water proceeding at the same time as the admirable invemtion combined in the steam-engine, can it be supposed that Watt would hare consented with goodwill, or at least without testifying his dipleasure, to we himself stripped of the honour, which it ought eternally to confer upon his name?

This reasoning fails in its very premises; Watt never renounced the shose which legitimately accrued to him in the discovery of the composition of water. He scrupulously caused his paper to be published in the Philonophied Transactions. A detailed note states authentically the date of presentation of each paragraph of this document. What could a philosopher of Watt' character do more, or what ought he to do, but await patiently the dey of uatice. Beaides, it wanted but very little that an unfortunate blunder did

[^30]not deprive our colleague of his natural forbearance. The Genevese pbilosopher after having informed the illustrious engineer of the unaccountable absence of his name in the first publication of Cavendish's paper, and after having qualified this omission in terms which a regard for reputation so exalted cloes not permit me to relate, thus writes to his friend, "I should almost recommend you, considering your position, to draw from these discoveries practical consequences for your fortune. You must avoid exciting jealousy." These expressions wounded the delicate mind of Watt. " If l do not claim my rights instanter," replied he, " do not impute it to an indolence of character, which renders it more easy for me to submit to injustice, than to contest to obtain redress. As to pecuniary considerations they have no value with me; besides my prospects depend not on the patronage of Mr. Cavendiah and his friends, but on that of the public at large."

Can I have any fear of having attached too much importance to the theory, which Watt conceived for explaining Priestley's experiments? I think not. Those who would refuse to this theory its just tribute because it now seems an inevitable deduction from facts, forget that the finest discoveries of the human mind bave been particularly remarkable for their simplicity. What did Newton himself, when by repeating an experiment known fifteen centuries before, he discovered the composition of white light? He gave such a natural interpretation of this experiment, that it now appears impossible to find another. "Every thing," said he, " which is attained by whatever process from a pencil of white light, was contained in it in a state of combination, for the glass prism has no creative power. If the parallel, and infinitely divided pencil of solar light which falls on its first face, goes out from the second by divergence and with a sensible breadth, it is because the glass sepa rates what in the white pencil was naturally unequally refrangible." Such terms are nothing more than the literal translation of the well known experiment of the prismatic solar prism. This interpretation, however, eacaped Aristotle, Descartes, and Robert Hooke.

Let us, however, without leaving the subject, come to arguments, which bear upon it more directly still. Watt's theory of the composition of water arrives in London. If, according to the ideas of that day, it is so evident, and so simple as it now appears, the council of the Royal Society will of course sdopt it. No such thing; its afrangeness throws a douht even over the experiments of Priestley; they even go so far as to laugh at it, said De Luc, dite the story of the golden tooth. A theory, the conception of which presented no difficulty, would certainly have been despised by Cavendish; remember, with what energy, Blagden under the dictation of this man of genius claimed the priority over Lavoisier. Priestley on whom was to be reflected a great part of the honour attached to Watt's discovery; Priestley, whose sentiments of affection for the great engineer cannot be denied, wrote to him on the 29th of April, 1783. "Look with supprise, and indignation on the figure of a machine by means of which I kave irretrievably undermined your beautiful hypothecis." ln conclusion, an hypothesis, of which the Royal Society made game, which brought out Cevendish from his hahitual reserve, and, which Priestlcy, puttiog all sclf-love out of the question, endeavoured to refute, deserves to be recorded in the history of the sciences, as a great discovery, Whatever idea knowledge, now become rulgar, may give us of it in these days.*

Bleaching by chlorine, that beautiful invention of Berthollet, was introduced into England by James Watt, after the journey to Paris, which he made towards the end of 1786 . He constructed all the necessary apparatus, directed their arrangement, was present at the firat trials, and then gave over to his father-in-law, Mr. MacGregor, the management of this new process. Notwithstanding all the solicitations of the illustrious engineer, our celebrated countryman obatinately refused \dagger to be associated with an undertaking, which exhibited no chance of failure, and of which the profits seemed sure to be very great.

Hardly had the discovery been effected of the numerous gascous substanced which now perform such a great part in the explanation of chemical phenomena, than the idea was suggested of using them for medical purposes Doctor Beddoes carried ont this thought with sagacity and perseverance; and he was enabled by means of private subscriptions to set up an establishment at Clifton, near Bristol, called the Pneumatic Institution, in which the therapeutic properties of all the gases were proposed to be carefully studied. The Pueumatic Institution was fortunate enough to have for some time at its head, the young Homphrey Davy, who was then entering on the career of science; and it could also boast of reckoning among its founders James Watt. The celebrated engineer did still more; he conceived, described and executed in his workshop at Soho, apparatus for engendering gases and administering them to patients, and I find several editions of his papers in 1794, 1795, and 1796.

The ideas of our colleague were directed to this subject, when several of his relations and friends had been unfortunately carried off by pulmonary diseases. It wes particularly to affections of the respiratory organs that Watt

[^31]conceived the application of the specific properties of the new gases could be dirccted. He expected also some advantage from the action of iron or aine precipitated by hydrogen in impalpable molecules, and prepared in a certain manner. I should add, moreover, that among the numerous medical certifcates pablished by Doctor Beddoes, and announcing results more or leas effective, there is one signed John Carmichael, relative to the radical cure of hemoptysy of Richard Newberry, a servant, whom Mr. Watt himself caused to respire from time to time a mixture of steam and carbonic acid. Although I must acknowledge my complete incompetency on such a subject, I may certainly be permitted to regret that a method, which reckoned among its adherents Watt and Jenner, should be now abandoned without our being sble to quote consecutive experiments in opposition to those of the Clifton Pneumatic Institution.*
Watt in Retirement-Partictlars Respecting his Life and Cha-racter-Hig Deate-Numerous Statues erectid to his Memort.
Watt had married in 1764 his cousin Miss Miller. She was an accomplished lady, whose cultivated mind, unchangeable mildness, and cheerfal disposition soon rescued the celebrated engineer from that indolence, depression, and miganthropy, which nervous morbidity, and the injustice of the world threatehed to render permanent. Without the irrestible influence of Miss Miller, Watt would not perhaps have given to the world his admirable inventions. Four children, two boys and two girls, were the offspring of this union. Mrs. Watt died in childbirth of a third boy who did not survive. Her husband was then employed in the north of Scotland with the plans for the Caledonian Canal. Why am I not permitted to transcribe here in all their simplicity, a few lines from the journal, to which he consigned every day his secret thoughts, his hopes, his fears; why can I not show him to you lingering after his misfortune on the threshold of the house where his kind welcome no longer awaited him; wanting the strength to enter the rooms in which he was no longer to be delighted by the comfort of his life! Perhapes the true picture of such profound grief, might shame to silence those systematic theorists, who without being stopped by thousands and thousands of irrefutable denials, refuse the virtues of the heart to every man whose mind has been trained by the fertile, sublime, and imperishable traths of the exact sciences.
After a few years of widowhood, Watt had again the happiness to find in Miss MacGregor a helpmate worthy of him from the varicty of her talente, the soundness of her judgment, and the firmness of her character.t
On the termination of the privileges which parliament had granted to him, Watt (in the beginning of 1800) retired entirely from business, in which be was succeeded by his two sons. Undcr the enlightened management of the younger Mr. Boulton and the two Watts, the Soho factory continued to prosper, and even to acquire a new and important developement, and it still holds first rate standing among English manufactures of large machinery. Giegory Watt, the second son of our colleague, had already begun to distinguish himself in the world in a most brilliant manner by bis literary talento, and his geological labours, when he was cut off at the age of 27 years, by a pulmonary affection. This onhappy circumstance greatly agitated the illustrious engineer, so that the affectionate attention of his familytand friends were scarcely able to maintain tranquility to a heart halfbroken. This grief $t 00$ natural would seem to explain the almost absolute silence which Watt manifested in the latter years of his life. I am far from denying that it may have had some influence; but why should we have recourse to extraordinary causes, when we read as far back as 1783, in a letter from Watt to his friend Doctor Black, "Remember that I have no wish to entertain the world with the experimenta I have made," when we find elsewhere thene words so very singalar in the moath of a man who has filled the wide world with his name, "I only know two pleasures, indolence and sleep." This sleep, however, was very light, and we may say, moreover, that the most trifling excitement was sufficient to arouse Watt from his favourite indolence. Every object which came before him received gradually in his imagination, changes of form, construction and nature, which would have rendered them susceptible of important applications. These conceptions, for want of an opportanity of bringing them out were lost to the world. The following is an anecdote which will illustrate my idea.

A company bad erected on the right bank of the Chyde at Glasgow, extensive buildings, and powerful machinery, for the purpose of supplying water to every house in the city. When the works were completed, it was found out that on the left bank there was a spring or kind of natural filter which communicated to the water qualities evidently superior. To remove the entablishment was out of the question, and therefore they thought of passing right across the river at the bottom a rigid iron pipe, of which the mouth was to come out in the drinkable water. The construction of the timber work for carrying such a pipe on a muddy and shifting bottom, very rough and always covered with several feet of water, appeared to require a considerable expense. Watt was consulted, his answer was already made; having seen a lobster on the table some days previously, he had investigated. and found out how the mechanism of it could in iron produce a jointed conduit which

[^32]would hare all the flexibility of the tail of this crustacea. It was therefore a complete jointed pipe that he suggested, capable of bending in all present, and future windings of the bed of the river; in fact an iron lobster's tail two feet in diameter and a thousand fect long was what according to Watt's plans and drawings, the Glasgow company carried into execution with complete auccess.*

Those who were fortunate enough to be personally acquainted with our colleague, do not hesitate to assert that his social qualifications surpassed even those of his mind. Candour almost childish, the greatest simplicity of manners, a love of justice carried even to a scrupulous extreme, and an iuexbaustible kindness of disposition, are virtues which have left in England and in Scotland ineffaceable remembrances. Watt hahitually moderate and mild, became strongly excited when an invention was attributed to any other but its right author, when particularly some low fatterer endearoured to enrich himself at another's expense. In his opinion scientific discoveries were the first of treasures, and whole hours of discussion never seemed to him too much in the attempt to render justice to modest inventors, dispossessed by plagiaries, or merely forgotten by public ingratitude.
The memory of Watt may be cited as prodigious, even in comparison with What has been related of this faculty of privileged persons. The ertent of it was however his least merit, it assimilated to itself whatover was of the least value, and rejected the superfluity almost instinctively and at once. The variety of our colleague's acquirements would be truly incredible, were they not attested by most eminent men. Lord Jeffrey, in an eloquent notice happily characterised the bold and subtile intelligence of his friead, when he compared it to the wonderfully organized trunk, by which with equal ease the elephant picks up astraw or uproots an oak. These are the terms in which Sir Walter Scott speaks of his fellow-countryman in the preface to The Monastery.
" lt was only once my fortune to meet Watt, when there were assembled about half a score of our northern lights. Amidst this company stood Mr. Watt, the man whose genius discovered the means of multiplying our national resources to a degree, perhaps, even beyond his own stupendons powers af calculation and combination; bringing the treasores of the abyss to the summit of the earth,-giving to the feeble arm of man the momentum of an Afrite,-commanding manufactures to arise,-afording means of dispensing with that time and tide which wait for no man,-and of aailing without that Wnd which defied the commands and threats of Xerxes himself. This potent commander of the elements,-this abridger of time and spece,-this magician, Whose cloudy machinery has produced a change in the world, the effecta of Which, extraordinary as they are, are perhapa only beginning to be felt,was not only the most profound man of science, the most successful combines of powers, and calculator of numbers, as adapted to practical purposes,-was not only one of the most generally well-informed, but one of the best and kindest of buman beings. There he stood, surrounded by the little band of northern literati. Methinks I yet see and hear what I shan never see or baar again. In his eighty-first year, the alert, kind, benevolent old man, had his attention at every one's question, his information at every one's command. His talents and fancy overflowed on every subject. One gentleman was a deep philologist, -he talked with him on the origin of the alphabet, af if he had been coeval with Cadmus; another a celebrated critic.-you would have sald that the old men had studied political economy and belles-lettres all his life;-of science it is unnecessary to spealk, it was his own distinguished walk. And yet when he spoke with your countryman, you would have supposed he had been coeval with Clavers and Burley, -with the persecutors and persecuted; and could number every shot that the dragoons had fred at the fugitive Covenanters."

If our colleague had had any wish, he might easily have radsed a name among novelists. In the privacy of his usual society, he seldom failed to enrich the terrible, patbetic, or comic anecdotes which he was in the habit of relating. The minute details of his narrations, the names which he introduced, the technical descriptions of castles, country houses, forests, and caves, to which the scene was successively transferred, gave to his improvisations such an air of truth, as not to allow of the slightest mistrust. One day, however, Watt exhibited some embarrassment in drawing his characters out of the labyrinth in which he had imprudently involved them. One of his friends, perceiving the unusual number of pinches of snuff with which the narrator was trying to create legitimate pauses, and thus eke ont the time for reflection, addressed to him the following indiscreet question; "Are you for once telling us something of your own invention ?" "This question surprises me;" replied the old man; "for the last twenty years that we have spent our evenings together, I have always done so. Could you really believe that I wished to be considered as a Hume or a Robertson, when my attempts were confined to imitating, at an humble distance, the labours of the Princess Schecherazade in "The Arabian nights."
Every year, in a short journey to London, or to some town not so far from Birmingham, Watt made a minute examination of whatever was new since his last visit. I do not even make an exception of the wonderful fleas or Punch and Judy, for oar illustrious colleague looked on such things with the delight and disposition of a school-boy. While following, at present, the itinerary of his annual courses, we find, in more than one instance, luminous traces of his progress. At Manchester, for example, we might see the

- We shall give the drawiage and description of this apparatua to oor next Jouranl.(Ed. C. צ. \& A. Jouraal.)
hydraulic ram on the suggestion of our colleague, used to raise the witer for condensing in a steam-engine, to the feed-cistern of the boiler.

Watt generally resided at an estate near Soho, called Henthfield, which he bought in 1790. The religious veneration of my friend Mr. James Watt, for everything belonging to his father, enabled me, in 1834, to find the library and furniture of Heathtield in the state in which the illustrious engineer left them. Another property, on the picturesque banks of the river Wye, in Wales, affords the traveller numerous proofs of the enlightened taste of Wata and his son, in the improvements on the roads, in the plantations, and in their agricultural labours of all kinds.

Watt's health became stronger with his age, and his intellectual faculties were preserved to the last moment. Our colleague once thought that they were declining, and, faithful to the motto on the seal he had chosen, (an eye under the word obsertare,) he determined on clearing op his doubts by mat. ing observations on himself; and there he was, at seventy years of age, searching for some kind of study on which to make the experiment, and lamenting that he could not find any, on which he had not already exercised his mind. He recollected, at last, that the Anglo-Saxon langrage was reputed to be very difficult, and it therefore became the experimental metium desired, when the facility with which he acquired it, soon showed him the slight foundation of his apprehensions.
Watt consecrated the last moments of his life to the construction of a mschine for copying rapidly, and with mathematical fidelity, works of atatuary and sculptnre of all kinds. This machine, of which, it is to be hoped, that the arts will not be deprived, was already much adranced, and several of ite productions, of a very satisfactory nature, are to be seen in the collections of amateurs, both in England and Scotland. The illastrious engineer made presents of them gaily, as the first attempts of a young artist entering his eighty-third year.

Of this eighty-third year, our colleagze was not destined to see the end. In the beginning of the summer of 1819 , slarming symptoms already defied all the efforts of medicine. Watt did not delude himself as to bis position. "I feel," maid he to the numerous friends who visited him, "I feel the attachment which you have shown; I thank you for it now, for I am in my lat illness." His son did not appear to him to show sufficient resigbation, and every day he sought a new pretext to point out to him, with mildness, goodnews, and tenderness, "all the reasons of consolation which the circumatances under which an inevitable event must occur, should infuse into him." This mournfal event occurred on the 25th of August, 1819.

Watt was interred in the parish church of Heathfield, near Birnoingham. In the county of Stafford. Mr. Janes Watt, whose distinguished talenta and noble sentiments endeared, during twenty-five years, the life of his father, erected to him a splendid Gothic monument, for which the church of Hendsworth is now remarkable. In the centre stands an admirable statue in martion by Chantrey, faithful likeness of the old man.

A second marble statue from the chisel of the same sculptor, has also bees placed, by flial piety, in one of the halls of that brilliant univeraity in which, during youth, the then unknown artisan, persecuted by the corporation, received flattering and well deserved encouragement. Greenock has not forgotten that Watt was born there; its inhabitants have raised, at their own expense, a marble statue to the illuatrious mechanic. It is placed in a handsome library, built on ground presented gratuitounly by Sir Michsel Shat Stewart, and in which are collected the books belonging to the town, and the collection of scientific srorks which Watt gare to it in his life-time. Thi building has cont 3500b, to the expense of which Mr. Watt, jun, liberally consributed. A large colosal statue in bronze, on a fine granite base, which reigns over George Square in Glasgow, shows to every one how proud this capital of Scotch commerce feels of having been the cradle of Watt's diecoveries. The gates of Westminster Abbey have at last been opened, on the demand of an important meeting of subscribers. A colosal statue of Carrars martle, a master-piece of Chantrey, and on the pedestal of which is an inscription by Lord Brougham,* has become, during the last four years, one of the principel ornaments of the English Pantheon. No doubt there is some coquetry in uniting, on the same monument, the illustrious namea of Watt, Chantrey, and

- INSCRIPTION ON MONUMENT.

NOT TO PERPETUATE A MAME
 but to BhBw
that mangind fuve learnt to howots those
WHO BEST DESERVE THEIE GRATITCDE, the king,
HIS MINISTERE, AND NANT OF TEE MOBLES
AND COMMONRRE OF THE EEALM,
RAISED THES YONEMKITT TO
JAMES WATT.
Who. digective the poice of an omininal eentis, Early exercisfd in phulosophical rebearch, TO THE IMPEOVFSFAT OT THE STEAM-ENGINB, enlarofd the rfsoutces of his cotmity, incteased the powfr of man, and rose to an fminent place AMONG THE ILLUGTRIOUS FULLOWERS OF sCTBNCE, and the real benhpactobs of the worlg. bozn at obebnick, mbecxisvi, med at ieatifield in staffordimity, mbcceris.

Brougham; hut I cannot blame it. Glory to those people who thas take cvery opportunity of honouring their great men.
Thus we sec five statues have bcen, in a short time, raised to the memory of Watt. Must we confess it? These testimonics of filial picty and public gratitule have excited the ill-humour of some of those narrow-minded indiviluals who think, hy standing still, to stop the progress of centuries? If we werc to believe tigem, warriors, juiges, and ministers, (1 must confess they have not dared to say all minist 5 rs,) have alone a right to statues, aud I do not know whether either Homer or Aristotle, Descartes or Newton, apprear to the modern Aristarchus worthy of a mere bust. Most certainly they wonld refuse the commonest medallion to l'apin, Vancanson, Watt, Arkwright, or any other meehanic, unknown, perhaps, in a certain world, but whose fame must go on increasing from age to age with the prugress of enlightenment. When such leresics dare to parade themselyes in the full glare of day, we must not be ashamed of combating them. It is not without reason that the public has heen called a spouge for prejudices, and as prejudices are hurtful plants, the slightest trial is cnongh to root them out, if they are laid hold of in the birth, while, on the other hand, they cling firmly when they have had time enough to grow, and to catch in their numerous folds, whaterer is withia their reach.

If this discussion wound the sclf-love of some, I must reminal them that it has been provoked. Have not the men of leaming of our day made their complaints, because they do not see, among the long rows of colossal statues raised by the authorities, so sumptuously on our bridges and public places, any of those great authors whose inheritance they claim? Do they not know how perishable are thesc monuments, which the hurricane can shake and overturn, which even frost can nibble away, and bring down to shapeless blocks.

Their statuary, their limner, is the printing-press, thanks to the admirable invention of which, works emanating from science or imagination, when possessing real merit, can set time and political revolutions at defiance. The exactions of the tax-gatherer, the mistrust and terrors of the tyrant, can never prevent these productions from getting over the most strongly guarded harrier; in every slape a thousand vessels hear them from bemisphere to hemisphere; they are pored over in Iceland and the Isle of Van Diemen; they are read ly the cottager's fireside and in the dazzling halls of princes. The writer, the artist, and the mechanic, are known by the whole world, by all which is most noble and exalted in man, by the soul, the thought, and intelligence. How mad would he be, who placed on such a stage, should wish lis features sculptured in marble or in bronze, by the chisel of a David, to be exposed to the gaze of idle loungers. Such honours, I say again, a savant. a litterator, or an artist, may not envy, but at any rate he should not allow himself to be declared unworthy of them. Such is, at least, the opinion I have formed from the discussion to which I am about to call your attention.

Is it not a circumstance truly strange, that such poinpous pretensions, against which I contend, should have been brought forwarl jnst on the occasion of five statues being erected, which cost not a farthing to the pullic treasury. Par le it from me, however, to profit by this mismanagement; I like better to take the question in its general bearings, such as it has been put, the protended superiority of arms over letters, sciences, and art ; for do not deceive yourselves, judges and ministers have only been put in company with men of war to give them a spurious passport.

The little time which is allowed me for this discussion, connpels we to be methodical, and in order that my sentiments may not be misunderstool, I declare at once, that independence and national frecton are to me the first of blessings; that to defend them against the forcigucr, or against home enemies, is the first of duties; and that to have defended them at the price of one's blood, is the first of titles to the public gratitude. Raise! raise your splendid memorials to the soldiers who fell on the glorious walls of Mentz, on the immortal battle fields of Zurich and Mareago! my offering is ready; but why call upon me to act in defiance of my reason, in contradiction to those feelings which naturc has implanted in the heart of man? why ask me to place all military service on the sane footing?

What Prenchman, who lad but feeling, would, even in the time of Lonis XIV, have pointed out, as an act of bravery in our troops, the cruel scenes of the Dragonuades, or the wreaths of flame which destroycd the towns, villages, and rich country, of the unfortunate l'alatines? Some time ago, our brave soldiery, after a thousand miracles of patieuce, skill, and valour, rushing into Saragossa half overthrown, reached the door of a church, in which the prescher shou' ed, in the cars of his resigncd congregation, these pompous wurds ; "Spaniards, I am going to read your burial service." How do I know but that, in this moment, the true friends of our national glory, balancing the relative merits of the conqueror aml the conquerel, might have willingly changed the parts?

Put morality on one side altogether, I give it up to you; place in the crucible of conscientious criticism the personal claims of some winners of battles, and be sure that, after giving a fair share to chance, an ally who is generally put out of the way hecause he cannot speak for himself, many supposed heroes will seem to you liut hittle worthy of this poinpous title. If it were thought necessary, 1 should not shrink from an examination into detail; I, however, who, in a carecr purcly academic, have found few opportunitics for gathering precise documents on such a subject. I could, for instance, quote to you, from our own annals, a morlern battle, a battle gained, of which the official dispatch gives an account as of an event forescen, prepared for with deliberation and consumnate skill, and which, in truth, was a spontaneous move-
ment of the soldiery, without any order from the gencral in command, on whom the honour has been bestowed, without his having been there, without his knowing where.

To escape the fatal reproach of incompetency, I will appeal to military men themselves for the support of the plilosophical thesis which 1 maintain. and it will be seen with what enlighteved enthusiasm they welcome works of mind; it will be seen that in their private opinion works of mind did not hold a second rank. Obliged to restrain myself, I will try by fame to make up for number; I will quote Alexander, l'onpey, Cassar, and Napoleon.

Tbe admiration of the Macedonian conqueror for Homer is historic ; Aristotle, at his request, revised the text of the lliad. This corrected copy became his favourite book, and when, in the midst of Asia, amoug the spoils of Darius, a naggnificent casket decked with gold, with jewels, and with pearls, seemed to arouse the greediness of his lieutenants, the conqueror of Arl)cla exclaimed," Save it for me, I will keep my Homer in it. He is the hest and nost faithful councillor in military matters ${ }^{1}$ ever had. It is hut right, noreover, that the richest effort of the arts should serve to keep the most precious triumph of the human mind." The sack of Thelies had alrealy shown more clearly still the unbounded respect and adniration of Alexander for literature. One only family of this crowded city cscaped death and slavery, and that was the family of Pindar; one only house remained standing amid the ruins of the temples; the house, not of Epaminondas, but that where Pindar was born.

When on the conclusion of the war with Mithridates, Pompey went to pay a visit to the celebrated philosopher Posidonius, he furbade lis lictors to knock at the doors, according to custom, with their rods; aud thus says Pliny, for the first time were lowered in the humble abode of a savant, those emblems which had scen the East and West prostrated at their feet.

Cessar, whom literature naay also claim, slows in twenty places of his immortal Commentaries, what rank the different faculties with which nature had so liberally endowed him, lield in his esteem. How short, how quick he is, when he tells lis battles and his fcats of war! See on the other hand, if he finds any detail too mueh in describing the bridge he had made for his army to cross the Rhine. Here it was that success depended only on conception, and that conception belonged to him alone. It has also been alreally remuarked, that the part whiels Cæsar assumed in preference in the events of war, that of which he was proudest was a moral influence. Ccesar haranyued his army is almost always the first phrase of his description of battles gained. Casar did not arrive soon enough to speak 10 his soldiers, to e.rhort them 10 act well, is the habitual accompaniment of the account of a surprise or of a momentary defcat. The general constantly takes care to lower himself to the writer, and in good truth, as the judicious Montaigne says, his tongue did him in many places nolable serrice.

Now without any digression, without even recalling that exclamation of Yrederick, "I would rather lave written Voltaire's Age of Louis XIV. than have won a thousand battles," I come to Napoleon. As we are in liaste, I will neither reuind you of his celebrated proclamations written in the shade of the Egyptian pyramids, by the Member of the Institule, General in Chief of the Armies of the East; nor of those treaties of peace in which works of art and science werc the ransom price of couquered people; neither of the profound esteen which the General when Emperor ncver ceased to manifest towards Lagrange, Laplace, Monge and Berthollet; neither will I speak of the riches which he showered on them. An ancclote little known will more directly fulfil my object.
Every one recollects the ten year prizcs. The four classes of the Institute had drawn up short accounts of the progress of science, literature and art. The President and Secretaries were to read them successively before Napoleon, the great dignitaries of the empire, and the council of state. On the 27th of Pebruary, 1808, it came to the turn of the Prench Academy-as may be supposed on that day, there was a more numerous attendance than in general, for who does not think hinself a juilgc in matters of taste? Chénier addressed the assembly. He is listened to in solenin silence, when suddenly the Emperor stops him, and bending forward, his land upon his heart, and in a voice affected by evident emotion, he cried, "It is too much, gentlemen, you bear me down; I want worls to express my gratitude." I leave you to guess the surprise of the assembled courtiers who were witness to this secne, they who from adulation to adulation, had gone so far as to say to their master, without his sceming surprised ly it, "When Gorl created Napoleon, he was foreed to rest from his labour."

But what were the words which went so straight, so directly to the leart of the Emperor? These were they, "In those canys, where far from the misfortuncs of home, our national glory was maintainell untarnished, arose an eloquence unknown till then to the people of modern days. We must even confess that when we rearl in ancient authors the harangues of the most renowned captains, we are often tempted to admirc only the genius of the historian ; but here doubt is impossible ; the records exist; and history has but to gather them together. They came from the arny of Italy, those noble proclamations, in which the conqueror of Iodi and Arcola, while he created a new art of war, founded a nilitary cloquence, of which he alone is the best model."

On the 28th of February, the lay after the celclorated mecting, which I hare just related, the Monileur, with its ercll knorn fitelity, published a renly of the Emperor to the discoursc of Chenicr. It wes cold, cramped, and insignificant, it possessed all the characters, some would say all the qualifications of au official document. As to the iucident which I have related, no
meution is made of it, a miscrable copcession to the ruling opimion, to the thin skimned susceptibility of the general staff! The master of the world, to use the expression of Pliny, giving way for one moment to the emotions of his heart, did not the less bend his staves before the literary title granted to him by an academy.

These reflections on the comparative merit of men of study and men of the sword, although they have nainly been suggested to me by what is said, by what is passing under our very eyes, is not without its application to the country of Watt. I was travelling lately in England and Scotiand. The kiudness with which I was treated, authorised on my side those dry, cutting and direct questions which under any other circunstances a judge only on the bench could demand. Already seriously engaged with the daty which I had undertaken, of delivering on my return judgment on the illustious mechanic; alrcady fecling uneasy as to the solemn assembly lefore which 1 was to speak, I had prepared this question, "What do you think of the influence cxercised ly Watt, on the riehes, power and prosperity of England?" 1 do not exaggerate when I say that I have addressed this question to more thin a hundred persons belonging to all elasses of society, and to every shade of politics, from the lughest radical to the most prejudiced couservative. The reply has constantly been the same; every one placed the services of our collengue above all comparison; every one, moreover, quoted to me the speeches made at the meeting when the statue at Westminster was voted as the faithful and unanimous expression of the feelings of the English nation. Wbat do these suceches say?

Lord Liverpool, Prime Minister, calls Watt "one of the most extraordinary meu to whom Eugland has given birtl, one of the greatest benefactors of the human race." He declares that "his inventions have increased in an inealculable manuer the resources of his country and even those of the whole world." T'aking the prolitical side of the question, "I have lived," added he, " in an age when the suecess of a campaigu, or of a war, depended on the possilility of getting without delay our flects out of port. Contrary winds pevail for whole months, and upset from top to botton all the vicws of government. Thanks to the steam-engine such difficulties are for ever at an ent." "Look," sajd Sir IIumphrey Davy, "at the metropolis of this powerful empire, at our cities, our villages, our arsenals and our manufactures; examinc the subterranean caverns und the works executed on the surface of the globe; look at our rivers, our canals, the seas which bathe our shores; and evcrywhere you will tind narks of the cternal benefits of this great man." "The genius which Watt las displayed in his admirable inventions," says still farther the illustrious President of the Royal Society, "has contributed more to show the practical utility of scicnce, to increase the power of man on the material world, and to multiply and diffuse the neccosaries of life, than the labours of any person in modern times." Davy dues not hesitate at all at placing Watt above Archimedes. Huskisson, Dresident of the Board of Trade, resigning for a moment his claims as an Englishman, asserts that considered in relation with the happiness of the human race, Watt's inventions appear to hin to merit the lighest admiration. He explains in what manner the saving iu labour, the indefinite multiplication and the cheapness of manufactured goods, contrihute to cxcite and extend civilization. "The stean-engine," said he, "is therefore not only the most powerful instruntent in the bands of men for changing the face of the physical world, but it acts as an irresistable moral Iever in urging forvard the great cause of civilization."

In this point of view, Watt appeared to lim to hold a distinguished rank among the first benefactors of the human race. As an Finglishunan, he did not hesitate to say that without the woiks of Watt, the English nation could never have supported the expenses of their last wars with France. The same ides is to be found in the speech of anotber nember of Parliament, in tbat of Sir Jumes Maekintosh; see whether it be expressed in terms less positive: "The discoveries of Watt have been the means of chabling England to sustain the inost arduous and most dangerous contlict in which whe has ever leeen engaged." Everything taken into consideration, Mackintorh declares, "that no person has more evident claims than Watt tu the lomage of his countiy and the vencration and respect of tuture ares.

Here are some munerical calenations, figures more eloguent still than the several passages which I have just done reading. The younger Mr: Boulton amomees that in the year 1819, the manufactory of Solio atone dad alrealy manafnetured engines of Watt, of which the regular labour would regure one hundred thousand honses, and that the saving resulting from the substitution of machinery for anmal power, amounted to three millions yearly. In England and Scotland at the same date, the number of engines was more than 10,000 ; they did the work of 500,000 horses, or of three or four millions of men, what ammal saving of 10 or 15 millions sterling. Tbese results must in the present day lie more than doubled.
'Ihis is, in short. what was thought and said of Watt by ministers, statesmen, savants, and manufacturers, best qualified to appreciate him. Gentlemen, this creator of six or cipht millions uf labourers, of indefatigable and assiduous labotrers, among whom no combination is to be repressed, no mutiny feared-labourers at a half-pemy per day; this nan, who by brilliant inventions gave to England the means of sustaining a terrific struggle, in which even her mationality was never put in danger*-this new Archinedes-this benefartor ol all nankind, of whom future generations will bless the inemory - what was done to homenr him in his lifetine

[^33]The peetage is in linglund the highest digaity and the highest rewwrd. You will naturally imagine that Watt was made a peer-it was never even thought of.

If we must speak plainly, so much the worse for the peerage that it was ne;er honoured with the name of Watt. Such an omission in a nation so justly proud of their great men, naturally astonished me. When I enquired the cause, what do you think they replied to me? Those dignities of which you speak, are reserved for naval and military officers, for influential orators in the House of Commons, for menbers of the nobility. It is not the fushion (1 do not invent, I quote evactly) - it is not the fashion to grant them to savants, uuthors, artists, and engineers. I knew well enough that it was not the fashion in Queen Anne's time, since Newton was wot a peer of England, but atter a progress in science and philusophy of a century and a half, when every one of us in the short course of his life has secas so many kiugs wandering, abandoned, and proscribed, their places on the throne supplied by soldiers without a pedigrec, sons of their swords, had I not a right to believe that the practice of giving people a destiny was aborn-doned-that no one would longer dare, at any rate to tell them to beri fuces like the inflexible law of the Pharoahs, whatever may have been yout services, your virtues, or your knowledge, none of you shall pars the bounds of his caste-that an insane fashion (since fushion it is) should no longes disgrace the institutions of a noble people*.

Let us depend upon the future. A time will come when the scicnce of destruction will bend before the arts of peace-when the genius which multiplics our strength, creates new products, aud briugs comfort to the mase, will oceupy in the esteem of men that place which reason and gound sense claim for it in the present day; then Watt will uppour before the graud jury of the population of the two worlds; every one will sere bim aided ly his stemn engine, penetrate in it few wecks into the bowels of the carth, where betore him none arrived but after the most 1 binful labour; be will excavate there epacious galleries, and will clear them aloost instanty of inmense volumes of water which daily inundate them; be will snated from a virgin soil the inexhanstibie riches which nature has deposited in it. Joining delicary with strength. Watt will twist with equal suecess the irsmense links of the colossal cuble, around which the ship of the line fonts in salety, and the microscopic threads of those nets and acrial laces whict always occupy such a considerable place in the varied habilinsents of fasthiun. A few uscillations of the same engine will give up to cultivation rast marsbes; fertile countrics will thus be relicved from the periodical and mortal action of the miasma developed by the burning summer sun. The great inechanical power which used to be sought in mountain regions at the foot of swift cuscades, will then, thanks to Watt's inventions, spring up at will without trouble and without embarrasinent, in the midst of cites-in every tlour of a louse. The intensity of the power will vary at the will of the mechanic ; it will not depend as before on the inconstancy of natural causes, the metcors of the atmosphere, the different branches of cach manu. facture may be brought into one common establishment, under one rool Manufactured prohactions loy their perfection will diminish in price; the people well fed, well clothed, and well warmed, will increase rapidly; tbey will cover with elegant habitations every part of the territory, even sboue which may be justly called the steppes of Europe, which centeries of barrenuess seen to have condemned to remain the exclusive reaim of savage brutes. In a few years hamlets will become important citich. In a few years, towns like Birmingham, in which hardly thirty streets were to be counted, will take their place among the greatest, richest and hrodsomest citics of a powerful kingdom. Placed upon ships, the steam-engine will teplace a hundred fold, triple, qnadruple banks of rowers, from whom arr furefathers demanded efforts which were justly ranked as the beaviest pomishaseat of the grcatest criminals. By means of a few pounds of coal, man will cora-

quer the elements, and set at defiance calms, contrary winds, and even tempests themselves. Passages will become quicker, the time of srrival of packets may be calculated like that of a land dispatch. No more shall we await upon the shore for weeks, for months together, oar hearts torn by arxiety, to scek with e distrustful eye in the limits of the horizon for the uncertain outlines of the ship, which bears to you a father, mother, brother, or a friend. The steam-engine in fine, dragging in its train thonsands of travellers, will min upon the irnn roal with greater speed than the swift horse carrying only the unweighted jockey.

This is, gentlemen, but a very brief sketch of the bencfits conferred upon the world by the machine of which Papin laid the germ in his works, and which Watt carried to admirable perfection. Posterity certainly will not weigh them in the balance with labours much more vaanted, and the real influence of which, before the tribunal of reason, will always remain circumscribed to the circle of a few individuals, or a trifling number of years.

Formerly the age of Augustus was spoken of, the age of Louis XIV., cmineut minls have already maintained that it would be right to say the age of Voltaire, Rousseau and Montesquien. For my part, I do not hesitnte to assert that when to the inmense services already rendered by the steam-engine, shall be alded all the wonders which it promises to us still, grateful nations will speak also of the ages of Papin and Watt.

APPENDIX.

A biography of Watt intended to make a part of our collection of memoirs would be certainly incomplete if it did not contain a list of the academic titles, which the illustrious engineer had receivel. This list besides only requires a few lines.

Watt was elected
Fellow of the Royal Socicty of Edinburgh in 1784.
Pellow of the Royal Society of London in 1785.
Member of the Batavian Society in 1787.
Corresponding Member of the Prench Institute in 1808
In 1814 the Academy of Sciences of the Institute conferred on Watt the highest honour in its power, that of nominating him one of its eight Poreign Mershers.

By a spontaneous and unanimous vote of the Senate of the University of Glasgow, granted to Watt, in 1800, the honorary degree of Doctor of 1 saw.

ON THE COMPOSITION OP WATER.

Ax Hiatonical Notr, my thr Right Hon. Lord Brovgham, F.R.S. and Membeb of the National Institute of France.
There is no doubt that in England, at least, researches into the discovery of the compositions of wrater have had for their origin the experiments of Warltire, related in the 5th volume of Prientley.* Cavendish quotes them expressly, as having suggested to bim the idea of his labour.t The expriments of Warltire consisted in the firing, by means of an electric spark, and in closed veasels, a mixture of oxygen and hydrogen; two things, it was said, resulted from it, ist, a sensible loss of weight, and zudly, the precipitation of moisture on the sides of the ressels.

Watt says by inadvertence in the note at page 332 of his paperf, that the aqueous precipitation was observed for the first time by Cavendish, but Cavendish himself declares p. 127, that Warltire had perceived the alight watery deposits, and quotes on this subject the 5 th volume of Priestley. Cavendish could not determine any loss of weight; he obscrves that the attempts of I'riestley had led him to the same results, and adds, that the moisture deposited did not contain any impurity (literally any sooty matter).

[^34]After a great number of trials, Cavendish found out that if a light be put to a mixture of common and inflammable air, composed of 1000 parts of the first and 423 of the second, "about a fifth of the common air, and almost all the inflammable air. lose their elasticity, and form by condensation the dew which covers the glass." On examining the dew, Cavendish found that this dew was pure water, and he concluded from it, that all the inflammable air and about a sixth of the common air, returned into pure water."
Cavendish burned in the same manner a mixture of inflammable air and dephlogistiented air (hydrogen and oxggen). The liquid precipitated was always more or leas acid, according as the gas burned with the inflammable air contained more or less phlogiston ; this acid so engendered was nitric acid.
Mr. Cavendish decided that "almost all the inflammable dephlogisticated air is turned into pure water," and further, that if those airs could be obtained in a complete state of purity, all of it would be condensed." If common air and inflammable air do not give out acid when they are hurnet, it is, according to this nuthor, because then the hent in not intense enough.

Cavendish declares that his experiments, with the exception of those relating to acid, were made in the summer of 1781, and that Priestley wis acquainted with tbem ; he adds, "one of my friends gave some necount to Lavoisier, last spring (1789), as also of the conclusion which I had drawn that dephlogisticated air is water deprived of phlogiston. But at that time, Lavoisier was so far from thinking such an opinion legitimate, that up to the tinte that he made up his mind to try the experiments for himself, he found some difficulty in believing that almost the whole of two airs could be converted into water."
The friend mentioned in the preceding passage was Doctor, aftenwards Sir Charles Blapden. It is a remarkable circumstance that this passage of Cavendish's work scems not to have made part of the original paper presented to the Roynl Soriety; the paper seems to have been written by the hand of the author hinself, but the paragraphs 184 and 135 were not in it originally; they are alded, with a mark of the place to which they belong: the writing also is not that of Cavendish, the additions are in Blagden's hand-writing. It was he who must bave given the details relative to Lavoisier, with whom it is not said that Cavendish kept up a direct correspondence.

The date on which Cavendish's paper was read is the 15th January, 1784. The volume of the Philosophical Trinsactions of which this paper forms a part, did not appcar for six months after.
The paper of Livoisier (Volune of the Academy of Sciences for 1781), had been rend in November and December, 1783. Several additions were aftertvards made to it; it was published in 1784. This paper gives an account of experiments in the month of June, 1783, at which L, Avoisier announces that Blagden was present ; Lavoisier adds, that this English philosopher had informed him "that already Cnvendish having burned inflammable air in closed vessels, bad obtained a very sensible quantity of water;" but he says nowhere that Bhaden mentions the conclusions drawn by Cavendish from these experiments.

Lavoisier declares expressly that the weight of the water was equal to that of the two gases consumed, unless, contrary to his own opinions, sensible weight was attributed to the heat and light disengaged in the experiment.
This account is in discordance with that of Blagden, which according to all probability, was written as a refutation to that of Lavoisier, after the paper of Cavendish was read, and when the volume of the Academy of Sciences had not yet arrived in England. This volume came out in 1784, and certainly it could not have arrived in London, neither when Cavendish read his paper before the Royal Society, nor for still stronger reasons, when he compiled it. It must be besides remarked, that in the passage in the manuscript paper of Blagden, only one communication of experiments is mentioned, a communication to Priestley. The experiments, it is there said, were made in 1781, but the date of the communication is nowbere mentioned, neither are we better informed whether the conclusions drawn from these experiments, and which according to Blagden, were communicated by hin to Lavoisier in the summer of 7783 . were equally included in the communication made to Priestley. The Birmingham chemist in his paper drawn up before the month of April, 1783, read in June of the same yenr, and quoted by Cavendish, says nothing of the theory of this latter, although he quotes his experiments.

Several propositions result from the foregoing:
1st. Cavendish in the paper read before the Royal Society on the 15th January, 1784, describes the principal experiment of the inflammation of oxygen and hydrogen in closed vessels, and quotes the water ns the product of this combustion.
2nd. In the sane paper, Cavendish draws from his experiments the con. clusion that the two gases mentioned transform themselves into water.
3rd. In an :ddition of Blagden made with the consent of Cavendish, the

[^35]experiments of the latter are dated from the summer of 1781 . A communieation of Priestley is quoted without determining the date, without speaking of the conclusions, and withont even suying when these conctitsions cecurred to Cavendish. This unst be considered as a most naterial onlission.

4th. In one of Blagden'a ndditions to the paper, Cavendish's conclusion is related in these terms, oxygen gas is water deprived of its phlogiston; this addition is posterior to the arrival in England of Lavoisier's prper.
It may be farther observed that in another addition to Cavendish's paper, written by the hand of this chemist, and which is certuinly later than the arrival in England of Lavoisier's paper, Cavendish establishes distinctly for the first tine, and as the bypothesis of Lavoisier, that water is composed of oavgen and hydrogen. Perhaps no easential difference can be found between this conclusion and that at which Cuvendish had at first arrived, that oxygen gas is water devoid of its phlogiston, for it is sufficient to make them identical to consider phlogiston as hydrogen, but to say that water is composed of oxygen and bydrogen, is cortainly to come to a clearer and less equivocal conclusion. I may add that in the origimal part of his paper, in that which was read before the Royal Society before the arrival of Lavoisiel's paper in England, Cavendish thought it juster to consider inflammable air as " as water phlogisticated, rather than as pure phlogiston."-p. 140.

Let us now see what was Watt's part, in which dates will play a very important character. It appears that Watt wrote to Dr. Priestley on the 26th April, 1783, a letter in which be discanted on the experiment of inflaming two gases in close vessels, and that then he came to the conclusion that " water is composed of dephlogisticated air, and of phlogiston, both deprived of a part of their latent heat*.

Prirstley depoxited the letter in the hands of Sir Joseph Banks, requesting him to have it read at one of the next meetings of the Royal Society. Watt then desired that this reading should be put off, in order that he might have time to see how far his theory agreed with the recent experiments of Priestley: at last this letter was not read until April, 1784. \dagger This letter Watt alludes to in a paper addressed to Deluc, dated the 26th Nuvember, 1783^{+}; nany new observations and new reasonings appeared in this paper, but almost all of the original letter was preserved, and in printing, it was distinguished by the addition of reversed commas; in the part thits, inarked, is to be foumd the important conclusion and notes above. We read further, that the letter was conmunicated to several members of the Royal Society when it was received by Dr. Priestley in April, 1783.

In Cavendish's papers as it was at first read, there is no allusion to Watt's theory; an addition posterior to the reading of the letters of this tatter, and written entirely in Cavendish's hand, mentions this theory. Cavendish, in this addition, shows the reasons, which le thought he had not, to complicate his conclusions, us Watt had done, with considerations relative to latent hent. It leares in doubt the question, whether the author were acquainted with Priestley's letter, of April, 1788, or whether he only suw the letter dated the 26th of Novernler, 1783 , and read the 29 th of April. 1784; upon which it is important to observe, that the two letters appeared in the l'hilosophical Transnctions, brown into one. The letrer to Priestley, of the 26 th of April, 1783 , remained sometime (two months after the paper of Watt) in the hands of Sir Joseph Banke, and other Members of the Royal Society, during the spring of 1783 . This is what appears from the circumstances mentioned in the note at page 330 . It scens difficult to suppose that Blagden, Secretary to the Royal Society, did not see the paper. Sir Joseph Banks must have given it to him, since it was intended to be read at the mecting. il We may add. that since the letter was preserved in the records of the Royal Society, it was under the care of Blagden, the Setretary. Could it be possible to suppose that the person whose hand wrote the remarkable passage, already quoted, relative to a communication made to Lavoisiet, in June, 1783 , of Cavendish's conclusions, would not, at least, have informed Cavendish that Whtt had arrived at the same conclusions, nt tarthest, in April 1783 . These conclusions are ideatical, with the single difference, that Cays ndish culls deplogisticated air, water deprived of its phlogiston, and that Watt says that water is compored of dephlogistiented uir and phlogiston.

We must remark that in Watt's theory, there is the same uncertainty and vagueness, that we bave already found in those of cavendish, and that all this orrurs from the use of the term, not exactly defined, of phlogiston. \mathbb{y}

* We ran, with full confutence, deduce from the unpablisherl correspontance of What, thas he had alreaty formed hin theory of the composition of water, in Dicember, 17×0, ant probably wower. Besites, Priestley deciares, in his paper, of the \%sth April 17月3, that, before his own experimenta, Watt was attarhed to the idea that the stenm or water rould be trabsformed into permanemt gases. (p. 410.)
Wat himelf, in his paper, (p . 335) declares that, for
Wath himacif, in his paper, (p . 335,) dectares that, for some yeare, he had been of opinion that air is only a modification of water; and he pives n delailed acennmt of the xperiments, and reasonings on which this opinion to fonmied. - A'ufe of Mr. Waft, jwa.

Prieatley's letter was read on the sith of A pril, 1784.
Wihont any donbt the Genevese philosppher
Withont any donbt the Genevese philusppher, then in Lonston, received it at that
It remained in his bands until the time that Watt lieard of Gavendisis paper these. It remained in his bands untit the time that Watt heard of Cavendiap's paper having beon read before the Royal Sucipty, From that tinie my futher touk thetant meakiten to have his paper andresend to Diluc, and his Iriser in Dr. Prieatey, of the 20th of Aprit, 1783, immediately pead before the Roynt Society. Thio walime required by Witt, of the paper addressed to Deluc, took place on the 99 th of April, 1784.-Noic of Atr. IFalt, jum.

Philosophical transartions, $1784, \mu .140$
Philowophical transactions; p. 300 .
If In a note of hia paper, of lie 20th Novesuber, 1783, ($p, 331$,) is to be read thís note of Wiat : "Anferiorly to the experiments of Dr. Prientley. Kirwan bad pooved, by ingenious driluctiona, luwrowed fromin other facto, that inflaminable afr is in all probahility trive phlogistan noder an aerial fown. Kirwan's argabents do not sem, to me, perlortly convincing, bat it aphars much hetter to cettle the point of the question by direct ex.
periment.' Note of Afr. Waft, jwn.

With Cavendish, it camot be deternined, whether phlugiston means simply inflammable uir, or whether that clemist was not rather inclined to consider us intlumnable, eir, a cumbination of water and phlogiston. Watt says exprensly, even in his paper of the 26 th November, 1783 , and in a passage which is not a part of his letter of April, 1783, that inflammable uir, in his opinion, containe a smull quantity of watcr, and much elementary heat.
These expressions on the part of two men so eminent, unust be considered as the mark of a rertain hesitation tourbing the composition of water. If Watt and Chyendish held the precise idea that water sesulted from the re-union of two gases deprived of their latent heat, fiom the re-union of tbe bases of inflamnable and dephlogisticuted air; if this conception was as clear in their mind as it was in that of Lavoisier, they would certainly have avoided the uncertainty and obscurity which I have pointed out. *

As to what relates to Watt, hese are the new lacts which we bave just established:
Ist. There is no proof that any one gave, before Watt, and in a writen document, the actual theory of the composition of water.
2nd. Watt established this theory during the year 1783, in terms merre distinct than Cavendish did in his paper of 1784. By introducing the disengagement of latent leat as a part of the process, Watt added to the rlearness of his conception.
3rd. There is no proof; there is not even any assertion that the results of Cavendish's theory (Blagden calls it bis conclusion) were communicated to Pifestley before the period, at which Walt informed him of his opinions in his letter of 20 th April, 1783 . For a still stronger reason, nothing can make us suppose, particularly after reading Whtt's letter, that this engineer ever learned nnything relative to the composition of water, either from Priestley, or from any one else.
4th. Watl's theory was known to the Fellows of the Royal Soriety. of several months before Cavendish's conclusions were put upon paper, and eight months before the presentation of this chemist's paper to the Roral Society. We can even go further and deduce from the facte and dates before our cyes, that Watt first spoke of the composition of water, and that if any one preceded him, we liave no proof of it.
5th. In fine, a repuguance at abandoning the doctrine of phlogiston, a sort timidity at separating from an opinion 80 long establisled and so deeply rooted, prevented Watt and Cavendish from doing complete justice to their own theory ; \dagger whilst Lavoisier, who bad broken these fetters first, present the new doctrine in its full perfection.
It might be very possible that, witloout knowing any thing of each other's labours, Watt, Cavendishl, and Lavoisier had, about the sunc time, tak en the greut step of concluding from experiment, that whter is the produce of the combination of the two gases so often quoted, which is, in fact, with more or less preciseness, the conclusion to which the three philosophers have cone. There now remains the declaration of ylagden, according to which Lavoisier had received a communication of Chvendish's theory, even before having made his chief experiment. This declaration Blagden inserted in the very paper of Cavendish; \ddagger it appeared in the Philosophical Transactions, and it does not seem that Lavoisier ever coutradicted it, however irreconcilable it night appear with his own account.
On the other hand, notwithstanding all Blagden's susefptibility aboue Cavendish's priority, there is no where, on his part, the slightest allusion that may lead us to conclude that, before publishing his paper. Watt had heard of that ot bis competitor.
We cannot affirm too strangly, relative to the question, whether Cavendish bad any knowledge of Watt's labours before drawing up the ronclusions of his own paper. To maintain that Cavendish was unacquainted with Watt's conclusions, it must be remarked how improbable it is that Blagden and others, to whom his conclusions were known, never spoke to bim about it. It might be farther said that Blagden, even in those parts of the paper written with his own hand, und intended to claim the priority for Whth, no where asserts that Cavendish's theory was conceived before the month of Λ pril, 1783, although, in another addition to his friend's origimal paper, there is a quotation relative to Watt's theory.

Since the question of knowing at what epoeb Cavendish came to his cmnclusions, is enveloped in great olscurity-it will not be useless to investigate what was the practice of this chemist when be communicated bis diseoveries to the Royal Society.

[^36]A committee of the Society, of which Gilpin was a member, made a series of experiments on the formation of nitric acid This committee, of which Cavendish was chainman, proposed to convince those who doubted of the existence of the acid in question, indicated incidentally in the paper of January, 1784, and then, nt greater leugth, in a paper of June, 1785. These experiments were expented from the 6th of December, 1787, to the 19th of March, 1788. The date of the reading of Cavendish's paper, is the 17th of April, 1788. The reading and publication of this memoir fol lowed, then, at less than a month's interval, the conclusion of the experiments.

Kirwan made some objections against Cavendish's paper on the composition of water, on the 5th of February, 1784 . The date of which Cavendish's answer was read, was the 4th of March, 1784.

The experiments on the density of the earth, were carried on from the 5th of August, 1797, to the 27th of May, 1798 The date of reading the paper is the 27 th of June, 1798.

In the papers on the Fudiometer, the experiments quoted are of the latter part of 1781, and the paper was only read in January, 1783. Here the interval is greater than in the preceding communications. But, from the nature of the subject, it is probable that the author made fresh trials in 1782.

Every thing makes it probable that Watt conceived his theory during the
few months or weeks preceding the month of Aprin, 1783. It is certain that he considered his theory as his own property, for he makes no allusion to any analogous and anterior communication ; for be does not say that he had heard that Cavendish had arrived at the same conclusions.

It cannot be believed that Blagden wonld not hare heard of the theory of Cavendish, before the date of Watt's letter, if that theory had, in fact, preceded the letter, and that he would not have hastened to point out this circomstance in the additions he made to his friend's paper.

In conclusion. it is well to remart, that Watt depended entirely on Blagden for correcting the prooff, and every thing relative to the publication of bis paper. That appears from a letter of Blagden's still in existence. Watt only saw his paper after it was printed. *

- It is easy 10 perceire that there is mome difierence between the case presented by Brongham and that by M. Arago. The former in the protaction of a rkiliul advorate, engaged in a bad cawne, or one which, at any rate, the considers dosbiful; who ejorlea: voars, by a sopbiatic appeal, to blimi the jadges by the partial case be lays before them. M. Aragos, on the uther hanif, leal away by the ignis fatsos of maistaining a paradox, spare so assertion, bowever basely, and confilenily appeals to a witsons, who is far from proviag his cause. M. Arago bokdly awerfs, that to Wan alope is the waerit of the
 leaves it to others to fimply that to bitu alowe was all the crolit due.-Nipe of the translator.

STONE FOR THE NEW HOUSES OF PARLIAMEN I.
Tablea referred to in Report in the Seplember Journal, No. 24, page 331.
TABLE (D.)

table (C.) of Chemical analyses.

	Sandstones.					Magnesian Limestones.				Oolites.				Limbstones.		
	Craigleith.	Darley Dale (Stancliffe)	Hed. ton.	Kenton		Brisover.	Huddle stone.	Roach Abley.	Park Nook.	Ancaster.	Bath Box.	Port lanis.	Ketton.	Barnack.	Cluil mark.	Ham. hill.
Silica	$98 \cdot 3$	96.40	96.1	$93 \cdot 1$	49.4	$3 \cdot 6$	$2 \cdot 53$	0.8	$0 \cdot 0$	0.0	0.0	1.20	0.0	0.0	10.4	17
Carbonate of lime	$1 \cdot 1$	$0 \cdot 36$	0.8	$2 \cdot 0$	26.5	51.1	54.19	57.5	55.7	93.59	94.52	$95 \cdot 16$	$92 \cdot 17$	$93 \cdot 4$	79.0	79.3
Carbonate of Magnesia	0.0	$0 \cdot 0$	0.0	0.0	$16 \cdot 1$	$40 \cdot 2$	41.37	39.4	41.6	$2 \cdot 90$	2.50	$1 \cdot 20$	$4 \cdot 10$	3.8	3.7	$5 \cdot 2$
Iron Alumina.	0.6	$1 \cdot 30$	$2 \cdot 3$	$4 \cdot 4$	$3 \cdot 2$	1.8	$0 \cdot 30$	0.7	0.4	0.80	$1 \cdot 20$	$0 \cdot 50$	0.90	1.3	$2 \cdot 0$	8.3
Water and Loss.	0.0	$1 \cdot 94$	1.8	0%	$4 \cdot 8$	$3 \cdot 3$	1.61	1.6	$2 \cdot 3$	$2 \cdot 71$	1.78	$1 \cdot 94$	2.83	1.5	$4 \cdot 2$	2.5
Bitumen.	$0 \cdot 0$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A Trace	A Truce	A Trant				
Slecific Grnvities																
Of dry Masses	2.232	2.628	2-229	$2 \cdot 247$	$2 \cdot 338$	$2 \cdot 316$	$2 \cdot 147$	2.134	2.138	$2 \cdot 182$	1.839	$2 \cdot 145$	2.045	$2 \cdot 090$	2.481	2260
Of Particles	$2 \cdot 646$	$2 \cdot 993$	2.643	$2 \cdot 625$	2.756	$2 \cdot 833$	$2 \cdot 867$	2.840	2.847	2.687	$2 \cdot 675$	2.702	2:706	$2 \cdot 627$	$2 \cdot 621$	2fes:
Ahsorbent Powers when saturated under the exhausted Receiver of an Air Pump.	0.143	\ldots	0.156	0.143	$0 \cdot 151$	0.182	0.239	$0 \cdot 248$	$0 \cdot 249$	$0 \cdot 180$	0.312	0.206	0.244	0.204	0.053	0.142
Pintegra	Grs.	Gra	rt.	Grs.	Grs.	Grs.	Grs.	Grs.	Gn.							
	0.6	0.121	$10 \cdot 1$	7.9	$7 \cdot 1$	1.5	$1 \cdot 9$	0.6	1.8	$7 \cdot 1$	10.0	2.7	$3 \cdot 3$	16.6	9.8	9.5
Colesive Powers.	111	100	56	70	72	117	61	55	61	33	21	30	36	25	101	57

Explanation.-This Table gives the Results of the Chemical Analvses of Sixteen Specimens of Stone, arranged according to their respective Classen. The Naines of the Quarries from whence the Stones are ohtained are given in the First Line, and the Specimens are considered to be fair average Samples of the workable Stone in such Quarrics. Some Results of Experiments upon the same Stones, extracted from Table D., are added for the Purpose of affording a Comparison of their several Physical Qualities.

EXPLANATION OF TABLE D.

The first column exlibits the names of the quarries whence the several specimens have been procured, such specimens being considered a fair average sample of the stone which those quarries respectivcly produce.
The second column indicates the weights of the splecimens in the state in which the stones are usually employed for building purposes, having been suljected to none but the atmospheric influences since they were taken from their resprective quarrics and worked.
The third column contains the weights of the same specimens after having been perfectly dricd by exposure in heated air for scveral days. Their relative specific gravitics are indicated by these numbers, subject to the errors arising from differences in the sizes of the cubes, which, on account of the accuracy of the mensurements, varied but little from each other; the specific gravities, however, taken by the most certain method, will be found in columns teu and eleven. The average difference of weight leetween two specimens of the sames stone is in the dry state 56.7 grains; the greatest difference being 208.8 grains, as observable in that from Box; and the least 0.2 grains, as in that from Bramlian Moor. This difference is to be attributed partly to a small inequality in the sizes of the duplicate cubes, and partly to variations of density in pieces of the same material. The greatest difference of weight between two specimens of differcut stones is $1618 \cdot 3$ grains; the heaviest heing that of the Kctton Rag, weighing 5201.8 grains, and the lightest that from Totternhoe, weighing 3583.5 grains: the proportion, therefore, of the weight of the lightest to that of the hearicat is as $1: 1 \cdot 452$.
The fourth column exhibits the weights of one sct of the alovee-mentioned cubes after having been immersed in water for several days, so as to become completely saturated, such weights having been ascertained immediately after the cubes were taken out of the water and wiped.
The fifth column shows the difference of weight between the same specimen in its dried and in its saturated state, and indicates therefore the quantity (by weight) of water absorbed by each stone. The greatest quantity of water any stone albsorbed was 519.8 grains, and the least 57.5 grains; the former from Cadely, the lntter from Chilmark, (B.)

The sixth column shows the relative bulk of water absorbed, eight cubic inches, or the bulk of the cube experimented upon, being taken as unity. From these numbers it appears that the specimen from Caleby absorbs one quarter of its bulk of water, while the specimen (B.), from Chilmark, does not alsorl one thirty-sixth of its bulk ; the former absorbs, therefore, about uine times more than the latter.

The seventh column gives the quantity of disintegration, in grains, of the several stones, after having been simultaneously subjected to Brard's process for eight successive days. A description of the details of this process here is considered unnecessary, as they are fully described in the thirty-eighth volume of the "Annales de Chimic et de Physique;" where is also to be found an account of the experiments made by members of the public commissions appointed to ascertain its efficacy, from which it appears that the measures thus obtained may be considered very closely to represent the action of the atmosphere during successive winters on the various stones submitted to examination.

The eighth and ninth columns contain the reaulps relating to the cohesive atrength of the stones, or their resistance to pr pure. These experiment
wcre made at the manufactory of Mcssra. Bramah and Robinson, with a six inch hydrostatic press, the pump of which was one inch in diameter. According to trials previoualy made by Mesars. Bramah and Robinaop. one pound weight at the end of the pump lever produced a pressure on the fuce of the cube equal to 2.53 cwt ., or to 71.06 lbs . on the square inct. The experiments with the stones were cautionsly made; the weight on the kever was successively increased by a single pound; and, in order to ensure greater accuracy, a minute was allowed to elapse previous to the application of each additional weight. The. eighth column shows the pressure at which the stone commenoed to crack, and the ninth column the pressure at which it was crushed. The unit assumed is the one pound weight placed at the end of the lever. The employment of this unity in the tahle is preferred to entaing the calculated weighto, because it is not wished to give a greater appearance of aecuracy than onn strictly be adjudged to the experimenta ; bant if absolute measures be required, the pressure, either upon the face of the cabes employed or on one square inch of surface, may be eatimated, as nearly as the means employed enable it to be ancertained, by multiplying the fagurea in the talle by either of the values of the unit shove stated. The reault haviag been oltained with the same press, and ander the ame circumatamoes, it is presumed that no objection can be made to them as comparative expariments.
The tenth column indicates the specific gravities of the stonea, scecurately taken by the means usually employed.

The eleventh column contains the specific gravities of the solid materials of which each stone is composed, on the supposition that the water abeorted when the atmospheric pressure is removed completely replacea the air whirt before occupied the pores.
The twelfth column shows the bulk of water absorbed by the atones when saturated under the exhausted receiver of an air pump, their entire ball being taken as unity. The quantity of water absorbed in this proceas maxy be considered to represent the space occupied by the pores or intertices in the substance, unless we suppose that in some cases the adhesion between eir ted the solid particles is so great that the entire removal of the atmompheric pressure is not snfficient to counteract the force. It is certain, when this pressure is not removed, long immersion in water will not occmioa the dteplacement of all the air contained within the pores.

OBSRRVATIONS.

The Mansfield red sandstone seems to form a connecting link between the sandstones and the magnesian limestones. The Chilmark limentonc in remarkable for having a large quantity of silica in its composition. The Bobover magnesian limestone is remarkable for its peculiarly beautiful eryataliae structure. All the limestones, (inclading the oolites) except the inageceism. contain small portions of bitumen.

If the stones be divided into classes, according to their chemical composition, it will be found that in all stones of the same class their exista genernily a close relation between their varions phymical qualities. Thus it will be ob served that the specimen which has the greatest specific gravity posse/mes Bae greatest coliesive strength, absorbe the least quantity of water, an 1 \& disen grates the least by the process which imitates the effects of weathery. 4 omparison of all the experiments shows this to be the geseral rule, in in in linble to Individual exceptions.

But this will not ensble us to compare stones of different classes together. The sandstones alsorb the least water, bat they disintegrate more than the magnesian limestones, which, considering their compactness, absorb a great quantity.

The heavicst and most cohesive of the sandstones are the Craigleith and the Park Spring; the lightest and least cohesive is the Morley Moor.

Among the magnesian limestones that from Bolsover is the heaviest, strongest, and absorbs the least water ; whilst that from Cadeby is the lightest, weakest, and most absorbent. The wagnesian limestones from Jackdaw Craig and Bramham Moor, which closely resemble each other, are renarkable for considerable cohesive strength, united with low specific gravity; they disintegrate but little, and absorb less water than stones of the same class of ligher specific gravity.

Among the oolites the Ketton Rag is greatly distinguished from all the rest by ite great cohesive strength aud high specitic gravity; whilst the stone from Box, in the neighbourhood of Bath, is the least cohesive, and has the lowest specific gravity.
(Signed)
J. F. Daniell.
C. Weatgtone.

BIRITISII ASNOClATION FOR TIE ADVANCEMENT OF SCIENCE.

(From the Reports of the Alhincrum and Litcrary Gazette.)

On the muvt Economical Propartion of Pouwr to Tonnage in Steam-ucssils. By Mr. Arolt Russell.
The rule by which most proprictors of sleam-vessels have been guided is the application of pouer in smatl proportion to tonnare; but where velocity was the chief olject, higher fropertional power has been employed, with a hreat expenditure of fuel, and not with the ratio of increase to the velocity; or ligh powers and large consumption of fuel have been attended with only at - tisht mercase of velocity; and, therefore the enployment of low powers, "if hlow volucities, would aymear to be nost economical. but this conclusion $h_{1: s}$ not tacen borne out; and, by an examination of the books of expenditure of fiel. Inlonsing to several conpanies, he had found that experience had proved the use of high steam powers and high velocities more economical ihan low ones. This had been attributed to Mi. Russell's wave principle, and hic hat, therefore. carcfully investigated the subject. The result at which he baul arrived, aypeared to him quite new and very remarkable. The general principle was:-that in a royage by a ste:m-vessel in the open sea. exposed, ot course, to adverse winds, there is a certain high velocity and high portion , fower which may le accomplished with less cxpenditure of fuel and of roum that at a lower speed with less power. This was proved arithmetically and by a formulat, in relation to the same vessel, with dificrent powers of "ngime, "herely any other case may we determinet.
foair Weather.- 1200 tens, 400 horsc-poucr, 9 miles an hour. 216 miles hay, 1 tun of cotal an hutur ; 2160 miles in 10 days. 240 tons of coal.
1:00 tons. 500 home pouer, 10 miles an hour, 240 miles a day, I it on of a:a an hour ; 2160 miles in 9 days, 270 tons of coal.
Ifrores Heather-1200 tons, H: horse pouer, 5 miles an hour, 120 miles day. 1 ton of coal an hour ; 2160 miles in 18 days, 336 tons of coal.
1200 tons, 500 hore puncr, bia miles an hour, 162 miles a day, $1+$ tons of wal an hour ; 2160 miles in 13 and une fifih days, $3 j 5$ tous of coal.
(a, ueral Formula.-Let v rupresent the velocity of a given steam-vessel in fair weather vuyage; v^{\prime}, the same vessel in an adverse weather voyage; "" at vessel of lin her power in the fair one; $v^{\prime \prime \prime}$, the same in the adverse une; p. the puwer of the former vessel ; \boldsymbol{p}^{\prime}, latter vessel-

$$
\begin{gathered}
\sqrt{v^{\prime \prime \prime}-\left(v-v^{\prime}\right)}=v^{\prime \prime \prime}=\sqrt{v} \sqrt{\frac{y^{\prime}}{p}}-\left(v-v^{\prime}\right) \\
\underset{v^{\prime}}{p}-\sqrt{\frac{v^{\prime \prime}-\left(v-v^{\prime}\right)}{v^{\prime}}}
\end{gathered}
$$

in the case of "efual expense, when the highest proportion of power that will lee eronumical in fiel may le at unce obtained.

Or. Jiarduer ulserval. that it was a new theory; but, from Mr. Russell's copesition, he was satisfied with its accuracy.

Mr. Russell stated, in answer to a question, that the principle was only tiue in reference to long voyages, beause where vessels were not exposed to cantinued alverse weather, a great additional power would only be an additional expense.

New F'ul; for Sluam Nucigntion, \&C.
The learned I'resident (Rev. W. Vernon larcourt) described to the Section a plan of cementing together small cual and coal-dust for fuel, for which "t patent hatl fren ohtainet by Mr. Oram. [See last vol. of the "Transac"hils." Nutices and Abstracts. p. 85.] For more than twenty years it had atlicted him more than aught short of a moral evil, to spe the wicked waste made in this substance, the nust precious gift which Providence had bounteenusty bestoserl on minkiad. fo this country in particular it was of inestimable vilue ; and yet, until now, when lie inight consider the means of siving and ceonumising it devised, one million of rons out of three millions arnually had bew larnt and destroyel at the mouths of the pits. Mr. Oram in ad inen attacten to this sibject from pursuits of a different hind. In prepramb pienure-franmes, it had eqeurred to him that to mould this wasted firesciamo the form of bricks. cathe it to colpere, and fit it for all the uses
 to) remain at the lwitt th of the pits; at Newcastle it was in no way brought io market by those whose competition led them to supply only superior coals. 'Ihe material rescued from thig "wicked waste" by Mr. Oram might consiat
of pieces of about the size of walnuta and all the rest of the slack (and it should Le observed, that the best coal was most iiable to break in this manner) ; and these he compesel together in a form so much less in bulk, and occupying so much less room in stowage, that the quantity requisite for a stam woyage of three months would not be more than of coals which would only last for two. How important wos this at an era when coal was convertible into conch-horses; when our clariots were of iron, and drawn by stecds of fire: It should be remembered too, that coal could never more be formed ; that Nature had alrendy deposited her work for our use in this formation, and when once exhausted it could not be renewed. It was therefore the more necossary, in our island blessed with so abundant a supply, to apply economy to its expenditure. Revenue, manufactures, comforts, ald delended on this precious treasure ; and therefore it was that lie considered this result to lee of such inestimalie north. It laad been said that people had a right to do What they likel with their own; and in a restricted scuse this was very true: but in doing what we liked with our own, we had no right to destroy what leconged to pesterity: and this had been done to a must injurious extent with the coal-fidds of England. He would now read Ar. Orim's comnnunication, unly observing thai trying and confirming his experiments at Woolwich, under the inspection of Mr. P. Ewart, a year ago, he had oltained a patent, and had since been travelling on the Continent to make arrangements accordingly. Mr. Oram stated thit his experiments were made on Pontop coals of the best quality, which were compared with his rubbish in the brick form, and comprounded of two thirds of coal-dast and one third of antliracite ; which mixture possessed the greatest power, greater than if cutirely of coal. By ohe pound of this fuel, thirteen pounds of water were evaporated, and by one pound of Puntop coal alone only stion penmes cund a yuarter. Nearly double! The process wias as simple one, and had, indeed, been rudely pracetisell in Wiales, alrout Licge, and elsewlere, where the pensimtry were in the habit of making up the coal rablishinto balls with clay, and thus supplying thenselves with an indifferently burning fitel. Mr. Oram took the dry muid (it must le dry) of the Thames or any other large river, or aty vigetable earth would do, and the mixture was- 30 or 40 fallons of hater. $t 0$ putards of coal tar, 30 pourds of lime, powderet, and 100 or 200 promds of dry mud, to every ton of coal-dast. The cumpound was then pressed and dessicated. ant an excellent fuel was protuced. The oxygen containetl in the pores and interstices supplicel combustion in alundance, and the maddy ingredients, forming a shin, protectel the brichs from the waste which esjusure to the atmosphere catsed in coal. Fur they were all a ware that if the cook wanted to light a fire quickly, instead of taking small pieces of conl realy to her hand, she would take the trouble to break a lump into fragments for that purpose. Experience had hathther that the atmosphere had deprived the former in some derrec of their igneous property, and as every one was prone to perform what they had to do with the least possible labour, she hat foumd out that breaking up the fresh lungs was the least trouble after all. The shape of these liricks was another recommendation. They were convenicut for packing; and yet another quality belonged to them of considerable importance. It was necessary in steam-vessels to have the fucl huar the loo hers, where the heat was intense; and the bricks, shiedicd by their pellicle. resisterl this high temperature, which would greatly deteriorate eoal in the same situation. Mr. Bueklam then noticed that Mr. Grant, of Portsmonth, the inventor of the admirathe plan of biscuit baking, had also employed a come position of this sort. His cement was gas tar ; and he had laid his methoul open for the public benefit, without availing himself of a pitent right. It has lighter than coal; but Mr. Oram (and it was only on his authority he made the remark) had pointed out advantages which his mixture enjoyed over that of Mr. Grant.
A gentleman state l the coal of thas country (about Birminglam) would not run together, in this way, like the Newcastle coal. He: had for years been trying experiments with it; ad had tried all those of Mr. Oram, except the lime. fie had employed tar, oil, bitumanous clay ; ame though he had succecdel to a certain extent, so as to serve hot-houses, sic., he had never been able to obtain a fuel quite applicable to durnestic uses. Couhd such be obtained for their fires and manufactoriw, it would be an immense saving.
On the Changit and Luppotements in the Eubouchure of the Mersey.-By Mr. J. B. Yates.

He referred to the new channel in the harbour of Liverpool, which had been brouglat lefore the notice of the Assuciation by Capt. Denham. The inticatey of access to this harbur arises from the accumutation outside of numerous bets of sand, which ire freguently and suddenly changing their position and elevation. It can scarcely be doubted, that at some remote period the esturry of the Mersey did not exist at all. or, at most, in a very finited form; a forest and morass maty lave occutided the land between Formby Point and Helbré. Numerous trunks and roots of larbe forest trees are, to this day, found along the (hesh re and lancashire shores, whilo ex tensvie tracts of peat are obocreel in many places startiug up anong the samds. A vinlent disruption must have tahen place at the multh of the esthary, by which enormous masses of sand and marle have been thron in out, perhapis proved by the hornogencous structure of the bauks on either side. In $18: 28$, a numter of human skeletons were disinterred opposite the Leasoiv lighthouse, alliording strong evidence that a barying-ground had formerly existed there; and a similar cemetery is disemibte at furmby. This lighthouse stands in place of another, which "as nearer to the sea by more than hati a mile-a site u hich, at the tine of its erection, seemed to have been firm, dry land, 1 ut was remdered weless by the encroachments of the water, "hich cominued to increase. It was not until the sea had bruken dounthe ridge of sand which lad formed its boun ary, that a strung embanhment was made, extending a mite and a puarter in from of the present ligh hon-e. The sabd buhs in this estury are lossed wand fro by ine fore of the wind. anl thes, and ancenstantly chanthat their shapes and elevations, and, having no escape, they remain wout uy in the bay. In 1687, an excellent Channel existed "prosite to Furmby Point, its dephifrom three to ten fathoms but, not being marked by Luoys, the Rock Chankel was at that time the entrance in common use, though dry at low water. It has since become deeper, and thus a change has taken place upon the Hyle Sand Bank, A

$|$| Dimensions of
 Cylinder. |
| :---: |
| Diameter.
 i hes.
 hesht.
 inches.$\|$ |

ringe, running along the niddle of this lank, has been cut through by a channel having forced itself in a noriherly direction, from Helbré island to. wards the Jight Ship. The channel described by Capt. Denlamm at the Dublin Mecting is now useless, although used for some time with advantage; but it runs perpendicular to the course of the tide, which accounts for its present siate. Fears have also been entertained, that the other channel, called the Horse Channel, was filling up. Lately, a diagonal channel has been formed, by aiding the ebb current of the tide in its natural diagonal course, leetween Lamcashife and Cheshire. This was done by dredping. by means of a doubletoothel harrow, twelve fect across, dragged backwards and forwards by a steamer of 100 horse-puwer over the intruding banks, the inner part of which was stated to rise forty-three feet higher than the outer or seaward part. An enormous woolen scraper is also used. The m titer taken up appears to contain a small portion of peat, awl weighs somewhat lighter than the sand found within the estuary. This new channel has been proved to answer the purposes of navigation beyond original expectation, and the approach to Liverpool is even better than before.

Description of a new Railway Wheel, by Mr. Cottam

The wheels suggested are made on the following principles:-lst. They are Wholly of wrought iron, so welded together, that, independent of screws rivets. or any other kind of fastoning, they form one picce with the spokes. 2nd. The spokes of the wheels are placed diagonally, and act as trusses, therely giving the greatest fossible support to the rim, or tire, and, at the same time, being in the best position for resisting lateral pressure. 3rd. I ron in a state of tension or compression, as is usublly the ease with the tires of wherls, is easily broken by sudden shocks, or by vibratory action. The wheels in question are so constructerl, that the fibres of the iron employed are neither compressed nor stretched, but remained in their natural condition. thi. The strength of iron being as the square of its depth, then the flanged tires of these wheels, which ofter sections twice as deep, are, consequently four times as strong as those of any whecls at present in use. This increase of strength is attributable solely to the peculiarity of their construction, and not to any increase in the weight of the material. 5th. The spokes strike the air edgewise, and thus offer the least possible res stance. Wheels where the sprokes present a flat surface may be said to act as blowing machines, and, as such, require a greater propelling power. 6th. These wheels, by simply varying the curve of their sp kes, become either nigitd or flexible, or, in other words, they may be made to any degree of clasticity. 7 h . When worn by friction, the rims or tires may be turned down, and have hoops of railway tire shrunk on them. Thus repaired, these wheels are very strong and durable, and more advantageous than those of other constructi ns.

Mr. Koberts spoke to the successful use of cast iron wheels, which, properly manufactureal, he had never found to fail. The most imporiant consideration to be attended to was the absence of oxide of iron, and if any was on the metal it must be removed by a file. If this precaution were atterxled to. there would be little fear for the stability of cast iron wheels.-Ar Wools stated, that on the Liverpooland Manchester Railway cast iron whels were much used. They had employed wheels with wooden tires at the opening of that line, some of which were still in use; and su satisfied were the Directors, that it was their intention to have some new wooden whecls made, and to submit them to the test of experiment.

On Experiments to ascertain the Poucer of different Species of Wood to resist a Force tending to crush them. By Mr. Fiton Hodgkinson.

All the specimens were formed into short cylinders, about one inch diameter and usually two inches long, the ends being perfectly flat and at right angles to the sides. The apparatus used to crush the specimens was that describer by the writer in fis experiments on cast-jron ("Seventh Report of the British Association,"). The crushing surfaces were perfectly parallel, and the body to be crushed had its end bedded firmly against them. The force was applied in the direction of the fibres. These experiments were made, like many others acknowledged lefore, at the expense of Mr. H's liberal frient, W. Fairbaim, Fsq. They are the commenement of a research in which the writer has other objects in view. 'The accompanying calculations uill show how far Mr. Hodgkinson has, as yet, carried lis experiments, and the results he bas obtained. The great interest attached to the subject induces us to append this table, though we are somewhat fearful it is not altogether without inaccuracies:-

Description of Wool.	Dimensions of Cylinder.		Force which crished the specimen. lbs. mean.	Crushing Force jer Syuare Inch. lbs.
	Dtameter. inches.	Height. inches.		
Yellow Pine	$1 \cdot 01$	200	$\left.\begin{array}{l}4381 \\ 4381 \\ 4157\end{array}\right\} 4306$	5375
Corlar	1.00	2.00	$\left.\begin{array}{l}4829 \\ 4381\end{array}\right\} 4456$	5674
Ditto	1.00	1.00	4157) 4605	5883
			3709	
A nother specimen, quite dry	1.60	\cdots	$\left.\begin{array}{l}3933 \\ 3933\end{array}\right\} 3856$	4912
Ifed Deal	1.01	2.00	4381	5748
Other sperimens, 2 months			.5053)	
turned . . .	1.01	1.00	${ }_{5}^{5277}$, 5277	6586
Poplar.-(Not yuite dry).	1.00	$2 \cdot 00$	$\left.\begin{array}{l}2365 \\ 2589 \\ 2385\end{array}\right\} 2440$	3107
Ditto, turned and dried 2 months	. 96	1.00	$\begin{array}{cc}2365 \\ \cdots & 3709\end{array}$	5124
(green)-Fallen 2 mon	1.00		${ }_{2589}^{2589}$ (2514	3129

Dimensions of Cylinder.		Force which crished the Specimen. lbs. mean.	Crushing Force jer Syuare Inch. lbs.
Dlameter. inches.	Height. inches.		
1.01	200	$\left.\begin{array}{l}4381 \\ 4381 \\ 4157\end{array}\right\} 4306$	5375
1.00	2.00	$\left.\begin{array}{l}4829 \\ 4381 \\ 4157\end{array}\right\} 4456$	5674
1.00	1.00	3709 4605	5883
$1 \cdot 00$	\cdots	$\left.\begin{array}{l}3709 \\ 3933 \\ 3933\end{array}\right\} 3856$	4912
1.01	2.00		5748
$1 \cdot 01$	1.00	$\left.{ }_{52277}^{527}\right\} 5277$	6586
1.00	$2 \cdot 00$	${ }_{2}^{2365}$	3107
- 36	1.00	$\begin{array}{cc}2365) \\ \cdots & 3709\end{array}$	5124
1.00		2589 2589 2514	3001

Larch (xreen.)-Fallen 2 months ing been turned 2 months

Ash .
 Do. after 2 months as before

 Quebec OakDo. after 2 monihs as before

Finglish Oak

Ditto, 2 months after leing - tumed and dried
$\underset{\text { pentibe }}{\text { American }}$ Pine. - Full of tur
Ditto, after being
dried 2 montlis
Ditto
Bay Wood

Spanish Malogany

Teak Wood

American Birch

English Birch

Do. after 2 montbs as before
Elm

Alder

After 2 months' drying

Ditto . .
Other specimens give

$$
\mathrm{Sy}
$$,

Bre.

King Wood.-Dry omamental

$$
\begin{array}{r}
\text { Pear- } \\
\text { Crab- } \\
\text { Dit } \\
\text { Sycan }
\end{array}
$$

Waln

.
$\cdot 98$
$\cdot \mathbf{9 8}$
.99
.99
.99
.98
.99
1.0
.90
.38
$\cdot 3$
.07
.
$\cdot \mathbf{0}$
-
1.0
.00

1 1.0 1.0

	\ldots	\ldots	.. $\left\{\begin{array}{l}7779 \\ 8251\end{array}\right.$	9650 10299
amental	1.00	2.00	$\left.{ }_{9931}^{9931}\right\}^{9931}$	12645
	99	200	$\left.{ }^{5899} \begin{array}{l}5639 \\ 5099\end{array}\right\} 5787$	7518
			5899 5273	
-	. 99	$2 \cdot 00$	${ }_{4891}^{4891}$, ${ }^{\text {d8005 }}$	6419
.	. 99	5501	
.	.99	$2 \cdot 00$	$\left.\begin{array}{l}5227 \\ 5899\end{array}\right\} 5451$	7083
-	-99	$2 \cdot 00$	$\left.\begin{array}{l}5563 \\ 5563 \\ 565\end{array}\right\} 5563$	
	$\cdot 99$.	${ }_{4}^{4595}$	6063)
h after				
turned	$\cdot 09$	1.00	$\left.{ }_{5171}^{5171}\right\} 5171$	
-	-95	2:00	$\because 7069$	$9 \times 33^{8+5}$
.	$\cdot 32$	$2 \cdot 00$	$\left.\begin{array}{\|c}3 \\ 5171 \\ 5171\end{array}\right\} 5302$	7976
			5174	
	1.00	$2 \cdot 00$	${ }_{3485}^{37}{ }^{3} \mathbf{3 5 6 0}$	4323
drying	1.60	$2 \cdot 00$	3485 $\ldots .0$ 125	738

Walnut	. 99	2.00	$\left.\begin{array}{l}5563 \\ 5563\end{array}\right\} 5563$	T2ET ${ }_{\text {jot }}$;
Another specimen	$\cdot 99$		${ }_{4}^{45951}$ (4967.	6063)
Another specimen	99	$4555\}^{4006 .}$	
Ehuer. the specimens were turned	-09	1.00	S171 5171$\} 5171$	761)
Ditto	$\cdot 95$	200	.. 7009	$90.3\}^{8+5}$
Ditto	$\cdot 32$	200		7974
			5171	
Hornbeam	1.00	$2 \cdot 00$	3705 3485 3	4323
			$3485)$	
After two months' drying	$1 \cdot 60$	$2 \cdot 00$ 5725	720

Furee which crushed the Specimen.	Crushinr Force per Square lisel.
lbs. mean.	Its.
- 4157	3568
6347	
$5955\} 6216$	8441
$6347)$ 7131	$10493\}^{93 \%}$
$8699\} 7915$	10793
2813	3657
$5563)$	
589855953	7733
$\begin{array}{cc}6397 \\ . . & 5725\end{array}$	9363
6907	
6571 6550	8683
6173)	
5723	9368
$\left.\begin{array}{l}3425 \\ 3211\end{array}\right\} 3323$	4231
$\because 4605$	3082
4891	
$\left.\begin{array}{l}4891 \\ 4891\end{array}\right\} 4691$	6184
6621	
7433 ${ }^{6021} 7027$	9309
4535	
3883 - 4107	5145
3883	
$\left.\begin{array}{l}3933 \\ 3933\end{array}\right\} 3833$	$\left.\begin{array}{c} 5434 \\ 5395 \end{array}\right\} ; 41!$
3905	
5563	
589965787	7318
58999	
6949	
$6_{6173}^{6} 64339$	81\%
6173	
85823	
$9595-9504$	12101
9995	
9309	
8861	11663
93009	
3485	4533
$\left.\begin{array}{l}3488 \\ 3485\end{array}\right\} 3500$	4303
4829	
5053 ¢ 4829	6402
4605	
8413	
7965 - 8114	10331
7965	
5501	
5721 555576	${ }^{(960}$
$5501)$	6x
$\left.{ }_{5267}^{569}\right\} 5473$	6831
7578	9365
${ }_{7243} 7243555$	92635
$7243)$	
$\left.\begin{array}{l}86397 \\ 8307\end{array}\right\} 8503$	10613
. 75759	9650
\cdots - 8251	10299
${ }_{9931}^{9931}$ 9931	12643
99831 ${ }^{\text {8999 }}$	
5563 - 5787	7518
5899	
5227 200	
4891 ¢ 5005	6489
4891	
5227	
5227 \}45	7026
5899	
${ }_{5} 563355563$	
${ }_{4}^{55635}$	${ }^{72}$ isti
${ }_{4}^{4501}$	6063)
4535	
5171 5171	$7 \mathrm{Kl}{ }^{1}$
5171 ${ }^{5171}$,
[2073 7009	3
$\left.5_{5171}\right\} 5302$	7976
5171)	
370)	
3485	4323
3485) 57.25	7200
... 312	120

ON THE THEORY OF THE STEAM-ENGINE.

By Aristidis Mornay, Esq

No. IV.
In our last paper, published in June, we proposed the following formula for calculating the elastic force of steam at different tempe= ratures:-

$$
\begin{equation*}
\log \cdot p=\log \cdot(t+448)+\frac{5(t-212)}{t+448}-1.3424227 \tag{III}
\end{equation*}
$$

This equation coincides, as we have shown, more generally than any other which has been proposed with the results of experiment; tesides which it possesses the advantage, that we can obtain from it the elastic force of stean in terms of its density. The equation (II)
can be put under the form

$$
\log \cdot d=\frac{5(t-212)}{t+448}
$$

$$
\log \cdot d=5-\frac{3300}{t+448}
$$

whence we find

$$
t+448=\frac{3300}{5-\log \cdot d}
$$

Substituting this value in the equation (I), which is

$$
p=\frac{d(t+448)}{22}
$$

we obtain

$$
\begin{equation*}
p=\frac{150 d}{5-\log \cdot d} \tag{IV}
\end{equation*}
$$

Thus we can, at any time, deduce the elastic force of steam from its density by a very simple method. Or it may be more convenient to use the volume occupied by a given volume of water, when converted into steam, instead of its density. For this purpose we must substitute for d some function of the volume V, occupied by one cubic foot of water converted into steam. Now, when the density of steam is 1 , it occupies a volume $=1700$ cubic feet, so that the value of d would be $d=\frac{1700}{V}$, and the above equation would become

$$
p=\frac{255,000}{\mathrm{~V}(5-\log .1700+\log . \mathrm{V} .)}
$$

or

$$
\begin{equation*}
p=\frac{255,000}{V(\log \cdot \mathrm{~V}+1 \cdot 7695511)} \tag{V}
\end{equation*}
$$

If \mathbf{P} be any other elastic force, and V^{\prime} the corresponding volume, we shall have

$$
\begin{equation*}
\frac{p}{P}=\frac{V^{\prime}\left(\log \cdot V^{\prime}+1.7695511\right)}{V(\log \cdot V+1.7695511)} \tag{VI}
\end{equation*}
$$

This equatlon will furnish as with the means of calculating the mean pressure of the steam on the piston of an engine, in which the stean is used expansively; but we shall return to this subject when we treat of the action of the steam in that varicty of engine.

On the Action of the Steam in the Cylinder of a Steam-engine.
The whole resistance overcome by the steam acting on the piston of an engine, may be divided into the useful effect and the incidental resistances, the latter comprising the friction of the various parts of the engine, and the resistance of the steam on the opposite side of the piston. When we mention the resistance simply, it signifies the total resistance.

It is self-evident that the pressure of the steam against the piston must be precisely equal to the resistance on the opposite side. In a critical notice of the Count de Pambour's theory of the steam-engine, inserted in the September number of this Journal, it was stated that the resistance overeome by the force exerted by the steam against the piston of an engine in motion is not, as asserted by Pambour, strictly equal to its whole elastic force. We shall show that the difference is too small to be regarded in calculating the effects of steam-engines.

Let p be the elastic force of the steam in the cylinder, or the pressure in fos. which it exerts on each square inch of the interior surface of the cylinder, and v the velocity of the piston in feet per minute.

We must, in the first place, determine the height of a column of steam of the given elastic force, whose weight is equivalent to its pressure, in order to deduce from it the velocity with which it would flow into a vacuum, or free from any resistance. Now we know that the height of a column of atmospheric steam, (steam generated under
the ordinary pressure of the atmosphere, or 14.7 tos. per square inch,) whose weight is equivalent to its pressure, is about 58,010 feet, and that the height of the column increases uniformly with the temperature, when the steam is in the saturated state. Thus, if t is the temperature of steam whose elastic force is equal to p, the corresponding height of the column will be

$$
H=58,000 \frac{t+448}{060},
$$

or, putting for $t+448$ its value found above,

$$
H=\frac{290,000}{\log \cdot V+1.7695511^{\circ}}
$$

Now the pressure exerted by the steam against the piston is equal to its whole elastic force, or the weight of the column H , minus the weight of the column whose height, which we will call h, is equal to that due to the velocity of the piston; for it would require the pressure of that column to give the steam the velocity r, which it must assume in order to follow the piston. Thus, if we call r the resistance referred to a square inch of the piston, we shall have

$$
r=p-p \frac{\hat{H}}{\mathbf{H}}
$$

But we have also,

$$
k=\frac{v^{2}}{3600 \times 2 g^{*}}
$$

or, substituting for 2 g its value 64.38 ,

$$
h=\frac{v^{i}}{231,768}
$$

Substituting this value, as well as that of H_{3} in the expression of the loss of pressure, which is

$$
\lambda=p \frac{h}{\mathrm{H}}
$$

it becomes

$$
\lambda=p \frac{v^{2}(\log . V+1 \cdot 7695511)}{67,212,720,400}
$$

(VII).

To ascertain the mean loss through the whole stroke of the piston, let ρ be the length of the crank, V the velocity of the crank-pin, and L the mean loss of pressure; λ the loss at any given instant, v the velocity of the piston, and a the angle described by the crank from its dead centre at that instant.

If we suppose, to simplify the calculation, that the length of the connecting-rod is infinitely long in comparison with that of the crank, and that the latter moves with an uniform velocity, we shall have

$$
v=\mathrm{V} \sin a
$$

Substituting this value in the equation (VII), it becomes

$$
\lambda=p \frac{V^{2} \sin \cdot a^{2}(\log \cdot V+1 \cdot 7695511)}{67,212,720,000}
$$

The distance travelled by the piston during an infinitely short period of time is $\rho \sin a d a$, and the amount of power consumed in producing the motion of the stean during that element of time is,

$$
\lambda \rho \text { sin. } a d a=p \frac{\rho \mathrm{~V}^{3}(\log \cdot \mathrm{~V}+1 \cdot 7695511)}{67,212,720,000} \sin . a^{3} d a .
$$

The whole loss during one single stroke is therefore equal to

$$
\begin{gathered}
2 \rho \mathrm{~L}=p \frac{\rho \mathrm{~V}^{2}(\log \cdot \mathrm{~V}+1.7605511)}{67,212,720,000} \int^{{ }^{4} \pi} \sin . a^{3} d a . \\
=\rho \frac{4 \rho \mathrm{~V}^{2}(\log \cdot \mathrm{~V}+1 \cdot 7695511)}{201,638,160,000}
\end{gathered}
$$

whence we deduce

$$
\frac{L}{p}=\frac{V^{2}(\log \cdot V+1 \cdot 7695511)}{160,819,080,000}
$$

(VIII).

If V were used to represent the mean velocity of the piston, we should have to multiply V^{2} by $\frac{\pi^{2}}{4}$, by which the last equation would become

$$
\begin{equation*}
\frac{\mathrm{L}}{p}=\frac{\mathrm{V}^{2}(\log \cdot \mathrm{~V}+1 \cdot 7695511)}{40,860,400,000} \tag{IX.}
\end{equation*}
$$

It is evident that, the greater the velocity of the piston, and the

[^37]lower the pressure of the steam used, the greater will be the proportionate loss; therefore we shall take an extreme case if we assume $\mathrm{V}=600$ and $p=14.71$, when V will be 1700, and $\log . V+1 \cdot 7695511=5$.
Substituting these values in the equation (IX), we obtain
$$
\frac{\mathrm{L}}{p}=\frac{1,800,000}{40,860,400,000}=\cdot 000044
$$

Thus we see that, although the pressure exerted by the steam against the piston, and consequently the resistance which it can overcome, is not $8 t r i c t l y$ equal to its whole elastic force, we are perfectly justified in assuming it to be practically so, and disregard the difference, which is in reality much too small to be appreciable.

CANDIDUS'S NOTE-BOOK.

FASCICULUS X.

1 must have lilerty
Withal, as large a clarter as the wints, To blow on whom I please.

1. The attractive title of "Clurch Architecture of the Midlle Ages," induced me to turn to the last number of the Dublin Review, for the topic itself has been so hackneyed of late years, that I fancied no editor would now receive any paper upon it, unless some fresliness or peculiar interest were imparted to it. But, alack! the said article turned out to be only three pages of the most wishy-waslyy stuffimaginable. The whole purport and sum of it are nerely to assure us that it is quite impossible for any but a Catholic architect to enter at all into the true feeling of our ancient religious edifices. It may be so, but then if what the writer says proves any thing it proves rather too much; the crgo resulting from it being that Gothic architecture and Protestantism are things utterly opposed to, and irreconcileable with each other, consequently the only course left us, is to say Goodbye to Gothic architecture, for ever.
II. The newspapers mention Sir R. Smirke as the architect to be employed in rebnilding Bridgewater House; but this, it is to be hoped, will turn out a mere newspaper on-dit; for Sir Robert has by this time done quite enough to convince every one how little it is that he can do, and that what style he has, consists only in the absence of all that constitutes style, and the most frigid mannerism in the applicition of a few forms derived from Grecian architecture; without one spark of geniality or even iuvention. Beyond what is borrowedliterally transcribcd from antique examples, there is nothing whatever in any one of lis designs professing to be classical, except indeed it be much that detracts very materially from the prototypes affectedly adhered to in other respects.
III. Who is Mr. William Collier?-undoubtedly a gentleman who thinks he has no reason to be at all askumed of his name, having affixed it at full length to a paper on "Ancient Architecture," in the Polytechnic Journal. And if he has not thrown any new light on that hackncyed subject, he has at at least treated it most originally, having condensed it into the compass of less than four very moderate pages!! -after which fact no one will question that, as has been asserted by some philosophers, the matter of the whole universe is capable of being compressed into the spate of a walnut. At first I apprehended that William Collier was about to be dreadfully prolix, and that his paper would be continued through at least five hundred numbers of the Polytechnic,-that is, to about the year 1580 , for he sets out by telling us that "The tirst foundations of history may be looked upon, \&c.," and "We think there can be no doubt that Anchitecture, when in its infintine state, must have befn not only rude or plain, but what may be termed irregular." This is certainly beginning at the beginning, and seems to threaten a prodigiously long journey; however, Mr. William travels at more than railroad speed, for in the course of two or three lines he gets from Noah to the Tower of Babel, and traversing through Greece and Rome sets us down-before he has finished his third page, at the National Gallery in Trafalgar Square!!! After which lie shoots off again, and in less than eight lines runs through eight centuries, "during which scarcely anything was erected but in the Rude Gothic Strie"!!!! Droll William Collier! It must not be supposed, lowever, that his flying velocity leaves him no time for criticizing; for he stops at the National Gallery to call it "a mass of nubbish which stands in all its meanness on the spot once occupied by the Royal Mews ; and which if appropriated to its proper use mighit well be turned into a Royal Rabbit Hutch." Perhaps he means for
such rabbit or rabid gentry as limeself. Most unquestionably the National Gallery is-thanks perlaps to our penny-wise governmentgreatly inferior to what it ought to have been, and to what the architect would lave rendered it, but to term it a "Mass of Rubbish," is in ruy opinion, nothing but the merest rubbish of words, most assuredly not criticism. In the mame of common sense what are we to understand by it ? 1 believe it would puzzle Mr. William Collier, himself, quite as much as any body else to explain. Grant that it is in every respect decidediy inferior as a piece of architecture to what miglit bave been anticipated, that as a building it is unworthy of its destinstion, still with all its sins, it is certainly by no means the poorest of our public edifices, therefore if it at all answers to William Collier's character of it, we may ransack our language in vain for terms applicable to many things greatly inferior-for instance, to the Terraces in the Regent's Park, which Bartholomew calls "mortar-skimmings by the mile." If the National Gallery be a mere "Rabbithutcl," pethaps neither St. Puul's nor Westminster Abbey, can rank very much higher than a good-sized dog-kennel. What our Sweet-William's notions of magnificence may be, 1 can hardly guess, fartleer than that they are undoubtedly enormous. Yet stay!-he has given us some clue, for just before pouncing upon the unfortunate mass of rubbish in Trafalgar Square, he says: "The triunphal arches of Rome give usa vast idea of the perfection to which architecture had been brought during the flourishing times of her consuls and emperors"! Thus then after all, the triumphal arches of Rome, in some respects, specimens of the most corrupt taste in architecture, are extolled as models of perfectien by a gentleman so exquisitely fastidious as to behold nothing better than "a mass of rubbish," in the National Gallery!
IV. I should very much like to see Madame Vestris perform the part of Jane Shore, not exactly on the stage, but by being made to perform penance, and stand in a white sheet on the vile excrescesce she has built-that is, caused or allowed to be built, by the side of the portico of Covent Garden Theatre; and which looks as if it had been stolen from the entrance of a suburban tea-garden. If that is a sample of ber management, and of the kind of reform she intends to introduce into the inside of her house, it is a very ominous sign indeed, and non a particularly inviting one. It is time there was some punishment or fine for so disfiguring a public building in so horrible a mander.
V. As my Lord Eglintounseems to be suffering from such a plethora of cash that he is puzzled to contrive how to spend it, some friend should advise him to give a new coat to his castle. At present it looks like any thing but what its name would lead us to expect: it being only a spruce and dapper sash-windowed house, with a fer battlements, which so far from 'frowning' are particularly sheepistlooking. Its character altogether is very far more offensive than defensive, for it would not stand out half an hour's seige, before it could be stormed by half a dozen old women.

VI, There was no occasion for the new Custom House at Liverpmot, to convince us that an enormous expense may be incurred for a mumber of large columns without its producing any adequate effect or exlibibiing any thing that can fairly be called design. The building in question has three octastyle porticos against as many of its sides; but with the exception of those rows of columns notling to support the pretensions it so makes. When one beholds such a luge mass of mawkish insipidity, he is tempted to regret, with Charles Purser, that Grecian architecture has not been utterly annihilated, or that we hare not been kept in utter ignorance of it.

ARCHITECTURE AT MUNICH.

Pathotism is no donbt a very excellent virtue in its way, but it is one that requires to be reined in a little, for it is sometimes rather an unruly beast, and apt to serve us as his steed did John Gilpin, and to make us cut an equally ridiculons tigure in the eyes of all the reat of the world. Thus the title of "Modern Athens!" as applied to Edinburgh and its buildings, is absolutely burlesque, of which the rety printer seems to have been conscious, for why else did he stick tire mark of admiration after it on the title of the volume for which Jotho Britton, with his usual good taste, thought fit to select such a clap-trap, designation as a delicate and delicious compliment to "Auld Reekie." After this we are almost ashamed to say that the epithet of the German Athens, has been bestowed upon Munich. Its Altewianisa, howesei; is of a totally different sort from that north of Tweed; for in regand tw art, the Scotch and the German Athens stand in the same relationath? to each other, that the icebergs of the Frozen Sea do to the lusuriaut vegetation of the tropical regions. But why, it will be said, sbould we make such very disagreeable comparisons? to which question we
reply by another, viz., why are people so silly and officious as by their blundering Marplot compliments to thrust such comparisons upon us? Some, again, may be of opinion that however splendid Munich may be, there is:no occasion for either us or any one to descant upon what has been there achieved, when it seems likely only to put us out of conceit with ourselves and with our doings here at home. Now, could we impose on all the rest of the world as well as ourselves, that argument might be listened to; yet, whether we choose to make comparisons ourselves or not, we cannot prevent others from making them, and all the more to our discredit, when they find out not only how exceedingly backward we are in art, but that, instead of at all suspecting such to be the case, we fancy we are at all events in advance of the rest of the world. With the Ituly of other ages we do not pretend to compete; of its former glories in art we have always been accustomed to hear, and we further know, that were it not for its long accumulated stores, Italy would not, at the present day, acquire reputation by the talent of its living artists; we may endure, without any very great rexation, to hear Frenchmen boast of their Louvre and Versailles, for, like eels, we are now got used to it; but to be told that the little capital of Bavaria, (whose population is hardly more than that of one of our larger metropolitan parishes,) should have so far got a-head of us, that in the brief space of twenty years, edifices of almost unparalleled splendour, such as would formerly have been almost the work of centuries, have been nobly conceived and as worthily executed, is, it must be owned, somewhat mortifying. When we look at what has, within the same space of time, been done here at home, at the works of our Nashes and our Soanes-at the blundering fragment at the comer of Downing Street-at the feeble and minikin taste displayed in the new palace-at such large masses of frigidity and insipidity as the Custom House and Post Office-at the bare rooms of the British Museum, where Art is provided for like a state pauper-at our poverty-stricken pseudo-Grecian buildingsand at most of our beggarly new churches-we have to be ashamed, nay shocked, at the contrast. Well would it be could we be made ashamed to some purpose. In what lay the genius of Nash and some others, except in making money and either spending it or hoarding it, it is for their parasites and flatterers to explain ; but we may assert that the praises bestowed upon them were certainly calculated to lower our ideas of art most prodigiously. If Nash was the genius that was pretended, the inference was that a man might be some degrees inferior, and yet a remarkably talented fellow after all-a tolerably brilliant star, though not the big full moon itself.

In almost every thing we have done of late years, even where a building has been upon the whole very good as to design, there is something or other left as a blemish in it, something that too plainly declares its baving been done, upon the do-well-enough system, the consequence of which is, that, as a work of art, it is generally "done for." Sometimes we set out as if we really had plucked up courage enough to attempt something grand, yet owing to an untoward fatality, our colurage of that sort has almost invariably oozed away before the work has been completed. Neither is it the least provoking part of the matter, that we go on committing failure after failure without profiting at all by our dearly-bought experience. Of course it is entirely the fault of that eternal mischief-maker-Nosody. Oh, no! it is nobody's fault; nobody, of course, is answerable for it, nobody in the slightest degree to blame. If, therefore, thinge happen differently at Munich, we suppose it is entirely owing to the stars; for as the facetious editor of the Literary Gazette, or the Atheneum's pet, Tom Hood, would say, the stars are of course very obliging and accominodating towards Bavaria, because it has Moon-ich for its capital, which, whether a capital pun or not, is here merely borrowed from Jerdan. However, to be more serious-and it really is a serious matter, whatever else may be plain, it is almost incomprehensible how the present King of Bavaria has been able to erect, out of his privy purse, so many of the splendid edifices which now adorn his capital, and which, though they have not, it seems, beggared him, and are likely to enrich his subjects, almost beggar description. Such, at least, is the case with the lately completed Allerheiligen Kapelle, and with the new busilica of St. Bonifacius, by Ziebland, both of which are in the most gorgeous Byzantine atyle, the latter divided into a nave with two aisles on each side of it, by sixty-four columns, and an open timberwork roof richly adorned with carving, gilding, and colours, to accord with the embellishment of all the rest, when the walls, like those of the Alerheiligen, shall come to be covered with frescos upon a gold ground. How, not these two edifices alone, but so many others of such elaborate pomp and richness, so truly " märchenhaft schön," nhould succeed each other as they lave done, is truly astonishing. It is so mysterious, that we might be excused for fancying the Kunstlielend sovereign has discovered either Solomon's ring or Aladdin's lamp. Yet, perhaps) the secret, after all, may be explained by the
proverb, "where there's a will there's a way." Had George IV. really possessed the taste and love of art so liberally ascribed to him by his flatterers, his privy purse would surely have been a match for that of Ludwig; but he, poor man, had other and more expensive tastes, and his chief title to fame is that bestowed upon him by Careme, who assures us that among the very few real proficients in gastronomy in his time were the Emperor Alexander, George IV, and the Marquis de Cussy. How Ludwig dines, or whether he has to provide a couvert every day for his Lord Melbourne, we have not heard, and still less do we care.

All this may not be flattering to our national pride; still it ought to open our eyes a little, and make us ask ourselves the question wherefore it should be so, and more especially whether it is always to continue so. The opportunities we have already, from time to time, flung away, cannot now be recalled; yet that is no reason why we shonld despair, on the contrary, a very great reason indeed wherefore we should begin to exert ourselves, and put forth all our energies in art. If not, we must be content with admiring ourselves, and be laughed at by the rest of Europe-at all events, sneered at by little Bavaria.

An unusually full account of the public buildings at Munich, has just appeared in the Penny Cyclopxdia, illustrated with a situation's plan of the palace and surrounding edifices, as also with a plan of the upper floor of the Pinacotheca. By way of specimen of that article, which we need hardly recommend further than by so quoting, to our readers, we extract what is said of one work now in progress, and also copy the architectural table at the end.
"The new basilica of St. Bonifacius, now in progress, promises, when completed-which it is expected to be in 1842-to surpass every other religious edifice in the city, hardly excepting the Allerhciligen Kapelle itself. Like that building, it is in the Byzantine or Lombard taste, both as to architecture and decoration, but is upon a much more extensive scale, being 250 feet long and 120 feet wide; and is divided within into a nave and two aisles on each side of it, by sixty-four marble columns of a greenish tint, disposed in four rows. Of the middle aisle, or nave, the width is 51 feet and the lheight 70 ; of the four others, the width 15 feet and the heighth 40 feet. The pavement is of marble mosaic, and the roof of open timber work, the beams of which are not only carved, but richly decorated with painting and gilding, and the ceiling between them azure, with gold stars. The walls of the outer side aisles are stucroed with scagliola, in imitation of different coloured marbles, but those of the other parts of the building will be painted in fresco by Hess, with subjects from the history of St. Bonifacius. In the rear of this magnificent church (the front of which, towards the Karis-strasse, has a portico of eight Corinthian columns with three bronze doors) will be another building attached to it, intended as a theological seminary, directly facing the Glyptotheca, to which it will form a corresponding piecc of architecture, on the south side of the Königs Platz."
"On comparing a map of London with that of Munich, the latter, though so very much smaller a city, strikes the eye by the number of public buildinge and the great space which they occupy. The plan of Munich, published in the series of maps by the Society for the Diffusion of Useful Knowledge, will be useful to those who take any interest in the present article. This plan does not however show the situation of all the buildings here mentioned, not any of those beyond the Kriegs Ministerium in the Ludwigs Strasse, nor the Basilica of St. Bonifacius, being then erected. But two very conspicuous features in it suggest the propriety of mentioning the spacious new Friedhof, or public cemetery, and the beautiful park near the north-east angle of the Hofgarten and Picture Gallery, called the English Garden. The latter is laid out with plantations, intersected by streams of water, and embellished with statues and various ornamential buildiugs, the inost remarkable of which is the circular monopteros of twelve Ionic colnmns, erected in 1833, as a monumental temple in honour of the elector Karl Theodore, the founder of the garden; nor is it so remarkable on account of its design, as for extibiting the first modern application of Greek arclitectural polychromy, the capitals of the columns and the mouldings of the entiblature being enriched with various colours painted in encaustic. The other spot, the Pire la Chaise of Munich, has, at its southern extremity, an extensive rauge of building consisting of a chapel and range of arcades, disposed in the form of a crescent about 550 feet in diameter."
"The following architectural synopsis, on the plan of that accompanying the article Lomdon, will serve as a general recapitulation, and facilitate reference with respect to the architects and the dates of the buildings, as far as it las been possible to ascertain the latter correctly."
N.B. The measurements are reduced to English feet.

	Date.	Architect.	Remarks.
Frauenkirche	1468-94	Jorg Gankoffen	Gothic, two west towers 888 feet high- 8936 by 116 feet.
St. Michael's	1583-95	Wolfgang Miuller	
St. Caietan	1670	Agost. Barella	Façade, erected 1767, by Couriliers; Doric and Ionic.
Trinity Church	1704-14		Rotunda, dome on 18 Corinthian columns.
General Hospital	1813	Fischer	
Glyptotheca .	1816-30	Klenze	Grecian, Octastyle, Ionic porticu.
Reitbahn, Riding-house	1822		Italian, 300 by 80 feet.
Isar Bridge -	1823-28	Probst \& Klenze	Five arches, length 286 feet.
Theatre ${ }^{\circ}$	1824-5	Fischer	Hexastyle, Corinthian portico.
Kriegs Ministerium, or War Office	1824	Klenze	Florentine style.
Odeon - .	1826	Klenze	Italian style.
Pinacotheea	1826	Do.	Italian, north and south fapades 494 feet.
Synagogue ${ }^{\text {Allerheiligen Kapelle }}$	${ }_{1826-37}$	Metivier	
Alerheiligen Kapelle	1826-37	Klenze Do.	Italian, round-arch style.
Hof Arcaden		Do.	
Protestant Church	1827-33	Pertch	Oval plan, 143 by 57 feet.
Kı̈nigsbau	1827	Klen	Florentine style, façade 406 feet.
Festbau		Do.	Fapade nearly 800 feet long, in the Palladian style.
Pripce Maximilian's Palace	1828	Do.	Florentine style.
Leuchtenberg Palace		Do.	Italian style.
Obelisk . .	1828-33	Do.	Bronze, 95 feet high.
Ludwig's Kirche	1829	Gärtner	Byzantine style, towers 209 feet high.
Pfarr-kirche, St. Maria Hilf	1831	Oblmüller	Gothic, nave and side aisles.
New Public Library and Archive	1832	Gärtner	Fapade 494 feet, Florentine style.
The Reichenbacher Bridge	1832	- . .	Timber bridge, 675 feet long.
Blind Institute . .	1832	Gärtner	Florentine style, fapade 214 feet.
Isar Thor or Gate	1833	Do.	Gothic or Old German style, three towers.
Polychrome Temple	1833	Klenze	Circular monopteros, Grecian Ionic.
St. Bonifacius .	1833	Ziebland	Byzantine, nave and two aisles on each side.
Post Office	1834	Klenze	Florentine style, fapade 290 feet long, 66 feet high.
Georgianum	1835	Gärtner	
Equestrian Statue of Maximilian I.		Thorwaldsen	
Damenstiftsgebaiude Monument of Maximilian-Josephi I.	1835	Gartner Klenze \& Rauch	Florentine style, façade 430 fect. Colossal sitting figure; entire lieight of the monu
Monument of Maximilian-Josephi.	1835	Klenze \& Rauch	which is of bronze, 36 feet.

ARCHITECTURAL PROCEEDINGS IN THE PROVINCES.

By Mr. G. Godmin, Jun., F.R.S., \&c.

Sir-I gladly comply with your request to be furmished with some slight outline of the works in progress, or recently completed, which have passed under my notice during a late tour of some of our provincial towns; firstly, because I heliere it will tend to show that a taste for architectural productions is increasing, although perhaps slowly, a fact which cannot be uninteresting to your readers generally; and secondly, because I think all such notices are likely to be serviceable in a wide degree, by leading attention to our art, and stimulating to activity its professors. The remarks are necessarily shortthe towns spoken of are few, nevertheless, if from the foot we may judge the statue, they will serve as tolerably satisfactory data.

I may premise that a very excellent spirit seems every where apparent. Ranges of stralght brick boxes with holes cut out of them for light and air, and dignified with the name of houses, no longer prevail. If a farm labourer's residence be crected, the gables are adorned with ornamental barge-boards, and the chimnies are carried up in such a form as to give to the building something like architectural character. The inhabitants of the larger towns are begimning to migrate to the suburbs, leaving the former wholly as places of commerce, and for them, in consequence, small villa residences are arising in all directions. These in many cases are excellent in design,-indeed it is said they will not let if they be not at all events more omamental than the house's of business within the towns, a circumstance easily understood, and which will necessarily induce the bestowal of thought on the subject, and an ultimate improvement.

In the neighbourhood of Manchester for example, at Broughton Hill, and at Chectham, there are several very elegant residences built from the desigus of Messrs. Young and Westall, Mr. Aley, and Mr. Atkinson: these are chiefly in the Italian style, and show much taste and skill. Mr. Atkinson lias nearly completed a very pleasing church at Cheetham, named St. Luke's. It is in the style of the perpendicular period of pointed architecture, and presents some details of more than ordinary excellence. The tower and spire, wholly of stone as is the rest of the exterior, are particularly worthy of notice, although they would have been better if the richly crooketted spire had been more lofty,-that it was not so, however, proceeded probably less from the architect's will than from circumatances beyond his controul, A range
of detached, or rather perforated buttresses on each side of the building produces a good effect of light and shade. The interior is evidently the result of careful study and has many points of novelty, so far as regards modern churches. The east end is tastefully adomed with canopied niclies and panelled work in plaster; and the centre of each compartnent of the gallery-front las a small canopied niche and figure also in plastor. I'erhaps the least effective part of the church is the roof, the timbers and ribs of which are somewhat too small. The reading desk cunsists simply of a carved eagle on a stand, in the old cathedral fashion, with : large Gothic chair for the ninister; while the pulpit las aromd its pedestal sculptured figures and is otherwise decorated, shewing that Mr. Atkinson had a power of expenditure oot often permitted to architects in these days of mistaken economy. The whole cost nevertheless is said to have been hardly 10,0001 .

In the town several works are in progress. The Atheneum built under the direction of Mr. Barry is nearly completed, and an Unitarian chapel hy the same architect, in Upper Brook-street, is quite so. This latter edifice I diel not see: according to an informant however, it is in the early pointed style of architecture, and quite worthy of Mr. Barry's reputation.* In Mosely-strect a large and lofty pile of buildings is going on which promises to present in striking elevation. It is in two stories, and althongh intended only for warehousing poods, exhilits ranges of three-quarter columns at both extremities, and pilasters in the intermediate space, bearing continued entablatures. These buildings lave a peculiarity which I have not elsewhere obserred. The walls of the basement story are cased externally with cast-ifon plates, with what particular intention however, did not appear to me guite clear on a hasty inspection.

You will be glad to learn that the Architectural Society nt Manchester are pursuing steadily their useful coursc. Whethe the great improvement in matters of taste :apparent in Manchester, is actuilly the result of their operations or not, one may not venture to say, bul certain it is, they canuot fail to do much good by awakening public attention to the importance and agreeableness of architecture as a fine art, and assisting to develope the talents of the younger menbers of the profession. That they are assisting in this latter purpose is perhaps apparent in the fact that Mr. Edward Hall, to whom a medial ul

[^38]the Royal Institute of Architects was jostly awarded during the last session, is one of their body. The promptitude and boldness with which the Society came forward on the subject of public competitlons both in the case of St. George's Hall, Liverpool, and the Royal Exchange in London, seem to me to reflect apon them very great credit, and to entitle them to the good will of the profession at large. One bar to their advancement, it may be noticed, is the cost of house-rent, which swallows up nearly the whole of their annual income,-a bar unfortunately not confined to this Society alone, but which acts almost as powerfully to lessen the usefulness of the Institute, and of the Architectural Society of London, indeed of every literary and acientific body not aided in this respect by government. Surely something might be done to diminish this evil in the metropolis? If goverament cannot, or will not assist in the object, several societies might by coalition erect one suitable building of sufficient size for their purposes, using allernately such portions of it, as are not generally required by each society oftener than once in the week. With regard to the Institute and the Architectural Socicty, it is to be hoped that a long time will not elapse before they merge into one powerfully effective body, as the whole cost of one establishment, or nearly so, would then be available for the advancement of architecture,-either by the prosecution of experiments, the publication of designs and proceedings, or the foundation of a maintenance for a travelling student. This however is slightly beyond our present purpose.

At Birmanghasi many projects are in agitation; several additional churches are to be built, (but mostly of very small cost,) as well as new Assize Courts, and other edifices for public business. Bishop Ryder's church, built by Messrs. Rickman and Hussey, was consecrated in December last. It is constructed of red brick, (the dominant material in Birmingham, and stone, and the arclitects have cleverly adapted these materials to their purpose, by employing the late Tudor style, or that which immediately preceded the entire abasement of pointed architecture by Italian intermixture. The tower has at the sides of it four turrets surmounted by small cupolas similar to some at Hampton Court Palace, which building is an example of the style adopted. Adjoining to the church is a "King Edward's Free-school," built by the same architects. There is a small Gothic church without muclı pretension, recently bullt at Edgebaston; and near it Horticultural Gardens with greenhouses and lodges have been formed. On the opposite side of the town is Trinity church, a small stone edifice of the perpendicular period, erected several years ago, but of which I do not remember to have scen any account. The interior is bare, but the exterior is pleasing. Its principal feature is a lofty recessed porch at the west end, and its chief defect the smallness of the mullions in the openings for light, which being besides of wood, painted, give a mean appearance to the whole of the windows. This over-slightness in the details (as all must have observed), is no uncommon fault in modern Guthic buildings. We do not pay the same attention to the geometrical proportions and relationslips of the parts in a building, as was paid by the architects of the midde ages,--in fact we know nothing about them, being contented to copy examples and apply them accorting to our own fancy without inquiring on what principles they were originally produced. A close investigation of some of the best specimens of middle-age architecture seems to lead to the belief that a system of arrangenent was pursued in the apportionnent of the various parts, of which we have at present no certaiu knowledge. Wonderful fellows were those free-masons of old! Inscrutable, untiring. Even yet not fully unlerstood.

The pulpit and reading-desk in the church above mentioned, are placed close against the east wall of the building, the communion table strnding between them.

Several chimnies for engine houses have been erected lately in the suburbs of extraordinary lieight, in order to prevent an ill effect which othervise is caused to the afjoining land by the fumes of certain muterials. Sume of them are fine pieces of construction. Near Dudeex many were observed to be injured by recent violent storms. Those of square form had apparently suffered much more than those which are circular on plan. I cannot leave Birmingham and Manchester without remarking on the great improvement in design apparent there in various pieces of ordinary irun-work and common fttings the most recently constructed street lamp-irons for example display foliage of megant form, and in many cases the frame-work of machinery is seen to be treated in a very architectural and beautiful manner. In the 'T'own Hall at Birmingham some Urauches for lighta, which have been lately fixed to the side walls, are exceedingly elegant in design. Every fine form disseminated in this way may be regarded as a good seed sown, and tends however slightly, to aid in the generul improvement of the public taste now beginning to be observable.

At Woacretra little seems to be doing at this moment. The

County Courts (with an Ionic hexastyle portico) by Mr. Day; a building for the Natural History Society, executed from the designs of Messrs. Plidian and Newy, at a cost of about 5000l., and a New Mechanics' Institution by Mr. Harvay Eginton, are among the most recent erectlons.
The Cathedral built, if I noted rightly, of a red sandstone, (leasz trustworthy of stones, , is fast decaying, and workmen are constantly engaged in the task of restoration under the guidance of Mr. Eginton. The stone at this moment employed in the restoration, comes it is said, from Lord Mount Morris's estate of Arley, in Wales. For this nobleman, I may mention en pasaanl, Messrs. Yarden, architects of Worcester, are about to rebuild Arley Castle. It is intended to make it a castellated edifice with moat and barbican, forming an iraportant pile of building. Part of it is to be begun immediately.
A great many new buildings for Banking Companies have been recently constructed in various parts of the country, and have afforded opportunities for the exhibition of the skill of local arclitects. Two have been erected at Gloucester; one in Westgate-street by Mr. Fulljames, and the other in Eastgate-street by Mr. Dauk; the former presents columns and entablature on a basement, and is somewhat ornate; the other is an unpretending but pleasing Italian building with large projecting cornice and consoles. In the neighbourbood of the Spa, and Pump-room at Gloucester, many new private residences have lately arisen with pretensions to architectural character, as well as a small church by Mr. Rickman, and a free-school by Mr. Dauk. This latter gentleman has also recently built some bonding warehouses on Baker's Quay, which exhibit under rather difficult circumstances much skill in construction. Their cost was about 60001 . The exterior of the Cathedral here, with the exception of the centre tower, (which with its perforated turrets at the angles, is one of the most elegant in England, , is fast decaying. Active steps are unquestionably needed in the organization of some comprehensive scheme for the repair and maintenance of our ancient buildings. Why should we be behind hand in this matter? Are our neighbours the French alwayg to take the lead?

At Bristol and Clifton, where there are many talented local professors, architecture is making very satisfactory strides forwards. Two of the inost considerable and excellent of the new erections are, the Red-Maids' School by Mr. Dyer, and the Asylum for the Blind by Mr. Rickman. These buildings adjoin each other, are designed in the pointed style of architecture, (one is a little later than the other), and form a beautiful termination to Park-street. They are wholly of stone externally, partly from Bath and partly from Hanham, a place about five miles distant. The Red Maids' School, I was informed, cost about 13,0001., the Asylum about 20,0001 ., including a cliapel, the interior of which is very charming. The high pitched roofs of the Red Maids' School are constructed of two queen-posts and collar-beam, and are rendered available an dormitories from one end of the building to the other, -the collar-beam, if feet 3 inches from the top of the tie-benm, which latter is the level of the floor, appearing in the apartments and dividing them, as if it were, into bays.

Near to these last-mentioned buildings a very large Homan Catholic Chapel, wholly of stone, is in progress, beautifully situated on elevated ground. The front or west-end displays an hexastyle portico of large proportions, and the sides, a range of three-quarter columns, with at the east-end two projections, north and south. Mr. Goodridge of Bath is the architect, I believe. In this same neighbourhood Mr. Dyer has commenced a building, with large Corinthian portico, for the Conservative Club, and which promises to be of good appearance. At Grenville Place a Wesleyan Chapel in the early pointed style has just now been completed, from the able designs of Mr. Foster. It is constructed of the dark Hanham stone with Bath stone for the dressings: will accommodate 900 persons, and has schools beneath. The cost of the whole was 80001 . The same architect is about to erect a church on the Marquis of Bute's estate at Cardiff, under her Majesty's Commissioners. It will be built (of stone dug on the spot,) in the AngloNorman style, to seat 2000 persons. The cost is not to exceed 60001 ., of which 30001 . is to be given by the Marquis himself. It appears that 97 designs were submittod in competition for this church, and that, although Mr. Foster's drawings were selected for execution, they did not in some one circumstance accord with the printed directions given to architects. The chief premium was in consequence awarded to Mr. Wyatt, for a design sent by him, and in proper accordance with the instructions.

In the Cathedral at Bristol, which it may be stated, has been sadly injured by party-eolourings and barbarous interpolativns, is a clever Gothic monumeut, erecteit to Bialoop Butler in 1434 by subscription. Mr. S. F. Fripp, architect, was the designer of it $;$ and he or one of his name, has also superintended a very pleasing monument in the
church of St. Mary Redeliffe, to Dr. Nathaniel Bridges. This latter was put up by subscription in 1835.

Chatterton's monument for which a design was obtained by competition some time ago, is not yet erected. It will stand outside St. Mary's Church, near the north porch, the scene of the extraordinary, but, mis-spent labours of that child of song and sorrow. The church of St. Mary Redcliffe, that

" Maystrie of a human hand,
 The pride of Bryitowe and the Westerne lande ;"

a most excellent specimen of the architecture of the 15 th century,-is sadly marred as was formerly the case with most of our old buildings, by the introduction of an organ screen of pseudo-classic design, constructed at a period when pointed architecture was not understood, and therefore not properly appreciated. The present excellent churchwarden Mr. William Ringer, who has fortunately a correct taste in these matters, has proposed a plan for casing this eye-sore in strict accordance with the style of the church; and I mention it here, although perhaps not exactly connected with the object of the present letter, with the hope that by drawing attention to the circumstance on the part of other of the influential inhabitants of Bristol, it may assist his praiseworthy purpose.

Among various matters in progress at Bristol, is a large Chapel for the followers of lrving. It presents a well proportioned portico of six columns, (from the Choragic monument of Lysicrates, on a lofty stylobate. It is constructed of stone from the designs of Mr. Pope, but offers nothing begond the portico calling for remark, the flank walls and the interior being perfectly plain. An enormous hotel, called the Great Western, has been lately built by the same architect: having among other embellishments a range of 12 lofty Ionic columns.

The proposed Suspension Bridge over the Avon at Clifton is in a state of progress, the pier to receive the suspending chains on the Clifton side, is nearly completed, and of that on the opposite rock where much more preparation was necessary, the foundation is brought up nearly to the level of the intended roadway. If happily completed, and there is no reason to apprehend otherwise, it will form one of the most noble monuments in England of modern skill, and will add leaves even to the laurels of Brunel.

At the risk of telling an oft-told tale, I cannot avoid referring to the charming little cottages at Bristol, known as Blaise Hamlet, Henbury, intended for charitable purposes. They were built as long ago as 1811, by the late Mr. Nash, and are so remarkable for picturesque beauty that no architect should visit Bristol without seeing them. They are ten in number, constructed of stone with tiled and thatched roofs, and are enclosed so as to be quite cut off from the neighbourhood excepting through a lodge. If one wished to play at Arcadia, this is certainly a spot that might be selected as the scene.
At Bath, where several important edifices are in progress, such as "Queen's College," by Mr. Wilson, and a Scientific Institution, I observed nothing more (through want of time) than that the works on the Great Western Railway are proceeding with rapidity. The pointed style of architecture seems to lhave been adopted at this portion of the line in designing the bridges and buildings.

The Church of St. Nicholas at Bath, built a few years ago by Mr. Manners, is certainly a very successful modern Gothic building. The spire is especially admirable, and all the details are bold and good. The style is the early pointed, the Temple Clurch, London, being the model in respect of the parts. Mr. Mamers in his restorations at the Abbey Church, where he was engaged two or three years ago, used with success a colouring matter to render the new parts similar in appearance to the old,-an example which in many cases might be advantageously followed.

There is a new Market-house at Wells, built as I was told, about two years since by Mr. Carver of Taunton. At the Cathedral, repairs are being made to the wood and lead work of the roof over the choir, under the direction of Mr. Wainwright of Shepton Mallet. The stone work of the exterior greatiy requires attention.

Salisbury Cathedral is under repair in part. The magnificent spire, known to be considerably out of upright, was plombed a few weeks ago, and found to be remaining stationary. Within-side the Cathedral is a clever canopied altar-tomb, recently designed and executed in memory of the Rev. Thomas Burgess, D.D., Lord Bishop of the diocese, by Mr. Osmond, a sculptor of Salisbury, who has paid much attention successfully to Gothic architecture.

In concluding these surface remarks it may be well to observe, although perhaps almost supererogatory, that it is not to be imagined because nothing is here said of bad taste, lack of invention, or errors in construction, and no real objections are taken to any of the various buildings mentioned, that none of these things are to be observed, or
if observable, were quite out of the sight of the writer. Briefly to tell the truth, he went out not to look for defects, but for appearances of progress, and has been content succinctly to notice what appeared to him to be such,-welcoming the much, without complaining at the moment that it was not more.

I am, Sir, your's,
Grorgr Godmin, Jon.
Brompton, October 2, 1839.

BRITLSH MUSEUM.-No. IIT.-ETRUSCAN SCULPTURES.

(From The Times.)

Among the votes of Parliament relating to the British Museum in the present year, is one for $6,570 l$., part of which has been expended in the purchase of a collection of Etruscan monumental sculptures found by Signor D'Anastaci, in Tuscany, the ancient Etruria. They are at present placed in the grand central and in the Phigalion saloon, and are well worthy of attention, as they emable us more distinctly to trace, by being placed in conjunction with others within that edifice, step by step, the improvements in the art of sculpture, which perhaps having had its origin in China, appears gradually, in proceeding towards the west, to have been improving in its march, till it attuined the zenith of its perfection in the classic climes of Greece and Italy. The origin of the people to whom these early works of humanity are ascribed, has been matter of question among both the ancients and moderns; it is doubtful whether they were Pelasgians from Greece, or Lydians from Asia, or a race indigenous to Italy. Herodotus sars they came from Lydia, oppressed by an exuberance of population, and were called Tyrennians, from Atys, their leader; Cicero, Strabo, and Plutarch assert the same; Count de Caylus gives them an Egyptian origin, and Dempster and Bochart suppose that the original nueleus was increased in numbers by emigrations of Pelasgic colonies from Thessaly and Arcadia; Maffai and Monboddo hold the same opinion; Humboldt thinks they were a connecting link between the Iberian and Celtic race, and later authors have attributed their origin entirely to the latter. The language which they spoke, it is certain, was diferent from that of any of the nations mentioned. It has been attempted to explain the inscriptions on these tombs by the aid of the Greek, the Latiu, and the Hebrew, but it has failed; and lately by the Celtic; how far that has succeeded is doubtful. Niebur asserts that their language had no affinity with any known form of speech, and that this is true is proved by its continuing to be spoken for many centuries after their subjection by the Romans; and it may be gathered from Lucretius that books continued to be read and written in it, and Aulus Gellius says it was familiar in the Augustan age. Their literature presents the singular phenomenon of an alphabet almost entirely deciphered, and a language unintelligible; we think that whaterer attempt may be made to understand it, will fail without the discover of bilingual inscriptions, as are on the Rosetta stone; the attempls that have been made without such help to read the inscriptions of Persepolis and the arrow-headed language of the bricks of Babylon, have been entirely unsuccessful.

The Etruscans, in their most prosperous period, inhabited Etruris Proper and the countries about the Po; the Rhetian and other Alpise tribes were of the same origin as those who occupied the territory of Venetia before the building of Petavivum. Niebur, in his history of Rome, says, the name "Tuscan" and "Etruscan" was foreign w them, as also that of Tyrennian, and that they called tbemselres Rosillani. Till the introduction of Christianity they contirued to instruct the Roman youth in the science of divination, and haruspics of Rome were of their race. The works of their hands still remain the astonishment of posterity; the walls of their cities were formed of Cyclopean masonry, and perhaps the largest stone ever hewn br human labour is the lintel of the Theatre of Fiesule.

The artists of antiquity availed themselves of everything capable of modelling, carving; or casting, and accordingly several of the Etrut, can monuments now placed in the Museum are made of clay bated; sometimes different materials were intermixed in the composition for the drapery or ornaments, which was called polyctromic sculpture, and those composed of a variety of marbles, polythica. In the Neapolitan Museum are some statues of the same material as those found in the tombs, the size of life. Whence the Etruscans derived the origin of their sculpture, (and that they had all sorta, Dempster, Gori, and the Academy of Cortona have proved, Pliny aloo mentioning ${ }^{2}$ statue at Bolsena of 50 feet in height), is difficult to determine: ibe greater part have but little allusion to Grecian story, and their तfte is entirely different. Strabo las a passage in which he notices ive resemblance between the works of the Egyptians and the Exrucacs it

Tyrrhenians; but that is no reason to suppose that there was any communication of first principles between the two people. Lanzi says a distinction must be made between the Etruscan style and the work of Etruscan artists; the style was peculiar, and in use till a late period; it was called "Tuscanicus" by the Latins, and all works in the manner of that school "Opera Tuscanica;" many of the subjects in the Etruscan sculptare seem to have been executed when there was no art in Greece, although the above author has endeavoured to prove that they were copied from Grecian inodels, and there is a celebrated gem in existence in the imperial collection at Vienna, which represents the seven chiefs who conducted the expedition against Thebes, a remarkable circumstance in Grecian story, a representation of which equally early is not found among the Greeks themselves. The signs of Etruscan art are, in some of the specimens, the forms undefinedthe hair and drapery arranged with studied regularity and stiffoess, and an attempt at effect in the execution. It may be remarked in the figures of these tombs, that there is an overcharged and forward action of parts; the fngers are uplifted, the legs and arms are placed in iffected positions; there is nothing of that repose so visible in the
 the class an absence of expression, grace, and character. It is singular, that when the art improved in Greece, they still kept the same defects; Winckleman is of opinion, that the hierarchy, who were governors as well as priests, were against improvement and innovation, and followed only the ancient models, as was the custom of the Egyptians, whose school remained the same from the days of Pharaoh to the Roman era. That the Etruscans had practice to improve them, is evident from the quantity of their works that have reached our times. Pliny says, that on its final reduction as a Roman province, 280 years before the Christian era, as many as 2,000 statues were taken from Volsinium alone. There is one observation, however, to be made on the style of the Etruscan sculptures-that, however deficient they may be in beauty, in their proportions they are just; they neither offend the eye by their extraordinary leanness, nor, as in the Chinese, by their excessive obesity; the same exactness is found in the proportions of the small, as in the larger figures, which is not the case in those of Selenuntum or EXgina, or always of Greece and Italy; that they possessed a decided taste for the arts, it is only necessary to observe the differences that are made in the improvement of their designs, and the means they found in that early age of rendering the most stubborn materials subservient to their use.

Amour propre is born with man. In regarding the sculptures of the different nations of antiquity, the philosopher may amuse bimself in contemplating its effects. The exclusive conceit of China conceives that the origin of sculpture is the finality of its perfection, and boasts that within the bounds of the celestial empire it has neither retrograded nor advanced in a period of 3,000 years; the faithful disciple of Bramall regards with equal admiration the hideous proportions of his seven-armed statue, and thinks it cannot be surpassed; the Egyptian, confident in the excellence of his original conceptions, and in the immensity of their execution, copied no one, and sought not to improve; lie thought his works would last to eternity; the subtle Greek fattered himself he could with impunity rob the Egyptian; he counted on his contempt, or his indolence, and he supposed his robbery of imitation would not be discovered, notwithstanding the coarseness of the veil he threw over it, and he destroyed his earlier works to conceal his ignorance, which accounts why so few of the earlier Grecian statues have been found, Pausanias only mentioning a few, superstitiously preserved as early gods. The Romans were equally ungrateful, but they dared not act the same with the Greeks, whose wit would Lave exposed the theft. The Etruscans, if they imitated the Egyptians, as was the opinion of M. Buonarotti, made no attempt to conceal it, yet much of the style of their painting and sculpture is original; it is true it never reached perfection, nor can the date of any particular monument be given, because no listory of the nation remains. The tomb of Porsenna, as is said by Strabo, may have owed its origin to Egyptian commerce, but the variety displayed in all their earlier monuments, is a proof of genius in the people which, had not conquest and the sacerdotal nature of their government prevented, might have been found, in its ultimate development, to have equalled that of any nation of antiquity.

The tombs whence these figures and monuments were brought were in peneral excavated in the rock, and in a line of road immediately leading to a city, as was the custom of all the ancients, and the outside, where it would admit being adorned, adomed with sculptured ornaments; they were of that kind called Taphos, and not like the Celtic tumulus or mound; in some of them it was the custom for the priests to practise the art of divination. The interior of the chambers were so formed, that the ceilings, were made to represent beams of wood, and the walls of those belonging to families or individuals of
distinction were entirely covered with paintings ; these were divided into compartments, and the subjects represented were rarely of a sombre or funereal description; in many of them groups of figures are represented as dancing with female musicians playing on flutes. The dress of the men is commonly a cloak, thrown over the arms and shoulders, without sandals or any other covering; the women have light tunics and mantles floating in the air, both of which are bordered; all the figures are crowned with myrtle; the men wear a necklace of blue beads, and in the back-ground of the picture is generally seen a table covered with painted vases, which contain the wine destined for these votaries of Bacchus; in others there are representations of chariot races; a number of cars, with three horses to cach, appear ready to start, and only wait because the steeds of all are not prepared. In some wrestling matches are depicted, over which a figure on horseback presides armed with a lance. It is evident that the subjects on the walls of these tombs are a true representation of the funereal ceremonies of the Etruscans, and that they contemplated death but as a gate through which mortality must pass to obtain a perpetual enjoyment. The chests when opened were frequently found to contain, beside the bones of the deceased, many favourite articles appertaining to their lives, such as female ornaments of gold, parts of the armour of a warrior, besides mirrors, cestusis, dice, table utensils, and pieces of money of ancient fabric, as also vases of glass and terra cottia, some beautifully painted, with many other articles possessed in life. The chest on the right hand from the entrance of the grand saloon of the Museum, was found in a chamber excavated in the rock on the road from Tuscanella to Cometo, the ancient Tarquinia. The bas-relief in front represents the head of Medusa, having on each side a dolphin. A figure of a boy, probably the son of the deceased, stands beside; he is naked, excepting a sash around the loins; the cover is the recumbent effigy of an aged matron. On the cover of the adjoining one is sculptured the statue of a priest of Bacchus, which is slown by the prefericulum he holds in his hand, and the ivy chaplet round his temples, as also by the sacred utensils hanging from the wall on his side; the chest belonging to it presents in front a combat of three warriors, scarcely blocked out; within it were the remains of the body and some other articles. The next chest has a male figure on the top, and an inscription, probably bearing the name of the departed, engraved on the upper comice of the principal side; the bas-relief on this represents two marine monsters opposite each other, and between them is a dise intended for a Gorgon; the marine figures are finished, but the other is only sketched out. This is strange, but probably can be accounted for, that it was the custom to prepare the receptacle during life, and, not being completed, it was thought sacrilegious to touch it after death; round the neck of this figure is a circular ornament, surrounded with a riband in spirals which it is difficult more accurately to define; it has also a ring in the hand, which it was also the custom for women to hold. There is an inscription, which, according to the theory of Lanzi, may be translated, "Vibius Sithicus or Sextus Velthurius. Medosie natus Tanaquilis filie, vixit annos quinquaginta." The next cover represents a warrior, as may be judged from the basrelief of a military car, guided by himself; belind is a genius with expanded wings, followed by three figures bearing palms in procession, and a fourth who has in his arms an instrument resembling the crooked Etruscan trumpet; there is a long inscription upon this coffin, the whole of which, according to the above antiquary, is unintelligible, excepting the name "Arsio Velio," and the age. The adjoining chest to this has a bas-relief of a bearded head, covered with the Phrygian bonnet, the point of which falls over the forehead; beside are two marine monsters mounted by boys, symbolical of the passage of the soul over the ocean to the Elysian fields. The statue on the cover is that of a young female, which has evidently been painted red, as also the omaments of a golden colour, a practice which seems to have been general among the ancients; on the head is a diadem, and there can be no doubt but the countenance is a portrait of the deceased, who must have been handsome; the dress is in an unfinislicd state, as is the case with almost all the others. In the Pligalian saluon is a chest by far the most magnificent of the whole collection; it is of larger dimensions than any of the others, and is sculptured on all the sides, which is unusual, and would seem to prove that it was intended for some superior personage. At the head is represented a combat of gladiators in honour of the deceased; the bas-reliefs on the other sides of the monument display the barbarous sacrifice of human victims, men, women, and children, who are hacked to death before the altar, amidst the despair of their relatives and friends; the whole is masterly executed, the grouping of the figures is excellent; the attempt at flight of some, and the useless resistance of others, are boldly delineated, and but that the finish is not equal, we think that this sculpture is not surpassed by any of the splendid specimens of Grecian art around ; this beautiful work has unfortunately been much injured,
and only a few letters remain of an inscription which probably contained the name of the deceased. The next sarcophagus has no basrelief of any kind, the cover is a figure of a priestess of Bacchus lying supinely on the chest; she is dressed in the pomp of her sacred calling, and ornaments of gold decorate her person. A fawn, sacred to this god, is lying beside her; in leer right hand is a vase with hundles, and a thyrsus in the left. The style of this figure varies from that of all the others.

The next chest is of terra cotta; the statue which forms the lid of it represents a young female dressed as the old matron before described, but it is to be remarked of this figure the singular position of the legs; the left is bent under the other, and is seen at the back of the statue; the whole is coarsely finisled, except the face, which is more carefully formed. The adjoining one is also a sarcoplagus of terra cotta, and has on it two figures of dolphins in relief; the cover is a young woman, whose head is encircled by a garland, reposing with the right hand under the neck, while the other is extended, on the litule finger of which is a ring; the leg is in the same awkward position as the one before mentioned.

The last we have to describe is a magnificent tomb, which bears in front two winged genii, sculptured; in the hand of one is a torch; the other bears military trappings, and in the centre are ornaments of leaves; at the sides are heads of animals, in various forms, and at the back are other genii and ornaments. The cover is of a cubical form, terminating at the cornice with tiles and artificial masks, surrounded with festoons; in the middle of the ridge of the roof are two serpeuts tied in a knot. At the extremities are sphynxes with expanded wings. The whole is sculptured in peperino stone, which is carefully covered over with a coating of lime stucco, and coloured in red, black, white, and green; on the front is an inscription, and the same is delineated in colours on the lid.

ST. KATHARINE'S DOCKS.

Engineer, Thomas Telford, C.E.

STECIFICATION OF ENTRANCE LOCK AND CURFER DAM.
The lock which is to be enclosed from the rircr by a coffer dam during the cxccution of the roork, is to be placed on the situation sheron on the plan, and its dimensions are to be as fullows, (there are to be three pairs of gatce.)

The upper sides of the pointing cills for the lower or river and middle gates are to be 10 feet below low water suark of a spring tide, and the pointing cills for the upper gates are to be laid 6 feet below low water-mark of a spring tide, the level of which is to be reckoned from Trinity datum, which tides is calculated to rise 18 feet from low to ligh water; the coping of the lock is to be 6 feet 6 inches above the level of high water, so that from the cills of the lower or middle gates to the top of the coping the depth will be 34 feet 6 inches, and the upper gates 30 feet 6 inches. The length between the lower and upper gates is to be 175 feet; the width of the lock is to be 45 feet at top, the platforms for the gates one foot lower than the tops of the poioting cills, and inverts for a caisson at each end of the gates are to be on the same level.
The earth is to be excavated down to the surface of the clay of a sufticient length and breadth to afford space for constructing the lock and its appendages, and for walls for an iron swivel bridge, and alwo for 5 feet in thickness of puddle at the back of all the walls, and the earth that is excavated to be removed by the contractor to some place to be found by him, excepting such portions as the resident engineer shall direct to be selected and preserved for puddle. All the space between the before mentioned clay and the bottom of the lock, inverts, platforms, chamber walls, counterforts, capstan funnels, bridge walls, and every part of the brickwork and masonry to be carefully filled up with proper puddle or good clay, as shall be directed by the resident engineer.
The platforms for the gates' recesses and river wings, are to have bearing piles of beech or elm timber, and driven as shewn on the plan to be in lengths of 12 feet, and to average 9 inches diameter in the middle, each pile is to be slod with a wrought iron shoe of not less than 10 libs. weight,-they are also to lrave a wrought iron circular hoop 3 inches broad and 1 inch thick fitted to their heads, to prevent then from spliting while driving. A row of sheeting piles grooved and tongued must be driven under the pointing cills to each platform, the timber for which is to le beech or elm in lengths of 12 feet and 9 inches thick, they are to be shod with strong plate-iron shoes, and driven close to each other so as to be impervious to water. Similar rows of sheeting piles are to be driven under each groove for a caissom, and also at the toe of each wing wall at each end of the lock, the tatter
are to be driven in a slanting direction to correspond with the batter of the walls as represented in the drawing, and are to be 9 inches thick by about 12 feet in length; the heads are to be cut off straight and at a proper level, and at the top of each row under the pointing cills and grooves for the caisson a waling of fir timber is to be placed on each side 12 inches broad by 6 inches thick, these walings are to be secured to the piles by screwed bolts with nuts and plates, the iron for the bolts to be 1 inch diameter, and those for the slanting piles to be $1 \frac{1}{t}$ inch, and the distance between each bolt is not to exceed 2 feet, the heads of the bearing piles, under each platform and pier are to be cut off at a leval agreeably to the drawing, and upon them cills of fir timber 12 inches square are to be placed and securely spiked down to the piles with one spike to each bearing pile, the spaces between these pile heads, and cills are to be sotidly filled and well rammed with good tough clay and gravel, mixed in a proportion of trd gravel to 3 rds clay. Fir planking 6 inches thick laid close is to be spiked down to these cills with one spike in each plank upon each sleeper, the spikes for which are to be 12 ipchen long, those for the cills to be from 20 to 24 inches, of $\frac{1}{\text { s square iros, }}$ the latter to have jagged points ; upon these floors of timber are to be constructed the platiorms or aprons for the gates, the recess walls, and the piers for the swivel bridge. The ground upon which the inverted arches for the chamber and wings is to be placed must be prepared to a proper form agreeably to the drawing. The platforms or apross of the gates are to be of Bramley stone in Yorkshire, or Stonadge stone in Derbyshire, or Dundee, Millfield, or Loker stone Scotland (all of the test quality, the contractor is to be at liberty to propose any other quarries for the consideration of the directors) and laid in regular courses, and radiated so as to form an inverted flat arch on the lower side of the cills; these stones are to be $\mathbf{3}$ feet 9 inches in depth from the top of the outer platform, and those ander the sectors for the gates are to be 2 feet 9 inches as shewn by the longitudinal section; these platiorms are to extend under the recess walls. The masonry is to be solidly bedded in Pozalano mortar mized in the following proportions, viz.: two parts Dorking or Merstham lime powder, one part of Pozalana and two parts clean sharp river wand, the lime and Pozalana to be ground together in a dry state. None of the courses are to be less than 15 inches thick on the face, and no stone to be less than 3 feet long, the beds to be correctly dressed to the radius, and the end joints made truly square from the face, the face of the stone to be neatly droved round the edges and face with a chisel 2 inches in breadth, and the same on the beds ansl end joints, and neatly punched between the said chisel drafts. The inverted arch of the lock is to be elliptical, and of brickwork 2 feet 3 inches thick at the bottom, and increasing upwards as shewn by the transverse section, with stone quoins at every termization. The bricks to be well burnt, hard sound grey stocks laid flush in mortar, mixed in the proportions-1 part Dorking or Merstham lime powder, and 2 parts clean sharp river sand. The charaber and recess walls, and also the wing walls are to be of brickwork, built of similar bricks except the facing for 9 inches inwards, which is to be of well bumt sound marlm paviers, the courses of bricks to be laid at right angles from the face of the walls, unless where otherwise shewn in the section, they are all to be laid flush in mortar as above described. Two courses of boud stone 1 foot 8 inches thick on the face is to be built in the chamber walls of the lock, as shewn in the transverse section; the beds to be radiated and laid at right angles from the face of the walls; the front is to be of the before-mentioned stone, laid header and stretcher alternately, the headers not less than 3 feet long on the face, by at le:art 4 feet on the bed, the stretchers not to be less than 41 feet long on the face, by $2 \frac{1}{4}$ feet on the bed; the stones to be well dressed as formerly described, and laid flush in mortar; these stones to cover the whole breadth of the walls and counterforts. The stones for the counterforts to bond at least 15 inches into the main wall. The hollow quoins for the round posts of the gates are to be of the before-mentioned storne. No stone to be less than 18 inches thick, or to answer six courses of bricks, and not less than 6 feet long by 41 feet on the bed, an average from the whole length of each stone, they are to be lair flash and solidly bedded in Pozalana mortar; the face for the round posts to rest against is to be very correctly and very neatly dressed with a chisel, so as to make a water-tight joint betwixt the wood and the stone, the face of the other part to be dressed similar to that of the apron, the beds and end joints are to be truly worked throughout, so that the masoury may be perfectly solid and impervious to water. The quoins at the recesses for the gates are to be of stone of a similar quality to that for the hollow quoins; no stone to be less than 15 inches thick on the face, and 4 feet long by not less than 2 feet 6 inches on the bed, and to be as well dressed as the hollow quoins.

A groove for the caisson is to be formed across the bottom, aft up the side walls at each end of the lock as represented in the duhriag
On the outaide of these groopes, between the wing wall at ent

PLAN OF COFFER DAM.

Figure 1, sheming the third tier of Braces and part of the Lock.

tremity of the lock, there is to be a platform of well squared stone 2 feet 6 inches in depth, also the aforesaid grooves and the lock chambers with quoin stones 3 feet long by 2 feet in breadtl. Two courses of bond stone are to be built in the wing walls and counterforts, 15 inches thick agreeably to the drawing, the beds to be at right angles from the face of the wall, the curved part of the river wings, and also of the wings into the entrance basin, are to be faced with scone for 20 feet in height, 10 feet in length, and 3 feet in breadth on the bed, laid header and stretcher altemately, the heads not to be less than $2 t$ feet long on the face, by at least 4 feet on the bed, the stretchers not to be less than $4 \frac{1}{2}$ feet long on the face, by at least 2 feet on the bed, the face to be well dressed, and the beds and joints correctly worked, and laid flush in mortar; the backing to be of the same sort of stone, laid flush in mortar, to be in lengths from 3 to 5 feet, and in breadths suitab e to the thickness of the walls, and of the height of the front courses; the stones for the counterforts are to bond into the wall at least 15 inches, and one stune only is to be used in each counterfort.

Above the top of the inverted arches, the chamber walls are to be onilt concave, or of a curvilinear form in its vertical direction in the front-they are to be 5 feet 3 inches at the level of the lower side of the coping, and the back of the walls being perpendicular, will deter-
mine the thickness downwards; there are to be counterforts as shown in the plan and section, they are to be founded at 6 feet above the lowest part of the underside of the inverted arch, and to be carried to within 4 feet 6 inches of the top of the coping, and from the said 4 feet \mathbf{t} inches to diminish to nothing at the lower side of the coping, all agreeably to the plans and sections.

The chambers, recesses, and wing walls of the lock are to be coped with the before-mentioned stone 18 inches thick and 4 feet on the bed, and no stone to be less than 4 feet long on the face, but as much larger as can be got, the face of the stones to be well and neatly dressed, and the upper front edge to be rounded 3 inches, and the back is to be regularly jointed to 4 feet in breadth, the end joints to be made square throughout, and the bottom beds to be solidiy laid on the brickwork in good mortar; there are to be two cast iron dowels 6 inches long and 2 inches square in each joint, run in with Parker's cement.

A puddle of clay and gravel mixed is to be formed at the back of the walls and counterfurts 5 feet thick, to be brought up during the progress of building the walls from the ground to 3 feet above bigh water-mark of a suring tide, this puddle is to be backed up with earth, and laid in liyers as befure mentioned, to make firm and solid at the back of the walls and on the excavated ground.

Figure 2, shewing the lower tier of Braces and part of Lock.

Specification of the coffer dam for the entrance lock, to be 207 feet long, and its form as represented in the dravings.

The principal dam to be made of two rows of piles at a distance of 6 feet apart, of Memel or Dantzic timber 12 inches square, also an outer row of piles of the same timber 12 inches square at $8 \frac{1}{\frac{1}{2}}$ feet from the main dam An inner row to be driven to strengthen the foot of the main dam at 5 feet from it, of fir timber 12 inches square, the piles to be driven 8 feet below the lowest part of the lock. All the piles to be perfectly straight and parallel on two sides, and shod with wrought iron shoes not less than 15 lbs each, strong iron hoops also to the heads, the iron 4 inches broad by 1 inch ; the guage piles to be driven opposite each other, at the distance of 10 feet apart, and their heads when driven to be 4 feet above high water-mark of an 18 feet tide; when they are driven to the proper depth, two rows of temporary double walings 12 inches by 6 inches to be bolted to them, the upper one to be one foot above high water-mark, and the other as low as the tide will admit, allowing a space of not less than 12 inches wide between the wale pieces, for the piles to fill up the bays between the guage piles, the bolts to be $1 \frac{1}{2}$ inch square iron, 3 feet long in the clear, and to pass through the walings and the piles, and also two pieces of timber 6 inches thick to be placed under the head and nut of each bolt; the remainder of the piles to fill up the bays are to be
driven, and each bay keyed in with wedge piles to make the dam water tight. When all the piles are driven, the temporary walings to be taken off, the joints between the piles of the outer row of the main dam to be caulked where necessary with tarred oakum, 3 rows of permanent single walings are then to be put on, as shewn on the drawings, of timber 12 inclies by 6 inches, and in lengtlus not less than 20 feet, the two rows of piles to be tied together with screwed bolts and nuts with plates, to pass through the walings and piles, and also the two pieces of timber, the bolts to be of the best scrap iron 2 inches diameter and proper lengths, the distance between each bolt as the bottom tier is not to exceed 5 feet, and the middle tier 7 feet, and the top 10 feet. The dam is then to be filled with good clay to the level of 3 feet above the bottom tier of the bolts, and from thence ω 3 feet above high water of a spring tide, with bricks laid in sand.The guage piles for the outer rows to be driven 10 feet apart, and the heads when driven to be 6 feet above low water-mark of spring tide,
two rows of temporary walings 12 by 6 to be bolted to the ginge piles two rows of temporary walings 12 by 6 to be boited to the grage piles

[^39]Figure 3, Transverse Section of Coffer Dam and part of the Lock.

Reference to Engravings, similar letters refer to similar parts of Coffer Dam.-P, piles. W, wales. T, iron ties.-B, braces. C, clay puddle. R, the river. H, Trinity high water-mark. L, ditto, low water-mark 18 feet below. S, surface of river hank, dredged 12 feet below bow water-mark. bl. cl., substratum of blue clay. The inner row of piles to coffer dam are cut of level with t, pl, the timber platform and form sheet piling to the latter. J , jetty projected 70 feet into the river for loading the bargs with the excavation of the locks ant dock.

Lock. -pl, platform of masonry. gr, groove for caisoon. M, masunry. S, pointed sill of gates. Q, quoin to inner post of lock gates. P. R, rows of piles 12 feet long and 9 inches in diameier, upon the top are spiked heads or cross sills 12 by 12 inches, upon which is laid 6 inch planking. Between the he ds and cross sills is filled in with rubhle. S.p, sheet piling at the toe of the wing walls. i, ar, and B, invert to lock chamber of briekwork. b, at, bond stones 15 inches thick. C, stune coping 18 inches thick.
c, l centre line of lock and coffer dam.

FORM OF SHOFS.

Figure 4, for Guage Piles,
Figures 5 and 6, for Bay Piles.

TIE BOLT FOR COEFER DAM.

Fig. 7, Plan of Head.
rig. 8, bult.
Fig. 9, Plan of Nut.

Scale one inch to the foot.

Scale one inch to the foot.
the same as to the main dam, leaving sufficient space between the piles to fill up the bays the same as above, the temporary walings are then to be removed, and one of 12 inches square to be put on, as shewn by the drawing, and bolted, as above, so as to secure the piles to the main dam, the bolts not to exceed the distance of 5 feet apart, and every second bolt to pass through the two rows of maindam piles and walings, this dam is then to be filled in with clay as above; the inner row of piles, at the distance of \bar{s} feet from the main dam to have a double waling 12 by 6 inches bolted within one foot of the top, and to be firmly braced from the inside, and the top part of the dam must be tied to the shore with chains to prevent it going outwards at low water.

Along the western side of the present lock or gut which passes along the eastern side of the entrance lock, there is to be a coffer dam 140 feet in length, with returns at eas:h extremity, to consist of the same materials as the middle row of the main coffer dam to the entrance lock as directed by the engineer. The timber, iron, clay, bricks, and all other materials for the dams to be found by the contractor, who is also to find all pile-engines, steam-engines, stages, \&ec., and to the satisfaction of the engineer. A circular trunk 3 feet diameter with sluices, for letting the tide flow in and out, are to be placed through the dam. The mud, gravel, and other matter, now upon the space where the coffre dam is to be constructed, is to be removed by the contractor to the level of 12 feet below low water-mark of a spring tide, and in an uniform inclination to the lowest part of the bed of the river, opposite the said coffre dam.

ANCIENT STATUES.

On the different Materials employed by the Ancients for Statues, and on the Varieties of their Marbles. Translated from the French of the Count de Claerac, Knight of various Orders, Keeper of the Firat Division of the Royal Museum of Antiquities in the Lowtre
marbles or stones mentioned in ancient authors.

(Continued from page 369.)

The ancients included under the name of Marmor, marble, derived from the Greek marmaron, signifying splendour and brilliance, all stones, more or less bard, susceptible of a fine polish, and fit for sculpture or architectural decoration, such as marble, alabaster, porphyry, granite and other stones, which are huwever of very different natures. As it is not within our province to enumerate all the mineralogical characters, we shall be contented with pointing out to amateurs how they may by mere inspection distinguish the kinds of these stones.

Porphyry, the name of which shows that the stones to which this name was first given were of a purple or deep red amaranth tinge, is very hard and cannot be scratched with iron; it is cold to the touch like marble, which again is more so than stone or plaster. It is not affected by nitric acid, gives fire to steel, und is interspersed with clear angular specks, in a paste or cement, generally of a uniform deep colour, and which, serving as a ground to them, determines that of the porphyry.
Granite, almost as hard as porphyry, and resisting acids, is composed of larger or smaller grains, of irregular forms often rounded, of different natures, and frequently agg'omerated one with another without any intermediate, and of which a portion presents a crystalline laminated appearance, different from the specks in porphyry.
Marble which effervesces with acids, is scratched by iron, and rarely gives out sparks to steel; its texture, not so close as that of porphyry or granite, is unmixed with stone of other kinds. It is only translucent in very thin leaves, and is often distinguished by the variety of its shades, and by their irregularity. Its fracture is brilliant, and often in white marble it is saccharine, or like loaf sugar.
Alabaster has often a great resemblance to marble, for which it may be mistaken; however true oriental or calcareous alabaster, from whatever country it may come, is harder than white marble; the scratch is translucent even in great masses, its fracture is crystalline. Whether white or coloured, it shows undulations, festoons and clouds more comnected and regular than those of marble.-Gypseous alabaster, like that of Volterra, is very soft and may be scratched with the nail; is of a milk white colour, transparent, and does not effervesce with nitric acids.
Breccu is composed of smaller or larger angular fragments of marbles or hard stones, united together by a cement forming veins. Brocatelle are breccias, the spots of which resemble the stuffes called brocades, they often contain shells.-Pudding stones differ from breccias, by being composed of rounded fragments, either of marble or hard stones. They are often silicious pebbles of different kinds united by a cement of the same kind.-The LusackiLe are formed of masses of shells.-Saeliy Marbles, such as the brocatelle, only show them scattered about.-Madrepore Marbles contain the remains of madrepores-. Onion Marbles are of a dirty white with veins and waves of greenish chalk. These bands depend much on the way in which the marbles are sawed or split; they are said to be sawed in grain, when they are sawed the way of the bands or layers, and in counter grain, when sawed perpendicularly or obliquely to these undudations. In marbles with rays or large flakes, the grain is so different from the counter-grain, that they seem quite a different species.

The want of precision with which ancient authors describe marbles and stones, prevents me from distinguishing them often in works of art. For easier reference we shall arrange them according to the colours supposed to belong to them, but we must confess that this method is liable to many mistakes.

WHITE MARBLPS.

-Ivort White, doubtless very compact-Bosphorus, greyish white. -Megara Conchite, from near the Amphialian promontory, white, soft, and mired with shells. Statues it seems were made of it.-Coralitic, found perhaps in Phrygia, near the river Coralius, dead ivory white; the pieces of it worked did not exceed two cubits (about three feet), it seems that it was called also Sangariue lapis, Sangarian stone, from a river in Phrygia.--Ephesian, very white, used by Pyxodorus, 612 years before Christ-Mount Hymetrus, near Athens, a greyish white; it was celebrated in the time of Xenophon; the orator Lucius Crassus was the first Roman, who, in the year of Rome 662 (92 years before Cbrist), decorated his house on the Palatine Mount with six
columns of this marble, twelve feet high, which cansed it to be named the Palatine Venus, by M. Brutus.-Lesbun, of a yellowish white; there was also black. Pliny B. 36, ch. 5, believes that from the quarries of Lesbos were extracted the first variegated marbles; be says that Menander, who treated with great care on every thing relating to the different marbles, is the first author who speak of variegated marbles, and that he says little about them. -10 nk , of a white approaching blue, and of a very fine grain; the quarries mear Carrara were discovered about the time of Julius Cesar, and competed with those of Paros and Mount Penteles.*-Mrlassa, in Caria, a very fine white.-Onyx, or Onycuite, found in Cappadocia, in the time of Mark Antony, appears to have been a species of oriental ah. baster, nearly resembling phengite.-Parian, from the Cyclader, a white marble, most celebrated among the ancients. Herodotus mentions it, and appears to be the LTGDINOS of Anacreon; it was called lychnite, because the quarries were worked by lamp light; it is perhaps also the stone of Marpessus, celebrated by Virgil.-Pentelucs, extracted from Mount Penteles, near Athens (used by Byzes 600 years before Christ), white, much esteemed; however it is formed of layers and strix, sometimes earthy, and injured by exposure to the air. Plity does not mention it. It seems that the marble of Mount Phellens, in Attica, was of the same kind.-Pbengite, found in Cappadocia in the time of Nero. It seems to have been a white alabaster, veined with yellow, and almost as transparent as specular stone. From a pasmge in Suetonius in the life of Nero, we are led to believe that pheagite was placed on the walls and used as a kind of looking glass. Teaples were made of this stone, into which light entered through the wilkPoros, so named from its lightness and porasity, it resembled Parimo marble. The temple of Delphi and that of Jupiter at Olympits were of this marble. Paros and Poros are the only Greek marbles metrtioned by Herodotus.-Srnnadic, from Synnas or Docimium, in Phry. gia; it was named also Phrygian or Mygdonian marble; the white resembled alabaster or alabastrite; it was much esteemed. There was also white and purple ; perhaps it was purple breccia.-Tassur, white, of a yellow tinge, like that of Lesbos; it was used in sculpture. -Trian, or Libanian, very white.

YELLOW MARBLES.

Alabastrate, a city in Egypt between Antinopolis and Cynopolis, took its name from the great quantity of this marble found there. It was yellowish white, veined, and of a honey colour. It was at first, says Pliny, named Onyx; it was our calcareous oriental alabaster. It was used for statues, columns and vases for perfumes, + named clabostra, from their being without handles (labe), and whence the mame was given to the stone. Vases of this fiue material are often found in tombs, but there are also very small vases of true ouyx or sardony.Corinthan, yellow.-Jerusalem. Near this city, in the time of Justinian, was found a marble said to be of a flame colour, po doubt bright yellow red, a kind of rosso antico, or antique red.-MAcs. DONIAN. It seems to be our gialloantico or antique yellow. - Macos or acythos, yelluw.-NUmidian, of a bright red and yellow. It seems that in the time of Seneca and Pliny, it was endeavoured to imitate this marble by incrustations, or by painting other marbles.-Scinstos, yellow Spanish marble, and which probably like sckist, separated into leaves.

blaci marbles.

alabanda or Miletos, in Caria, black of a purple hue.-of Luctilus, a very fine black, brought to Rome by L. Lucullus Scauras decorated the atrium of his house with $\mathbf{3 6 3}$ columns of this marble, 38 feet high.-LyDLAN. Touchstone was called Lydian marble of stoxe; it was also called Basanite, from a Greek word signifying to torch; this stone is not a marble but a basalt $\$$

RED MARBLES.

Rosso antico or antique red, is not easily recognised among the descriptions of marbles given by ancient authors, it was perhaps thes of Lydia.-A Lybian marble was red and white. $\$$

green marbles

Augustus, wavy and spotted green, perhaps the sea or Egyptian green.-Carystus, extracted from Mount Ocha, near the city of Eubace It was green or mixed with that colour, and probably green cipolino.

[^40]Mamurra was the first Roman, who, in the time of Julius Cesar, used columns of this marble.-Emerald. It seems that the emeralds or smaragdes, of which the ancients made statues and columns were only green fuor spar, just as the yellow fluor spar passed for topaz, it might even have been only coloured glass. It is known that the ancients were very skilful in the art of making glass, and that they even employed it in large columns, such as those with which Scaurus decorated his theatre.-TAygetes, a mountain of Laconia; it was called also Lacedemonian marble. It was green, according to what authors says of it, it has more relation to pear coloured green* than to verde antique; it was perhaps the prasinum. It was worked in the time of Strabo.-Tenarus, in Laconia. According to the same author it was used later than that of Tavgetes, and seems to have been a dark green neariy black.-Tiberius, discovered in the reign of that emperor. It was green, with dispersed and mixed streaks, resembling the marble of Augustus.-Thessalonican seems to have been green, and is apparently our verde antique.t

Variegated marbles.

Mount Atrax, on the Peneus, in Thessaly. It appears to have been of several colours, among others white and black; of a pear coloured green. It was used in the church of Santa Sophia.-Celtic, white, veined with black.-Chan, Theophrastes is the first author who speaks of it ; it was black, shaded with several colours.-JASsos, a Carian island, veined with red and white, tending to yellow; it was mamed also Carian marble.-Phoconessus, one of the Sporades islands in the sea of Marmara, which derives its name from the great quantity of marbles (Marmora) found in its islands. This marble was also mamed Cycican marble, because it was much used there. A fme white, veined with black, and must have been of the kind called grand antique. It was much esteemed. The palace of Mausolus, at Halicarnassus, built of bricks, was covered with this marble.-Rhodian, with golden or pyritic spots. It was perhaps a kind of portor.-Of Lrsimachus seems to have resembled the preceding $\$$

MARBLES OF UNENOWN COLOUR.
-Albano. Of Mount Cybele, in Phrygia.-Egina.-Gabla.-

[^41]Heracles in Caria.-Hirropolss. This was perhaps a porphyry or granite as well as the Memphis atone.-Miletus.-Molossi, in Epirus, veined with different colours.-Scyros. The same.-Spracusan: It was wrought from the latomia, which were quarries before Dionysius converted them into prisons. It seems that this stone contained casts of fishes.-Tauromenian, in Sicily, of several colours.-Of Tiber or Tivoli.-Tragurium or Salone in Dalmatia.

BASALTS, GRANITES, PORPAYRLES, \&C.

Basalt.-According to some authors, the name of this stone ought to be barsall, from a Hebrew word, signifying iron, of which it has the colour and the hardness. It has very small and often microscopic grains, and sometimes has the appearance of a fine green bronze. According to Pliny, this stone was brought from Arabia and Ethiopia; Pausanias says that the statues of the Nile wete made of basalt, because this river comes from Ethiophia. There was also a porphyry which the ancients might have mistaken for basalt. F Leucostictos or Leptoserbos, porphyry in which white prevailed. It was brought from Arabia and the Thebaid. Ophite or Serpentine. The first name was given by the ancients to green porphyries, on account of their colour and their spots, which are like the skin of some serpents (ophis). It was only used in vases and columns. The ophite of Elephantina was called Tephria, because its colour was ashy (tephra, ashes). There was some almost black, others with white spots. Small columns only were made of it. Much ophite is found in the paved road from Rome to Ostia. Psaron, Lycian porphyry, was so named on account of its spots resembling those of the sturgeon (psar). Syenite, rose porphyry, named Pyrrhopocile, on account of its colour (pyr, fire, poikilos, varied). It was named also Paaronion. Thiban Porpixar was black with yellow spots. Obsidlan, volcanic glass or stone, was so named because in the time of Augustus, it was found by a certain Obsidius, who made of it a statue of that emperor. Obsidian is very hard and black, and is translucent in small pieces or in sheets; it is then of a brown black. It was used, according to Pling, to imitate precious stones, and to work the barder ones. No monuments made of this volcanic stone remain.
(The next section will contain an alphabetical list of all the antique stones, as roseo, rero, cerd, giallo antico, \&c., with explanations of all the Italian terms.)
*They also called touchstone a marble.-[Note of Translator.]

CURTISS PATENT RAILWAY IMPROVEMENTS.

Hydrostatic Jack.

Figure 1.-Elevation and Section.

Rgure 3.-End View.

Figure 2.-Ground P an and Section.

CURTIS'S PATENT RAILWAY IMPROVEMENTS.

Hydrostatic Jack.

THE machinery or apparatus consists of a machine to place or replace an engine or carriage upon the rail; this machine is an adaptation of the hydraulic press for the purpose of a lifting jack.

Figure 1 is a side view, one half is shown in section. Figure 2 a plan partly shown in section, and Figure 3 an end view partly shown in section; similar letters refer to similar parts of the machine in each figure, and the description refers to each figure so far as the parts are shown in each. A, is the end rail of the framing of an engine or carriage which may be required to be placed upon the rails. B, two cylinders or tubes of wrought iron or other metal, furmished with stuffing boxes and leathers in the manner usually employed in hydraulic presses; rams or pistons C, C, work in these tubes in the usual way, and the upper ends of the rams are provided with notched ends or otherwise as may be found convenient. E is a force pump fixed horizontally upon the plank L, ϵ is a metal block in which the channels are formed for the channels valves, and adjusting screws, the general arrangement of which valves and screws is the same as in the hydraulic press, but I form it in this manner, in order to avoid the use of connecting pipes and the usual fittings, which would be very liable to be broken or deranged. F is the plunger of the force pump E, worked by the bell-cranked lever G. H, a cistern to hold water to supply the pump, which is introduced into the pump through the lying ralve, which is kept in its place by a spring in the usual manner; when the pamp is set to work, the water lifts the vertical valves $d, d_{\text {, }}$ and passing through channels clearly shown in Figures 1 and 2 in section, enters the cylinders or tubes B, B, and thus raises the rams or pistons C, C; the water may be prevented entering either of the cylinders, as may be desired, by screwing down the' screws 8 , 8 , over either of the vertical valves, when the entire force of the pump will then pass by the free valve and enter the cylinder to which it belongs. This adjustment may be necessary to keep the engine or carriage level, and the same adjustment may be made by stopping the pnmp, and letting out the water from the waste-holes p, p, by screwing back either of the adjusting screws 0,0 ; the two barrels B, B, are fixed upon a strong plank, about four feet asunder, and the basement plate connecting them together is formed of a wrought iron plate rolled with a rib down the middle; this rib is bored to the requisite distance from each end, and thus the channel is formed for the water from the pamp to the cylinders; the cylinders are formed with flanch ends, and the joints made with the basement plate in the usual wav, either with a rust joint, or lead, or other jointing; the upper plank L slides upon the long plank M, which is laid across the rails, and the projecting end supported with blocks of timber, or in any other ready and convenient manner; the plank M, has fixed down the centre, the notched plate n, the centre of which sinks about an inch and half below the purface, thus forming a longitudinal groove, within which slides a bar of iron fixed to the under side of the plank L; thus the upper plank L is steadied and cannot get out of position. When the engine or carriage is lifted, the bar K is hooked into the link i, and the toe of the bar inserted into one of the notches of the plate n; then a man, bearing down the end of the bar, drags the apparatus and engine or carriage towards him, the whole sliding upon the plank M. When the engine or carriage is adjusted over the rails, the adjusting screws are screwed back, and the water escapes through the waste holes p, p, when the rams descending, the engine or carriage is placed upon the rails; this object being effected, the water is thrown out of the cistern H , and the apparatus placed in the tender or other place provided for it ; in some cases, a single cylinder and ram may be employed with a vertical pump, and for other purposes besides that described, likewise the cylinders may be substituted by serews, the other general arrangements being the same; also pipes or fittings for the water channels in any other suitable way than that shown.
One of the machines may be seen at work, (at the Manufactory, John's Place, Holland Street, Blackfriars Bridge, loaded with a weight of 8 tons, which is lifted one foot high by the force of one man in 5 minutes; thus the worst accident may be set to rights in half an hour by 4 men, although the engine may be buried in the soil up to the axles.

Ancifnt Bril.-The tower of Leak church, near Northallerton, contains three bells, one of ψ bich is supposed to bave been brought from the adj, ining dissolved monas ery of kievaulx. from the name "Aelred Grendale " being upon it, the said Xelred being the third abtoot of Rievaulx. He wis the noted chronicle of that age, and was the author of "Historia de bello Standardi," the history of the batule of the Standard, near Northallerton, in the year 1138. He died in the jear 1167, so that this bell must be 700 years old.

RAILWAY CURVES.

Sir.-Your correspondent R. W. S. in your September number sap. poses that Mr. Ely had formed an incorrect notion of the plan I subr mitted to the readers of your Joumal, for setting out Railway Carres, under the signature of "A Sub." Such however is not the case; the plan is easily understood, try a simple diagram.

Let the line a, b, be the direction of the railway previous to carrivg C , the point required to be arrived at, I propose, if local circumstanca admit, to use, first, a curve of two and a half mile radius, and then for a short distance only a curve of one mile radius, instead of carring from the point d to C , with one mile radius, the advantages gained are these;

In the former instance, the engine has to travel for only about belf the distance orer the objectionable inorking curre, and the engipe drives, instead of maintaining his velocity till he nearly reaches the eure, and then suddenly shutting off his steam, much to the detrimead of the working-gear, (which he would do in the latter case) would gradually close his valve and be able to run with a good velocity much nearer to his destiuation, with less wear to the rails, and less dange to the train.

I leave the discussion of other subjects that bave arisen from ay former communication, to R. W. S. aud W. Ely.

I am, Sir, your obedient servant,
E. Mtratar.

THE ROYAL EXCHANGE.-REPORT OF THE ARCHTBCTS

The following is the report of the architects, Sir Robert Smirts Mr. Joseph Gwilt, and Mr. Philip Hardwick, to whom the desigm for rebuilding the Royal Exchange were submitted :-
" London, Oct. 2, 1839.
"We beg to report to the joint committee for the managemed of the estates of Sir Thomas Gresbam, that, in compliance with theit request, we have inspected the plans, designs, and specificalion re ceived for rebuilding the Royal Exchange, with the view of selecting the first, second, third, fourth, and fifth best, in reference to, and io conformity with, the printed instructions issard for that purpose.
"Our examination, we trust we need hardly state, has been cosducted with every attention to the object in view, and with the atmorst care to discharge in a satisfactory manner the duty with which to committee have honoured us, not less on the ground of the mational importance of the subject, than that of doing strict jostice to the artists who have been engaged in the competition.
"In proceeding to perform theaduty in question, we considered it advisable that we should each in the first instance separately make 2 particular examination of the several designs, taking our iodiridual views on their respective merits, according to the best of our judgrest with reference to the general character of the design, the convewiest of the arrangements as exhibited by the plans, the estimated expese of the building, and the practicability of carrying the works intont cution, in conformity with the printed instructions to which in al respects the candidates were required to adlere; and, lastly, with ite object of ascertaining which, with respect to the instructions of the committee to us, was 'practicable, advisable, and capxble of beitg made a durable edifice.'
"In reference to the convenient arrangerment of the apartments " think it proper to observe, that the committee did not in their instrmtions specify the object or use to which they were to be appropriath: and we have therefore considered, that if offices and rooras of the rquired number and size were provided, if they were well lighted sed having the means of being warmed, capable of being mude freprox
and with a convenient access to them, the instructions of the committee in that respect would be sufficiently observed.

* After our separate examination abovementioned, we conferred together, and on comparing our observations, it was a great satisfaction to us to find, that in selecting a limited number for further consideracion, no difference of opinion arose between us in any respect, each of us an such comparison of our lists having selected the same designs.
" We regret, however, to say that we cannot submit for the choice of the committee five designs out of the number subjected to our notice, which we can, without many changes in them, report as practicable, advisable, and capable of being made durable edifices; and, that the committee may be fully aware of our meaning in this respect, we will shortly state in respect of practicability, that in the best designs of the collection, as regards external architectural merit, whole suites of apartments are placed in upper stories without adequate support being brought up through those below to carry them; that passages are shown without the necessary light; that chimnies are placed in situations from which flues could not be carried up; and that many rooms are without chimnies at all; and that in most, if not in all, the designs otherwise meritorions, what are called 'false bearings' appear to such an extent, that they are not practicable in their existing state, and hence it cannot be said that they would be durable edifices.
"How far, having thus disposed of the question of practicability and durability, some of those we shall hereafter name may be advisable is a matter of some weight. We will take one which is an extreme case, and occurring in a design of great external urchitectural magnificeace, in which a wall 100 feet in height surrounds the area appropriated to the meeting of the merchants. In this latitude, except about the summer solstice, and then only for a few days, the sun's rays would never fall on the pavement of this area, and in the winter solstice they would acarcely reach the top of the arcudes. In another of great merit, the merchants' area is reached by a flight of many steps, which may be considered unadvisable, both for the combination of shops with the designs, and for the convenience of those who are to use the edifice.
"There is, moreover, another point connected with our examination which demands our utmost caution in offering this report to the notice of the committee, and that is, attention to the cost, which appears to have been altogether lost sight of in the best class of designs. From the second instructions of the committee (upon our request), dated the 27 th of September ult., we have felt it necessary to place out of consideration those three which we have named in the second class, though possessing, for magnificence and beauty, great claims as works of art. We could not, without very elaborate calculation, inform the committee of the prubable excess of expense beyond $£ 150,000$; but we have no hesitation in stating that the excess in all of them would be very much indeed beyond the limit asaigned, and in this observation we consider we sufficiently for the purpose comply with the request made to us on that point. We would, before leaving these, mention that the sculptures with which they are decorated are so necessary for their effect, that they cannot be considered foreign to the baildings, but must be considered as essential parts of them.

4 Under these rather embarrassing circumstances, we hare endeavoured to meet the views of the committee by a selection of eight designs for their consideration, rather, however, as works of art than us designs which we can certify iu their present state to be practioable and capable of being made durable edifices. The first five of them, we apprehend, may be considered as designs which fall within the predicament of being erected for the sum comtemplated. Under the consideration of impracticability, it may perhaps be said, the selection should not bave been made at all, and that we should have descended lower in our gelection. Had we taken this course, other difficulties would buve presented themselves, for we must have submitted to the committee works not worthy of the age or country, and which, even if strictly practicable, would, in their selection, have done great injustice to the authors of the designs, with all their faults about to be named. The placing these latter, therefore, in the order of merit, is referable to them as works of external art. In either respects their faults of construction and inconvenience may be taken as nearly equal in magnitude.
"In the first class, those that we think may be executed for 150,0001 ., we beg to report as fullows:-

$"$ First	-	-	-	-	-	-	-	No. 36
"Second	-	-	-	-	-	-	-	43
$"$ Third	-	-	-	-	-	-	-	37
"Fourth	-	-	-	-	-	-	-	33
"Fifth	-	-	-	-	-	-	-	57

cs In the second class, or that in which we consider the cost would vastly exceed the sum of 150,000 ., equal impracticabilities of execution with those of the first class are to be found; and, notwithstanding
the very great talent they exhibit, there are circumstances of inconvenience and unsuitableness which would bring them, as we conceive, into the predicament of being unadvisable for adoption. We wish it, therefore, to be understood, that we report on them respectively as the works of very clever artists, who have produced pieces of composition in which, besides the circumstances abovementioned, stability, arising from solid bearings for upper apartments, and other essential matters, have been sacrificed to grand architectural features.
"The designs of the second class, in our estimation of their order of merit, are as follows :-

$$
\begin{array}{llllllll}
\text { Th are a } \\
\text { "First } & - & - & - & - & - & - & - \\
\text { "Second } & - & - & - & - & \cdot & - & - \\
\hline \text { "Third } & - & - & - & - & - & - & - \\
46 \\
\text { " }
\end{array}
$$

"We again venture to state to the committee the difficulties which have attended the making of the report herewith submitted, and which, but for the unanimous decision at which we have arrived, we confess, might have left doubts in our minds, if our view had not been confined by the committee to the expenditure of a given sum.

- Robert Smarez
"Joseph Grilt.
"Phlip Hardwicz.
"To the Joint Committee for the Management of the Estates of Sir Thomas Gresham."

PROCEEDINGS OF THE COMMTTEE ON THE SUAJECT.

The joint committee met at Mercers' Hall on Friday, the 18th ubtimo, to consider the report, and again inspect the designs, and came to the following resolutions:-
"Resolved,--That the premiums be awarded to the architects, who have produced the plans numbered as under-
$\begin{array}{ccccc}\text { *No. } 36 \text {, the first premium } & - & - & - & - \\ 43 & \mathbf{y} 00 \\ 37, \text { the second ditto } & - & - & - & - \\ 200 \\ 37, \text { the third ditto } & - & - & - & - \\ \end{array}$
being those reported by the architects as the three best designs.
"And it was resolved, that Sir R. Smirke, and J. Gwilt and P. Hardwick, Esqrs. having stated in their report upon the respective merits of the plans selected by them, that they cannot recommend any one to be carried into execution, this committee doth request them to take the lst, 2d, and Bd plans, as selected by them, into consideration, and prepare a plan and specification for a new Royal Exchange, such as in their judgment should be carried into execution, having reference at the same time to the printed instructions issued by this committee to the architects."

The architects to whom the premiums hare been adjudged.

No. 36, 3001. to Mr. William Grellier, district surveyor, 20, Worm-wood-street.

No. 43, 2001. to M. Alexis De Chateauneuff, of Hamburgh; and Mr. Arthur Mee, of Carlton-chambers.

No. 37, 100l. to Mr. Sydney Smirke, of Carlton Chambers.
The architects of the remaining designs of the first class.
No. 33, Messrs. Wyatt and Brandon.
57, Mr. Pennythorne
The architects of the second class designs, which mere considered too expensire.
50, Mr. T. L. Donaldson.
40, Mr. Richardson.
27, Mr. David Moscatta.

A Treatise on a Box of Instruments and the Slide Rule, by T. Kenтish. London: Rolfe and Fletcher, 1839.

This work seems very useful for the purposes for which it is intended as an elementary work for engineers, and for schools, and gives in a short compass the greater part of practical mathematics. Ás to the mnenotechnic rules appended to it, we have no high opinion of their utility to the student, they are something like Smollet's cabbage cutting machine, which destroyed more than it saved.

History and Process of Photogenic Draving. London: Strange, 1839.

This is a translation of the French pamphlet by Daguerre and Arago on photographic drawing, and contains an elaborate account of the processes. This art in its present state however is too troublesome and too expensive to admit of general application.

Papers on aubjecta connected sith the Duties of the Corps of ine Royal Engineers, Vol. 3.-London, Weale, 1839.
The volume before us keeps up the reputation of its predecssors, and indeed with very little zeal on the part of the Members of the Corps, it cannot fail to be otherwise, as they have auch excellent opportunities of observing works executed or in progress, and for making experiments. In this latter career thair services towards professional literature might well be much greater, and we confidently anticipate important results from the spint of inquiry which these volumes indicate.

This volume may very easily be divided into two portions, the first purely military, and the other immediately connected with civil engineering.

The first two papers are on the lines of Torres Vedras, Cadiz, both by officers of the name of Jones. Both are valuable, and the first particularly well drawn up.

The paper on the model-towers approved by Napoleon, has been already given in Muller's and other military works, but never hitherto so completely.

The fourth enters into minute details of the demolition of some of the old works at Sheerness.
Lieut. Col. R. Thompson contributes a paper on furnaces for heating shot, with some remarks on their application to steam navigation.

> The sixth paper is on the fortification of Posen.

The report on Beaufort Bridge by Lieut. Nelson is a well arranged plan for a bridge over the torrent river Kat, at Graham's Town. It consists of a timber bridge of 3 arches, 60 feet span from centre to centre of each pier, with a rise of 5 feet. The author states that he took his idea of the construction from a sketch he made "of a prettily contrived adaptation of the Prussian beams to a light foot-bridge of nearly 100 feet span, with a central rise of about 6 feet," when he was in the Rhenish provinces in 1834 . The construction appears exceedingly economic, and at the same time possessing ample strength; the design also shows how architectural effect of a pleasing character may be introduced even into a timber bridge. In the design before us, we have the piers in the bold Egyptian style which look remarkably well, their height being upwards of 40 feet.
The eightl paper contains a rough sketch by Lieut. Nelson, of an admired suspension bridge over the Lahn at Nassau.

Lieut. Denison's description of some of the works on the Ridean Canal affords but too strong a proof of the manner in which the public money has been wasted in ignorance and absurdity, and a striking example of the inefficiency of government education and controul. With timber at hand, the platform and wing walls at the entrance to the lock, instead of being protected with sheet piling, are formed of large stones, so as to ensure the destruction of the works. A great deal of time and money seems also to have been wasted on ridiculous plans for opening the lock gates.

Another paper by Lieut. Nelson is also a foreign contribution, and gives a description of the mode of bending timber in Prussia, to which we shall hereafter have occasion to refer.

The eleventh paper is of American origin, and describes the coffer dam used in the construction of the piers of the Alexandria aqueduct.

The twelfth is a description of a one-arch wooden bridge of 205 feet span at Paradenia, in Ceylon, thrown over the river Mahavillanga, in which an interesting account is given of the difficulties contended witb. It shows too one of the causes of failure in government works, for here it seems the Engineer's departraent constructed the abutments, and the Quarter-master general's the arch.

The thirteenth paper describes a series of bridges erected across the river Ottawa, in Canada. An account is given of a wooden bridge of 212 feet span, which would have been very extraordinary and very useful, had it not required a number of chains and ropes to keep it from falling to pieces. It is singular that most of the descriptions of works executed under military superintendence contained in this volume are such as to be far from giving a satisfactory opinion of this mode of conducting public works.

The fourteenth paper is a new barometer invented by Mr. S. B. Howlett. -The next paper is on ascertaining the height of mountains.

Lieut.-Col. Reid's communication "On the Operation of Salt Water on Iron," we give below.
"Considerable attention has been given of late to the effect which salt water produces in corroding iron; in consequence of that metal being now used for facing wharfs, and other works exposed to the sea. Some papers have been published on the subject, but their object bas been, I believe, only to ascertain the durability of iron us a material when in contact with salt water.
"I am not aware that pablic attention has ever been directed to the curiuns change which takes place when iror, in contact with silicious pebbles and other stones, is immersed in sallt water.
"My attention was first drawn to this subject from a deaire of acquiring a better knowledge of those laws of Nature which regulate the cohesion of solid particles; and from a conviction that the stody of these laws wonld afford the best means of improving our knowledge for practical purposes.
"Almost evert one has observed pebbles adhering to old anchors which have long lain under the sea. Engineers who have had to remove piles from sea walls or harbours have also noticed similar effects, for the iron shoes at the points of the piles have generally a mass of pebbles strongly incrusted around them. Even in what we call fresh water, (but which on analysis always is found to contuin salts in solution, this effect in a smaller degree is observed.
"Having had occasion to reset part of what are called breakwuters at Portsmouth, which are covered every tide by the sea, I was there enabled in many instances to notice the effects here alluded to. Some of the examples afforded beautiful specimens, and of several varietien of the carbonates of iron of perfect forms. When examined with ${ }^{3}$ powerful lens very delicate needle crystals were often distinctly visible; these last which I observed were white. Those resembling carbonates of iron varied from black to brown, and to bright yellow: some of the browns were of a very rich colour. These specimens were not found at Portsmouth only; at Hurst Castie planks of considerable dimensions, which the gales bad broken from the groins, were found firmly incrusted with silicious pebbles. It was not at first easy to discover from what cause the pebbles adhered to the wood, but on saming a plank longitudinally it was found to have been driven full of irum scupper-nails. The flat heads of these nails were almost touching each other; the heads had nearly disappeared, and in their place a black shiny crystalline matter had been formed, which firmly united a layer of pebbles to the plank. The opinion I formed on this was that voltaic action takes place between the metallic iron and silicions pebbles when immersed in sea water. If this be the cuse, we cm scarcely doubt but that something of the same nature wild occor between iron and other stones, when similarly placed. Part of the breakwaters at Portsmouth were set with very thin sheet iron, between blocks of Swanage stone, as an experiment: in a month afterwurds, sand and small pebbles were found firmly fixed between the iroa and the stone; and black crystalline matter, such as had been found at Hurst Castle, appeared forming, and the experiment, us far as it has been observed, seemed satisfactory.
"After thus setting the breakwater with stones, alternating with plates of sheet iron, I observed that Mr. Cross had previous y pursued studies somewhat similar, and that he was satisfied that irwn, when in coutact with silex in a fluid medium, exhibits electric phenomena. An observation to this effect will be found in Mr. Leithsad's work on electricity.
"The subject of the formation of crystals by voltaic electricity, which is one of great interest, is now making considerable progresk and the object of this paper is to endeavour to show that the parsait of the study may be practically useful when applied to hydraulic works; and that it well deserves to be ascertained whether plates of thin iron, alternating with stones, and placed under the sein, will nor be found to form solid rock, with crystalline veins. Mixtures of inou filings, sand and gravel, let down to the bottom of the sea throagh tubes, might perhaps consolidate and form a stable foundation for light-houses, and other works for which it is very dififult to form a base.
"Those parts of the Portsmouth break waters set with the thin sheet iron will be found between the saluting battery and the spur redoulch and are visible on close inspection. The experiment has been raried, somewhat in the manner above alluded to, by authority of tbe Admiralty. Unserviceable iron water tanks from ships of war hare been filled with gravel, mixed with iron turnings and a smaH quantitr of lime, in the construction of a groin opposite to Haslar Hos pital. The greater part of this groin will be covered by the tides; and thras: good opportunity will there be afforded of observing the effects of iron in contact with pebbles when imwersed in salt wuter."
We must defer Colonal Fanslawe's Report on the effects of tropical climates upon Yorkshire paving.
The following Report by Captain Streatield "On the Wood Patrment in the Stalites ai Brighton," is so interesting at the present moreent that although at some inconvenience, we feel obliged to call the atteative of our readers to it.
"Sir-In reply to your letter, dated 17 th u't., respecting the experimental pavement tried in the cavalry stables at this place, I now send an extract from the officer's diary, written by Captain Aldersem descriptive of the wooden block paving proposed and exeeuted 4 him in January, 1830 . The alterations suggested by Captain Alder
son of making the fall 2 inches instead of 4 , and the groures of of ar
: fnch in depth and width instead of $\frac{1}{3}$ an inch, have been tried, and are certainly inprovements on the original plan.
uThe stall first done has been constantly in use for upwards of a year, and does not appear to stand the wear and tear quite so well as wras anticipated, the lower part of the stall immediately under the borse's hind feet being already worn down at least t of an inch. More . tme, however, will be required to jodge of its durability. The expense of this mode of paving amounts to 2 s . $3 d$. per foot superficial.
ω The pebble pavement laid in concrete, with Purbeck horse pitching paving placed immediately under the horse's feet, which was put - down in August, 1837, appears to answer tolerably well, and is donbtLess a decided improvement upon the common pebble paving. The expense of this amounts to $6 d$ per foot superficial ; the common pebbe pavement to 34 . per foot superficial.
al am disposed to think that a stall paved two-thirds of its length From the bottom with Purbeck horse pitching, and the remaining onethird at the top with common pebble paving laid in concrete, would be the most durable, and on the whole the least expensive. The cost would be 11 d. per foot superficial."

Want of space compels us to pass over hastily for the present several papers of much interest to our readers.-Among these are the papers and comments on Earthern Ware Pipes, and on the Package of goods.

The twenty-first paper is a description of the Weedon Drawbridge on the London and Birmingham Railway, well deserving of notice on tccount of the ingenious construction of the bridge.

Habershon's Half-Timbered House.
 (SECOND NOTICE.)

AlmFowen we have fully expressed our opinion as to the ability with which Mr. Habershon has exercised his pen, in animadverting upon the very unfair and calumnious representations of Mr. Welby Pugin, we must yet be allowed to make a remark bearing upon the question of our modern Protestant church architecture, which is, that ${ }^{4} 0$ far from the namerous structures of that class, erected of late years, having boep allowed to afford opportunities for the display of talent, the restrictions of the Church Commissioners, and the conditions imposed by them, have tended greaty to degrade our architectural baste, as far as such buildings are concemed. Not only has economy been, in many instances, pushed to downight parsimony, but the desire of obtaining the maximum of showiness at the minimum of cost, has led to the adoption of some of the very worst vices a building can have-astentatious paltriness, and flaunting shabbiness. Granting there may be necessity for the most rigid economy, that very pecessity ought to dictate something quite the reverse of what has hitherto bean ajmed at,-decent homeliness, quiet yet dignified simplicity, sobriety not negligence of detail; and not least of all, such moderation in the general composition of the design as befits a modeyste sised. There is no reason why, because it is smalh either a church or other building, should be made to have an air of littlences,Which, it unfortunately seems necessary for us to remark, is quite a different thing from smallness; the difference between the two being that of a dwarf and a child. Such unfortunate and oftentimes quite ridiculous and offensive littleness is all the less excusable, because instead of being at all called for, it is allowed to destroy the character that would be appropriate. Yet, so far from having laid down any instructions or cautious as to such points. The Church Commisioners appear to have had no suspicion that any were needed; while archifects, aware of the kind of judges whose taste-or rather tastelesse pess they have had to please, bave not studied to produce merits which they were aware beforehand would never be examined into or appreciated. Any thing above the most ordinary routine and commonplace in design, puts such people quite out, and they accordingly generally select something that has been "rendered easy to the plainest capacity." Instead, therefore, of being charged with want of talent on accounat of the poorness and littleness of taste manifested in the ma* jority of our new churches, the profession are rather to be pitied for being obliged to accommodate themselves to the ideas and apprehenaion of such patrons of art as the Church Commissioners have proved themselves to be.

Begring pardon of Mr. Habershon for having brought forward so promitently and dwelt so long upon a topic which although fumished by himself, he may not consider of so much importance as the rest of his book, we now proceed to consider the subjects of his plates. They are dratwn some on stone, others on zinc, and consist either of mere pictorial views, or specimens of detail, such as doors, windows, gables, shimmeys, \&ce Some of the former, that of Hadzor Village, for intinnos, partake quite as much of landscape as of architecture in their unjects Only the generalities of form and composition are exprested
in the buildings themselves, whether their accompaniments be rural or street scenery : consequently, however interesting they may be as topographical memorials, the illustrations of this clase, do not furnish that precise information required by the architect. It is true his mode of treatment is for the most part justified by the aature of the subjects themselves, which are certainly not at all calculated for direct imitation in hardly any respect, although they may serve to furnish useful ideas and hints, not, however, to every one, but merely to such as are capable of discriminating between what is and what is not suitable for actual application,-between what pleases merely, because it is quaint, unusual, odd, fantastical, and curious as a relic of former times; and what is intrinsically pleasing and agreeable in itself, apart from the novelty of rarity on the one hand, and the accidental charm of antiquity on the other. Very few persons take this into account, or make the distinction they ought to do: bence repeated biunders and disappointments, and people have found out that instead of the picturesqueness they have aimed at, and by which they have been smitten in what they have taken for their models, they have got only a prim, spruce, smirking, pert looking building-as little picturesque as may be, though evidently intended to pass for such. We wish therefore Mr. Habershon had said something as to the application which may be made of this style at the present day. Very few of the subjects in his volume are calculated for imitation however serviceable they may be in the way of affording hints: some of them, indeed, seem hardly capable of doing that,-for instance the old house in the market-place at Preston, which though curious, is still more ugly than curious, and, putting taste entrely out of the question, seems to combine every inconvenience and disadrantage that a dwelling-house can possibly possess. Bramhall Hall in Cheshire, on the contrary seems deserving of more particular description; for although two views are given of it, they go but little way towards making us acquainted with the peculiarities of style and detail. A ground plan of that house would have been exceedingly welcome, as would also geometrical drawings of some of the compartments of its exterior. Somblebury Old Hall is another striking subject, in which there is much of a very peculiar and good character. In general, however, the buildings here represented do not rise at all above the usual grade of design to be met with in many old farm houses and buildings of that class; here and there some little bit in them may be found worth borrowing from, but it is only in such mere fragments that anything deserving the name of style discovers itself, the ensemble being for the most part mean and bad, both which it is possible for a building to be, though at the same time it may be eminently picturesque. The picturesqueness, therefore, of which the architect ought to aim, is that which is combined with other equally desirable qualities,-with beauty, not rudeness, of form, and elegance, not coarseness, of execution. We cannot therefore so conscientiously recommend Mr. Habershon's work to the architectural student, as we can to the lovers of English antiquity and topography, who will find mach in it to interest them.

We have received the two following letters relative to our first review of Mr. Habershon's work:-

Sir-ln your review of Habershon's " Ancient half-timbered houses of England," you say, "He makes a terrible hard bit at the vaunted unity of the Roman Catholic Church, which once presented to Europe the singular spectacle of rival anti-popes, both of course equally inFallible." Now, my dear Sir, your Journal is not a proper vehicle for religious controversy, but I rely upon your sease of justice, inducing you to inform your readers in your next number, that the imputing to Catholics the belief of "infallibility" appertaining to any man, is a gross calumny.

A Cathouc.

7 th Septimber, 1839.

Sir-Your review of my work on Ancient Half-timbered Houses, having just been put into my hands, I beg to inform you in reply to your leading observation, that it was brought out in six parts, and commenced according to the original date in 1896. In consequence bowever of my time having been othervime occupied, as well as from other camses, I have not been able to bring out the last part until within the lat two or three monthonan thin is the reaton why the datea vary. I thought it best, as far as concerns Mr. Pugio, to affix the true date to the essay, as that portion of it which concerns him has owly lately been written.

I have the honour to remain, Sir,

Tour very obedient servant,
Matterci Hubtarshon.
Bonnor': Rall, near Hachney,
Stpi. 3, 1839.

Del Duomo di Monreale ed allre Chiese Siculo-Normanne, Ragioniamerti Tre. Per Dominico lo Faso Pietra Santa, Duca di Sertadifalco. Palermo, 1838.
Tue Duke of Serradifalco, who actually studied architecture for a time, under Cagnola, is of those enthusiasts in the cause of art, who like the illustrious Cicognara devote themselves to the study of it gratuitously, and out of mere affection, with an earnestness and application very seldom indeed found among those who follow it as a profession. Whether such noble amateurs would in this country be secure from the sneers levelled here against intermeddling, superficial amateurs, we will not stop to inquire; therefore merely observe that perhaps they might, because a Duke is somebody, and because it would sound capitally to be able to say, "I entirely agree with-or dissent from my Lord Duke's opinion as to so and so." For our own part we are sorry that we cannot at present brag of any particular acquaintance with the Duca di Serradifalco,-that is, with his book, not having as yet even seen it, although by this time, one would imagine, a copy of such a work would have found its way into the British Museum, whose library, however, we are still more sorry to say, is prodigiously deficient in foreign publications of art, for even our own very limited and humble library, contains several that will there be sought for in vain All that we at present know of the work whose title is above given, is derived from an article in the last number of the Dublin Review, from which we here quote:
"Prince Serradifalco has already acquired a great literary reputation by his large work upon the monuments of antiquity in his country, of which three volumes are published. In the present work he has begun the examination of the principal monuments of the Norman epoch, as being the most illustrious period of the middle ages. He does not propose [purpose] to give merely sketches and general notions on the subject; but, on the contrary, to treat of it in its fullest extent, and to give to the world a standard work, of which the getting up should not be unworthy of the magnificent objects it undertakes to describe. The worl contains, besides vignettes, twenty-seven folio engravings, and one lithographed design; of which fourteen are dedicated to the Church of Monreale, three to the Capella Palatina (or Chapel Royal at Palermo), five to the Cathedral of Cefalu, four to the other Norman churches at Palermo, and two which contain small plans of all the old churches in Sicily, and of the principal churches of the Christian world, by which Sicilian [not the Sicilian] architecture can be illustrated.
"These engravings are accompanied and explained by two dissertation, with learned notes, in which are collected from ancient authors, maps and inscriptions, whatever can throw light upon the objects in question."-_The drawings are in general well done, though occasionally, as in the drawing of the Gate of Monreale, or of the sectional plan (table IV. 7) we think the atyle might have been more faithfully expressed. The drawings should have been coloured to give any idea of the magnificence and splendour of the Mosaics; for the brilliancy of the colours and gold with which the walls are resplendent, is lost in the black engravings."
Undoubtedly: pothing short of such a view of the interior as the exquisite coloured drawing or rather picture of it by Professor Zanth, exbibited last year at the Institute B. A.; can convey any idea of Monreale, or of that modern Monreale the Allerheiligen Kapelle at Munich, where to equal splendour of painting on gold, the pencil of Hess has superadded all the more refined beauties of art.
Happy Munich! thou paradise of art, where under the anspices of its Kunst-liebend Ludwig, it accomplishes what we poor islanders dare not even attempt! Happy Sicily, where Dukes can find both time and disposition to turn their attention to studies of antiquity and art,free from the curse of politics that sits as an incubus on this unhappy land, amidat the incessant din and jingling of which all that is intelligibla is that every party demervea to be exterminated, since according to their report of each other they are equally base, unpripcipled, selfinh, tyrannical, malevolent, parfidious, or however else they may be branded by the awful fulminations of our newspaper gentry.

Literary World. This justly popular work has completed its first volume ; the wood engravings, particularly those of an architectural character, are beautifully executed, and the literary contents are both interesting and useful.
We have been frvoured with the Medical Mricellany, a new periodical, containing mech useful information for the medical atadent.

Naf Yoar Canale.-Tolal anount of tolla recelved on all the state canala of New York, from the 14th to the 22nd of July, 1859, 36,571 dollare 97 cents. There was received for the correeponding period in 1838, 38,882 dollara 40 centu.

DESIGNS FOR THE ROYAL EXCHANGE

With every facility possible, it would be a task of some time, to examine singly, and afterwards compare together, the sets of numerous drawings which cover not only the walls of two large rooms in Mercer's Hall, but also two sides of a screen placed in one of them Therefore, writing as we now do, not only without the possibility of making a second visit, before our journal goes to prese, but almost at the latest moment to which its being made up can be deferred, we have hardly time to collect our ideas properly, after a first, and consequently rather hurried view of the designs. Besides this, there is neither catalogue of any kind, not even a mere list, no printed descriptions of any of the designs, and no order observed as to amranging them according to the numbers, by which they are distinguished:-in fact, we do not understand upon what principle they are so numbered for there seem to be not a single one figured with a number bowes than twenty. Yet, as if it were not enough that as little as possible had been done for the convenience of visitors, it was also determined that no one should be allowed to assist himself, either by taking down the numbers or committing his remarks to paper. We were doing the latter, when some official came up to us, and said that no one was permitted to make sketches of any of the drawings, when we told him that we were not copying any part of the drawings, but merely taking memoranda; and on bis walking off, resumed our occupatior. Sbartly after he came up again, and repeated his command more authorittively, saying, that strict orders had been given not to suffer any person even to take notes, and should we persist, he should be under the necessity of making us withdraw. As further expostulation seemed to be quite useless, nothing else was left us but to comply with the mandate.
Hardly can we suppose the man took that strange authority upom himself; no doubt he acted according to the instructions given bim: but then it argues amything but liberality on the part of the Committer to iseue such very arbitrary, annoying, and very unusual reatrictions. Never was such a regulation ever thought of being enforced before, certainly not either at the exhibition of the designs for the Houses of Parliament, or that of the models and drawinga for the Nelson Memorial ; in fact, at no exhibition whatever. Was it that the Committee, fancying they had been imprudently liberal in suffering the public to see the designs at all, determined to prevent persons from deascriting or commenting upon any of them, by prohibiting the use of pencil and paper in the rooms? It certainly looks as if such were the case, and that they were now alarmed for the consequences of their good natured indiscretion. However, we are not going now to comment upon the conduct and proceedings of the Committee, since they call for folles animadversion than we can at present bestow upon them. All that we can here say relative to them is, that not satisfied with setting aside the competition, as far as the interests of the architecto mbo entered into it are concemed, the sole adrantage, the successful hare derived from it, consisting in the distinction they have so acquired, even the highest premium being but a very moderate pecuniary comr pemation ; not satisfied with this, the Committee have now entrusted the formation of an entirely fresh design to the very three persoms who cannot, with any honour or decency, accept that office, atter ating as judges in the matter, who have represented as ineligible, eray one of the designs sent in. For does not this look very much an if the competition has been no more than a strutegem, to enable the Committee to obtain ideas for the guidance and assistance of those whar they now, it seems, have determined to employ! What, we zst, have the three gentlemen who are now spoken of as the architects actually to be employed, done, to merit that implicit coafidence is their abilities, which is now to be reposed in them ? If they are er titled to it now, they were surely equally so at the very first, whem they could have accepted the commission tendered to them with irfinitely bettergrace,-or we say, without incurring the ugly suapiciop and disgrace which must now attach to them, should they ever do wo: as we think they will not,-unless they have such exceedingly strong nerves as to be able to brazen out public opinion.

Our own conscience gives us a twitch, for we just now promised to abstain from animadversion on this point, and to confine ourredves to speaking of the designs we have seen. That we have seen them we cir not deny, but we certainly have not been able to examine them in soed way as would enable us to speak of their particular merita or fanthy or to enter into any detailed notices of them. All that time would permit, was for us to reconnoitre them generally, which having doms we were commencing to study some of them more elowely, an whe down our notes upon them, when our labour was cut short in the wis that has been mentioned. With the exception, therefore, of the 㽞 particulars we had poached, before we were werned off, we have wir Do better than our memory, fatigued and confused by looking at wo
many different drawings, at one time. Thus we are not only deprived of the means of refreshing it, by our notes, but, with a few exceptions unable to identify the numbers affixed to them, such designs as we can indistinetly call to mind. Had we been informed beforehandand there might have been a written notice to that effect put up at the door of the room-that paper and pencil were rigorously interdicted, we should have proceeded differently, and endeavoured to get one or two of the leading designs by heart; but taken by surprize, and disgusted, we were in no humour to prosecute our examination very diligently. The utmost we can do, therefore, is to make such remarks as now occur to us. Upon the whole we were disappointed; few of the designs came up to what we expected to find, for a building which from all that had been previously said on the subject, seems to be looked forward to as a work that ought to be honourable to the architectural reputation of the country,-a monument of improved taste. On the other hand, there were many designs so greatly inferior to what we expected, as almost to stagger us. One of them, No. 55, is a most wretched, insipid affair, a bald and poverty-stricken Grecian edifice; nor is either No. 24, or No. 26, much better ; while No. 40. looks very much like the west front of St. Paul's without the towers, There are several designa with Corinthian porticos, hexastyle, octan style, or decastyle; forming a prominent feature in their composition, being made to occupy the whole of the west end. One of them, however, (No. 27, if we mistake not,) can hardly be so termed, for although an octastyle, crowned by a pediment, which is filled with sculpture, the columns are merely insulated before the front, yet we will not be sure that considering the rest of the design and the character of the style, which partakes more of Italian than Greek or Roman, it would be the worse on that account. No. 50 has a Corinthian decastyle portico, and likewise a sculptured pediment. If our memory will serve us, and we do not confound this with something else of the same kind, there are also several columns within the portico, with a vista through three open inter-columns behind, into the interior of the Exchange, or the quadrangle, but as to other particulars, or the rest of the design we are now utterly unable to speak. If we have been rightly informed this design is by Mr. Donaldson, and according to the "Spectator" it is the very best, so excellent in itself, that even now it ought to be adopted if its author can satisfy the Committee that it can be executed for the sum specified. Nothaving paid sufficient attention to it, we can now neither confirm nor contradict the opinion so strongly in its favour. Mr. Grellier's drawings, too, No 36, which obtained the first premium, did not attract our notice much, for at all events it has not impressed itself upon our recollections, and to recollection alone, unfortunately, we are now obiiged to trust entirely; on the contrary, Mr. Chateauneuf's (No. 48), which obtained the second premium, engaged our attention very much, and we had begun to note down some memoranda respecting it, when the surly jakanapes in office insisted upon our putting up paper and pencil. We suppose we may call it Mr. Chateauneu''s, for we suspect that as far as design is concerned his associate Mr. Mee had little to do with it. Though the style is Italian, the expression is decidedly German. It aims not so much at grandeur, as at elegance, and a certain piquancy of taste. The east front is considerably loftier than the rest; owing to which, the elevations of the north and south fronts are not of unform height throughout, but have an additional story at that end. The west elevation is exceedingly tasteful, and would, we apprehend, be so far preferable to a large portico of a single order, as it would not so greatly overpower the centre of the Bank. Here we must break off, nor do we know whether we shall be able to collect further information against next month; for the exhibition will have closed before our publication appears, only sEven DAYs having been granted for the public to visit what ought to be kept open for inspection at least six months ! What a public-spirited liberal Committee!

NEW PLAN FOR PROCURING SPRING WATER FOR LONDON.

We were somewhat surprised by the appearance of an advertisemeat, about ten days ago, stating that "a plentiful supply of wholesome water, so ardently desired," \&c., "is now on the eve of attainmenk." The plan was said to be original, though the place from whence the supply would be taken had been pointed out by the late Mr. Telford. As there was no engineer's name to the advertisement, it appeared a little mysterious, and we doubted whether it had any proper foundation, without meaning disrespect to the gentleman whose name appeared as parliamentary agent.

We have since discovered that this "original plan" is to take the water from a place pointed out by the late Mr. Telford in his report in she year 1834, situated near the town of Watford, and the "origi-
nality" consists in uniting the upper and lower springs. We find that borings have been quietly going on for some weeks, and the result of the experiments has been eminently successful. The place is singularly felicitous for a bed of water, being nearly surrounded by high hills, and of a size calculated for the largest reservoir the world ever saw. It is about 160 feet above the Trinity datum of the tide of the Thames, and can consequently descend to any part of the metropolis by its own gravity, and without the aid of steam power. Springs have been discovered at every three feet to the depth of about fifty feet; beneath them a stratum of limestone two feet deep, and beneath that a vast body of water, which rises to the level of the water of the upper springs, and of all the other springs. These are valuable indications, added to which the water is particularly soft, and consequently fit for all domestic uses, which spring water generally is not.

We hear that Mr. Giles is the chief engineer, and that he is assisted by other gentlemen of scientific eminence. We shall endeavour to obtain for our readers all the details of the experiments that have been made, in our next number.

BUNNETT AND CORPE'S CONCENTRIC STEAM ENGINE.

Sir - In the letter of your correspondent (Mr. Macdonald), relative to our Patent Concentric Steam Engine which appeared in your last number, the conclusions he has drawn are so erroneous, that we shall feel obliged by your insertion of this in the following number. Whilst he admits that the result of the trials of the modes of applying the power by the tables published in your former numbers, which shows a gain of more than two to one, are correct, and might naturally have been expected, he asserts that one main feature in the case has been overlooked, viz., that the consumption of steam is equal to the power gained; this is quite at variance with the fact, as we shall endeavour to show. We have now just completed a high pressure engine on the concentric principle, the piston of which is 12 inches broad and 8 inches deep, containing 96 square inches, the crank throw is 9 inches, the stroke consequently 18 inches, the outer curve of steam chamber, an arc of a circle, 2 feet 4 inches in diameter, the inner curve 1 foot diameter. Now supposing this chamber to be completely filled with steam at each stroke, allowing for the concentric form, it would contain 1872 cubic inches. A cylinder on the vertical or hotizontal principle of the same area of piston would require 1728 cubic inches to fill it, (which is the extent of the difference, as any increase of the radius of curve tends to reduceit, jurt one-twelfth less than the concentric engine, whose gain of power by its direct application, as shewn by the tables, he does not dispute. This is supposing that all the steam it is possible to admit, is thrown into the cylinder nt each stroke of the piston, but it is admitted by most engineers that all the ateam thrown into the cylinder after the piston has completed two-thirds of its stroke is useless and detrimental, by the arrangement of our slide valves, we effectually cut off the steara at two-thirds of the stroke, which cannot be effected by the present locomotive engines with the single slide, therefore taking one-third from 1872, the quantity of steam we should actually use in the concentric engine at each stroke of the piston would be 1248 cubic inches, considerably more than onefourth less than the present engines, to say nothing of waste by exhausting the steam in the passages, which we encirely avoid. It is, we conceive, no fault in our concentric ergine, that it does not differ in principle from the best engines of the day. We have only sought by new forms and combinations to get a more direct application and consequent increase of power; how far we have succeeded, we shall shortly be enabled to show by an engine of about 10 horses power that we are erecting on our premises at Deptford, for the purpose of testing its power, consumption of fuel, \&ec. Pending that trial it was not our intention of troubling you or your readers with any communication on the subject, but (adopting your correspondent's words), we are inclined to believe that the appearance of this letter may be useful (at least to us) in counteracting whatever erroneous views may bave been formed by the perusal of your correspondent's communioation. We remain, Sir, your obedient servants,

Bunurits and Corpe.

Upper Road, Deplford, October 29, 1839.
Mr. Harcock's steam-carriage accunplisbed its first trip from Loadon to Cambridge on Monday, 30 ih September. The carriage leit the Four Swans, Bishopsgate-street, at ten oclcck in the morning; the time in actially running the fifty-two miles was four hours and a half, and the first thirty miles, including Wade's Mill Hill, wae performed in tro hours and a batf (ihe first two miles being through the streets of Londons, which is at the rate of 12 miles an hour. During the whole of Tuesday, bundreds of persons went to view the carriage, which was standing in the yard of the University Arms Hotel, Cambridge ; and at about three o'clock the "steam yas got up," and the carriage, crowded with gentlemen, took an experimental trip round Par. ker's Piece, and other parts of the town.

BRICK DUTIES.

2nd and 3ed Victomia, Cap. XXIV.

This Act repesis the dutien and drawbacks of excise on bricks, and grants other duties and drawbacte in thew theregf, and consolidatea and amends the lawa for collecting and paying the said duties and drawbecks, and enacts that in lieu of the said duties and drawbacks, there shall be paid the dutie and drawbacks following ; (that is to say,

For and upon every thousand bricks, of a size not exceeding 150 cubic inches each brick, which shall be made in Great Britain, or which shall be brought from Ireland into Great Britain, a duty of 5 s .10 d .

For and upon every thousand of bricks, exceeding the foregoing size, which shall be made in Great Britain, or which shall be brought from Ireland into Great Britain, a daty of 10 s .

Por all bricks made in Great Britain on which the duties imposed in respeot thereof shall hare been charged, and which shall be duly removed to Ireland or exported to foreign parts as merchandize, a drawback of the duties paid.
Section 3 enacts, that the said daties and drawbacks shall be under the management of the commissioners of excise.

Section 4 enacts, that brickmakers to make entry with the excise of their brick fields, \&ec.
Section $\$$ empowers officers of excise to enter brick fields and take an account of brick.
Section 6 enacts, all bricks shall be charged with duty whilst such bricks shall be in the operation of drying or hardening in the field, \&e.

Section 7 in charging the duty on bricis ten por cent. to be allowed for waste.
Section 8 enacts, that bricks shall be pisced in such form that the officer may readily and wocurely talse an account of them; and penalty for placing them irregularly.

Section 9 , bricks may be made of such a slmpe that it may be difficult to ascertain with accuracy the true cubical contents thereof, whereby doubts or disputes may arise whether such bricks are subject to the higher or to the Lower rate of duty imposed by this act; be it therefore enacted, that every maker of bricks shall provide, to the satisfaction of the supervisor of excise, a mould adapted and proper, and similar to the moulds in ordinary use by such maker, for forming and turning out a brick ten inches long, three inches thick, and five inches wide; which mould, when approved of by the supervisor of excise, shall be stamped or branded by him with the word "excise," and shall be delivered into the custody of such maker, to be by him kept for the use of the officer surveying snch maker of bricks; and if any dispute shall arise as to whether any bricks, the cubical contents of which may be difficult to ascertain, are of a greater size than 150 cubic inches, and so subject to the higher rate of daty, the officer of excise shall take indifferently from the quantity of bricks the size whereof shall be disputed three bricks, and shall prest the clay compoting each of such three bricks into the anid mould and turn the same out as a brick; and if upon such three triala any two of such bricks, or the clay componing the ame respectively, shall not be more than sufficient to fill such mould, and form a brick of the dimensions of ten inches long, three inches thick, and tive inches wide, the whole of such bricks shall be deemed and taken to be bricks not exceeding 150 cubic inches, and subject to the lower rate of duty; but if any two of such bricks, or the clay composing the same respectively, shall be more than sufficient to fill such mould, so that a larger brick than of the dimensions aforesaid would be produced if the whole of such brick or the clay composing the same were pressed into a mould of sumeient capecity to receive the whole of such brick or ciay, then the whole quantity of the bricks in dispute shall be deemed and taken to be bricks erceeding 150 cubic inchea, and subject to the higher rate of duty, and shall be charged with duty accordingty.

Section 17, in order to prevent the duties hereby imposed from being evaded by bricks being demominated tiles, be it enscted, that nothing whall be deemed or taken to be a tile which shall not, when turned out of the mould (except tiles for covering houses or buildings or draining lands,) be a perfect square, or which shall when so turned out be of greater thickness in any one part than one inch and seven tenths of an inch if under eight inches aquare, or of greater thickness in any one part than two inches and a half if more than eight inches square, or which sliall have any incisions made therein so as to allow of being easily separated or divided after being burned : provided alwaye, that it shall be lawfud for the commissioners of excise to determine that tilet made otherwhe than square shall not be considered as brick chargeable with duty, on being retivfied that the same are intended to be used solely as tilea.

Section 18, wheress it is expedient to exempt from the duties by this act imposed bricks made for the sole porpone of draining wet and marahy land; be it therefore enacted, that it shall ke lavful for any person to make bricks for the sole purpose of draining wet and marshy lands without being charged or chargeable with any duty for or in respect of such bricles, all such bricks being in the making thereof stamped or moulded with the word "drain" in or near the centre of the aurface of such bricke, in 80 plain and distinct a manner that the tame may be eaily and cloarly legible to any officer of oxcise or other perwon examining the amme both before and after auch bricks shall have gane through the process of burning and become fit for use: provided always, that it shall not be lawful for any person to employ or meke use of any aich bricks for any other purpese then in draining wet and marshy ande, and in constracting the necessary drains, gouts, calverta, arches, and
walls of the brickwork proper and nocessarily required for effecting and mathtaining the drainage of such lands; and every maker of mach bricks or cotar person who shall sell or deliver or use or employ any brick with the wexd "drain" so stamped or moulded thereon for any other purpose that ec aforemil shall forfeit fifty pounds.

Section 25, this act shall commence on the 22d day of Augast, 1839.

THE NBW HOUSES OF PARLIAMENT.

On Friday, 27th September, pursuant to notice, the tender for the third contract for the new Houses of Parliament, comprining the carcase of abe principal building occupying the river front, and returns or wiogs projecting forward at each end to the river wall-were opened before the Commissioners of Her Majesty's Board of Workw, when after a spirited competition as will be seen from the subjoined list of tenders put in by some of the priocipal builden in the metropolis. The contract was decided in fuvor of Messrs. Grisel and Peto, the well-known buildens of the Yort Roed, Larsbeth.

It is expected that three years will expire before the above contract will be finished, and that it will be ten years ere the structure will be eatirely completed.

INSTITUTE OF THE ARCHITECTS OF IRELAND.

A special meeting of the members of the Institute wan beld in Debrin on the 8th ult. to install the Visconnt Fitzgerald and Vescy into office as Preaident. Addresses were made both by his Lordship and Mr. Morrioon, the Vice-Preaident, which in a tone of eloquence called on the members to persevere in the useful course which they had undertaken. It gives manch pleasure to see the interest taken in such an important institution.

GYBAN MAYTGAMOOT.

THE ARCHIMEDES GTEAM VESSEL.

Our readers will probably recollect that the Archimedea, a rmarkabis fine-formed vesel, of $\mathbf{2 v e}$ (?) tows burdes, fitted with a pair of engime of 45 -horse power each, manufactared by Mears. Remois, and the screw propeller, is applied by Mr. Smuh, was first tried early iac summer, and that the experiments were suspended, in comsequesce $\boldsymbol{\sim}$ the onfortunate bursting of one of the boilers. At that time the screviw consisted of one whole turn of a single thread, 7 feet in dianeter, and 8 feet pltch. The boilers luave now been replaced by two new ones, manufactured by Messrs. Miller and Ravenhlli; and at the anae tive a modification has been introduced in the form of the propeller. It consists now of two half-tarns of a thread, 5 feet 9 inches in dinneters. and 10 feet pitch, placed dimmetrically opposite to each other on she propeller shaft, $e 0$ as to occepy a space of only 6 feet in the lengit ef the veasel.

These alterations being completed, an expermental trip was meik down the river 10 Gravesend, on Monday, the tht vit, and the zopit wras considered highly astisfactory. We regret that we were unable to be present, as we can, therefore, only spealk from information we fape collected sloce.

We noderstand that she run from Gravesend to London Bride, a distance of 28 to 30 miles, which was accomplished in two hoart, beth wind and tide being faronrable. No conclnsion can, however, be drawe from this reault, respecting the comparative perforninnce, on accoent of the co-operstion of the wird and tide; but the mean speed of the veasel through the water was ascertained diring the trip, by uoting the time in which she ran mile, irst with, and afterwards agaiast the tide
The results of the experiment were the following :-
Time of roneing the mile with the tide 4'ss'
Number of revolutions of the engine shaft per min. at
The apeed oyar the ground was, therefore, par howe, 18s, milen,
Time of rnnning the mile agaimst the tide................ s'
Number of revolutious of the engime sliaft............. 23
Speed over the ground ..
6.

The mean speed through the water was thos in
 mlnute, which, multiplied by 5 (which Mr. Smith informes multipfying power of the wheel-work, which conmunicates the aning from the engine shaft to the propeller), givea 120 for twe moter of revolutions of the ecrew per minate. If the screw wore moving mement
a soild body, it would advance the length of its pitch in each revolution, or 1200 fect per ninute, which is the same as 13.6 miles an hoar; but, since the vessel, and conseqnently also the screw only advanced at the rate of 9.9 milen an hour, there must have been a recession of the screw through the water, io the direction of the shaft. equal to 3.7 miles an bous. The propertion of the avaibable power of the engines effectively empleyed in propelling the resecl una, therefore, 72.7 per cent, the reminisg 97Ω per cent. being expended in obtiming the necessary renistance to the pappetber.
Mr. Hermpath, in his report in the Railway Magazine for the 19th Oetober, has conmanitted an error of 1.1 mile en hour to the disadrantage of the performance, in eonsequence of taking the meat time of running a mile, and finding the corresponding speed, instead of taking the mean of the speeds with and against the tide. We believe the latter to be the method usually followed; but, in case there may be any doubt as to its correctness, it is easily demonstrated thns.
The speed with the tide is equal to the velocity of the vessel throngh the water (which is required to be determined), added to the velocity of the tide, which is an indetermiance quantity. Also the speed against the tide is equal to the velocity throngh the water, diminished by the velocity of the tide. If, therefore, we call the former V and the latter r, we shall have

$$
\begin{aligned}
& \text { Speed with the tide }=V+v \\
& \text { Speed agaiest the tide }=V+0
\end{aligned}
$$

By addiag these two quastition together, v ls eliminated, and we find that the speed with the tide, added to the speed against the tide, is egnal to twice the ayeed threngl the water.
THE HONOURADLE EAST INDIA COMPANY'S STEAM 8HIP, THE M QUEEN."
The fina resed, which is of the same ches as the govermonert meamers, Medem, Phoenix, Sabanarder, and Ehadommathus, was built at Linoehonse by Meams. Curling and Yoang, the celebrated baikiers of the Britioh Queen and President, and fitted with a pair of engines of 110 borse power eacts, by Messrs. Seaward \& Co., of the Canal Iron Works. She is fumished with Halls patent condensers, with apparases for supplying the boilers with distilled water to make good the waste. The alides are of Measrs. Seaward's patent. The armanent consists of four 32 -pounders, besides two long gros of s-inch calibre, one forward and the other aft, inteaded to carry hollow shot; they move upor slides and fixed pivots, which enables them to take a minch wider range than the ordinary carriage ean give.
The following are the principal dimencions of her hall and machinery :
Lensth between the perperdicmlars.................. 173 feet
Breadih withis the peddle boxet .coco................ 81 "

Bailder's Tonnage.. $786{ }_{64}^{83}$ toas
Feight of the hath... 511

Stroke of the pistuns.. 5 feet
Length of Stroke
Arma of the stean passages into the cylindars.........
Area of the eduction petelges.............................
N inmber of tubes, 6 ft . fong and $\frac{1}{3}$ inch dinneter in the two condensers
Diameter of peddfe wheels 2500
Length of the flosts w..
Depth of the odter board.................................... 10 inches
Depth of the inner.
9 ft. 6 in.
60 squars ineles

Advance of the onter board before the innes one
Number of pairs of toats an each wheel
Number of follers. 5
2500

Nomber of furnaces

Nength of boifers .. 14 feet
Breadth of the two boilers 21 ft. 6 in.
Welght of the engines
Weight of the bollers.
Weight of the water they continin when filled...... 80 \%
Weigitt of the coal carried
Which at 16 toas per diem is suficient for............
On Tharsiny the Eth alt the ${ }^{4}$ Queen," with a party of paval and scientific geathomen on bourd, made an experimentil trip from Blackwall dows the river mint Greentithe. When she was got under weigh, we pareeiver that the Archimedes, which was lylng a little farther down the river, had her teem up, and was ready for a run. Accordingly, as $s 00 n$ as we were nearly on her quarter, she atarted, and the two veasels maimtained mearly the same relative poditions for some time, notid we stopped so trake a party on board, when the Archimedes shot mhead, asd as abe drew about 5 feet less water than the Qrecm, she was enabied to keep nearer is shore, te as not 20 feel the fall lnfluence of the tide. Noswithstamaing this advantage the Archimedies did not seem to gaip upuw we, by which we jedge her speed throwgh she mater to have been rether lests, or at lent not nore thm ours. Tho Archimedes retmrned
without having proceeded so far as Erith, or having ascertained lier rate through the water; but, by comparison with the speed of the Queen, as fonnd at tbe measnred mile in Long reacb, we shonid suppose it to have beeu about 9f etatnte miles an hour. As she passed us on her return she fired a salute of two guns, we suppose is token of victory. We then proceeded to Long reach, where we noted the time of ramuing a mile, Grat against both wind and tide, then with both in favonr. The resalts were as follows:

> Time of ranning the mile againat the tide $3^{\prime \prime}$
> Timpe of rupning the mile with the tide $4^{\prime} 44^{\prime \prime}$
whence we deduce the speed of the vessel over the ground.
Against the tide .. 6.32 miles.
With the tide ... 12.08
Mean speed, independent of the tide......................... 9.5
The number of revolutions of the wheels per minnte, with wind and tide in favonr, was 191-against wind and tide, 181, which shews that the differeace of speed through the touter must have been more then half a mifie an hour.

The mean dranght of water was about 14 feet 6 inches, and the dif of the floats 8 feet 9 itrches; bat, ma the strip hat a "a list to starbonrd. the dip of the farbeard wheei was a little less, and that of the starboast wheel a Hitle move that the above; whict mecounts for the fact, flat the back-water from the latter was ratioer considerable. while there wis nothing but a stifith fill of spray from the former, through which the wheal was dicimetiy ween.
The pressang in the boiler before the experinnent, was 5 tise on the square Inch, hut just before we arrived at the meminred aile, it mide fallem to thta. The gange on the atarboard condenser marked 29 It inches of mercury, and that on the lasboard condenser 29 it ; the oucillations were seldow grebier than 3 of an inch, sometimes even less. The metion of the eagines was during the whole trip remarkaby sunooth and regular.

Having fininhed the above experiments, we were samumed to an elegaat and substantial cold collation, which had been prepared by oar hospitable entertaimers, the Mesurs. Sewward, and the day paused very Egreeably, in spite of the weather, which was by no means such as to enhance the pleasnre of an excursion by water.

Gowernment Steamer.-Order hare been received at Woodwich dockyard from the Lords of the Admiralty, to build a steam-ohip of 200 horses power, to be named the Lirard. She is to be constructed with all possible expedition.

Vermon Steamer and Sailing Ship.-The Vernon is 170 feet lamg, 36 Seet beam, and 22 feet deep, drawing abous 15 seet 6 inches water, and of 1000 tons measurement. She is fitted with a stean engime of 32 hoenea perver, ranufactured by Measm. Seamard, and calcuiated to malke, in calm weather, 30 revolutions in a minute; the boilers consume about $2 \frac{1}{2}$ cwt. of conle per hour. She latety left Blackwall, on a trial agginst a stroug flood tide, with jib and drirer set in the wind's oye, blowing very hard from the S.S.W.. the engine propelling ber at the rate of aboust 3 knote the bour, and performing 18 revalutions per minute. It appears fram aceounta that heve been reesived of the performances of this vesaed since her departure, that the prepelliag apparatus is of comaderable service to her as a miling ahip she iempected to make the voyage to India in about 70 dims.

The "Allantic" Steran-Ship.-This fine vessel may now be seen, in all her proportions, in the building-yard of the Messrs. Wilson, north side of the Clarence Dock, Liverpool. She is building for the Transatlantic Steam Cornpany, and intended as a compenion to the Liverpool in the New Yort trade. Her tonnage exceeds that of the Liverpool by nearly 500 tons, and she will be ready for launching in the course of six weeks or two months.

The Withom Connissioners having, from repeated obsarvatious astisfied themselves that the great speed and racing of the steam-packets on the river are causing much injury to the banks and foreshores, are about restraining them to a lesser speet by time, an alternative to which they have had recourse before. The present packets being propellod by engines of trom 25 to 30 horses power, and being high-presaure, are worked generally at from 40 to 30 lbs . on the square inch; such vesuels may work wilh perfect safety in the large tidal rivers or estuaries of the sea, but are altogether unft for uavigations like the Witham; and unlems some new mode of propelling steamers can be adupterl which; will abate the great agitation of the watera from the old paddle-wlael, the sooner the parties hiable to uptold the river stop the injury now going on, the better.-Samford Merewry.

Messrs. Acraman, of Bristol.-The spirited house of the Mears. Acraman are about to enlarge the engineering branch of their trade, already very extensive and of high repute. They have taken into partoerthip Thomas Holroyd, Eag., late of the firm of Ferguson, Brothers, and Co.. of Calcutta, and William Morgan, Esq., of Londun, Engineer; aud the detignation of this particular depertment will, in future, be "Acramans, Morgan and Co." Mr. Morgan is a gentleman of known experience, and under his able direction the energies of the coneern are, we underatand, about to be directed to the manufacture, with other mactinery, of the most powerful engines, as well as for marine as for rail-road purposes. They have also, we have heard, taken the grownd beyond Clift-hoase, directly facmg the course of the river, which they intend as a yard for the building of iron steam-shipe. Fmployment will thue be created for a great number of bands. We corsially wish the convern all success.-Brisfol Journah.

ENGIERERENG WOREB.

OPENING OF THE BUTE DOCKS, AT CARDIFP.

On Wednesday, the 9 th ult., the day appointed for opening the aplendid docks and ship canal at Cardiff, so munificently undertaken and completed tit the cost of the Marqnis of Bute, the town of Cardiff presented a most animated appearance, there being a vast influx of people from all the neighbowing town-from Merthys and from the hills-all anxious to unite in one general tribute of respect to their common benefactor, and we were delighted to witness the enthusissm with which the name of the noble Lord whis received by all classes and persons of every shade of opinion.

The importance of thin undertaking can only be duly estimated by considering the vast improvements which have been made and are now daily making in Bristol and throughout South Walea, new harbours being established, villages rising into towns of importance, and fishing stations becoming busy seaports. The improvements of machinery also will, hy means of these docks and the Bristol and Exeter railway, open a direct and speedy commanication between Cardiff and London throagh Bristol, as the distance from Cardiff to Bristol, 12 miles by sen to Uphill, and thence 22 by railway, may be performed in something less than two hours, in addition to its being always a certain pansage practicable at all states of tide.
The construction of the docks was entrusted to Mr. Cubitt, of London, as engineer in chief, and to Mr. Turnbull, as the resident engineer.

We will endeavour to give a few particulars of the construction of the docks in our next number.

Wyre Harbour. - At the mouth of the harbour, nearly 800 men are employed, under the superintendence of Captain Deriham, in cutting aray a mall triangular point of sand, which at present narrows materially the immediate channel, a kind of strait. betwcen the sca and the msin body of the water constituting the harbour. In connection with this work, workmen are also employed in cutting off a connecting stream between a lower part of the harbour and the sea-thus forcing the whole body of the water, and a portion of the tidal water, to flow in one current, which, if accomplished, will answer the double purpose of scouring the channel from the mouth of the harbour to the sea, and of acquiring an increased supply of water, constantly available for vessels entering or going out of the harbour. If this point be gained, it will add importantly to the utility and value of the haven. The firectors have commenced the erection of a dredging vessel, for the purpose of scouring the harbour when necessary, and of removing the small ahoals of sand which intercept. here and there, the free navigation. A number of excellent punts are already made, and a steam tug is in constant readiness for towing vessels entering the harbour, when a tug is required, and also for assisting in the various improvements carrying forward for extending the capabilities of the bay, as a port for large vesse's. Sir Hesketh Fleetwood is giving indefatigable attention to the conatruction of the different works comprised in the undertaking, and is sparing neither pains, labour, nor expense, in order to the successful accomplishment of the entire project. We had the opportunity of visiting Feetwood the other day, and were much struck with the beauty and excellence of the plans lajd down for the erection of the intended town. If completed according to the present designs, it will, beyond all doubt, be one of the most uniform, well buift, and elegant towns in the kingdom. So far, however, es the existing plans extend, it will be, by no means. an important town as to sizc. When we were down, there was a veasel of between seven and eight hundred tons burthen floating in the harbour at low water. We had not the means of ascertaining whether the harbour is capable of accommodating simultaneously several such vessels.Preston Chronicle.
Improvements in Wooluwich Dockyard.-It has been found expedient to construct an immense new dry dock for steam and other veasels of war in this Government yard, the Admiralty having resolved upon filling up the former intended new dry dock, which, frum strong springs, it was found impossible to make available, after an expenditure of upwards of $70,000 l$. Cofferilams have been formed on the southern side of the magnificent basin, and an excavation commenced, which is procceding very favourably, under the superintendence of an officer of the Royal Sappers and Miners (Lieut. Dennison), Who is attached to the dockyard for the purpose of inspecting the new works. The site of the new dry dock has already been excavated 20 feet, and as yet there has not heen any spring met with to arrest the progress of the undertaking, which, when completed, will render the basin and docke of Woolwich yard among the most commodious in the country.-Times.

The Menai Bridge is undergoing a complete repair, having suffered conaiderable damage in the storm last winter. Goverament has granted 8,0001., but this is by no means sufficient.

The evaters of the Fosadike have been drained off, and Mr. Bilison, in company with Mr. Stevenson the well-known civil-engineer, is understoal to be surveying the river preparatory to effecting such improvements as are needed to adapt it to the existing demands of trade. We congratulate Mr. F. on his taking this step, without pressing the extra toll of $6 d$. per ton; to that merchants, \&c., would never submit, and Mr. E. must perceive that increase of trade on the navigation, when put into a thoroughly navigable state, would quickly repay an outlay of a few thousand pounds.-Staxiford Mercury.
Ribble Navigation Improvement.-The dredging has proceeded most auspiciously. No machine ever answered the purpose of dredging more effectually or more satisfactorily. At Peg Hill the bar lias been, to a considerable extent removed, and the channel through it will, at the end of this week, be sufficient to admit the largest vessels which comes into Lytham. The dreige has cleared from its bed, for this last three weeks, the average quantity of two hundred and sixty tous per das. The merchants of Preston, in high epirits
respecting the prospect of improved navigation, have already detemmined to lring their largest vessels up to Preston forthwith; those vessels which hitherto have been compelled to discharge their cargoes at Lytham. It ras deemed advisable to procure a steam-vessel, to be applied, when occasion requires, as a steam-tug. An iron vessel, called the " Lily," will, in all probability, proudly and gracefully make its bow to the shores of proud Prestna, next wrek. This ressel will be used throughout the year for the eomeynse of goods and piassengers. The "Lily" is nearly a new vessel; contrians tre engines, each twelve horee-power, and only draws three feet aix inches of water, \rightarrow draft admirably suited for the present state of the river. When the large vessels begin to make Preston their port, the dues arising from the river will be adranced to threefoll their present proceeds, as they will hare to be paid for crossing three lines, these of Lytham, Freckleton, and Hesketh Bank, instead of one only, as was formerly the case.-Manchester Chronirle.

PROG及जFs OF RATEWATR

Glaggow and Paisley Railway.-This railway is getting on very rapidly: already a great part of the line is in a forward state. A number of boases in Tradcston are at present taking down to make way for the depst, and there are likewise several bridges building across the streets. Tradeaton is in a complete stir, and when this line of railway is finished, it will materially enhance the value of property both in Glasgow and Pajaley.-Glasgow Chronicle.

Midland Counties Railuny.-The fine weather during the last fortaight hss enabled the work people employed in the various departments of this important undertaking to make censiderable progress along different parts of the line. The embinkment on the left of the Humberstone Rond appears to have been proceeded with more slowly than any other porthon of the line, but, according to present appearances, may lo expected to umite with the Thurmaston section early in the ensuing year. The tunnel under the Freemen's common is getting on expeditiously. Half the distanes has atready been accomplished, and as workmen are engaged nigint and day in the tase the whole must be concluded by Christmas. The two stations near the Loodon Road are also procceding with activity, as is the brilge leading over the railway to the union workhouse. The bridge leading from Regent Street to the Occupation Road ia nearly finished, and preparations for nuother, in Gonl Lane, have been made within the last few days.-Leicester Chromicle.

Manchester and Birmingham Railway.-Congleton Fiaduct.-The first stose of the celebrated viaduct at Congleton, on the line of the Sanchester and Birmingliam Railway, was laid with much ceremony on Wednesday the 20k September. Those of our readers who are interested in railway undertakings. know the magnitude of this work; but by those who do not, the fotlowive particulars will be read with interest. The viaduct is intended to run in: firection nearly north and south, and will cross the river Deme at a point about three chains below the extelssive silk mill of Mr. Sammel Pearson. It will cross the Newcastle-road at a point about a chain to the wert of the comer of Dane-strect. In length, the viaduct will be 3078 feet, or pearly a mile, 31 feet in width, and 27 feet between the parapets; the span will be ${ }^{2}$ feet, with 20 feet rise. There will be 42 arches, which are wegments of eireled The greatest height from the river to the rails, will be 98 feet 6 inches. The bases of the piers are intended to lse of stone for alout twelve feet in hedeth above the ground; the imposts and parapets rill also be of atone, and the rest of the structure of brick. The vaduct will contain about 61.000 cubic yards of brickwork, and about 586,000 cubic feet of stone worts, and is espected to be completed in two yeareanda half. The contractors are. Messrs John and Samuel Blakeley, of Manchester. The engineers in chief of the railway are Robert Stophenson and George Waton Back, Eeqrs, and W. Baker, Esq., a young gentlemail of promising abilities, is the assistant engineer of the Congleton length - Mr. Buck stated that the vielvet wauld be the most gigantic structure ever attempted in this country-in this hingdon -or indeed in Euroge, in modern times. It would be a thousand fret larger than the largest bridge of masonry in Furope, which was the Pont da Sain Esprit, over the Rhone. It would be more than three fimes the height of that brilge, and it would occupy six times its volume.

Hull and Selby Railway.-The rapid progress of the works at the Hult te. minus during the last month or six weeks cannot fail to have arrested the attention of the most casual observer. At the princlpal froat of the Holl station, on the West side of the Humber Dock, the lofty warehouses of the company, which are 270 feet in length by 45 feet in width, hare receired the frame work of the roof, and are now being covered in. The stove foom of the company's offices has also attained the full height of the firat story: when finished they will present an imposing appearance. The entire fronage towards the dock, inclurling the entrances to the lines of tram-read, wuch will be placed on each side of the warehouses and the officea, will be sheot 210 fect. The tram-roads will cross the street on a level with the parment, and extend quite up to the quay, where the waggons may be loadd, and the goods conveyed by this and other connecting railways to Leeds, Yanchaster. Iiverpool, Isirmingham, London, \&ec. The works at the Kingeton-atrecentrance, coachbuilders', bmiths', engineers', and turners' hups, parse of Works, sc., are also rapidly assuming the appearance they aro finaly io bear; the engine-house and lofty chimney of the stationary engibe are corr. pleted, the boilers are set, and the engine is netrly ready for rort ; it wili be firat employed in sawing the immense piles of Baltic timber. landed by Messms. W. Beadle, Sykes, and Co., the agents to the contractoren ap extessive house at Rign; of uhich nearly four thousand loads hara already bro delivered. This timber is intended for the basis of a portion of the pernespe: ralls. The tanks for Kyarising the timber are upon the hydraulic pinch and answer the purpose extremely well, the wood being complotehy samen
by this process. Mr. Walker, the engibeer, has stated that it is done in a more effectual manner than any be has yet witnessed. Some idea of the extent of premises required for the station of a railway company may be formed by those who have never seen such buildings, when they are informed that the ground purchased by the company for this and other purposes adjoining Kingaton-street, the Humber Dock side, \&cc., exceeds five acres, a considerable fartion of which is now being covered with various needful edifices. The arrangements of these buildings, notwithstanding the large extent of ground which they will cover, are admirable for compactness and facilities of intercommanication. The ease with which passengers may enter and leave the carriages, and goods be loaded and unloaded from the carriage ways, being a conple of feet below the parement immediately adjoining on each side, both in the warehouse and passengera shed, will also be a great convenience. At the Selby terminus, two sloop loads of castings were delivered last week for the iron bridge, which will be a splendid structure, and one of the largest, if not the largest, of the kisd in the tingdom. It is expected to be put up in a few weeks. The castings have also been shipped tor the Derwent bridge, which will be erected in about a moath. The whole of the rails and chairs are contracted for, and the laying of the permanent way, which has been commenced between Hessle and Hull, will shortly be in progress throughout the line, which the contractors engage to complete by the lst May, 1840. Fifty waggons, for goods, are contracted for, and the carriages of the first and second classes are nearly completed. The locomotive engines, which are being manufuctured by Messrs. Fenton, Murray, and Wood, of Leeds, are in an advanced state of forwardness. We observe that the large culvert at the Lime-kiln-creek (about which so much has been said) is nearly cumpleted. In fact, to whatever part of the works the eye is directed, activity and rapid progress are manifest, 80 that no doubt remains of the opening of the line next summer-we hope in the early part of it. A seventh call of 51 . per share has just been made ; and it is gratifying to learn the readiness with which the previous calls lave been met ; of the sum required on loan, and for which the company have not advertised, we understand that only a very zmall portion, about 21,0002 . remains to be taken up.-Hull Adeertiser.

Neus Locemotive Engime.-Messrs. Peel, Williams, and Peel, of the Solio Iroa Works, Ancoats, have recently turned their attention to the manufacture of locomotive engines for railroads; and on Wednesday trial was made of their furst engine, on the Liverpool and Mancliester line. The general form and diaposition of the parts of this engine resemble those of the Liverpool and Mancheater and Grand Junction Lines; the only difference being in the mode of working the valves. There are no eocentrics, but, in place of them, two spur wheels staked on to the crank axle, driving two olher wheels of equal diameter placed immediately over them, and running in a frame supported by the crank axle, so as to preserve the distance between the centres constanily the same, and unaffected by the motion of the engine on its springs. The theels last mentioned are attached to a short axle or shaft, carrying at each end a small crank arm, which drives a connecting rod attached to the valve spindle. There is likewise a very important and creditable improvement in the construction of the striking lever for reversing the motion, which we are unable to describe intelligibly without the aid of a drawing. The resulte of the experiments on Wednesday, duning a trip from Manchester to Liverpool, with the nine A.m. first-clasa train, consisting of seven carriages, each weighing five tons, as reported by Mr. Edward Woods, the superintendent engineer, were most satisfactory. On the same day, the engine performed apother experimental trip, from Liverpool to Manchester, with 25 loaded waggons, weighing in the gross, 133 tons 18 cFt . 2 qrs. Previous to this experment, the "Soho" had been running a fortaight with passengers on the Liverpool and Manchenter Line, and during that time, Mr. Woods informs un, " no failure has taken place, and the trajn have usually been brought in bafore their time."-Maschester Courier.

Seafordskire, A new church is to be erected immediately, at Hill Top, in the parish of Westbromwich, Hobert Bubels, Anchitect.

Staffordshire.-The parish church of Wilbenhall is abouty to be very much enlarged, under the directions of Robert Elubels, Architect.
Secferdehire.-The parish church of Wombourne is going to be repaired, restored, and greatly enlarged, from deaigas by Robert Ebbels, Architect.

Southeoerk.-A new church has been completed in Park-st It is a large and commodious structure, with a handsome bell tower 100 feet in height. The style of architecture is Gothic, and it is capable of accommodating 1,000 pertons. One half the situings are free. Adjoining the church is a range of Lofty buildings intended for the new grammar school of St. Saviour's, corresponding with the architecture of the church. The old achool-house oppostie the ancient church of St. Saviour is to be rased to the ground; the site will be devoted to the enlargement of the Borough market, and will considerably improve the appearance of that locality. The benefits of a moral and religious education sce,rding to the tenets of the established church will be extended to a larger number of scholars than the old school-honse coukd secompodate. The new church will be consecrated in a few days by the merchanta. The church has been erected by the trustees of the late Mrs. Hyndman's bounty, it an expense of about 6,000 . The new achool-house Fill coat about as much more, and will form an ornament to the district.Times.

Torkhire-It given us great pleamure to state, that Mr. J. Walker, the rempected owner of the Sand-Hutton eatate, near York, is now erecting a very neat and commodious chapel-of-ease at that place, which is in the parish of Boanell, and at a considerable diatence from the parish church. The works are progressing rapidly, and Cunder the direction of Mr. Salvin, of London, the arrhitectf will soon appruach to completion,-Domearter Chromicle.

Birningham.-The ceremony of laying the foundation stone of the first of the ten churches proposed to be erected in Birmingham took place on Saturday the 5th ult., at the site granted by the Messrs. Robins, near Great Listerstreet. The situation is admirably adapted for effecting the object intended by the originator and subscribers to the fund, being in the centre of a very large and increasing population. The committee have adopted the plan of Mr. Thomas, of Leamington, and the church will be of the carly decorated gothic style of architecture, having a tower and spire of 125 fect in height ; with lancet windons to the side walls, the windows to the tower and communion being finished with mullions and tracery heads. The roof will be of one span, with open framed principals, and pierced spandrils and corbels to the side walls. The structure is to be built of brick, the spire and moulded work being of Wheoley Castle stone; and the ground floor, when completed, is intended to contain six hundred sittings in pews of the first and second class, and two hundred free seats. The end gallery will likewise supply two hundred free sittings, making a total of one thousand sittings; and the contract stipulates that the whole shall be completed by the first of September 1840.-Hfidland Counties Herald.

Staffordshire.-At a vestry lately held at Leek it was agreed to elevate the front of the west gallery, so as to give a lighter appearance to the church generally, and to facilitate the laboura of ine preacher by affording a free circulation to the sound. The other alterations are rapidly advancing towards completion. Three handsome arches have been crected on each side of the body of the church. The gallery on the nurth side is finished, with the exception of painting; and the one on the south side is in a state of considerable forwardness. Altogether the work is of a very satisfactory kind, and when completed will afford to Leek a very elegant and cunvenient pariah church. An increase of about three hundred sittings will be obtained, the whole experse of which will be sustained by the voluntary contributions of the inhabitants. In audition to the ancient free accommodation for the poor, h hich was very considerable, 137 more will be approprated to their use in the new north gallery.
Old Windeor.-The corner-stone of a new district church for the parish of Old Windsor, Berks, was laid on Friday 27th ult., by her Royal Highness the Princess Augusta, in the presence of a highly respectable and numerous assemblage. After the usual ceremonies, the inscription was read by the architect, Mr. Ebbels, of Trysull, near Wolverhampton ; it was as follows :-"The corner-stone of this church was lald by Her Royal Highness the Princess Augusta, on the 27th day of September, in the year of our Lord, 1839 , and in the third ycar of the reign of Her Most Gracious Majesty Queen Victoria Robert Ebbels, architect."
Achbourve Church, in Derbyakire.-This fine old church is at present undergoing a very extengive internal beaulifying and repairing. A public subacription has been raised, and the aum already obtained amounts to upwards of $2,000 l$. Ashbourpe Church is one of the finest, oldest, and largest clurches in Derbyahire, and it is well worth the repair which it is receiving.

Welch Church.-It is in contemplation to erect a Welch ehurel in London for the especial use of the natives of the principality, to worship their Maker in their own language. We cordially concur in the object of the promoters of this exollent undertaking, and trust it will meet with the aupport of the Wejch noblity and gentry throughout the kingdom.-Cambrias.

Newo Cathalic Church af Stalybridge.-On Wedneaday 26th Steptember, the Catholic church, dedicated to St. Peter, was consecrated. The edifice is built of stone, in the Gothic style, and cost upwards of 4,000 . in ite erection.

- Putingo mozindemas, ec.

Queen's Collage, Bath-This ertensive atructure, designed by J. Wilson, Esq., of Bath, is now in the course of erection on Claverton Down, a lofty and commanding eminenee, from which it will overlook the city of Bath, and be seen in every dirretion. The Grend Terrace in front of the building is 800 feet in length by 60 feet in width, is intended for the carriage approach, there is also a smaller terrace 20 feet wide, on which the building will be elevated, this is to serve as a promenade for the use of the atudents and subscribers. The exteut of the buildiag is 600 feet long, and varying in width from 40 to 45 feet. It is of a uniform design in the Saxon style, having a grand priacipal entrance in the centre, consiating of a noble archway richly ornaroented and surmounted by the aypropriate arms of the college, and leading under the lofty tower which is 130 feet high, to the chapel extending to 80 feet behind the front. The wings on each side are terminated by embatleal towers at the angles. The interior arrangements consist of a lecture theatre 50 by 60 feet, capable of holding 600 persons; s museum 100 feet by 40 feet, and a library of the same dimensions. The students apartments are arranged on each aide of the long corridors, there are also apartments for the use of the professors, warden, and others connected with the establishment. The rooms are $s 0$ arranged on the ground floor, that a view may be obtained from the principal lecture-room through the great hall, saloona, vestibule and corridors to the extent of upwards of 500 feet, to be illuminated br a rich stained-glass rindow at the termination. The height of the bulding varies from 35 to 50 feet, some portions of which are three stories high, the fluara being concealed by the transverse mullions of the windows. It is estimsted that the building will cost 30,000 ., which mum is to be raised by shares of 100 . each, and callculated to accommodate 215 studenta, with capabilities of extending the number shoukd it be found requisite.

Mechanics' Juntitution, Bath, is now erecting at the comer of Gharlollestreet and Gueen-street, with s front elevation 70 feet in width by 40 feet in height, and 44 feet in depth, approached by a flight of stepa leading into a large entrance vestibule with niches for four statues. The buiking will comprise a souterrain containing dwelling rooms for the librarian, a committee room, and five other rooms for the use of the various clases; the ground
floor contains a library, rearling roam and a museum, together with the princlpal staircase ; the upper floor is arranged to contain a large lecture room, expable of accommodating 600 persons, a picture gallery 65 feet in lengih, also two other rooms for philosophical apparatus, sce. The armorial bearings over the doorway, are those of the city of Bath, the facade is surmounted by a statue of Minerva. The front elevation and side front will be of Bath stone. The estimate cost of the building is 24001 . which the contractors have engared to finish for that sum. Mr. Jarnes Wilson, of Bath, is the architect.

Sonigart.-Herr Zanth, archutect of Stontgart, Honorary and Corresponding Monber of the Royal Institute of British Architects, has recently commenced the erection of a very elegant, although small, theatre for the King of Wurtemberg at Cannstatt, near Stutgart. The constructions are already far advanced, and if the winter should be sufficiently mild to permit the continuation of the works, it is expected that the first piece will be played in the summer of next ycar. He has also nearly completed for the King a small conservatory for tropical plants, upon the system, of the Englinh buildings of that class.

Bwildings at Munich.-The author of an article in No. 27 of the Foreign Quarterly predicted "that after a visit to Athens and Argigentum, Pastrum and Pompeli, the student in architeeture will finish his studies hereafter on the Glyptothek and Pinncothek of Klense at Munich, and the Wachtgebäacle and Museum at Berlin." Such is the opinion of an amateur (9) critic: let as now turn to the jadgment of an inteligent foreign architect upon the very same subject :-"I remained nearty two weeks in the capital of Bavaria, and my opinion is very decidedly mede up. Edifices, as vast as they are numerous, have been ererted and are erceting in that city; but among the three arts which eontribute to these various and important creations, arehitecture is far frcm holding the frot rank. To painting must the first palm be ceded, then eomes seulpture, and last of all, architeeture. I cannot now develop all the reasons, nor examine in detail all the monuments which cover the surface of Munich, in support of my opinion; but I shall take up the task as soon as my profesvional occupations, which have aecumulated during my month's absense, allow me the leisure to do so.
B. A.

EISORETMAMA.

Waves of the Sea.-M. Aimé has presented a memoir to the French Academy of Sciences, in which be gives the results of his experiments on the depth to which the motion of wayes extends, made in the Bay of Algiers, from December, 1838, to July. 1839, during the continuance of the heavy north and north-east winds which caused such a great awell in the bay. He con-cludes-lat, That the motion of the sea produced by the agitation of the wryes may be sensible 40 yards in depth; 2dIy, That the motion at the bottom is oscillatory; and 3dty. That the extent of this oscillation varies slowty from the bottom to the sarface.
Northern Lights-The northern lights, were olserved at Paris on the 3rd of September, at 100° clock in the evening. Also at Asti, in Pledmont, on the tho of September, at one in the morning, and at Alexandria, in ltaly, at ten o'clock in the evening.

LIET OP WENW PATEETME.

GRANTXD in england from 27 th skptrmber to $24 t h$ octobel, 1839. Josepa Clinton Bobsatron, of Peberborough Court, Fleet-etreet, Patent Agent, for "an improved method of manyfoctwring artifficial marble." Communicated by a foreigner residing abroad.-Sealed, September 27; six months.
Henry Jambs Pinding, of Osnaburgh-atreet, Middlesexp artist, for "improvemente in collare for horses and other animal." Comnunicated by a foreigner residing sbroad.-September 27; six months.

Prancis Macreons, of Saint James's-square, Middlesex, gente, for "improvements is steam boilers or gewerators."-September 27; bix months.

Thomas Romisoon Whlians, of Cheapaide, gemt., for "certain improvemente in the manyfactwre of Alesible fibrows subtancen, or comporitions, applicable to covering buildtingt, and of her woeful pwoposet, and also the mapchinery weed therem."-Pebruary 28 ; six months.
William Hinke Bunxe, of Shoreditch, for "improvementa in the mode of constructing ressels for containing air, aqplicable to the purpore of reising sunken, or 4fting floating bodies under or in water; and of fastening such vearels to chaing or other mesehinery, or apparatme to be used for raining or liffing such bodiee."-October 3; six months.

Jos Cutler, of Ledy-poole-lane, Sparbrook Warwick, for "certain inn. proved combinatione of metals to be used for nariow parposec."-October 3 ; wix month.
Samvil Hall. of Besford, Nottingham, engineer, for "improvementa in machinery for propelling."--October 7 ; six months.

Fanncis Gybion, Spillsbary, of Whanll, Staffordshire, chemist: Manere Fhancois Cathiane Doetzer Conbacx, of Upper Norton-atreet, Middlesex, and Alexandxe Saxuel Byrie, of Montague-qquare, gent., for "imeprovements in painte or pigmenta, amd vehreles, and in modes of applying painte, pigmente and veliclece."-Oetober 7; aix months.
Joun Lorsiax of Etinburgh, geographer, for "improsemente in apparatue for meanuring, or anewtaining worights, strains or prowswre."-October 10; six months.
Jorn Barnity Humpharys, of Southampton, C. B., for ch certain inmprovementain shipping generally, and in stasm veworis in particular, of some of thew ingprovementa being indioidmally novel, and some the reult of nowel applicetion, or combination of perte elready knowm." \rightarrow October 10 ; six monthr.
Jaxis Smith of Deanston Worke, Killmadock, Perth, cotton-spinner, for
"a calf-acting temple, applicable to looms for monting fabrica, wiether moved by hand or power."-October 10; six moaths.

Jamise Smirf, of Deapotona Works, Killondock, Perth, cotton spimer, for " eerfein inprovemente eppliceble to cemal mavigution-Oetober 10; six monthan
 rotatory engines to be woorked by steam, and other fluide, ouct eagimet being
 months.
David Hascount of Birmingham, bras founder. for "cerlain ingprwetments in calfors for furmiture and other parposes."-October 10; ix months.
Romert Edmumd Monaick, of King Williametreet, Lomdon, geetieneo, for " improvemants in the men of withre of boots and ahmen and convinge for the lega." Communicated by a foreigner reliding abroad-october 17; ir months.
 mente in the manufacture of paper."-October 17 ; sir months.

John Coopr Hadding, of Bering-plece, Waterdoo-rosd, civil experece, and Gronez Huwniss, of Gateshead, iron works, Durham, for " oertrin in provements in the canstruction of whele for carriagee to be wed ae reil womy."-October 17 ; mix months.

JAMES Yatis, of the Efinginm warks, Rotherivera, iron foumder, for "oertain inqurwements in the cometrwetion of firnoces"-Octeber 15; ix months.
Ceanies Roniz, of Leadenhall-otreet, cloth menuficturer, for "isprwements in fixing colowr in cloth."-0ctober 19; two montis.

Williax Newton, of Chancery-lane, civil engineer, for atertain in. provemente in mechinery or apparsfus for woorking or memyfacturing ocrews." Communicated by a forcigner reviding abrond-Octaber 24 ; i: months.

Jakes Sutclifte, of Henryetreet, Limerick, builder, for "artain in provemente in machinery or apparative for raising and furstag murer, or other fluids, and incremsing the power of weter woon water-phoole and cher machivery."-Octaber 24; nix monthes
 in inctrwmenta, for which lettere patemt were formenty gramted to him, eal which, were called therein, ' A meso Compasu for Nrevipation and other Par. poces,' parts of which improwements are spplicuble to inatruments for sumsuring angles at sec or on shore, by aid of reflection or refraction, of of reflection combined scith refrection, axd part are appliceble to mageetic compases for ascertaining true bearing from coloetial observetions, and for comparing the oanow with the bearing of the magnatic meedle oundainoli in such conepases, shereby to deterwine and be amabled to chow for the devie. tion of such needte from the true meridian, whether by miation, trex affrcetion, or of hor cawe of error."-October 24 ; six menth.

We are obliged to Major Turnbull, of America, for the edditional angreningx of the Potomace aequeduct.
Mr. Sheppard has favoured ws with an extensive table of gradients, which we shall publish next month. We are aleo obliged to him for informartion relotive fo the progress of works in Sussex, which we are mecraritated to postpone watil mert month, which we hope he will excuse.

Agreeably to the wish of setecral correspondents, we are having an extenaive tebte calculated for setting out railway carren, which we capmet to be able to give mest month.
The next month's Journal will conclide fine second volume, we have to request subucribers to complett their sets immadiatoly.
We omitted to notlce last month the recetpt of D. C.'s (a gowng meckanic) can. munication relative to Busnett and Corpe's Coscentric Engine, he will parrias that a similar commanication was published, which had beem previously rooutra. which is the renson that we omitted his notice; however wee stall be glod to frar from him respecting the latter part of his commumication.

As it is quite imposuible for mor to apply for information in negared to duildiage we have either not heard of at all, or else do nat know wite are engy of the pertion employed upon them, we mast earnestly request that profescional gestlanes. ill have the kindness to apprize us of the buildiags they are exacmaing, eure thath they not care to fasomr wa with any thing like a description of them. A Jowed like ours ought to be a record of all that is going on in architecture therongheert the kingdons; yet it is hopeless to expect that the minast exertions an our port all render it such, if the only parties who are capable of anpplying \#s mith the intoltsgence requisite for that parpose, will not do so of thatr onow apeord. We ceme. complain of having met with any backwardness in furnishing the iaformation F have solicited, on the part of shose to whon we have applied for is directhy: in, for the reason first acrigned, it is only in a wery few cases that wo know sofore and to whom we ough to address ourselves.
Commurications are requested to be addressed to "The Eutitor of the Civil Engineer and Architect's Journal," No. 11, Parlioment Streef, Wirneleter. or to Mr. Groombridge, Panyer Alley, Paternoster Row; if by gate, to bedirected to the former place; if by parcel, please to direct it to the wewere of the two places where the coach arrives at in London, as we are frequigndty pen io the expence of one or two ahillings for the porterage only, of a wery amall parach
Books for review mugt be sent early in the senth, cownwaications on or fre the 200th (if with wood-avfs, sorbier), and achertinements on or bywe time 5 st inetant.
 Paice 17s.

CURTISS PATENT RAILWAY IMPROVEMENTS.
 GROUND-ROPE APPARATUS.

Fig. 1

Fig. 2.

Ground-rope Apparatus.

A machine or apparatus for comecting or disconnecting a train with a ground-rope whilst the rope is in motion. Figure 1 is a side view, and Figure 2 a front view. C is the cable or rope. A, the forewheels of the leading carriage, B, the framing of the carriage. A stage is fixed to the front of the carriage, upon which is erected the standard or frame $f f$, a vertical bar of iron D is connected with the train by the link g, and suspended to the frame by the chain g^{\prime}, which coils round the barrel i; the lower part of the bar is formed into a kind of broad hook, the under side being formed like a latch, and the face rounded longitudinally, and hollowed to receive the rope; when the rope is detached, it occupies the position shown by the dotted lines, and the bar D, when about to hook up the rope, occupies the position shown by the dotted lines in Figure 1; then by turning the handle h, the bar is lifted up, and brings the rope with it, which is then tightly held or jammed, as in clams, between the lroad hook of the bar, and the pieces efixed to the framing; at first the rope slides through the clams and prevents concussion, but as the train gets into motion, the sliding is leas and less, until the train attains the full velocity of the rope; a ratchet is placed upon the axle of the windlass, so as to hold up the bar, but in order instantaneously to disengage the rope, a bar K is provided, which works on a joint l, so that at any moment the bar F may be thrown on one side, as shown by the dotted lines in Figure 2, when the rope drops down, and the velocity of the train is checked by the drags or brake in the usual way; the fingers $p_{1} p_{1}$ are placed in order that the rope may be prevented following the book of the bar D, when the rope is required to be thrown down; ! the upper part of the staudard F is formed rounding in such way as to allow full play to the upper end of the bar D .

Apparatus to take up a Carrage or Carriagis whilst the TRAIN IS AT FULL SPEED.

Fig 3, Side View.

Fig. 4, Front View.

A machine or apparatus by which a carriage may be taken up and uttached to a train, without stopping the train. Figure 3 is a side view and section, and figure 4 a front view. A, is the fore wheel of the carriage to be taken up, and x the axle; upon the axle is placed the sheave F, within which coils the rope C_{4} the sheave runs loose upon the axle, and is thrown in and out of gear with it by the olutch D, worked by the lever e, the end of the rope is made fast to the sheave, and the rope coils over itself, the rope may be of any convenient length, about 100 yards I consider sufficient. B, B, are two supports depending from the framing of the carriage to support the axle more steadily. L, is the framing of the last carriage of the train, to the side of the framing is fixed the book K, a post h, is placed at a proper distance, upop which is fixed the hook or boit i, the ring g, fastened to the end of the rope c^{\prime}, is then hooked upon the bolt i; the hook k, of the passing carriage looks into the ring and carries away the rope, which then drags the carriage to which the pulley is attached along with it ; but the carriage is dragged after the train by a velocity so much slower than the train, as is due to the quantity of rope uncoiled for every revolution of the wheel A, for example, if the train passed over five yards, and the rope uncoiled four yards, the space passed over by the oarriage at starting would be one gard or one-fifth the velocity of the train, but the velocity of the carriage is increasing as the coil of rope becomes less, and it moves slower than the train until all the rope is unwound, then afterwards the rope winds upon the axle, when the carriage then moves at a greater velocity than the train, and in the same proportion as the rope coils up when it at last overtakes the train then when it has arrived close up to the last carriage, a bolt is fixed into the drag link, and the clutch is thrown out of gear, and the carriage is then united to the train the same as the rest. In this instance the sheave and apparatus is applied to the carriage, but it may likewise be applied to the engine or tender, and the best place to fix it would be outside the wheels, lengthening the shaft, and hanging the sheave upon it: and as regards the operation of taking on the coach, the link or ring i, of the rope will hook into the book K, instead of the ring into the hook as before described; and the rope C will coil round the reverse way to that shown in the drawing, the carriage is of course placed in a sidings and it enters the line by a witch in the usual way.

An improvebd Machinery or Apparatus for maning Signals.

The peculiarity of which consists in conveying the signal a mile or any convenient distance from the station, the object being that the engineer may pass the signal post, and have distance and time sufficient to stop the train before reaching the station or place for stopping; the macbine for a light is shown in figure 5. A, is a lamp post. C, a lantern of any pectliar shape, with bull's-eyes on three sides, or it may be formed of glass like a street-lamp, or in any other manner. C, is the lamp with reflectors bebind the light in the usual way. B, is a shade supported upod the vertical rode, passing through the post and united by a joint at its lower end, with the bell-crank F , to which is likewise suspended the ball or weight M, to the other end of the crank F, a joint is attached, with whieh is connected a strong wire g, which is led like a bell-wire, by proper connections to the crab h, placed in a room of, or near, the station-house; the wire, or a chain or rope united to its end is fastened to the barrel i, of the crab h, which coils round the

barrel-then when a man turms round the hindle k, by means of the pinion fixed on the handle shaft, and the barrel wheel denoted by the circle n; the barrel i is turned round, and the chain, or rope, or wise is coiled round the barrel, the wire drawn in, and the crank F made tw occupy the place shown by the dotted line, when the vertical rod t_{0} and shade B are raised, and the light concealed, the counterbalance it is employed to keep the connecting wire g always stretched; in placer where gas is employed, a large gas bumer may be substituted for the lamp, and the rod ε, made to communicate with a stop cock, so that by raising or depressing the rod the gas may be turned on or off, then a small concealed jet of gas may be always buruing so as to ioflame the larger jet when the rod is raised by the apparatus, thus a powerful light may be used when needed, and when not required the gas may nut be wasted, The apparatus as drawn is a night signal, or to be used when the weather is so dark that other siguals cannot be seen; but for a day signal it is merely neoessary to employ a post $\mathbf{s o}$ as to raise a vane or vanes like a telegraph, a spar for example fixed at the top of the lantem; when it is required to use the telegraph, a man may make the necessary and self-evident connexion between the rod e, and the limb of the telegraph, which limb being made with a bell. crank, when the rode is raised may cause the telegraph limb to the
horizontally, and when the rode is depressed to stand vertically, or the apparatus may be formed double so as to work both telegraph and the lamp at once, whether by day or night.

Hydrostatic Ceair.

This apparatus consists of a seat to destroy the vibration of the railway carriages shown in figures 6 and 7, this consists of the outer case C, formed with a double bottom, dividing it into two parts, the upper in which the seat floats, and the under forming a receptacle for the superfluous wuter, the inner case or box. B, has a space all round it of about an inch clear, and the top of the outer case, and the bottom of the inner floating bex is bound round with a loose hemp gasket or other suitable packing to prevent the sides of the cases from touching and to act as guides for the seat, the seat is raised by a person pumping up the water from the lower or waste box D, by means of the syringe D , the seat is lowered by the cock f, being opened by the wire or string g , and allowing the water to flow out into the waste box; the waste pipe i, is placed as high as it is proper the water should rise in the upper box without overflowing, so that the water returas by it to the waste box. The cases or boxes may be made of any suitable materials, but I consider sheet-iron the best. Figure 6 is a section and side view, and figure 7 a front view. A, is the seat formed in the same way as a chair or other seat ; h, is the suction-pipe of the syringe, and the line n denotes the floor of the carriage.

Wherl adapted for the Common Rond or Rallwaf. Fig. 9 , Side Viex.

Kig. 9, Cross Section.

My next improved machinery and apparatus is a wheel adapted to run upon the common road or upon the rails of a railway.
Figure 8 is a side view, and figure 9 a cross section of the wheel, the wheel is formed as shown, as if the conical railway wheel were placed outside of the common wheel; if the wheel be formed of wood the felloes should be broad enough to take both tires, the outside tire may be the same as that used for a railway wheel, and the road tire the same as usual. I consider $1 \frac{1}{2}$ inch sufficient difference in the radius of the two wheels; the best mode to fix the spotes will be as shown, alternately to cross them; the nave would be best of cast iron in the usual way. The only part of the wheel which I cluim as my invention being the form of the ring, any usual method may be used, and any material employed; the best mode to form the ring will be to make the wheel in the usual way and then shrink the railway tire b, b, upon it, then when this is turned in the lathe and the edge likewise, the road tire c, c^{\prime}, may be shrunk on afterwards in the usual way; or the tire iron may be rolled to the entire shape, and the wheel put together upon the usual railway system. D is the nave, e the axle, and f the spokes.

TILGHMAN'S RAILWAY BAR.

The nature of the improvement consists in so forming the bar that there shall be a reduction of the height usually given to the I rail between its head and the base on which it rests ; thereby diminishing the leverage of the rail, while its strength and capability of being firmly secured to the cross-tie, are provided for by the addition of a rib directly under the centre of the base, which rib may be made plain, trapezoidal, or with a lower web.
To fasten the rail, the lower rib is inserted in the cross-ties, and wedged securely to its place, where it is supported conjointly upon the ordinary base, and the under part of the lower web. A chair, or flat plate of iron, is inserted immediately under the upper base or support, to receive which, notches are made in the ends of the bars, so that when two of them are put together, these notches form a mortice through which the chair is to be inserted. The chair is affixed to the cross ties by spikes or screws.
The Committee having tested the strength of the improved traptzoidal rail, weight 48 fiss. per yard, by the rules laid down by Professor Barlow in his account of "Experiments on the transverse strength and other properties of malleable iron, with reference to its uses for railway bars," feel satisfied it will sustain a weight of from six to seven tons without injury, (the supports being 33 inches apart) or about 75 per cent. more than the most approved rail of similar weight now in use.
With reference to leverage, the improved rail is decidedly preferable to the I rail, the distinnce between the upper surface and support being considerably less, and as its entire depth is greater than that of any other rail known to the Committee, (and may be increased at a slight expense, without changing the position of the main support or increasing the leverage, it consequently follows, as the depth governs the deflexion, that the improved rall is much the most stiff and rigid.

In point of economy, the Committee are of opinion that the improved trapezoidal rail will be found less expensive than the I rail. The plan suggested for connecting the bars, and attaching them to the sills, they conceive permanent and simple.-Journal of the Franklin Instilute.

POINTING THE STONE WORK OF A CHURCH STEEPLE.

SIr-When 1 was building the Parsonage House at Waltham, Leicestershire, I had an opportunity of obtaining from the Register the following account for pointing, in 1652 , the steeple or spire of the parish church, and which I have much pleusure in sending to your widely circulating journal, becsuse it gives so minutely the materials formerly used, as well as the expence incurred, in that important but much neglected branch of work, "pointing."

The Church, which is built of stone, stands on a very elevated situation, and is exposed to every wind that blows.

I am, Sir,

36, Guildford Street,
Not. 15th, 1839.

Railway Points. - We have during the past week been shown the models of railway points or switches which appear to possess important advantages over any at present in use. The ingenious inventor is a mechanic now residing in this town, and who was for some time employed on the London and Birmingham Railway, where his attention was directed to the subject. As far as we are enabled to judge from the models, the invention will effect all that is desired; as, were the plan adopted, it appears that by no possibility could an accident occur in consequence of the negligence of the party to whose care the points were entrusted. We allude to the invention in the hope of drawing to it the attention of engineers and others engaged in the formation of railways; and we shall have pleasure in giving the address of the party suggesting the improvement to any gentleman who may apply to us for that purpose. It is to be hoped that the inventor, should his plan be found to possess the advantages he claims for it, will be rewarded for his ingenuity and pernererance.-Midland Counties Herald.

SEA BANK AT HOLBEACH.

Sir-I herewith enclose a description of a Sea Bank constructed in 1838 for the Mesers. Johnson and Sturton, of Holbeach, for the purpose of enclosing a quantity of sea marsh land.
The bank measured about two and a quarter miles long, and varied from 10 to 14 feet high above the surface of the marsh. There were various difficulties connected with the construction of this bank, on account of a bank having previously been made on the marsh; the princ:ipal part of which was unfortunately washed away in February 1836. In executing the new bank the material had to be carried over the old floor pits, and large creeks had formed themselves both at the back and front of the seat of the new bauk in several places, varying from 8 to 12 feet deep below the surface of the marsh, and from 2 to 3 chains wide. The new bank in front of the most exposed situations, has slopes on the sea side from 5 to 7 feet hurizontal to 1 foot perpendicular, and on the land side 2 feet horizontal to 1 foot perpendicular, with a top 3 feet above the height of the highest tide, from 2 to 4 feet wide at the junction angies of the slopes.

Section of Embankment.

H, Height of highest tide.

F. Foreland or cess,
P. Puld'e.
E. Embankment, 13 feet high.

The counter bank has slopes of 4 feet honizontal to 1 foot perpendicular, and a top 2 feet wide, with land slopes of $1 \frac{1}{2}$ foot horizontal to 1 foot perpendicular.

In executing the work, it was let to the workmen in reaches, at per chain of 66 linear feet, measured along the top, including all labour in forming, puddling, scooping water from floor pits, breaking and spreading crocks, shifting materials, and securing the same from the tide's way; the men finding all shovels, plank hooks, tools, horses, carts, \&c., required for excavating, and filing, and spreading, and puddling, the proprittors finding all planks, barrows, box horses, tressels, ropes, staples, \&c., necessary for the same.

The whole of the earth deposited in the different parts of the bank, was well chopped, worked, and trodden together, and the best of the material was carefully reserved and laid on the front or sea slope of the bank, and well puddled or punned in the most workmanlike manner, and joined to the surface below; the face of the sea slope was sodded with the best green grass sods or flagging, varying from 3 to 4 inches thick, properly cut and joined together; and the land slope in some parts sodded, and the other parts sown with seed; in crossing the Creeks, facings of fascine work were applied according to circumstances, and some old vessels were sunk in the deepest parts, filled in with the best of the soil, and well puddled between; and in conducting the work, it was found necessary to encourage the warping up of the old floor pits, by introducing fascine jetty wurk, which greatly accelerated the deposit of the sea warp. The whole of the material used in the bank, was dug from the sea side, except where the men were filling up, and shutting out the sea at Creek openings, left for the draining of the marsh, where they were obliged to dig the earth from the parts that lay nearest to the work, whether at the buck or front of the bank, so as to expedite the work, as this part of the operation re. quired the greatest attention, or otherwise considerable damage would have arisen to the bank.
Since the bank has been completed, lines of fascines have been planted at the most exposed parts, laving half their length let into the soil, and have been found very beneficial in breaking the force of the waves, protecting the surface of bauk, and encouraging the deposit of the sea warp.

Stephen Lewin.
Wutham Offec, Booton, Lincolnshine.

NEW SYSTEM OF INLAND TRANSPORT.

An experiment has just been made on the Forth and Clyde Canal, in Scotland, which seems likely to be followed by very important cono sequences, in a scientific as well as commercial view, and to affect seriously the relative value of property in camals and railways. It is well known, that there is a system of canal navigation practised on some canals in Scotland, in which light iron vessels, capable of carry. ing from 60 to 100 passengers, are towed along by a couple of horses, at a rate of ten miles an hour; and this is effected by what is called riding on the wave. This new system of wave navigation has hitherto beenlimited in its use by the speed of horses, and been thrown back into comparative obscurity by the brilliant feats of the locomotive ergine, whirling its ponderous burden along the iron railway with the speed of the winds. The experiment, however, to which we mow allude, shows that the same mighty machine is capable of performing feats equally astonishing in water as land-carriage. A locomotire of gine, running along the banks of the canal, dren a boat, loaded mith sisty or se renty passengers, at the rate of more than ninctien milces an howr: and this speed was not exceeded, only because the engine is an oldfashioned coal-engine, whose maximum speed, without any load, does not exceed twenty miles an hour; so that there is every reason to infer that, with an engine of the usual construction employed on railway, thirty, forty, or fifty miles an hour will become as practicable on a canal as on a railway. Thus, the wave theory, which was formerly a beautiful speculation of science, becomes the basis of a new system of inland water transport, and abstract science receives new illustrations from the practical application of its principles. The experiments to which we refer, we re performed in the presence of a namber of men of science, and gentlemen interested in the inprovement of canals and navigation, under the direction of Mr. Macneil.

The wave of the Forth and Clyde canal, from its \ddot{g} reat depth, $\ddot{\text { travels }}$ at the rate of about eleven or twelve miles an hour, and that, consequentiy, in order to " ride on the wave," it would be necessary to draw the boat at fourteen or fifteen miles an hour-a speed hitherto impracticable, because above the available speed of horses; but it had been confidently predicted, that at these high velocities, the violent surges usual at velocities of eight or nipe miles an hour would wholly disappear, and the vessel ride on a smooth undulating wave, exciting comparatively little commotion in the waters of the canal. Two of the experiments performed set this truth in a remarkable light-experiment No. 3 being performed with an illshaped passage-boat, which the engine had not power to drag "ores the wave," and experiment No. 1, with a boat suited to higher velocities. Now, it happened as predicted, that the boat moved at a less velocity than that of the wave, raised a high and powerful wave at the bow, which overspread the banks of the canal, and threw up behind it a foaming and most injurious surge; while, on the other hand, the vessel which moved at the higher velocity rode smooth and even on the top of the placid and gentle wave, leaving behind it no commotion but the sudden collapse of the parted water. These experiments are as follow:-

Experiment 1.-A passage boat filled with passengers, dramn if the locomotive engine, passed over
Yards. Seconds.

110 in 12.4)	
220 .. 24.5	Being a velocity of above nineteen miles an hour,
330 .. 36.8	riding the mait, with very slight commotion of
440 .. 49.2	the water.
550 .. 61.8	

Experiment 3.-A passage boat, containing passengers and baggage. but unsuited to high velocities, drawu by the locomotive engine, pused over
Yards. Seconds.
$\left.\begin{array}{rrr}110 & \text { in } & 34.2 \\ 220 & \ldots & 65.0 \\ 330 & \ldots & 9.2 \\ 440 & \ldots & 127.8 \\ 530 & \ldots & 158.8 \\ 630 & \ldots & 190.8 \\ 770 & . . & 221.8\end{array}\right\}$

Being a velocity of about seven miles an boar only, with a large wave raised up at the bow and rolling over the bank, and an after surge tearing along the side, the boat being bedild the ware.

Besides these experiments, there were others highly interesting in a practical view. A large fleet consisting of three schooners, three sloops, two canal traders, and one small boat, forming a gross weigbs of about 800 tons, were dragged along the canal similtapeously, with no other force than the simple adhesion of the wheel of the carriage to the surface of the rail. In another experiment, a train of fire boacs. capable of carrying 400 to 500 passengers, was taken along at the rite of fifteen miles an hour.-Atherceum. ${ }^{\circ}$

THE FLEXIBLE WATER MAIN.

Fig. 1.
Section of the River Clyde.
Well. Fun-
nel.

Fig. 2

Fig. 4.

Contrived by the late Mr. Watt, for the Glasgon Water-mork Company. By Joan Robison, Esq, F.R.S.E.
(From the Edinburgh Philosophical Journal, Vol. III.)
Tue Glasgow Water-work Company derive their supply of water from a well and tunnel formed in a stratum of sand on the left bank of the Clyde, which affords a natural filter for the water of the river. As the city lies on the right bank, the conveyance of the filtered water across the stream was a problem of some dificulty. The fertile genius of Mr. Watt, however, enabled him to solve it.

He suggested that a flexible iron main should be drawn across the bed of the river, through which pumping engines on the north side should raise the water from the well on the south side. In executing this plan, the well and tunnel were dug in the sand near the water's edge. The well is 10 feet in diameter, and its bottom is 12 feet under the ordinary surface of the river; the feeding tunnel is 3 feet wide, and t feet high, and extends for a considerable distance into the sandbank; the well has a wooden platform bottom: its sides, and those of the tunnel are built of granite, put together without mortar, and backed with gravel, to prevent the inftux of sand. The south end of the suction pipe (or main) is turned down into the well to a sufficient depth. That part of it which lies in the bed of the river, is formed of pieces 9 feet long, (exclusive of joints, and 15 inches interior diameter. Part of the joints are formed in the usual way, but others are something like what is called "ball and socket", or "universal joints." The whole is laid on strong frames made of parallel logs; these frames are joined by strong iron hinges, having their pivots in

Fig. \mathbf{j}.
Fig. 6.

A, iron pipe. B, timber frame. $\underset{F}{ }$, irch straps. canvans. G, bearers. joint. F. iron linge. F, ircn straps. G, bearers.
horizontal lines at right angles to the axes of the pipes, and passing through the centres of spheres, of which the zones of the sockets are portions. The flexible joints are at the extremities of the frames. This will be easily understood from the figures.

The frames and pipes were put together in succession on the south side of the river, and (the open or north end being plugged,) were hauled into and across the bed, in a trench prepared for them. The machinery for hauling them was of course on the porth side; the operation was aided and directed by pontoons, \&cc. The moveable joints of the pipes, and hinges of the frames, allowed them to assume the form of the bed.

Upon the plugged end emerging from the water on the north side, it was immediately opened and connected with the main leading to the pumps, to secure it against accidents from floods. There is a contrivance for removing any sand which may accumulate in the pipe. That part which is under water is covered over with stones and gravel, to protect it from injury from passing vessels.

Fig. 1 is a section giving a general view of the relative situations of the well, and the main through the river leading to the pumps.

Fig' 2, a vertical section through the pipe at one of the flexible joints.

Fig. 3, a corresponding outside view.
Fig. 4, ditto plan.
Fig. 5, a cross section of stock-joint and hinge.
Fig. 6, ditto of the pipe and frame.
The demand for water having increased beyond expectation since 1810, (when this work was completed,) a second main of 18 inches diameter, similar in all other respects to the first, has been since added.

ANCIENT STATUES-NO. 3.

Dictionart of Terms.

Translated and rearranged from the French of the Count de Clairac, Knight of various Orders, Keeper of the First Division of the Royal NHuseum of Antiquities in ine Lou cre.

(Concluded from page 435.)

Twose stones are called antique of which the quarries are exhausted, and which are now only to be found in ancient monuments. Among this great number of marbles and of other stones, there are very few which can be determined with certainty from the descriptions given by ancient authors. Most of these stones being only to be obtained from the monuments of Italy, we are often obliged to leave them their 1talian names, the number of which, however, the dealers in antique stones have very much increased, by selling as stones of different kinds, specimens which are often only varieties presented by the same block of marble: The Italian edifices which are richest in marbles and other antique stones are, the churches and palaces of Rome, the cathedral of Pisa, St. Mark and some other churches at Venice, the cathedral of Ravenna, that at Florence, as well as the churches of Santa Croce and St. Lawrence in the same city. The palace of Ca serta, the Royal Museum of Naples, and La Favorita, are decorated with a great variety of ancient marbles obtained from the excavations at Pompeii, Herculaneum, and Capri. The Royal Museum of the Louvre contains a great number of columns of the rarest and most beautiful ancient marbles, and which are not surpassed by any other collection.* Louis XIV. obtained from Barca, in Cyrenaica, a great quantity of beautifnl antique marbles, which he used at Versailles and Trianon.
[We bave inserted, among the following, the modern marbles mentioned by M. de Clairac; those are marked as modern, all the others are antique. Al. Alabaster. Bas. Basall. Br. Breccia. Gr. Grasite. M. Marble.]

African Breccia. Black ground with spots of deep violet, or bright red and white veined with black. Very beautiful and very rare.

African Marble. Purple, white and black.-Flowery. White, and purple and yellow.

Alabaster, Oriental. (Alabastro, Ital., Albatre, Fr.) Bromn Veined, wavy, half transparent; called in Italy, pietra perruchina, and alabastro tarturacalo.-Milk White. not transparent.-Transparent White. Striped with milky and wavy bands.-Tortoiseshell, tarturacola, or brown veined. Weight of a foot cube, 181 ths.

Alabaster, Cotognino. Yellow.
Alabaster, Flowery. White and reddish brown, ribbony or festoony.

Aleppo Breccia. Yellowish green ground, with spots of violet, green, white, yellow mixed with red, veined with pale white. Very rare.
Alet Breccia, sometimes called Aleppo. Modern. Yellow brown, red with gray spots. Found near Aix, in Provence.

Antique, Grand. Breccia, black and white very pure, with great spots broken up by zigzag lines. Extremely rare.-LutTLe. With smaller spots, and the black approaching to gray. The quarries of these two breccias, which were supposed to be lost, have oeen found by M. Layerle Capel, at Aubert, in the department of the Arriege, France.

Arlecchano, Br. Resembles Seme Santo, but is of deeper colour. Azurno. Italian, the same as Turchino, a sky blue.
Barbazan Breccia. Moderd. Formed of black, brown, and white fragments. Very good; much used at Toulouse. There are some fine columns of it in the Louvre. Found near Barbazan, Upper Garonne.

Basalt. Black, with large white crystals in the shape of pomegranates. It resembles a lava from Mount Albano. Black, with red granitic bands-Black grey, mixed with small pomegranate crystals and little black spots-Blackish Grey, with small white veins and scales.-Deep Black, with small shining black spots.-Flomery Black, marbled with white, and irregularly wavy. Green of very close grain. Another green with small white crystals, very rare. Occidental and Oriental of a dark gray with small white points. The Occidental is softer than the other. Weight of a foot cube, 210 ths.

Beavdean Breccia. Modern. A magnificent breccia quarried at Beaudean, in the Upper Garonne in France, in close fellow, brown and

[^42]red fragments, According to M. de Clairac, this is the same as the Caroline Breccia.

Berfede Makble is a fine marble, with large fakes of dark red, clear red and yellow, sometimes resembling fine Sicily. It comes from the Pyrenees, and was worked by Louis XIV.

Bigio, Italian for Gray, wide Grat.
Black (nero, Ital.) Antique (Nero Antico). M. A most beautiful black, without any admixture, probably the marble of Lucullus. It appears that it is still found at Bergama, Carrara, Prato in Tuscany, and near Spa. The Italians call it improperly paragone. Weight of a foot cube, 182 the.-Antique Srapentine Blace (Serpentino mero anticoo). Vide Porphyry and Serpentine. - Modern Black. Very fime is obtained from Bergama, Spa, and the Pyrenees at Mount Majou, in the Upper Garonne.

Blue (Turchino, Ital.).-Antique (Turchiso Antico). Mar. Slatey grey, with fine and shing grains. Another with white stripes and waved with slatey blue. Piccolo Turchino Antico has very fine graim, and narrower stripes. Weight of a foot cube, 188 the--Moden. Bright bluish grey, with bands of white or dark grey. Found at Geoon. Breccia. A frican, Alat, Barbazam, Beaudean, see under their respective titles. Antique, Yellon, or Gilt, red ground, clear and deep yellow spots, veined with red and white. Grand Ansiqua, Partridge Eye, Peacock's Eye, Penne S. Martio, Persecchino, Polxenerra, Porta Santa, Porphyry, Red, Rose, Seme Santo, Tracagnina, Verde, Axtigm, see under their respective titles.-Memphis. Modern. A violet red, in little grey or white fragments. Quarried in Provence.-Pall Lz macelle, a beautiful pure black, irregularly strewed with white shells an inch and more in length, very rare.-Verde de Paglioco, or atraw green, with greenish and yellow spots. Virde Sanguimo Antice. Greenish grey, white, red and black spots.-Violet. There are severl kinds, lat, a dark violet ground, with large lilac and white apots. Of this superb kind is a beautiful table in the gallery of the Louvre. 2nd, the same colours with small spots. Brd, with rove spots. Very rare. The persecchino may perhap3 be taken as another varity. Vide also Sulicious Breccia.

Brocatelle. A shelly marble; some are breccian, having the appearance of brocade.-Gult. Yellow spots, veined with red, and mixed with white shells. There is a kind of antique yellow, with red veins interspersed with white, which is like the brocatelle.-SpANISB Modern. Beautiful yellow spots, well marked, bordered with rod and violet, veined with white, and containing a fow shells. Weight of a foot cube, 189 the

Campan Marble. Modern. Found in the valloy of Campen, in the Pyrenees. Very beautiful, but not so fine now an when wrought by Louis XIV., some of the blocks of which time are still in the royal stores.-Isabella. A rose ground with some red stripen covered with netty green veins, much crossed, and some white.-RLD. A bright red ground, veined with green and white. Garen.-Cleas ground, veined with network of a dark green, some white veics cutting the others. Cumpan marble proper unites all these three varieties by very large stripes. These marbles are easily affected by exposure to the air. Weight of a foot cube, 190 ths.

Carnation. M. A kind of antique yellow approaching a rose oolour.

Caroline, A modern breccia, exhibited at the Louvre in 1827 , supposed by M. de Clairac to be Beaudean breccia, which see.

Carrara Marbic. These quarries were wiought about the time of Julius Cessar, and in them have been found remains of unfuisbed bas reliefs. The white statuary marble is of a white inclining to bloe, of fine and close grain, resembling loaf sugar; but crystals are often found in it which prevent the use of the chisel. The stripes and spots are greyish or greenish; when so striped it is named Cipolmactia that which is of coarser and harder grain, like salt, is called Saligna. Carrara does not take so fine a polish as Parian. It is of this marthe that most statues are now made, although there are, in Italy and France, white marbles which approach it in beauty, and might be ued in sculpture. Besides white marble, there are others at Carrasa of different colours, and which form the upper part of the quarries Those of Polvaccio almost exhausted, and of Serravezza, are the max celebrated. Weight of a foot cube, 189 ths.

Castracane. A Lumacelle, dark brown, rose, and with amall arcular shells of a bright yellow coloar. Very rare.

Cervellata. M. Saveloy marble, red ground, white and green, with very fine interlaced white veins.

Cinnamon Marble. Yellow, something of an antique yellow.
Cipolazzo. Striated with white and violet.
Cipolinacio. A kind of Carrara marble, white with grejish a greenish spots and bands.

Cipolino. Onion marble. Dirty white, striated with large wart bands, of green more or less dart, arising from talc. It is ousily
affected by air. It appears to be the same as the Carystian marble of the ancients. Statuary Cipolino, like the Pentelican, has narrow veins slightly tinted with green. Weight of a foot cube, 189 lbs .
Coralitic Marble. Supposed to be Grechitto and Palombino, which see. Some of the marble so called is like fine ivory.

Cotognino Alabaster. Yellow.
Cotonello. M. White and bright minjum red.
Dinan Marble. Modem. Black, used for pavements. Weight of a foot cube, 189 lbs.

Flanders Marbles. Modern. Such as those of St. Ann, gray and white, madreporic. Weight of a foot cube, 195 lbe.
Flowery Marble. White and red, with twisting spots.
Giallo. The Italian for yellow, which see.
Grand Antique. Fide Antique.
Granite (granito, Italo). Oriental. Black apots and white streaks. -Black and robite. Transparent white ground, with a few opaque white spots; probably the psaronion of the ancients.-Gray, with black and white transpareut spots, others milky and opaque. Weight of a foot cube, 189 lbe.-Gray, with little black spots.-Green, transparent white ground coloured with green, large oblong black spots. -Red. Red or rose, black or white spots, smaller or larger. Of this granite Pompey's pillar is made. Weight of a foot cube, 189 lbs Rose. With small rose, black and white spots. It seems to be the Syenile of the anciente, or perhaps their Pyrrhopacile, and their Thebaic marble.-Granite of the Vosges. Modern. A mixture of rose, gray, and black, resembling Egyptian rose granite. The green has grains of dark greem, greenish white apd black, very fine.-NANein Granite. Modern. A kind of Nankin marble, with small leatienlar grains.

Granitelle, or fine grained granite. It seems that many of the granites which passed for oriental, were obtained from the lsle of caba, the quarries of which have been worked from a very ancient period.

Gracartio. Greek marble. A fine white, very close grain, harder than other white marbles. Corallitic marble is supposed to have been lize it.
Grbsin (V erde antico). Br. A beautiful dark green, with spots of brighter green, pure white and fine black. The colours must be well marked. If the green be of a grayish cast, the stone is not so valuable, Sometimes the edges of the spots are tinged with green. This superb breccia came from Laconia and Thessalonica There is a marble which has a dark green ground, shaded with little bright green and back veins. It has a silky lock, and is perhaps the prasinum of the aecients.-Suza Guren. Vide Polzaverra.-Straw Grbrn. Fide Stasw.-Verde Sanguino Antico. Br. Greenish grey, white, red and black spots.-Egiptian Grezn. Modera. Red ground, veined with a dark and clear green, and white net work. Comes from the Genoese coast. Wien Grien from Poizeverra, which see.
Gray Antique (Bigio Antico). M. A beantiful gray of a bluish pearl tinge. It seems that there were quarries of this at Lesbos.
Gliutre. Mar. Modern. Deep red ground, mixed with black and white spirals arising from shells. Worked at Caune, in the department of the Aude in France.-Italian. So named, although it does not come from that country, is of a uniform blood red almost without veins. There are parts which resemble Antique Red, but which are better as they slow no white spots. Another Griotte is veined with green. Weight of a foot cube, 189 lbs .
Hymettus Marble. Greyish white, striated, very hard, vide page 434 of this volume.
Languedoc Marble, or of Sainte Bausic. Modem Fiery red, streaked with with white and grey, madreporic, with regular bands, turning together. Worked at Alais, in the department of the Gard, and at Portes, in that of the Herault, in France. The columns of the arch of the Carrousel and those of the Trianon are made of this marble. It is very much admired even at Carrara, where it is shown as a curiosity, as well as some columns of griotte of Canne, in a small church built during the last few years. Weight of a foot cube, 185 pounds.

Lumacelle. These are formed of masses of shelle, greyish brown veins of a transparent white. Another with rose veins. Another of a beautiful yellow, with small black shells very close. Pall Lumacelle. Vide Breccia, oide also Castracane.
Luni Marble. Very fine, a milky white, very fine grains, more compact cement than that of ordinary Carrara; takes a fine polish.
Malpeaquet Marble. Modern. A vinous pale red, waved with grey. These very common marbles are most used at Paris.

Nankin Marble. Modern. A shelly marble, ground a rosy or yellowish nankin, with white and bluish spots. Found in 1808 at Mansionx, Upper Garonne, France. When in good condition, they are good and do pot spot. Ope kind is called Nankin Granite, which see.

Nero Antico. Italian for Antique Black, which see.
Pagliocco. Italian for Straw colour, which see.
Palombino. Dove marble. A milk white, very fine cement, resembling creamy milk or ivory, without transparency. Supposed to be the Coralitic marble of the ancients.
Paragons. A name sometimes given to Antique Black or Nero Antico. Paragone is properly the touchstone basalt.
Parlan Mahble. A milk white, sometimes greyish, opaque, its tissue is of grains smaller or larger, which determines two or three varieties; it takes a fine polish; its contexture makes it harder to work than fine Carrara. Weight of a foot cube, 196 lbs.

Partridge Eye. Br. Black and red, spotted with white.
Pavonazzo. Italian for Violet, which see.
Peacoce's Eye. Br. Red, white and yellow.
Prcorelio. Red and white spots, mixed with white circles.
Penne St. Martin. Br. Modem. Yellow, white and grey, very fine. Quarried at St. Beat, Upper Garonne in the Pyrenees, worked by the Romans, and also at present. From this quarry columns 40 or 50 feet high may be obtained.
Pentelican Marble. A yellowish white, close grained, having other strix or greenish layers which cause it to peel off in the air. Much used by the ancients.
Persecchivo. Peach blossom Breccia. Very fine with large white, red and rose spots. There is a variety with smali spots.

Pietra Fructiculosa. A silicious breccia or pudding stone, composed of round yellow and red pebbles, mixed with black dendrites.
Pietra Santa. M. Whitish and rosy yellow, with very small white veins and very compact.
Polefyrran. Br. Suza Green. Resembles Antique Green or Verde Antique, but is not so fine nor so much esteemed. There is a modern Sea Green Polzeverra, with a deep dark green ground, with wavy bands and network of a clear green, mixed with white fila. ments.
Porpayry. Alabanda, deep brownish red, liver colour, oblong green spots.-Black. There is also a black marble of this name. Black ground with white spots.-Serpentino nero antico, vide Serpen-tine.-Breccia Porphyry. This porphyry is very fine, and unites in itself almost all the kinds scattered over a brownish red ground. - Brononish Black Ground. Greenish spots. - Green. Greenish ground, mixed with white and black.-Deep Green Ground. Oblong clear green spots.- Dtep Grecn. W hite spots-Deep Green Ground. Black spots.-Clear Green Ground. Yellowish with black spots.Green, properly so called, deep blackish green ground, sometimes quite clear, white, oblong, irregular spots. The ancients called ophites some of these porphyries with a green or bldck ground.-Very Dtep Grecn. Like jasper, oblong white spots larger than those of black porphyry, and smaller than those of black serpentine.- Dtep Green Ground. A kind of jasper, with round oblong white spots.-Very decp Gren Ground. Large white irregular spots.-Flonery Green. Deep green with small irregular white spots, interlaced like worms.- Red Grotnd. Small and oblong, covered with black and white spots. Perhaps the leptose phes of the ancients.-Thebaid, red ground, with yellow spots. Weight of a foot cube of green porphyry, 230 tivs. Red porphyry, 196 mb .

Porporino. Italian for purple.

Porta Santa. A marble breccia, so named, because used for a gate of St. Peter's at Rome.-Flowered Porta Santa is white or grey, bluish, with purplish spots.-Porta Sants not flowered is a Ireca red and white.

Porto Venere, or Antique Portor. M. Black, veined with yellow. The colours should be well marked.-Modern. M. Black, veined with yellow and a little white. From Carrara in Italy, and from St. Maximin, near Toulon, in France.
Puriculillo. Red and white.
Purple.-Porporino, Italian.
Red. Rosso Autico. M. That of a fine quality should be of a deep red bullock's blood colour, uniform, without black or white veins; the grain is very fine and very close, and takes a fine polish. In the cement cau be seen extremely small white points; when they are larger and like sand they injare the Antique Red, and render it diffiout to work. It is not very hard, but uses the tools like a whetstone for which purpose the ancients used it; it is very rarely found in large pieces, and is supposed to have been brought from Egypt. annelato, red spotted with white.-Breccla Antique Red. Deep red with clear spots.

Rezzato. A kind of yellow marble with white pet work.
Rose, Antique Rose Breccla. Clear red ground with little spots of rose and black, others white. Very rare.

Rosso Antico, vide Red.
Sainte Beauje, vide Lasguedoc.

Saligno. A kind of white Carrara marble, so called because it is of a coarse hard grain, like salt.

Saveloy Marble, vide Cervellata.
Seme Santo, or Virgin Breccla. Very small red, chocolate, brown, bluish, white and yellowish angulous fragments. It is very rare, and is found in small fragments at Pompeii.-Seme Santo de Sette Basi formed of frigments of seven colours.

Serpentine. A Porphyry. This stone is sometimes called Ophite. Green ground, with small yellow or yellowish spots in long squares and in crosses. There is some with a brown black ground and white spots.-Serpentino nero antico. Black ground, large oblong black spots.

Serpentello, Serpetrello and Serparello. M. White, with little tortuous red rays or streaks.

Serrancolin. M. Modern. Straight bands and in great fragmentes bluish grey, rosy, deep red and yellowish. Extracted from the Pyrenees, the same block of this fine marble often presents great varieties.

Sette basi. M. White veined with red, and mixed with several other colours.-Seme Santo de Sette Bagi. Br. formed of fragments of seven colours.
Silicious Breccia. Universal or Egyptian Breccia. A mixture of pebbles, porphyry and granite of all colours, particularly green, yellow and reddish. This fine breccia extremely hard, is very rare. Pietra Fructiculosa, which see.

Statuary Marbie. Marmore Statuario Antico of the Italians resembles Parian, but it is translucent, and has some relation to the phengite of the ancients.-White Statuary. Modern. An immense quantity in very large blocks, and of very good quality is found in the mountains of Rapp, at the gate of St . Beat, on the Garonne, some leagues from St. Gaudens, in the Upper Garonne. It has large grains like some kinds of Parian. The first quality of a mild white may be easily worked any way. In the exhibition at the Lourre in 1827, were some statues of it very well executed. That of Henry IV. when a child, by M. Bosio, is of second rate St. Beat marble This beautiful marble used by some of the French sculptors, was discovered by M. Layerle Capel, one of the principal proprietors of marble quarries in the Pyrenees, and who has found out most of the new quaries. The statuary marble of Sost, five leagues from St. Beat, in the valley of Barrousse, is a very fine white, and very fine grain, but it is subject to a number of threads, which prevents its being wrought in large blocks. Much harder than that of St. Beat, it is dry, brittle, scales off, and often contains rock crystals, which make it hard to work, There are other statuary marbles in the south of France, even in the department of the Loire, but they are not worked. The white marble of Loubie Soubiran in the department of the Lower Pyrenees, near Gave, is of a greyish white, and fine grain, works well, but is in layers, and peels off.

Straw Green Breccia. Verde de Pagliocco. Br. Straw green with greenish and yellow spots.-Straw Yellow. Mar. A very clear antique gellow.

Syenite. Rose Oriental Granite seems to be the Syenite of the ancients. It has little spots of rose, white and black.

Tartarucato. A kind of brown veined, undulated half transparent alabaster, so called because it is like tortoiseshell.
Tracagnina. Br. The same as Arlecchino, a kind of Seme Sauto but of darker colours.
Turchino. Italian for Blue, which see.
Universal Breccla. Vide Breccla Egiptian.
Venturino. M. Red and white.
Verde Antico. Italian for Green, which see.
Violet. (Paronazzo, Italian.) Mar. White with violet spots and veins. Perhaps the Synnadic marble of the ancients.
Virgin Breccia. Vide Seme Santo.
Volterra Marale. Gypseous. Milk white colour, transparent, very soft, may be scratched with the nail, and does not effervesce with nitric ucid. Specific weight of a pound cube, 154 ths.

Voltri Green Marble. Modern. Like Egyptian Green, but shells off in the open air.
Weights. M. Brard, in his Traite des Pierres Precieuses, gives the following as the specific weight of a cubic foot of various stones.

Spabs lbs

Spanish Brelloet ca - - 189 White Carrara Marble Griotte Marble Cipolino Antico - - 189
Turquino Marble
These weights give $197 \cdot 4$ as the mean weight of a cubic foot of porphyry, granite and basalt, and 189.33 for that of marbles.

Ykilow. Giallo Antico. Antique Yellow. Mar. A fine yellow, of uniform colour, with a few slight violet veins. There is some quite clear. That called Carnation has a rosy hue. Antique Yellow is ope of the rarest marbles, and is supposed to have come from Macedonia, there are several varieties of it, and it was much used by the Emperos Adrian in his magnificent villa.-Breccia Yellow, of clear colowr. spotted with deep yellow.-Straw Yellow (Paglioceo). Very clear. -Ringed Yellow (Annellato). Yellow and black circles.-Ykuow and Black, with large spots.- Yellow, with net work (resziaio).Yeliow with red veins, interspersed with black, a sort of brocatelle. Weight of a foot cube, 191 ths.

COMPETITION DESIGNS.

Sir-Towards the close of last year, an advertisement was publisbed in several country papers, addressed "To Architects," for a vew Atheneum at Sunderland, and the plans directed to be sent to the chairman on the 20th February last, a young architect, who was a candidate, applied for information, composed and completed a design and estimate, and transmitted them to the party: in the May following, Dor having any tidings of his design, he wrote to the party, on hearing that a builder was the successful candidate, who was proceeding with the working plans and specification; after waiting a few days be received an answer, of which the following is a copy :-
" To J.B.C., Architect.
In consequence of the committee of the Sunderiand Athensum requiring the architect whose plan was selected, to satisfy them that it could be effected for 30001 ., they have thought it beat io retain thy plan along with two others, until they know the result

1 am , respectfully,
For Edward Bacigooss, E. Bacriouse, Jun."

Leeds.

Now it appears by notice in the papers, that the first stone is to be laid immediately, and yet, for some purpose or other, the plass are retained, and very possibly the two others-yes, retained nine months to safisfy a committce; some years ago I was a candidate for a public building in the same neighbourhood, und had my plans returned within three months, and during the last month I had an opportunity for the first time of inspecting the building erected after the desiga, therefore selected, and could scarcely imagine, that it was the institution competed for; if, as in the opinion of the publisher of a Guide to Modicr \mathcal{A} ihens, London street architecture is very inferior, I wonder at what rate of discount this building would stand; in another case I bad my plans soiled and tom after four months' retention, which so disgasted me, that I have never siuce ventured on a public competition, although I had been successful in several former instances. For a public bailding in Leeds some years back, five architects were applied to, and pard for their plans, though the result in that case was not satisfactory, as ount of the competitors were employed, but canvassing and jobbing were resorted to, and a worse design than any of the five was taken, furnished by a stranger, by way of easing party spirif: the committee measwad all the rooms, passages, holes and corners, entresols, Sec, added all the lengthe together, and all the breadths, and thereby give some actr of floorboarding! It was a most irregular, filled an irregular piece of ground, and was supposed to give quantity rather than quality. Is this Sunderland case, for which the young architect competed, there appears something so very indecorous, that it ought to be recorded aunong the many instances of modern deference, paid to architcti, of these days of the mareh of intellect. Apologising for this treapass oo your time, I beg to subscribe myself,

> Your very faithful servant

Dioxisics.

CANDIDUS'S NOTE-BOOK.

FASCICULUS XI.

I must have inberty
Withal, as large a charter as the winds, To blow on whom I please.

I. And I may surely blow upon one of the newspaper gentry, even nt the risk of being blown up by some of them in return. "Covent Garden Theatre," says the oracle of the Sunday Times, "is a much finer edifice than Drury Lane, having been designed after the 'Temple of Diana at Athens, '" still, it is possible that he meant the Parthenon all the while, Diana having the reputation of being as good a Parthene as Pallas Athene herself, notwithstanding the bit of poetical scaudal about "chaste Dian" and Master Endymion. But if the crudite newspaper critic imagines, that Covent Garden Theatre bears any resemblanoe in its design, either to the Parthenon at Athens, or the temple of Diana at Ephesus, or Diana anywhere else, he is gifted with a very powerful imagination indeed. After all, the chief wonder is, not that a newspaper writer should blunder after that egregious fashion even in this march-of-intellect age, but that the enligltened public slould be so much in the dark as to swallow blunders which a school-boy could correct. It is greatly to be feared that, without libelliug that very respectable personage the "Public", we muy give it credit for a vast amount of ignomince on almost every thing connected with architecture, for on scarcely any other subject do we hear so much nonsense and absurdity uttered so fcarlessly and with such impunity.

IL. If our designers of shop-fronts do not display so much invention as they might do, they certainly lave not that excuse for not indulging in it, which their bettcrs avail themselves of; becuuse they may experimentalize without risk of incurring reproach on the score of licentiousness. Hardly worth while is it to be correct, where correctness is attended with no merit of any kind; and most assuredly a miniature facsimile of some ancient example from Stuart, applied as an order to the frontispiece of a shop, can produce no effect in itself, whereas an original composition for the same purpose would at all events be less stule; and if clever and tasteful into the bargain, would have value as a specimen, and might, should it be found worthy of such distinction, become a model for something of the kind upon a larger and more satisfactory scale. Whatever else we choose to impute it to. our excessive shypess of any attempt at originality, camnot be attributed to our uversion to novelty, because, in our eagerness for it, we take a sudden jump from one favourite style to another diametrically opposite to it, and make no scruple of adopting without hesitation, the most preposterous architectural fashiona, provided onty we have due authority for them. While to innovate upos either Grecian or Gothic, no matter in what way or with what intention, would be reprobated as little leas than sacrilegious, we may, without the least offence, abandon both for the Elizabethan, or any other tastelens and mongrel fashion, provided that we then also adhere strictly to precedent, and not sacrifice oue iota of its bad taste and deformity. Should any one, instead of closely following some one of the various examples of Greciau lonic capitals, venture to compose something different, yet with kindred feeling and spirit, he would greatly discompose all his brethren, to whose astunishment at his presumptiou and rashness there would be no end. Yet should it so please him, he might copy the poorest-or, we might say the best, for almost the best are poor edough, in all conscience-of the Roman and Italian specimens of the same kind, without incurring censure. His taste, indeed, might not be applauded by every one; but his orthodoxy could be questioned by no one. And truly, let the tuste so shown be as bad as it may, he is not chargeable with it-it is none of his invention; he has taken it just as he found it, which is, surely, a very fair and reasonable excuse, and therefore I wonder that it should never be made use of.

IIL. Of what use, I should like to know, have been auch works as Piranesi's Magnificenza di Rouna, since, for any ideas they appear to bave furnished, they might as well buve been flung into the sea, or committed to the flames. Though we there meet with much to convince us that there was infinitely more variety in ancient Roman architecture than existing monuments of it show, we have not cared to turn it to any account, but have continued to plod on with the old and limited stock of ideas, endeavouring to reduce all that appertains to detail, to as few forms and as mechanical a syatem as possible, instead of studying to enrich the language of the art, by adding to its synonymous expreasions, in order to avoid the perpetual and wearisome repetition of the same forms on every occmion
IV. That the desiga for the Royal Exchange which obtained the Girst premium is not to be executed, is the most satisfactory circumstance in all the proceedings of the competition; nevertheless, it is by no means very satisfactory and intelligible in itself, how such verly marked distinction came to be made in favour of that particular design. Neither the report of the three architects appointed by the committee, nor that of the committee itself, affords us the slightest information, nor helps us even to a conjecture. Surely the reasons for such preference ought to have been most explicitly stated by the first-mentioned, if merely in justice to themselves, because at present they seem to have been guided only by caprice-certainly not by taste, for in that respect, N . 36 was far from pre-eminent It might possibly fulfil the conditions - such as they were-imposed by the committee, more exactly than any other design did. As to that, I cannot speak, for, thanks to the manner iu which the exhibition was managed, and the hurry with which it was closed, it was impossible to study either that or any other design sufficiently to judge of it in all its bearings, unless attention lad been confined to a single set of drawings. But it seems to me that, wanting one great pre-requisite, namely, originality and grandeur, it wanted what was most of all essential. Minor defects as to arrangement and accommodation might be overcome, got rid of by after study; but where the original idea is poor, the general taste defective, the case is without remedy. Where there exists want of conception at first, it can be supplied by no revision or correction, by nothing short of abandoning the first scheme and beginning entirely afresh. It does not appear to me the wisest way, either in this or any other competition, to attach any merit to a mere literal compliance with the terms of the instructions issued. The great point is to obtain an idea worthy of being adopted, a satisfactory ground-work and basis of a design, leaving the author of it to correct those particulars in which it may be considered defective or objectionable. If understood beforehand, there would not be the slightest unfaimess in this, because the successful competitor would have earned for himself a privilege that would clse have fallen to the lot of another. By this means we should have a chance of obtaining very superior buildings to what we now do ; because opportunity would then be afforded for thorougbly revising and correcting the whole, and perfecting it in every reapect, Not to allow this to be done, is not to allow an architect to bestow all the study upon his design that he may be capable and willing to do; but to confine him to what, though shown in finished drawings, may be little more than a first sketch of his ideas for the subject, which be would be able very greatly to inaprove upon, were he allowed to make such alterations as a mature re-consideration of it might suggest.

ON THE PRIMING OF LOCOMOTIVE BOILERS.

Experiments on the quantity of rater in the liquid state, mechanically carried oner mith the steana during the norking of Locomotives; by M. DS Pamiour.

There exists in locomotives, and perhaps more or less in all other steam engines, a loss which has not hitherto been measured, and which is nevertheless very important. It consists in a very considerable quantity of water in the liquid state mechanically mixed with the steam, and carried over with it into the cylinders. To account for the production of this effect it is sufficient to observe the enormous volumes of water which are continually carried away by the wind, and held in suspension in the air in the form of clouds. Since also the steam formed in the boiler of a high pressure engine has a muck greater density than the air, and instead of toucling only the surface of the liquid, it is evolved in the very midst of the water, it is not surprising that it should be able to draw along with it in its motion a considerable mass of water, and this effect must be produced during the whole time the engine is in action.

This loss must be much greater in locomotives than in other steam engines, on account of the continual shocks which they receive in their motion, and of the slight elevation of the orifice of the steam pipe above the level of the water, of the small capacity of the steam chest, and lastly on account of the enormous rapidity with which the stean is evolved from the water in the boiler. In order to obtain an evaluation of the quantity of water thus carried over with the steam, we placed the engines submitted to experiment on inclined planes, under such circumstances that the pressure of the steam in the cylinder was sensibly equal to that in the boiler, and we then compared their actual speed with that which they would have attained, if the whole of the water expended by the engine had been really transformed into steam.

This calculation is rery easy; we wnow by observation the velo:
city of the engine, we lave the number of revolutions of the wheel, and consequently the number of times the cylinders are filled with steam in an hour; and as we also know the elastic force of this steam, we can deduce from it the corresponding quantity of water. Compuring then this quantity of water which is effective with the total quantity expended by the boiler, we find the quantity which has passed over with the steam in the liquid form. In this calculation we take account of the quantity of steam required to fill the waste spice at each end of the cylinder, called the clearance, and also of the reduction of vaporization cansed by the slowness of the mution in ascending inclined planes, and of the loss by the safety valves. For this purpose we make use of the results furnished by special experiments, whence we deduce that, by reason of the action of the blast pipe, the vaporization of locomotives varies as the fourth rout of their velocity, and
that the loss through the sifety valves in ascending planes amounts on an average to 0.12 of the total vaporization.

The results of our experiments are contuined in the following table. It should be remarked that if, in any one of these experiments we have erred in admitting the pressure in the cylinder to have been the same as in the boiler, it will follow that the quantity of water which passed over in the liquid state with the steam in that experiment was more consideruble than our determination makes it. We are therefore sure that our results are not exaggerated.

Jt should also be remarked that the loss here observed cannot be attributed to a partial condensation of the steam in the steam pipes and cylinders, slnce these are placed in the boiler itself and in the smoke-box, where they are constantly in contact with the flame, which renders this supposition inadmissible.

Table.
Experiments on the quantity of water carried over with the stean in the liquid state into the cylinders of locomotives.

Name of the engine.	Diameter of the cylinder.	Stroke of the piston.	Diameter of the wheel.	Total pressure in theboiler.	Speed of the engine in miles per hour.	Total vaporization per hour in the boiler.		Effective veporization.	Ratio of the effective to the total raporiuntion after deducting the loss through the ralres.
						Mcan during the experiment.	During the ancent, after deriucting the loss through the valves.		
Star	inches. 14	inches. 12	feet.	Hs. per sq. in. $64 \cdot 3$	$\underset{\substack{\text { miles. } \\ 8.57}}{ }$	cubic feet. $68 \cdot 79$	cubic feet. $53 \cdot 12$	cubic feet. $29 \cdot 53$	0.56
				$65 \cdot 3$	$6 \cdot 26$	68.79	4911	21.87	$0 \cdot 45$
Vesta	$11 \cdot 125$	16	"	69.7	14.11	65.00	48.53	44.05	$0-91$
Pury....	11	"	,	80.2	6.31	54.45	36.06	21.90	0.61
Leeds ..	"	"	"	63.2	10.00		$49 \cdot 73$	27.92	0.56
Vulcan..	12	"	"		11.42	60.60	$44 \cdot 77$	35.91	$0 \cdot 80$
Athes ..	12	"	"	$60 \cdot 7$ $65 \cdot 7$	8.00 7.50	$43 \cdot 81$ 48.21	$37 \cdot 44$ $35 \cdot 36$	29.06 25.78	0.78 0.73
									0.68

From these experiments we learn that the quantity of water in the liquid state carried over w ith the steam into the cylinders of locomotives amounts on an average to 1.32 of the total vaporization of the boiler, reckoned after deducting the loss through the safety valves

This determination suits the mean of the engines we submitted to experiment, but we slall observe that the quantity of water which passes over without being vaporized must neeessarily vary in different engines, since it depends on the particular construction of the boiler, and especially on the capacity of the steam chest. If this is very small, no more, for example, than 10 times the capacity of the cylinder, a tenth part of the stean already formed will pass into the cylinder at each stroke of the piston, and thus the density of the remaining steasn will be suddenly reduced to nine-tenths of what it was previously. This great chauge of density will tmmediately draw from the liquid a new quantity of steam to supply the deficiency; but it is evident that this new quantity of stean will be evolved from the liquid with so much the greater violence, and will consequently carry with it so much the more of the liquil, is the medium into which it is precipitated is more rarefied. If then the steam chest were made to contain 100 cylinders full, instead of 10 , as the difference of density produced at each strohe would be only 0.01 , the quantity of water carried over with the stean would be so much less. Also, if the end of the steam plpe is very little elevated above the level of the water in the boiler, or if it is very large, the water will be more easily carried as far as the entrance of the pipe, and will be admitted into it in greater abundance.

The quantity of water carried along with the steam must therefore vary according to the construction of the boilers. But it is also influenced by circumstances independent of it, such as the intensity of the fire and the dirtiness of the water: the intensity of the fire, because it produces in the boiler a more or less violent current of steam in the boiler for the quantity of water which it coutains, and the dirtiness of the water, in consequence of the scum which it forms on the surface.

The carrying over of water with the steam is produced, as we see, without the appearance of any external sign, because the water mixed with the steam is dissipated in the air with it. But there are moments when this effect is so violent, that it manifests itself extarnally
in the form of an abundant fall of rain from the top of the funnel. The engine is then said to prime; and this takes place especially when the boiler is too full, because then the steam chest is by so much reduced in capacity, and the level of the water at the same time approaches nearer to the entrance of the steam pipe.

The extent of the loss which was the subject of the preceding experiments, explains how it is that some boilers expend water so rapidy that it is impossible to keep them full, even at a very moderate speef, and how it sometimes happens that, by merely changing the steano dome, a reduction of near!'y 25 per cent. of the expense of fuel has been produced.
(We regret to fund that we cannot put much confidence in the results of the preceding experiments for several reasons: in the firt place, M. de Pambour appears to have made no allowance for leakiges arising from defects in the pipes and joints, so common in locomotive boilers; secondly, it seems highly probable that the loss through the safety valves was very different in the various engines subnittel to experiment, in which case a considerable error might be committel by estimatiug it in all the experiments at 0.12 of the total amonnt of steam generated. In the same manner the mean, $0 \cdot 68$, of the resulto in the table can have no value whatever, being the average of ratios varying from 0.45 to 0.91 ; which shows that the difference of circumstances in the various experiments was such as to occasion an essential difference in the results.-Editor C. E. and \mathcal{A}. Jourmal.)

Sffects of Lightning on Shig's Masts.-M. Sellier has reportcel to the Academy of Sciences in favour of Captain Arrow omith's plan, as superior to the applicatiou of conductors. Crptain Arrowsmith's system is to pint the masts, yatds, and trucks of the top masis and flagstafis with black, and on the approach of a sterm to atrike the small u hite sills. M. Arago dissented from iliese conclusions.

Antiquities.-In digging under the foundation of an old house in Catberinr street, Fixcter, last "ucek, twelve old that bottles or flagons, evidently of the period of the 15 th enntury, several small vessels of earthenware. a cuntios cup or t"nkard. and the seal of the Court nay frumily were diseovernt. Tbis seal is of very harge dimensions, bearing the arms of Courtenay and fate emblazoned ingether, and the legend. Alume Conrtrmay Cobsilisse Donust Sigilhas, the Lidy whin uwned it txing the wife of the 4 th Fivl ul Devin.aml sigi/hash, the 1idy uho owned it b.
died about 1440 .-Bristod Afercury.

ON THE ELASTIC FORCE OF STEAM.

Obaer nations of M. Arago on a Memoir by Mr. Farey, on the elabtic force of Steam, publighed in the frat nolume of the "Transactions of the Institution of Citil Engineers."
(From the correspondence of the Academie des Siences, at Paria.)
In presenting to the Academy the first volume of the Transactions of a eociety whose labours may be expected to exercise a beneficial influence on the progress of the art of the engineer, M. Arago expresses his regret at having found therein a memoir by Mr. Farey, which certainly does not deserve a place in so useful a collection. This memoir is a bitter and unfounded criticism on a work of M.M. Dulong and Arago, undertaken by order of the Academy, and honoured with its approbation. M. Dulong had knowledge of Mr. Farey's memoir a short time before his death; he was very much grieved, and proposed to refute it. What my illustrious friend was unable to do, said M. Arago, I shall now attempt. The task will, however, not be dificult; it will suffice to compare the following quotations from the two works:-
"The principal object of the present communication," says Mr. Farey, "is to show the coincidence between Mr. Southern's scale (for the elastic force of ateam corresponding to different degrees of the thermoncter,) and that of a new series of experiments made in Paris in 1820, by a Committee of the Academy of Sciences."
"Another object of the communication is so put on record, in the papers of the lnstitution, a memorial of the fair claim of our countryman, Mr. Southern, to the merit of priority in accurate determinution of this law, in opposition to the unfoutded assertion of the French author (M. Dulong) who has just published the new experiments, according to which the precious dettrmixations in Eugland were erromeous. Mr. Southem's determination is not mentioned in this sweeping condemnation.

At four atmospheres Mr. Southern fonnd the temperature $293 \cdot 9$ degrees, and the academicians 293.7. This last is not an accidental coincidence, but an adoption of Mr. Southern's scale, through Mr. Tredgold, though not ackronledged as such."
"In adopting this formula from Mr. Tredgold, (who quotes Mr. Southern's experiments, and takes them as his basis,) the French academicians could not bave been ignorant of Mr. Southern's determimations, nor of their accuracy
"Under these circumstances, it sas not candid that all mention of Mr. Southern's delerminations should have been suppresecd.
a * * It is to be remarked that the elasticities were measured by the French academicians by the compression of air included in a manoneter, and not by a direct measure of a column of mercury, or a loaded safety valve ; whereas Mr. Southern nsed both those means, and employed very correct thermometers, and therefore lis scale is of as much authenticity as that of the French.
${ }^{*}{ }^{*}$ As there is no certainty in the exactitude of either temperatures or elasticities when so great as 438 degrees and 24 atmospheres, it is not advisable to adopt a new law of progression for the sake of reconciling differences of 21 degrees from uncertain observations."

The imputations of Mr. Farey, said M. Arago after having made the above quotations, are categorical and numerous. In order to refute them, I shall content myself with quoting several passages from the memoir criticized.

The author makes M. Dulong assert that the English determinations, previous to the experiments which he made with M. Arago, nere inexact. The following is the passage in the Report to the Academy to which Mr. Farey alludes:-
"La science ne possédait que des mésures assez discordantes audersous de huit atmosphères, et pour des pressions plus fortes, absolument aucun résultat d'expériences directes."**

Now in this passage there is no mention either of English, French, or German. It is merely stated that the results of the known experiments were discordant, and that it was difficult to choose; and this is an incontestable truth.

The great crime of the French Academicians, in the eyes of Mr. Farey, is to have suppressed all mention of Mr. Southern's determinations. It is in this that they have been wanting in capdour.

To show how we have suppressed all mention, and how we have been wanting in candour; the following is a passage of the Memoir. The reader will hardly believe his eyes:-
"Les determinations seules de Southern et de Taylor offrent avec

[^43]celles-ci (les déterminations Frangaises), une conformité d'autant plus frappante qu'elles ont été fournies par un mode d'observation totalement différent. A l'époque où nous avons calculé la table insérée au rapport provisoire cité plus haut, nous les considerions déja comme les plus vraisemblables; aussi ne trouvera-t-on cutre cette table et celle que nous allons donner, que des differences presqu'insignificantes, dans la partie de l'échelle qui leur est commune."-(Mém. de l'Acad. de Scicnces, t. x, p, 222.)*
This is not all. Mr. Southern has been quoted, not only for his experiments, but also for a simple formula of interpolation, which the following extract will prove :-
M. Young parait être le premier qui ait employé le mode d'interpolation, qui consiste à représenter les forces élastiques de la vapeur, par une certnine puissance de la temperature augmentee d'un nombre constant. M: Young avait trouvé que l'exposant 7 satisfaisait aux expériences connues a l'epoque de la publication de son ouvrage. M. Creighton prit l'exposant 6, qui lui parut mieux s'accorder avec les résultats du Dr. Ure. Mr. Southera adopta le nombre $5 \cdot 13$, qu'il détermina sans doute par têtonnement. Mr. Tredgold rétablit l'exposant de Creighton, en changeant le coefficient, \&c.-(Mím. de l'Acad. I. x_{1} p. 230.) +

It is unpleasant to have aways to answer by formal denials; but is it my fault? Mr. Farey says that for four atmospheres we took Mr. Southern's determination, mithout acknowedging it. This is not the fict; our observations embrace the interval between one and 24 atmospheres, it was therefore unnecessary for us to borrow anything from any other author; but, as our observations did not correspond to round numbers of atmospheres, we could not do otherwise, in constructing the table, than make the interpolation by means of the formula which gave the nearest approximation to our results. This formula was Mr. Tredgold's. M. Dulong stuted thns much, and he had nothing more to acknowledye.
Once in the vein of detraction, Mr. Farey has not confined himself to the historical part of the Report. The experiments of the Commission, examined in their details, appear to him defective. Anil is it not true that MM. Dulong and Arago did indeed make use of a manometer?
But what would have become of this pretended difficulty, if Mr. Farcy had added that the manometer was graduated directly, by mercurial columns which attained a height of 20 metres (nearly 66 feet) t Can the English critic have mistaken the object of the Academicians 1 The reader may judge by the following extract from page 196 of the Memoir :
"(La Commission) s'est déterminée à recourir au moyen le plus pénible, mais aussi le plus exact, la mésure directe de la colonne de mercure capable de falre équilibre a l'élasticité de la vapeur!" \ddagger

Mr. Farey prefers the determinatione of Mr. Southern to thone of M.M. Dulong and Arago, which he is certainly entitled to do as far as regards the pumbers comprised between 0 and 8 atmospheres; but beyond this he must, nolens rolens, refer to the French measures, since our critic's compatriots have not determined any elastic force above eight atmospheres. M. Arago remarked that the difficulties and extreme danger of the experiments commence at 10 atmospheres, and that the Commission carried theirs us far as 24.

Mr. Farey prefers the English determinations, because Mr. Southern employed very exact thermometers. What then? Can it be supposed that a Commission, prosecuting its researches under the auspices of the Academy, a Commission which counted among its members, which had for reporter one of the two authors of the excellent memoir, now become classic, On the communication of Hent, can it be supposed that such a Conmission should not have used rery eact thermometers? Such doubts, when they are gratuitous, when they are not founded on

[^44]sny discussion of the experiments of the Commission of the Academy, could not be designated here as they deserve. We shall therefore content ourselves with confidently submitting the preceding facts and reflections to every impartial man, and especially to the chief part of the members of the honourable Institution of Civil Engincera of Great Brilain.

COUNTER REMARKS.

Sr-It appears to me that the "Catholic" whose letter you have inserted at page 489, is a bit of a Jesuit, since, if he is really of opinion that nothing at all approaching to religious controversy ought to be mixed up with architectural topics, he should have reprimanded his brother Catholic, who first set the example, and thereby rendered counter remarks almost unavoldable on the part of others. Yet though there wos nothing improper in Mr. Welby Pugin's sneering at and calumniating the Protestant charch, it is now lighly so, forsonth, in Mr. Habershon, or any one else, to make any remarks to the disadvantage of the Romish church! The plain meaning of which is, that it was all very fair for Protestants to be bullied by Mr. Pugin, but if they presume to open their mouths in return, then an architectural publication "is not a fit vehicle for rellgious controversy." How particularly modest and consistent!

Pray, has either Mr. Pugin or the "Catholic," seen a publication by Dr. Gruneisen that has recently been published in Germany, under the title of "De Protestantismo Artibus haud lnfesto"? It would be worth their attention, and also that of the Protestants themselves of this country, more especially our church commissioners, for the writer proves very satisfactorily that the early Reforiners were by no means hostile to the admission of painting and other decoration in churches; in proof of which he quotes some very strong passages from the writinge of Zuinglius and Calvin. And, indeed, if we tolerate illustrated and pictorial bibles, it does seem rather absurd to affect to be scandalized at similar subjects being represented on the walls of churches, or to consider painting almost as an alliance with Popery, as if pictares and no pictures constituted the essentlal difference between the church of Rome and that of England.

Bo much for the "Catholic," and "religious controversy." Let me now comment upon the paragraph signed B.A. page 446, the writer of which seems to be of opinion that the recent buildings at Munich have been praised far beyond their due, and whe is therefore not likely to approve of the article headed "Architecture of Munich." However much in the right he may be in the estimate he has furmed of the buildings themselves, he is very much in the wrong if he supposes that the reviewer in the Foreign Quarterly is the person who has chiefly extolled them beyond their merits. To be convinced of thls, he has only to look into the second volume of Count Raczynski's splendid work, "Histoire de l'Art Moderne en Allemagne," to díscover that other persons besides reviewers bave the temerity to admire what such men as Klenze, as Gärtner, and Ohlmuller have done at Munich. Of the Gothic church by the last-mentioned the Count speaks in terms of unqualified admiration, and he professes to be charmed by the singular yet captivating style of Guirtner;-and to judge from some specimens of detail given in the work, the last $j u s t l y$ merits all the commendation bestowed upon him. I very mneh question whether any of our architects have the ability to compose, or the courage afterwards to execnte, such an original composition as a capital there shown, from the new Library at Munich. In regard to Klenze, the Count is somewhat more measured in his praise, for he objects to his taste in mauy instances, but he brings forwards Schinckel's testimony in favour of the Pinacotheca; and that testimony certainly says a very great deal indeed, because there is no class of men who are less addicted to the foible of exaggerating the merits of each other's works, than architects; at any rate, in this country they cannot be accused of evincing much cordial admiration of their rivals.

Nemo.

Torreatrial Magnetien.-M. E. Capned, Direcior of the Observatory at Naples, has reported that he has determined, by observationa with Gambey's instrumenta, that after the eruption of Veavius on the lst of January last, that the dip of the meedle suddenly diminished half a degree at least.

Fossil Remains.-M. Duval has presented to the Academy of Sclencen some fossil remains of mammifers found in an aseous urecicia in is mountain called the Learbriere, near Grasse, in the department of the Var. This breccia is found five miles from the sea-shore, and about 500 yard, above its level, in calcareous marbles forming the upper layer of the chajk of that district.

BRITISH MUSEUM.-No. IV.
(From the Times.)

Tee fioina Marbles.

In the Phigalian room of the British Museum, against the southern wall, a pediment has recently been erected, corresponding with that opposite, which contains 11 of the casts from the Egima statues, yo account of which some time since appeared in this Jourmal.* On this we are about to describe are placed five more, which were brought from the ruins of the same temple of Jupiter Panhelleneus, in the island of Egina. These five statues were all that were found belonging to the pastern front sufficiently in a state of preservation to assure of their original destination and design; and it is the more to be lamented, as that was the principal faŗade of the edifice, and comtained the great entrance into the soros of the temple. This front was by far the most magnificent in its clecorations, the esplanade before it extending 100, while that of the western was but 50 feet; the statues also on this tympanum were more numerous, there being originally on this 14 figures, and but 11 on the other; they are alro botil in style and sculpture far superior, and appear as the wort of the master, the others in comparison as those of the scholars; the superiority of conception and nanner is apparent, the forms are more muscular and robust, the veins and muscles more displayed, an imitation of a matirer mature. It is remarkable that they occupy less space than thuse of the western periment. At the first opening of the ruins 25 statues were discovered, besides the four female figures belonging to the Acroteria. To the artist the canon of proportion and the system of anatomical expression observable throughout the whole may be regarled as the nodels whence was derived that still bolder style of concejtion which afterwards distinguished the sculptors and made the perfection of the Athenian school: what the works of Ghulandia were to Raphael these were to Phidias. The surprise of the common ohverver maty be esciteil when lie contemplates these figures, however disadvantageons the circumstances unier which be views them. Perhaps he camnot ca!l to mind, in the capital of lis countsy, however civilization and the arts may have advanced, any sculptares of the 1nth century which appear equally imposing; the more so, When he reflects that the history of their origin is buried in the darkness of 2,400 years. Long after tiiis period Lysippus leld as a princiale of the ideal, which lias in later tines been too general y followed, to make men as they seem to be, not as they realiy ure. In this group there is not, as seen in the opposite one, any figure immediately under the centre of the tympan, that of Minorva, which was found, and which, no donht, had occupiel it , being thought too much broken to be phacel. 'lue one nearent is the figure of a warrior, who appease as having fa'en womedod to the ground. He is supporting himself on the rigl i arn?, wno: ourinr to rive. The hand no doubt beld a sword, as the rivets of $1, \ldots$ ner stif romaining indicate. On the left arm is a shicid helif cose to the body, the hand enclasping the teiamon, of holder. 'I'le cominames, contrary to the one in a similar position on the o:posite pediment, semms calmly to regard, and to marl the moment to resist, with any chance of success, an advancing eoeuny who is rushing forward to seize his spoils. Whether this statue is rightiy place 1 , we think will atnit of doubt. The figure rushing forwarl could not bave inflicted the wound by which be has been disableil, and it seems more probable that un arrow, which ao archer at the extreme of the pediment has juat discharged, hus been the cause of his womm, and that it should, instead of being on the ground, bave been placed as if in the act of filling. In the attitude of the atticking warrior a desire is shown to give the greatest interest to the action: the position of the right legseems calculated to give movement to the figure as seen from below : behind the fallen an unarmed figure is stooping forward, appurently to rilise him; but this statue would seem ruther to belong to the other pediment, where a hollow is found in the pedestal on which the goddess Minerva stauds, which appeare 10 have been made to allow room for its advance. Among the gatues found, but broken, was one which stood nearly over the body of twe wounded hero to defend him against the advancing enemy before mentioned. Near the archer is another combatant on the groand; the countenance of this figure is aged, the beard most minutely scaiptured; it is of a square form and descends to the breast ; on the lip are long mustachios. It is by far the most aged of either group, and appears to be a chief of consequence; he is raising himetlf on bis shield; the expression of the face is very fine, it bas esmile on ih though evidently in pain. The archer is a Pbrygiun, and bis body is protected by leathern armour; as he has no shield allowed, be is holding the low, which is small and of the Indian shape, in the left hand with the arm outstretched; the bow-string las been drawn w the ear, the arrow seems just to have sped, and the exultation of the counteaxnce shown it has Laken effect. Three of these Ggures hare
that sort of helmet which defends the face by a guard descending over the nose, and the back by the length of the lophos or crest, or horsehair, crista; the shields are massy and large, they are the Argive aspis, enkuklos, circular shields, and the handles are nicely framed. The inside of all of them were painted in red colour, and within' a circle of the exterior a blue colour was seen, on which was depicted, without doubt, the symbol adopted by the hero, for on a fragment of one of those belonging to this front was in relief a part of a female figure. The remaining figures belonging to this tympanum, the fragments of which were found, were principally archers.
These statues offer the only illustration now extant of the armour of the heroic ages. The bodies of all the figures of this pediment, with the exception of the archer who is encased in leather armour, are uncovered. The great minuteness of execution in the details corresponds with the exactness with which Æschylus, Homer, and the earlier writers of the heroic age have preserved in their descriptions; in the whole of these statues this is observable in every tie and fastening ; it would appear that the whole had undergone the strictest scrutiny, as in each those parts which, from their position on the building, could not have been seen, are found equally exact; in every particular they are the same as those which are traced on the vases of the most Archaic style, where they are delineated in black on a red ground, as is seen in the Museum collection. The two female figures on the apex of the pediment are clothed; the drapery falls in thick folds around the figure: in their hands they hold the pomegranate flower; the feet are on a small plinth; they are the Elpis of the Greeks, the goddess of hope, so well known in museums and on coins, and their situation here is peculiar'y appropriate, as presiding over an undecided combat. It does not appear that any of the figures on either pediment bad any support to fix them in position but the cornice where they came in contact with it; they must all have been pasily removable; aud perhaps it may not be unreasonable to suppose, that on particular festivals they were sodisposed as to represent the actions then in celebration, to recall to the imagination of the votaries the season for those sacrifices then offered to the god who presided over the temple; this would account why almost all the ceiebrated groups of antiquity which have decorated the façades of their sacred editices, among which may be reckoned those of the Parthenon, the Sicilian Adrimetum, and the Ægiza, are so completely finished, and shows how, what would otherwise seem a waste both of talent and labour, was brought to uccount.

It is much to be regretted that the pediments which have been erected to receive these statues lave been, from want of space, not completed to the extremity of the angies; in consequence, the statues contained on both lose much of their effect; the idea of a shelf cannot be got rid of, neither is there sufficient depth allowed for the figures, which ought to be seen in shadow. A considerable expense appears to have been incurred in the erection of this abortion; had it been placed in a situation where there was sufficient space, which, if this room does not afford, is to be found in the vestibule at the end of the Egyptian gallery, the object might have been attained; the columns belonging to the pediment should have been added, and they would much have improved the bare walls of that portion of the building; and this creation being entirely unconnected with the balls which contain the remnants of the Eigin marbles, such a situation could not have been deemed heterodox to their remains. Had an exact representation of the facade of the temple to which these sculptures belonged been erected, which might easily have been done, as all the parts were known and measured, and the additional expense would bave been but trifling, it would have given to those who have no opportunity to view the remains of antiquity abroad, a far more compretensive idea of their grandeur and beauty than either dilapidated statues or engraved plates can offer. The inherent good taste of the public, who see with Borrow the architectural monstrosities which are dignified with the name of public buildings, would have regarded with pleasure the repose of a Grecian edifice adorned with its sculptures, the greater part in an entire state of preservation, and those which time had dilapidated, as restored by the hands of Thorwaldsen, a fac simile of antiquity; the lions' heads which adorned the ends of the marble tiles might then have been replaced, the griffons or chimeras which were found, restored to their positions, and the whole of the figures and architraves coloured exactly as their remains point out; the eye of the spectator, wearied with the sight of nameless monsters, on passing the doors at the end of the Egyptian hall, would have viewed with admiration the reality of an edifice, seen in the same perfection as if an interval of three and twenty centuries had been recalled.

> Ter Phigalian Marbles.
> bun his saloon are the celebrated bas relleis found at Mount Cobylus,
near the ancient city of Phigalia, in Arcadia. They represent the battles of the Greeks and Amazons, and those of Theseus and the Lapithe against the Centaurs. According to Pausanias, they were the work of Ictinus, contemporary of Phidias. The grandeur of conception displayed in their composition, the variety of attitude and action shown, is not surpassed by those in the Elgin saloon, though their execution may be inferior. A more particular notice of them than is found in the synopsis of the Museum may not be unacceptable. The cembat of the Greeks and Amazons occupies 12 slabs of marble, aud that of the Centaurs 11. Both the history of the Amazons and the battle here represented are obscure. The origin of the name is derived from two words, "Ama," or "Ma," which in all old languages signifies "mother,"-its ubiquity is proof of its antiquity-and the ancient name of the sun, as found in the Temple of Heliopolis, in Egypt, is "On," "Ton," or "Zoan"; but that any nation of Amazons, in the vulgar acceptation of the word, ever existed, is more than problematical. Faber says that those nations who worshipped the female principle of the world, such as the Iberians, the Cimmeriant, the Moote, the Atalantians of Mauritania, and the Ionians, were Amazons, and a celebrated invasion of Attica by them is mentioned. We are told that Eumolphus, an Egyptian, was the leader; and Pauganias mentions an Attic victory or trophy, called an Amazonium, erected to their manes ; according to Arrian, the Queen of the Amazons, on the borders of the Caspian Sea, sent ambassadors with defiance to Alexander. In the time of Pompey they were still supposed to exist, and Dion Cassius says, that in the Mithridatic war buskins and boots were found by the Roman soldiers, undoubtedly Amazonian. The worslip of the male and female deities in Greece caused pence between the sects, and the origin of their quarrel and their name was forgotten in Europe. In Asia, the Persians and the Jews seem still to have formed an exception; Cambyses in his invasion destroyed in Egypt every thing connected with the female worship, he overturned the sphinxes, but he left the obelisks untouched.

The scene of the combat depicted on these tablets is drawn with great force and spirit; some of the Amazons have long tunics, others slort vestments, only reaching to the knee; one on loorseback has trousers and loose sleeves reaching to the wrist; on the head of some is the Archaic helmet, and those without have the hair fastened in a knot on the top; they all but one wear boots which reach to the knees, their robes are fastened with a zone, some have two belts crossed between the breasts; their arms ars swords, and the double-headed Scythian battle-axe, as also spears, bows and arrows; none of these last are preserved, they being probably of bronze, as the holes remain, and added afterwards, as was the custom with ancient sculpture; the shields are small, aud of the luaar form, opening at top. The Athenian warriors have cloaks or tunics fastened round the neck, and tightened about the waist by a belt; it reaches no lower than the knee; the right arm is bare. In one group a fierce warrior has seized a moupted Amazon by the bair; he is dragging her from the horse, which is rearing; the action of the female figure is very fine; she firmly maintains her seat, till relieved by another, who, with uplifted axe, and shield to protect her from the flying arrows, shall have brained her antagonist. The 18th slab has five figures and two borses; in one the horse has fallen, and an Athenian warrior has his right hand fixed on the throat of the Amazon, while, with the other hand, he has grasped her foot, and drags her, who seems to have lost all recollection, from the horse's back. The position of the centre figure is very fine. He is within the guard of the shield of the Amazon, and is striking a deadly blow with his hand, in which bas been a sword. In another group an Athenian has fallen; he rests on his left hand, and extends his right in supplication to the female warriors who surround him, and is in the act of surrendering, while behind him an Amazon is striking him with her battle axe. In the sculptures of the Lapithe and Centaurs all the warriors, with the exception of Theseus, are armed with swords, who, as an imitator of Hercules, has a clab. The shields are large and circular; they have a broad border round the circumference, and resemble those of the Ephibi of Athens. Of the helmets there are four kinds-one which fits the head closely without either crest or vizor, another with a crest, and one with guards for the ears, and a fourth with a pointed vizor. In one of the sculptures Theseus is seen attacking a Centaur; he has the head of the monster under his left arm, and with the right, which probably held a club of bromze, as the hole remains, he is destroying him. He appears to have arrived just in time to save Hippodomania, whom the Centaur has disrobed, and who is clinging to the statue of Diana. From the tiara behind, and the lion's skin, this figure is supposed to be Theseus; the Centaur is Eurytion; a female figure is also seen pleading on ber behalf, and in the distance a goddess is bastening in a car, drawn by stags, to the rescue; this probably is Diana, as the temple was dedicated to Apollo.

TABLE OF GRADIENTS, BY ROBERT SHEPPARD.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Fect. Per Mile. \& Inclination. 1 in. \& \begin{tabular}{l}
Inches. \\
Per chain.
\end{tabular} \& \begin{tabular}{l}
Feet \\
Per chain.
\end{tabular} \& Feet Per Mile. \& Inclination. 1 in . \& \begin{tabular}{l}
Inches \\
Per chain.
\end{tabular} \& Feet Per clain- \& Peet Per Mile. \& Inclination 1 in. \& Inches Per chain. \& \begin{tabular}{l}
Peet \\
Per chain.
\end{tabular} \\
\hline 1. \& \(5280^{\circ}\) \& \(\cdot 15\) \& -0125 \& 59* \& \(89 \cdot 492\) \& \(8 \cdot 85\) \& -7375 \& \(97 \cdot\) \& \(54 \cdot 433\) \& 14.55 \& 12185 \\
\hline \(2 \cdot\) \& \(2640^{\circ}\) \& -30 \& -025 \& 59.326 \& 89. \& 8.899 \& -7416 \& \(97 \cdot 778\) \& 54. \& \(14 \cdot 667\) \& 1-2222 \\
\hline 3. \& \(1760^{\circ}\) \& \(\cdot 45\) \& -0375 \& \(60 \cdot\) \& 88. \& 9. \& -75 \& 98. \& 53.877 \& 14.70 \& 1-225 \\
\hline \(4 \cdot\) \& \(1320^{\circ}\) \& -60 \& -05 \& 60.69 \& 87. \& \(9 \cdot 103\) \& \(\cdot 7586\) \& 99. \& 53.333 \& 14.85 \& 1-2375 \\
\hline 5. \& \(1056{ }^{\circ}\) \& \(\cdot 75\) \& -0625 \& 61. \& 86.557 \& \(9 \cdot 15\) \& \(\cdot 7625\) \& \(99 \cdot 623\) \& 53. \& \(14 \cdot 944\) \& 1-2453 \\
\hline 6. \& 880 \& -90 \& . 075 \& 61.395 \& 86 \& \(9 \cdot 209\) \& -7674 \& \(100 \cdot\) \& \(52 \cdot 8\) \& 15. \& 125 \\
\hline 7. \& 754.286 \& 1.05 \& .0875 \& 62. \& \(85 \cdot 161\) \& \(9 \cdot 30\) \& \(\cdot 775\) \& 101.538 \& 52. \& 15.23 \& 12692 \\
\hline 8. \& 660 \& \(1 \cdot 20\) \& \(\cdot 1\) \& \(62 \cdot 118\) \& 85 \& 93176 \& \(\cdot 7765\) \& 103.529 \& 51. \& 15.529 \& \(1 \cdot 2941\) \\
\hline 9. \& 586.667. \& \(1 \cdot 35\) \& -1125 \& 62.857 \& 84. \& \(9 \cdot 428\) \& \(\cdot 7857\) \& \(105 \cdot 6\) \& 50 \& \(15 \cdot 84\) \& \(1 \cdot 32\) \\
\hline 10. \& 528. \& 1.50 \& -125 \& 63. \& 83.81 \& \(9 \cdot 45\) \& -7875 \& 107.755 \& 49 \& \(16 \cdot 163\) \& 1.3469 \\
\hline 11: \& 480 \& 1.65 \& -1375 \& 63.614 \& 83. \& \(9 \cdot 542\) \& -7952 \& 110. \& 48. \& 16.5 \& 1.375 \\
\hline 12. \& 440

406.154 \& 1.80 \& -15 \& 64** \& 82.5 \& 9.60 \& -8 \& 112.34 \& 47° \& 16.851 \& $1 \cdot 4043$

\hline 13. \& 406.154 \& 1.95 \& -1625 \& $64 \cdot 39$ \& 82 \& 9.659 \& -8049 \& $114 \cdot 783$ \& 46° \& $17 \cdot 217$ \& 14348

\hline 14. \& $377 \cdot 143$ \& 2.10 \& $\cdot 175$ \& 65. \& $81 \cdot 231$ \& 9.75 \& . 8125 \& 117.333 \& 45° \& 17.60 \& $1 \cdot 4667$

\hline 15. \& 352. \& $2 \cdot 25$ \& -1875 \& $65 \cdot 185$ \& 81. \& 9*778 \& -8148 \& 120 \& 44° \& $18 \cdot$ \& 1.5

\hline 16 \& 330 \& 2.40 \& $\cdot 2$ \& 66° \& 80^{-} \& 9.90 \& -823 \& 122.791 \& 43. \& 18.419 \& 1.5349

\hline 17. \& 310.588 \& 2.55 \& $\cdot 2125$ \& 66.835 \& 79. \& 10.025 \& -8354 \& $125 \cdot 714$ \& 42. \& 18.857 \& $1 \cdot 3714$

\hline 18. \& 293.333 \& $2 \cdot 70$ \& -225 \& 67. \& $78 \cdot 806$ \& 10.05 \& -8375 \& $128 \cdot 78$ \& $4{ }^{\text {- }}$ \& 19.317 \& 16098

\hline 19. \& $277 \cdot 895$ \& $2 \cdot 85$ \& -2375 \& $67 \cdot 692$ \& 78. \& $10 \cdot 154$ \& $\cdot 8462$ \& $132 \cdot$ \& 40° \& $19 \cdot 80$ \& 1.65

\hline 20. \& 264. \& $3 \cdot$ \& -25 \& 68. \& $75 \cdot 647$ \& 10.20 \& -85 \& 135.385 \& 39. \& 20.308 \& 1.6923

\hline 21. \& 251.429 \& 3.15 \& $\cdot 2625$ \& 68.571 \& 77 \& 10.985 \& -8571 \& 138.947 \& 38. \& $20 \cdot 842$ \& 1.7368

\hline 22. \& 240. \& 3.30
3.45 \& -275 \& 69° \& 76.522 \& 10.35 \& -8625 \& 142.703 \& 37. \& 21.406 \& 1.7838

\hline 23. \& $229 \cdot 565$
$220 \cdot$ \& 3.45
3.60 \& $\cdot 2875$ \& $69 \cdot 474$
$70 \cdot$ \& 76.
$75 \cdot 429$ \& 10.421
10.50 \& -8684 \& 146.667
150.857 \& 36° \& $22 \cdot$
22.6286 \& 18833
18857

\hline 24° \& $220 \cdot$
211.2 \& 3.60
3.75 \& $\stackrel{-3}{\cdot 3125}$ \& $70 \cdot$
$70 \cdot 4$ \& 75-429
75. \& 10.50
10.56 \& -875 \& $150 \cdot 857$
155.294 \& 35° \& 22.6286
23.294 \& 18885
$1-9412$

\hline 20. \& $211 \cdot 2$
208.077 \& 3.75
3.90 \& -3125 \& $70 \cdot 4$
71. \& $75 \cdot$
74.366 \& 10.56
10.65 \& -8875 \& $155 \cdot 294$
160. \& 34. \& 23.294 \& ${ }^{\mathbf{1}-9412}$

\hline 2% \& 195.556 \& 4.05 \& -3375 \& 71.351 \& 74. \& 10.703 \& -8919 \& 165 \& 32. \& 24.75 \& 2.0625

\hline 28. \& 188.571 \& 4.20 \& -35 \& 72. \& 73.333 \& 10.80 \& -9 \& 170.323 \& 31. \& 25.548 \& 2129

\hline 29. \& 182.069 \& 4.35 \& -3625 \& 72.329 \& 73. \& 10.849 \& -9041 \& 176 \& 30° \& 26.40 \& $8 \cdot 2$

\hline 30. \& 176 \& $4 \cdot 50$ \& $\cdot 375$ \& 73. \& 72.329 \& 10.95 \& -9125 \& 182.069 \& 29. \& 27.31 \& 2275

\hline 31. \& $170 \cdot 323$ \& $4 \cdot 65$ \& -3875 \& 73.333 \& 72. \& 11. \& -9167 \& 188.571 \& 28. \& 28.285 \& 93571

\hline 32. \& 165 \& 4.80 \& $\cdot 4$ \& 74. \& 71.351 \& $11 \cdot 10$ \& -925 \& 195.556 \& $27 \cdot$ \& 29.333 \& $2 \cdot 4441$

\hline 33. \& 160 \& $4 \cdot 95$ \& -4123 \& 74.366 \& 71. \& $11 \cdot 155$ \& -9296 \& 203.077 \& 26. \& $30 \cdot 462$ \& $2 \cdot 3385$

\hline 34. \& 155.294 \& $5 \cdot 10$ \& -425 \& 75- \& 70.4 \& 11.25 \& -9375 \& 211.200 \& 25° \& 31.68 \& 244

\hline 35 \& 150.857 \& $5 \cdot 25$ \& -4375 \& $75 \cdot 429$ \& 70 \& 11.3143 \& -9429 \& $220 \cdot$ \& 24. \& 33. \& $2 \cdot 75$

\hline 36. \& 146.667 \& $5 \cdot 40$ \& $\cdot 45$ \& 76 \& 69*474 \& 11.40 \& -95 \& $229 \cdot 565$ \& 23. \& 34.435 \& 2-969\%

\hline 37. \& 142.703 \& $5 \cdot 55$ \& -4625 \& 76.522 \& 69 \& 11.478 \& . 9565 \& 240 \& $22 \cdot$ \& 36^{*} \& $$
3 .
$$

\hline 38. \& 138.947 \& 5.70
5.85 \& -475 \& 77° \& 68.571 \& 11.55 \& . 9625 \& 251.429 \& 21. \& 37.714 \& $3 \cdot 1429$

\hline 39° \& 135.385 \& $5 \cdot 85$ \& $\cdot 4875$ \& $77 \cdot 647$ \& ${ }^{68} 8^{\circ}$ \& 11.647
11.70 \& .9706 \& 264. \& 20. \& $39 \cdot 60$
41.6842 \& $3 \cdot 3$

\hline 40
41. \& 132.
128.78 \& ${ }_{6}^{6 \cdot 15}$ \& $\cdot{ }^{-5} 5125$ \& $78 \cdot$
78.806 \& $67 \cdot 692$
67. \& 11.70
11.821 \& -975 \& 277.895
293.333 \& 19
18. \& 41.6842 \& 3.4737
$3+667$

\hline 41. \& $128 \cdot 78$
$125 \cdot 714$ \& 6.15
6.30 \& .5125
.525 \& $78 \cdot 806$
79 \& 67*
66.835 \& 11.821
11.85 \& .9851
.9875 \& $293 \cdot 333$
310.588 \& 18. \& 44°
46889 \& 36667

\hline $43^{.}$ \& 125.714
122.791 \& $6 \cdot 45$ \& -5375 \& 79°
80 \& ${ }^{66} 6^{\circ}$ \& 12. \& $1 *$ \& $330{ }^{-}$ \& 16. \& 49.50 \& 3.128
4

\hline $4{ }^{\text {. }}$ \& 120 \& $6 \cdot 60$ \& -55 \& 81. \& $65 \cdot 185$ \& 12.15 \& 1.0125 \& 352* \& 15. \& $52 \cdot 8$ \& $4 \cdot 4$

\hline 45. \& 117.333 \& 6.75 \& -5625 \& $81 \cdot 231$ \& 65. \& 12.1846 \& 1.0154 \& $377 \cdot 143$ \& 14. \& 56.571 \& 4.7148

\hline 46° \& 114.783 \& 6.90 \& -575 \& 82. \& $64 \cdot 39$ \& $12 \cdot 30$ \& 1.025 \& $406 \cdot 154$ \& 13. \& 60.923 \& 5.0769

\hline 47. \& 112.34 \& $7 \cdot 05$ \& -5875 \& $82 \cdot 5$ \& 64* \& 12.375 \& 1.0313 \& 440 \& 12. \& 66° \& $5 \cdot 5$

\hline 48. \& 110 \& 7.20 \& -6 \& 83. \& 63.614 \& 12.45 \& 1.0375 \& 480 \& 11. \& 72^{*} \& 6.

\hline 49. \& 107.755 \& 7.35 \& -6125 \& 83.81 \& 63. \& 12.571 \& 1.0476 \& 528. \& 10° \& 79.20 \& 6.6

\hline 50. \& 105.6 \& $7 \cdot 50$ \& -625 \& 84. \& 62.857 \& 12.60 \& 1.05 \& 586.667 \& $9 \cdot$ \& 88. \& $7 \cdot 3193$

\hline 51. \& 103.529 \& 7.65 \& -6375 \& 85. \& $62 \cdot 118$ \& 12.75 \& 1.0625 \& 660 \& $8 \cdot$ \& 99° \& $8 \cdot 25$

\hline 52. \& 101.538 \& $7 \cdot 80$ \& -65 \& $85 \cdot 161$ \& 62. \& 12.774 \& 1.0645 \& $754 \cdot 286$ \& 7 \& 113'1429 \& 9-4286

\hline 52.8 \& 100 \& 7.92 \& -66 \& 86 \& 61.395 \& 12.90 \& 1.075 \& 880. \& 6. \& $132 \cdot$ \& $11 \cdot$

\hline 53. \& $99 \cdot 623$ \& 7.95 \& -6625 \& $86 \cdot 557$ \& 61. \& 12.984 \& 1.082 \& 1056. \& $5 \cdot$ \& 158.40 \& $13 \cdot 2$

\hline 53.333 \& 99. \& 8 \& -6667 \& 87° \& 60.69 \& 13.05 \& 1.0875 \& $1320{ }^{\circ}$ \& $4 \cdot$ \& $198{ }^{\circ}$ \& 16.5

\hline 53.877 \& 98. \& $8 \cdot 982$ \& -6735 \& 88 \& 60° \& 13.20 \& $1 \cdot 1$ \& $1760 \cdot$ \& $3 \cdot$ \& $264 *$ \& $22 \cdot$

\hline 54. \& $27 \cdot 778$ \& $8 \cdot 10$ \& . 6750 \& 89. \& $59 \cdot 326$ \& 13.35 \& 1.1125 \& 2640° \& $2 \cdot$ \& $396{ }^{\circ}$ \& 33.

\hline $54 \cdot 433$ \& 97. \& $8 \cdot 165$ \& -6804 \& $89 \cdot 492$ \& 59** \& 13.424 \& $1 \cdot 1187$ \& $3017 \cdot 143$ \& $1 \cdot 75$ \& 452.5714 \& $37 \cdot 714$

\hline 55. \& 96. \& 8.25
8.3368 \& -6875 \& 90° \& 58.667 \& 13.50 \& 1.125
1.1375 \& 3520. \& $1 \cdot 5$ \& 528. \& 44.9

\hline 55.579 \& $95 *$
94.286 \& 8.3368
8.40 \& $\cdot 6947$ \& 91.
91.034 \& 58.022
58. \& 13.65
13.655 \& $1 \cdot 1375$
1.1379 \& 4224.
5280 \& $1 \cdot 25$ \& 633.6 \& 52-8.

\hline 56. \& 94-286 \& 8.40
8.425 \& $\cdot 7$ \& 91.034 \& 58** \& 13.655

13.80 \& $1 \cdot 1379$ \& $5280 \cdot$ \& 1.75 \& 722* \& $$
\begin{aligned}
& 66 \\
& 88
\end{aligned}
$$

\hline 56.17
56.774 \& 94. 93. \& 8.425
8.516 \& -7021 \& 92.
92.632 \& $57 * 391$
$57 *$ \& 13.80
13.895 \& $1 \cdot 15$
$1 \cdot 1579$ \& 7040
7920. \& $\cdot 75$
.667 \& 1056
1188° \& 898.

\hline 56.774
57. \& $93 \cdot$
$92 \cdot 632$ \& 8.516
8.55 \& $\cdot 7097$
$\cdot 7125$ \& $92 \cdot 632$
93. \& 57.
56.774 \& 13.895
13.95 \& 1.1579
1.1625 \& 7920
10560 \& $\cdot 667$ \& 1188******** \& 99
132

\hline $57 \cdot 391$ \& 92. \& $8 \cdot 609$ \& $\cdot 7174$ \& 94. \& 56.17 \& $14 \cdot 10$ \& 1.175 \& 15840. \& -333 \& ${ }^{376}{ }^{\text {b }}$ \& 198

\hline 38. \& 91.034 \& $8 \cdot 70$ \& $\cdot 725$ \& 94-286 \& 56. \& 14.143 \& $1 \cdot 1786$ \& $21120 \cdot$ \& $\cdot 25$ \& ${ }^{3} 168{ }^{\circ}$ \& 264

\hline 58.022
58.667 \& 91. \& 8.703
8.80 \& -7253 \& 95
96. \& 55.579
55. \& 14.25
14.40 \& ${ }_{1}^{1.1875}$ \& 31680* \& $\cdot 167$ \& ${ }^{452}{ }^{\circ}$ \& 396

\hline
\end{tabular}

A slight inspection of the table will render any explanation of it unnecessary. The table may be considerably extended, by merely shiting the decimal points.

EXAMPLE.

Peet per Mile.	Inclination 1 in .	Inches per chain.	Feet per chain
55	96.	8.25	-6875
550	$9 \cdot 6$.. 82.5	$6 \cdot 875$
. 6.5	960.	$\cdot 825$	-06875

THE FINE ARTS OF GlREECE, DURING THE AGE OF PERICLES. BY FREDERICK J. FRANCIS.

[IT affords us much plensure to draw the altention of our Architectural readers to a well written essay on the Fine Arts of Greece, during the Age of Pericles, by Mr. Francis, a young and aspiring architect; who, if we may judge by lis writings, promises to be an ornamezt to his profession. We bave given below a lengthened extract from the essay, which was read before several Literary Institutions, and gave great satisfaction.]

In Architecture, the Acropolis was, undoubtedif, the proudest triumph of Grecian skill. It consisted of a lofty rock, standing in its unapproachable majesty above surrounding buildings, and adorned profusely with every variety of temple and sacred edifice, both votive and monumental, rich in the hues of the most brilliant polychromy, and glittering in all the brightness of Pentelican and Parian maroles.

So splendid, indeed, was its architectural adormment, that it was termed the "City of the Gods," and appeared as though it were one vart offering to the divinity. "It was the peerless gem of Greecethe glory and pride of art-the wonder and envy of the world;" enriched with temples incomparably more beautiful than those the Persians had demolished, and decorated with those spoils and trophies, which had marked the progress of the Grecian arms.

We pass by, without particular observation, solely for the sake of brevity, and in no degree from their being unworthy of notice, the various public edifices erected without the Cecropian citadel; sucb, for instance, as the hexastyle temple of Theseus-the famed Dionysiac theatre-the Stoa-the Gymnasium-the Choragic monument of Lysi-crates-and that magnificent decastyle, peripteral, and perhaps, hyprethral temple, dedicated to the worship of the Olympian Jove at Elis; and wish you to look more particularly at the unequalled grandeur of the Acropolis itself, which, towering above the homes and habitations of private citizens, raised far above surrounding buildings, defended on all sides by deep and precipitous rocks, and inaccessible only through the gorgeous Propylea, which formed its western entrance, was the one sacred spot which all the resources of art had been exhausted to beautify, and in whose decoration the most costly treasures were lavished and expended.

It would, of course, be impossible in this necessarily limited detail, to describe with any minuteness all the many temples and sacred monumental emblems with which the summit of the Acropolis was covered; or the stately and majestic sculptures, which adorned their pediments, decorated their friezes, or in the form of colossal statues, were placed in their interiors as objects of worship and adoration.

Still, from the beauteous, though shattered and crumbling remains of the Propylsea, and the Parthenon-the first, beyond all doubt, the greatest production in civil architecture of which ancient Greece coukd boast, the latter, equally unrivalled as a sacred edifice, dedicaled to the goddess Minerva, as the tutelary goddess of Athens, and standing in the centre of the citadel an object of supreme and commanding beauty-from these two buildings, which mark distinctly the architecture of the Periclean age, may be inferred an accurate idea of the perfection which this branch of the Fine Arts had then attained.

The Propyina, so called from its forming the vestibule to the grand entrances which led to the citadel, was erected on the westem, and, indeed, the only accessible approach. The entire building occupied the whole space, which formed the natural entrance to the summit of the rock, nearly 170 feet, 60 feet being occupied by the centre, the rest taken up by the wings, which belonged to the building; and was thus at once, a source of strength, a means of defence, and a vast ormamental fortification.
The Propyleum, or great vestibule, presented a front of six elegantly proportioned, and massive futed Doric columns, leading to another beautiful vestibule, nearly 50 feet in depth, the roof of which being sustained by six lonic columns in a double row, divided the inner vestibule into three aisles or compartments; while the ceiling was laid upon marble beams, and adorned with some of the noblest monuments of art. The wings of the building projected 30 feet in advance on either side, showing a front elevation of a plain wall with hieroglyphics in the frieze; and by their simple and undecorated finish, must have given to the whole edifice the effect and proportion of simple, unpretending, and yet pure and classic beauty. This incomparable gtructure was erected entirely of Pentelican marble, and the effect which it had in the days of its unmutilated grandeur nust have been majestic and impressive in the extreme.

Not only did it glitter in all the whiteness of the marble of Mount Pentelicum, but its interior glowed with all the varied hues and shades of colouring, and all the minoteness of sculptural detail. The cloudl ess skies of Attica, and the unruffled serenity of hes climate, per-
mitted a species of adornment, which, in a murky district like our own, would soon be disfigured and destroyed: and it gave to the works of the Grecian artists that peculiar charm which we, at any rate, can never hope to emulate or equal.

Within the spacious courts of these proud and commanding vestibules, were enshrined many noble examples of the perfection which the sister arts of painting and sculpture had then reached. The left wing was decorated with paintings by Polygnotus, whereon were represented, with all the powers of artistic genius, the ever memorable and stirring events connected with the Trojan war; and, at intervals, throughout the whole edifice, were placed, in striking and appropriate localities, groups of eqnestrian statues, designed with all the originality, and executed with all the perfection, which especially belonged to that age and peoplc.
The Propylæa, in short, was the glory and pride of the Atheniausfamed throughout all the surrounding states of Greece; nay, it became so celebrated, that even the national enemies of Greece paid homuge to its magnifcence; for, when in the assembly of the Thebans, Epaminondas desired to convey to his audience the importance of trinsferring the glory of Athens to Thebes, he made reference to the Propylea alone, as if in that structure there were concentrated all that was glorious and magnificent in art, and said, "Oh! men of Thebes, you must uproot the Propylxa of the Acropolis, and plant them in front of the Cadmean capital!"

Passing this splendid structure, entering the citadel, and ascending several steps, we come to the sacred and revered temple of the Parthenon, dedicated to the virgin goddess, and, undoubtedly, the noblest monument of architectural genius the world has ever seen.

It stands upon the summit, and in the centre of the Acropolis, elevated considerably above the Propylaa and the adjacent buildings, and executed in the purest marble the country could produce. You are all, doubtless, well acquainted with its simple, yet expressive form, its classic harmony of proportion, its unbroken outlines, its massive and majestic grandeur.

It is termed a peripteral and hypathral temple, that is to say, it is perfectly surrounded with columns, and contains an interior cella, exposed to the extemal air.

As far as it is possible for this branch of art to embody the truc sublime, and we know that it is capable of doing so in no mean degree, has been accomplished by the peripteral parallelogrammatic temple of the Greeks. Such was the sacred Parthenon. In length it measured more than 200, in breadth about 100 feet; containing, at each end, a lofty and commanding portico of eight fluted Doric columns in a double row, 35 feet in height; and having, likewise, a colonnade of similar proportions along each side, to preserve the harmony and unity of the design. Even now, in the ruined and mutilated condition to which it has been, by the wreck of time and the ruthless hand of invasion, reduced, it is peculiarly calculated to rouse in the mind of the beholder, feelings of sublimity and awe.
What, then, must it have been in the palny days of its original and pristine grandeur? perfect and unspoiled, and decorated both within and without, by some of the most splendid productions of art, sculpture and painting lending their aid to heighten that undefined and yet irresistible charm which belongs to the majestic unity of its form, and the classic simplicity of its unbroken outline?

The Parthenon was, in short, the chef d'curre of Grecian art, unequalled, as a monument of architectural skill, either in ancient or modern time. "Its dinensions," remarks an anonymous writer, "were sufficiently large to produce an impression of grandeur and sublimity, which was not disturbed by any obtrusive division of parts; iud, whether viewed at a small or a great distance, there was nothing to divert the mind of the spectator from contemplating the unity, as well as the majesty, of mass and outline, circumstances which form the first and nost renarkable characteristic of every Greck temple erected during the purer ages of Grecian taste and genius."

Scarcely inferior to these, though less pretending, were the lonic temples of Erectheus, and Minerva Polias, the renowned Odeon, the little temple of Victory without wings, and others ; all remarkable for that characteristic simplicity, that proper relation of parts to a whole, that barmonious proportion iund unadorned beauty, which form the distinguishing features of Grecian architecture.

Never was there a people who understood so completely, and retained with such exactitude, the elements of simple beauty in this department of the Fine Arts, as the ancient inlabitants of Greece. In the mouldering relics of their immortal productions, their sacred temples, fanes, monaments, and theatres, there is nothing of that omate and finished elegance so peculiar to the Roman style; nothing of the tasteful splendours of Moorish architecture, as developed in the fascinating outlines and gorgeous decorations of the ancient palace of the Alhambra; nothing of that glittering grace and exquisiteness of detail
exhibited both in British and continental cathedrals; still less, any of those fantastic and superabundant adornments which distinguish the Palladian, the Elizabethan, and the Tudorian styles; and yet, devoid of all these adventitious embellishments, destitute of all or any of these factitious aids, the sacred Architecture of Greece stands forth in all the consummate perfection of its harmonious beauty, compelling the respect and admiration of all succeeding ages.
Yes!-to this day, their magnificent temples atill remain unrivalled, though in ruins-unequalled, though in desolation-tanding alone, in the unapproachable majesty of simple and classic dignity, the ackowledged models of all that is perfect and expressive in Art.

Nor was Sculpture backward in the rapid strides made by the Fine Arts at this period. The Acropolis, with its hundred temples dedicated to the gods-with its multitude of sanctuaries and monumental structures-contained also hundreds of statues, representing, for the most part, those persons to whom the temples were inscribed.

The range of Grecian Polytheism was most wide and extensive. Every temple had its fit and appropriate deity-every niche-every recess-every cell, its proper occupant: and whether, it were the lofty Propylwa-the revered temple of the Parthenon-the Erectheium -the cell of Pandrosus-the magnificent temple dedicated to the Olympian Jove at Elis-or that sacred edifice at Eleusis, within whose walls were performed those celebrated religious mysteries and sacrificial rites, regarded by the Athenian people with the utmost solemnity and veneration; whether we look at each, or all of these, we shall find that they united to the beauty of external form and architectural grace, all that additional charm which creations of sculpture could convey, wrapped as they were, in the expressive elegance of exalted art, and the consummate perfection of ideal beauty.

Amous the celebrated sculptors of the Periclean Ape, Pablas, without doubt, must be reckoned the greatest and the most illustrious. During the admiuistration of Pericles, he had the uncontrolled command and supervision of all the public works of Athens; and by the exercise of superior genius-profound and varied knowledge-and peculiar stedfastness of purpose, was a great instrument in carrying the arts to the perfection they then attained.

Progressing far beyond the rude and homely style of Dadalus and his successors, in him, it was first seen, how wondrous are the powers of sculpture, under the hand of commanding genius, in the personification of the creations of poetry. To him first belonged the power of producing deep and lasting emotions of sublimity and beauty by the expressive and the finely moulded marble; and, in fact, in the almost breathing forms of his inimitable creations-

" Are exprent

All that ideal beauty ever bless'd
The mind with, in its most unearthly mood; When each conception was a heavenly guest, A ray of immortality : and stood,
Star-like, around, until they gathered to a God."
"The superior genius of Phidias," says Mr. Flaxman, the late lamented Professor of Sculpture, in the Royal Academy, "in addition to his knowledge of painting, which he practised previous to sculpture, gave a grandeur to his composition - grace to his groups-a softness to flesh, and flow to draperies unknown to his predecessors: the character of whose figures was stiff, rather than dignified : their forms turgid-the folds of their drupery, parallel, poor, and resembling geometrical lines, rather than the simple but ever-varying appearances of nature. The discoveries of cotemporary philosophers on mental and personal perfection, assisted him in selecting and combining ideas, which stamped his works with the sublime and beautiful of Homer's verse."*
Among the many works which sprung from the hand of this extraordinary man, there are two which, to this day remain unrivalled. Had they been the only two he had ever executed;-had the extent, the capacity, the calibre of his geaius, depended solely upon them, still, they are so magnificent in themselves: so absolutely perfect as a work of art as alone to warrant our ranking him far above all ancient or modern sculptors.
I allude to the colossal statue of Jupiter Olympius at Elis, and that of the goddess Minerva, in the sacred temple of the Parthenon: the former, upwards of sixty, and the latter, forty feet in height: both of which are regarded (the former especially) as among the wonders of the world, and will never fail to excite the praise and artonishment of future ages till all appreciation of the beautiful, the expressive, and the subline-shall have departed from amongst mankind.

It is in the representation of the Attic divinities-more partioulary the deities of Homer's verse, that we mark, in an especial mamer,

* Flaxman's Leotures on Scutpture.
the commanding genius of the Grecian artists. The religion of Greece, not indigenous but exotic; springing orignally from Egypt, bot at the same time purified, idealized, and essentially changed by its transmission, was in all respects, a sensuoue worship: sources of the sublime were sought for in objects of sense and sight, and through the material and the visible, were the mass of the people led to perceive, and taught to adore, the unseen and the spiritual. The Egyptian theology was embleratic: the sublime was attempted by the personification of monsters in external form; and in proportion as there was reached, what was fasely deemed, the teight of sublimity, was there an equally proportionate recession made from the attainment and the embodying of the expressively beautiful.

But as civilization advanced, and the Ionian charactar bocame fully developed; it was justly considered that the really beautiful axnd wutlime was most easily attained by that department and species of sculpture, which delineated the human form in all the perfection of its ideal beauty, and physical excellence. In the personification therefore, of their Homeric divinities (for, as you are aware, they existed in the metres of the poet, long before they were embodied in the man terial excellence of sculpture λ this rule is followed, and in the geveral, strictly adhered to: and consequently the statues of Phidias, Praxiteles, and their contemporaries, possesa this peculiar charm, that they stand aut the most expressive personification of the eseeatial charmcteristics of humunity : the most perfect exponeats of the very passions which aqitate-the thoughts which controut-and the will that goverss the minds of men. They are not forman which convey to no no mental impression, which rouse no hidden emotions, or which call into action none of the sympathies of our nature; bot they are forms which speal to us in all the silent eloquence of expresive beauty, linked intimately in their outward proportions with the peculiarities of our own physicad, moral, and intellectual struotures, and conveying to us most clear and tangible ideas of all the varied evolutions of intelligence, of mind, and will

Thus, in the Jupiter Olpmpius of Phidian to which I bave already referred, there was deseloped in all the expressiveneas which material forms could beatow, the power of absolute milh, subjected to no controul, and accustomod to wield the soeptre of undivided command.
Conscious however, as be is of being in the possession of this undisputed authority, "The father of the gods and men," is here represented by the unrivalled hand of Pbidias, an relaxing in some measure the sternness of his character, and from his regal throne awarding with one band the chaplet of victory to the Olympian conquerors, while with his other, be grasps the royal soeptre, and round his ample brows there circles the sacred olive wreath.

Immediataly before the throne, forming thdeed one magaificent group, were various emblematic representations of the fabuluus adventures of the heroic age: comtaining among others, the destruction of Niobe's clildren, the labours of Hercules, and the garden of Hesperides : while, an the base, might be sees the battles of Theseus with the Amazons : and, on the pedextal, an assembly of the gods--the sun and moan in thoir cars, and the birth of Veaus.

Suoh was this master piece of Phidian genius and skill. And it would be impossiblo for imagination ta conceive a more spleadid personification of that-

$$
\begin{aligned}
& \text { "Olympian Jore, }
\end{aligned}
$$

Sitting, as he might be supposed to do, upon that hill of dread Olywpus, which-

"Shrouds

Its humdred heads in heaven, and propa the cloud."
and giving to the august assembly-

> "The nod that ratifies the wilk divine The faithful, fixed, irrevoceble sign."

The artist has happily combimed the benignant expression of benevelence with the awful majesty of the Homeric god, as delineated in the following passage:-

> "He spoke; and awful bends his sable brows Shakes his ambrosial curls, and gives the nod The stamp of fate, and sanction of the god:
> High heaven, with trembling, the dread signal took And all Olympes to the centre shook."

But it is not only in this magnificent conception of the genius of Phidias, that we mark the pervading expressireness and consuramente beauty of form to which I hive alluded. In all the statuen and groups executed in that age. from those of Phidias, which emanated in the Periclean, to those of Pruxiteles, which were produced near the Alexapdrian eray for perceive the shades and the warieties of the
human ebaracter and passions shadowed out in all the realization of ideal beauty; the ideullsm of poetry, transposed into the materialism of sculpture.
Thos, in the colossal stritue of the goddess Minerva, situate within the saered inclosure of the Parthenon, we recognize "the martial, blue-eyed maid" depicted in Homer. Pre-eminent wisdom, high martial energy, and the celestial beauty of a virgin goddess, accomproied and gnarded by the stemest and severest virtue, are the chief characteristics of this noble production,-executed in ivory and gold, by the masterly hand of Phidias, and inferior only to the Jupiter Olympits, as a work of art.
Then agoin, in the Apollo Belvidere, there is embodied the indwelling energy of an indignant god. The "Lord of the unerring bow" is represented shooting with his arrows the great serpent Python. You all know the attitude of this exquisite statue.

> "The thaft hath just been shot; the arrow bright
> With an immortal's vengeance, in lus cye And nostril, beautiful disdain; and might And majesty, tash their full lightnings by; Developing in that one glance, the Deity."

In the Juno, we see that imperial dignity and matronly grace, which belong to har station as Queen of Heaven, and wife of Jove: in the Bacclus, all the gelf-sufficiency of the most luxurions ease: in the Venus, the Cnidian Venus especially, all the softened and tender graces of the most attractive loveliness : and in fact, the whole range of the Grecian divinities stand out the emblems and exponents of the several attributes of humanity, heightened and perfected by that extraordinary appreciation of simple and expressive beauty in whioh the Greeks 80 eminently exceilled.
But such being the acknowledged characteristics of the sculpture of this period, it may be asked how it was that the Grecian artists obtained so thorough and intimate an acquaintance with the haman form, in all the varieties of its full developement, and physical ex. cellence.
It may be asked, how it was that they, above all other nations, maintaimed that harmony, fitness and proportion, which endowed their creations with all the force of expression, and mude them the almont breathing symbols of intelligence and will.
To this we answer, that the Greek sculptor possessed advantages altogether peculiar to the mation of which they formed a part:-as it has been well observed, "they not ondy derived the highest advantages from a religion which disposed men to ennbody all the charms of nature in definite forms, and from a cast of mind requiring for enjoyment the distinctuess of beauty rather than the visionary and the dim; but had all the benefit of studying the human frame, in its most perfect freenens, elegance and grace. Not only were the Greeks beautiful by nature, but the course of their lives, even from earliest infancy, was calculated to improve the form. The public exercises gave, in addition to the polished manner, and elevated attitude of a citizen of the most giorious state on earth, something of the wild and airy grace of an Indjau bounding in the chase, or of a stag delicately pacing through his native forests." t These public games, indeed, gave a singular and decided impulse to the progreas of Grecian sculpture. The Gymnasia, or schools in which the candidates for distinction at the Olympian gamea were trained, was the constant resort of men of rank and talent: at these places, and in the Olympian conteste themselves, the combatanta, for the sake of greater ease and elasticity, exhibited without the unual accompaniments of dreas.
By these meana, the Grecian artiste would become accustomed to the contemplation of the human form, in all its changing attitudes and expresions : and intimately conversaut with the varying evolutions of the muscles, jointh, and sinews of the frame, whether in the stillness of repose, or the vigour of action.
By dwelling for instance on the athletic proportions of a brawny wreatier,-his from compactness of frame-his well-knit joints-hin largely developed muscular masses : there would be afforded to the obervant aculptor the model from which he might create a Theseus or a Herculea, or any other of the fabled demi-gods of the heroic age: in which this aim would be to make physical strength und power the leading and distinguishing characteristics.
Or again, by musing on the light and agite forms of the unrobed victors of the race, their supple and elastic limbe, their rounded joints, and general elegance of shape, the artist might obtain his originah, for the awifl-footed Mercury, of the more matured and majestic Apollo.

Or once more: by gazing on the forms of the Grecion maidens, when-according to their national customa, they danced perfectly un-
veiled before assembled thousands at their celebrated festivalsPraxiteles might have caught that ray of inspiration which subsequently expanded itself into the finished graces of the Cnidian Venus: and who can doubt that Phryne in rising from the bath, exposed to the eyes of all Greece, at the celebration of the Eleusinian games first suggested to the artist the beauteous form of the Venus Anadyomene. In short, in almost every solemnity and religious rite-in every public game and athetic combat, in the Olympian-the Panathenaic festivals and others-in all these various ways full opportunity was afforded to the Grecian artists, to become thoroughly acquainted with the diversified characteristics and varying expressions of the human figure: and hence, in a great measure, the secret of that unrivalled perfection to which sculpture attained in Greece. To this we may add, that they possessed so exquisite a sense of the beautiful-so just and profound an appreciation of what was really the perfection of shape and figurethat they were not contented with copying exactly, even from the admirable models continually presented to their minds-they never represented Nature as they found her embodied in any one form-but they sought after an IDEAL perfection more complete than is to be found in any one-even the fairest and the noblest of Nature's works: -they derived portions from the many-adopting every recognized and admitted excellence-and rejecting every acknowledged and palpable defect; and grouping and combining those features alone in each, which reached the stindard of that perfect Ideal to which it was their proudest ambition to attain,

ON THE EFFECT OF CLIMATE ON YORKSHIRE PAVING.

Report communicated by Colonel Fenshawe, Royal Engineers.

(From the Papers of the Corps of Royal Enginecrs.)

A report having been recaived from the Mauritius that the Yorkshire stone coping which had been supplied for that station was either of a bad description, or not calculated to withatand the great power of the sun in that climate, a considerable portion of it having blistered and peeled, references were consequently made to other tropical stations and to Bermuda, where stone of this nature had been used.

From Barbadves the reply was that the experience of that command had in no case shown that solar heat has had the effect of blistering or peeling Yorkshire paving, and that the defect complained of was more attributable to the quality of the stone than to the climate.

The Jamaica Report stated that on examination of the Yorkshire flag-stone measuring 14 inches wide and 3 inches thick, used in coping the wall that surrounds the barrncks at Up-Port camp, being about 2,000 yards in length, and having been laid ten years, some few stones were found partially honey-combed to the depth of i to $\frac{8}{8}$ of an inch, which is attributed to the bad quality of the stones rather than to the effect of the olimate,-the deteriorated flags having been in all probability obtained from the upper beds of the quarry, the greater part being to all apperrance perfectly sound and showing no indication of blistering or peeling.

The Buhana Report stated that upon a careful examination of the Yorkshire stome used for flooring and pavement in situations exposed to the lieat of the sun, it was not perceived to have blistered or peeled, or to have been otherwise affected beyond what might be expected from common weur and tear.
'Ihe Bermula Report stated that in many instances Yorkshire stone exposed to the weather has not suffered sensibly from such exposure, whilst in others it has been bistered and peeled off in lamine from it to $\frac{1}{8}$ of an inch in thickness.
A quantity not set, and so exposed from four to five years, has undergone no sensible change, which is likewise the case with that on the top of the tower in the main ditch, laid about eight years since.

Exposed to the alternate action of the sea and sun at the landing places in the dook-yard at Ireland Island, the Yorkshire flagging had failed.

Yorkehire flagging is of very different qualities. The best is found in the lower purt of the quarry; that from the upper part is usually composed of several laminee, disposed to spilt, and will in all probability fail. But there seems no reason to duubt, from the above experience, that by a proper selection of quarry, or of stone at the quarries, the Yorkshire flagging will be found to withstand the effects of a tropical climate.

ENCROACHMENTS AND RECESSIUNS OF THE SEA.

(From the Cinqie Ports' Chronicle.)

A correspondere laving, a considerable time past, mooted the hitherto, we believe, unanswered question as to the causes which produce encroachments and recessions of the sea, upon a line of coast having nearly the sane geographical bearing, and especially as regards the south-eastern coast of England: we have delayed attempting the solution of the problem on our own part, in the hope that some of our correspondents would anticipate our labours by directing their attention to the subject.

The correspondent to whom we have alluded, very justly observes that the traveller along our shores is somewhat puzzled to find a town or village once washed by the sea, now standing two or three miles inland; and other localities, within the space of a few miles, which were once at a remove from the ocean, now diminishing, by the daily encroachments of the billows.

Commencing with Beachy Head, we have at once an instance of the hatter, as formerly, springing from the base of the cliff were seven perpendicular rocks, denominated the seven Charles'; these, in

" The incessant war of wave and rock,"

have, for the most part, been undermined and washed away by their indefatigable adversaries-the winds and the waves. Continuing our progress eastward, we find not only considerable tracts of land or sward, formed upon a sub-stratum of beach, extending from the headland towards St. Leonards, a distance of about eighteen miles; but about midway between these towns, we have undeniable evidence of the extent of the recession of the sea, in the fact, that the hill or cliff upon which Pevensey Castle stands, is said to have been washed by the sea, while its perpendicular distance from the present high water mark is about two miles. Bexlill, further eastward, may also be pointed out as having been subject to a similar, though less extensive, alteration of locality. The question hence arises-can a plysical cause be assigned for the remarkable changes under consideration? We are aware of the risk we run of incurring the charge of presumption in attempting to solve that which, as far as our reading has extended, we believe, bus never been attempted by geographers or geologists; but years of attentive consideration to this subject has so thoroughly convinced us of the simplicity of the law which produces the alterations in the aspect of our coasts generally, and especially of the south-eastern, with which we are most familiar, that, as none of our philosophical readers have come forward to explain a subject of conviderable interest to residents and frequenters of our shores, we shall proceed with all deference to lay our opinions before the public; being at the same time open to conviction, and perfectly willing to insert in our columns any observations either against or in curroboration of the view we take of the subject.

The simple law, then, which we regard as the origin of the changes in the aspect of our coast, is the lendency of the sea to preserre its paralit! unter the influence of the prevailing wind and carrent. 'The tendeney of water to find its level is universally known, and that of keeping its parallel is as unquestiouible, though lesp obvious to common observers. Were the coasts and shores wushed by the ocean composed of the same geological substances, as, for iustance, sind or chay, the phenomena of the geographical changes under consideration would not occur; but it is otherwise: our coasts being diversified with ridges of rocks, and with plains level with or below high water mark. In the former ciase, the action of the waters of the channel would be similar to the uniform wiste of sand raised as embankroents on each side of a sloping trough, along the centre of which water was made gradually to flow; but in the latter case, whicll actually obtains, the comparison is only maintained by supposing a number of stones or bard masses were irregularly thrown into the trough, which would occasion an interruption to the equable flow of water, and have the effect of throwing the waters, diverted from their parallelism, into serpentine courses, causing inroads upon the sand or yielding substance at the sides, in proportion to the obstructions which they met with from the harl projecting masses. Such, then, we believe to have teen the case, when the shores we inhabit were separated by the effects of earthquake, or otherwise, from the opposite coast of France. The waters of the channel, impelled by the prevailing currents from the Atluntic and the south-westerly winds, found their parallelism obstructed by the rugged inequalities of the channel, occosioned by the interventiou of mountainous ridges. This had the effect of throwing the waters upon the lowlands and coast composed of saud or vegetable earth, in the same proportion as the waters were obstructed in their onward flow by the causes alluded to; and which inroads will always be found to have occurred on the side of the obstructing mass oppored to the prevailing momentum. From this consideration we should naturally
infer thut, in the early years of creation, or of the formation of new narine channels, the coast scenery must luve been even aore diressified and romantic than it now is. In speaking of the equal ratio between the obstruction of water in its current, and the incursion which it makes in consequence of that interruption, we need not merely io corroboration refer to the simple fact that, wherever there is a head. land, there is a bay, on the side opposed to the prevailing power of water; but it is worthy of note, that under ordinary circumstances of a geological character, the proportions between the perpendicular extents of promontories and their bays are distinctly and unequivocally marked. By way of illustrating our subject, we will retum to Beachr. head in confirmation of our theory, that clanges in the face of the coast are occasioned by the efforts of the ocean to obtain ite paralielism. By comparing ancient maps of the coast with moderu onst, the extent of the alterations effected upon the south-eastem coast will be more reudily perceived. We have already shown that the face of Beachy-head has, within the memory of man, suffered considershth from being undermined and washed away by the sea: and cowld re have beheld it as it was in the times of the Romans, we doubt not ne should have seen it stretching out much further into the sea than it now does, and the waters, obetructed in their course by its huge mas, sweeping round its enstern base, forming a deep and ample port (probably the Anderida of the Romans), and the bay spreading its witers over the level, till it washed the hills upon which Pevensy and Bechill were built.* But why has the sea receded, remains still to be answered. We answer, simply by the gradual removal of the causes which occasioned its irruptions; in other words, the liquid eiemend has, in its incessant warfare, reduced the opposition occacioned by projecting masses of cliffs; thesc have been undermined, the sapesstrata hurled from their heights, and after, perhaps, temporarily increasing the obstruction, and causing a greater inflox of mater upos the plains, which must be regarded as exceptions of the genera lan of equalization which our coast is sustaining, these procumbent mut of chalk or stone have been battered en detait by the merciless billors reduced to fragments, and swept by the maddening tempests into the deep, or from the locality in which nature had originally deposited them. The headlands being thus diminished, and causing less reartion of the sea, deposit after deposit of beach is made in the bays, which increase in the same proportion as the neighbouring lieadiands neu away. In the course of a few yenrs a green sward covers the beach and unless interrupted by some extraordinary circurnstance, tending to infringe upon the watery world, the work of decreasing the escrascencies, and filling up the indentations of the coast, is carried cortinually on by the aqueous clement.

In concluding our observations upon this interesting probien, we shall proceed to illustrate the solution, "That the mutations to which our coast is subject, proceed from the tendency of the waters of the chanuel to find their parallel," by further reference to the past ad present state of the coust. Resuming our exanples to the eastrand of Bexhill, we find that the cliff upon which the Gialleyhill stationhouse is erected, is fast consuning hway by the continual assaults of the sea; and, in accordance with the law which we have pointed out the waters which were formerly obstructed by this interposing beadland, and thereby intruded with augmented force upon the level to the enstward, so as in former times to reader Bulverhithe a and tributary port to Hastings, and to form a bay from that point to Bopeep: the waters, we repeat, in the same proportion we they burt effected their parallelism, have also left deposits of beach in the war, which they originally formed. The curvature of this netgbleorthod is now triting, and in a few years hence its parallelism with the 8 W. will be perfectly effected by the prevailing current from that quarter.
By the consumption of the St Leonards, the Cuckoo hill, and the Castle cliffs, the valleys at the Priory, and between the West and But hills, were forsaken by the sea; in proof of which, we need ouly wate, that in removing the Priory bridge, and in digging the foumdition of Mr. Jackson's house, at the end of High-street, nothing, we bolerc. bot beach was discovered-un unanswerable evidence of the sea baring formeriy entered the mouth of each valleg. We have no doutd thit Hastings, the Danish pirate, selected our locality as his oscesiond rendezvous, from the circumstance of the East and West hills ar dim which projected in the sea, forming excellent spots for the formation of his camps: and between which, at the mouth of the valley, becald take refuge with his fleet of galleys, perfectly sheltered from ererg adverse wind.

The cliffs, immediately to the eastward of Hastingz, are contiomelly

[^45]wasting, from the cause to which we bave alluded; and as a further corroboration of our opinion, we may mention that, about the first spring tide after the completion of the large groyne, the sea, obstructed by the beach which the erection hal caused, was thrown with such adrlitiomal impetus upon the coost to the castward, as not only to sweep the beach away, and to bare in an unusual manner the rocks, but also to undermine and throw down many tons of a projecting part of the ciiff to the eastward.

The cliffs, extending from Hastiugs to Cliff's End, a distance of six miles, formerly stretched much further to seaward, and by obstructing the parallelism of the current, caused it to excavate a bay in the valley to the eastward, proportioned to the extensiveness and perpendicular obstruction of the cliffs adverted to. As recently as the reign of Qucen Elizabeth, the sea appears to have llowed as ligh as the town of Winclicisea, and to have insulated the cliff upon which that of Rye is posited. Onr opinion in this case is further confirmed by old maps attacher to Ciunden's Britannia, whicli represent the towns now mentioned as almost insular. The destruction of Old Winchelsea, which is buried in the sands to the south of Camber castle, may easily be explained upon the theory of the equaliaing tendency of the channel currents, which it has been our object to establish and to illustrate. It would be rasy to multiply exumples, and it wus rather a remarkable coincidence that, in our last mumber, there were two paragraphs from distant parts of the coast relating to encroachments of the sea-one respecting the neighbourlood of Penzance, confirinatory of our principle; and another stating that, is the accumulation of beacla at Dingeness point augmented, the undermining of the Martello towers near Hythe, in the bay to the eastward, by the sea, proceeded, with a probability of many acres of land being speedily swallowed up by the element.

Without further examples we trust we have not only assigned a satisfactory reason for the encroachments and recessions of the sea, and at the same time, by an easy deduction, hinted at the means whereby land may, by the construction of groynes, be recovered to the westward, or, if necessary, excavated on the side opposed to the prevailing current by the action of the waves, but have also shown that no extensive infringement of the const by the waters need be apprebended; and that the irregularity of the ebb and flow of the tide for centurics past, has been less in proportion than the disturbance of water in a vessel when carried by the steadiest land, thereby demonstrating the omnipotence of the divine and sublime injunction" Hitherto shalt thou come, but no further; and here shall thy proud waves be staid."

ENGRAVINGS IN RELIEF FROM COPPERPLATES BY MEANS OF VOLTAIC ELECTRICITY.

Ws lately published M. Jacobi's letter to Mr. Paraday, in which he described his attempts to copy in relief engraved copperplates, by means of voltaic electricity. We have since reccivel a communication from Mr. Thomas Spencer, of Liverpool, from which it appears, that that gentleman has for some time been independently engaged on the same subject; and that he has not only succeeded in doing all that M. Jacobi has done, but has successfally overcome those difficulties which arrested the progress of the latter. If is unnecestary here to enter on the question of priority between these genHemen. To Mr. Spencer much credit is certainly due for having investigated, and successfully carried out, an application of voltaic electricity, the value of which can hardly be questioned. The objects which Mr. Spencer says he proposed to effect, were the following:-"To engrave in relicf upon a plate of copper-to deposit a voltaic copperplate, having the lines in relief-to obtain a fac-simile of a medal, reverse or obverse, or of a bronze cost-to obtain a voltaic impression from plaster or clay-and to multiply the number of already engraved copperplates." The results which he has obtained are very licautiful; and some copies of nuedals which he has forwarded to us are remarkably sharp and distinct, particularly the letters, which have all the appearance of having been struck by a dic. Without entering into a detail of the steps by which Mr. Spencer brought his process to perfection, many of which are interesting, as showing how slight a cause may modify the result, we shall at once give a description of his process. Take a plate of copper, anch as is used by an engraver; solder a piece of copper wire to the back part of it, and then give it a coat of wax-this is best done by heating the plate as well as the wax -then write or draw the deaign on the wax with a bleck lead pencil or a point. The wax must now be cut through with a graver or steel point, taking special care that the copper is thorougli exposed in every line. The shape of the tool or graver cmployed must be such that the line made are not V-shaped, but as nearly as possible with parallel sides. The plate should next be immersed in dilute nitric acid-say three parts water to one scid: it will at once be scen whether it is strong enough, by the green

- Lieut. Col. Williuns, in his srientific phper on "The Laws which govern the course of the Shingle un the 'S Ficoast, ant Hinds upon R) e and Dover Harbours," notiees the general tendency of groynes to collect the beach on the western, and to clear it away on the opposite side, owing to the prevailing current from the south-east.
colour of the solution and the bubbles of nitrous gas ciolved from the copper let the plate remain in it long enough for the exposed lines to get slightly corroded, so that any minute portions of wax which might reusin may be removed. The plate thus prepared is then placed in a trough separated into two divisions by a porous partition of plaster of Paris or earthernware-the one division being filled with a saturated solution of sulphate of copper, and the other with a saline or acid solution. The plate to be engraved is placed in the division containing the solution of the sulphate of copper, and a plate of zinc of equal size is placed in the other division. A metallic connexion is then made between the copper and zinc plates, by means of the copper wire soldered to the former; and the voltaic circle is thus completed. The apparatus is then left for some days. As the zinc clissolves, metallic copper is precipitated from the solution of the sulphate on the copper plate, wherever the varnish lass been removed by the engraving tool. After the voltaic copper has been deposited in the lines engraved in the wax, the surface of it will be found to be more or less rough, according to the quickness of the action. To remedy this, rub the surface with s piece of smooth flag or pumice-stone with water. Then licat the plate, and wash off the wax ground with spirits of turpentine and a brush. The plate is now ready to be printed from at au ordinary press. In this process, care must be taken that the surface of the copper in the lines be perfectly clean, as otherwise the deposited copper will not adlere with any force, but is casily detached when the wax is removed. It is in order to ensure this perfect cleanness of the copper, that it is immersed in dilute nitric acid. Another cause of imperfect adhesion of the deposited copper, which Mr. Spencer has pointed ont, is the presence of a minute portion of some other metal, such as lead, which, by being jrecipitated before the copper, forms a thin film, which prevents the adhesion of subsequently deposited copper. This cirenmstance may, however, be turned to advantage in some of the other applications of Mr. Spencer's process, where it is desirable to prevent the adhesion of the deposited copper. In copying a coin or medal, Mr. Spencer describes two methods: the one is by depositing voltaic copper on the surface of the merlal, and thus forming a mould, from which fac-similes of the original medal may readily be obtaiuell by precipitating copper into it. The other is even more expeditious. Two pieces of clean nilled shect lead are taken, and the medal being placed between them, the whole is subjected to pressure in a screw press, and a complete mould of hoth sides is thus formed in the lead, showing the most delicate lines perfect (in reverse.) Twenty, or even a hundred of these, may be so formed on a sheet of lead, and the copper deposited by the voltaic process with the greatest facility. Those portions of the surface of the lead which are between the moulds, may be varnished to prevent the deprosition of the lead, or a whole sheet of voltaic copper having been deposited, the medals may afterwar s be cut out. When copper is to be deposited on a copper mould or incdal,care must he taken to prevent the metal deposited adhering. This Mr. Spencer effects by heating the medal, aud rubbing a suall portion of wax over il. This wax is then wiped off, a sufficient portion always remaining to prevent adhesion. Enough has been said to enable any one to repeat and follow up, Mr. Spencer's interesting experiments. The variations, modifications, and adaptations of them arc endleas, and many new ones will naturaly suggest themselves to every scientific reader.-Athencum.

Transferring Impressions of old Prints.- One of the most ingenious inventions we have witnessed for many a day is a process iurented by Mr. Joseph Dixon, for transferring inpressions to stonc. The discovery was made some seven or eight years since, and, by its means, new and cxact impressions of the leaves of old books, bank bills, engravings, \&e., may be obtained in an incredibly brief space of time. The celerity and exactness of the work are truly remarkable. A bank bill was transferred by Mr. Dixon, in presence of the officers of a bank, with so much fidelity and precision that the very siguers of the bill could not tell the difference between the copies and the original. It is due to Mr. Dixon to state, that he has obtained a patent for the process by which bank hills can be protected from his own invention, should it ever fall into the hands of rogucs. The importance of this discovery is in nowise inferior to that of the Daguerreotype, of which we have heard so much within the last year.-Nere York Mirror-[We gave a description of a similar invention, by two Frenchmen, in tbe Journal for August last, page 308. Editor C. E. and A. Journal.]
IIow to Stop a Runafay Horse.-Mr. Thomas, of St. James's-strect, has just perfected an invention, the object of which is to stop the progress of horses which have taken fright. The apparatus is thus described by Mr. Thomas himself:-"On the nave of the wheel is fixed a small gun-metal wheel; in front of the axle runs a stcel spindle, with a small cog attached; over the opindle is a cylinder, and to which a check-string is afficed. The moment it is put in action the spindle advances, and the cog revolves gradually round the gun-metal wheel, which is fixed on the nave, carrying with it reins leading from the horse's head, composed of cat-gut, or of patent cord, covered with leather. As the wheel revolves, the cylinder, which is about an iuch in diameter, is gathering up the reins, until the horse is brought to a stand-still; when, by letting loose the check-string, the horse's head is immedintely free." Mr. Thomas has very appropriately named his most valualle invention a "Carriage Safety, or Traveller's Jife Prescrver."- Waterford Paper. [We believe this to be a similar invention to one patented hy a gentleman of the name of Cook, and applied to several carriages, and to a Brighton stage coach, about 10 or 12 years ago; at that time orders were received for the apparatus at a shop in Long Acre.-Ed. C. E. \&. A. Jour.]

Theory of the Steam Engine. By Coarte de Pambour. London: John Weale, 1839.

(gECOND NOTICE.)

In our September number we noticed this work, and made some remarks on the first chapter, in which the author criticises the ordinary mode of calculating the effect of steam-engines, and exposes the principles of his own theory. We then assented to thene princinles generally, but at the same time expressed our opinion, that it would not be very easy to apply them practically, for want of proper means of ascertaining with accuracy the duta on which the calculations are grounded, and showed that the same results might be arrived at, by a method similar to the ordinary one, with much greater facility than by the Count's method.

The second chapter treats of the laws which govem the mechanical action of the steam. In the first section of this chapter the author justly observes that the formula which he uses to calculate the temperature of steam at its maximum density under different pressures, have the inconvenience of suiting only a limited part of the scale of temperatures. At the time when the work was written no formule had been discovered, to express the rehation existing between the tenperature and elastic force of steam, which would suit the whele scale, even as fir as it lad been ascertained by experiment; but in the June number of this Joumal a formula was proposed by Mr. Mornay, which, though in one part of the scale it does not accord so well with experiment as Tredgold's rule, follows the natural law much more nearly in general, and can therefore be used in investigating the action of stean when ite clastic force varies, us in the case of expansive engines; particularly as the original elastic force and density of the steam need not be calculated by the proposed formula, but may be ascertained directiy or taken from tables constructed so as to accord nore exactly with experiment.
M. de Pambour proposes the two following formule, to express the relation which exists between the elastic force and relative volune of steam, of the maximum deusity for its temperature :

Formula for condensing engines of various systems;

$$
\mu=\frac{10000}{4227+00258 p} .
$$

Formula for non-condensing enginte;

$$
\mu=\frac{10000}{1.421+0023 p} .
$$

In these formula μ represents the relative volume, and p the elastic force in pounds per square foot.

The application of these formule is attended with a serious inconvenience in some cases, namely, when the steam enters the cylinder of an engine at a high pressure, and is there caused to expand to a very low one. In this case the second formula would suit at the commence ment of the stroke, after a certain portion of which it would cease to be applicable; and, unless the action of the steam were divided into two parts, and the effect of each calculated by the respective formula (which would double the length of the calculation), we sloould be obliged to content ourselves with a less accurate result than in purely high pressure, or low pressure engines. But the formule adopted by M. de Pambour do not agree so well as Mr. Mornay's with the results obtained by means of the ordinary formulx from the table of elasticities constructed so as to accord with experiment, even in those portions of the scale for which they were severally intended. The relative volume of steam of five pounds pressure is (according to the table, page 88) 4624, and the volume calculated by the fornula for condensing engines is found to be $\mathbf{4 8 5 6}$; Mr. Mornay's formula gives 4600 . At 10 lbs. pressure the volume is, by the same table, 2427; calculated by the formula for condensing engines it is 2417, and by Mr. Mornay's formula, 2424. At 20 lbs. the volume is 1250 ; M. de Pambour's formule for condensing engines gives 1273, that for non-condensing engines, 1243, and Mr. Mornay's, 1281. At tio liss. the volume is 467 ; the formula for condensing engines gives 440, that for non-condensing engines 470 , and Mr. Mornay's formula 469 . At 90 lbs. the tolume is 323 , the formuli for mon-condensing engines gives $3: 0$, and Mr. Mornay's formula 324.

The two expressions of the relative volume of steam adopten by M . de Paanbour, page 80, were no doubt chosen on account of the facility which they afford in calculating the mean pressure on the piston, when the steam is used expansively; but they do not agree, that is, they are not identical with the general equation, page 76. The former are of the form

$$
\mu=\frac{1}{n+q p}
$$

and the latter

$$
\mu=r \frac{1+(t-32}{p}
$$

Eliminating μ between these two equations, we obtain
which differs in form from all the equations previously adopted, page 68 , to culculate the clastic force of the steam in terms of ite temperature.

In the third clapter the author develops more fully the theory, of which the outline was given in the flrst chapter. Here the difierent problems regarding the effects of steam-engines are very clearly and systematically stated, with reference to three cases which occur in the working of an engine. These are: that in which it works at a given rate of expansion, and with any load or velocity whaterer ; that in which it works at a given expansion, and with the load or velocity proper to produce its maximum uscful ffict nith that Expansion; and lastly, that in which, the expansion having been previously regulated for the most favourable working of the steam in that engine, it is loaded with the most favourable load for that expansion, which consequently produces the absolute maximum use ful cflet for that engine. The four problems proposed and solved by the autbor consist in finding the Velocity, the Load, the Evaporation, and the Useful Effect of the engine. The chapter is divided into three Articles, each of which is devoted to one of the three above mentioned cases.

The first problem, to find the relocity of the piston under a gircx load, is treated in the second section of the first Article. The aathor here appears by the following passige to suppose the elastic force of the steam in the cylinder not to vary so long as the influx of the steam lasts.
" Let P be the total pressure of the steam in the boiler, and P^{\prime} the pressure the sarne steam will have on arriving in the cylinder, a pressare which will always be less than P , except in a particular case, which we shall treas of shortly. The steam then will enter the cylinder at the pressure P^{\prime}, and will continue to fow in with that pressure and to produce a correspondiag effect, till the commanication between the boiler and the cylinder is inter. cepted."

That this is not rigorously the fact is evident, on account of the varying velocity of the piston; and even though M. de Pumbour may have ascertained that these variations are not worth taking acsount of, it would have been much more satisfactory, if he had mentivned the circumstance, and shewn that the remults are not materialy affected by omitting to take them into consideration. At the commencement of the strotse of the piston, when it has no velocity, the steare past have the sume elastic force in the cyliader as in the adjoiming pessages; but when the piston has ncquired a considerable valocity, as at the middle of the stroke (particularly in tocomotive engines, where the velocity of the piston in excessive), the steam will not how from the steam-pipe into the cglinder sufficiently fast to follow the platom in its motion, without a certain excess of preasure on the side of the steam in the pipe, which we do not believe to be a negligeable quartity. In a locomotive engine, for example, with wheels of five feet diameter, and 18 inches length of stroke, ruming at a speed of $\mathbf{9 0}$ miles an hour, with an effective pressure of 651 the. on the equare inch, we should estimate the difference of pressure between the steampipe and the cylinder at one-third of a pound at least on the aqoare inch. We bellieve this difference to increase nearly in the ratio of the equare of the velocity of the piston, all other circumatasces remaining the same, on which supposition it would amount, at a epeed of 40 miles an hour, to about three-fifths of a pound per equase bah If this be true, it will materially affect the calculation of the effect of expansive engines, where the steam is cut off at onc-half of the ctroks as the effect during the expansion is determined by the density of the steam in the cylinder at the instant of cutting off. It is evidont, in she same manner, that the earlier the steam is cut off, the less the dity rence of pressure will be, since the velocity of the piston in then lev considerable; if cut off at one-sixth, for example, when the other trcunstances are the same as in the above case of the docombsire engine running at 30 miles an bour, we believe the lows of precture would be about two-elevenths of a pound. This is, of coursea la rough estimate of the difference of pressure arising from the variations in the welocity of the piston; but perhaps M. de Panbour wing pive the subject some consideration before the publication of aseal edition of his work.
On the supposition of the invariability of the proscomopith sintion
finds the following general relation between the different data of the problem,

$$
\begin{equation*}
a(l+c)\left(\frac{n}{q}+P^{n}\right)\left\{\frac{b}{l^{\prime}+c}+\log \frac{l+c}{l^{\prime}+c}\right\}-\frac{n}{q} a l=\mathrm{Ral}, \tag{A.}
\end{equation*}
$$

in which P is the pressure of the steam on the piston, before the communication with the boiler is intercepted, and \mathbf{R} the mean resistance on the piston. This equation is then transformed into another, independent of P^{\prime}, by supposing the evaporation of the engine, or rather its effective evaporation, to be known This new equation is,

$$
\begin{equation*}
0=\frac{\mathrm{S}}{a^{*}} \cdot \frac{1}{n+q R}\left\{\frac{l^{\prime}}{l^{\prime}+c}+\log \cdot \frac{l+c}{l^{\prime}+c}\right\} \tag{1.}
\end{equation*}
$$

where S is the volume of water evaporated per minute, and transmitted to the cylinder in the form of steam, l the length of the stroke, r the length of the portion traversed by the piston at the moment the steam is cut off, c the clearance at each end of the cylinder, that is, the length of a portion of the cylinder whose caparity is equal to that of the waste space beyond that traversed by the piston, which is necessarily filled with steam at each stroke.

In order to make use of this equation, it is evident that we must know, not ouly the quantity of water actually evaporated, but also the quantity lost through the safety valve, or by any other means.

The quantity R , which is the total resisting pressure on the unit of surfice of the piston, is afterwards decomposed into three parts, namely, the resistance arising from the notion of the load, which the author calls r; that arising from the friction of the engide, which is expressed by $(f+\delta r)$, calling f the friction of the engine unloaded, and δ the augmentation of that friction per unit of the load r; and the pressure on the opposite side of the piston, which is represented by p, and is equal to the pressure of the atmosphere in ligh pressure engines, and to the pressure of courlensation in condensing engines. Thus,

$$
\mathbf{R}=(1+8) r+p+f
$$

Substituting this value for \mathbf{R}, and the expression k for

$$
\frac{l^{\prime}}{l^{\prime}+c}+\log \cdot \frac{b+c}{l^{\prime}+c}
$$

the equation (1) becomes

$$
\begin{equation*}
v=\frac{S}{a} \frac{k}{n+q[(1+\delta) r+p+f]} \tag{1.}
\end{equation*}
$$

In the calcuiations relative to locomotive engines, three terms more are to be introduced into the expression of the resistance; the first to express the resistance of the air against the train, which, increasing as the equare of the velocity, conld not be neglected without error the second to express the resistance offered by the engine itseff in the transport of ite own weight on the rails; and the third to take account of the reaistance caused by the blast-pipe.

The above general equation appears to be very complete, andl, provided we are furvished with the means of ascertaining the quantity of water which actuatly passes through the engine in the form of steam, us well as the amount of the various parts of the resistance, and provided also the constant ralues of n and q do not cause too great an error practically, we have no hesitation in saying that it will be found of great utility in proportioning eagines and boilers to the work required to be done.

RIVER OUZE OUTPALL IMPROVEMENT.

Tmo mprovement promises to be the prelude to othera, and is of great mational importance, the anccess of which will lead to similar improvements in other parts of the coast of England, thereby adding many thonsand acres of rich fertite land to the kingdon; in our orw judgment we have no doubt of Its success, if it be not marred by parish squabbles and the grasping appetite for pecuniary cumpensition by adjavent landed proprietors.

We have before us an elaborate report relative to the above improvement, by Sir John Remnie, accompanied by plans; it ought to be read by all landed proprietors connected with property on the sea coast. We regret that we cannot find space for the whole of the report, however, we will give a lengthened extract of the most interesting part of it.

Tux plan for obtaining this most desirable result conaists in decpening the Outfalls of the Ouze, the Nenc, the Witham and the Wulland, by correctiug and atraightening their channels, confiniug them between substantial and will-formed benke, carrying all of them into deep water, aud there ueiting whole in one gemeral grand chmunel in the centre of the Great Wash (a)
shown upon the accompanying plaw); work which, although of considerable magnitude, yet presents no difficultics in the execntion which cannot be readily overcome by the provision of adequate means. The natnral consequence of these measures will be the closing of all the present minor channels and shoal water of the Wash, which are now fed and kept open chiefly by the rivers above mentioned, the circulation of the tide, and the agitation produced by the wind over auch an extensive sarface, which prevents the alluvial soil held in suspension by the waters from subsiding, so that it is again carried back to sea. As soon, howcycr, as the present channels are diverted, and other artificial means resorted to to check the currents and waves, and assist the accumulation of warp, then the whole of this extensive space will become still water, and the silt and warp which is held in suspension, amounting to a large proportion, will be deposited, and thus in n comparatively few years will raise the sub-soil sufficiently high, when it will be cowrerted into good land, and may be wholly embanked from the tide. By purauing the above system of operstions regularly and jodiciously, the soil will accumalate accoriling as the subjacent space is removed from the action of the waves and currents, and thus the acquisition of land will the progressive, and contribnte to the expense of acquiring the remainder, until the whote quantity be completed; indeed ahout 90,000 acres are now bare at low water, and a large portion of this, viz., about 10,000 acres, are fit to be taken in. By way of illustration, it is only necessary to observe, that a portion of the ofd channel of the Ouze, containing 800 acres, which was deserted by the Eau Hrink Cut, has been wirped up, by the course of nature alone, 25 feet, in five or six years, and the whole 800 actes is now under cultivation and worth from 30l. to 70l. an acre; 1,300 acres were embanked from the Nene Wash eight years since, aud let for nearly 2/. per acre ; since that period the warping of the remainder, containing betwcen 4,000 and 5,000 acres, had been rery rapid, mounting to in parts 14 feet perpendicular, by the mere operations of nature alone; this has been further increased by the addition of some slight works within the last two months, and the whole of this will he rearly to be taken in in about two years from the present time, and will be much more rehuble than the 1,300 acres above mentioned; and if the syatem now adoptel of assisting the accumulation of soil had bcen commenced carlier, I have no doulst but that tho whole of the Nene Wash might have beon under cultivation by this time; above 3,000 acrea, I understand, have been timen in also along the shores of the Welland and Witham, and the northern side of the Great Wash. These it should be observed are more detached, isolated operations carried into cffect without any general plan and sytem, and are necessarily neither so efficient or cconomical as when carried on apon a great uniform and well-combined scale; still, however, they have been very profitable, and have well repaid those who undertook them. The Outfall of the Ouze is the first and principal operation, apd by correcting its coursc and channcl three miles may be saved; and an additional fall of nearly 6 feet may be gained in the low-water line between Lynn and the Thicf Beacon, 12 miles below the town. Therc are three lines by which the new channed may be carricd; first, by taking it through the inclosed lands belonging to the late Lord William Bentinck ; secondly, by straightening and confining it by jetties rather more seaward than No. 1 into deep water: and, thirdly, by carrying it through the Peter Black Sand by jetties along the Norfolk shone into deep water in that direction. The first llan is, upon the whole, shorter by one mile than the Plan, No. 2, and by the first l'an an additional fall of one foot would be gained in the current; it would also be more certain of execution more easily maintained when completed, and sooner accomplished, although rather more expensive in the outset.

The Plan, No. 2, would be rather longer, more uncertain, and not so good when completed.
The Plan, No. 3, is objectionable, in consequence of the great length of shoal water, riz. 11 miles, through which the work would have to be carrica before it would arrive at deep. water; and there would be a greater difficulty in preserving it when made, in consequence of the extensive tract of ahifting saids which accumulate along the shore.

The expense of Plan, No. 1, would amount to the sum of 250,0001 ., and the other two rather lese.

The Oatfall of the river Nene being 5 feet 8 inches lower than that of the Ouze, with the exception of being advanced, is now in such a perfect atate, that much more fall cannot be expected; by prolonging it downwards, bowever, into deep water, so as to anite with the Ouze, the whole of the interrening space of land, aunounting to several thousand ecres, would be gained in a short time.

The Welland and Witham Outfalls, particularly the former, are now in a very defective state; they may however be completed either loy carrying them direct across the Clays into Clayhole, or by the Maccaroni or South Channel, to join the Nene and the Ouze. The adrantage of the former plan is, that the distance to deep water is considerably shorter, and, in consequence, it would be soouer effected; and custom has bitherto pointed ont Boston Deepe as the natural entrance or roadateal both for the Wellend and the Withasn. On the otber hand, looking forward to one genenl grand plan, and the prospect of maintaining the geucral Outfall open, there can be little doubt but that the greater the body or mass of fresh and tinal waters that cau be brought into one clumnel the better, and the greater the certainty of ita being able to maintain isclf open.
In order to effect this enlarged vietr of the sulject, the junction of the Witham, the Welland, the Nene and the Ouze into oue common Outfall in the centre of the Great Wiash, appears the best and most certaiu plan : momeover, prenuming that the Fithan and the Welland be carriod reparately into

Clayhole Channel, the Nenc into Lynn Well and the Onze along the Norfolk shore, there would le a far greater tuantity of retaining embankments to make; the channcls, by being separate, wonld not be able to maintain themselves open so well; the land gained would be divided into several separate islands, which would render it more difficult of access, and consequently reduce its ralue, whilst the expense of acquiring it would le greater; and, lastly, the boundaries of the counties of Lincoln and Norfolk woald le disturbed.

Presuming that the four rivers in question be turned into one common Outfull in the centre of the Wash (as shown in the Plan), and the other requisite measures carried on, there would most probably be gained, in consparatively a few years, 150,000 acres of Inul. This, if taken at 401 , an acre (aud a great proportion of that acquired lately on the old channcl of the Ouze is now worth a great leal inorc), would be worth $6,000,000 \mathrm{l}$., and, after deducting $12 l$. per acre for the expense of obtaining the greater portion, and 15l. per acre for that portion lying nearest to the open ocean, would amount to the smm of $2,000,000 l$., leaving a clear gain of $4,000,000 l$. ; perisaps an additional quantity may le obtained hereafter, although it is unnecessary to say more at present, because the other when crrried into effect will alone form a suffieient remuneration.

In addition to this profitable result, the following may le added :-
IIrst,-The complete natural drainage and conseruent improvement in the salabrity of the whole district of low lands draining ly the Ouze, the Nene, the Welland and the Witham, and into the Wash, anounting to alout 900,000 neres, 160,000 of which, as above mentioncd, are in a very defective state aid comparatively valucless.

Secondly,-The navigation of all the rivers would be so improved as to occasion no inconsideralle reduction in the cltarges for freight; there would be a great saving in the pilot and harlour ducs; the deepened channels wonld ndmit vessels of much larger tonnage; aml the ports of Lam, Boston, Spalding and Wisberh would, in consequence, be renderd much more available for all the purroses of trade and mocrlbandize.

Thirdly,-The shipping interests in general would derive great bencfit in stormy weather, during the mort prevalent winds, from having an opportunity of cutcring a roadstead equal in security to any on the eastern coast of England.

Fourthly,-There would be one uniform efficient system of barrier banks round the Great Wash, which woulll relieve the present proprictors from a very heavy contimal tax, smounting at times to 20 s. and 30as. per acre, and at the same time guarantec them against all danger of inundation.

locomotive excavator.

M. Gerrais, a manufacturer of Caen, and a member of the Superior Council of Commerce, has lutcly presentel to the Acmemy of Sciences a small model of a loconotire excavator (Terassier Locomoteur). This machine mny be usefully cmployed in the cxcaration of canals and formation of railroals; but from the want of strength in its construction, it seems at present suitable only to an allwial soil. A force of stean of from two to threc horse-power is required to work it ; it clears a space eight feet (2 m . 50) wide, and 2 feet 3 inches (0 m .70) deep, and alvances 1 foot 3 inches (0 m .38) n mintte. Thus, in twenty-four hours it completes 1800 fect (547 m .20) in length; having cleared out 3250 cubic fcet (1000 culic inctres) of carth, which is levelled as regolarly on each bank as it could be done by the hands of men. The expense in twenty-four hours cannot exceed 40 francs. The clearing of a cubic inetre of earth, thereforc, costs ahout 4 centimes. If we compare this with the price usually paid, the adrantage of the invention is evident; lout this is nothing in comparison with the advantages which tre may expect to derive from the great saring of mannal labour, and from the rapid increase of works so beneficial to the industry of the country.
'The inventors's first idea was to cmplor men in levelling all ocensional elevations leyoud fifteen inches (0 m .40), but it was found less expensive to employ the machine used in cutting railronds. His plan procects on the same principle. The same frame which carries the loconotive, is arranged so that tools, attached to it, can work upwaris from the surface of the carth, instead of downwards, and thus remore these elevations. A space is levelled equal in width to the working of the locomotive excavator, and then rails are laid down to preserve the direction and the level. The locomotive follows, excavating and throwing out the earth either on onc or looth of the banks, and forming an inclined plane, on each side, of forty-five degrecs. If a canal is required to be sixteen feet (five metres) deep, or deeper, and camot be excarated at once, there is attached to the machine behind, an axletree, and cast-iron wheels with large felloes, by flich means, as fast as the first cutting is finislied, liacs are traced on which to place the rails for the secoud, and so as to preserve the original level. A machine capable of working twenty-feet, wide, and eight feet deep, excavater sixteen cubie feet of earth in a minute.

In railmads, thic process would le nearly the same as in canals, except that the inclined plane on the sides need he only of fifteen degrees, and the eartlo might lee carried awsy in carts wherever it was wanted. This machine is calculated for light and candy soils; and is so constructed, that, shonld it encounter any obstacle, it may be stopped in a monient to prevent accidents. Thus, auy rocky sulstance, if small, can be lifted up; if large, can be broken to pieces by the workmen, and carried away on the frame of the machine, after removing the tools, which can then lee replaced, and the rork continued.

It would le difficult to give a more particular detail without the aid of the plan, which the inventor has transmitted to the acaderny for the use of the committee, who, as well as ourselves, bave seen the machine at work. Whatever their decision may le, it scems to us that the only question now, is the application of stcam to the excaration of canals and rilroads. The eapplor. ment of this machine on a large scalc, must be attended with great arksintages, whetber we consider the difficulty of collecting a considernble namber of workmen on one spot. the increased rapidity of the work, or the impressed salubrity of low grounds by the draining of marshes, and the remoral of whasma and its consequent disesses. And these great advantages, if the macline of M. Gervais can really be emploged on a large seaie, are to be obtained at a remarkably small expense. Taking the model, which we have seen at work, as our data, if we culculate on a 3-harse power steam-engior, and on a consumption of 15 kilogrammes (30 lbs .) of coal per hour, we shath find, after deducting 30 per cent. interest for the outhay, and making every allowance for repairs, and loss of time when the machine is not at work, that it can excavate 957 cubic metres of earth at a cost of 48 francs 50 cents; whercas we now pay for excavating the same quantity, 478 frames 50 ecnts. In sbort, the invention of M. Gervais bids fair to make a great revolution in the mode of excavation, and we look fortrard with a degrec of impatience for the decision of the committee of the academy,-Ineentor's Advocate.

BUTE DOCKS, CARDIPF.

In our last number we gave the particulars of the opening of these docks. The construction of which was entristed to Mr. Cubitt, of london, as ev. gineer in chicf. and to Mr . Turnbull, as the resident engincer. The following particulars are from a statement furnished by the enginecrs:-
"The river Taff, which falls into the sea at the port of Cardiff, forms a principal outlet for the mining districts, with which Glamorganshire alounds : the produce of these mines has hitherto found its way to market thromgh the Glamorganshire Canal, but its sea lock, constructed about 40 ycars ago, has long been found inadequate to the demands for inereased accomnotation, consequent upon the extraordinary increase of: trade since the canal was opened, some iden of which may be formed from the fact, that according tu the Cannl Company's Report, 123,234 tons of iron, and 226,671 tons of coal passed down in 1837-making a total of 349,905 tons, or abont 1,000 tons per day.

The Marquis of Bute possessing lands in the neighbourhood of Candiff, and especially an extensive tract called Cardiff Moors, where docks, whaff and warchouses, night be constructed to any extent, and a conveniont ontke made into the well-known safe roadstead, protected by the lieadiand of Peonarth, olstained in 1830, an act for constructing a new hariour, to be called - The Bute Slip Canal;' and has completed this great work at his individual expense.
"The principal advantages of the undertaking are as follow :- A straigit open chamel N.N.E. and S.S.W. about three-quarters of a mile in length from Cardiff roads to the new sen-gates, which are 45 feet wide, with a depth of 17 feet water at neap, and 32 feet at spring tide. On passing the seagate, vessels enter a capacious lonsin, having an area of abont an acre and a half, called the outer basin, calculated to accommodate ressels of great lourden and steamers; the main cntrance lock is situated at the north end of this outer loasin, 152 feet long, and 36 feet wide, sufficient for ships of 600 tons.
"Beyond the lock is the inner basin, which coustitutes the grand feature of this work. It extends in a contimous line from the lock to near the town of Cardiff, 1450 yards long, and 200 feet wide, an area of neariy 20 acres of water, capable of accommodating in perfect sufety from 300 to $\mathbf{4 0 0}$ ships of all classes. Quays are built on cach side for more than two-thircls of its length, finished with strong grauite coping, comprising nearly 6,000 feet, or more than a mile of wharfs, with ample space for warehouses, exclusive of the wharfs at the outer basin. To kcep the channel free of deposit, a feedcr from the river Taff supplics a reservoir 15 acres in extent, adjoining the basia, This reservoir can lse discharged at low water by meaus of powerfal sluices with cast-iron pipes five feet in diameter, and by 10 sluices at the sea-gatch so as to deliver at the rate of 100,000 tons of water per hour.
"The feeder was commenced in 1854 , the tirst stone of the docka laid on the 16 th of March, 1837 , and the last coping-stone lid on the 25 h of May, 1839.
"Some doubts existed whether sufficient water could be supplied to keep the channel clear, but cxperience bas already shown that the daily dischurge is more than adequate to the removal of the daily deposit, and in fact, a comsiderable portion of the cntrance ras cleared by loosening the ciay and mad, so as to lie carricel out by the power of the sluices."

Some idea of the vastness of this undertaking may le formed from the fact of its having already cost the noble Marquis about 300,0001 . ; and an addjtional expenditure of cousiderable amount will be incurred in the erectuon of warehouses, \&cn, along the quays.

Miller's Patrift Firk-gars.-A patent has been taken out for a asw firc-bar, which is suited not only to the common steam-engine farsacem, but can with equal facility be applied to the furuaces of marine enginen, ond the locomotire engines of rallways, \&c. The principle of the inrention coprist in moving each alternate luar longitudinally in one direction, whilst tho inter
mediate bars are uoved in the opposite one. This movement, aided ly the channelled surface of the bars, breaks up the clinkers the instaut they are formed, or prevents their formation, and thus keeps the air way perfectly free. Considerable attention has, fron time to time, been paid to the improvement of the fire-har, now become of so much importance to the manufacturing comunanity, by men eminently qualified, and several patents have been obtained for this purpose, all of which have been very considerable improvements over the ordinary fire-bar. The object of the inventors not beiug always the same, has produced a great variety of plans, which have had more or less merit. Brunton, and also Steel, with a view to an equal distribution of the fire, made the grate itself revolve ; others have simply moved the firebant, with the intention of preventing the adiesion of cliukers, and the consequent obstruction of the air-way. This is the object of Miller's patent, which, being simple in its principle, of easy construction, not requiring extraordinary strength, and cousequently no increased weight of metal, the object is attained with little increased expense over the ordinary fire-bar. The advantages it secures are very considerable; for not only, by the perfect frecdonu from all obstruction of the air-way, is the combustion of the fuel and its heatiag power considerably increased, but coal of an inferior quality can be used without the usual effect of choking up the grate. By the vigorous combustiou which this grate ensures, it prevents large masses of coal from passing away unconsunued in the forn of smoke, and consequently must effect a considerable saving in fucl. The ingenious patentee is the chief engineer of the extensive works of Messrs. Thomson Brothers and Sons, Primrose, near Clithero, where these bars bave been for some time at work, and have fully realised the explectatious of the inventor.-Manchester Guardian.
An improvempent on Barebr's mili, for which a patent bas been taken out ly Mr. Stirrat, of Nethercraig, near Paisley, consists (besides an ingenious water-joint and the application of something like the stean-engine govenior) in a beautiful contrivance for preventing the friction which arose from the ceutrifugal action of the water on the revolving arms of the machinc. To remedy this, the patentee lias had the arms of his machine made with an eccentric curve, calculated according to the height of the fall, so that, when the machine is in operation, the water nushes out, at its full speed, in a straight line from the centre, to the cxtremity of the arm, where its power is wholly exhausted by action on the sides opposite the orifices by which it russ off. The adrantages of this macline are said to be very great. In the first place, while, by the common water-wheel, in some circumstances, ouly a sinall portion of the water-power can be uued, and under the noat favourable circumstances not more than 65 per cent., it is calculated that by this new machine not less than 95 per cent. of the motive power of the water is rendered available. Secondly, the most trifilug rivulet, provided it have a good fall, can be taken advantage of hy the new machine; and, thirdly, the expense of the improved Barker mill is not more than one-fifth of the expense of a rater-wheel, to work in she same stream.-Aberdeen Herald.

PROCEMDYZGS OF ECIENTYFIO BOCIETIES.

INSTITUTION OF CIVIL ENGINEERS.

(Continued from page 311.)
May 28.-Jasers Walete, Esq., President, in the Chair.
Diving Bell.
Colonel Pasley stated the result of some experiments which he had made with a diving-bell in the Thames and in the Medway. The common rectangular diving bell, suspended from a vessel in a very strong tide, was completely sriept under the boat, and in some other cases it swong round half and half, or was twisterl considerably out of its proper position. He attached hoat-shaped ends, and on dencending at the half ebb of a strong tood tide, the bell was perfectly steady. He should think a bell fitted in this manner would be cxceedingly sdvantagcous for going alongside of wrecks. He should recommend the ends to be moveable, and if the wreck were athwart the tide he should have only one end put on, and bring the bluff end against the vessel. An experienced diver had informed him, that in the current of the Danule, running seven knots an hour, the bell vibrated tremendously. Since this arrangement had occurred to him, he discovered that a sinilar one had been proposed to the "then Navy Board," sbout 20 years ago, by Mr. W. S. Smith, who had been employed under Mr. Rennie, but it does not appear to have been tried. Colonel Pasley promised the Institution a more detailed account of his experience on this inportant subject.

Cuke and Peat.

Mr. Parkes stated, that he would take this opportunity of the presence of Mr. Williams to lay before the meeting some specimens of Prench Peat, which had been alluded to on a previous occasion.* One of the specimens was that oltained by allowing the particles to come within the influence of the natural forces to which the atoms are subject. The slutch as dredged up, from the bottom of the streams, in a state of great comminution, was put into
moulds, and, contracting as it drled, acquired considerable density. This was an instance of density duc to gradual dryiug; the density becaune doubiend by this process. Mr. Parkes presented a specimen of coke from comproseed peat; this Mr. Willinus would explain, as he had taken up the subject where every one else lad left off, and had succeeded in producing density by mechanical neans, at a moderate cost, aud, by carloniziug the mast, in getting rid of the volatile particles, which are injurious as a fuel; he thus produced an extremely valuable coke.

Another specimen was of the incrustation on the interior of a gas retort; it was a coke of extreıne density and of great value for some purposes, but for what was a secret. This deposition accumulates until the interior of the retort is almost filled up, leaving no available space for the charge. The retorts are bought for the sake of this coke, which is a perfect carbon. Hthin coating of carbonaceous matter, which would otherwise be carricd off in the gas, is deposited each charge.
Mr. Lowe was not aware of the uses to which this coke could lie applied; but it was of extreme disusc to the gas-makers; he believed, however, that it was used to produce an intense heat. It is sometimes stated to be a carburet of iron, but a portion from the ccatre of the mass shews, on heing tested, not the least trace of iron. It arises naturally in the process of gas-making, and the rate of its deposition depends on the temperature; as in those retorts which have a temdency to become too hot the deposition goes on exccedingly fast. There were many curious facts conuected with its deposition ; that in a horizontal part is stratified in concentric layers. The upper portions will be perfectly sectile and form admirable crayons, that at the lower part will scratch glass; it decreases in density from the bottom; a portion of the sides partakes of both qualities. He suspected, that a large quantity was sold as black lead.
Mr. Williams remarked, that there were two kinds of peat, the one having a density due to impurities; this is useless for all purposes of netallurgy, But for the purest carbon, the upper surfuce of the moss must be used, and an artificial density must be communicated to it; it is ouly in this manner that a dense aud pure coke can be obtained. The peat having this artificial density is carbonized, by which all the volatile matter useless in combustion is driven off, ground, and then being mixed with a lituminous matter the operation of nature in the production of various species of coal may be closely imitated.

June 4.-The Prestdent in the Chair.
The following were balloted for and elected: Samuel Castle Gant, as a Graduate ; and Earl de Grey, as an Honorary Member.

A paper was read:
'On the Dimensions and Performances of the Archimedean Steamer.' By Grorge Rennir, P.R.S., \&c. \&c. We gave particulars of this vessel in the last number of the Journad.

June 11.-James Sinpson, Esq. in the Chair.
The following were balloted for and elected: Richard Griffith, as a Member; and Thonsas Penson and Robert Aytoun, as Associates.

- On Warming and lentilating Public Buildings and Apartments, with an account of the methodr which have been most succesffully employed for ensuring a lieallhy state of the Almosphere.' By Chables IIood, F.R.A.S.

The author first treats of the constitution of the atmospbere; the artificial changes produced in it, autl the cffect of these changes on animal economy. The researches of chenists show that in atmospheric air, uncontaminated by respiration or other means, there exists from $21 \cdot 1$ to 20.5 per cent. of oxygen, 78 per cent. of nitrogen, $\frac{1}{10}$ per cent. of carbonic acid, and a sinall quantity of aqueous vapour. Besides these there are many foreign matters insensible to chemical tests, but quite sensible to our organs, whereof many being easily decomposable by lieat, are resolred into their constituent gases; to this fact is to be referred the wholcsomeness and pleasantness of some artificial systems of heating, or the contrary. The liydrometric contition of the atmosphere is most remarkably affected by cbange of temperature, as the quantity of rapour in air of $52^{\circ} \mathrm{F}$. may be estimated at moth of the weight of air, at
 within the room is considerably above that of the air without, this increased capacity for moisture is productive of effects prejudicial to the health. Moreover if iron surfaces of too ligh temperature be present, the vapour may become decomposed, its oxygen combining with the iron, and the hydrogen becoming diffused through the atinosphere. Consequences prejudicial to health from these causes have been repeatedly experienced in rooms heated by a hot eir cockle; these effects are not pecaliar to the hot air cockie, but will result in a greater or less degree whenever artificial warmth is produoed from iron surfaces, the temperature of which much exceeds $212^{\circ} \mathrm{F}$. The dryness of the air may in some measure be remedied by moisture, distributed artificially, but the effects from the decomposition of the particies of matter cannot he obviated by any artificial neans. The syaten of Mr. Bernhardt is peculiariy open to these objections, as the pipes nemest the fire must beconse intensely heated; as also the stoves introduced by Dr. Arnott; since, independent of the difficulty of keeping down the temperature of the metallic surface, carbonic oxide is prorluced from the coke, and carburetted hydrogen is also formed in the stove. The gas stoves are also open to the aapuo objections ; moreover the quantities of water, of nitrogen, apd of carbonic acid gas evolved by the combustion of the gas are extremely deleterious. In the latter case aqueous vapour will be in excess, and consequently the due quan-
tity of persjirable matter is not carried off from the lungs and skin, the in. jurious effects of which have been clearty established by M. Quetelet in his work on man. The injurious effecte of an excess of nitrogen and carbonic acid gas are too well known to require comment.

The author next treats of the best methods of warming buildings in order to secure a bealtly state of the atmosphere; and having shown the disadvantages of applying heat directly to any surface, he points ont the method of applying it indirectly, as by steam or hot water, contained in iron pipes : the latter is more economical and simple, affords greater permanence and equality, admita of a lower uniform temperature, and any form of heating surface. The temperature of the metallic surface rarely cxceeds $180^{\circ} \mathrm{P}$. and never reaches $212^{\circ} \mathrm{F}$., which is too low to decompose in any appreciable degree the organic matter contained in the air. The only effect is to increase the capacity of the air for moistnre, which is readily obviated. The surface which is intended to distribute the heat should be a good conductor and radistor, aud the material which presents this combination in its highest degree is iron: the amount of heating surface which will be required depends on the building to he warmed, and on a great variety of circumstances; bnt as an spproximate rule it may be laid down, that for a church or similar pablic building the cubic contents of the building divided by 200 will give the number of feet of surface requisite for a tempcrature of from $55^{\circ} \mathrm{P}$. to $58^{\circ} \mathrm{F}$. in the coldest weather ordinarily experienced in this country. The form of the heating surface is immaterial as regards the action of the apparatus, hut the time requisite to obtain a given temperature, and the permanence of that temperature, depend on the mass of hested matter; the relative times of heating and cooling being inversely as the mass divided by the superficies. A rapid circulation of the water may be obtained by increasing the elcvation of the pipes above the boiler, but it is considerably infuenced by any altcrations in the bore of the pipes. One great advantage in this apparatus is its perfect safety, as the water at some point is always open to the atmosphere, whereas in the system of hermetically sealed pipes, containing steam or hot water under a pressure of from ten to fifty atmospheres, this security can never exist.
3.-The anthor lastly treats of ventilation; a subject of the greatest importance, independent of the changes already alluded to as produced in the atmosphere by overheated surfaces, since all air respired from the lnngs is found to have lost a proportion of its oxygen, and to have acquired a proportion of carbonic acill gas and vapour, and the quantity of air which will require to be changed may be taken as $3 \frac{1}{y}$ cubic feet per minute for each person a room contains. The author dwells at considerable length on the physiological effecis consequent on these changes, aurl details scveral striking instancea of the great advantages resulting from improved ventilation, in places which had provioualy been unhealthy. All ventilation may be placed in one of two classes, the natural or the mechanical ; in the former, the excess of temperature of the air is the primum molile of the efflux, and the rapidity of the discharge may be much iucreased by artificially raising the temperature of the discharging pipe. Ventilation hy nechanical means, as by pumps, or ly fans rotating with a great velocity, may be most advantageously employed, wherever mechanical power is nsed for other purposes ; the great efficacy of this latter mode is proved most unquestionahly ly the experiencc of the manufacturing districts. The former method has recently been tricd on very large scale at the House of Commons, and it is calculated by Dr. Ure that 38 times more fuel is expended in producing the same effect by chimney draughts than by mechanical nower. It appears, however, that the natural urethod of ventilation, by the spontaneons effusion of the heated air, through openings in the ceiling, is the best calculated for ordiuary purposes; but that in all extraordinary cascs ventilation by some mechanical means is the only economical and efficacious method.

A paper was read on
EEpperimental Researches upon the cost of the Light afforded by different Lamps and Candles.' By Axdrew Une, M.D., F.R.S., de. \&c. We published this yaper in the lest September Journal.

Jume 18.-The Prebident in the Chair.
A paper was read giving ' An Account of the New Stone Bridye, over the River Lea, at Strafford-le-Bowo.' By John Buldey Redman, Grad. Inst. C. E. We published engravings and an account of this bridge in the last April Journal.
'A new plan of conalruction of Sliding Gater for the Butrance Loche of Docke, dec.' By J. C. Singels, Engineer of the Waterstant, Hollande, \&c.

The improvernent suggested consista in aubstituting for the ordinary Lock Gates, Shiding Gates, travening the ends of the lock on rails laid on sills, drawn across by chains and capatans. The author in proposing this mode of conatruction assames, that when a lock exceeds 30 feet in width, ordinary gates must be abandoned and caissons used. The advantages offered by it are, diminishing the length of the lock by that of the ordinary opening gate, consequently the volume of water to fill the lock is lessened in the same degree, and reducing the number of the locks; for as a small elovation is easential to the atrength of the ordinary gates, the aliding gates may on the contrary be made of almost any height without any fear of impairing their strength or solidity.

In the dencription of the Plant accompanying the paper, great stress is hid on the whole length of the lock, with the exception of that part across which the gate troverter, beinf conatructed on an invert arch, thus giving groatar colidity than where a dat floor ouly is uned, elther for the whole length, or
for the wide space necessay for the ordinary gates to swing tpon. It it acknowledged that more masonry is required in this mode of conatraction, but it is argued that the extra expense will be met by the muint in the length of the lock and in the quantity of the water med.

In constructing the Sliding Gate, the timbery of which ere arom baced and strutted, and then covered with planking on both sidet, the relo to to observed is, that the thickness of the gate it one-forth of the with of the lock, so that the main bracing timhers are at an angic of 20°. Thase at crossed by other timbers, also diagonally braced, extending the vertien height of the gate, so as to give that combination beat calculated to withatared the pressure of the water on either aide. To obviate the dimeulty of seation in motion so heary a mass as the sliding gate, it is proposed to pleee within it some barrels filled with air, which by their buoyancy would rolime the rollers of some portion of the weight, and enable the gate to traverse mere casily.
Mr. Palmer observed, that the author could hardly be eequainted with the modern practice in constructing locks in this country, as timber had for a long period been but little used in the lock chamber. His practice had beea invariably to bave an invert arch at a lower level than the lock chamber. He was now constructing at Port Talbot, in South Wales, a look of 45 teat span, in which there was at invert arch built of stone, 3 foet thick, aith 1 lm lime, placed on a stratum of concrete, 2 feet thick, the concrele beiag come. posed of four parts of gravel and sand to one of lime ; above this invert, the floor was filled in with 2 feet thick of brickwork, laid in Homan ceenemi. Beneath the roller curbs, stones were placed to bed them upon. Bach leck gate weighed about 40 tons, one half of which was borna by the beel-poet and the other half on the rollers, yet there was no difficulty in moring it at pleasure. The depth of the water was 30 feet, and sometimes the whale column pressed on the gates, yet no injury was feared. There had been great difficulty with the water during the coursc of constraction, but the invert and the side walls placed on it were perfectly sound, and ablo to withatand ay pressure. He apprehended that the sliding gate would be much heavier thats the common gate--that the expense of conatruction would be greater-and he could not discern any compensating benefit to result from ita sdoption.

June 25.-Jorn Macneifl, Esq. In the Chair.

The following were ballotted for and clected : J. F. Hanson, Joha Livwalin, and W. Llewellin, as Associates.

The following communications were read in part :-

- On Steam Engines, particularly wilh reference to thetr oonsumption Steam.' By Josinh Parkes, M. Inst. C. E.
' On the Analysis of a purtion of the Iron IIeN-plale of the Srernopate of the John Bull, Steam Vessel.' By David Musher, A. Inst. C. B.

The action of the sea watcr had converted the iron iato a substance somewhat resembling plumbago. Mr. Mushet, after analysing it, comsider this substauce, which had been called marine plumbago, to be composed aenty at follows:

Carbonic acid and moisture		-	-	- 20
Protoxyde of iron	-	-	-	- 35.7
Silt or earthy matter	-	-	-	- 3.2
Carbon	-	-	-	- 41.1

'On a method of Dowelling Timbor by Iron Dowat and Cyphalte. By M. J. Irunel, M. Inst. C. E.

- On the Expansion of Iron and Stone in structures, at ahewn by dones. tions on the Southwark and Staines Bridgen': By Gzomos Bexxir, F.Is. \&c. \&c.
'A theoretical calculation of the amount of Frol aaved by workiag sman exparrively.' By J. W. Luszock, Hou. M. Inst. C. E.
'The following communications were announced as received :-
- Observalions on the efficiency or grows power of Stewn escrital an the piston, in relation to the reported duty of Steam Engines in Cornuall at id. ferent periods.' By John Scort Enys, A. Inst. C. E.
 By Peter Mendehson, A. Iust. C. B.
'On the cosulruction of the Cherbourg Bralnowter, mith a Drewing:" By G. S. Dalhymple.

Drawing and Description of the Coffre Dam at the new Hownes of Parlit. ment.' By G. S. Dalrymple.

The meeting of this evening conclnded the session of 1839.

INSTITUTE OF THE AHCHITECTS OF IRELAND.

On Monday ovening, 11 th ult., the members of the Royal Irich acoduay, Sir Willian Hanilton in the clair, called upon Mr. Morrimon, Vioe-Presdeat of the above-named learned body, for a statement of the anture of itatejecta; and the learned gentioman having complied with the demand, a reasiation in fayour of the luntitute Wan moped, agcomded, and unamimonly atorent

SOCIETY OF ANTIQUARIES.

At the opening meeting held on Thariday ereming, Novenner 21 st, William Hamilton, Esq. V. P. in the chair, J. A. Simphinson, Esq. M. A. was clected a Follow. A paper was read on some ecclesiastical buildinga in Normandy, hy George Godwin, Jun., F.R.S, F.S.A. Iower Normandy is visited by but few Englishmen, notwithstending its intimate connection with the carly himpry of our country, both political, literary, and artistical, and every item of information concerning it from an observer, provided he use his own eyes, is valuable. Mr. Godwin remarks that many of the buildings are fast hastening to decay, tbrough the use of improper stone. The Frencla society for the preeerration of public monuments are actively bestiming themselres, but their funds are to limited that their operations are necessarily confined. Some of the stone now being used at Caen did not seem to the writer of the paper in question, selected with care. The Caen quarrics fnmish stone of very indfiterent as well as of very excellent quality, as is proved by many of the comparatively modern residences and walls in the city, which are fast decaying under the induence of the weather, and discrimlnation ought therefore to be employed in making selection. The paper consiated chicfly of remarls on the cathedal of Bayoux, which presents several peculiar features; it will be followed, it was stated, by other rough notes on Coutances, Falaise, Brreux, dec.

Roval Academy.-Mr. Philip Hardwick has been elected an associate of the Acculemy, and Mr. Cockerell to the Professorship of Architecturc, in room of the late Mr. Wilkins. We trust there will be no further delay in giving the ordinary course of lectures on architecture, which has been, of late, vory much aeglected.

BRITISH ASSOCIATION FOR THE ADVANCEMENT OF SCIE NCE.

(From the Reports of the Alinanaum and Literary Gazette.)

(Contlawed from page 422.)

On Waves, Mr. Scott Russell brought mp the Report of the Commiltet (Sir John Robicon and Mr. Ruecall.)

Since the last mecting the committec had continued their researches, and had. in each department, confirmed or corrected the results formerly obtained by them, and had also extended their nequaintance with several interesting phenomens. The first object of their attention, was the determination of the nature and laws of certain kinds of waves. Of these, the most important species was that called by Mr. Russell the Great Solitary Wave, or the Primary Wave of Translation; the secoul, was the Oscillatory Wave, or sccondary species. The recent researches, while they had confirmed and extended to a larger acale the observations of preceding years, bave in no respect altered the viows formerly stated by this committee. The form of the wase is that to which the name Hemicycloid has been given; its velocity is that due to half the depth of the fluid, reckoned from the top of the wave to the centre of gravity of the section, where the clepth of the channel is not unifprm. The mntion of the particles, is a motion of permanent translation In the direction of the motion of the wave, through a space equal to double the wave's leight ; the particles of the water perfectly at rest before the approach of the wave, were lifted up, translated forwards, and were deposited perfectly at rest in their new locations-the translation taking place equally throughout the whole depth of the fluid. It had been stated by Mr. Russell, in a previous report, that all the data requisite to derive the phenomena of
the grat wave of translation had been now obtained, and that he himself hael found no difficulty in obtaining the laws of this wave from the equations of M. Laplace, on the hy pothesia, that the motion of the water particles was not infinitely snaal, and the oscillations infinitely small, as hal been hitherto supposed, bit that they had the magnitude and nature actually found in these experiments. During the past year, considerable progress has leen made in this examination, and highly satisfactory confirmation of the truth of these views had been obtained, by the labours of Prof. Kelland. I'rof. Kelland lind also aulopted the method of introlucing the hypothesis of the particles of the water having the motions observed in the experiments-viz. a mntion of permanent tranghtion in a given course : and although his results did not perfectly accond, with the experiments, they had presented a much closer appruximation to them than previous investigations, and ware to be regarded as additions to the theory of the motion of waves. The second subject of inquiry by this commlttee regarded the connexion which existed between the motion of waves, and the resistance of fluids to the motion of fluating bodies-a subject closely connected with practical navigation. In the continuation of this inquiry, the committee had received many confirmations of their former views, while they had been extendel heyond their former means of observation. The phenomenon of vessels at high velocities riding the wayc. had been exhibited to an extent never before witnessed. It had been formerly observed, that when a vessel was, by any means, drawn along the aurface of water with a bigh velocity, it produced a wave, which was a wave of translation, moving with the yelocity due to the depth; and that whenever the velocity of the veapel becomes greater than the velocity of the wave, the vessel is carried along on the top of the wave with diminished resistance. This phenomenon had been last year exhibited on a scale much more stribing than formerly. The wave, divided in two by the prow of the vessel, had risen on each side to a height far greater than that even of the vemsel iteelf; it expanded on each side of the veasel, from stem to ttern, in a lroad unbroken shoet of water, bearing along the vessel between what seemed to be a pair of extended gossamer wings, giving, at extremcly ligh velocities, a resistanco very much less than had hitherto been observed. The third poiltt of inquiry concerns both the theory of hydrody namics, and the art of practical navigation. What is
the form of a solid of least resistance, is a question which has lieen much discussed since the days of Sir Isaac Newton. What is the shape to be given to a vessel or ship, so that it may be driven by sails, or propelled by nara or steam, with the greatest velocity, or at the least expemulture of power? is the same question, asked by the practical ship-builder, in relation to his art. It had been inferred by Mr. Russell, from certain theoretical considerations, that a certain form, which he called the Wive Furm of vessel, woulil be the form of least resistance, and the form of greatest velocity. This form was. that the lines of anterior displacement shoukd correspond to the outline of tho great wave of translation anteriorly, and to the outline of the postetiot wave of replacement, towards the stern. This form had been the subject of experiment from 1834 to the present time; and the experiments of last year confirmed the truth of the original supposition, that this form was that of least resistance. A very curious and gratifying confirmation of the truth of the hypothesis had been received during the course of last year. A clergyman in the north of Scotland-the Rev. Mr. ISrodie-had seen an account of these experiments in the Reports of the Association, and hat deluced from theory, without a knowledge of Mr. Russell's process, results almost precisely the same, so as to give them the most gratifying confirmation, although derived from grounds somewhat difierent. The views formerly submitted to the Association on the form of vessel best suited to the practical purposes of navigation, had, during the past year, recrived very remarkable practical cunfirmation. A large steam-vessel had been built on the wave principle, -a vessel of 860 tons, with an engine of 220 horse power,- and it had turnel out th t this was the fastest yessel now in Great Britain. This yessel, built as a pleasure-yacht, combined the qualities of sailing fast, and carryiner a large cargo: she was named the Fire King, and belunged to Mr. Ashton Sinith, of Wales. 'lhe last point of inquiry in which this committee haul been engriged during the past year. was the guestion of the nature and laws of the tidal wave, as propagated along our shores, and up the estuaries of our great rivers. But the nature of its propagation along our shores, after it ceased to be affected by the celestial influence, formed a torrestrial mechanism, with which we were still very imperfectly acquainted. To this subject. the committee had devoted their attention, and they hail made simultaueous olsservations for this purpose, at thirteen different station, along the Frith of Forth. The Board of Northern Lights, and Mr. Sitevenson, their engincer, hall afforded every facility for the cbservations, and results of a very remarkable nature were obtained. It was found, that there were four tides a lay in the Forth, instead of two-four high waters and four low waters. Mr. Russell exhibited drawings of these tidal waves, and gave, what he conceived the explanation of a phenomenon, which is, he thinks, much more common than hitherto supposed. It is well known, that the tidal wave which brings high water from the Atlantic to the south-western shores of Great Britain, Lecomes divided into two parts, one of which passes upwards through the English Channel, and the other passing round the west and north of Ireland and Great Britain, brings high water to the east coast of Scotland and to the Frith of Forth. Now, it appears not to have been recollected, that the other wive, after coming up through the English Channel, and bringing along with the former, high water to London, must 12283 on northwards, and in doing so, will enter the Frith of Forth considerably carlicr than the nortlern wave passing southwards. Now, this southern wave, smaller, but carlier than the other, appear3 to enter the Frith, and may be tracel at every station. It is followed up. however, very rapidly, by the great northern wave, and the former moving more slowly than the other, according to the law of the great wave of translation, is overtaken by it at the higher parts of the Frith. and being both greatly exaggerated by the form of that chnnnel, produced the two tides of the Frith of Forth. Mr. Russell expressed his opinion, that the tides in the upper part of the Frith of Forth would be found to rise as high above the mean level of the sea, as the tides of the Bristol Channel. The observations on this subject were not, however, completed, but would be finished in the course of next year.

Mr. Byrne asked what was the exact form of the curve which Mr. Russell ronsidered to bound the solid of least resistance? or what was the mathematical formula (or equation) of the curve? -Mr. Russell repliel, that it was stated at length in the published reports of the Association.-Prof. Forbes asked, whether the double culmination of the wave might not arise rather from the circumstance of the two waves not coming simultaneously to the mouth of the Frith than to the separation of the waves, to which Mr. Hussell had ascribed it? In fact, the waves, as he consilered. must be dissimilar in period, or one could not overtop the other ; after they hall blemded into one, the effect would be either to cause the ordinate of the joint wave to be the sum or difference of the ordinates of the waves or waved depression, accordingly as the two waves or waved depression coincided.-Prof. Whewell said, No: they will separate.-Mr. Russell olserved, that the waves were found frequently to separate, and the instances he lad cited were remarkable exemplifications of this.-Prof. Stevelly helieved the difficulty Prof. Fortes laboured under, arose from his not having been present at the Newcastle mecting, when Mr. Russell gave a very minute account of the structure of the wave of translation, n hicb differed from a common undulatory wave in this, that every particle of the flud had not only a rising and falling motion, but also a motion of translation, sometimes forwards, sometimes backwards. Now, the mere undulatory motion would exactly produce the effects Prof. Forbes expected, and hal so well explained ; but the motion of translation of the particles would, from its very nature, cause the wave to separate, even after blending into one, as explained by Mr. Russell.-Licut. Morrison asked whether Mr. Kussell had investigatel the effect of the descending current of the river. particularly in the time of freshes, on the tide waves 9 it had been well asceriained by observations on the 'Thames, that at such times the deacending foree of the current exercised a very decided influence on the tides; and he could testify the same from his own experience in other places-Mr. Russell zaid, the committee had found that effect very decided, insomuch that in the time of freshes in the Frith, it occasionally olliterated the tide wave.

Buperiments mpon the effccts of Weights acting for an indefinite tixe upon bars of Iroh, by Mr. Fairbairn.

The evperiments of which the present is a notice, were commenced by Mr. Fairlairn in March, 1837, when a number of bara of Coedtalon iron cast from ihe same model., 5 feet long and 1 inch square, were placed horizontally on props 4 feet 6 inches asunder, and had different weights, as $24,3,34$, and 4 cut.. hid upon the middle of each; the last weight being withina few pounds of the breaking weight. The intention was to ascertain what effect woukd arise from each of these weights lying constantly upon the bars. The resulta are, 1st. The bars are still Learing the loads, and apparently may do so for many vears. 2nd. The deflections, which are frequently measurel, the temperature leing olserved at the time, are constantly increasing, though ir a decreasing ratio,-a fact which shows that. though cast tron may be safely loaded far beyond what has hitherto been deemed prudent, still it is extremeiy probable that the bars are advancing, by however slow drgrees, to ultimate destruction.
The Baron Eugene du Mesmil gave a description of a Safety Lamp, invented by him in 1834.

He statel, that he had presented it to the French govemment in 1837, and that it had been now alopted, after a favourable report upon it by M. Ch. Combes.
This hamp consists of a hody of flint glass, defended by a dozen of iron bars. The airis admitted by two conlcal tubes, inserted at the bottom, which are capped with wire gauze, and enter by the side of the flame. The latter rises into a chimney, which has a piece of metal placed in the form of an arch over its top: the chimney, however, being quite open. The consequence of this construction is, that a strong current is constantly passing up the chimney. Whien carburetted lyyirogen passes in, the fact is discovered by numerius small explosions, and the whole glass work is thrown into vibrations which emit a loud and slrill sound, which may be beard at a very considerable distance.
Prof. Graham stated, that the novelty in Baron du Mesnil's lamp was, the circumstance of the chimney being quite open. He considered, that the lamp was left almost perfect by that pliflosopher, and that all sccidents proceeded from cnrelessnpss. He alluded to the deleterious effects of the after-damp. or carbonic acid left in the a:mosphere of a mine after an explosion. which is believed to occasion often greater loss of life among the miners than the original explosion, and often prevented assistance being renclered in case of arcidents. In many cases. it was certain that the oxygen of the air was not palausted by the explusion, although. from the presence of five or ten per cent. of carlonic acid. it was rendered irrespirable. The atmosphere might, thercfore. le rendered respirable by withdrawing this carlonic acid, and lie suggested a method ly which this might be effected, He had found that a mixture of dry slaked lime and pounded Glauber's saits. in equal proportions, lass a singular avidity for carbonic seid, and that air might be purified completely from that deleterious gas. by inhaling it through a cushion of not more than an inch in thickness, filled with that mixture, which could be done without difficulty. He suggested the use of an article of this kind by persons who descended into a mine to afford assistance to the sufferers, atier an explosion ; indeed. wherever the safety-lamp was necessary. and the occurrence of an explosion possible, the possession of this lime-filter would be an additional source of security.
On a small Vollaic Batlery of estraordiwary energy. By W. R. Grove, Esq. In a letter published in the Phil. Mag. for February, I stated (said the author) some reasons for hoping that by changes in the constitucuts of voltaic comlinations of four elements, we might greatly increase their energy. At that period I sought in vain for improvements, which a fair induction convincell me were altainalle, but, being in the country, all my euperiments were with copper as a negative metal. I was constantly unable to use concentrated nitric acid ns an electrolyte, and its importance never occurred to me until forced upon iny notice by an experiment, which I made at Paris for a different object. This was an endeavour to prove the dissolution of guld in nitro-muriatic acid to be an electrical plenomenon, or rather that this (as I helheve, with Sir Humphrey Dary, every other chemical phenomenon,) could be resolved into an electrical one, bv operating upon masses instead of molecules. The experiment was the following:-The extremities of two strips of gold leaf were immersed, the one in nitric, the other in muriatic acid, contact between the two liquids being permitted, but mixture prevented, by an interposed porous diaphragm. In this case the gold remained undissolved for an indefinite leriod. but the circnit being completed by metallic sontact, either metiate or immediate, the strip of gold in the muriatic acid was instantly dissolved. Thus, it srems, that the affinity of gold for chlorine is not able slone to decompose muriatic act ; but when it is aided by that of oxygen for hydrogen, the decomposition is efiected. The phenomenon bears mucta analogy to ordinary cases of double decomposition. The two gold atrips in the experiment being connected with a gatvanometer, occasioned a considerable deflexion ; and it now occurred to me, coupling this experiment with my pre. vious observations. that these same liquids, with the substitution of zinc and platinum for the gold leaf, would produce a combination of surpassing energy. Pay espectations were fully realized; and on the 1 th of April, M. Becquerel presented to the Institute a small battery of my construction, cousisting of seven ligucur glasses, containing the bouls of cummon tobacco-pipes, the metals zinc and platinum, and the electrolytes concentrated nitric and dilute muriatic acids. This little apparatus proluced effecta of decomposition equal to the most powerful batteries of the old consiruction. I have since this tried various combinations upon the same principle, and though some of the rarer anbstanecy-such ior instance, as chforic acid-have produced powerful effects, I have found none superior, and few equal, to the preceding. I have therefore, directed my attention to using these materials, and rendering the apparatus more cconomical, althourh I soon found that it was not so expennive as it at first appeared--the platinum remainiog unaltered. Dilute nitric acid diminishes the energy; nitro-sulphuric acid acted as an electrolyte much as nitric ackl ; it is an excellent conductor: yieljog orygen at the asode, and hydrogen at the cathode. Applying this to my bettery, I found it to succeed admirably, and hence a consdcrable diminution of expence on the side of the einc, and found salt and water nearly equal to dilute muriatic acid. It also
removes the necessity of amalgamaling the zinc ; but it sometimen, thougt rarcly, disaggregates the porous ware, from the crystallization of nitrate of soda; and therefore, in harge batteries, I should prefer muriatic acid dilutad with five times ita volume of water. Hy using flat tened parallelopiped-shaped vessels, the concentrated acid is nuch economized, and the meta is approsimated. Now, according to Prof. Aitchie, the power is inversely as the squate root of the distance beiween the metals. The hastily construfted batiery which I have to present, consists of an outer case of wood, beight 77 inchen breadth 5, width 3, (it should be of glazed earthenware, similar to the Wolaston troughs,) separated into four compartments by glass divisions: in these compartments are placed four flat porous vessels, the interior dimen: sions of which are 7, 24, and 3 -10ths of an inch, the thickness of the vulls I inch; they contain each three measured ounces; the metals, four pains. expose each a surface of I6 square inehes, and the battexy given, by decers. position of acidulated water, 3 cubic inches of mixed gases per minute ; charconl points burn brilliantly, and it heats 6 inches of platinum wire of an ioch diameter; its effect upon the magnet, when arranged as a single pair, is proportiunally energetic : it is constant for about an hour without any freah supply of acids. The porous vessels are identical in their constitution with the commou tobacco pipe. As far as my experiments go, its power, with reference to the common constant battery, is cateris parilus as gix to one, het the relative proportions yary somewhat with the seriet. The cost of the a pparatus is 21.2 s. During the operation of this battery, the nitric acid. by losing successive portions of oxygen, assumes first a yellow, then a green then a blue colour, and lastly becomes perfectly aqueous; bydrogen is now evolved from the platina, the energy lowers, and the action becomes incowstant. It is worthy of remark, an an argument for the secondary natury of metallic precipitation by voltaic electricity, that the oxidated or dissolved ginc remains entirely (or at lesst by far the greater porticn) on the zine side of the diaphragm; the hydrugen alone appears to be transferned; and yet the reversal of affinitics which the theory of reluction by nascent hydrugen supposes, is an enigma difficult of solution. I have invariably ubserved in this battery, a current of endosmose from the zine to the phatinorn, or wilh the current of positive eleetrieity.

The rationale of the action of this combination, according to the chemical theory of galvanism, appears to be as follows:-In the common einc and copper combination, the resulting pouer is as the aflinity of the anion of the electrolyte for zinc, minus its affinity for copper; in the common constant battery it is as the affinity of the anion for zinc, plus that of oxygen for hydrogen, minus that of hydrogen for copper. In the combination in ques. tion, the resulting power is as the aflinity of the anion for ginc. phes that of oxygen for hydrogen, minus that of oxygen for asole. Nitric acid being much more readily decomposed than sulphate of copper, resistance is leswened and the power increased; and no hydrogen being evolved from the negaive metal, there is no precipitation upon it, and consequently no counter-action. I need scarcely add a word as to the importance of improvernents of this description in the voltaic battery. This valuable instrument of chemeal research is thus made portable, and, by iDcreased power in diminished apace, its arlaptation to mechanical, especially to locomotive porposes, beromes more feasible.
Mr. Spencer then exhibited a cylindrical battery, so as to include great intensity in small space. Prof. Graham considered Mr. Grove's battery an important improvement, and could only account for its power from the ciscumstance, as in Daniell's battery, of the remofal of hydrogen.
Prof. Whewell communicated some tide observationt, formerded te thim by the Russian Admiral Lulke.

These olservations supplied-first, the tide hours of varion placem on the coasts of Lapland, the White Sea, and the Frozen Sea, and the coasts of Nova Zemlia. These observations enable us to follow the progreen of the tide mean further than had hitherto been done. Mr. Whewells map of Cotidal Lines, (the second approximation containel in the Phil. Thass, 18: follow's the tide only as far as the North Cape of Norway, eastward of Nord Zemlia. Prof. Whewell stated, that he was informed by Admiral Lithe. that in the Frozen Sea, east of Nova Zemlia, there is little or no perceptibt tide. The observations communicated by Admiral Liike, offered varioua other results, and especially the existence of the diurnal inequality in the seas explored by Rugsian navigators, as on the cosst of Kamscatta, erod the west coast of North America.

Prof. Whewell made some observalions on Capt. Filzrog's vienor of the tides.
In the account of the voyage of H.M.S. Adrenture and Beagle. just pablished, there is an article in the Appendix, containing remarks on the thom. Captain Fitaroy observes, that facts have led him 10 doubt eeveral of the assertions made in Mr. Whewell's memoir, published in the Phik. Trase. 1833, and entitled "Essay towards a First Approximalion to a Map of Cotida Lines."-(Appendix, p. 279.) Prof. Whewell stated, that he conceived thet doubts, such as Captain Fitzroy's, are reasonable, till the assertions ere fully substantiated by facts. Capt. Fitzroy has further offered an hypotheis of the nature of the tidal motion of the waters of wide oceans, different from the hypothesis of a progressive wave, which is the hasis of Prof. Whewell's researches. Capt. Fitaroy conceives, that in the Atlantic and the Pacie. the waters oscillate laterally between the eastern and western shores of thes oceans, and thus produce the tides. This suppodition would expladn axch frets as these, that the tide takes place along the whole went conat of Sonth Ameriea at the same time; and the supposition might be 50 modifind at to account for the absence of tides in the central part of the occean. Prof. Whe. well stated, that he wis not at all disposed to deny, that moch a mode of oscillation of the waters of the ncean is possible. Whether such teotion be consistent with the forces exerted by the sun and moon. is a prebien a bydrodynamics bitherto unsolved, and probably very difiants. Ho damastrative roason, however, has yet been published, to sho7 that sueh a mocist of the ocean waters may not approach more pearly to their artula notion
than the equilibrium theory, as usually applied, does. When ith eraal

if it appear that they are of the kind supposed by Capt. Fiteroy, it will be very Decessary to call upon mathematicians to attempt the solution of the bydrodymamic problem, either in a rigorous or an approximate shape.
On the Specific Gravily or Dersity of Steam at succeative Temperaturea, by Dr. Ure.
This Report was made agreeably to a motion at Newcastle, calling on Dr. Ure, Mr. Faraday, Mr. B. Donkin, and Mr. Cooper, to draw up a view of the present state of our knowledge upon that subject. The other members of the Committec having declined to enter upon the research, Dr. Uro undertool it. He began his Report by stating that M. Gay-Lussac was the first philosopher who devised and executed an exact process for determining the specific gravity of steam and other vapours; his principle being to measure the volume of vapour furnished by a given weight of lignid. Having weigheil a glass bulb, like that of a thermometer, be filled it, by heating it, and plunging the point of its capillary tube in the liquid to be converted into vapour; repeating the heating and immersion till it was perfectly full. It was now shightly heated, to expel a drop of the liquid from the point, which was then hermetically sealed by the Howpipe. The bulb was next introduced into a graduated bell-shaped jar, about one foot long, and two inches in diameter, filled with and inverted over mercury, in a cast-iron pan. The jar was sur: rounded by a glass eylinder, open at each end; and the space between the tho vessels was filled with oil, or water, according to the volathlity of the liquid. The interstitial column of liquid rested upon the column of mercury in the iron basin or pan. This mas placed over a little furnace, whereby the mercary and superjacent oil were heated to any desired pitch. Eventnally the bath became hot pnough to generate vapour of such tension within the bulb, as to burst the thin glass of which it was blown. In the case of water, M. Gay-Lussac continued to hent the apparatus, till the water contained between the two cylinders had enterel into a state of steady elvullition; and he then measucd the space occupied by the steam generatell from the bulb in the bell jar, taking care to noto the height of the quicksilver within the jar above its level in the basin Deducting this height from that of the barometer in the same apartment, he found the pressure of the internal vapour. He then reduced, by calculation, the length of the mercurial column to what it would have been at the temperature of melting ice; and made a small correction for the height of the liquid column between the two cylinders. In this research, we must take care that the whole of the liquid in the bulb is reduced into vapour, otherwise ge shall fall into great errors. This circumstance woukd occur if more fiquid were introduced into the bulb than would fill the whole space over the mercury in the bell jar, at the given temperature. M. Gay-Lussac found in this way, that one cubic inch, or a gramme measure of pater, produced 1,694 cubic inches. or gramme measures, of steam, at the temperature of 100 Cent. or 212° Fah., under a pressure of 29,912 inches of mercury, or that of the atmosybere in the mean state of the barometer. He reduced that volume to what it would be at 32° Fah., by the rule for estimating the expansion of gaseous matter by heat, and concludel that the specific gravity of the valour of water was to that of air, both at the said temperature, as 0025 to $1: 000$. The following table of densitics includes all the vapours which he subjected to experiment upon that vecasion :-

$$
\begin{aligned}
& \text { Air (as } 0^{\circ} \text { Cent.) being called } \\
& \text { Vapour of Water } \\
& \text { Alcohol } \\
& \text { Sulphuric Ether } \\
& \text { Sulphuret of Carbon } \\
& \text { Oil of rurpentine } \\
& 1.000 \\
& 0625 \\
& 1 \cdot 613 \\
& 2586 \\
& 2645 \\
& 5.013
\end{aligned}
$$

The density of the vapour is evidently irrelative of the boiling point, or density of the liquid from which it is formed; for ether boils at 98° Fah., and has a specific gravity of 0.700 or somewhat less, while oil of turpentine boils at 316° Fah., and has a specific gravity of 0.870 .
The steam which issues from the spout of a tea-kettle is no hotter, as measured by a thermometer, than the boiling liquid within, and yet, when condensed in a body of cold water or ice, it gives out as much heat as one thousand times its weight of boiling water would do. This heat of steam, which is insensible to the thermometer, is called latent licat, and it differs in quantity for different kinds of vapour. One part of water at $212^{\circ} \mathrm{Fal}$. requires for its conversion into steam, as much heat as woukl raise $5 \frac{1}{2}$ parts from the freening to the boiling temperature, or as would heat it up to $117 \omega^{\omega}$ Fah., could the water be made to receive that heat without changing its form. The quantity or energy of heat Which steam coutaius or posessises is constant; that is, for equal reights, steam of ctery temperature and density contains the like quantity of heat;-a proposition which has been proved by accurate researches. Water at all temperatures, cven in the state of ice, is convertible into rapour : the density of this vapour depends upon its temperature; so that this density, that is, the Feight of the steam under a given volume, is greater the ligher the temperature at which the steam is generated over Water. When the steam is not in contact with water, it follows the same law of expansion with heat, as gases do. An air-tight boiler having a vacant space over the water of about 1,700 cubic inches, contains at the temperature of 212°, one cubic inch of water in the state of rapour, aud has therefore a specific gravity of 3.000589 ; water being $1.000000 ;=\frac{1.000000}{1700}$. If the heat be raised to $234 \cdot 5^{\circ}$, the incumbent steam will aequire ${ }^{2700}$ elastic force equal to 45 inches of mercury, or 22.3 lb . upon the square inch, and a density of 0.000867 ; if to 2502°, the clastic force will be $59-8$ inches of mercury, or 29.20 pounds, and the deusity will be 0001114 . In the former case, the elasticity has increased about 50 per cent., and the density 34.3 ; in the latter case the elasticity has increased another 50 per cent., and the density 32]; thus, while the elastic force is doubled, the density is increased in the proportion of 1114 to 589 or 100 to $\mathbf{3 3}$. We sce, therefore, that the chaticity of steam increases with the density, but in a greater proportion, or more rapid ratio. Since like weights of steam contain like quantitices of heat, and since the elastic force of steam is the moving power in a earn-mgines, it follows, that for like quantities of le at, or fuel well applied, a greater efter will he obtained from steam of high icmperature and density, than from steam of
lower temperature and density. At all temperatures, the sum of the lateut anl sensible heats of steam is a constant quantity, so that stram of higher density and temperature contains always the same quantity of heat, as steam of lower density and temperature. When denser steam flows into a vacuous space, it will fill it entirely without condensation, provided that no heat is dissipated outwards; and it will possess an elasticity and temperature dependent upon its expansion. Suppose, for example, that a vessel of one cubic foot capacity is filled with steam of 212° Falı., let this vessel be placed in communication with another air-tight vessel, of nine cubic feet capacity, so as to expand into it; in filling the latter, it will become expanded into ten times its bulk, and from the table which accompanies the report, it will be found to assume, when thus expanded, a temperature of $108.5^{\circ} \mathrm{Fah}$., while its elasticity falls to $2 \cdot 4$ inches of mercury; though the steam has neither absorbed bur emitted any heat, nor deposited any water by condensation. When dense steam escapes into the air, it assumes the same specific gravity and elasticity as the atmospheric vapour.
The table annexed contained seven columns; the first threc were the scales of the three thermometers now in use; and Dr. Ure remarked, that it was to be regretted, that we in Great Britain do not adopt the Centigrade scale. as the Germans are now tloing, insteal of the arbitrary and inconvenient divisions of Pabrenheit. The fourth and fifth columns exlibitited the clastic forces of the steam, the former in inches of mercury, the latter in ponnds upun the square inch. The sixth column showed the number of cubic teet of steam resulting from one pound of water, and the seventh the specific gravity of the steam, water being called unity, or $1 \cdot 000000$.

COMPETITION DESIGNS FOR THE ROYAL EXCHANGE.

We need not particularly regret our inability at present to entet into the various questions which this competition suggests to us, siace we foresee that whatever turn matters may take, we shall have more than one opportunity of making our comments before the business is settled, or any thing finally determined upon. As far as we can understand, that is, as far as on-dits may be relied on, all the three architects who gave in their report on the designs to the committee, have now declined taking any farther share in the affair; nor do we wonder that they have done so, since the task they were called upon to undertake, would have been as invidious as it would have proved diffi-cult;-and that it would have been a difficult one, can hardly be disputed without calling their sincerity into question, there not being a single design which they could recommend to be returned to its anthor, in order that he might make those corrections which would remove the first objections to it. Their non-compliance with the committee's request, only confirms whatever was previously expressed in regard to it. But what course the committee will now take, we are unable to conjecture, our surmises extending no farther than to giving them credit, for at length discovering how ill-advisedly they have acted throughout the whole business.

Among other things, they have probably now found out that it would have been infinitely more prudent on their part to have had a public exhibition beforehand, and one of such duration as to afford time for people to form something better than hurried, off-hand opinions. And if it be asked where such protracted exhibition could have taken place, without causing inconvenience, we should say that perhaps, no fitter place could have been found than the exhibition rooms of the Royal Academy, where there would have been space to arrange all drawings, without hanging any of them up so ligh as they were at Mercer's Hall. And we must say, that it would have been no more than patural and proper, had the academy offered their rooms for that purpose;-or are we to presume that the whole affair is matter of utter indifference to that body; and that though it is one which may eventually bring credit or discredit upon the taste of the country, the academy are not willing to give themselves the least concern about it. It camot be said that, by taking no notice in any way of what does not immediately relate to them, the academy can be charged with having neglected their cluty, yet the fact itself is a symptom of the real with which they are animated for advancing art and its interests generally.

Undoubtedly a very great point in architectural competitions has been secured, by the public being allowed to see the designs at all, though, in the case of that for the Royal Exchange, the exlibition was no more than what is generally styled a pricate wern. Still in this respect, another point remains to be carried, which is, that in future all such exhibitions shall be preliminory : not in order that umpires and committees should be entírely gaided by, or pay unqualified deference to a majority of opinions so elicited, but that they may have the opportunity of taking into consideration whatever arguments, if any at all may happen to have been brought forwarl, on various points. We therefore trast, that insteal of this connpetition, anl the one for the Nelson monument being made use of to show the utility of public exhibitions of the designs, they will ofrate as nsed ful corrective lessons, and larl henceforth to the artortion of a brater system.

Little is it to be wondered at, if those who see no further than immediate facts and consequences, now exclaim not against illmanaged competitions, but against the system of competition at all, as necessarily bad and inefficacious; delusive to those who enter into it, delusive likewise to the public, and embarrassing to those who invite it; and moreover no better than a cloak to siuister influence, favouritism and jobbery. The proceedings attending the competition for the Nelson monument, certainly afford room for saying as much, to any one disposed to look at the matter on its worst side; while the one for the Royal Exchange coming so immediately after, and attended with no more satisfactory results, cnables people to exclain "another failure!" and then to rail at competition altogether. From the tone in which some of the critice have spoken of the last one, it is casy enough to perceive that we are quite as well pleased as not, that the result slould not have proved more successful. While they are thus left at liberty to indulge in sncering, abusive tirades, they can excuse themselves from offering any opinions or remarks of their own upon the designs, by conveniently representing them one and all as below criticism, and unworthy of any specific remark. Such was the course adopted by the writer, who dots the architectural criticism in the Sunday T'imes; but many will think that in the volnbility of his abuse, he betrayed his shallowness and ignorance, when he spoke of there being designs in the Clinese style as well as in almost every other; and affirmed that out of them all, there was not one deserving serious attention or consideration.

It nust be confessed, there were a great many not rising at all above mediocrity, and not a few which did not reach even that point; which certainly did surprize us, because we had imagined that owing both to the size and the number of drawings required, the labour and expense would have deterred any one from attempting a design, who did not feel that lie could produce something either original in its conception, or treated with some degree of mastery: and hardly any one, we presume, would set about making a finished set of drawings of the kind, unless he bad previously satisfied himself in his preparatory sketches, and found that he had got hold of a good idea to work upon. Such, however, certain'y docs not appear to have been the case here, since many of the deaigns too plainly showed that no idea, or the very poorest possible, was considered sufficient, and that little else was required than merely to provide the accommodation stipulated for by the instructions issued by the committee. It did, indeed, quite stagger us, to see many designs of such quality in all but the mere drawings, as to seem the first efforts of beginners, who thought that to be able to draw columns and pilasters of the most insipid character, was a sufficient qualification. One would suppose that some of those persons must have been exceedingly studious indeed,-so buried among their books, as to be utterly ignorant of all that has been doing in architecture in this and other countries during the last ten or fifteen years; for if acquainted with it, they were unable to perceive how greatly they fell short of the ordinary standard, and could flatter themselves that there was uot the slightest chance for their desigus being noticed, except for contempt and derision, they must be egregiously blind indeed; so ignorant as not to be capable of perceiving that they were only aftording proof of their own incapacity.
Now, as we have seen it lately remarked in an architectural paper in Friser's Magazine, though any one is at liberty to send in a design to an open eompetition, it does not exactly follow, that because he can draw, a man is called upon to do so, whether or not he possesses any of the talent that occasion demands. Common sense would say, that the invitation is to be understood as given to those possessed of tatent to come forward with it, not for the dull and the stupid to step in and make fools of themselves.
At present we cannot either pursue these remarks any further, or here add to them any comments on such of the designs as on our sccond visit, struck us as most deserving of notice, not as being entirely unobjectionable, lut as containing many good points and displaying considerable ability. Yet, though we find we must now defer more particular mention of them till our next number, we may here just point one or two of the hind which seem to have escaped the attention of others: viz. No. 25, 33, and 51. The first of these was one of the few, in which a circular plan was adopted for the inner area. 'This cortile was not only very spacious, but in exceedingly good taste, und would no doubt produce a fine effect. The external elevatious were also of an imposing character, (in the Italian style), but we did not so much approve of the tower at the west end, particularly the upier part of it. No. 33 was also Italian; and No. 51 was it remarkable, and in many respects a very clever aud original application of (ireck arclitecture. With respect to the design which oftained the first premium, we must acknowledge, after again looking it it, that so fir from being able to cletect it in any kind of merit that
seemed to warrant such decided preference, for if it might be free from defects and objections occurring in many other designs, beyond such pegative recommendation, it seemed to possess no other. Uf course we speak only from a general inspection of it: it might have merita, but they certainly did not extend to the gencral character of the composifion, or the taste shown it. Perhaps it was chiefly on account of its defciencies in regard to these latter qualities, that although depmed worthy of the first prize, the judges could not recommend it fur execution. We think that their repurt ought to have left uo doubr in respect cither to this or the other designs pointed out by them to the committee; but should have distinctly stated both the particular merits and the objections against each of those designs. Had that been done, both the pub'ic and ourselves might have gaiped some instruction.

Since writing the preceding renarks, we are informed that Mr . W. Tite and Mr. George smith have been requested to adrise the committee on their selection of a design from the eight now before them; the former gentleman, we understand, declines to act, consequently the onus devolves on Mr. Smith, who is Architect and Surveyor to the Mercers' company. We believe Mr. Smith to be respected by all who know him, but to say the least of it, in whaterer way his decision may be made, it will be placing himi in a most invidious and unpleasant situation, in the first place Mr. Grellier who obtained the first premium, was, as is well known, pupil of Mr. Smith, therefore if he give judgment in his favour, it will be immediately set down as an act of fivouritism, and if he decides against the design, it will bring him in collision with the three former urchitecty named to examine and select the best design.

TIIE BUDE LIGHT.

A serions aecident took place on Friday evening, the 8th ult., at the costly prenises of Messrs. Ilancock and Rison, Pall Mall East, caused by the explosion of a bag of oxygen gas, with which some experinents arere being tried, in order to show a few scientific gentiemen the effect of the Bude light; the force of the explosiou was so great as to dash to atoms ncarly crery article in both the upper and lower warehouses, many of which were of the most valuable description, consisting of beautiful chandeliers, lemps, latres. rases, decanters, \&c., all were in an instant completely destroy ed, the coanters rent asunder, the sashes tori out and broken to pieces, and the report so loud as to alarm the whole neighbourhood. The company present aboat seven or eiglit in number, narrowly escaped with thicir lives; some of them were seriously bruised, one being thrown into the shop window front a considtcrable distance, another up the staircase, and all more or less injared We have thought proper to give pulficity to this accident, as it is most desiral) cthat every fact connected with so important a subject as the "Bude Light," should be fully investigated, and we trust that the proper authorities superintending the experiments for lighting the Hoases of Parliameat, will make such inquiry into this serious matter, as to fully satisfy thernselres npon the safety of this or any other light, before a decision is made opon the noe to be ultinutely adopted. We lelieve it has not yet been satisfactority accounted for, what caused the oxygen gas to be so very explosive.

Oxpord-stregt Experimental Wood Paying-The rettlement of this alnost interninalle question is completed. Out of the many competitor for laying down specimens of woorl pavement within the space alloted by the vestry of St. Mary-le-bone for the additional experiment in Oxford-stroen, but one party has acceded to the terms of the vestry to do the same as theis own expense and risk. A contract has been effected by the Mary-le.bose vestry; to lay dowa 4,000 yards in the space from Charics-street to Wells. strect, after the mode invented by the Count de Lisle, called the Stercotomy of the Cube. This singular plan of pavement will, from its peendiar construction, posscss the property, by fiuding au abutineut, on the curb-stone on each sidc of the street, of forming a self-supporting bridge without the and of a concrete bottom; and by the mode in which it is intended to ley down the blocks, the complaint prevalent against wood pavement, of its being. under some atmospheres, exceedingly slippery, will, in a great measure be remedied, if not totally avoided. The various models whech have been prosented to the notice of the restry, afford a strong instance of the axpomplishment of art and ingenuity over the rude anode under which this propert was first submitterl to the English public as a carriage-way paviog at oore surprising and pleasing. The whole of this contenplated work is to be completed on or lefore the first of February next; and although it $\&$ to remain, if the vestry require it, twelve montlos as an experiment, rit the gencral opinion entertained by that body, of the efficacy of woon pevernat, renters it more than probable that the whole of Oxfordstreet will be cuno. pleted by the next summer, and thus render this important thoroaghficre the from noise, mud, or dust, and the first strect as a promenede for carrity Loudon.-Timer.

NOTICES Of APPLICATIONS TO NENT PARLIAMENT FOR LEAVE TO BRIVG IN BLLLS.

METROPOLITAN IMPROVEMENTS.

Hoborn Improvements.-For forming a ncw road or street on a level, commencing at the corner of Bartlet's-buildings, top of Holborn-hill, and proceeding at the back of St. Andrew's church, passing over Parringdonstreet on a bridge, and tenninating at the Old Bailey, opposite the end of Newgate-strect.
Piccadilly to Limy ferc.-Por forming a new atrect from Piccadilly, along Corentry-strect, the north side of Leicester-square, and terminating at the junction of Long-aere with St. Martin's-lane.
Long Acre to Charlotte-atreet, Bloomsbury.-Por forming a new street commencing opposite Bow-street, Long-acre, and terminating at Bedford Chapel, Charlotte-strect, and also to widen the north east corner of Kingstreet, Seven-lials.

Oxford-atreet io Hollurn.-For forming a new strect, commencing from the east end of Oxford-street, and terminating at the soutls end of South-ampton-street, Bloonusbury.
London Docks to Spitalfields Church.-For forming a new street, runniug nearly in a direct line with Leman-street, and terninating at the west front of Spitalfelds clurch.
Fulham Road and Brompton Road.-For widening, \&c. a lane or road leading from the Bell and llorns Tavern in the Pulham-roall, to the Hoop and Toy Taveru, Old Brompton, and thence to Earl's-court; and also for continuing the Victoria-roml, conmencing at the east end of Kensington, and to terminate by the inost direct line, at the north end of Battersea-bridge.

Metropolitan Bridges.- Por redeeming the tolls on Waterloo, Southwark and Vauxhall-bridges, and lerying a tax of sispence per ton on coals.

```
docgs, CaNAls, HARbOURS aND bridGEs.
```

Hyrley and Essington Canal.--For power to incorporate the Company with the Birmingham Canal Navigation Company, and also for power to make additional cuts or canals.

Portomouth Floating Bridge.-For power to improve landing places and approaches.

Portsmouth and Stokes Bay.-For constructing a Pier and Tide Harbour at Kicker Point, sitnate at Stokes Bay, in the Parish of Alventone, and county of Southampton; and also for making, \&x., a Ship Canal from the said harbour, and communicating with the harbour of Portsmouth.

Staffordshire and Worcesterahire Canal.- Por making a canal from the said cand at Hinksford, in the parish of Kingswinford, and to terminate in a canal now being formed by the Devisees of the late Earl of Dudley.

The Herculaneum Estate Dock Lancaster. - Por taking tolis, \&c., for docks about to be constructed adjoining the river Mersey.

Dep(ford-For forming new docks.
Deptford Pier.-To alter and amend act, and for purchasing additional property.

Portishead Bay, Somerselshire.-For making a pier, \&c., and a road to Bristol.

Southampton-For making wet docks at Northam Marsh.
Isle of Hiyht.-For improving, \&c., the harbour of East and West Cowes.
Dartford and Crayford Creek.-For deepening and ituproving the said Creaks.

Gravesend.-For making, \&c. a pier at the Royal Tcrrace Garclens, Milton.
Leeds.-Por building a bridge over the river Aire, and forming approaches.
Fulham and Putney Bridge.-For building, \&c. a bridge over the river Thames, and for making approaches.

Newcastle-upon-7yne.-Por erecting a bridge over the river Tyne.

NEW RALLWAYS.

Croydon and Brighton Railoays.- For the formation of a raiboay from the Croydon railway at or near the Dartmouth Arms, and terminating at the Elephant and Castle, or from the Brighton railway at the Junction of the Croydon railway at Croydon, and terminating as aforesaid.

Mancheater and Birningham Railray.-Por an extension of the railway from Stonc to Ragby.

Neweastle-tupon-Tyne to North Shields.-For the formation of a railway.
Fest Cumberland Railocay and Morecambe Bay Incloskre.-Por making a railway and inclosiug the said bay.

for altering old railday acts of parliament.

Chester and Birkenhead Railway.-For powers to raise additional money, and to alter time for purchasing land; also for extending the railway from Birkenhead to the rivcr Mersey.

Commercial or Blackwall Railway.-To alter powers and provisions.
Eastern Counties Railway.-Por altcrations, \&c.
Grand Junction Railway and Cheater and C'rece Raitway.-Powernf or the former Company to purchase the latter railway.

Greal Weatern Railuay.- Por muking a station or depôt in the parishes of Upton and Stoke Poges, Rucks, or one of them.

Harlefonl Dock and Raiheay Compary.-Relatlve to the government of the company.
London Grand Junction Railway,-To alter, \&cc., and extend line.

London and Greemoich Raihoay.-To cuable the Croydon, the Brighton and the South Eastern Railway Company, or one of them, to widen and enlarge the present London and Greenwich railway.
Lowdon axd Greenvich Railway.-Por powers to alter tolls, \&c., and to make a new station at the Southwark tenuinus,
Neweastle-upon-Tyme and North Shields Raihocy.-Por alterations, \&c.
Northern and Eabtern Railicay.-For power to alter act, and make deviations.
South Eastern Raiheay Company.-To alter line in the parishes of Sellinge and Standford, in the county of Kent.
watkr companieg.
London and Wextminster pure Water Company.-For making, \&c. a conduit to convey water from streams, rivulets and springs at Bashey-lodge Meadows, and the river Colne adjoining, and to terminate near the Eyre Arms tavern, Martlebone.
Sarrey and Kent.-Por supplying the metropolis on the southern side of the Thames, 1)eptford, Greenwich, Woolwich, \&c., with water from Merstham, Surtey.

Bradford Water-works.-For better supplying the town with water.
Nercastle.-For better supplying the towns of Newcastle-upon-Tyne and Gateshcad.
Derly.-For supplying the town with water.
Exeler IVater Company.-Por power to alter present act, and make alditional works.

FOR INCORPORATING COMPANIEB.

Farmers and General Fire and Life Assurance and Loan and Annuity Institution.
Protestant Dissenters and General Life and Fire Insurance Company.
The Scottish Widow's Pund and Life Assurance Society.
The Standard of England Life Assarance Company.
The Talacre Coal and lron Company.
The Gwendraeth Anthracite and Iron Company.
The linitel Wood Paving Company.
Gias Manufacturing Company.
Great Forest Anthracite Coal and Iron Company.
City of London Gas Pipe Company.
Great Level of the Wash. - Company for reclaiming from the Sea, draining and improving, \&c. land within the great Eatuary, called the Wasla, iu the counties of Lincoln and Norfolk.

North American Colonial Association of Ireland.

FOR INCORPORATING COMPANIRS TO PURCHASE THE ABEIGNMENTE OY

 PATENTS.Carey's Patent, for certain improvements in paring or covering strects, roads, and other ways.
Kollmann's Patents, for improvements in railways, and in locomotive and other carriages.

Austin and Burke's Patenta, for improvements in raising and lifting suuken and floating ressels, and other bodies under or in the rater.
The Cinited Wood Paving Company, to purchase patents for paving with timber ot wooden blocks, and for improvements in wood paving.
John's Patent, for improvements in colouring or painting walls and other surfaces, and preparing waterials used for that purposc.
Daniel Stafford': Patents, for lis invention, or certain improvements on carriages.

grman itavigations.

The New Steare-ship, "New York."-The "New York," now on the stocks at the yard of Messrs. Wilson, North Shore, is rapidly adrancing towards completion. She is a noble looking vessel, superior in tonnage to the Liverpool, belonging to the same company ; is of a beautiful model, and built in as substantial a manner as any of lier Majesty's ships. The following are her dimensions :-Length over all, 235 feet ; beam of the hull, 36 fcet 6 inches; beam over paddle-boxes, 60 feet; depth of hold, 22 feet; tonnage (supposed new measurement) 1600 ; horse power of engines, 420 . The frame of the New York is of English oak, the bends and clumps of English and African oak. Her bottom is of American elm and Baltic timber. She is fastencd on the diagonal principle, by riders of iron let into the timbers, and crossed at right angles by strong trusses of English oak. Her bottom plank is five inches in thickness, the diagonal wood fastenings six inches. Her frame is peculiarly constructed, her timbers leing dowelled or "coaked" together in a scientific manner. Every alternste timber has a screw bolt through it. She is filled in, fore and aft, six feet above the lower edge of the keel, and caulked, the whole forming a solid mass of timber. Her bolt and minor fastenings are cntircly of copper. Her bilge planks, clumps, and bends, are six inches in thickness. In her flooring she has apparently from twelve to fourtcen inches of a rise from the keel to the bilge; and being otherwise finely modelled, and anything but wall-sided, she can scarcely fail to attain an uncommon speed under steam. On deck the New York has a very noble apparance, from her great length and beam, and her unencunibered deck
room. It is remarkable that she is about the same length over all as the Liverpool, (235 feet,) and that her principal cabin will aloo be about the ame length (75 feet.) She has, however, six feet more beam then that fayourite veasel, which, it is considered, will give her considerable mdvantagen. The cabin, not yet fitted up, is under the poop, the floor of which it continuous with the main deck, which is thus "flush" fore and aft- great deaiderstum as regards the strength of a vesael. She has seventeen window ports on each side to light the state rooms. Prizes are offered hy the owners for the best plans of the cabins. She lias a small top-gallant forecestle, and will have gangways and a spur deck, in the style of a frigate : she is what is termed a "solid" reasel, being planked up to the gunnel, which is of considerable beight, and will reader her unusually comfortable as a sea-going ship. The working pert of the vesel will, from her construction, be quite apart from the cabins, and this will be another convenience. Her engines mre now in course of construction, at the celebrated manufactory of Messra. Fawcett and Preston, and will be of a superior deacription. Some idea may be formed of the minength of the frame work to which the engine will be more immedintely attached, from the fact that the paddle heam is of solid African oak, 22 inches square. It is expeeted that she will be ready for launching in about a monsh, but may not perhaps be placed in her destined element antil early in the spring. The carpentry of the New York, which will bear the minute inspection of the most fastidious and scientific, is highly creditable to Mewrs. Wilson; asd we doubt not but that when she is placed on the station from which she derives her name, she will become a favourite transatlantic steamer, and, we hope, a profitable speculation to the enterprising company to which she belongs.-Liverpool Mercury.

Marine Steam-engine Boilerr.-M. Cousté proposes to adapt an apparatus to the boilers of marine engines supplied with salt water, by which the crystals of common salt are removed as fast as they are deposited on the heated surfaces of the inside of the boiler; and he hopes, by his invention, to avoid the loss of heat which is occasioned by the process at present employed for getting rid of the salt, in blowing off a quantity of the hot saturated solation at stated intervals.-Athencwin.

Sowthanpion Dockt.-The interest excited in the pablic mind by the progress of these works is very great: numbers, both of ;he inhabitants and strangers, are continually visiting the heach to view the active and bustling scene; the work is carried on with spirit, and during every moment the tides permit, and at the low water of the night tide, there may now be seen nearly 200 men working by the light of between 20 and 30 fires, which has a singular and interesting effect. We understand that in embanking, pile driving, quarrying, sxe., the contractors are paying upwards of 250 men. and are wifling to cmploy many more able hands if they should offer; in fact, they seem determined to spare nether money nor personal exertions in expediting the work, and endeavouring to realize the anticipations of the supporters and friends of this great undertaking. They have our best wishes for their success.-ITampshire puper.

Opewing of the Monchenfer and Salford Junetion Cawal.-This important link in the chain of water communication was made available to the public on Monday, the 4th ult. By means of this canal, which connects the Rochdale Canal with the Mersey and Irwell Navigation, near the Old Quay, all the navigations of Yorkshire, Derbyshire. (heehire, Staffordshire, \&ce, will have a direct communication with the Bolton and Bury Canal. with the additional advantage of using the Mersey and Irvell Navigration (which is decper, Wider, and aeveral miles shorter than any other line,) to Warrington, St. Melen's, Runcorn. Liverpool, \&cc. The Junction Canal has the adrantage of double locks, which will considerably facilitate the passing of vessels from the Rochdale Canal, thereby avoiding an inconvenience which las hitherto caused serious delay. The tunnel, which is short, is well lighted with gas every 20 yards; there is also a towing path the whole lengith, and, for the convenience of versels using this live, men will be in realiness, if required, for the purpose of hauling them, and assating them through the locks, for which a small charge will be made. The ceremonies connected with the opening, we understand, passed off in the most satisfiactory mander. - Manchester ddeertisar.

Susapx.-During the summer, a great improvement has been offected at Bines Bridge, on the Horsham and Steyning turnpike road, weder the superintendence of Mr. Jesse Heatb, surveyor to the trust. The appronches have been raised nearly to a level with the crown of the bridge, and it is anticipated that the heaviest floods will not reach the surface of the road, whereas they formerly rendered it utterly impassable. It is, however, fearful that the waterway (only 24 feet) through the now embanknent, will not be found sufficient.-R. S.

PROGMTM: OF RUTVTAFB.

London and Brighton Railwoy.-The Shoreham Branch of the London and Brighton Raitway in now advanced within three quarters of a mile of Shorehas, and the work is proceeding with great dispatch. At the Brighton end the permament riils are laid down to the entrance of the tunnel; the tupnel itself is completed, and we are and horised to state that the engine will make her frat journey through it, wether permitting, on Monday next,-Brighton Gazette, Thursday, 2lst ult.

Stockport Viaduct. Manchester and Leeds Ralwoay.-Bight of the twenty. two centres for the arches of this stupendous andartaking being now formed, and five of them being turned and completed, the work of strikiag the centres has been commenced, in order that the timber may be made available for the contimation of the viaduct, as the arch over Heaton Lade (the 94) will be formed from the timber of the firat principal arch. The first stone of the pier of the river arch (the 12th) on the Cheshire side is expected to be laid next week-that on the Lancashire side being neerls completed.Manchester Guardian.

Great Heaters Reinoay.-The works on this line noar Chippenhem, are adrancing rupidly, and the line in progress now exteads from the mouth of the Box Tunnel at Pockeridge ncarly to Christian Malford. The changes in the height and level of the country, canse, in this distance, every possible change in the form of the hine, from embankmenta of 60 feet to cuttinga of so great a depth.-Bristol Jrurnah.

Bristol and Ereter Railway.-The contract for building the two atoee bridges near Pile Hill, for this railway, has been taken by Meara. Pechard and George Hill, masoas, Temple-street, Bristol. This will complete the masonry between Bristol and Bridgewater; and as the temders are now ed. vertised for laying the permanent rails, the time cannot be far distart when this part of the line vill be opened to the public.-Bath and Chedtenbas Gazelle.

Eastern Cowsties Roihoay.-Two iron bridges have, within the lept few days, been thrown over two roads at the London end of the railway; obe over the Globe road, and the other over Ifand-atreet. It is now atid than the line will be operied to Brick-lare, near Whitechapel church, about Chrintmas. Some alarm was created on Priday eveming, in consequence of the non-arrival of the train from Romford for half an hour after the time. The delay was occasioned, it appears, by a failure in a new engine; but heyood the loss of time no accident vecurred. A settlement hat taken plece, it seems, in the new bridge over Dog-lane, Romford, which will render it necessary to rebuild a portion of it.-Chelmford Chronicle.

NRTV OETURORESA, Ec.

Susaey.-The new Chapel of ease, in Si. Leonard's Forest, in the parreh of Lower Beeding, was consperated on the IOth of October. It is a ueat, plaith building in the early Inglish style, (of about the 13th century) w bich in weil suited to the locality. It contains somerrhat upwards of 200 sittings, It is due to the good taste of the Dowager Marchioness of Northampton and Lady Filizabeth Dickens, that the trees on the soath side of the chapel bave been cleared away, so as to affurd a more pieturesque view from the Brighton road, distant about half a mile.- The new Church at Plummer's phin in the same parish, and the parsonage house, are approaching completion, and will, when finished, afford some of the best specimens of work in our native sand-stone.-R.S.

Horsham. -The ground is staked out for the erection of the now Chapel of ease in this town. The stone-pit which has been opened near the upot turna out favourably, blocks being now procured from two tons downwards.-R.S.

Greanock.-A new Cburch is erecting in Greenock in the Italann mite. Ileight of the spire 180 feet, estimate alout $\mathbf{4 7 0 0 0}$. Mr. David Comin, of Edinburgh, is the architect.

Leeds.-The parish Church of this town is slated, and the tower carsied up to the under side of the clock dial, about 70 feet. It is entirely buite of andstone, in the Gothic style of the latier end of the 14 th century, or trasuition from decorated to perpendicular; the nave and chancel are thrown open, and are 28 fect wide in the clear, 47 feet high, and 160 feet long tugetber. Near the centre is a tranmept 22 fect wide, terminating with a norih transept tower facing the street; the side aisles are 16 feet wide and 35 feet high, estending from cast to west, and an addational north aisle forms ante chapels east and west of the tower; the plan is that of the old church, which was taken down last year. The altar will he raised five feet above the foor of the body, rising in three fights of steps; the whole breadith of the church is about 65 feet, or including the ante-chapels, 85 feet. The tower is 27 fet square, and 130 feet high. It is richly pinclled, and the sreathings over the windows are canopied and crocketted. The total cost, warmed and fittel up Hith gas and all necessary furniture, will be about $£ 19,650$. Archite α, H Dennis Chantrell, F.R.I.B.A.

Torkshire,-A new church is about to be built at Middleton, ncar leeds, of stone found on the spot, to accommodate 500 persons. It is a plain Flemish country church in form, and will have a goind effect and charactef at a distance. The windows are plain lancet, and it has a square tower with shelvings, and an octagon spire. Total cost alout 8001 . R. Dennis Chantrell, Architect.

Yorkshire.-Puole Chapel, near Otley, has been taken down and enlarged. The old building contained 100 sittings, the new building 200 sitturgs, lhas lancet coupled windows, buttresses, square tower and spire, and cost 330 . It is built of branched sandstone from Oiley Chevin Side, (millatone grit), and is covered with slate.- \mathbf{R}. Deunis, Chantrell, Arehitcet.

Mancherter.-On Frulay, OcL 24, the first atone was laid of a mew chureb. which is about to be erected by subscription, in Wivery Serret, Engat Anowts in the centre of ope of the moet dencoly populated distriets in the totit The buiding will be a very neat edifice in the Norman atyla. The noverip. tion amounts to $£ 2,000$, and is rapidly incressing. It is interded that thin edifice shall accommedate about 1500 persons ; one third of the sitring ere o be free.

Birmingham. Layyag the Corner-stowe of St. Chad's Church.-The foundation stone of the Reman Catholic Church in Bath Street, was laid with great solemnity on Tueaday, 29th ult., according to the form preseribed by the Homan Ciatholic Church. Owing to the irregularity and declivity of the ground, Mr. Pugin, the architect, deemed it necessary to erect, under the great church, a crypt for the interment of the dead, connceted with which is a martuary chapel, where service for the dead will bo performed. The plan of the superstncture will be, internally, cruciform ; consisting of a nave, transept, aisles, and choir, at the entrance of which will be constructed an open screen, usually termed the rood loft. The space between this and the sanctuary will be filled with ancient stalls. brought from Cologne, of exquisite carving, in the style of the $13 t h$ cantury. The high altar will be in the ancient triptic form, and will be entirely decorated in the same pure and beautiful style of architecture. The windows, which will terminate the apsis of the choir, will be filled with rich stained glass, the munificent gift of the Earl of Shrewsbury. The church will altogether contain five altars; one in the chapel of the Blessed Virgin, two at the entrance of the choir, the high altar, and one in St. Peter's crypt.-Mfidland Counties Herald.
St. Helen's $-0 n$ Tuesday, 8 th Oct., two circumstances of importance to the improving and prosperous town of St. Helen's took place-the consecration of new church and the opening of a new Town Hall. The buildings are such as reftect the highest credit on the architects, Measra A. \& G. Williams, of Tarlton-sireet, Liverpool, and besides being useful, are really ornamental. The Town Hall is situated in the new market place. The elevation is in the modern Italian style. The front is to the market square, and has a rusticated basement, supportang in the centre a Corinthian portico, over which is a ballustrade ; the entablature of the centre is beautifully enricheri, whilst the corvice of the wings is plain and massive, and supported on brackets. The ground floor is occupied by various offices. In the centre is a handsome entrance, and a atone staircase, which leads to the principal floor, contaning a newa room, 28 feet by 26 feet, and a magistrate's private examination-room The court room is remarkably spacious and neat. It is 65 feet long, 36 feet mide, and 22 feet high, decorated with pilasters, and a panelled and enriched ceiling, through which light is introduced, mellowed by passing through ground and stained glass. The room is ventilated by means of scroll-work pancls between the pilasters, which may be closed or opened by wires and cranks worked in the magistrate's retiring-room. The contract for the building amounted to $£ 3000$, Mr. Morrison being the contractor. -The church is in the early Engligh Gothic, the style of architecture which prevailed in lingland at the latter end of the 12 th and the early part of the 13 th centuries, and in the form of a Latin cross. The principal entrances are in the transepts, through deeply recessed arches, and cannecterl by a spacious aisle. The galleries extend only across the west end and the transept. There is a square tower, 78 feet high, which has long lancet windown, to give light to the gallery stairs. The whole is ornamented by gables and pinnacclea. The contract for the church was about $£ 3500$. -Wigan Gazette.

FUATIO BULmDIECA, enc.

Aberdeen.-A new market is sbout to be erected in this town under the directions of Mr. Archibald Simpton, Architect.
Glasgow.-A new theatre is erecting in this city, from designs by Mr. William Spence. Arehitect ; also a new club house in the Italian style, designed by Mr. David Hamilton, Architect. The Custom House is nearly completed, from designs by Mr. Taylor, of London.
Bdtuburgh.-A new Museum for the Highland Society fo just completed, from designs by Mr. John Henderson, architect, in the style of Elizabeth and James 1.
Liverpoot.-On the 24th ult. the foundation stone was laidiof a new Institution forthe Deaf and Dumb, to be erected from designs of Messra. Cunningham and Holme, architects, on the site of the old Botanic Gardens, Oxford Street. The building is to be of a plain Grecian character, the entrance front being rolieved by a solid projection in the centre, surmounted by a moulded cornice and pediment. A parapet or attic will be carried round the principal fronts, and effectually hide the roof of the building. A portico of beautiful proportions, comprising two Ionic columns, in Antes, will form the entrance to the principal four, on encl side of which will be windows, with moulded architraves. The whole of the principal fronts are intended to be of white stone.

Woolwich.-We are happy to learn that the observatory, some time aince In contemplation, for the officers of the Royal Artillery and Fngineers. is now in course of immediste construction. The site chosen for the building is in the barrack-field, between the Repository and the Mortar Battery, on the right wing of the barracks.- Woolwich Advertiser.
Ireland. The Caledon Testimonial.-We are happy to learn that our townsman, Thoman J. Duff, Esq., has been the succesaful competitor for the premium offered for the best design for the Caladon testimonial. And when we mention that there were submittel in competition thirty-two plans; the $\mathrm{f} \mathbf{\mathrm { ct }}$ that Mr. Duff's obtained the preference, sufficiently attests the superior taste and ability of that gentlemsn. The approved design (wilis a sight of which we have been favonred) is a Grecian Doric column, placed on a stylobate or perlestal composed from Athenian remains. The pancls on the sides are to be omamented with appropriate sculpurre, executed in basso relieno, and having saitable inscriptions. The column is to be fluted, and will measure upw ards of 54 feet in height from its inferior diameter, and is to be surmounted by a cfppus, on which will be placed the statae of the kate lamented nobieman, hatited m his parlimentary robes, decoraled with the collar of the order of St. Patrick, and other insignia. The sty lobate is meated on a broed hasement, with aurroundtag steps, termiating at the angies by dwarf pedestals sup-
porting lions couchant. Including the steps, basement, Rec., the column, when finished, will be nearly 100 feet in heiglit. The whole is to be constructeal of white freestone, proeured from a quarry in the neighbourhood of Caledon.Newry Enaminer.

MITOEATANTA.

A New Mathematical Instaument for the purpose of acertaining terrestrial distances and heights, has been invented by Mr. T. Cheffield, of this town. "It is very neat, and so portable that it may be carried in the pocket. It is, moreover, very simple in its application; merely requiring its sighta-after some necessary adjustment at two convenient stations whose distance has been measured-to be directed towards the object; and then a divided index or haudle points out, upon the geometrical principle of aimilar triangles, how many times the distances of the object from the stations contains the measured base linc. It is also furnished with two levels for placing it either in the borizontal or vertical plaue."-Carlisle Jowrnal.

A New Aghicultuaal Machine.--"A Porest Farmer," in a Nottingham paper, callis the attention of agriculturists to the newly invented machine of Messrs. Winrow and Carey, for the destruction of seeds, weeds, and insects on land, by burning the surface. He says-" It destroya animal and this regetable matter, consequcntly makes manure ; and to use the machine at time of the year, would destroy the slugs and their eggs, which would be of the greatest importance to the farmer. My mind upon this subject was, like many others, hard of belief, until the ploughing match at Ramsdale Farms on the 15th ult., when I was astonished to see this machine at work : althougb it rained fast and the grass was very wet, the machine did its work in excellent style. Mr. Winrow informed nie that be could make a light portable machine, to be worked by two men without horses, that would burn about two acrea per day,-say one acre per day : paring and burning would cost 16.68 . per acre by spade; so by this machine, supposing two men at 3s. each per day, and coal 3s. per day, there would be a saving of 178. per acre to the farmer, besides 70 per cent. in manure.

Russian Observatory.-The grand observatory at Pulkhova, near St. Petersburgh, has been opened.

Bags of Wind for rairing Veasels.-We wituessed an interesting experiment this forenoon on board the revenue cutter Hamilton, Captain Sturgis, which was intonded to illustrate the practicability of raising a vessel by means of cylindrical bags placed under her bottom, and filled with aimospheric air. The bags were each of large size, capable of containing 2,500 cubie feet of air. They were confined by means of ropes passing under the keel, and afterwards filled by two forcing-pumps propelling the air througls tubes into the cylindrical foats. The bays were made of threc parts of stout cotion canvesa, made air and water tight by means of India-rubber, and were prepared by Ma . Howard, of Roxbury, under the direction of the inventor, Mr. M•Kean The cutter w'as raised considerably by this process. but the floats were made for a larger vessel, and, when inflated, a large portion of them rose alove the water. The utility of this apparatus, thus adapting a well-known principle in pneumatics to 3 practical use, nust be obvious to every one. It will enable vessels with large draughts of water to pass over barred harbours, as New Orleans, Mobile, Ocracoke Inlet. Xc., without lightening. It may be used also with advantage to various other purposes. as raising a vessel sunk in several frthoms of water, \&c.-Boston Mercantile Journal.-This plan of ralsing sunken vessels has been known in England several years.-Ed. C. E. and A. Journal.

Remains of a Cetacea.-M. Laubepin has announced to the Academy of Sciencea, that he has found in Louisiana the fossil head of a cetaceous snimal.

A Ane suit of armour has recently been discovered in an old manor-hoase in the Gienne, which antiguaries declare to have belonged to an officer who fought at the battle of Poicticrs. It is to be sent to the Muste d'Artillerte of Parim

granted in england tbom Slat october to 26th november, 1839.
Stiphen Gzorge Dorday, of Blackman-street, Borough, Chemist, for "certain inmprovementr in the mantyfacture of gelatine size and ghce."-Sealed October 31 ; ix montha for onrolment.

David Grefnwood, of Liverpool, millight, and William Picerraing, the mame place, merchant, for "improvements in ergines for obtaining power." -November 2 ; six months.

Samuel Morand, of Manchester, merchant, for "inprovements in machinery for stretching fabrics."-November 2; six months.

Theobald Wahl, of George-yard, Lombard-atreet, engincer, for "improvements in boilers applicable to locomotive and ofter enyines."-November 2; six month.

Apecander Anavs Croln, of Greenwich, manufacturing chemist, for "inprovements in the mannfactwre of gan, and in re-converting the salle wsed in purifying gas, and improvements in the manyfacture of ammomiacab salfo."-November 2; six months.

Jorn Cutren, of Margate, coal merchant, for "impropenowts in gerdew pote."-November 2; six months.

William Mannis Taylor, of Bridge-street, Blackfriar's, Esq., for "improvements in oltaining power by means of electro-magnetism."-November 2 ; six months.

Frederick Augurtus Glover, of Chariton, near Dover, clerk, for "an ingroed instrument for the measurement of angles."-November 2; six months.

Hexry Vannzr Cocks, of Birminghem, iron founder, for "certain imnprowements in stoves and furnaces."-November 2; six months.
Heney Crostey, of Hooper-square, Leman-street, civil engineer, for " an improved batfery, or arrangement of apparatus for the marrufacture of suyar."-November 7; four months.
Jangs Murdoch, of Great C'ambridge-street, Hackney-road, mechanical ilraftsman, for " certain impromements in marine steam-engines."-November ; six months.
Thomas Yates, of Bolton-le-Moors, manufacturer, for "certain improve. ments in the construction of looms for reaving, and also the application of the same in orler to produce certain description of goode or fabrics by steam or other porcer."-November 7; six months.
Georgr Hanson, of Huddersfield, plumber and glazier, for "certain im. provements in the construction of cocks or taps, for draving off fluids."November 7; six months.

Tifomas Whitfley and John Whitrley, of Stapleford, Nottingham, lace makers, for "improvements in warp machimery.-November 7; six months.

John Thomas Ladrente Lamy Goddard, of Christopher-street, Fins-bury-square, merchant, for "improvements in looms for weaping, to be worked by steam or other power." Communicated by a foreigner residing abroad.November 7; six months.
John Jones, of Westfield-place, Sheffield, for "an improved table knife." -November 7; six months.
Edmond Moody, of Maiden Bradley, Wilts, yeoman, for " improvements in machinery for proparing turnips, carrots, parmips, potatoes, and all other bulbous roots, as food for animale."-November 7; six months.
Thomas Edmondson, of Manchester, clerk, for "cerfain improvements in printing presses."-November 9 ; six months.
James White, of Lambeth, engineer, for "improventexts in machinery for moulding clay to form of bricks and tiles, and aloo for compounding and moulding other substances."-November 12 ; six months.
William Cbesterman, of Bufford, Oxford, engineer, for "improvements in sfoves."-November 12; six months.
Moses Pools, of Lincoln's Inn, gentleman, for "improvements in making nails, bolts, and opikes." Communicated by a foreigner residing abroad.November 12 ; six months.

Moses Poole, of Lincoln's Inn, gentleman, for "improveneents in looms for weaving." Communicated by a foreigner residing abroad.-November 12; six montbs.
William Wisfman, of George-yard, Lombard-atreet, merchant, for " improvemenfs in the mamufacture of alum." oommunicated by a foreigner residing abroad.-November 16 ; six months.

John Burn Smith, of Salford, Manchester, cotion spinner, for "certain improvements in machinery for preparing, roving, pinning, and lwisting coltons, and other fibrows substances."-November 16 ; six months.

Miles Berry, of Chancery-laue, patent agent, for "an invention or discovery, by which certain textile or fibrous plants are rendered applicable to making paper, and spinning into yarm, and weaving into cloth, in place of flax, hemp, cottom, and other fibrons materials, commonly used for such purpose." Oommnnicated by a foreigner residing abroad.-November 19 ; six months.

Francis Womasle Stevens, of Chigwell, Essex, schoolmaster, for "cerlain improvements in apparatus for propelling boats and other vessels on water."-November 19 ; six months.
John Parsons, of the Stag Tavern, Pulham-road, victualler, for "improbements in prebenting and coring smokey chimneys.-November 21; six months.
Robert Hawthorn and William Hawthorn, of Newcastle-uponTyne, civil engineers, for "certain improbements in locomotive and other steam-engines, in regpect of the boilers, and conveying the steam therefrom to the cylinders."-November 21 ; six months.

Joan Param of Middlewich, (hester, gentleman, for "cerlain impropements in the mode of constructing, applying, and using railway switches, for comeneting differems lines of raihony, or two diatiact railways, and for passing locomotive, stean, and other engines, and railway carriages, and waggonn, from the one to the other of med raibays, and for certain apparatus connected therewilh."-November 21 ; six months.

Pirrre Auguste Ducote, of Saint Martin's-lane, for "certain improwements in printing china, porcelain, earthenware, and other like maren, and for printing on paper, calicoes, silke, woollen, oil-cioth, leather, and other fabricka, and for an improved material to be used in priating."November 21 ; six months.
Williay Danbury Holmes, of Lambeth-square, Surrey, civil engiseet, for "certain improvements in the construction of iros ships, boats, and other vessels, and abo in means for preventing the same from foundering. also in the application of the same improsements, or parts thereof, to other vessels."-November 23 ; six months.

John Hunt, of Greenwich, engincer, for "an improved method of propelling and steering vessels."-Novemher 23 ; six months.

Richaqd Ilornsley, of Spittlegate, Lincoln, machine maker, for "en improved machine for drilliny land and sowing grain and seeds of diffrent descriptions, either with or without bone, or other manure."-November 25 ; six months.
Joyn Sutton, of John-street, Iambeth, Surrey, machinist, for "imppropements in obtaining power."-November 23; nix morths.

James Craig, of Newbattle Paper Mill, Edinburgh, for "an improsement or improrements in the machinery for the mawufactwring paper."November 25 ; six months.

Arthor Collen, of Stoke, by Mayland, Suffolk, plumber, for "insprovements in pumps."-November 25 ; six months.

Janes Matiey, of Manohester, Gentleman, for "improvemenfy in apparatus or instruments for the culting of collon or uricks of lomps. Communicated by a foreigner residing abroad.-November 25 ; six months.

Grorge Rennie, of IIolland-street, Mackfriar's, civil engineer, for "eertain improved methods of propelligg vespeh." \rightarrow November 26 ; six months.

Books receiped too late for repiew.-Wealc's work on Bridges, Parts Fand V'. in one, contain some heautiful engravings, among which is the Wellestey Bridgp, at Limerick, and the Friburgh Suspension Bridge; the Letter-press ceesists of useful practical information on the foundation of bridges, which we shall nolice mext month.

Mr. Weale has edited and published a mork on Orwamental Gates, Ladges, $\$$
The Companion to the Almarac contains several intercsting Papers and Esgrasings counected wilh architecture.

We lave received Euclid's Elements, by W. D. Cooley, A B., from a frat ivspection, it appears to be a uell arrauged and condensed elewpentary work raitable for the student.
We have received from Edinburgh Mr. Walker's and Mr. Cubitt's repart an the Leith Harbour, which will be noticed nest mowth.

Several communications we have been obliged to condense, and ofhert we harr postpozed, in consequence of the Preface, Index, fore. occupying 10 pares of the Joursanl, and it was not our wish to increase the size, as that wanld hone alus inereased the price.

For the same reason we have been obliged to postpone the lables on Railmey Curves, which are completed, and evill appear in our nrat.
To Mr. Sheppard toe are obliged for his offer, he will perceive that tre have its tables prepared, we shall be glad to hear from him on some other subject.

To our new Correspondent at Glasgou, we have to retwrn our thomks, and met he will continue to furnish us with similar information. We showld like to herr a few more particulars relative to the general character of the bwildiags and oth r public works.

Stcam Vessels Report.-In answer 10 nusnerows correspondewts and enginerts we beg to state that we have not deserted the camec, "we are lying on our aars.". until the weeting of Parliamest, when we shall be prepared, if mecessary, to fight the battle; in the mean time, toe shall be glad to rrcive any information on ther subject, particularly from steam boat builders and engineers.

Communications are requested to be addressed to "The Falitor of the Civil Finginecr and Architect's Joumal," No. 11, Parliament Street, Freatomenster. or to Mr. Groombridge, Panyer Alley, Puternoster Row; if by past, to be di. rected to the former place; if by parcel, to be directed to the meareat of the are places where the coach arrives at in London, as use are frequently put to the expence of one or two shillings for the purternge only, of a very maill pareol.
Books for revirw must be sent early in the month, communiontions on or Lier the 20th (if with wood-cuts, carlier'), and advertisementa on or bofore the 25 bh instant.
Tife firgt Volume miy de uad, bound in cloth and lebtidemp in oold pace 17s.

- The Sfcond Volume mat also be uad, Price 20e.

I N D E X.

[The abbreviation rev. indicates a book reviewed.]

Academy, Ropal, animadversions on, ly Vindex, 367. Accident on the Eastern Counties railway, inquest, 273.

Acoustics, necessity of investigations on, 392.
Actæon steam ship, papier maché ornameuts for, 20.
Alarm-gong, invented ly Capt. G. Suith, 309.
Alkaline, formation of, i 50.
Ancients, pullic buildings of, 215 ; polychromy, 220.
Ancient monuments of Rome, arehitectural restorations of, 103.
Antiquarian Society, 471.
Antiquities, 29, 115, 238, 357.
Apparatus to take un carriages whilst at full speed,
Curtis's patent, 448.

- For making signals, 448.

Arago, life of Watt hy, 399, 407.
Arches, gothic, method of striking, 98.

- - skew, 164.
_——Bland's experimental essays on, 309.
Archimedes steam-boat, explosion on boarr, 273.
Armstrong on steam-engine boilers, rev., 390.
Are de l'Etoile, Paris, described, with cuts, 159.
Arehitects, Koyal Institute of, mectings and proceedings of, 21, 75, 112, 147. 192, 226, 268, 312.
——Report of council, 226.
- Ireland, 442, 470.

Architectural Society, meetings and proceedings, 22, 75, 112, 149, 194, 269.
————Manchester, 149, 312.
Architects:-Davies, 1 ; Pritelett, Wallworth, Rickmann and Hussey, 28 ; Wallace, 34 ; Salvin, Burn, 39; White, 77 ; Hailton, 217 ; Yaunet, $i b$.; Kendall, Donthorn, Dyce, ib.; Lamb, 218; Hill, T. H. Wyatt, Ebbels, 237 ; Inwood and Chifton,

Messis. Atkinson, 277; D. Burton, Elmes, 317; Tattersall, 357; Wikins, 388; Wightwick, 397; Ebbels, Thomas, 445; Chantrell, 476; Pugin, 477; A. \& G. Williams, 477, J. Duff, 477.

Architecture of the middle ages, Prench \& English, chronology of, 193.

Application, \&c., of various atyles, 247. Claracter and design on, 365.
Arithmetical balance, or new calculating machine, 389.

Artesian wells, 145,186 ; at Paris, 339.
Artista' conversazioné, 22.
Asiatic Society, 157.
Association, British, meeting of, at Birmingham, 313.
Aspects and prospects, 40 ; remarks on, 255.
Athenæum at Derby, described, 31.
Augsburg, improvemeuts at, 15.
Austria, restoration of gothic buildings, 40.
Avery's rotary steam-engine, 257.
Bald, W., report on the river Clyde, 382.
Bann reservoirs. Ireland, 21.
Barker's mill, improvement of, 449.
Barometer, a compenseting, account of, 194.
Bath, Qucen's College, 445 ; Mechanics' Inatitute, ib.; other buildings, \&cc. 428.
Belgium, public works in, 191.
Bennett's new steam-engine, 44.
Bernard's Arithmetical Perspective, reo., 349.
Berthier, M.P., analysis of Bituminous Minerals, 339.
Biddell's, C., experiments on iron-built ships, for correcting the compasa, 269.
Birmingham, new church, by Mr. Thomas, 445. Meeting of British Association, 313. New buildings, \&cc., at, 427.
Bitumen, Therretical and Practical Review on, 191. Bituminous Minerals, analysis of, 339 .
Bland, Experimental Essays on Arclies, ree., 309.

Blasting rocks by aid of galvinism, 177.

- J. J. on, 256.

Blocks for railways, 226.
Boilers of the Victoria steam-ship, 322. Of Steam-engines, Armitrong on, rew., 390.
Bourne's Views of london and Birminghan Hailway, reo.. 352.
Box Tunnel, Great Western Railway, 314.
Bradshaw's Map of Railways, ree., 35.
Brick and Tile Machine, 254.
1rick-making, mechanical, 371.

- Duties, new Act of Parliament relative to,

Bride's, St., Fleet-street, 220
Bridges:-Pont du Carrousel, 79.
Bow bridge, 119.
Hythe lridge, failure of, 191.
———Hann and llosking's Theory and Practice of, res., 260.
-_Buck on Oblique, rev., 309.
Bristol, improvements and huildings at, 427.
British Museum, early Greek sculpture at, 179, 256,
vasc room, 385; Etruscan scalpture, 428; the
Egina Marhles, 458 ; the Phigalian Marbles, 459.
British Association, meeting of at Birmingham, 313; papers read at, 421.
' British Qucen' steam-vessel, 274.
Britton's Architectural Dictionary, 172.
Brouglam, Lord, on the Compositiou of Water, 417.
Bruff, on Railway Curves, 139.
Brunel, J. K., report on Great Western Railway, 53, second ditto, 69.
Brussels, new buildings, \&c. at, 191.
Buck on Oblique Bridges, rew., 309.
Bude light at the House of Commons, 223. Accident, 474.
Bute Decks, at Cardiff, opening of, 444, 468.
Bunnett and Corpe's patent concentric steam-engine, 253, 370, 441.
Burton, D., Club Chambers, Regent-street, 319.
Buildings, improvements in, 361 .
Buildings, tables of:
—— London, 187°.
——Munich, 426.
Buildings, descriptions of :

- Synagogue, Great St. Helen's, with cuts, 1 .
_ High Cliffe, 4.
- Athenrum, Derby, cuts, 31. - Harlarton, 39.
_- London and Westminster Bank, 40.
—— Pont du Carrousel, Paris, $19 \mathrm{cufs}, 79$.
- Bow Bridge, 4 cuts, 119.
_ Arc de l'Etoile, Paris, 4 cu/g, 159.
- Proposed Nelson Column, 279.

Club Chambers, Regent-street, 319.
Burstall on peat fuel, 338.
Patent railway buffer and elastic drag, 306 .
Cabonei, $\mathbf{1} .$, architect, death, 118.
Calculating machine, new, 389.
Caledonian Canal, the, 142 ; Walker's report on, 174, 221.
Caledonian testimonial, Ireland, 477.
Canals:-Caledonian, 142, 174, 221. Crinan, 221.
——— in France, 174.
——— Locomotive power applied to, 393.
Candidus's Note Book, Pasc. I., 37 ; II., 82 ; III., 128; IV., 163 ; V., 205 ; VI., 247 ; VII., 305 ; VIII., 327 ; IX., 364 ; X., 424 ; XI., 455. on the Daguerrotype, 366 .
Capillary attraction, lubrication by, 142.

Carburetted hydrogen gas, new mode of preparing, 339.

Carlisle, Cornish steam-engine at, 258.
Cast-iron gutters for roofs, 363.
Carriage safety, 465.
Carvings in wood, 118.
Cement, on arches built in, 44. Martin's patent, 100.
Cerography, new mode of engraving, 345.
Chalk excavations, S. LIughes on, 206.
Charlton, l'., on railway curves, 139.
Charters, Capt., letter to I,yell, 151.
Chateaunenf, A., design for Royal Exchange, 441.
Chemical equivalents, 112.
Chelsea Waterworks, 340.
Chester, ancient chapel discovered at, 238.
Chronology of Prench and English medeval architecture, 193.
Churches, New-
Birmingham, 28, 445.
St. (had, a Catholic church, 477.
Brighton, 28.
Coventry, 237.
Clydesdale, 237.
Dunkinfiell, 35%.
Greenock, 476.
Hoxton, Christ Church, 317
Islington, St. Mary's, 277
Isle of Portland, 356.
Ketley, 356.
Leeds, 476.
Liverpool, Scotch church, 277.
Madley, 357.
Manchester, Unitarian chapel, 397. Great Ancoats, 476.
Meltham Mills, 28.
Plummers Plain, Sussex, 476.
Potteries, 356.
Rye, 397.
Sibford, 237.
St. Helen's, Lancaster, 477.
St. Saviour's, Borough, 317.
Southwark, 445.
Sand Hutton, 445.
St. Leonard's Poreat, chapel, 477.
Tipton, 237.
Tynemouth, 397.
West Bromwich, 237.
Wolverhampton, 237.
Wetherby, 277.
Walsall, 397.
Windror, Old, 445.
Yorkshire, Middlcton, 476.
Poole chapel, 476.
Circular railway curres, 140.
Claridge's patent Asphalte, 233.
Clay, W. N., new mode of producing wrought iron
from the ore, 17.
Cicognara. Pabbriche di Venexia, 8.
Civil Bngineern' College, 354.
Claxton's Hints to Mechanics, rev., 34.
Cloth-making without apinning or weaving, 308.
Clougb, description of a fiouting, 147.
Club Chambers, Regent-atreet, with cutr, 319.
Clyde, river, report on, 382 .
Coffre Dam at Weatminster Bridge, 311.
at St. Katharine's Dock, 430.
Coke and Peat, 46%.
Colcheater, failure of the Hythe Bridge at, 191.
Coquet, river, improvements at mouth of, 337.
Cormish ligh pressure ateam-engine, 258.
Cornwall, Mining School, 152.

Companion to Almanac, rev., 4.
Competition designs, 454.
$\overline{\text { Comper the Royal Exchange, } 473 .}$
Competitions, remarks on, by E. B. Lamb, 211.
Cottage window stay-bar, 361 .
Counter remarks, 458.
Crace, Mr., paper on the history of paper-hangings, 99, 140 .
——his Studio, 285.
Crank engines, economy of working, 146.
Cresy's Treatise on Bridge-building, 392.
Crinan canal, 221.
Curtis's Railway improvements, 122, 239, 436; 447.

Curves, Railway, Ely on, 138 ; Assistant Engineer, 139 ; P. Breff, ib.; F. Charlton, ib.; Simms renarks on, 245, 98, 202, 243, 254, 337.
Daguerrotype, the, 321,-Candidus on, 366.
Dams, Obstruction of strcams by, 333.
Day on Construction of Railroads, ret., 392.
Derby, Atheneum at, 31.
Design Act, the, 310.
Desigus, architectural, Royal Academy, 216.
—_ Nelson Memorial, 133 : author's description of 290.
\longrightarrow Royal Exchange, 440.
Deronshire and Conwall, rocks of 229.
Dibdin's Northern Tour, ree., 4.
Dictionary, Architectural, Stuart's, 44; Britton's, 172.

Diving Bell, by Col. Pasley, 469.
Donaldson, T. L., design for Royal Exchange, 441 .
Door stay-bar, 362.
Dover, railway-works near, 45.
Draining land by steam-power, 341.
Dumfries, hurricme at, 113.
Dynamometer, 138.
Earthquake on the Island of St. Mary, 112.
Edinburgh, Scliool of Engineering at, 86 .
EKzabethan architecture, 391 .
Ely, J., on railway curves, 138.
Encroachments and Recessions of the Sea, 464.
Engine smoke, invention for consumption of, 345.
Engineering, school of, at Edinburgl, 86.
Works, 27, $76,117,157,237,315,355$, 395, 444, 476.
Engraving, new mode of, 345 .
Equitatomic By means of voltaic electricity, 465.
Equiłatomic compound, new, 228.
Ericsson's stcam-boat propeller, 115.
Etruscan Sculpture, British Museum, 428.
Excarations and embankments, setting out slopes
of, 18.
Excavator Locomotive, 468.
Exhibition, desigus Royal Academy, 216.
—_ Designs for Nelson Memorial, 133, 290. Royal Exchange, 440.
223. Manufactures and works of art, Paris,
223.

Falling Bodies, momentum of, 18.
Filtering apparatus, Jonville's, 339.
Fine Arts in Italy, 388.
P- in Greece, 461.
Fire bars, Miller's patent, 468.
Fire-escape, 97.
Flexible water main at Glasgow, 451.
Floating Harbours, 172.
Floating Cloagh, description of, 147.
Fluids, incompressible, equilibrium of, 353.
Foreign intelligence, 28, 77, 116, 197, 237.
Foreign Monthly Review. French decorations and
shops, 259 ; furniture and manufacturea, 369.
Fossil shells, Capt. Bayfield's collection of, 228.
Francis on the Fine Arts in Greece, 46I.
Fuel, economy of, 180.

- New, for steam navigation, 421.

Galvanic Telcgraph, Great Wertern Reilway, 31.
Galvanism, mode of blasting rocks by aid of, 177.
Geological Society meetings, and papers, of, 151 .
Geology, phytical, researches in, by W. Hopkins,

150.

-R. Richardson's lectures on, as applied to architecture, 147, 192, 271, 336.
German Architecture, see Mwaich.
Ghent, new buildings at, 191.
Gibbon's Law of Dilapidations, rev., 2.
Glans, duty 0 D , case relative to, 76.,

Glenarm harbour, 82.
Godwin, G., Letter to Col Pasley, 18.
——Churches, 324.
———Architectural Tour in the Provinces, 426.
Gothic arches, method of striking, 98.
Gothic architecture, on the parallel styles and period of, in France and England, 193.
Gradients, table of, 460 .
Grauwacke or Transition system, in Somersct, \&c., 228.

Granton Pier, 356.
Greeks, polychroncy of, 220.
Grellier, W., design by, 217, first premium for Royal Exchange, 437.
Ground-rope apparatus, Curtis's patent, 447.
Gunpowder, method of firing, under water, 192.
Gutters for roof, cast-iron, 363.
Habershon's Ancient Half Timbered Houses, reo., 351, 439.
Ham, F., remarks on stcain power,
Harbours, Glenarm, 82 -plan for, at liastings, 85.
IIarlarton, Mr. Gregory's mansion at, account of, 39.
Hastings, proposed harbour it, 85.
liawkins, J. J., remarks on wooden pavement, 308.
Hawknlaw, J. report on Great Western Railwhy, 48.
Ilershel, Sir J., on photography, 150.
Hodgkinson, E., experiments to ascertain the strength of different species of wood, 422.
llogan's 'Pietn,' colossal group, 363.
Holbeach, sea-bank at, 450.
Hopper, Mr., letter on the Royal Exchange, 218 ;
remarks on Wellington Testimonial, 307.
Horticultural Society, 22.
Houses of Parliament, works at, 157 ; stone for
bailding, 331, 372, 419,-tenders for, 442.
Hughes, on the Steam Dredging Machine, 9.
Hull, proposed new dock at, 16.
Hydraulic gas-holder counter-balence, 201.
Hydrostatic Chain, 449.
Hydrostatic Jack, 436.
Improvements in buildings, 361.
Incorporated Church-building Society, 317.
Ipswich new dock at, 356.
Iron, on uge of, by R. E. Phillips, 11.
——Clay's new mode of producing, \&ec, 17.

- Works at Ihymney, deteription of, 147.

Jobbing, Government, 321.
Jones' Principles and Practice of Levelling, rev., 339.
Jonville's filtering apparatus, 339 .
Iron, experiments onp by Mr. Pairbairn,
Iron-trade, state and prospects of, 342 .
——Statues, 118.
-II Ilouses, 152.
Isolated Harbours of Refuge, 135.
Italy, Fine Arts in, 388.
Ivory, artificial, 345.
Katharine's, St., Dock, Telford's specification and drawings for entrance lock, \&c., $\mathbf{4 3 0 .}$
Kilsby Tunnel, 224.
Lamb, E. B., remarks on public competitions, 211 ; designs by, 218.
Lardner, Dr., on Railway Constants, 383.
Law Proceedings, 23, 75, 153, 233, 273.
Leeds', Illustrationa, Public Buildings, rev., 5.
_- Studies and Examples, rev., 262.
Lemon's, Sir C., Miniug School, Cornwall, 152.
Light-houses, construction of, on sands, 37.
Lighting of the House of Commons, with Bude lights, 223.
Lithographing Old Prints, new method of, 808.
Lack Gates, on framing witbout iron, 111.
——Description of a flonting Clough, 147.
A new plan of construction, 470.
Locomotive engines, wheels of, 44.
——On tubing of the boilers, 111 . of On the comparition between the powers of, 146 .

On the prining of, 455.
Locomotive excavator, 468.
London and Birmingham Railroad, 19, 252.
and Weatminster Bank, described, 40.
—— Illustrations of Public Buildings, rev., 5 .
Table of Pablic Buildings, 187.
Loudon's Suburban Gardener, rev., 288.
Lowther Arcade, critique on, 83.

L Luror Obeliak, the, 222.
Lyell, Mr., on fosail shells, \&c., 228; on the tertiver deposits in Norfolk and Suffolt, 229.
Machine for cleaning, \&ec., fronts of houses, 97.
\longrightarrow Sawing, for cutting railway bars, 192.
Celculating, new, 389.
Macrao's patent hydranlic gas-holder, comater-
belance, 201.
Manchester, Unitarian Chapel at, by Barry, 897 ; general remark! on new buildings, \&ece, 426. - Architectural Society, 149, 312.

Manchester and Salford eamel openiag,
Manufacture of paper-hanging, important invention in, 344.
Marine railway slip, 389.
Martin's patent cement, 100.
Mayo, survey and map of, 113.
Mersey, changes andimprovements in the ambomebere of, 421.
Meteoric atone, account of fall of, 194, 195.
Metropolis, public statues in, 218.
Plan for supplying with spring water, 411 . Miller's patent fire bars, 468 .
Moders School of Engdish Architecture, nev., 262.
Momentum of Palling Bodies, 18, 43.
Monacale, Cathedral of, 440.
Montrose, Wet Dock, 98; Suspension Brilge, 111. Monumenta, National, 15.
Mornsy, A., on general theory of the steam-engine, 128, 200, 423.
Mowing machine, 345.
Munich, buildinga at, 425 ; Table of Ditto, 426.
Museum, British, wee Brifioh.

- Soancan, managemoat of exposed, 13; critique on, 304.
National Monuments, 15.
Nelson Monument, exhibition of designs and models, 133 ; second competition and exhibition, 290; meeting of committec; 309.
ditto, 169. letter on, by Omegn, 136; second

mittee, 280.

Oldham's sytem of warming Bank of Emgiand, ke, 96.

Omege on the Nelson Monument, 136.
Ouze Outfall Improvement, 467.
Oven, rousting and buking, plans, \&ce., of, 389.
Oxford Street, experimental paving in, 393, 474.
Panorema of Rome, \&cc., 135.
Painted glass window, by Hoadiey and Oldicid, 300. Paper, new kind of sentitive, 195.
Paper-hangings, history of, 99.
of, 344.
Palley, Col, on the Suppension Bridge at Montrose, 111; operations by, for blowing up the wrect of the Royal George, 392.
Pambour on the steam-ergine, 219 ; rev., 345.
Papier machée ornaments for Action iteane.Tessel. 20.

Paris, Pont du Cerrousel, 79.
——Are de I'Etofle, 159.
——architectarll tarte, 328.
Pershope, \&ce,
Parkes on stemm-boilers and stearn-engiace, men. 363. Parliamentary Proceedings, sesaion 1889, 349.
Patents, New, 30, 78, 118, 158, 198, 849, 27\%, 28. 358, 398, 446,
Paving, Amperimental, in Oxford 8trueq.
314. Act, 153.

Pavements, Roman, 357.
Pead, use of in manofacture of from patent, ib.
Peat and realo fuel, 145.
Penny Cyclopredie, art. "Lomat $\frac{5}{5}$
Pablic Buildings from, 185 ;
424.

Philomumens, remble by, Ner
Photography, 8ir J. Hermanti. rotype, 321 ; "Hitory ch
Plymouth Breakwater, IT
Pointing a charch steeplay if
Polychromy of the ancient ${ }^{\text {? }}$

Pont da Carroosel, Paris, described with cuts, 79.
Priming of locomotive hoilers, 455.
Prints, old, method of lithographing. 308.
Prussian railway law, 20.
Fublic Buildings and Iraprovemants, 28, 77, 277, 317, 356, 397, 446.
Pugir, W, Habershon's seply to hise hadinuetions, 351.

Qmarries, list of, examined for stone for New Hoases of Parliameat, 372.
Quarterly Review, peper from, on atglea of arehirecture, 247.
Queen's College, Bach, 44\%.
Quetclet on the calculations of probabilities, 144.
Railwars:-
Ayleshury (opening), 276.
Birmingham and Gloster, 26, 116, 137.
Birmingham and Derby, 275, 396.
Hackwall, 155.
Bolton ard Preaton, 237, 277.
Bristed and Exeter, 116, 355.
Chester and Crewe, 396.
Chester and Birkenhcad, 26, 197.
Croydon, 155, 275.
Cheltenbam and Great Western, 236.
Dundee and Arbroath, 275.
Eastern Comnties, 27, 116, 154, 197, 236, opening 275.
Elinburgli, Leith, \&c., 27.
Glasgow and Paisley, 236, 276, 313, 396, 44.
Glasgow and Ayr, 26, 236.
Great Western, 41, 47, 76, 197, 236, 276, 355.
Hall and Sclby, 196, 444.
London and Southampton, 197.
——and Southampton, 276.
———and Brighton, 26, 116, 197, 277.
Blisporth Birminghan Railway, works near Blisworth, 19; excavation, 252.
Lewes and Hastings, 26.
Liverpool and Manchester, 76, 355.
Manchester and Leeds, 26, 146, 237, 276, 313.

- and Birmingham, 26, 76, 155, 237, 277, 355, 396, 444.
Midland Counties, 355, 396, 444.
Newcastle and North Shields, 197, 277.
Preston and Longridge, 277.
- and Lancaster, 365, 396.

Sheffield and Rotherham, 197, 236.
Stockport Viaduct, 396.
S. Eastern, Dover, 76, 235.

York and North Midand, 276, 313, 355. Porigex:-
America, 116.
Austria, 27, 116.
Brunswick and Hariburg, 27.
Danube and Black Sea, 197.
Havre, 27, 197.
Philadelphia, 116.
Russia, 116.
Versailtes and St. Cloud, 116.
Railway bar, Tilghman's, 4 to.
Railway Constants, by Dr. Lardner, 383.
Railway Curves, setting out of, 13.
Railway points, 449.
Railways, conatruction of, in America, 1.16.

- on setting out widths, by H. Carr, 192.
ways, on the present mode of executing rail-

ways, by P. Wishaw, 192.

Society, 152.
——— Signal, Curtis's patent, 447.
Reilton, Wheel, 422.
Railton, Mr., deaign for the Nelson monument, 280.
Rain, impression of dropa of, on new red sandstone, 151.

Ralph Redivirus, No. 12, The Pantheon, Oxford Street, 8.

Reports, Irish railway commission, 39.
London and Brighton railway, 46.
Great Western ditto, 46.
Liverpool and Manchester, 75. Institute British Architects, 226.
—__ Institution of Civil Engincers, 111, 145,
192, 225, 268, 311, 467. River Dee and Harbour of Chester, 267. Royal Exchange, 436.
Repton, aspects and prospeets by, 40.
Resins, constitution of, 228.
Restoration of ruins, observations on, 369.
Reviews:
Armstrong on Steam-engine Boilers, 390.
Bart holomew's llints, 190.
Bernard's Arithmetical Perspective', 349.
Bland on Arches, 309.
Boileau's Traverse Tables, 352.
Bonrne's Iondon and Birmingham Railway, 352.
Bradshaw's Map of Reilways, 35.
Brees' Appendix to Railway Practice, 100.
Buck on Oblique Arches, 309.
Cicognara, Fabbriche di Veneria, 8.
Companion to the Almanac, 4.
Cresy's Treatise on Bridge-building, 189,392.
Day on construction of railronds, 392.
Del Duomo di Monreale, 440.
Design Act, 309.
Dibrlin's Northern Tour, 4.
Essay on Bitumen, 191.
Engincers, roval, professicual paper, 439, 463.
Forcign Montily Revicw, 259.
Foulston's Public Buildings, 34.
Gibbons' Law of Dilapidations, 2.
Grand Junction Railway, 144.
17abershon's Ancient lIalf Timbered Fouses, 351, 439.

Ilann and Hosking's Architecture of Bridges, 260.
Ilart on oblique arelics, 392.
Hay's Laws of IIannonious Colouring, 188.
Ilerculaneum and Pompeii, 7.
Hints to Mechanics, 35.
Ilopper on the Roval Exchange, 143.
Ilosmer's Tables, 309.
Ibbetson on Turning, 3:2.
Instrument, on a box of, 437.
Joucs' Principles of Levelling. 309.
Journal of the American Institute, 35.
Lecds' Public Buildings of London, 5.
Loudon's Suburian Gardener, 258.
Mechanics, by the Rcv. II. Moseley, 183.
Nonumens d'Archit. Byzantine, 7.
Morin sur l'Adherence des Pierres, 8.
Pambour on the Stcam Engine, 345, 466.
I'arkes on Steam Boilers, \&c., 263.
Pasley, Col., on Cements, \&c., 32, 105.
Penny Cyclopadia, (London), 186.
(Munich), 424.
Photogence drawing of, history of, 437.
Polytechnischen Journal, 8.
Quetclet's Calculations of Probabilitics, 141.
Rennie's, Sir J., Report on Inproveinent of the Hiver Dec, 267.
Repton's landscape gardening, by Loudon, 392.
Richardson on Warming and Ventilation, 345.
Richardson's Arehitectural Remains, \&c., 391.
Roscoe's London and Birmingham railway,
Sliaw's Encyclopadia of Omament, 266.
Sopwith's Isometrical Perspective, 110.
Studics and Examples, Modern English Architecturc, 262.
Taylor's Design for Exchange Buildings, Manclicster, 268.
Telford's Life, 107.
Thomas' Gothic Ornaments, 268.
Ure's Dictionary of Arts, \&c., 185.
Wallace's Universal Calculator, 110.
Westminster Improvements, 34 .
Year Book of Pacts, 144.
Rhymncy Iron Works, 147.
Richardson, C. J., on Warming Buildings, 371.
Architectural Remains, rev., 391.
——G. P. on Geology as apphed to Archi.

Rocks of Devonshire and Cornwall, 229.

Rome, architectural remtoration of ancient monu-
menta of, 105.

Rotative Disc Eagine, 315.
Royal Academy, architectural designs at, 216.
Hoyal Exchange, 114,137; letter respecting, 171 ; proceedings and resolutions of the committee, 173 ; letter from Mr. Hopper, 218; report of the architects, 436 ; ditto committec, 437 ; exhibition of the designs, 440, 473 .

- George, blowing up of wreck of, Splthead, 392.

Ruins, observations on restoration of, 369.
Ruinous buildings, on means cmployed for removing, 135.

Running Gauge for measuring railway rails, 245, 338.

Safety lamp, Baron Mernjel, 472.
Salvin, Mr., employed at Horlaxton, 39.
Savery, Capt., inventor of the stean-engine, 137.
Saring Machine for cutting of railway bars, 192.
Schiller's Monument at Stưttgard, 237.
School of Design, Margaret Street, 113.
Sculpture and Architecture, remarks on, 214.

- early Circek, at British Museum, 179, 256.
— Ilogan's " Pieta, 363.
- Etruscan, British Muscum, 428.
- Ancicnt Statues, 367,434 .
Agina Marbles, British Musenm, 458.
———. Agina Marbles, British Musenm, 458.
Phigalian Marbles, ditto
tica-bank at Hollieach, 450.
Sea, encroachments and recessions of the, 464,
Sesostris, Colossus of, 286.
Sewage of Wcstminster, 311.
Shaw's Encyclopadia of Ornament, ret., 266.
Simms, F. W., on curves on railways, 245.
Skew Arches, 164.
Sineaton's estimate of animal power, 192.
Soanean Museum, the, 304.
Sopwith's Isometrical Perspective, ret., 110.
southampton docks, 476.
St. IIclen's town-hall, 477.
Statucs, public, in the metropolis, 218.
- ancient, 367, 434, 452.

Steam-boilers and steam-cngines, Parkes on, 225, 363.

Stcam-engines, on the economy of working expansivcly in crank engines, 146.
Sitcan-engine, theory of, by Pambour, 345, 466.
Steam Navigation, Steam-vessele, \&c. :-
Iron Steam-vessel, Brazilian steam navigation, \&c., 25.
Great Western, 76; Ilecls, 76; steamer from France to America, 76.
Stcam-loat Inspectors, 91.
Ericsson's stcan-boat propeller, 115, 154; Great Western, 15,154 ; the Kite, 115.
Launch of the Nicholai, 154 ; the Star, ib. ; steam conveyance to America, ib.; Mediterranean steam navigation, ib.
Mails to America, 196; the Union iron steamer, $i b$.
Steancers from Clyde to Nevy York, 235 ; iron ships, il.
The British Quecn, 274, 354 ; iron ship, 275.
Steam-ships, 313 ; communication with Awerica, $i b$.
Government steamers, 354 ; the Cyclops steam frigate, $i b$.
The 'Sesostris,' 394 ; Boston and Liverpool stcam ships, $i b$.
Canal stcam navigation, 39 J.
The 'Mechsa' steamer, $i b$.
The 'Archimedes,' 442 ; the 'Queen,' 445.
"The New York," 475.
Steam, new fuel for, 421.
—— power, Ham on, 287.
—_ vessels, power of tonnage, 421.
—_On the elastic powers of, 467.
Stecl, difference between European and Indian, 151.

Stone for the new llouses of Parliament, 331; list of quarries cxamined for, 372 ; tables giving results of experiments, 419.
Surrey County Lunatic Asylum, 357.
Tait, J. F., on the public buildings of the ancients,
215.
Telegraph, Galranic, Great Wrentern Rininoy, 381.
elfor d, T., specification and drawings for entrance lock, \&c., St. Katharine's Docks, 430.
Thames embankment, at New Houscs of Parliament, 355.

, Whit at, 158. Shield, 326.
Philomuseeus on, 328.
Tite, W_{v}, paper by, read at Architectural Socicty, 242.

Tilghnan's railway har, 449.
Tonnage in stcam vessels, most economic proportion of power to, 421.
Transferring old prints, 465.
Traveller's Club House, work on, ret., 262.
Traverse Tables, Boileau's, reo., 352.
Trevithick, Richard, memoir of, 93.
Tides, Prof. Whewell on the, 472.
Tumulus or Barrow, near Rusb, county of Dublin, 113.

Turnbridges on the Hereford and Glo'ster canal, 192. Turnball, Major, letter from, 42.
Turn-table, Railway, subntitute for, 202.

Turning, lbbetson on, rev., 352.
Voltaic battery, by W. R. Grove, Esq., 472.
Wallace, R., the Derby Athenæun by, 31 .
Walker, J., report on Caledonian Canal, 174, 221.
Warming buildings, Richardson on, 371.
Warming and ventilating of buildings, by Ilood, 469.
Water, Lord Brougham, on the composition of, 417. Waterworks, Chelsea, 340.
Water Company, new, 411 .
_- Main, Glasgow works, 451.
Waves, Mr. Scott Russell on, 471.
Well sinking, 245.
Wellingt on Testimonial, remarks on, 30\%. Statue in the city, 114.
Westminster Bridge, works at, 157203.
Wheels of locomotive eugines, 44.
\qquad new railway, 442.
For coinmon roads or railways, 449.
White, J., design for raising sunken vessels, 284.
Wightwick, Mr., on the National Gallery, 97 ; design for Public Hall at llymouth, 397.
Wilkins, W., necrological notice of, 388.

Willoughby de Eresby's, Lord, patent machinery fo compressing peat, 281.
Willians' patent boiler, 306.
—— patent peat fucl, 111. Sussex, 126.
Wood, experiment to ascertain the strength of different species, by Mr. E. Hodgkinson, 422.
Wook, W, first report on Great Western Railwar, 47 ; second ditto, 58.
Wooden Parement, 20, 43, 201, 314.
H__ Hawkin's remarks on, 308.
Woolwich Dockyard Improvements, 444.
Worcester, buildings at, 427.
Wreck of the Royal George, Spithead, blowing ap of, 392.
Wyre Harbour, 444."
Yates, on changes and improvements in the emborchure of the Mersey, 421.
Yorkshire Paving, on the effect of climate on, 463. Young, Mr., architect of the Lowther Arcade, 254.

LIST OF ENGRAVINGS.

Arc de l'Etoile, Paris, 4 cuts, 159.
Apparstas to take up a carriage, 2 cuts, 448.
Aspects and prospects, 1 cut, 41 .
Athenaum, Derby, 3 cuts, 31.
Boiler, Williams' wronglit iron, 1 cut, 306.
Break, for arresting the progress of an engine or carriage, 6 cuts, 123.
Bridoes:-
Architecture of, 2 cuts, 261.
Bow, Old and New, 4 cuts, 119.
Pont du Carrousel, Paris, 19 cuts, 79.
Westminster, repairs at, 2 cuts, 203.
Building, Iuproveinents in, 15 cuts, 361.
Contrivance for shutting doors, $1 \mathrm{cut}, 33$.
Caledonian Canal, cutting of, 1 cut, 109.
CLalk excavations, 5 cuts, 206.
Cistern for water, 1 cut, 35.
Chureliea of Londion, 4 cuts, 325.
Club Chambers, Regent Street, 2 cuts, 319.
Cofferdann at St. Katharine's Docks, 9 cuts, 431.
Dock, plan of proposed new; at Kingston-upon-1Iull, 1 cut, 16.
Dynanometer, 1 cut, 138.
Fire escape, 1 cut, 97.
Glenarm Harbour, 2 cuts, 83.
Gothic arches, method of atriking, 2 cuts, 98.
Ground-rope apparatus, 2 cuts, 447.
Gange, running, l cut, 245.
\longrightarrow improved, 1 cut, 338.

|larrours :-

Glenarm, 2 cuts, 83.
llastings, 1 cut, 86 .
Of Refuge, 3 cuts, 12 I .
Of leftuge, 1 cut, 172.
Hastings, harbour at, 1 cut, 86.
Hydrostatic Jack, 3 cuts, 435.
Iron, new (liair, 2 cuts, 449.
Iron, new mode of producing wrought or malleable, direct from the ore, 3 cuts, 17.
Lamp, Parker's hot-oil, 1 cut, 329.
Lighthouses, construction of, on sand, 4 cuts, 38.
Locks, reservoir canal, 1 cut, 67.
Locomotive, animal, it cuts, 239.
Lubrication, 3 cuts, 142 .
Nekon Memorial, 1 cut, 279.
Oven, roasting or baking, 7 cuts, 359.
Peat compressing machine, Lord de Eresby, 8 cuts, 281.

Perspective Aritbmetical, 8 cuts, 349.
Plymouth Breakwater, 2 cuts, 165.
Railway buffor, 6 cuts, 306.
Pailway constants, 2 cuts, 384.
Railway curves, 9 cuts, $139,140,164,202,254$, 337, 436.
Railway turntable, substitute for, I cut, 202. Sea-bank at liolbcach, cut, 450.
Sesostris, Colossus of, 1 cut, 286.
Shingle, course of, 3 cuts, 126.

Signals, (on railway), apparatus for waking, cut, 448.
Skew arches, 2 cuis, 164.
Spiring bow or arch, 1 cut, 35.
Steam Engine:-
Atmospheric, 1 cut, 407.
Bennett's, 1 cut, p. 46.
Boilers of, Armstrong on, 4 cuts, 390.
Boulton and Watt's single acting, 1 cut, 408.
Ditto double acting, 2 cuts, 409.
Bunnett and Corpe's concentric, 3 cuts, 199.
Ditto 2 cuts, 245.
Doulle acting engine for supplying water, 1 cut , 411.

Fourway cock of, 2 cuts, 40%.
Governor, the, of, 1 cut, 410 .
Leupolds, 1 cut, 407.
Marquis of Worcester, I cut, 403.
Neucomen's, 1 cut, 405.
Papin, 1 cut, 405.
l'arallel motion of, 2 cuts, 460.
Savery's, 1 cut, 404.
Steam toy, Hero's, 1 cut, 401.
Streams, obstruction of by dams, 3 cuts, 334.
Synagogue, new, Great St. Hclen's, 3 cuts, 1.
Thanes tunnel shich, 1 cut, 326.
Vessels, raising sunken, 1 cut, 284.
Victoria boilers, 5 cuts, 322.
Water-main, flexible, $6 \mathrm{cuts}, 451$.
Well at the Hampstead Road, 1 cut, 216.
Wheel for the common road or railway, 2 cuts, 449.
枯

[^0]: - We cannot withhold the Doctor's own note here introduced. "My friend, Mr. Mackenxie, took me one day to call upon Mr. Oraham, more especially to riew hit de. sign for the new House of Commons on the Gothic plan. It is very magnificent; but perhape in too detached bnildings; while Mr. Barry's, on the contrary, from its contlauity. has too much the air of a large manufactory, which, however, may be broke (broken) by a boldnest and variety of relicf in the external ornaments. Mr. Grehame' ialents arelikely to be succeasfull ${ }^{\text {in }}$ employed in the restoration of Glasgow Cathedral."
 desiga hun at all the air of,

[^1]: Trieve. Is that of Dover, ci-devans Malbourne Hoase, Whitahull, the portico (throurf Thet foot pitanagens pach, as in the one just meationed, and that of the Panthoon)

 Fing to ofe of in miop tasteful and clavical plecet of dedisn in the meiropolic. The

[^2]: - In thin operation, the expenses of limeatone and breaking it havo aloo to be Incurred.
 + To show what this waste heat is, it is only necessary to gtate, that the chlmineys of thesefurnaces in the iran districse are eompelled to be lined with fre-bricks to the top.

[^3]: - The expeate of making the Lirerpool, Biraingham, and London Rallway (about

[^4]: Wichol? wn's Operatire Mechanlc, p. 209,

 Yol. 1, p. 38\%,

[^5]: - The Ahtodreis survey maken six foet ouly upon the Cross Dykes, the shoalest phec, which mant be a refy low tide.
 1 M. Leolic prepased two estimates; the one beling the parliazaentary entimate,

 This, ervective of Dock grtes, in four dppartments, and amounted to 35,000 . odds

[^6]: - This in very material to be kept in mind
 + Beery time that such a bar is formed, it is obvious that the barbour becomed thereby useleas; and such a bar may be formed in one ijile: and no sooner removed than formed agein by the rery next tide. But it cannot be remored at all at Dover during the whole period of neap thies. It can only be remored daring the helght of apring tiles. Bo mneh for depending on the eftect of culvertin The harbours on the Bouth Eantern const of this great maritine uation ought to be independent of any auch fouth pater

[^7]: -Tament be dowe by ealcolation, bat meacurement by compasien is near enough frimeteal perpoces.
 Fhiske would beat right angle to the facp, on the sarface halfway between thate woud be at righ angles to the nep, on the sarface

[^8]: No. 21.-VoL. II.-JUwa, 1839.]

[^9]: -The expremeion "high-w

[^10]:

[^11]:[^12]:[^13]: - Organic remains at Kibby are rery numerons. In some parta of the excavation therre, su the earth taken out has been principally laid into spoli, there will be mper expergities, for some time yet, for further examination, which would well

[^14]: - The engine used by Fulton, in his irst ateam-boal on the Fiodeon firce, wial rato by Merras. Boaltor and Watt, of Boho.
 t By Mr, Thormtom, contrictor for the Frork

[^15]: - If solid modela were more in une, the effect of our baikdings would be better understood both by the architect and by his omployer. For modele cos a small scale, a very ingenious application hai been made of elder pith, a sub stance hitherto unemployed for this purpose. It is capable of beiog otempd into the most delicate architectural ormamenis, and the finenexs of tos taprove and the mellowness of its colour, add greally to the beauty of the ajpir brildings. This discovery, for it deserves the name, is as yet very tisl
 known.

[^16]: ripture divine, que rentum ot pluviam repellunt: id eat, nociva prohibent' et, dum claritatem veri zolis, id out, Dat, in eccleniam, id ent in corda fidelium iranamittunt inhabitantes illuminant. Ho intus latiores suat quia myaticus senus amplior est, et precedit literalem............. Per cancellos vero, qui sunt anto lenestras, prophetus vel alion doctores obecuron intelligimus eccleste militannes, in quitur of duo oharitukis procapten, quardoque duse eolumnee duplicantur, zecundum quad Apostoli lipi ad prapieandum mittoutur......

 coul proper the soliquity of the curtom,

[^17]: -The wrosds or macqual must bave erspt In througb tandrostonee, for sthey eanioo poedbly have any sifglacation In the way they are used.

[^18]: * How is the penalty to be recovered from a man of atrato? If he have no goods, he will escape punishment, as the act dues not authorize imprisomucut.

[^19]: * This Irish artist has obtained great eminence in Rome, so as to hold the next rank to Gibson, amoug those of our countrymen there. The Irish have extended to him a patronage which they are not remarkable for giving generally to their well deserving citizeus, and have given him many important commiasions. He is the modern Barry, and well sustains our name at Howe.

[^20]: * At the tims this article was written Mr. Wilkins was living.

[^21]: * For authorities on this subject see Pliny, IIist. Nat. 1. 36; Junius, de Picturá Veterum, p. 276-296; Blasius Caryophilus, de Marmoribus Antiquis; Perber, Lettres Mineraloyique sur Cltalie; Tozzeti, Voyage de Tawcane; Quatremere de Quincy, Jupiler Olympien, p. 24 et seq. 132.163; Brard, Traitédes Pierres Precieuses, vol. 2; Levranlt, Nouveau Dictimnaire d'fint. Nat : Diction. Classique d'llist. Nat., articles Alabaster, Breccia, Brocatelle, Granite, Lumacelle, Marble, Porplyyy, Serpentine, \&c.; Winckelman's History of Art, B. 1, c. 11, and B. 7, c. I; Le Dicfionnaire de V'Antiquifé de l'Encycloperlie; Facius's Collection of all that Plutarch has said upon Art, Leipsic and Coburg, 1805; Heyne, Antiquarirche Aufaaetze; Bottiger, Amalthea; and the Essay on the Technical Part of Ancient Sculpture, prefixed to my Museum of Incient and Modern Sculpture.

[^22]: * This prevailed even down to the period of the decline of Roman art, and the examples are so many that it is almost useless to refer to any individual instances. Among others is the well known panther in the Museun at Naples, of white marble with hlack marble spots, a Plautilla in the Muscumi of the Campidoglio at Rome, also in white marble, but with a moveable wig of black marble. The hair of the Vouus de Medieis was gilt. In the Louvre is a polychromic statue of Rome, of which the looly is in porphyry, and the head and arms in gilt bronze. In the fricze of the Parthenon in the Elgin collection, are the holes by which ornaments and ingtruments in gilt bronze were aflixed. The ground-work also of the has-reliefs was painted shy hae, in order to throw ont the figures. At Pompipi, in the temple of lais, was also found a marble Venus rith gilt hair, and most of the cornices of the rooms are of a red or hlue ground. The same is observable in most of the ancient temples of Sicily. The hair of the statues of the dangliters of Halbus at Herculancum is painted red. The Minerva in the British Musemm, with a black helmet, is a modern restoration.- [Note of Translator.]
 \dagger Box is used by the wood engravers; pear-tree was used by Alhert Durer; and bamboo is used by the Chinese in their plates for printing.-[Note of Translator.]

[^23]: * It is much to lie regretted that iron is not used as a material for statuan in England, seeing that it has heen so much used at Berlin and Paris.-[Wote of Translator.]
 \dagger Our author makes no mention of the use of mother-af-peasl. The peart itself in different forms was used extensively by the jewellers, and half pravk. under the name of tympana, were used for ear-rings. At Pompeii enr-ribg have been found of the form of scales, the acale being represeated by pentia - [Note of Tramslator.]

[^24]: Briavel's, St., oastle, Glowcentervhire.-In ruins (13th or 14th century). Entrance gateway (tbe chlef remains of the castle), built of red sandstone; decomposed.

 Bristol cathedral.-(Of the 13 th and 14 th centuries.) Built of red sandstone, and a yellow limestone (magnesian ?), strangely intermixed; tbe red sandstone in all cases decomposed; the limestone more rarely decayed; the tracery, \&c. of the Findows, which are of the limestone, are in good condition, but the pinnacles and other dressings, which are of the same material, are mach decomposed. The east end of the cathedral is a remarkable in-

[^25]: *That is, without any return Aue, but with the flame and emoke to pess from the fire place directly under the bottom of the boiler to the vent or chimney. When the draught in arranged in this manner, it in by some called "a thorough draught."

[^26]: - In Prench assemblics all speakers pat down their anmes in a list, from which they are called in rotation to deliver their disconrses, thla prevalls even in the Camabers, it leads to a dull monotony, and is destractive of the oratorical character. - Note of the trandator.
 9 We recollect an old friend of ours, one of the philosophical circle of the ind century, who used to tell an appropriate anecilote on the zubject of M. Arago favourite prhase, the creotio power of a mechanic. He himself, in a trial on the validity of a patent, had osed the same remark, when the jodge inxioas to hare a quiet fing at a witnest, who was on all such occastons qnite unbrowbeatable, exclaimed, Creative powtr of a mechanic! why pray Mr. R. What do you mean by shat t Why, my Lord, I mean, that power which enablue a man to convert a goat's Lill lmo judge's wig, - Note of the tranalator.
 In the notes of the last edition of Professor Robison's work on the stesm engine. Watt speazs in these terms of Mr. Boulton. "The friendship with which he favored ine, ended only whit his Iffe, that which I felt towarditim obliget me to take advantage of this opportunity, the last perhaps which may be allowed me, of acknowledying how much Ium indebted to bim. It is to Mr. Bonlton's ready enconragement, his taste for cientific parsuits, and the akill with which heknew how $t 0$ make them coniribate to the progress of the arts; it is also to bis intimate acgointance with manufacturiog and commercial affairs, that I attribnte in a great degree tioc success with which my efort bave been crowned."
 Mr. Boolton's manufactory, at Soho, had already been established for some year, when the partnership was formed which is mentioned in the text. This entablinhment. the first on such a great acale which has been formed in Engiand, is still rorther remarle: able in the present day, for the elegance of itt architectare. Boulton manofactared there all kinds of first-rate works, in ateel, plated ware, biver, atod or-molu, evea atronomical clocks and paintings on glass. During the last twenty gearn of his life Booltun was employed in improvemenis in minting money. By the combination of some processes originally French (i) with new presses, and an ingeaions applicallon of the ateam engine, be sacceeded in oniting great rapidity of execation, whith extreme perfection in detait. It was Boulton, who effected for the Raglish Goverament the recoloage of all the copper money of the empire. The economy and neatames of this great work rendered false imitations almost impossible. The nomerons execetione with which, until then, the Cities of London and Birmingham had been afticted, emtirely ceaced, and on this occasion Darwin is his Botanic Garden demands, why If at Rome civic erown was given to him who saved the life of a single chitren, is not Boation wortby of being covered by us with gariands of oalt.
 Mr. Boulton died in 1809 , aged gi.-Note of Sf. Aragn.
 © It is not only very possible, but very certain, and perbape is sthe reasot why in Eng land polttical and scientific dibtactions are considered as diferent-Nete of ife Tran lator.

[^27]: - How diferent is this from the plain uarration of Stuart, and the actual facti. Poor Bonlion who had the whole conomerciai mxangeinent, for which Wast was totally unfit, Bonere ief eatirely vut of the question, In order that M. Arapo may make a point, and Hdd another to she long strlog of miracalona quaifications with which be has entowed add another to the long strigg of miracnions quailications with which be has entiowed mis manappy confrere. The mericine and surgery might have pated, but wbat will the senvesuen of no time saficieati-Note of the Trandator.

[^28]: - The principle of entting of the steam, Wats had alremdy clearly shown in a lefter to Dr. Small, dated 1760, and it was put in practice at Suho is 1776 , and in 1778 al the Shad be derived from it are fully described in the patent of 1782.-Note of M. Arago.
 be derived from it are fully described in the patent of it82, Note of ar. Arago. shond be unpardonably forgetfal if I did not mention that Watt not only tarned bio atshonid be unpardonably forgetfal if i did not mention that Watt not only rarnedistion. tention to this sibject, as we see in his patents, but that he carried it into execaiou. Tbese enginea Watt gave op, not because they would not act, brt becarse they seenced to him in a workiag p
 linem action engines.
 There are few laventions great or small, among those which have been contributed to the modern steam engine, which were nut tisat developed by Watt. Follow his laboura, and we shall And ibat besides the principal points entumerated minetely in the test, that and we shall ind ibat besides the principal points entumerated minesely watere emgined he proposed that in places where there was a detcient supply of coter having acted is Hisoor condeasation, that is to bay, engines in which the aieam alter having alind discharged into the atmosphere. Kxpanaive stemm for engises with several cyinnonk Was also among Waft's plans, and he sugiested the des of pistons periectiy civeed, ab though compnsed of pieces of metal. It was also Watt who suggested the ase of the mercurial knage to show the clasticity of the seam in the boiver and in the condenise; who pointed out a slaple and permanent guage, by means of which the quabity or water in tbe boller always can be iold at once; Who to prevent ine quantity of wairs being diminished to a dangeroas extent, combised the movements of the feening pamp to thore of a float; who attached to an opening on the covering of the principal cyinar. of the engine an indicalor, combined in such a way as to shew exactly the iaw of evnc cuation of the steam in relation with the positions of the pistor, \&ct, \&c. If thad time Wonld shew that Watt was not leps akillm and successfal in his attempts to improve the boiler, to diminish the loss of beat, and to burn completely the quantity of arooke
 which issued frum the ordinary chlinney, how high soever uney may be. Niok of ic Arago.
 - Staart attribatea thls to Smeaton.--Note of Traralator.

[^29]: - M. Araco now comet to anothey of the चouderfal discoveries which are to eonfer honar on his memolr, mad exhibit the novelty of his vkws, and he does wred to bluw the trinpet before the Shiloh Which he promises. The 'parturient montes is a result but too customary with M. Arago to call for remark; If li sumeient to repeat the trite saying, that be has nothing which is Dew inat is tue, ond iftic that is true which is new. He certaioly hat the ment of steppiay first ho career, Which nome of Whtthidmirem had
 ever yet the hurdibood to tmaxiue that it woud be worth the while of him or his fiful ever yet the hurdihood to maxiue that it woudd be wurth the while of him or billifol
 to parsue, and he may elnim all the merit of research in a subject which admits of litile, to parsue, and he may chim allthe merit of researci in a subject which ndmits of litue,
 and in winch the great deal be assumes has been throwa away opon erros. Note of and in which the
 + M. Arago, led away by the quibbling ipmes fatume of his own Imagination, tope to give s new defnition of gralu, oumethiug like that which defines man to be a cooking animal, or as nofiedged fowh. M. Arago, politician and philosopher, academician and depaty, is conskiered, by some, to be the Lord Brongham of Prance, and, led away by the vanity of fgaring as an orater in the chamber, and as a rhetorician in the academy, he denerts those stadies in which alone he ancceeded, and from which alone he can derive a molld reputation. If he resemble Lord Brougham, he resembles that great man in hid defects, rather than in bio talents, and hat the same point of contact as the lower members of the animal kiugdona have with their exatted fellow man. A. Arago demerts the cart of scleuce to exhibit as an urator: Lord Brougham, like Cicero, possessing an
 elonaence, which the fears eren of his enemies to not allow them to dispute, dedicates eloquence, which the fears even of his enemies do not allow them to dispute, dedicates his leisure to severer stories. M, Arago may have the saperficiality of Lord Brongham, bat he wants bis elegance of style, and clearuess of ruasoning, the veriety of his studies, and the skill with whicb it is bruaght to bear un the subject of bis research. If Brougham be exposed to this charge, he amply makes up in breadth what he loses in dcpih, while M. Arago withont eloqnence in matters of sclence, misakea declamation for an casy flow of language, and thinks to sapply the logic of the advoeate with the concratti of the miditle sges. M. Arago might be the ' roaginter morum in the schools of science, but In tbe world at large be ls only a marrow-minded and conctiled pedagogue.- Note of the
 Trandator.

[^30]: When Don Quixnte altacked the sheep, be asked Sancho whether be did sor we the benuers of the opponing ammies fying in the alr, and the trampets calling to combat; and M. Arago, with equal confidence, talika of an attentive examitation of priated papth, and a minute comparison of datet, with all the coolness of a German profesar, who the Just moked out a laborions mass of absardity upon a question of Greek blatory, tura the accumulated dust of a thuarand volumes.
 for bis money. - Note of the Trandator

 + M. Arngo, like Walter Scott in bin History of Napoleon, having raired setiona ab Jections, Duds no dificoley in antwering them by a similar ingenious procem of thio natore are the men of strat now before us, which it is moch more easy io demolith that die more serions objections which have really been made. As Tom Th
 made the giants arst, and then he killed them. Note of the Zhowhoter.

[^31]: - Lord Brougham was present at the public meeting is which in the name of the Acedemy of Sciences, 1 rendered this tribute of gratitude and admitration to the memory of Wat ; on his retura to England, he collected somie valuable documents, and sudied orer acaln the hitatorical question to which I have giren wo moch atteotion, deroting to It onscrupnluasly, that kind of jodicial examination which might be expected from one who was ouce Lord High Chancellor or England. I owe it to a kindness of which I feel ail the valae, that fam able to lay before the public the resolta sill unpablinhed of the laboors of my ulustrious collengue; they will be found in the appendix to this eulo-cium.-Note of H. Arago.
 THis phrase it quite correct, bowever fabulons it may appear io the age we live in.

[^32]: - Twenty years before the establinhment of the Bristol Pnenmatic Innitntion, Watt bad already pplird hia chemical aud mineralogical acquitrementa to perfect the prontice of a pottery which he had established with some riends at Glargow, and in which tu was a shareholder to the end of his life.-Note of M. Arago.
 \uparrow Mrs. Watl (Mac Gregur) died in 1832, at a very advanced age. She had the wisforinne to sutvive the tro childred, who were the ofrupriog of ber marriage with Wail. -Note of M. Δ raga.

[^33]:

[^34]: - Werliire's letter, dated from Birmingham, the 18th of Aprit, 1781, was pnblished by Dr. Priestley in the 2nd volume of his Expertments and Obserwafionstrelating Lo rarions brasehes of Natural Philosophy, with e contfwation of the Obsermitions on Air, forming in fact the Sth volume of Expevimenta and (Bueroationt on difforrnt kinds of Alr, printed at Birmingham in 17B1.-(Note by Mr. Watt, Juntor.)

 Philoophicat Tramenctions, 1784, p. 120.
 Philosophical Tranactions, 1784.
 The note of Cavemlish at page 127, appears to imply that Prientley Had not percrived any loss of weight, but I do not fad this assertion in uny of the works of the Hirminghani chemist.

 The firal experiments of Watlife on the confagration of the gases, were made in a copper globe, the weight of which was 14 ounces, and the volmine threc pints. The anthor wished "to determiue whether heat was or was not ponderable.

 Warltire at frat deseribes the methods of mixing the qus add adjusting the acalrs, and tben asa, "l alwasa bolanced exaetiy the veastl full of common nir, in oriler that the differepce of weight by the introinctian of hutlaminahle air might alfow me to judge whether the mixtore hat been effected in the wished for proportions. Tise passage of the electric epark made the globe hot; after it had cooled again by expmature to the ait of the roum, f hang it upagain on the halaore; I slwaya foanit a loss of weikht, but there were difercoces between one experiment ad another. The mean loss was two grains."
 yon (Priestley) do it lafely, and I bave observen as Fiu vt D , that althoagh the vessel wat clean and dry befure the explution, it wat nflerwarda coveral with dew and amonty subatance."

 On balincing the claima, dicen not the merit of having perceivel the dew seem to rent whit Prleatley
 In some remarks which Priestey adds to his correapondent's letter, he confirms the ows of medght, and adrls, "I to not thlnk, however, that the bold opinton that the latent

[^35]: a greater scmle. If that is contrined, it will be remarkable fact, and ove which wil tho the groatest honomr to Warltire's sagacity.
 heat of hurlies is a mensible part of thelr weight, can be admitted without experimenta on "It mnat be farther shserved," continnesPriestley, "that nt the time that he (Warltire) an the fiew on the inside of the clomed vessel of glass, he sait that it conflimed an opinion which he had long had-ile opinion that common air gives up its humfity when it is phlogioticated!."
 It In thereforr evirlent that Warlire explainell the dew by the simple mechanical preipisatlon of the hygrometrical water contained in common air.-f Nute of Mr. Waft, Junior.)

[^36]: - The obscurity in the theoretiral conceptions of W att and Gavendish, complabart or by Lord Bronglturn, do not scem, to me, to be well fornded. In 1754 they linew how to prepare two permanent gases, very disimilar tron tach other. These iwo gaxes. some ralled fixci nond inflammable air; and others, dephlugisticated air and phlorintom: ollers, in finc, onygen and hydrogeti. Hy the romblination of dephlogiscicatial air ata

 degree, throwing any uncertainty on the merit of his lita diecovery. In the prrart
 day, il has beca mathemafically denongtrated that hydrogen or phogisom is an elememi inry buly; that it is not as Watt and Caveucish belleved, for a fme, the coinbination en a redteal and n llitic water.--Vote of Mf. Arago.
 \dagger No one coult expect that Watt, writing mat publisising for the firt lime, emgagerd
 coulit coulent agaltist the eloqnent and prictiped pen of lavolsier; but lie aketes oi his theory (see page 381 of hin paper) appeats to me, who, I mast couftas, ang ond an Empartial juige, as luminous and as expressive, as the conclanions of ibe iltacespone Erench chemith.-Note of Mr. Walf, jun.
 I A letier to Proftesmer Crill, in which Blagden gives a detailed ikesriptiont the the

 laller name appear:, for the first time, in the recital of th
 Secretary of the Royal Sociely.- Note of Alr. Wolf, jum.

[^37]: * It will be observed that we employ the letter g to represent the uniform acceleration per sesond, which a body receives when solicited by the force of gravity free from the influence of any disturbing forces.

[^38]: * A notice of this Church is given in the October Number of our Journal. -Editor.

[^39]: - There appears here to be some discrepancy between the specification and the dranings, the latter show the dam to be filled in wi,h clay up tq the level of high water-mark, which we imagine was the way it was exegrand then the bricks were laid in sand to the beight of 3 fret above thescasEiditor.

[^40]: * V. also under the head of antique marbles.-[Note of Translator.]
 \dagger Some are to be seen in the Egyptian department of the British Maseme
 - [Note of Translator.]
 \ddagger Lesbian marble, according to Pliny, was aleo bleck, Tenarisn mutin was a greenish black.-[Note of Translator.]
 \& Red marble was found at Jerusalem.-[Note of Translator.]

[^41]: * Green marble of this lind was also found at Mount Atrax. [Note of Translator.]
 + Pueple Marble.-The marble of Alabande was a purple black. Greit Mamaze.-Marble of this colour was found at Lesbos.- [Note of Translator.]
 ; There was Synnadic marble of white and purple.-[Note of Translator.]

[^42]: * Enumeration of some of the articles:-Statues in porphyry, universal breccia and coloured marble, 6 ; columns 103, viz., porphyry 17, rose granite 24, grey granite 12, universal breccia 4, verd antique 10, Egyptian green 10, marbles, breccias, and oriental alabaster 26.-Nofe of Tramiator.

[^43]: - Science possessed but discordant measures below eight atmoopheres, and for greater elasticitiea absolutely no result of direct experiment.

[^44]: - The determinations of Southern and Taylor alone shew a conformity with these (the French determinations) by so much the more striking, an they were furnished by a totally different mode of observation. At the time when we calculated the table which was inserted in the provisional report quoted above, we already considered them as the most proballe; and the differences between that table and the one we are about to give, will be found to be very inconaiderable in the part of the acale whilh is common to both.
 t Mr. Young appears to have been the first who made use of the methoi of interpolation, which consists in representing the elastic furce of sieam by a certain power of the temperature augmented by a constant number. Mr Young had found that the index 7 mnde the results coincide with the experiments which were known at the time his work was publithed. Mr. Creighton took the index 6, which seemed to him to agree better with Dr. Ure's reaults. Mr , Southern adopted the number $5 \cdot 33$, which he no doubt determinad by tanmement. Mr. Iredgold resumed Creighton's index, and changed the coeffieient, \&cc.

 I ('Ihe Commission) resolved to have recourse to the most laborious, but at the same time the most exact method; the direct measure of the column of mercury capable of supporting the pressure of the sieam!

[^45]: - If the propurtions between the headland and the bay be equa, as "1 have assumed, by measuring the distance from the presett high water mant to the most inland extremity where buach can le discoverd, we wall te afti to ascertain, with tolerable accuracy, the distance which the pramintory fo merly extended.

